\( \def\<#1>{\left<#1\right>} \let\geq\geqslant \let\leq\leqslant % an undirected version of \rightarrow: \newcommand{\mathdash}{\relbar\mkern-9mu\relbar} \def\deg#1{\mathrm{deg}(#1)} \newcommand{\dg}[1]{d_{#1}} \newcommand{\Norm}{\mathrm{N}} \newcommand{\const}[1]{c_{#1}} \newcommand{\cconst}[1]{\alpha_{#1}} \newcommand{\Exp}[1]{E_{#1}} \newcommand*{\ppr}{\mathbin{\ensuremath{\otimes}}} \newcommand*{\su}{\mathbin{\ensuremath{\oplus}}} \newcommand{\nulis}{\vmathbb{0}} %{\mathbf{0}} \newcommand{\vienas}{\vmathbb{1}} \newcommand{\Up}[1]{#1^{\uparrow}} %{#1^{\vartriangle}} \newcommand{\Down}[1]{#1^{\downarrow}} %{#1^{\triangledown}} \newcommand{\lant}[1]{#1_{\mathrm{la}}} % lower antichain \newcommand{\uant}[1]{#1_{\mathrm{ua}}} % upper antichain \newcommand{\skal}[1]{\langle #1\rangle} \newcommand{\NN}{\mathbb{N}} % natural numbers \newcommand{\RR}{\mathbb{R}} \newcommand{\minTrop}{\mathbb{T}_{\mbox{\rm\footnotesize min}}} \newcommand{\maxTrop}{\mathbb{T}_{\mbox{\rm\footnotesize max}}} \newcommand{\FF}{\mathbb{F}} \newcommand{\pRR}{\mathbb{R}_{\mbox{\tiny $+$}}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\gf}[1]{GF(#1)} \newcommand{\conv}[1]{\mathrm{Conv}(#1)} \newcommand{\vvec}[2]{\vec{#1}_{#2}} \newcommand{\f}{{\mathcal F}} \newcommand{\h}{{\mathcal H}} \newcommand{\A}{{\mathcal A}} \newcommand{\B}{{\mathcal B}} \newcommand{\C}{{\mathcal C}} \newcommand{\R}{{\mathcal R}} \newcommand{\MPS}[1]{f_{#1}} % matrix multiplication \newcommand{\ddeg}[2]{\#_{#2}(#1)} \newcommand{\length}[1]{|#1|} \DeclareMathOperator{\support}{sup} \newcommand{\supp}[1]{\support(#1)} \DeclareMathOperator{\Support}{sup} \newcommand{\spp}{\Support} \newcommand{\Supp}[1]{\mathrm{Sup}(#1)} %{\mathcal{S}_{#1}} \newcommand{\lenv}[1]{\lfloor #1\rfloor} \newcommand{\henv}[1]{\lceil#1\rceil} \newcommand{\homm}[2]{{#1}^{\langle #2\rangle}} \let\daug\odot \let\suma\oplus \newcommand{\compl}[1]{Y_{#1}} \newcommand{\pr}[1]{X_{#1}} \newcommand{\xcompl}[1]{Y'_{#1}} \newcommand{\xpr}[1]{X'_{#1}} \newcommand{\cont}[1]{A_{#1}} % content \def\fontas#1{\mathsf{#1}} %{\mathrm{#1}} %{\mathtt{#1}} % \newcommand{\arithm}[1]{\fontas{Arith}(#1)} \newcommand{\Bool}[1]{\fontas{Bool}(#1)} \newcommand{\linBool}[1]{\fontas{Bool}_{\mathrm{lin}}(#1)} \newcommand{\rBool}[2]{\fontas{Bool}_{#2}(#1)} \newcommand{\BBool}[2]{\fontas{Bool}_{#2}(#1)} \newcommand{\MMin}[1]{\fontas{Min}(#1)} \newcommand{\MMax}[1]{\fontas{Max}(#1)} \newcommand{\negMin}[1]{\fontas{Min}^{-}(#1)} \newcommand{\negMax}[1]{\fontas{Max}^{-}(#1)} \newcommand{\Min}[2]{\fontas{Min}_{#2}(#1)} \newcommand{\Max}[2]{\fontas{Max}_{#2}(#1)} \newcommand{\convUn}[1]{\fontas{L}_{\ast}(#1)} \newcommand{\Un}[1]{\fontas{L}(#1)} \newcommand{\kUn}[2]{\fontas{L}_{#2}(#1)} \newcommand{\Nor}{\mu} % norm without argument \newcommand{\nor}[1]{\Nor(#1)} \newcommand{\bool}[1]{\hat{#1}} % Boolean version of f \newcommand{\bphi}{\phi} % boolean circuit \newcommand{\xf}{\boldsymbol{\mathcal{F}}} \newcommand{\euler}{\mathrm{e}} \newcommand{\ee}{f} % other element \newcommand{\exchange}[3]{{#1}-{#2}+{#3}} \newcommand{\dist}[2]{{#2}[#1]} \newcommand{\Dist}[1]{\mathrm{dist}(#1)} \newcommand{\mdist}[2]{\dist{#1}{#2}} % min-max dist. \newcommand{\matching}{\mathcal{M}} \renewcommand{\E}{A} \newcommand{\F}{\mathcal{F}} \newcommand{\set}{W} \newcommand{\Deg}[1]{\mathrm{deg}(#1)} \newcommand{\mtree}{MST} \newcommand{\stree}{{\cal T}} \newcommand{\dstree}{\vec{\cal T}} \newcommand{\Rich}{U_0} \newcommand{\Prob}[1]{\ensuremath{\mathrm{Pr}\left\{{#1}\right\}}} \newcommand{\xI}{\boldsymbol{I}} \newcommand{\plus}{\mbox{\tiny $+$}} \newcommand{\sgn}[1]{\left[#1\right]} \newcommand{\ccompl}[1]{{#1}^*} \newcommand{\contr}[1]{[#1]} \newcommand{\harm}[2]{{#1}\,\#\,{#2}} %{{#1}\,\oplus\,{#2}} \newcommand{\hharm}{\#} %{\oplus} \newcommand{\rec}[1]{1/#1} \newcommand{\rrec}[1]{{#1}^{-1}} \DeclareRobustCommand{\bigO}{% \text{\usefont{OMS}{cmsy}{m}{n}O}} \newcommand{\dalyba}{/}%{\oslash} \newcommand{\mmax}{\mbox{\tiny $\max$}} \newcommand{\thr}[2]{\mathrm{Th}^{#1}_{#2}} \newcommand{\rectbound}{h} \newcommand{\pol}[3]{\sum_{#1\in #2}{#3}_{#1}\prod_{i=1}^n x_i^{#1_i}} \newcommand{\tpol}[2]{\min_{#1\in #2}\left\{\skal{#1,x}+\const{#1}\right\}} \newcommand{\comp}{\circ} % composition \newcommand{\0}{\vec{0}} \newcommand{\drops}[1]{\tau(#1)} \newcommand{\HY}[2]{F^{#2}_{#1}} \newcommand{\hy}[1]{f_{#1}} \newcommand{\hh}{h} \newcommand{\hymin}[1]{f_{#1}^{\mathrm{min}}} \newcommand{\hymax}[1]{f_{#1}^{\mathrm{max}}} \newcommand{\ebound}[2]{\partial_{#2}(#1)} \newcommand{\Lpure}{L_{\mathrm{pure}}} \newcommand{\Vpure}{V_{\mathrm{pure}}} \newcommand{\Lred}{L_1} %L_{\mathrm{red}}} \newcommand{\Lblue}{L_0} %{L_{\mathrm{blue}}} \newcommand{\epr}[1]{z_{#1}} \newcommand{\wCut}[1]{w(#1)} \newcommand{\cut}[2]{w_{#2}(#1)} \newcommand{\Length}[1]{l(#1)} \newcommand{\Sup}[1]{\mathrm{Sup}(#1)} \newcommand{\ddist}[1]{d_{#1}} \newcommand{\sym}[2]{S_{#1,#2}} \newcommand{\minsum}[2]{\mathrm{MinS}^{#1}_{#2}} \newcommand{\maxsum}[2]{\mathrm{MaxS}^{#1}_{#2}} % top