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1 INTRODUCTION

The urgency of the subject.

The modern theoretical atomic physics faces more and more new tasks. First of all it

is important to get theoretically very precise characteristics of atoms and ions applying

the ab initio methods, where the precision could compete with the experimental results.

For example, there has been a renewed interest in intercombination lines which are of

great importance as diagnostics for di�erent astrophysical sources. In the spectra of light

elements these lines are accessible for observation from both the International Ultraviolet

Explorer (IUE) and the Goddard High Resolution Spectrograph (GHRS) aboard the

Hubble space telescope. The modern technologies also enable one to �nd new superheavy

atoms, such as Ununnilium (Uun Z=110), Unununium (Uuu Z=111), Ununbium (Uub

Z=112). Their lifetimes are very short, therefore it is almost impossible to study those

atoms experimentally, not even their basic state, potential of their ionization or the other

characteristics, that are of great importance not only to atomic physics, but also to

quantum chemistry. In addition, the development of other subjects of theoretical physics

requires further progress of atomic theory. Quantum chemistry or solid state physics

might serve as an example, the methods of which require very accurate wave functions of

the heavy elements, which may be obtained applying the methods of theoretical atomic

physics.

Many{electron atom usually is considered as many{body problem and is described by

the wave function constructed from the wave functions of one electron, moving in the

central nuclear charge �eld and in the screening �eld of the remaining electrons. Then

the wave function of this electron may be represented as a product of radial and spin{

angular parts. The radial part is usually found by solving various modi�cations of the

Hartree{Fock or Dirac{Hartree{Fock equations and can be represented in a numerical or

analytical forms (Froese Fischer [1]) whereas the spin{angular part is expressed in terms

of spherical functions. Then the wave function of the whole atom can be constructed

in some standard way (Cowan [2], Jucys and Savukynas [3], Rudzikas [4]) starting with

these one{electron functions and may be used further on for the calculations of any matrix
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elements representing physical quantities.

For obtaining the values of atomic quantities it is necessary to solve the so{called

eigenvalue problem. Unfortunately, practical calculations show that all realistic atomic

Hamiltonians do not lead straightforwardly to solving this problem. Actually we have

to calculate all non{zero matrix elements of the Hamiltonian considered including those

non{diagonal with respect to electronic con�gurations, then to form energy matrix, to

diagonalize it, obtaining in this way the values of the energy levels as well as the eigen-

functions (the wave functions in the intermediate coupling scheme). The latter may be

used then to calculate electronic transitions as well as the other properties and processes.

Such a necessity raises special requirements to the theory.

The matrix element of each term of the energy operator in the case of complex elec-

tronic con�gurations will consist of matrix elements, describing the interaction inside

each shell of equivalent electrons as well as between these shells. Going beyond the

single{con�guration approximation we must be able to take into account in the same way

non{diagonal matrix elements, with respect to con�gurations.

To �nd the expressions for the matrix elements of all terms of the Hamiltonian con-

sidered for complex electronic con�gurations with several open shells, is a task very far

from the trivial one. A considerable part of the e�ort must be devoted to coping with

integrations over spin{angular variables, occurring in the matrix elements of the operators

under consideration. This habilitation work presents the general methodology, leading to

optimal expressions for operators and matrix elements.

The papers of Racach [5, 6, 7, 8] gave a great impulse to the modern atomic physics.

While introducing one{electron and two{electron coe�cients of fractional parentage [7]

as well as the unit tensors [6] into atomic physics, he formed the basis of tensorial algebra

applied to the theory of complex atomic spectra. Anyway, almost all modern methods of

calculation of spin{angular coe�cients are based on these ideas.

One of the most widely{used computational schemes is from Fano [9, 10]. It has been

implemented in a number of powerful programs [10, 11, 12, 13, 14, 15, 16] since that time.

This methodology is based on having the total wave function of an atom built from the
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antisymmetrized wave functions of separate shells, and this antisymmetrization is done via

coe�cients of fractional parentage (CFP). The shells are coupled one to another via their

angular momenta. So, the �nding of matrix elements amounts to �nding the so{called

recoupling matrices and CFP.

Suppose that we have a bra function with u shells in LS{coupling:

( u (LSMLMS)j � (n1�
N1

1 n2�
N2

2 :::nu�
Nu

u
�1L1S1�2L2S2:::�uLuSuALSMLMSj (1)
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where A stands for all intermediate quantum numbers, depending on the order of coupling

of momenta LiSi, � � l; s and �i denotes all additional quantum numbers needed for the

classi�cation of the energy levels of the relevant shell. Using the Wigner{Eckart theorem
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where � is a phase factor, (see, e.g., in [10]), �bra �
�
LiSi; LjSj; L
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S
0
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; L

0
j
S
0
j

�
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is the

array for the bra function shells' terms, and similarly for �ket. The coe�cient�
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are the recoupling matrices in l{ and s{

spaces of direct and exchange terms, respectively. For more details on recoupling matrices

see in Grant [10], Burke et al. [13]. The summation in expression (3) implies that the

quantum numbers n, � of all participating shells are included. There are four such pairs

of n, � in the sum.

During the last decades, this procedure was applied both to LS{ and jj{coupling.

As we see, the Fano's procedure [9] is based on the CFP. Several tabulations of these

quantities can be found in the literature. For example, tables of CFPs were presented

by Racah [7], Nielson and Koster [17], Karazija et al. [18] for LS{coupling or de{Shalit

and Talmi [19], Sivcev et al. [20] for jj{coupling. There are algebraic expressions for the

CFPs for LS{coupling when the seniority quantum number � is su�cient for the one{

to{one classi�cation of the terms, i.e. for pN , dN (all N values) and f
N (0 < N � 4,

10 � N � 14) Kaniauskas et al. [21]. The corresponding algebraic expressions for jN

(j � 7=2) are found by Kaniauskas and Rudzikas [22]. But these expressions are rather

complicated and, therefore, of little use.

In essence, the Fano calculation scheme consists of evaluating recoupling matrices.

Although such an approach uses classical Racah algebra [5, 6, 7, 8] on the level of CFP, it

may be necessary to carry out multiple summations over intermediate terms. Due to these

summations and the complexity of the recoupling matrix itself, the associated computer

codes become rather time consuming. So, by using the CFP as the basic quantities, Fano's

procedure does not exploit the full power of Racah's algebra.

Jucys and Vizbarait_e [23] proposed to use the two{particle CFP instead of ordinary

ones, in matrix elements' calculations for complex electron con�gurations. The tables of

these CFP were presented by Vizbarait_e et al. [24] and Donlan [25] in LS{coupling and

Slepcov et al. [26] in subshells with j = 3=2; 5=2; and 7=2 in jj{coupling. But even that
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did not solve the abovementioned problems.

A solution to this problem was found by Burke et al. [13]. They tabulated separate

standard parts of recoupling matrices along with coe�cients of fractional parentage at the

beginning of a calculation and used them further on to calculate the needed coe�cients.

