I. GENERAL PROBLEMS

ON THE REALIZATION OF FUNCTIONS OF LOGICAL
ALGEBRA BY FORMULAE OF FINITE CLASSES
(FORMULAE OF LIMITED DEPTH)

IN THE BASIS &, v, ~ *
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Among the mathematical problems of cybernetics an important one
is the study of the asymptotic properties of the complexity of
control systems [1]. The "power" or "productivity" of a certain
type of control system can be defined as the complexity of its
best realization by means of functions of a certain class. In
this paper we shall study the formulae of limited depth in the
basis &, \/,”, including disjunctive and conjunctive normal forms
[2,31 and their generalizations. It will be shown that, for the
construction of the asymptotically best formulae of almost all
functions of logical algebra, we can confine ourselves to
formulae of a depth not greater than 3, i.e. formulae from AgY,
or formulae from A% (disjunctive and conjunctive normal forms

have a depth of less than 2), and we shall give a method of their
construction.

1. Formulation of the problem and of the results

We shall define by induction a certain special class of
fomulae, which are the generalization of disjunctive and con-
Junctive normal forms.

The class AY =AY consists of the formulae

Zy, %,...,mn,...,xl, Loy o ooy Ty -«

* Problemy Kibernetiki, vol. 6, 5-14, 1961.
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The class Ay is defined as follows:
1) AgtE Ab:
9) it F,cAY, F,eAY, then (F,V F,)€AV;

3) the class A'\‘, does not contain any other formulae, apart
from those specified by points (1) and (2).

The class Aﬁc is defined in a dual way [2].

Let furthermore

o0 o]
(it is obvious that h—L—JO AL =ku0 Ag)-

Essentially Ay ‘is the class of disjunctive normal forms, and
Ai is the class of conjunctive normal forms, Af, is the class of

"sum of products of sums®" of variables or of their negations [d
etc.

For example*
(@, & Z,) V (@, & Ta)) V20 € AV

(@, V(@g & £2)) & 20) V 0) & (7, VT,)) € A, -

Let us introduce in the usual way the Shannon function [5, 6l
L(F) is the number of symbols of variables in formulae F;

LE(f) =min L(F)

(the minimum is taken with respect to all formulae of the class
A", which realize the function f, if the realization is

s In the generally accepted form, where the conjunction signs
and certain brackets are omitted, these formulae are written
as follows:

z,35 \/ 2125 V. Za; (21 V ZaZs) T4 V/ zs) (1 V Z5)
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possible*); here k =0, 1, ..., cc.; € is V or is an empty
symbol;

Lt (n) = max LE ()

(the maximum is taken over all functions f of the arguments
Xy eees Xp)e
1 n

Because of the principle of duality [2]-
k k
v (n) = Lg (n);

this general value will be denoted by Lk(n). It is easy to see
that

L) BBy o (n) > L (), (1)

In a paper by Riordan and Shannon [5] it is shown (in terms of
series-parallel relay circuits) that**

(1) S » ' )

vhile for any e > 0 the proportion of functions f of n arguments
for which

&5 211
L= (<l —e) e,
approaches to zero with increasing n.

Earlier, Shannon [7] has shown that

Li(m)i<3:2n1 9

Here and in what follows the word "function" means a function
of logical algebra [3) (we shall not distinguish between func-
tions which are obtained from each other by adding or taking
away inessential arguments); and the word "collection" (unless
otherwise stated) is a finite sequence of zeros and ones (in
bractice this is a set of values of arguments in functions of
logical algebra). ‘

** The symbol a(n) >R (n) (respectively a (n)<C B (n)) means that
@ (r)

hm 4> 1
L HE) (respectively JiTnieies ﬁ )

< 1). Hereafter the symbol

log means a logarith of Lase 2.
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In papers [8, 9] the author has established that

271

Lo ()~ s 3)

and this statement has been obtained as a consequence of one
general theorem.

