Processing math: 0%
\def\<#1>{\left<#1\right>} \let\geq\geqslant \let\leq\leqslant % an undirected version of \rightarrow: \newcommand{\mathdash}{\relbar\mkern-9mu\relbar} \def\deg#1{\mathrm{deg}(#1)} \newcommand{\dg}[1]{d_{#1}} \newcommand{\Norm}{\mathrm{N}} \newcommand{\const}[1]{c_{#1}} \newcommand{\cconst}[1]{\alpha_{#1}} \newcommand{\Exp}[1]{E_{#1}} \newcommand*{\ppr}{\mathbin{\ensuremath{\otimes}}} \newcommand*{\su}{\mathbin{\ensuremath{\oplus}}} \newcommand{\nulis}{\vmathbb{0}} %{\mathbf{0}} \newcommand{\vienas}{\vmathbb{1}} \newcommand{\Up}[1]{#1^{\uparrow}} %{#1^{\vartriangle}} \newcommand{\Down}[1]{#1^{\downarrow}} %{#1^{\triangledown}} \newcommand{\lant}[1]{#1_{\mathrm{la}}} % lower antichain \newcommand{\uant}[1]{#1_{\mathrm{ua}}} % upper antichain \newcommand{\skal}[1]{\langle #1\rangle} \newcommand{\NN}{\mathbb{N}} % natural numbers \newcommand{\RR}{\mathbb{R}} \newcommand{\minTrop}{\mathbb{T}_{\mbox{\rm\footnotesize min}}} \newcommand{\maxTrop}{\mathbb{T}_{\mbox{\rm\footnotesize max}}} \newcommand{\FF}{\mathbb{F}} \newcommand{\pRR}{\mathbb{R}_{\mbox{\tiny $+$}}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\gf}[1]{GF(#1)} \newcommand{\conv}[1]{\mathrm{Conv}(#1)} \newcommand{\vvec}[2]{\vec{#1}_{#2}} \newcommand{\f}{{\mathcal F}} \newcommand{\h}{{\mathcal H}} \newcommand{\A}{{\mathcal A}} \newcommand{\B}{{\mathcal B}} \newcommand{\C}{{\mathcal C}} \newcommand{\R}{{\mathcal R}} \newcommand{\MPS}[1]{f_{#1}} % matrix multiplication \newcommand{\ddeg}[2]{\#_{#2}(#1)} \newcommand{\length}[1]{|#1|} \DeclareMathOperator{\support}{sup} \newcommand{\supp}[1]{\support(#1)} \DeclareMathOperator{\Support}{sup} \newcommand{\spp}{\Support} \newcommand{\Supp}[1]{\mathrm{Sup}(#1)} %{\mathcal{S}_{#1}} \newcommand{\lenv}[1]{\lfloor #1\rfloor} \newcommand{\henv}[1]{\lceil#1\rceil} \newcommand{\homm}[2]{{#1}^{\langle #2\rangle}} \let\daug\odot \let\suma\oplus \newcommand{\compl}[1]{Y_{#1}} \newcommand{\pr}[1]{X_{#1}} \newcommand{\xcompl}[1]{Y'_{#1}} \newcommand{\xpr}[1]{X'_{#1}} \newcommand{\cont}[1]{A_{#1}} % content \def\fontas#1{\mathsf{#1}} %{\mathrm{#1}} %{\mathtt{#1}} % \newcommand{\arithm}[1]{\fontas{Arith}(#1)} \newcommand{\Bool}[1]{\fontas{Bool}(#1)} \newcommand{\linBool}[1]{\fontas{Bool}_{\mathrm{lin}}(#1)} \newcommand{\rBool}[2]{\fontas{Bool}_{#2}(#1)} \newcommand{\BBool}[2]{\fontas{Bool}_{#2}(#1)} \newcommand{\MMin}[1]{\fontas{Min}(#1)} \newcommand{\MMax}[1]{\fontas{Max}(#1)} \newcommand{\negMin}[1]{\fontas{Min}^{-}(#1)} \newcommand{\negMax}[1]{\fontas{Max}^{-}(#1)} \newcommand{\Min}[2]{\fontas{Min}_{#2}(#1)} \newcommand{\Max}[2]{\fontas{Max}_{#2}(#1)} \newcommand{\convUn}[1]{\fontas{L}_{\ast}(#1)} \newcommand{\Un}[1]{\fontas{L}(#1)} \newcommand{\kUn}[2]{\fontas{L}_{#2}(#1)} \newcommand{\Nor}{\mu} % norm without argument \newcommand{\nor}[1]{\Nor(#1)} \newcommand{\bool}[1]{\hat{#1}} % Boolean version of f \newcommand{\bphi}{\phi} % boolean circuit \newcommand{\xf}{\boldsymbol{\mathcal{F}}} \newcommand{\euler}{\mathrm{e}} \newcommand{\ee}{f} % other element \newcommand{\exchange}[3]{{#1}-{#2}+{#3}} \newcommand{\dist}[2]{{#2}[#1]} \newcommand{\Dist}[1]{\mathrm{dist}(#1)} \newcommand{\mdist}[2]{\dist{#1}{#2}} % min-max dist. \newcommand{\matching}{\mathcal{M}} \renewcommand{\E}{A} \newcommand{\F}{\mathcal{F}} \newcommand{\set}{W} \newcommand{\Deg}[1]{\mathrm{deg}(#1)} \newcommand{\mtree}{MST} \newcommand{\stree}{{\cal T}} \newcommand{\dstree}{\vec{\cal T}} \newcommand{\Rich}{U_0} \newcommand{\Prob}[1]{\ensuremath{\mathrm{Pr}\left\{{#1}\right\}}} \newcommand{\xI}{\boldsymbol{I}} \newcommand{\plus}{\mbox{\tiny $+$}} \newcommand{\sgn}[1]{\left[#1\right]} \newcommand{\ccompl}[1]{{#1}^*} \newcommand{\contr}[1]{[#1]} \newcommand{\harm}[2]{{#1}\,\#\,{#2}} %{{#1}\,\oplus\,{#2}} \newcommand{\hharm}{\#} %{\oplus} \newcommand{\rec}[1]{1/#1} \newcommand{\rrec}[1]{{#1}^{-1}} \DeclareRobustCommand{\bigO}{% \text{\usefont{OMS}{cmsy}{m}{n}O}} \newcommand{\dalyba}{/}%{\oslash} \newcommand{\mmax}{\mbox{\tiny $\max$}} \newcommand{\thr}[2]{\mathrm{Th}^{#1}_{#2}} \newcommand{\rectbound}{h} \newcommand{\pol}[3]{\sum_{#1\in #2}{#3}_{#1}\prod_{i=1}^n x_i^{#1_i}} \newcommand{\tpol}[2]{\min_{#1\in #2}\left\{\skal{#1,x}+\const{#1}\right\}} \newcommand{\comp}{\circ} % composition \newcommand{\0}{\vec{0}} \newcommand{\drops}[1]{\tau(#1)} \newcommand{\HY}[2]{F^{#2}_{#1}} \newcommand{\hy}[1]{f_{#1}} \newcommand{\hh}{h} \newcommand{\hymin}[1]{f_{#1}^{\mathrm{min}}} \newcommand{\hymax}[1]{f_{#1}^{\mathrm{max}}} \newcommand{\ebound}[2]{\partial_{#2}(#1)} \newcommand{\Lpure}{L_{\mathrm{pure}}} \newcommand{\Vpure}{V_{\mathrm{pure}}} \newcommand{\Lred}{L_1} %L_{\mathrm{red}}} \newcommand{\Lblue}{L_0} %{L_{\mathrm{blue}}} \newcommand{\epr}[1]{z_{#1}} \newcommand{\wCut}[1]{w(#1)} \newcommand{\cut}[2]{w_{#2}(#1)} \newcommand{\Length}[1]{l(#1)} \newcommand{\Sup}[1]{\mathrm{Sup}(#1)} \newcommand{\ddist}[1]{d_{#1}} \newcommand{\sym}[2]{S_{#1,#2}} \newcommand{\minsum}[2]{\mathrm{MinS}^{#1}_{#2}} \newcommand{\maxsum}[2]{\mathrm{MaxS}^{#1}_{#2}} % top k-of-n function \newcommand{\cirsel}[2]{\Phi^{#1}_{#2}} % its circuit \newcommand{\sel}[2]{\sym{#1}{#2}} % symmetric pol. \newcommand{\cf}[1]{{#1}^{o}} \newcommand{\Item}[1]{\item[\mbox{\rm (#1)}]} % item in roman \newcommand{\bbar}[1]{\underline{#1}} \newcommand{\Narrow}[1]{\mathrm{Narrow}(#1)} \newcommand{\Wide}[1]{\mathrm{Wide}(#1)} \newcommand{\eepsil}{\varepsilon} \newcommand{\amir}{\varphi} \newcommand{\mon}[1]{\mathrm{mon}(#1)} \newcommand{\mmon}{\alpha} \newcommand{\gmon}{\alpha} \newcommand{\hmon}{\beta} \newcommand{\nnor}[1]{\|#1\|} \newcommand{\inorm}[1]{\left\|#1\right\|_{\mbox{\tiny $\infty$}}} \newcommand{\mstbound}{\gamma} \newcommand{\coset}[1]{\textup{co-}{#1}} \newcommand{\spol}[1]{\mathrm{ST}_{#1}} \newcommand{\cayley}[1]{\mathrm{C}_{#1}} \newcommand{\SQUARE}[1]{\mathrm{SQ}_{#1}} \newcommand{\STCONN}[1]{\mathrm{STCON}_{#1}} \newcommand{\STPATH}[1]{\mathrm{PATH}_{#1}} \newcommand{\SSSP}[1]{\mathrm{SSSP}(#1)} \newcommand{\APSP}[1]{\mathrm{APSP}(#1)} \newcommand{\MP}[1]{\mathrm{MP}_{#1}} \newcommand{\CONN}[1]{\mathrm{CONN}_{#1}} \newcommand{\PERM}[1]{\mathrm{PER}_{#1}} \newcommand{\mst}[2]{\tau_{#1}(#2)} \newcommand{\MST}[1]{\mathrm{MST}_{#1}} \newcommand{\MIS}{\mathrm{MIS}} \newcommand{\dtree}{\mathrm{DST}} \newcommand{\DST}[1]{\dtree_{#1}} \newcommand{\CLIQUE}[2]{\mathrm{CL}_{#1,#2}} \newcommand{\ISOL}[1]{\mathrm{ISOL}_{#1}} \newcommand{\POL}[1]{\mathrm{POL}_{#1}} \newcommand{\ST}[1]{\ptree_{#1}} \newcommand{\Per}[1]{\mathrm{per}_{#1}} \newcommand{\PM}{\mathrm{PM}} \newcommand{\error}{\epsilon} \newcommand{\PI}[1]{A_{#1}} \newcommand{\Low}[1]{A_{#1}} \newcommand{\node}[1]{v_{#1}} \newcommand{\BF}[2]{W_{#2}[#1]} % Bellman-Ford \newcommand{\FW}[3]{W_{#1}[#2,#3]} % Floyd-Washall \newcommand{\HK}[1]{W[#1]} % Held-Karp \newcommand{\WW}[1]{W[#1]} \newcommand{\pWW}[1]{W^{+}[#1]} \newcommand{\nWW}[1]{W^-[#1]} \newcommand{\knap}[2]{W_{#2}[#1]} \newcommand{\Cut}[1]{w(#1)} \newcommand{\size}[1]{\mathrm{size}(#1)} \newcommand{\dual}[1]{{#1}^{\ast}} \def\gcd#1{\mathrm{gcd}(#1)}
[This is a supplementary material to Chapter 2, Section 2.4]