Computer codes by Grant [10], Glass [11], Glass and Hibbert [12], Burke et al. [13] use

the program NJSYM (Burke [27]) or NJGRAF (Bar{Shalom and Klapisch [28]) for the

calculation of recoupling matrices. Both are rather time consuming when calculating the

matrix elements of complex operators or electronic con�gurations with many open shells.

In order to simplify the calculations, Cowan [2] suggested that matrix elements be

grouped into "Classes" (see Cowan [2] Figure 13{5). Unfortunately, this approach was

not generalized to all two{electron operators. Perhaps for this reason Cowan's approach

is not very popular although the program itself, based on this approach, is widely used.

A few authors (Jucys, Savukynas [3], Rudzikas [4] and Racah [6]) utilize the unit

tensors Uk, V k in LS{coupling (Cowan [2], Jucys et al. [29], Karazija [30]), or T k in jj{

coupling (Ki�ckin and Rudzikas [31], Ki�ckin et al. [32], Sivcev et al. [33] and Nikitin and

Rudzikas [34]) for spin{angular integration.

It allows to beni�t from the advantages of tensorial algebra for the �nding of matrix

elements for one and two shells of equivalent electrons. The tables of submatrix elements

of tensors composed of unit tensors and selection rules for them can be used prior to

computation to check whether the spin{angular coe�cients are zero or not, too. Moreover,

the recoupling matrices themselves have a simpler form. A number of tabulations of these

quantities are found in the literature. Numerical values for the matrix elements of U (k)

and V (1k), for example, are tabulated by Racah [7], Nielson and Koster [17], Karazija et

al. [18], Tuszynski [35] for LS{coupling and for the T (k) by Slepcov et al. [36] for subshells

with j = 5=2, 7=2 and 9=2 in jj{coupling. But so far, unit tensors have been applied

only for evaluating the diagonal, with respect to con�gurations, matrix elments while all

non{diagonal matrix elements still have to be evaluated by using the CFP [4, 34].

All the above mentioned approaches were applied in the coordinate representation.

The second quantization formalism (Rudzikas [4], Judd [37, 38] and Rudzikas and Kani-
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auskas [39]) has a number of advantages compared to coordinate representation. First of

all, it is much easier to �nd algebraic expressions for complex operators and their matrix

elements, when relying on second quantization formalism. It has contributed signi�cantly

to the successful development of perturbation theory (see Lindgren and Morrison [40],

Merkelis et al. [41]), and orthogonal operators (Uylings [42]), where three{particle op-

erators already occur. Uylings [43] suggested a fairly simple approach for dealing with

separate cases of three{particle operators.

Moreover, in the second quantization approach the quasispin formalism was e�ciently

developed by Rudzikas and Kaniauskas [39], Innes [44], �Spakauskas et al. [45, 46], Fano and

Rau [47]. The main advantage of this approach is that applying the quasispin method

for calculating the matrix elements of any operator, we can use all advantages of the

new version of Racah algebra (see Rudzikas [4]) for integration of spin{angular parts of

any one{ and two{particle operator. For example, the reduced coe�cients of fractional

parentage (RCFP) or reduced matrix elements of unit tensors are independent of the

occupation number of the shell (see Rudzikas and Kaniauskas [39], Gaigalas et al. [M10]).

The tables of all these quantities are presented for the p{ and d{ shells in LS{coupling

by Rudzikas and Kaniauskas [39], �Spakauskas et al. [46] and RCFP in jj{coupling by

Savi�cius et al. [48]. All this enabled Merkelis and Gaigalas [49] to work out a general

perturbation theory approach for complex cases of several open shells. In the paper by

Merkelis [50] a detailed review of a version of graphical methodology is presented that

allows one to represent the operators graphically and to �nd the matrix elements of these

operators using diagrammatic technique.

As we see from the above, the majority of methods and computer codes for �nding

spin{angular coe�cients are faced with a number of problems. Those which more or less

do not have them are not general enough. Therefore, for obtaining theoretical results

of very high accuracy one needs to essentially improve the existing approaches for spin{

angular integration.

In this habilitation work an e�cient and general approach is suggested for �nding the

spin{angular parts of matrix elements of atomic interactions, relying on the combination
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of the second{quantization approach in the coupled tensorial form [39], the generalized

graphical technique [51, 52] and angular momentum theory [3] in orbital, spin and qua-

sispin spaces [4] as well as on the symetry properties of the quantities considered. This

approach is free of previous shortcomings. The habilitation work based on the methods

developed and programs written as well as on concrete practical applications demonstrates

the e�ectiveness of the approach suggested.

Aim of this work.

The majority of methods of �nding spin{angular coe�cients were faced with a number

of problems, especially when atoms with many open shells are treated, and the operators

are not trivial. So, for getting theoretical results of very high accuracy in large scale atomic

calculations one needs to essentially improve the existing approaches and computer codes.

The aim of this habilitation work is to create the general methodology, leading to optimal

expressions for operators and matrix elements, which is free of previous shortcomings,

to work out the relevant computer programs using this methodology and to demonstrate

their e�ciency.

Main tasks of the research.

While setting the tasks of the research, many programs dedicated to the calculation of

atomic quantities were analyzed. It was found that the majority of methods and computer

codes for computing the spin{angular coe�cients were faced with a number of problems,

the main of these being:

� The demand for CPU time in calculating the spin{angular parts of matrix elements

even on the modern computer is high. Moreover, the atomic structure programs

for large scale calculations usually have problems with the computer hard disk.

Therefore, the high accuracy of characteristics of atomic quantities sometimes is

even unattainable.

� The methods practrically used in large scale ab initio calculations are being applied

mostly for the comparatively simple systems. This is because in the programs

based on classical Racah algebra the treatment of recoupling matrices is rather
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complicated, especially when �nding the matrix elements of Breit{Pauli operators

between complex con�gurations.

� The con�gurations with open f{shells (non{relativistic approach) must often be in-

cluded into theoretical calculations. This causes problems in a number of method-

ologies, because the complete account of f{shells implies the usage of a large number

of coe�cients of fractional parentage1.

� The con�gurations with open j = 9=2 subshell (relativistic approach) must be in-

cluded for investigation and prediction of chemical and physical properties (see, e.g.,

Fricke [53]) of superheavy atoms.

So, for obtaining theoretical results of very high accuracy one needs to improve the

existing approaches for spin{angular integration. Taking into consideration the above,

the following tasks of the research were formulated:

� To choose an optimal number of distributions, which is necessary to evaluate any

two{electron operator in general way.

� To express any physical operator in such a tensorial form which allows us to exploit

all the advantages of new versions of Racah algebra (quasispin space included).

� To develop the graphic representation of the theory of angular momentum, in order

to easily graphically group the products of the operators of the secondary quanti-

zation with the same tensorial structure.

� To obtain the analytical expressions for recoupling matrices.

� To formulate the new approach for �nding the spin{angular parts of matrix ele-

ments of atomic interactions, relying on the combination of the second{quantization

approach in the coupled tensorial form, the generalized graphical technique and an-

gular momentum theory in orbital, spin and quasispin spaces as well as on the

symmetry properties of the quantities considered.