k-of-n function \newcommand{\cirsel}[2]{\Phi^{#1}_{#2}} % its circuit \newcommand{\sel}[2]{\sym{#1}{#2}} % symmetric pol. \newcommand{\cf}[1]{{#1}^{o}} \newcommand{\Item}[1]{\item[\mbox{\rm (#1)}]} % item in roman \newcommand{\bbar}[1]{\underline{#1}} \newcommand{\Narrow}[1]{\mathrm{Narrow}(#1)} \newcommand{\Wide}[1]{\mathrm{Wide}(#1)} \newcommand{\eepsil}{\varepsilon} \newcommand{\amir}{\varphi} \newcommand{\mon}[1]{\mathrm{mon}(#1)} \newcommand{\mmon}{\alpha} \newcommand{\gmon}{\alpha} \newcommand{\hmon}{\beta} \newcommand{\nnor}[1]{\|#1\|} \newcommand{\inorm}[1]{\left\|#1\right\|_{\mbox{\tiny $\infty$}}} \newcommand{\mstbound}{\gamma} \newcommand{\coset}[1]{\textup{co-}{#1}} \newcommand{\spol}[1]{\mathrm{ST}_{#1}} \newcommand{\cayley}[1]{\mathrm{C}_{#1}} \newcommand{\SQUARE}[1]{\mathrm{SQ}_{#1}} \newcommand{\STCONN}[1]{\mathrm{STCON}_{#1}} \newcommand{\STPATH}[1]{\mathrm{PATH}_{#1}} \newcommand{\SSSP}[1]{\mathrm{SSSP}(#1)} \newcommand{\APSP}[1]{\mathrm{APSP}(#1)} \newcommand{\MP}[1]{\mathrm{MP}_{#1}} \newcommand{\CONN}[1]{\mathrm{CONN}_{#1}} \newcommand{\PERM}[1]{\mathrm{PER}_{#1}} \newcommand{\mst}[2]{\tau_{#1}(#2)} \newcommand{\MST}[1]{\mathrm{MST}_{#1}} \newcommand{\MIS}{\mathrm{MIS}} \newcommand{\dtree}{\mathrm{DST}} \newcommand{\DST}[1]{\dtree_{#1}} \newcommand{\CLIQUE}[2]{\mathrm{CL}_{#1,#2}} \newcommand{\ISOL}[1]{\mathrm{ISOL}_{#1}} \newcommand{\POL}[1]{\mathrm{POL}_{#1}} \newcommand{\ST}[1]{\ptree_{#1}} \newcommand{\Per}[1]{\mathrm{per}_{#1}} \newcommand{\PM}{\mathrm{PM}} \newcommand{\error}{\epsilon} \newcommand{\PI}[1]{A_{#1}} \newcommand{\Low}[1]{A_{#1}} \newcommand{\node}[1]{v_{#1}} \newcommand{\BF}[2]{W_{#2}[#1]} % Bellman-Ford \newcommand{\FW}[3]{W_{#1}[#2,#3]} % Floyd-Washall \newcommand{\HK}[1]{W[#1]} % Held-Karp \newcommand{\WW}[1]{W[#1]} \newcommand{\pWW}[1]{W^{+}[#1]} \newcommand{\nWW}[1]{W^-[#1]} \newcommand{\knap}[2]{W_{#2}[#1]} \newcommand{\Cut}[1]{w(#1)} \newcommand{\size}[1]{\mathrm{size}(#1)} \newcommand{\dual}[1]{{#1}^{\ast}} \def\gcd#1{\mathrm{gcd}(#1)} \)
[This is a supplementary material to Chapter 2, Section 2.4]