The basic result of the present paper is the following:

Theorem. When k >3

L (n) ~ 2
g log n

2

while for any e > 0 the proportion of functions f of n arguments
for which

. I k BT 28
min (LY (/), L& () < (1 —&) g »
approaches to zero with increasing n.

This result is in a certain semnse final, since, as is known,
when n > 2

) = (4)

In order to prove the theorem, in view of (1) and (2), it is
sufficient to show that

pAL

L3 (n) < (9)

logn *
This will be done in Section 4 by indicating a suitable synthesis
method (note that in view of (1) and (2) this also proves rela-

tionship (3)). This method enables us to construct the asymptoti-
cally best formulae for almost all functions.

For the sake of completeness we shall also give in this paper
a proof of relationships (2) and (4); the first of these is based
on a more approximate estimate of the number of formulae than is
used in [5] and therefore it is easier to prove.

9. Formulae of the second class

The formulae from Ai. obtained from the formulae Fj, .- fy

of .1\, by means of the operation & (and of parentheses), will be

written in the abbreviated form
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Lemma 1. Every function of n arguments Xy eees X (n3>2)
can be realized by the formula

trom A3 F, €Ay, while
s<2m  L(E)<n (1<iks).

Proof. When n = 2 the assertion of the lemma is obvious: each
function of the arguments xy, %, is realized by one of the follow-
ing formulae (here o, =0, 1; g, =0, 1):*

(&), (@fraz), o, 22, (@, VP & (2, V a52),
(.’L‘, v ‘7722): (r; V -;1)

Let the statement be proved for functions of the arguments

%p «., %, 4, and let f be an arbitrary function of n arguments.
We have

f("l'll"'" ‘n-11 n)“
= (i Ve (e e PRGN (RN fi (L )

According to the inductive premise the functlon (% ooes %, 4,

9), 0 =0, 1 can be realized by the formula & Fi, where

i=1

Fig Ay, ss<2™2, L(F{)< n - 1. Then the formula

(& B2V 2 )& (& (7 v 7))

realizes the function f, and the assertion in the lemma is valid
for this formula.

Theorem. When n > 2

L2 (n) = n2nt,

* The sumbol x° denoted x when 0 = 1 and z when 0 = 0.
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Proof. The upper estimate follows from Lemma 1.

The lower estimate. The function

f=2,+2z,+ ...+, (mod2)

becomes zero for those, and only those, collections, which have
an even number of ones (the number of these collections is equal
to 2"-1y. If the value of any variable in function f changes,
then the value of the function itself also changes. Therefore

8

i&= iFi from Ai,
realizing f, contains the symbols of all n variables (i.e.
L(F,) > n), since in the opposite case F; (and therefore f) would
become zero for a pair of collections, which differ in one vari-
able. But then F i becomes zero for exactly one collection, and
therefore s > 2™-1.

each sub-formula from F ; from A{, in the formula

3. The lower estimate for L% (n)

Let Q, , be the number of formulae from A% containing not more
than k symbols of the variables Xyy vees Xy and which do not con-
tain symbols of other variables.

Lemma 2.

Qn. k < (Cn)h’
where C is a constant.

Proof. It is easy to see that each of the formulae examined,
containing I, | <k symbols of variables, contains l — 1 symbols
of the operations &, \, [ — 1 left-hand brackets and [ -1
right-hand brackets. The total number of symbols is 4l - 3. By
writing down on the right-hand side of it 4k — 4l + 3 times the
symbol a, we obtain a word of length 4k in the alphabet

{( ’ )’ &, V, a, z,, ---t, Zps 51, Selley $n},

containing not more than k letters of the alphabet
Xl =i el T Dottt g
Therefore

M=

0= ot Bt 21 n' < (Cn)*
1 1=

1
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(the places for the letters of X can be selected in not more than
Cik ways; in these places the letters of X can be substituted in
(n)! ways; in the remaining 4k — l places the letters (, ), &
\/, a can be arranged in not more than 5%%-! ways).