1The Cowan [2] code supports the con�gurations with open f{shells only for calculation of matrix

elements of Coulomb operator.
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� To �nd the expressions of Breit{Pauli Hamiltonian, that would be most optimized

to the new methods of calculation of spin{angular coe�cients.

� To acquire the values of all standard quantities, both for LS{coupling and for jj{

coupling, necessary for the new methods of �nding the spin{angular coe�cients. To

create complete electronic tables of these quantities.

� To create software based on the new methods.

� To de�ne the guidelines, that would give an opportunity to perform the spin{angular

integration symbolically.

� To perform the theoretical studies of a number of spectral characteristics of atoms

and ions, demonstrating in such a way the e�ectiveness of the methods created.

Main statements to be defended.

1. The method that is based on the second quantization in coupled tensorial form, on

the angular momentum theory in three spaces (orbital, spin and quasispin), on the

Wick's theorem and on the generalized graphical technique of angular momentum,

gives the possibility to e�ciently calculate the matrix elements of energy operators

in general case and allows one to exploit all the advantages of tensorial algebra in

both non{relativistic and relativistic approachs for diagonal and o�{diagonal (with

respect to con�gurations) matrix elements.

2. The tensorial expressions (7) and (74) allow us to e�ciently use the simpli�cations

for any two{particle operator in general way, as, e.g., for spin{other{orbit (see, e.g.,

formulas (52), (56) and (57)) and orbit{orbit interactions (see, e.g., formulas (69)

and (70)) because the expresions are always in irreducible tensorial form and the

simpli�cations are provided in newly de�ning the tensorial structure of operator and

two{electron matrix elements.

3. The tensorial expressions (7) and (74) of any one{ and two{particle operator allow

one to �nd simple analytical expressions (75), (79), (80), (83), (85), (87), (88) and

11



(94) for the recoupling matrices for both diagonal and o�{diagonal matrix elements

with any number of open shells in both non{relativistic and relativistic approaches.

4. The computer programs based on the approach presented in the habilitation work

are much faster compared to standard ones (3{8 times in jj{coupling (see Table 10)

and 5{12 times in LS{coupling (see Table 11)) and allow for the computers of various

types and classes to use i) the new program organization for large scale calculations,

that allows to fully exploit the possessed resources of both supercomputers and

personal computers; ii) to e�ectively apply both parallel and symbolic programming;

iii) to investigate any con�gurations involving f { (or j=9=2) shells.

5. Ab initio calculations performed indicate that the methods developed as well as the

programs written constitute the prerequisites for obtaining the energies, wavelengths

of electronic transitions, oscillator strengths, transition probabilities, lifetimes of

excited levels, electron a�nities of negative ions, isotope shifts, hyper�ne structure

as well as the other atomic properties with a high accuracy. For example, the ab

initio calculations of the Gd ionization energy led us to conclude that correlation

e�ects for Gd are larger than it was obtained before by others.

The novelty and originality of the work.

The developed spin{angular integration approach connects and integrates into the

whole the modern mathematical methods of tensorial algebra. Based on these methods

there were written a number of programs, which use the advantages of the modern fast

developing computer technique, �rst of all the parallel and symbolic programming. This

widens essentially the range of the applicability of the atom theory, both regarding the

accuracy and the variety of atoms and ions.

Practical signi�cance of the work.

The approach and programs developed in this work are applicable for obtaining the

accurate values of atomic quantities in a number of di�erent universal theoretical ap-

proximations: multicon�guration Hartree{Fock, Dirac{Hartree{Fock or con�guration in-

teraction approaches, many{body perturbation theory, orthogonal operators as well as
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for various versions of semi{empirical methods. This provides a possibility to perform

theoretical research on practically any atom and ion.

Implementation of the results. The software created in this work is used at Uni-

versity of Oxford (United Kingdom), Vanderbilt University (Computer Science Depart-

ment, USA), Universite Libre de Bruxelles (Laboratoire de Chimie Physique Mol�eculaire,

Belgium), Universit�at Kassel (Fachbereich Physik, Germany), Institute of Theoretical

Physics and Astronomy (Department of the Theory of an Atom, Lithuania), Vilnius Ped-

agogical Universtity (General Physics Department, Vilnius), Vilnius Technical University

(Computer center, Vilnius). All software created is based on the methods developed in

the habilitation work.

The publications and the personal contribution. The habilitation work is based

on 21 main articles and one conference abstract; a special list of these publications [M1{

M22] (containing the titles of the publications) preceedes the general list of references.

The publications include 3 articles by G. Gaigalas as a single author and 18 papers with

co{authors.

The author used his own material while preparing this work. The methods developed

were published in [M3, M6, M8, M9, M10, M14, M16, M17]. The author wrote a number of

programs [M4, M18, M19, M20, M21] and performed the calculations with them [M1, M2,

M5, M7, M11, M12, M13, M15, M22]. The main part of the investigations was performed

at the Institute of Theoretical Physics and Astronomy. The part of the work related to the

writing and testing of some programs was performed by the habilitant at the University of

Oxford (United Kingdom), Vanderbilt University (Compiuter Science Department, USA),

Universite Libre de Bruxelles (Laboratoire de Chimie Physique Mol�eculaire, Belgium),

Universit�at Kassel (Fachbereich Physik, Germany).

Contributions of the other co{authors were as follows:

Prof. Ian P. Grant provided with his written program, participated in the discussions

of the results and presentation of the publications.

Prof. Ch. Froese Fischer provided with her written programs, consulted on the issues

of their application, there were discussions with her while preparing some new program

modi�cations, adopting the calculation technique and performing some calculations.
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Prof. Z. Rudzikas proposed some ideas, consulted on the issues of second quantization

as well as quasispin application, participated in the analysis of the results.

Prof. M. Godefroid assisted in extending the possibilities of the search of spin{angular

coe�cients in LS-coupling, and proposed some ideas on the testing of programs, when

the calculations were done with the open f{shell. There was a possibility to use the

computers at the University of Brussels.

Hab. Dr. S. Fritzsche participated in formulating the task for searching the spin{

angular coe�cients in jj{coupling, proposed to create electronic tables in the program-

ming languages both FORTRAN 90 and MAPLE. There was a possibility to use the

computers and to make some calculations in Kassel.

Other co{authors participated in the formulation of some particular problems, discus-

sions of the results and presentation of the publications.

The author participated in a number of other investigations (other publications related

to the habilitation work) [M23�{M35�] developing the relevent methods as software.