Cover-free sets: tropical version of Schnorr's bound

Recall that, for a finite set A\subseteq\NN^n of vectors,
  • \MMin{A} = min size of a tropical (\min,+) circuit computing, for all input weightings x\in\RR_+^n, the minimum of \skal{a,x} over all vectors a\in A.
  • \MMax{A} = min size of a tropical (\max,+) circuit computing, for all input weightings x\in\RR_+^n, the maximum of \skal{a,x} over all vectors a\in A.
  • \Un{A} = min size of a Minkowski (\cup,+) circuit producing the set A by starting from n+1 singleton sets \{\vec{0}\},\{\vec{e}_1\},\ldots,\{\vec{e}_n\} of vectors.
A vector a\in\NN^n covers a vector b\in\NN^n if a\geq b, that is, a_i\geq b_i for all i=1,\ldots,n holds. Recall (from the book) that a set A\subseteq\NN^n is cover-free if the following holds for any vectors a,b,c\in A: \begin{equation}\label{eq:cover-free} \mbox{if $a + b \geq c$ then $c\in\{a, b\}$,} \end{equation} that is, if the sum of no two vectors of A covers any other vector of A. A subset B\subseteq A is cover-free inside A if Eq. \eqref{eq:cover-free} holds for any vectors a,b\in B and c\in A, and is non-coverable inside A if Eq. \eqref{eq:cover-free} holds for any vectors a,b\in A and c\in B. That is, In particular, if a set A\subseteq\NN^n is cover-free, then it is both cover-free and non-coverable inside itself.

