Publications

 
Prof. M.R. Godefroid (ULB, Belgium), Prof. P. Jönsson Malmö University (Sweden), Prof. G. Gaigalas (Vilnius University, Lithuania)

Prof. M.R. Godefroid (ULB, Belgium), Prof. P. Jönsson (Malmö University, Sweden), Prof. G. Gaigalas (Vilnius University, Lithuania)

2018 – present

2023

1. Y. T. Li, K. Wang, R. Si, M. Godefroid, G. Gaigalas, Ch. Y. Chen, and P. Jönsson, Reducing the computational load – atomic multiconfiguration calculations based on configuration state function generators, Computer Physics Communications, 283, 108562 (2023).
(https://doi.org/10.1016/j.cpc.2022.108562)
2. Y. Li, P, Jönsson, M. Godefroid, G. Gaigalas, J. Bieroń, J.P. Marques, P. Indelicato, and Ch. Chen, Independently Optimized Orbital Sets in GRASP—The Case of Hyperfine Structure in Li I, Atoms, 11, 4 (2023).
(https://doi.org/10.3390/atoms11010004)
3. P. Jönsson, M. Godefroid, G. Gaigalas, J. Ekman, J. Grumer, W. Li, J. Li, T. Brage, I.P. Grant, J. Bieroń, and C. Froese Fischer, An Introduction to Relativistic Theory as Implemented in GRASP, Atoms, 11, 7 (2023).
(https://doi.org/10.3390/atoms11010007)
4. Y. Li, J. Li, Ch. Song, Ch. Zhang, R. Si, K. Wang, M. Godefroid, G. Gaigalas, P. Jönsson, and Ch. Chen, Performance Tests and Improvements on the rmcdhf and rci Programs of GRASP, Atoms, 11, 12 (2023).
(https://doi.org/10.3390/atoms11010012)


2022

1. P. Rynkun, S. Banerjee, G. Gaigalas, M. Tanaka, L. Radžiūtė, and D. Kato. Theoretical Investigation of Energy Levels and Transition for Ce IV, Astronomy & Astrophysics 658, A82 (2022).
(https://doi.org/10.1051/0004-6361/202141513)
2. Y. Naoi, M. Iwata, D. Yokota, G. Gaigalas, D. Kato, I. Murakami, H. A. Sakaue, Y. Sekiguchi, M. Tanaka, H. Tanuma, S. Wanajo, and N. Nakamura. Laser Induced Breakdown Spectroscopy of Er II for Transition Probability Measurements, Applied Sciences 12, 2219 (2022). (https://doi.org/10.3390/app12042219)
3. S. Schiffmann, J.G. Li, J. Ekman, G. Gaigalas, M. Godefroid, P. Jönsson, and J. Bieroń. Relativistic Radial Electron Density Functions and Natural Orbitals from GRASP2018, Computer Physics Communications, 278, 108403 (2022). (https://doi.org/10.1016/j.cpc.2022.108403)
4. J. Q. Li, C. Y. Zhang, G. Del Zanna, P. Jönsson, M. Godefroid, G. Gaigalas, P. Rynkun, L. Radžiūtė, K. Wang, R. Si, and C. Y. Chen, Large-scale Multiconfiguration Dirac–Hartree–Fock Calculations for Astrophysics: C-like Ions from O III to Mg VII, The Astrophysical Journal Supplement Series, 260, 50 (2022).
(https://doi.org/10.3847/1538-4365/ac63ae)
5. L. Wu, J. Jiang, Z.-W. Wu, Y.-J. Cheng, G. Gaigalas, and C.-Z. Dong, Energy levels, absorption oscillator strengths, transition probabilities, polarizabilities, and g factors of Ar13+ ions, Physical Review A, 106, 012810 (2022). (https://doi.org/10.1103/PhysRevA.106.012810)
6. L. Radžiūtė, G. Gaigalas, Energy levels and transition properties for As-like ions Se II, Br III, Kr IV, Rb V, and Sr VI, Atomic Data and Nuclear Data Tables, 147, 101515 (2022). (https://doi.org/10.1016/j.adt.2022.101515)
7. K. Hotokezaka, M. Tanaka , D. Kato, and G. Gaigalas, Tungsten versus Selenium as a potential source of kilonova nebular emission observed by Spitzer, Monthly Notices of the Royal Astronomical Society515, L89-L93 (2022). (https://doi.org/10.1093/mnrasl/slac071)
8. S. Banerjee, M. Tanaka, D. Kato, G. Gaigalas, K. Kawaguchi, and N. Domoto, Opacity of the Highly Ionized Lanthanides and the Effect on the Early Kilonova, The Astrophysical Journal, 934, 117 (2022).
(https://doi.org/10.3847/1538-4357/ac7565)
9. G. Gaigalas, P. Rynkun, S. Banerjee, M. Tanaka, D. Kato, and L. Radžiūtė, Theoretical investigation of energy levels and transitions for Pr IV, Monthly Notices of the Royal Astronomical Society, 517, 281-293 (2022). (https://doi.org/10.1093/mnras/stac2401)
10. G. Gaigalas, A Program Library for Computing Pure Spin–Angular Coefficients for One- and Two-Particle Operators in Relativistic Atomic Theory, Atoms, 10, 129 (2022).
(https://doi.org/10.3390/atoms10040129)
11. J. Li, G. Gaigalas, J. Bieroń, J. Ekman, P. Jönsson, M. Godefroid, and C. Froese Fischer, Re-Evaluation of the Nuclear Magnetic Octupole Moment of 209Bi, Atoms, 10, 132 (2022).
(https://doi.org/10.3390/atoms10040132)