Approbation of the work. The results of the habilitation work have been pre-

sented at the 3rd International Colloquium on Atomic Spectra and Oscillator Strengths

for Astrophysics and Fusion (Amsterdam, Netherlands 1990), XXII EGAS Conference

(Uppsala, Sweden, 1990), XIII EGAS Conference (Torun, Poland, 1991), 4th EPS Euro-

physics Conference (Riga, Latvia, 1992), IAU Symposium No. 155 (Innsbruck, Austria,

1992), XXV EGAS Conference (Caen, France, 1993), XXVI EGAS Conference (1994,

Barcelona, Spain, 1994), 7th International Conference on the Physics of Highly Charged

Ions HCI{94 (Vienna, Austria, 1994), 5th EPS Conference on Atomic and Molecular

Physics (Edinburgh, UK, 1995), XXVIII EGAS Conference (Graz, Austria, 1996), 8th In-

ternational Conference on the Physics of Highly Charged Ions HCI{96 (Omiya, Saitama,

JAPAN, 1996), PECAM II Second Europhysics Study Conference on Photon and Elec-

tron Collisions with Atomis and Molecules (Belfast, UK, 1996), XXIX EGAS Conference

(Berlin, Germany, 1997), Conference on Atomic and Molecular Data and Their Appli-

cations (Gaithersburg, MD, USA, 1997), 6th EPS Conference on Atomic and Molecular

Physics (Siena, Italy, 1998), 6th International Colloquium on Atomic Spectra and Os-

cillator Strengths (Victoria, Canada, 1998), 9th International Conference on the Physics
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of Highly Charged Ions HCI{98 (Bensheim, Germany, 1998), XXXI EGAS Conference

(Marseille, France, 1999), Deutschen Physikalischen Gesellschaft (Bonn, Germany, 2000),

7 Kolloquium des Schwerpunktes "Relativische E�ekte in der Chemie und physik Schw-

erer elemente" (Kloster Banz, Germany, 2000), International Conference on Atomic and

Molecular Data and Their Applications (Oxford, UK, 2000), ICAP XVII International

Conference on Atomic Physics (Florence, Italy, 2000), XXXIII EGAS Conference (Vil-

nius, Lithuania, 2000), ECAMP VII The Seventh European Conference on Atomic and

Molecular Physics (Berlin, Germany, 2001).

In addition, the author has presented many results included in this habilitation work

at the scienti�c seminars of the following institutions: Institute of Theoretical Physics and

Astronomy (Vilnius), Institute of Physics (Vilnius), Vilnius Pedagogical University (Gen-

eral Physics Department, Vilnius), University of Oxford (Mathematical Institute, United

Kingdom), Vanderbilt University (Compiuter Science Department, USA), Universite Li-

bre De Bruxelles (Laboratoire de Chimie Physique Mol�eculaire, Belgium), Universit�at

Kassel (Fachbereich Physik, Germany).

This work was partly funded by Commission of the European Communities under "Go

West" research fellowship, by Universit�e Libre de Bruxelles (Belgium) under personal

grant, by National Science Foundation under grant No PHYS{9501830 (USA), and by

German Physical Society under the grant SPP 464: "Theorie relativistischer E�ekte in

der Chemie und Physik Schwerer Elemente".
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2 THEORETICAL OUTLINE [M3, M6, M8, M9,

M10, M13, M14, M16, M17, M21]

2.1 E�cient tensorial form of any two{particle operator [M3,

M6, M8, M9, M14, M17]

2.1.1 Tensorial expressions for two{particle operator

It is well known in the literature that a scalar two{particle operator may be presented in

the following form (see Jucys and Savukynas [3], Glass [11]):

bG(�1�2k;�1�2k) =
X
i>j

g (ri; rj)
X
p

(�1)k�p
hbg(�1�1)

i
� bg(�2�2)

j

i(k k)

p;�p
; (4)

where g (ri; rj) is the radial part of operator, bg(�1�1)i is a tensor acting upon the orbital

and spin variables of the i{th function, �1, �2 are the ranks of operator acting in orbital

space, and �1, �2 are the ranks of operator acting in spin space.

All the above mentioned approaches were usually applied in the coordinate representa-

tion. Now we will investigate the second quantization formalism, which is broadly applied

in atomic physics as well.

A two{particle operator in second quantization method is written as follows:

G
(�1�2k;�1�2k) =

X
nili;nj lj;ni0 li0 ;nj0 lj0

bG(ij; i0j 0) = 1

2

X
i;j;i0;j0

aiaja
y

j0
a
y

i0
(i; j jgj i0; j0) ; (5)

where i � nilismli
msi

, (i; jjgji0; j0) is the two{electron matrix element of operator

G
(�1�2k;�1�2k), and ai is the electron creation and a

y

j
electron annihilation operators.

Meanwhile two tensorial forms are well known in second quantization [54]. In the �rst

form the two{electron operator has tensorial product24ha(�i) � a
(�j)
i(�12�12)

�
"
�
a
(�0i) �

�
a
(�0j)

#(�012�012)35(kk)
p;�p

. The tensor
�
a
(�)

m�
is de�ned as

�
a
(�)

m�
= (�1)��m�

a
y(�)
�m�

; (6)

where � � l; s in non{relativistic theory and � � j in relativistic theory.
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In the second form the second quantization operators are coupled by pairs consisting

of electron creation and annihilation operators.

In the paper Gaigalas and Rudzikas [M3] it was shown that these tensorial forms do

not take full advantage of tensor algebra. The most characteristic examples are when

con�gurations considered have many open shells, or when the non{diagonal with respect

to con�gurations matrix elements are seeked.

In the paper Gaigalas et al. [M6] the following general expression of two{particle

operator is proposed, which allows one to make the most of the advantages of Racah

algebra (see Racah [5, 6, 7, 8]).

bG(�1�2k;�1�2k) =
X
�

X
�12;�12;�

0

12
;�0
12

�(�)
n
A
(kk)
p;�p (n���;�) � (u; 1)

+
X
�

�
B

(�12�12) (n���;�)�C
(�012�012) (n���;�)

�(kk)
p;�p

� (u; 2)

+
X
�


"�
D

(l�s) �D
(l�s)

�(�12�12)
� E

(�012�012) (n
�
 ;�)

#(kk)
p;�p

� (u; 3)

+
X
�
�

"�
D

(l�s) �D
(l�s)

�(�12�12)
�
h
D

(l
s) �D
(l�s)

i(�012�012)#(kk)
p;�p

� (u; 4)

9=; ; (7)

In the expression (7) u is the overall number of shells acted upon by a given tensorial

product of creation/annihilation operators. Parameter � implies the whole array of pa-

rameters (and sometimes an internal summation over some of these is implied, as well)

that connects the amplitudes � of tensorial products of creation/annihilation operators in

the expression (7) to these tensorial products (see Gaigalas et al. [M6]). Also, attention

must be paid to the fact that the ranks �1, �2, �, �1, �2 and � are also included into the

parameter �.

Whereas in traditional expressions, e. g. (5), the summation runs over the principle

and the orbital quantum numbers of open shells without detailing these, in the expression

written above the �rst term represents the case of a two{particle operator acting upon the

same shell n���, the second term corresponds to operator bG(�1�2k;�1�2k) acting upon two

di�erent shells n���, n��� . When operator bG(�1�2k;�1�2k) acts upon three shells the third
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term in (7) must be considered and when it acts upon four { the fourth one. We de�ne

in this expression the shells n���, n���, n
�
 , n��� to be di�erent. Thus, the expression

(7) describe the most general use of the operator, suitable to account even for the matrix

elements of non{diagonal with respect to con�guration.