Cover-free sets: tropical version of Schnorr's bound

Recall that, for a finite set $A\subseteq\NN^n$ of vectors,
  • $\MMin{A}$ = min size of a tropical $(\min,+)$ circuit computing, for all input weightings $x\in\RR_+^n$, the minimum of $\skal{a,x}$ over all vectors $a\in A$.
  • $\MMax{A}$ = min size of a tropical $(\max,+)$ circuit computing, for all input weightings $x\in\RR_+^n$, the maximum of $\skal{a,x}$ over all vectors $a\in A$.
  • $\Un{A}$ = min size of a Minkowski $(\cup,+)$ circuit producing the set $A$ by starting from $n+1$ singleton sets $\{\vec{0}\},\{\vec{e}_1\},\ldots,\{\vec{e}_n\}$ of vectors.
A vector $a\in\NN^n$ covers a vector $b\in\NN^n$ if $a\geq b$, that is, $a_i\geq b_i$ for all $i=1,\ldots,n$ holds. Recall (from the book) that a set $A\subseteq\NN^n$ is cover-free if the following holds for any vectors $a,b,c\in A$: \begin{equation}\label{eq:cover-free} \mbox{if $a + b \geq c$ then $c\in\{a, b\}$,} \end{equation} that is, if the sum of no two vectors of $A$ covers any other vector of $A$. A subset $B\subseteq A$ is cover-free inside $A$ if Eq. \eqref{eq:cover-free} holds for any vectors $a,b\in B$ and $c\in A$, and is non-coverable inside $A$ if Eq. \eqref{eq:cover-free} holds for any vectors $a,b\in A$ and $c\in B$. That is, In particular, if a set $A\subseteq\NN^n$ is cover-free, then it is both cover-free and non-coverable inside itself.

In the book, we stated Schnorr's theorem (Theorem 2.1) as a lower bound $\Un{A}\geq |A|-1$ on the Minkowski circuit complexity $\Un{A}$ of any cover-free set $A\subseteq\NN^n$. In fact, Schnorr [2] proved a more flexible lower bound: $\Un{A}\geq |B|-1$ holds for any set $B\subseteq A$ which is cover-free inside $A$. Below we give a similar lower bound (shown in [1]) also for tropical circuit complexities $\MMin{A}$ and $\MMax{A}$ of the corresponding optimization problems on the set $A$ of feasible solutions.

Recall that a set $A$ of vectors is an antichain if $a\not\leq a'$ for all $a\neq a'\in A$.

Theorem A (Tropical Schnorr's bound): Let $A\subseteq\{0,1\}^n$ be an antichain, and $B\subseteq A$ be any its subset with $|B|\geq 2$ vectors.
  1. If $B$ is cover-free inside $A$, then $\MMin{A}\geq |B|/2$.
  2. If $B$ is non-coverable inside $A$, then $\MMax{A}\geq |B|/2$.
In particular, if the set $A$ itself is cover-free, then $\MMin{A}\geq |A|/2$ and $\MMax{A}\geq |A|/2$.
Remark: Important in Theorem A is that it holds for arbitrary (not necessarily homogeneous) antichains $A\subseteq\{0,1\}^n$ of feasible solutions. If $A$ is cover-free and homogeneous (all vectors of $A$ have the same number of $1$s), then Schnorr's bound $\Un{A}\geq |A|-1$ (Theorem 2.1 in the book), together with Lemma 1.34(2), yields even better lower bounds $\MMin{A}\geq |A|-1$ and $\MMax{A}\geq |A|-1$. But for non-homogeneous antichains $A\subseteq\{0,1\}^n$, already the gap $\Un{A}/\MMin{A}$ (not only the gap $|A|/\MMin{A}$) can be even exponential. Such a gap is achieved when $A$ is the set of characteristic $0$-$1$ vectors of the feasible solutions of the shortest $s$-$t$ path problem on $K_n$ (see Corollary 2.5 in the book).    $\Box$

Proof of Theorem A: The proof in both cases (minimization and maximization) is similar. A subset $B\subseteq C$ of a set $C\subseteq\NN^n$ of vectors is a Sidon set inside $C$ if the following holds for all vectors $a,b\in B$ and all vectors $c,d\in C$: \[ \mbox{if $a+b=c+d$ then $\{c,d\}=\{a,b\}$.} \] That is, the sum of any two vectors of $B$ is unique within the entire set $A$, is different from the sum of any two other vectors of $A$.