2021

1. G. Gaigalas, D. Kato. Crystal Field Module for the General Relativistic Atomic Structure Package, Computer Physics Communication 261, 107772 (2021). (https://doi.org/10.1016/j.cpc.2020.107772)
2. A. Papoulia, S. Schiffmann, J. Bieroń, G. Gaigalas, M. Godefroid, Z. Harman, P. Jönsson, N.S. Oreshkina, P. Pyykkö, and I.I. Tupitsyn. Ab initio Electronic Factors of the A and B Hyperfine Structure Constants for the 5s25p6s 1,3Po1 States in Sn I, Phys. Rev. A 103, 022815 (2021).
(https://doi.org/10.1103/PhysRevA.103.022815)
3. H. Dong, J. Jiang, Zh. Wu, Ch. Dong, and G. Gaigalas. Calculations of Atomic Polarizability for Beryllium using MCDHF method, Chin. Phys. B 30, No. 4, 043103 (2021). (https://doi.org/10.1088/1674-1056/abd92d)
4. G. Gaigalas, S. Fritzsche. Angular Coefficients for Symmetry-Adapted Configuration States in jj-coupling, Computer Physics Communication 267, 108086 (2021). (https://doi.org/10.1016/j.cpc.2021.108086)
5. G. Gaigalas, P. Rynkun, L. Radžiūtė, P. Jönsson, and K. Wang. Energy and Transition Data Computations for P-like Ions: As, Kr, Sr, Zr, Mo, and W, Atomic Data and Nuclear Data Tables 141, 101428 (2021). (https://doi.org/10.1016/j.adt.2021.1.1428)
6. K. Hotokezaka, M. Tanaka, D. Kato, and G. Gaigalas. Nebular Emission from Lanthanide-rich Ejecta of Neutron Star Merger, Monthly Notices of the Royal Astronomical Society 506, 5863-5877 (2021). (https://doi.org/10.1093/mnras/stab1975)
7. L. RadžiūtėG. Gaigalas, D. Kato, P. Rynkun, and M. Tanaka. Extended Calculations of Energy Levels and Transition Rates for Singly Ionized Lanthanide Elements. II. Tb–Yb, The Astrophysical Journal Supplement Series 257, 29 (2021). (https://doi.org/10.3847/1538-4365/ac1ad2)
8. X. H. Zhang, G. Del Zanna, K. Wang, P. Rynkun, P. Jönsson, M. Godefroid, G. Gaigalas, L. Radžiūtė, L. H. Ma, R. Si, J. Xiao, Z. B. Chen, J. Yan, Y. Wu, and C. Y. Chen. Benchmarking Multiconfiguration Dirac–Hartree–Fock Calculations for Astrophysics: Si-like Ions from Cr XI to Zn XVII, The Astrophysical Journal Supplement Series 257, 56 (2021). (https://doi.org/10.3847/1538-4365/ac2a3f)