The tensorial part of a two{particle operator is expressed in terms of operators of

the type A(kk) (n�;�), B(kk)(n�;�), C(kk)(n�;�), D(ls), E(kk)(n�;�) (for more details see

[M6]). They correspond to one of the forms:

a
(q�)
mq

; (8)

h
a
(q�)
mq1

� a
(q�)
mq2

i(�1�1)
; (9)

�
a
(q�)
mq1

�
h
a
(q�)
mq2

� a
(q�)
mq3

i(�1�1)�(�2�2)
; (10)

�h
a
(q�)
mq1

� a
(q�)
mq2

i(�1�1)
� a

(q�)
mq3

�(�2�2)
; (11)

�h
a
(q�)
mq1

� a
(q�)
mq2

i(�1�1)
�
h
a
(q�)
mq3

� a
(q�)
mq4

i(�2�2)�(kk)
: (12)

For example, if we take a two{particle operator acting upon two shells, then we see from

expression (7) that the spin{angular part of two{particle operator is expressed via opera-

tors B(�12�12) (n���;�) and C
(�012�012) (n���;�). In the case when the operator bG(�1�2k;�1�2k)

acts in such a manner that two operators of second quantization act upon one shell and

two act upon another, the B(�12�12) (n���;�) and C
(�012�012) (n���;�) are expressed as (9).

But in the case when three operators of second quantization act upon one shell and one

acts upon another, then B(�12�12) (n���;�) and C
(�012�012) (n���;�) are expressed either as

(8) and (10) or (8) and (11).

In writing down the expressions (8){(12) the quasispin formalism was used, where a(�)
m�

and
�
a
(�)

m�
are components of the tensor a(q�)

mqm�
, having in additional quasispin space the

rank q = 1
2
and projections mq = �1

2
, i.e.

a
(q�)
1

2
m�

= a
(ls)
mlms

(13)
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and

a
(q�)

�
1

2
m�

=
�
a
(ls)

mlms
: (14)

The amplitudes � (�) are all proportional to the two{electron submatrix element of a

two{particle operator g,

� (�) � (ni�inj�j kgkni0�i0nj0�j0) : (15)

To obtain the expression of a concrete physical operator, analogous to expression (7),

the tensorial structure of the operator and the two{particle matrix elements (15) must be

known. We shall investigate this now, for example, in non{relativistic atomic theory.

The electrostatic (Coulomb) electron interaction operator HCoulomb itself contains the

tensorial structure

H
Coulomb �

X
k

H
(kk0;000)

Coulomb
(16)

and its submatrix element is

�
ni�inj�j




H(kk0;000)

Coulomb




 ni0�i0nj0�j0�
= 2[k]1=2

�
li




C(k)



 li0� �lj 


C(k)




 lj0�Rk (nilini0li0; njljnj0lj0) ; (17)

where we have used the conventional shorthand notation (2k + 1) � ::: � [k; :::].

The spin{spin operator Hss itself contains tensorial structure of two di�erent types,

summed over k (Gaigalas and Rudzikas [M9]),

H
ss �

X
k

h
H

(k+1k�12;112)
ss

+H
(k�1k+12;112)
ss

i
: (18)

Their submatrix elements are (Jucys and Savukynas [3])

�
ni�inj�j




H(k+1k�12;112)
ss




ni0�i0nj0�j0�
=

3
p
5

q
(2k + 3)

(5)
�
li




C(k+1)



 li0� �lj 


C(k�1)




 lj0�Nk�1 (nilinj lj; ni0 li0nj0 lj0) ; (19)

�
ni�inj�j




H(k�1k+12;112)
ss




ni0�i0nj0�j0�
=

3
p
5

q
(2k + 3)

(5)
�
li




C(k�1)



 li0� �lj 


C(k+1)




 lj0�Nk�1 (nj ljnili; nj0 lj0ni0li0) ; (20)
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where we use a shorthand notation

(2k + 3)
(5) � (2k + 3) (2k + 2) (2k + 1) (2k) (2k � 1) and radial integral (19), (20) is

de�ned as in Glass and Hibbert [12]:

N
k (nilinj lj; ni0 li0nj0 lj0)

=
�
2

4

1Z
0

1Z
0

Pi (r1)Pj (r2)
r
k

2

r
k+3
1

�(r1 � r2)Pi0 (r1)Pj0 (r2) dr1dr2; (21)

where �(x) is a Heaviside step{function,

�(x) =

8><>: 1; for x > 0;

0; for x � 0:
(22)

The spin{other{orbit operator Hsoo (see Godefroid [55]) itself contains tensorial struc-

ture of six di�erent types, summed over k (Gaigalas et al. [M8]):

H
sso �

X
k

h
H

(k�1k1;101)
sso

+H
(k�1k1;011)
sso

+H
(kk1;101)
sso

+H(kk1;011)
sso

+H
(k+1k1;101)
sso

+H
(k+1k1;011)
sso

i
: (23)

Their submatrix elements are:�
ni�inj�j




H(k�1k1;�1�21)
soo




ni0�i0nj0�j0�
= 2 � 2�2 (k)�1=2 f(2k � 1) (2k + 1) (li + li0 � k + 1) (k � li + li0) (k + li � li0)

� (k + li + li0 + 1)g1=2
�
li




C(k)



 li0� �lj 


C(k)




 lj0�Nk�2 (njljnili; nj0lj0ni0 li0) ; (24)

�
ni�inj�j




H(kk1;�1�21)
soo




ni0�i0nj0�j0�
= �2 � 2�2 (2k + 1)

1=2
�
li




C(k)



 li0� �lj 


C(k)




 lj0� n(k (k + 1))
�1=2

� (li (li + 1)� k (k + 1)� li0 (li0 + 1))
n
(k + 1)Nk�2 (njljnili; nj0lj0ni0li0)

�kNk (nilinjlj; ni0li0nj0lj0)
o
�2 (k (k + 1))

1=2
V
k�1 (nilinjlj; ni0li0nj0lj0)

o
; (25)

�
ni�inj�j




H(k+1k1;�1�21)
soo




ni0�i0nj0�j0�
= 2 � 2�2 (k + 1)

�1=2 f(2k + 1) (2k + 3) (li + li0 � k) (k � li + li0 + 1) (k + li � li0 + 1)

� (k + li + li0 + 2)g1=2
�
li




C(k)



 li0� �lj 


C(k)




 lj0�Nk (nilinj lj; ni0li0nj0lj0) : (26)

20



The radial integrals in (24){(26) are (see Glass and Hibbert [12]):

V
k (nilinj lj; ni0 li0nj0 lj0)

=
�
2

4

1Z
0

1Z
0

Pi (r1)Pj (r2)
r
k�1
<

r
k+2
>

r2
@

@r1

Pi0 (r1)Pj0 (r2) dr1dr2: (27)

The tensorial form of orbit{orbit operator is (see Eissner et al. [56])

H
oo =

X
k

�
H

(kk0;000)
oo1 +H

(kk0;000)
oo2 +H

(kk0;000)
oo3 +H

(kk0;00)
oo4

�
: (28)