Theorem A in this comment gives a lower bound \[ \Un{C}\geq |B|/2 \] on the Minkowski $(\cup,+)$ circuit complexity $\Un{C}$ of the set $C$ for any its subset $B\subseteq C$ that is a Sidon set inside $C$.

On the other hand, Lemma 1.31(1) in the book (with "$C$" instead of "$B$") gives us set $C\subseteq\NN^n$ of vectors such that $A\subseteq C$ and

  1. $\MMin{A}=\Un{C}$ and $C$ lies above $A$, i.e., for every vector $c\in C$ there is a vector $a\in A$ such that $c\geq a$
    or
  2. $\MMax{A}=\Un{C}$ and $C$ lies below $A$, i.e., for every vector $c\in C$ there is a vector $a\in A$ such that $c\leq a$.
So, in both cases, it is enough to show that $B$ is a Sidon set inside $C$: then the desired lower bound $\Un{C}\geq |B|/2$ and, hence, the lower bounds $\MMin{A}\geq |B|/2$ and $\MMax{A}\geq |B|/2$ follow.

For vectors $a,b\in\NN^n$, we will write $a \lt b$ if $a_i\leq b_i$ holds for all positions $i$, and $a_i \lt b_i$ (a proper inequality) holds for at least one position.

Case 1: $(\min,+)$ circuits. In this case, the set $B$ is cover-free inside $A$, and $C$ lies above $A$. Suppose for a contradiction that the set $B$ is not a Sidon set inside $C$. Then there are vectors $a,b\in B$ and $c,d\in C$ such that $a+b=c+d$ but $\{a,b\}\neq\{c,d\}$, that is, $c,d\not\in \{a,b\}$. Since $C$ lies above $A$, there must be vectors $x,y\in A$ such that $c\geq x$ and $d\geq y$. As $B$ is cover-free inside $A$, $a+b\geq c\geq x$ implies $x\in\{a,b\}$. Assume w.l.o.g. that $x=a$; then $c\geq a$. Since $c\not\in \{a,b\}$, we have that $c > a$. Together with $a+b=c+d$, this yields $d \lt b$ and, hence, also $y\leq d \lt b$. But then one vector $y$ of $A$ is contained in another vector $b$ of $A$, a contradiction with $A$ being an antichain.

Case 2: $(\max,+)$ circuits. In this case, the set $B$ is non-coverable inside $A$, and $C$ lies below $A$. In this case, the proof is ``symmetric.'' Suppose contrariwise that $B$ is not a Sidon set inside $C$. Then there are vectors $a,b\in B$ and $c,d\in C$ such that $a+b=c+d$ but $c,d\not\in\{a,b\}$. Since $C$ lies below $A$, there must be vectors $x,y\in A$ such that $c\leq x$ and $d\leq y$. As $B$ is non-coverable inside $A$, $x+y\geq c+d\geq a$ implies $a\in\{x,y\}$. Assume w.l.o.g. that $a=x$; then $a\geq c$. Since $c\not\in\{a,b\}$, this yields a proper inequality $a > c$ and, hence, also $b \lt d\leq y$. But then one vector $y$ of $A$ contains another vector $b$ of $A$, a contradiction with $A$ being an antichain.

Example 1: $(\min,+)$ circuits. Let $2\sqrt{n}\leq k \lt n/2$ and consider the following minimization problem: given an assignment of nonnegative weights to the edges of $K_n$, find the minimum weight of a subgraph of $K_n$ which is either a $k$-clique $K_k$ or a star $K_{1,n-1}$. The set $A$ of characteristic $0$-$1$ vectors of feasible solutions is the union $A=B\cup C$ of the set $B$ of characteristic $0$-$1$ vectors of all $|B|=\binom{n}{k}$ $k$-cliques, and $C$ is the set of characteristic $0$-$1$ vectors of all $|C|=n$ stars. Since $n-1 \lt \binom{k}{2}$, the lower envelope $\lenv{A}$ of $A$ is the set $C$ of $n$ stars. So, the lower bower bound $\MMin{A}\geq \Un{\lenv{A}}=\Un{C}$ given by Lemma 1.34(2) in the book cannot yield any larger than $\Un{C}=O(n^2)$ lower bound on $\MMin{A}$. But Theorem A already yields an exponential lower bound $\MMax{A}\geq |B|/2=\frac{1}{2}\binom{n}{k}$.

