• Khrapchenko (1978), On a relation between the complexity and the depth
    Metody Diskretnogo Analiza, 32 (Novosibirsk), 76-94.

  • Korobkov (1956), On realization of symmetric functions by Pi-schemes.ps

  • Krichevskii (1963), On the complexity of contact schemes computing one boolean function.ps

  • Krichevski, Minimal monotone contact scheme for threshold-2 function (1965) (pdf)

  • Lupanov (1958): A method of circuit synthesis, Izvesitya VUZ, Radiofizika, vol.~1, 120-140

  • Lupanov - Bounded depth formulae (Probl. Kibernetiki 6).djvu English version

  • Lupanov - Bounded fan-out circuits (Probl. Kibernetiki 7).djvu

  • Lupanov - Formula complexity (Probl. Kibernetiki 3).djvu

  • Lupanov (1970), On the influence of the depth of formulas to their complexity.djv

  • Lupanov (1973), On the synthesis of threshold circuits.djv

  • Nechiporuk (1962): On the complexity of schemes in some bases containing nontrivial elements with zero weights, Problemy Kybernetiki 8, 123-160 .

  • Nechiporuk (1966), On one boolean function.ps

  • Nechiporuk (1969), On one boolean matrix.pdf

  • Nechiporuk (1969a), On topological principles of self-correction.pdf (a paper with lots of results!)

  • Okolnishnikova (1991), Lower bounds on the complexity of realization of characteristic functions of binary codes by branching programs
    Metody Diskretnogo Analiza 51 (Novosibirsk, 1991), 61-83.

  • Rychkov (1985), A modification of Khrapchenko's method and its application to lower bounds for Pi-schemes of code functions
    Metody Diskretnogo Analiza, 42 (Novosibirsk), 91-98.

  • Subbotovskaya (1961), Realizations of linear function by formulas.ps

  • Zdobnov (1987), On complexity of the parity function in Pi-schemes without null-chains.djvu

  • Nigmatullin, Complexity lower bounds and the complexity of universal circuits (1990)