The sum of submatrix elements of three terms H
(kk0;000)
oo1 , H

(kk0;000)
oo2 and H

(kk0;000)
oo4 is

equal to (see Badnell [57]):

�
ni�inj�j




H(kk0;000)
oo1 +H

(kk0;000)
oo2 +H

(kk0;000)
oo4




ni0�i0nj0�j0�
= �2[k]1=2

�
li




C(k)



 li0� �lj 


C(k)




 lj0� (1 � � (k; 0))Zk (nilinj lj; ni0li0nj0lj0) ; (29)

where

Zk (nilinjlj; ni0li0nj0 lj0)

= 2k (k + 1)
�
T
k+1 (nilinjlj; ni0li0nj0 lj0)� T

k�1 (nilinj lj; ni0li0nj0lj0)
�

+(li (li + 1)� k (k + 1) � li0 (li0 + 1))
�
U
k+1 (nilinjlj; ni0li0nj0 lj0)� U

k�1 (nilinj lj; ni0 li0nj0lj0)
�

+(lj (lj + 1) � k (k + 1)� lj0 (lj0 + 1))
�
U
k+1 (njljnili; nj0lj0ni0 li0)� U

k�1 (nj ljnili; nj0 lj0ni0li0)
�

+
1

2
(li (li + 1) � k (k + 1)� li0 (li0 + 1)) (lj (lj + 1)� k (k + 1) � lj0 (lj0 + 1))

�
"

k � 2

k (2k � 1)

�
N

k�2 (nilinjlj; ni0li0nj0 lj0) +N
k�2 (njljnili; nj0lj0ni0 li0)

�

�
k + 3

(k + 1) (2k + 3)

�
N

k (nilinjlj; ni0li0nj0 lj0) +N
k (njljnili; nj0lj0ni0li0)

�#
: (30)

The radial integrals are de�ned as

T
k (nilinj lj; ni0 li0nj0 lj0) =

�
2

4 (2k + 1)

�
1Z
0

1Z
0

Pi (r1)Pj (r2)
r
k

<

r
k+1
>

 
@

@r1
+

1

r1

!
Pi0 (r1)

 
@

@r2
+

1

r2

!
Pj0 (r2) dr1dr2; (31)
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U
k (nilinjlj; ni0li0nj0 lj0) =

�
2

4 (2k + 1)

�
1Z
0

1Z
0

Pi (r1)Pj (r2)

 
(k � 1)

r
k

2

r
k+2
1

�(r1 � r2)� (k + 2)
r
k�1
1

r
k+1
2

�(r2 � r1)

!

�Pi0 (r1)
 
@

@r2
+

1

r2

!
Pj0 (r2) dr1dr2: (32)

The submatrix element of remaining term H
(kk0;000)
oo3 is:�

ni�inj�j




H(kk0;000)
oo3




 ni0�i0nj0�j0�
= 2

p
2k + 1

1

k(k + 1)

�
li




C(k+1)



 li0� �lj 


C(k+1)




 lj0�
� ((li + li0 + k + 2) (li + li0 � k) (li � li0 + k + 1) (li0 � li + k + 1)

� (lj + lj0 + k + 2)� (lj + lj0 � k) (lj � lj0 + k + 1) (lj0 � lj + k + 1))
1=2

�
�
N

k�1 (nilinj lj; ni0li0nj0lj0) +N
k�1 (nj ljnili; nj0 lj0ni0li0)

�
: (33)

The rest of two{particle Breit{Pauli operators that we did not investigate so far are

the two{body Darwin and spin{spin{contact terms. They do not bring any additional

di�culties into the investigation of Hamiltonian, but for the sake of completeness of

presentation we will discuss them brie
y.

The two{body Darwin operator HD2 (see for more detail Nikitin and Rudzikas [34]), as

well as the spin{spin{contact operator HSSC (see Shalit and Talmi [19] and Feneuille [58]),

both have the following tensorial structure:

H �
X
k

H
(kk0;000)

: (34)

These two terms are included into calculation by adding to the radial integral

Rk (nilini0li0; njljnj0lj0) a term

(2k + 1)X (nilini0 li0; njljnj0lj0) ;

where

X (nilinj lj; ni0 li0nj0 lj0)

=
�
2

4

1Z
0

1Z
0

Pi (r1)Pj (r2)
1

r
2
1

� (r1 � r2)Pi0 (r1)Pj0 (r2) dr1dr2: (35)
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The expression (7) has a series of terms, and, thus, at �rst glance seems to be di�cult

to apply. For this purpose in the next sections we shall discuss in more detail about:

� the Wick's theorem and it application to the study of any two{particle operator;

� the compact written form of all terms, using the extended graphical technique;

� obtaining the values of recoupling matrix and of standard quantities. We shall also

compare the existing methodologies of �nding spin{angular parts, showing their

advantages and shortcomings.

This methodology is fully applicable also to the one{particle operator (see Gaigalas

and Rudzikas [M3], Gaigalas et al. [M6]). As this operator does not cause big problems

in the atomic physics, we will not stop for details.

2.1.2 Wick's theorem

Wick's theorem in the second quantization formalism is formulated as follows (see Wick [59];

Bogoliubov and Shirkov [60]): If A is a product of creation and annihilation operators,

then

A = fAg+
n
A

o
; (36)

where fAg represents the normal form of A and
n
A

o
represents the sum of the normal{

ordered terms obtained by making all possible single, double, ... contractions within A.

Based on Bogoliubov and Shirkov [60], the operator is presented in normal form when all

of the operators of annihilation included in it are transferred to the right of the creation

operators.

Usually, Wick's theorem is applied when treating complex operators that are repre-

sented by a large number of second quantization operators in a non{normal product form.

In atomic physics such operators are used in perturbation theory (see Lindgren and Mor-

rison [40], Merkelis et al. [41] and Fetter and Wale�cka [61]) and in the orthogonal operator

method (see Uylings [42]). Most often the Wick's theorem is applied to the products of

second quantization operators that are not tensorially coupled (see Lindgren and Mor-

rison [40]). While applying the perturbation theory in an extended model space, two

23



di�erent groups of second quantization operators are de�ned (see for details in Lindgren

and Morrison [40]). The second quantization operators acting upon core states belong to

one group, whereas the operators acting upon open and excited shells belong to another

one. These two groups are very di�erent in applying Wick's theorem to them.

In the �rst group, the creation operators are re{named to annihilation operators and

are called the hole absorption operators, while the annihilation operators are re{named

to creation operators and are called the hole creation operators. The creation operators

of the second group are called the particle creation operators, while annihilation ones are

called the particle absorption operators. Such a division of second quantization operators

into two groups is called the particle{hole formalism.

Merkelis et al. [41] have proposed to use the so{called graphical analogue of Wick's

theorem in perturbation theory (see Gaigalas et al. [52], Gaigalas [62]). It is an e�cient

tool for obtaining the normal products of second quantization operators in a coupled

tensorial form. Before applying this theorem, particular second quantization terms are in

a normal product in coupled form. In addition, this theorem is applied in the particle{hole

formalism, too [41, 63].