By Theorem A, it is enough to show that the set $B$ is cover-free inside $A$. To show this, take a union of two $k$-cliques. Since $2(k-1) \lt n-1$ and since no star in $K_k$ can have more than $k-1$ edges, the union cannot contain a star $K_{1,n-1}$. So, it remains to show that the union of two $k$-cliques cannot contain some third $k$-clique. For this, assume the opposite, i.e., that the union of some two $k$-cliques contains some third $k$-clique. Since each $k$-clique has the same number $k$ of nodes, the latter clique must then have a node $u$ not in the first clique and a node $v$ not in the second clique. If $u=v$ then the node $u$ is not covered, and if $u\neq v$ then the edge $\{u,v\}$ is not covered by the union of the first two cliques, a contradiction. Thus, the set $B$ is cover-free inside $A$.       $\Box$

Example 2: $(\max,+)$ circuits. Let $n \gt 4$ be a prime power, and $1\leq d\leq n/2$ be an integer. Consider the complete bipartite $n\times n$ graph $K_{n,n}$ with parts $U=V=\gf{n}$. A double-star is a $K_{2,n}$ subgraph of $K_{n,n}$. The graph of a univariate polynomial $g(x)$ over $\gf{n}$ is a subgraph of $K_{n,n}$ consisting of $n$ edges $\{i,g(i)\}$ with $i\in U$ (see Fig. 1).

Graphs of polynomials Fig. 1: A double-star (left) in the graph $U\times V$ with $U=V=\gf{5}$, and the graph of the polynomial $g(x)=x^2+1$ over $\gf{5}$ of degree $d=2$ (right).

Let $A=B\cup C\subseteq \{0,1\}^{n^2}$, where $B$ is the set of all $|B|=n^d$ characteristic $0$-$1$ vectors of graphs of polynomials of degree at most $d-1$ over $\gf{n}$, and $C$ is the set of all $|C|=\binom{n}{2}$ characteristic vectors of double-stars. We want to lower-bound $\MMax{A}$. The upper envelope $\henv{A}$ of $A$ is the set $C$ of $\binom{n}{2}$ stars. So, the lower bower bound $\MMax{A}\geq \Un{\henv{A}}=\Un{C}$ given by Lemma 1.34(2) in the book cannot yield any larger than $\Un{C}=O(n^3)$ lower bound on $\MMax{A}$. But Theorem A already yields an exponential lower bound $\MMax{A}\geq |B|/2=n^d/2$.

By Theorem A, it is enough to show that the set $B$ is non-coverable inside $A$. To show this, suppose $a+b\geq c$ holds for some $a,b\in A$ and $c\in B$. Hence, $c$ is the (graph of) some polynomial $g(x)$ of degree at most $d-1$ over $\gf{n}$. Since vector $c$ has $n$ ones, it must share at least $n/2$ ones with at least one of the vectors $a$ and $b$; let it be vector $a$. This vector cannot be the characteristic vector a double-star because every double-star has only $2\lt n/2$ non-isolated nodes in $U$, while all $|U|=n$ nodes in $U$ of the graph $c$ of the polynomial $g$ are non-isolated. So, $a$ must be a graph of some polynomial $h(x)$ of degree at most $d-1$ over $\gf{n}$. Since no two distinct polynomials of degree at most $d-1$ can share $d$ or more values in common, and since $n/2\geq d$, we have that $g=h$, and hence, also $c=a$. Thus, the set $B$ is non-coverable inside $A$, and Theorem A yields $\MMax{A}\geq |B|/2=n^d/2$, as desired.       $\Box$


Footnotes:

(1)   Jump back ☝


(2)   Jump back ☝

References:

  1. Jukna, S.: Tropical complexity, Sidon sets and dynamic programming. SIAM J. Discrete Math. 30(4), 2064–2085 (2016)   local copy
  2. Schnorr, C.P.: A lower bound on the number of additions in monotone computations. Theor. Comput. Sci. 2(3), 305–315 (1976)   Local copy


⇦   Back to the comments page