2020

1. G. Gaigalas. Coupling: The Program for Searching Optimal Coupling Scheme in Atomic Theory, Computer Physics Communication 247, 106960 (2020). (https://doi.org/10.1016/j.cpc.2019.106960)
2. C. X. Song, K. Wang, G. Del Zanna, P. Jönsson, R. Si, M. Godefroid, G. Gaigalas, L. Radžiūtė, P. Rynkun, X. H. Zhao, J. Yan, and C. Y. Chen. Large-scale multiconfiguration Dirac–Hartree–Fock calculations for astrophysics: n=4 levels in P-like ions from Mn XI to Ni XIV, The Astrophysical Journal Supplement Series 247, 70 (2020). (https://doi.org/10.3847/1538-4365/ab7cc6)
3. P. Rynkun, G. Gaigalas, and P. Jönsson. Theoretical studies of energy levels and transition data for Zr III, Astronomy & Astrophysics 637, A10 (2020). (https://doi.org/10.1051/0004-6361/201937243)
4. G. Gaigalas, P. Rynkun, L. Radžiūtė, D. Kato, M. Tanaka, and P. Jönsson. Energy Level Structure and Transition Data of Er2+, The Astrophysical Journal Supplement Series 248, 13 (2020).
https://doi.org/10.3847/1538-4365/ab881a)
5. L. Radžiūtė, G. Gaigalas, D. Kato, P. Rynkun, and M. Tanaka. Extended Calculations of Energy Levels and Transition Rates for Singly Ionized Lanthanide Elements. I. Pr–Gd, The Astrophysical Journal Supplement Series 248, 17 (2020). (https://doi.org/10.3847/1538-4365/ab8312)
6. D. Yordanov, L. Rodríguez, D. Balabanski, J. Bieroń, M. Bissell, K. Blaum, B. Cheal, J. Ekman, G. Gaigalas, R. Fernando G. Ruiz, G. Georgiev, W. Gins, M. Godefroid, C. Gorges, Z. Harman, H. Heylen, P. Jönsson, A. Kanellakopoulos, S. Kaufmann, C. Keitel, V. Lagaki, S. Lechner, B. Maaß, S. Ettenauer, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, N. Oreshkina, A. Papoulia, P. Pyykkö, P.-G. Reinhard, S. Sailer, R. Sánchez, S. Schiffmann, S. Schmidt, L. Wehner, C. Wraith, L. Xie, Z. Xu, and X. Yang. Structural trends in atomic nuclei from laser spectroscopy of tin, Communications Physics 3, 107 (2020).
(https://www.nature.com/articles/s42005-020-0348-9)
7. W. Li, P. Rynkun, L. Radžiūtė, and G. Gaigalas, B. Atalay, A. Papoulia, K. Wang, H. Hartman, J. Ekman, T. Brage, C. Y. Chen, and P. Jönsson. Multiconfiguration Dirac – Hartree – Fock Calculations of Lande g – factors for Ions of Astrophysical Interest: B II, C I-IV, Al I-II, Si I-IV, P II, S II, Cl III, Ar IV, Ca I, Ti II, Zr III, and Sn II, Astronomy & Astrophysics 639, A25 (2020). (https://doi.org/10.1051/0004-6361/202037794)
8. M. Tanaka, D. Kato, G. Gaigalas, and K. Kawaguchi. Systematic Opacity Calculations for Kilonovae, Monthly Notices of the Royal Astronomical Society 496, 1369-1392 (2020). (https://doi.org/10.1093/mnras/staa1576)
9. S. Banerjee, M. Tanaka, K. Kawaguchi, D. Kato, and G. Gaigalas. Simulations of Early Kilonovae Emission from Neutron Star Merger, The Astrophysical Journal 901 29 (2020). (https://doi.org/10.3847/1538-4357/abae61)