In all the cases mentioned above, the Wick's theorem is applied for the most general

case of operators, i.e. when that are acted upon are not detailed. But in the case of

the extended model space (see Lindgren and Morrison [40]), the group that the second

quantization operators belong to, depending on the electronic structure of atom or ion

under investigation, is de�ned.

Gaigalas et al. [M6] proposed to apply the Wick's theorem for obtaining the optimal

tensorial expression of any two{particle operator. The peculiarity of Wick's theorem

application in this case lies in applying it only when the shells that are acted upon by the

secondary quantization operators are known, i.e. it is applied for each particular termbG(ij; i0j0) separately. Such an interpretation of Wick's theorem bears similarity with the

particle{hole formalism and was before used, for example, by Karazija [64], too. The only

di�erence is that in this case the second quantization operators are di�erentiated formally

not on the basis of structure of atom under investigation, but on the basis of shells acted
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upon.

This is done in the following way. The second quantization operators acting upon a

shell with a lowest index are attributed to the �rst group. Those acting upon a shell

with a next{lowest index are attributed to the second group, etc. In the most general

case we have four distinct groups. Assuming that all the operators from �rst group are

the creation ones, and the rest are annihilation operators, we apply the Wick's theorem.

After that, we apply Wick's theorem assuming that the operators from the �rst and the

second groups are creation ones, and the rest of them are annihilation operators. If in

the product that we investigate there are operators of second quantization acting upon

four distinct shells, then we apply Wick's theorem once again, assuming that operators

from the �rst, second and third groups are creation ones, and from the fourth group {

annihilation ones. In this case the Wick's theorem is applied to the second quantization

operators in uncoupled form.

From (5) we see that in second quantization approach a two{electron operator is

written as a sum, where parameters i, j, i0, j 0 run over all possible arrays of quantum

numbers. So, the greater the number of open shells in bra and ket functions, the greater

the number of terms bG(ij; i0j 0) in the expression of two{electron operator. It is obvious

that all these terms must be systematized in order to obtain in general case the most

e�cient tensorial expression of a two{electron operator, in the way described above.

In the work by Gaigalas et al. [M6] there is chosen an optimal number of distributions,

which is necessary to obtain the matrix elements of any two{electron operator, when the

bra and ket functions consist of arbitrary number of shells. This is presented in Table 1.

We point out that for distributions 2{5 and 19{42 the shells' sequence numbers �, �,


, � (in bra and ket functions of a submatrix element) satisfy the condition � < � <


 < �, while for distributions 6{18 no conditions upon �, �, 
, � are imposed. This

permits to reduce the number of distributions. For distributions 19{42 this condition

is imposed only for obtaining simple analytical expressions for the recoupling matrices

R

�
�i; �j ; �

0
i
; �

0
j
;�bra

;�ket
;�
�
. This will be discussed in more detail in the section 2.3.2.

So, in the way that is described earlier, the Wick's theorem is applied, assuming that
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Table 1: Distributions of shells, upon which the second quantization operators

are acting, that appear in the submatrix elements of any two{particle operator,

when bra and ket functions have u open shells (see Gaigalas et al. [M6]).

No. ai aj a
y

i0
a
y

j0
submatrix element

1. � � � �

�
:::n�l

N�

�
:::




 bG(nilinj ljn0il0in0jl0j)


 :::n�lN�

�
:::

�
2. � � � �

3. � � � �

�
:::n�l

N�

�
:::n�l

N�

�
:::





4. � � � � bG(nilinj ljn0il0in0jl0j)
5. � � � �




:::n�lN�

�
:::n�l

N�

�
:::

�
6. � � � �

�
:::n�l

N�

�
:::n�l

N�

�
:::




 bG


 :::n�lN��2
�

:::n�l
N�+2

�
:::

�
7. � � � �

8. � � � �

�
:::n�l

N�

� :::n�l
N�

�
:::





9. � � � � bG(nilinj ljn0il0in0jl0j)
10. � � � �




:::n�lN�+1
�

:::n�l
N��1

�
:::

�
11. � 
 � 


12. 
 � 
 �

�
:::n�l

N�

� n�l
N�

�
n
l

N



 :::





13. 
 � � 
 bG(nilinj ljn0il0in0jl0j)
14. � 
 
 �




:::n�lN�+1
�

n�l
N��1

�
n
 l

N



 :::

�
15. 
 
 � �

�
:::n�l

N�

� n�l
N�

�
n
 l

N



 :::




 bG(nilinj ljn0il0in0jl0j)
16. 
 
 � �




:::n�lN�+1
� n�l

N�+1

�
n
l

N
�2

 :::

�
17. � � 
 


�
:::n�l

N�

� n�l
N�

�
n
 l

N



 :::




 bG(nilinj ljn0il0in0jl0j)
18. � � 
 





:::n�lN��1
�

n�l
N��1

�
n
l

N
+2

 :::

�
19. � � 
 �

20. � � 
 �

�
n�l

N�

� n�l
N�

�
n
 l

N



 n�l
N�

�





21. � � � 
 bG(nilinj ljn0il0in0jl0j)
22. � � � 





n�lN��1
�

n�l
N��1

�
n
 l

N
+1

 n�l

N�+1
�

�
23. 
 � � �

24. 
 � � �

�
n�l

N�

� n�l
N�

�
n
l

N



 n�l
N�

�





25. � 
 � � bG(nilinj ljn0il0in0jl0j)
26. � 
 � �




n�lN�+1
�

n�l
N�+1

�
n
 l

N
�1

 n�l

N��1
�

�
27. � 
 � �

28. � 
 � �

�
n�l

N�

�
n�l

N�

�
n
 l

N



 n�l
N�

�





29. 
 � � � bG(nilinj ljn0il0in0jl0j)
30. 
 � � �




n�lN��1
� n�l

N�+1

�
n
 l

N
�1

 n�l

N�+1
�

�
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Table 1: (continued).

No. ai aj a
y

i0
a
y

j0
submatrix element

31. � � � 


32. � � 
 �

�
n�l

N�

�
n�l

N�

�
n
 l

N



 n�l
N�

�





33. � � 
 � bG(nilinj ljn0il0in0jl0j)
34. � � � 





n�lN�+1
�

n�l
N��1

�
n
 l

N
+1

 n�l

N��1
�

�
35. � � � 


36. � � 
 �

�
n�l

N�

�
n�l

N�

�
n
 l

N



 n�l
N�

�





37. � � 
 � bG(nilinj ljn0il0in0jl0j)
38. � � � 





n�lN��1
� n�l

N�+1

�
n
 l

N
+1

 n�l

N��1
�

�
39. � 
 � �

40. 
 � � �

�
n�l

N�

�
n�l

N�

�
n
 l

N



 n�l
N�

�





41. � 
 � � bG(nilinj ljn0il0in0jl0j)
42. 
 � � �




n�lN�+1
� n�l

N��1

�
n
 l

N
�1

 n�l

N�+1
�

�

the second quantization operators acting upon shells �, �, 
 and � belong to di�erent

groups.