Theorem (Riordan and Shannon)
© 28
L~ (n) = Togn

while for any € > 0 the proportion of functions f of the argu-
ments %y, ..., %, for which

an
L”(f)g(i—s)@,
approaches to zero with increasing n.
Proof. The first assertion follows from the second one. Let

us prove the second assertion. If k< (1 —s)% , then in view
of Lemma 2 g

n 2n n n 20
log (%2:2) < (1 — ) o (log 4 4) — 2" = — 82"+ (1 — )y 2

23"

approaches to k — o with increasing n (here y = log C). This
proves the theorem, since the number of functions of the argu-
ments z,, ..., x, is asymptotically equal to 22".*

4. Formulae of the third class
The set of collections

(al' (12, e ey ad), ((ll, ‘;2, as, e ey ad)’ e 0y (01: G ) ad-l’ ad)

Will be called a sphere with the centre (&3, «++, «y). The charac-
teristic function of this sphere can be represented in the form

d -
a Q. Q. O o
QAT PSS M AP pc el b T il pid
(@1, » Zq) .V‘ 1 ST ] aute

=

S

* Let us remember that we do not distinguish functions, which
ére obtained from each other by the addition or elimination of
inessential variables.
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Therefore
o o T X "

P (L 3o W005) x?! o xji-il x?! x?rf s Liad (1<j<ad). ()

In addition, ¢ can be expressed as follows:
¢ = VY,
where
p=ahV ... Ve,
(7)

. aq
= & (x“tha;j;'-').

1<ii<ipsd 1

In fact, at the centre of the sphere the function y becomes zero;
over the collections of the sphere both y and y become 1; over
each collection, which is different from the centre of the sphere
in two or more digits, some conjunctive term in y becomes zero.

It follows from (7) that
Ly (p) < a2 8)

Lemma 3. If d = ZD, then the set of all collections of length
d is divided into 2d/d pairwise non-intersecting spheres.

The proof which is based on the properties of the Hamming code
[10] is given in (9), page 69-70 (Lemma 5).

Theorem.
3 = ‘_)n
L3 (n) < o
Proof. Let f(x,, ..., x,) be an arbitrary function. We denote
the collections of arguments
(Zys o T ) (SRR n by AR (0 S D e
(Ia+b+6+l’ ceey 'l.a nb4r.‘u[)

respectively by %, ¥, Z, i (at+b+c +d =n; d= ZD).

Consider the division of all collections of length d into pair-
wise non-intersecting spheres (which exist in view of Lemma 3)
Let

(@), 1<i<
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be the characteristic functions of these spheres. Let
j‘i,f(‘;,s(z’ u) =P (u)/(()', 0, %, u)-

We shall denote by KF (;) the conjunction ofi.. . obn (52

m
(v;,...,90,) 1is the collection of arguments, B=(B,, ..., B,) is

the collection of their values). Decomposing the functions q)i(?i)

(%, ¥, 7, &) with respect to the arguments %, y, we have

o (@) (T, 9,2 )= V K5@) Kz @) /]~ d).

g, Q

Therefore
1@% zu)= v _Kz@Kz@)1,5 9. )
i,0,0
The function /,i,75~0(z~, Z) is different from zero only over
collections of the form
(O’a—l-b—i—h SIE IRy U(l—{—b—i—(:y a(ii)) SRR ) a](l)i) as’l)v a_(lzlzia o Lb a((il))
(here o,4,4; is zero or one when 1 <t <¢; (ocgi), b0t “l(ii)) is
the centre of the first spehere, 1<j <<d) and therefore it can
be specified by Table 1. The rows of the table correspond to the
collecti‘ggs (Ogtptyr =oo» O +p+c)e the columns to the collect‘ior‘ls
of the 1" sphere (d items). Let us divide the rows of the matrix
M, which defines the value of the function, into bands Al ...y
(with s rows in each, and the last band may contain a smaller
number of rows:

TABLE 1.
Taybs1 oo ZTaibevo-1 Taibsc Al P2 Rl e ] s < d
; s
0 0 0 j }
0 0 1
o T0005 T SRR 0 ‘
Oasber - .- Ot - Oiihees e L.]
A
B 1 1 } A

~ ~ i) @) o) @) IR
fi,g_o (0p ot R R R e G A el et falt) . gt
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It is obvious that
rine 28
N K e 1 1. (10)

Let f

the band Ak in M, and equal to zero outside this band. The
columns of the matrix corresponding to the function ]’Z 3.5 ATe
divided into groups of equal number of columnms.