In the book, we stated Schnorr's theorem (Theorem 2.1) as a lower bound \Un{A}\geq |A|-1 on the Minkowski circuit complexity \Un{A} of any cover-free set A\subseteq\NN^n. In fact, Schnorr [2] proved a more flexible lower bound: \Un{A}\geq |B|-1 holds for any set B\subseteq A which is cover-free inside A. Below we give a similar lower bound (shown in [1]) also for tropical circuit complexities \MMin{A} and \MMax{A} of the corresponding optimization problems on the set A of feasible solutions.

Recall that a set A of vectors is an antichain if a\not\leq a' for all a\neq a'\in A.

Theorem A (Tropical Schnorr's bound): Let A\subseteq\{0,1\}^n be an antichain, and B\subseteq A be any its subset with |B|\geq 2 vectors.
  1. If B is cover-free inside A, then \MMin{A}\geq |B|/2.
  2. If B is non-coverable inside A, then \MMax{A}\geq |B|/2.
In particular, if the set A itself is cover-free, then \MMin{A}\geq |A|/2 and \MMax{A}\geq |A|/2.
Remark: Important in Theorem A is that it holds for arbitrary (not necessarily homogeneous) antichains A\subseteq\{0,1\}^n of feasible solutions. If A is cover-free and homogeneous (all vectors of A have the same number of 1s), then Schnorr's bound \Un{A}\geq |A|-1 (Theorem 2.1 in the book), together with Lemma 1.34(2), yields even better lower bounds \MMin{A}\geq |A|-1 and \MMax{A}\geq |A|-1. But for non-homogeneous antichains A\subseteq\{0,1\}^n, already the gap \Un{A}/\MMin{A} (not only the gap |A|/\MMin{A}) can be even exponential. Such a gap is achieved when A is the set of characteristic 0-1 vectors of the feasible solutions of the shortest s-t path problem on K_n (see Corollary 2.5 in the book).    \Box

Proof of Theorem A: The proof in both cases (minimization and maximization) is similar. A subset B\subseteq C of a set C\subseteq\NN^n of vectors is a Sidon set inside C if the following holds for all vectors a,b\in B and all vectors c,d\in C: \mbox{if $a+b=c+d$ then $\{c,d\}=\{a,b\}$.} That is, the sum of any two vectors of B is unique within the entire set A, is different from the sum of any two other vectors of A.

Theorem A in this comment gives a lower bound \Un{C}\geq |B|/2 on the Minkowski (\cup,+) circuit complexity \Un{C} of the set C for any its subset B\subseteq C that is a Sidon set inside C.

On the other hand, Lemma 1.31(1) in the book (with "C" instead of "B") gives us set C\subseteq\NN^n of vectors such that A\subseteq C and

  1. \MMin{A}=\Un{C} and C lies above A, i.e., for every vector c\in C there is a vector a\in A such that c\geq a
    or
  2. \MMax{A}=\Un{C} and C lies below A, i.e., for every vector c\in C there is a vector a\in A such that c\leq a.
So, in both cases, it is enough to show that B is a Sidon set inside C: then the desired lower bound \Un{C}\geq |B|/2 and, hence, the lower bounds \MMin{A}\geq |B|/2 and \MMax{A}\geq |B|/2 follow.

For vectors a,b\in\NN^n, we will write a \lt b if a_i\leq b_i holds for all positions i, and a_i \lt b_i (a proper inequality) holds for at least one position.

Case 1: (\min,+) circuits. In this case, the set B is cover-free inside A, and C lies above A. Suppose for a contradiction that the set B is not a Sidon set inside C. Then there are vectors a,b\in B and c,d\in C such that a+b=c+d but \{a,b\}\neq\{c,d\}, that is, c,d\not\in \{a,b\}. Since C lies above A, there must be vectors x,y\in A such that c\geq x and d\geq y. As B is cover-free inside A, a+b\geq c\geq x implies x\in\{a,b\}. Assume w.l.o.g. that x=a; then c\geq a. Since c\not\in \{a,b\}, we have that c > a. Together with a+b=c+d, this yields d \lt b and, hence, also y\leq d \lt b. But then one vector y of A is contained in another vector b of A, a contradiction with A being an antichain.

Case 2: (\max,+) circuits. In this case, the set B is non-coverable inside A, and C lies below A. In this case, the proof is ``symmetric.'' Suppose contrariwise that B is not a Sidon set inside C. Then there are vectors a,b\in B and c,d\in C such that a+b=c+d but c,d\not\in\{a,b\}. Since C lies below A, there must be vectors x,y\in A such that c\leq x and d\leq y. As B is non-coverable inside A, x+y\geq c+d\geq a implies a\in\{x,y\}. Assume w.l.o.g. that a=x; then a\geq c. Since c\not\in\{a,b\}, this yields a proper inequality a > c and, hence, also b \lt d\leq y. But then one vector y of A contains another vector b of A, a contradiction with A being an antichain.