2019

1. G. Gaigalas, D. Kato, P. Rynkun, L. Radžiūtė, and M. Tanaka. Extended Calculations of Energy Levels and Transition Rates of Nd II-IV Ions for Application to Neutron Star Mergers, The Astrophysical Journal Supplement Series, 240:29 (17pp), (2019). (https://doi.org/10.3847/1538-4365/aaf9b8)
2. P. Rynkun, L. Radžiūtė, G. Gaigalas, and P. Jönsson. Theoretical Investigation of Energy Levels and Transition Data for P II, Astronomy & Astrophysics, 622, A167 (2019). (https://doi.org/10.1051/0004-6361/201834696)
3. P. Rynkun, G. Gaigalas, and P. Jönsson. Theoretical investigation of energy levels and transition data for S II, Cl III, Ar IV, Astronomy & Astrophysics, 623, A155 (2019). (https://doi.org/10.1051/0004-6361/201834931)
4. P. Syty, J. E. Sienkiewicz, L. Radžiūtė, G. Gaigalas, P. Rynkun, and J. Bieroń. Continuum wave functions for estimating the electric dipole moment: Calculation based on a multiconfiguration Dirac-Hartree-Fock approximation, Physical Review A 99, 012514 (2019). (https://doi.org/10.1103/PhysRevA.99.012514)
5. J. Ekman, P. Jönsson, M. Godefroid, C. Naze, G. Gaigalas, and J. Bieroń. RIS4: A program for relativistic isotope shift calculations, Computer Physics Communications 235, 433-446 (2019).
(https://doi.org/10.1016/j.cpc.2018.08.017)
6. C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń. GRASP2018-A Fortran 95 version of the General Relativistic Atomic Structure Package, Computer Physics Communications 237, 184-187 (2019). (https://doi.org/10.1016/j.cpc.2018.10.032)  (One of the most cited Computer Physics Communications article 2018-2020)
7. L. Xie, X. F. Yang, C. Wraith, C. Babcock, J. Bieron, J. Billowes, M.L. Bissell, K. Blaum, B. Cheal, L. Filippin, K.T. Flanagan, R.F. Ruiz, W. Gins, G. Gaigalas, M. Godefroid, C. Gorges, L.K. Grob, H. Heylen, P. Jönsson, S. Kaufmann, M. Kowalska, J. Kramer, S. Malbrunot-Ettenauer, R. Neugart, G. Neyens, W. Nortershauser, T. Otsuka, J. Papuga, R. Sanchez, and Y. Tsunoda. Nuclear Charge Radii of Zn62-80 and their Dependence on Cross-shell Proton Excitations, Physical Letters B, 797, UNSP 134805 (2019).
(https://doi.org/10.1016/j.physletb.2019.134805)
8. A. Papoulia, J. Ekman, G. Gaigalas, M. Godefroid, S. Gustafsson, H. Hartman, W. Li, L. Radžiūtė, P. Rynkun, S. Schiffmann, K. Wang, and P. Jönsson. Coulomb (velocity) Gauge Recommended in Multiconfiguration Calculations of Transition Data Involving Rydberg Series, Atoms, 7 (2019).
(https://doi.org/10.3390/atoms7040106)


2018

1. M. Tanaka, D. Kato, G. Gaigalas, P. Rynkun, L. Radžiūtė, S. Wanajo, Y. Sekiguchi, N. Nakamura, H. Tanuma, I. Murakami, and H. Sakaue. Properties of Kilonovae from Dynamical and Post-merger Ejecta of Neutron Star Mergers, The Astrophysical Journal852, 109 (2018).
(https://doi.org/10.3847/1538-4357/aaa0cb)
2. K. Wang, P. Jönsson, G. Gaigalas, L. Radžiūtė, P. Rynkun, G. Del Zanna, and C. Y. Chen. Energy Levels, Lifetimes, and Transition Rates for P-like Ions from Cr X to Zn XVI from Large-scale Relativistic Multiconfiguration Calculations, The Astrophysical Journal Supplement Series, 235, 27 (2018).
(https://doi.org/10.3847/1538-4365/aab35e)
3. J. Ekman, P. Jönsson, L. Radžiūtė, G. Gaigalas, G. Del Zanna, and I.P. Grant. Large-scale Calculations of Atomic Level and Transition Properties in the Aluminum Isoelectronic Sequence from Ti X through Kr XXIV, Xe XLII, and W LXII, Atomic Data and Nuclear Data Tables, 120, 152 (2018).
(https://doi.org/10.1016/j.adt.2017.04.005)
4. J. Bieroń, L. Filippin, G. Gaigalas, M. Godefroid, P. Jönsson, and P. Pyykkö. Ab initio Calculations of the Hyperfine Structure of Zinc and Evaluation of the Nuclear Quadrupole Moment Q(67 Zn), Phys. Rev. A, 97, 062505 (2018). (https://doi.org/10.1103/PhysRevA.97.062505)
5. K. Wang, S.X. Song, P. Jönsson, G. Del Zanna, S. Schiffmann, M. Godefroid, G. Gaigalas, X.H. Zhao, R. Si, C. Y, and J. Yan. Chen. Benchmarking Atomic Data from Large-Scale Multiconfiguration Dirac-Hartree-Fock Calculations for Astrophysics: S-like Ions from Cr IX to Cu XIV, The Astrophysical Journal Supplement Series, 239, 30 (2018). (https://doi.org/10.3847/1538-4365/aaedba)
6. C. Froese Fischer, G. Gaigalas. The Effect of Correlation on Spectra of the Lanthanides: Pr3+, Atoms, 6, 8 (2018). (https://doi.org/10.3390/atoms6010008)