P be a function which coincides with fi_;,z over

Let /,~ 3.7 be a function coinciding with /; 33 , over the
group of columns B, i which are equal to ¥ (in the band 4,)
and equal to zero in the remaining cases. The matrix for the
function j, 5 ¢ . has colums of two kinds:

a) columns from Bi,'&’,B’. e

equal to ¥ in the band A, and con-
sisting of zeros outside Ak;_

b) the remaining columns consisting of zeros only.

Therefore, the function can be represented in the form of 2
conjunction of two functions, depending respectively on u and P
(see Fig. 1):

L
O (s R

and equal to zero over the remaining

1) the functions which are equal to 1 over the

columns of Bi,?,T;», ey
columns;

2) the functions fflt, in the matrix of which all columns are
equal to T in the band 4,, and consist of zeros outside Ay

In view of (8)
: u ~ (3 A
/(i’%'N"‘ e s i) /i,)E,E; n3 (@),
where

) k=G
(48 A3 A e y it (lj
b T () = VT

(the disjunction is taken with respect to the set of numbers j
of columns from B, -~ , ). Note that with fixed values of

i, o, 0 k

1
Z Ly ( na)?Tz i) *
T
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Thus, (taking into account (9)), the function j can be repre-
sented in the form

1G9 )= v K@) Kq@) e (@) % 2) /7% 5 5 (@)=
Q,

e lGQhT
i, 0,

= v K~($)‘Pl(u) (Z)(\/ Ex sz nv @) (12)

iy (0

r

We shall denote by D (v) the negation of the conjunction
Ky (v), i.e. the disjunction Ul}l Vit vg{".

Since with any g,
VK~ (@) /% 5 % (u)—& (D3 (@) V %% = 1 5 (@),

therefore from (12) we have

~

1(9,% u)= . (13)
=V VE@ @ 16 @0y GV %z @),

_,—a-v—'w—q,—«Q

F7 A&I‘"i A&FE A&. F2 AV F:a,o,kr'At/
di
Ft G, 0k t’AV
4
LN e
D
FS; A&
EAY,
Flo;A‘\’/.

Let us estimate the complexity (i.e. the number of symbols of
variables) of the formulae defined by means of (13).* For this
burpose we shall successively estimate the complexity of its sub-
formlae which are marked in (13) by braces (in the same place
¥e indicate the class from which the sub-formula is taken);

The general form corresponding to parallel-series circuits is
shown in Fig. 24
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Fig. 1. Fig. 2.
L(F3)= b,
L (F?,%’,’E, k,’?) =b+L (F:,‘E,'E, R,%/)

L (F:.‘,'TJ', h,’T") = be + Z L (F;,E,E h)?’)’
[
L (F%) < c2°1 (see Theorem 2),
L (F°) < d? (see (8)),
L(F')=a,
L(F?)<a+d?+c2°+ H225 Z /5 (F:,?f,'?i. ,‘,1),
)
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L(F°) <2 (a+d?4c2°+ b2%) + 3] ; L(Fis,2)<
Q
< 2° (a4 d2 420+ b2b) + 20
(see (11); T takes not more than 2° values);

pPm<LFn<eZ (2 1)(2 (0 4 a2+ c2 4 122) + 2%)

(see (10)).

We put
d=2M%"=1 " ¢ —[21loglogn], b=[2logn],
= [log n — 2 log log n].
Then
and
B0 =0 0 20 L0

therefore (remembering that a + b + ¢ + d = n)

24 9c an on
3 M B gfns B A0
L¥(n) <2 d szd—s logn °

The theorem is proved.

With this the basic theorem formulated in Section 1 is also
completely proved.

Received 21 June 1960
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