Example 1: (\min,+) circuits. Let 2\sqrt{n}\leq k \lt n/2 and consider the following minimization problem: given an assignment of nonnegative weights to the edges of K_n, find the minimum weight of a subgraph of K_n which is either a k-clique K_k or a star K_{1,n-1}. The set A of characteristic 0-1 vectors of feasible solutions is the union A=B\cup C of the set B of characteristic 0-1 vectors of all |B|=\binom{n}{k} k-cliques, and C is the set of characteristic 0-1 vectors of all |C|=n stars. Since n-1 \lt \binom{k}{2}, the lower envelope \lenv{A} of A is the set C of n stars. So, the lower bower bound \MMin{A}\geq \Un{\lenv{A}}=\Un{C} given by Lemma 1.34(2) in the book cannot yield any larger than \Un{C}=O(n^2) lower bound on \MMin{A}. But Theorem A already yields an exponential lower bound \MMax{A}\geq |B|/2=\frac{1}{2}\binom{n}{k}.

By Theorem A, it is enough to show that the set B is cover-free inside A. To show this, take a union of two k-cliques. Since 2(k-1) \lt n-1 and since no star in K_k can have more than k-1 edges, the union cannot contain a star K_{1,n-1}. So, it remains to show that the union of two k-cliques cannot contain some third k-clique. For this, assume the opposite, i.e., that the union of some two k-cliques contains some third k-clique. Since each k-clique has the same number k of nodes, the latter clique must then have a node u not in the first clique and a node v not in the second clique. If u=v then the node u is not covered, and if u\neq v then the edge \{u,v\} is not covered by the union of the first two cliques, a contradiction. Thus, the set B is cover-free inside A.       \Box

Example 2: (\max,+) circuits. Let n \gt 4 be a prime power, and 1\leq d\leq n/2 be an integer. Consider the complete bipartite n\times n graph K_{n,n} with parts U=V=\gf{n}. A double-star is a K_{2,n} subgraph of K_{n,n}. The graph of a univariate polynomial g(x) over \gf{n} is a subgraph of K_{n,n} consisting of n edges \{i,g(i)\} with i\in U (see Fig. 1).

Graphs of polynomials Fig. 1: A double-star (left) in the graph U\times V with U=V=\gf{5}, and the graph of the polynomial g(x)=x^2+1 over \gf{5} of degree d=2 (right).

Let A=B\cup C\subseteq \{0,1\}^{n^2}, where B is the set of all |B|=n^d characteristic 0-1 vectors of graphs of polynomials of degree at most d-1 over \gf{n}, and C is the set of all |C|=\binom{n}{2} characteristic vectors of double-stars. We want to lower-bound \MMax{A}. The upper envelope \henv{A} of A is the set C of \binom{n}{2} stars. So, the lower bower bound \MMax{A}\geq \Un{\henv{A}}=\Un{C} given by Lemma 1.34(2) in the book cannot yield any larger than \Un{C}=O(n^3) lower bound on \MMax{A}. But Theorem A already yields an exponential lower bound \MMax{A}\geq |B|/2=n^d/2.

By Theorem A, it is enough to show that the set B is non-coverable inside A. To show this, suppose a+b\geq c holds for some a,b\in A and c\in B. Hence, c is the (graph of) some polynomial g(x) of degree at most d-1 over \gf{n}. Since vector c has n ones, it must share at least n/2 ones with at least one of the vectors a and b; let it be vector a. This vector cannot be the characteristic vector a double-star because every double-star has only 2\lt n/2 non-isolated nodes in U, while all |U|=n nodes in U of the graph c of the polynomial g are non-isolated. So, a must be a graph of some polynomial h(x) of degree at most d-1 over \gf{n}. Since no two distinct polynomials of degree at most d-1 can share d or more values in common, and since n/2\geq d, we have that g=h, and hence, also c=a. Thus, the set B is non-coverable inside A, and Theorem A yields \MMax{A}\geq |B|/2=n^d/2, as desired.       \Box


Footnotes:

(1)   Jump back ☝


(2)   Jump back ☝

References:

  1. Jukna, S.: Tropical complexity, Sidon sets and dynamic programming. SIAM J. Discrete Math. 30(4), 2064–2085 (2016)   local copy
  2. Schnorr, C.P.: A lower bound on the number of additions in monotone computations. Theor. Comput. Sci. 2(3), 305–315 (1976)   Local copy


⇦   Back to the comments page

Page last modified on:  1.11.2023