In the next section we shall discuss the way to obtain irreducible tensorial form of

these distributions. In addition, the arguments will be given in evidence of superiority of

the obtained tensorial expressions against other expressions known in the literature.

The methodology presented in this section demonstrates the way to obtain optimal

arrangement of the second quantization operators, for any two{electron operator. It can

be applied without restrictions for obtaining the optimal tensorial form of any{electron

terms of orthogonal operators and of perturbation theory operators, too.

2.1.3 Graphical methods for two{electron operator

The graphical technique of angular momentum is widely used in the atomic physics: see

Jucys et al. [65], Jucys and Bandzaitis [51], Brink and Satcher [66], El{Baz [67]. It is ap-

plied e�ciently both in the coordinate representation (see, e.g., Jucys and Bandzaitis [51]),

and in the second quantization formalism (Gaigalas et al. [68]). The use of it allows one
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to obtain the analytical expressions for the recoupling matrices conveniently (see, e.g.,

Kaniauskas and Rudzikas [69]), to investigate the tensorial products of operators (see,

e.g., Jucys et al. [70]), and to seek for the matrix elements of operators (see, e.g., Huang

and Starace [71]). Gaigalas and Merkelis [68] have proposed a graphical way to obtain

the values of matrix elements when the operator is a many{particle (one{, two{, three{,

etc.) one and has irreducible tensorial form. The matrix elements in this methodology

are expressed not only in terms of CFP or RCFP, but in terms of standard quantities

U
(k) and V (k1), too. Gaigalas et al. [M6] have proposed to calculate the matrix elements

by using the tensorial expressions for such two{particle operator, that take full advantage

of Racah algebra. In this case the tensorial form of operator depends on the shells that

the operator acts upon (distributions 1{42 from Table 1). This is the di�erence of this

methodology from others. It is most convenient to obtain the tensorial expressions for 42

distributions graphically, using the generalized graphical technique by Gaigalas et al. [68].

In such a case not only the similarities between di�erent distributions are easily seen, but

also the compact graphical representation of the obtained expressions is possible. We will

stop for details on this in the present section.

A two{particle operator may be represented graphically by a Feynman{Goldstone

diagram D1 from Figure 1 (Lindgren and Morrison [40]). As it is shown in the paper

Bolotin et al. [72], the Feynman{Goldstone diagrams are topologically equivalent to the

angular momentumgraphs. Due to that, an irreducible tensorial form for every Feynman{

Goldstone diagram may be obtained (see Merkelis et al. [63]). The graph D2 is the angular

momentum graph corresponding to the diagram D1. So the two{particle operator will be

written down as follows:

b
G(ij; i0j0) = D1 = �

1

2

X
m�

i
m�

j
m

�0

i

m
�0

j

X
p

[�1; �2; �1; �2]
�1=2

�
�
ni�inj�j




g(�1�2k;�1�2k)


 n0
i
�
0

i
n
0

j
�
0

j

�
D2 a

(�i)
m�

i

a
(�j)
m�

j

�
a
(�0i)
m

�0

i

�
a
(�0j)
m

�0

j

; (37)

It must be noted that in expression (37) the projection m�i
of a(�i)

m�i

, as well as that

of the momentum line �i in graph D2 are the same. This is also to be said about the

remaining operators of second quantization and the three open lines af graph D2.
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Figure 1: Diagrams for two{particle operators.
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As it has been mentiond in section 2.1.1, this operator has two tensorial forms. These

may be represented graphically, since the creation operator a(�i), as well as operator
�
a
(�0j)

respectivelly, are graphically denoted by diagrams D3 and D4.

The �rst form of two{particle operator GI(ij; i
0
j
0) is represented as:

GI(ij; i
0
j
0) = D1 = �

1

2

X
�12�

0

12
�12�

0

12

X
p

(�1)k�p [�1; �2; �1; �2]
1=2

�
�
ni�inj�j




g(�1�2k;�1�2k)


n0
i
�
0

i
n
0

j
�
0

j

�
8>>>>><>>>>>:

l
0
i

l
0
j

�
0
12

�1 �2 k

li lj �12

9>>>>>=>>>>>;

8>>>>><>>>>>:
s s �

0
12

�1 �2 k

s s �12

9>>>>>=>>>>>;
D6 (38)

whereas the second one:

GII (ij; i
0
j
0)

= D5 +D7 =
1

2

X
p

(�1)k�p
�
ni�inj�j




g(�1�2k;�1�2k)


n0
i
�
0

i
n
0

j
�
0

j

�

�

8><>:[�1; �2; �1; �2]�1=2D8 � (�1)li+l
0

j

8><>: �1 �2 k

l
0
j

li lj

9>=>;
�

8><>: �1 �2 k

s s s

9>=>; � (njlj; n0il0i)D9

9>=>; : (39)

We emphasize here that the winding line of interaction in the Feynman{Goldstone

diagram corresponds to the operators of second quantization in the normal order (Figure 1,

D1). Whereas the dotted interaction line indicates that the second quantization operators

are ordered in pairs of creation{annihilation operators. In the latter case �rst comes the

pair on the left side of a Feynman{Goldstone diagram (Figure 1, D5). Such a notation of

two kinds for an interaction line is meaningful only for two{particle (or more) operators,

since for any one{particle operator both the winding and dotted lines correspond to the

same order of creation and annihilation operators.

From expressions (38), (39) we see that the two{particle operator in the �rst form is

represented by one Feynman{Goldstone diagram D1, whereas in the second { by two dia-

grams D5 and D7. The diagrams, corresponding to tensorial product, have the following
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algebraic expressions:

D6 =

24ha(�i) � a
(�j)

i(�12�12)
�
"
�
a
(�0i) �

�
a
(�0j)

#(�012�012)35(kk)
p;�p

; (40)

D8 =

24"a(�i)� �
a
(�0i)

#(�1�1)
�
"
a
(�j)�

�
a
(�0j)

#(�2�2)35(kk)
p;�p

; (41)

D9 =

"
a
(�i)�

�
a
(�0j)

#(kk)
p;�p

: (42)

The positions of the second quantization operators in the diagrams D6, D8 and D9

de�ne their order in tensorial products: the �rst place in tensorial product occupies the

upper right second quantization operator, the second { lower right, after them the upper

left and lower left operators follow. The angular momenta diagram de�nes their coupling

scheme into tensorial product. For more details see Gaigalas and Rudzikas [M3].

As it has been mentioned earlier, these two forms do not always take full advantage

of the Racah algebra (see Gaigalas and Rudzikas [M3]). The expression (7) has no such

shortcomings. Now we will demonstrate the way to obtain graphically a tensorial expres-

sions for particular distributions 1{42 from Table 1.

We take the distribution 
, �, �, 
 (13 form Table 1) as an example for investiga-

tion. Then the Feynman{Goldstone diagram of operator b
G(
�; �
) is D10, the angular

momentumgraph is D11, and the second quantization operators are in the following order:

a
a�a
y

�
a
y



: (43)

Applying the Wick's theorem as described in Section 2.1.2, and assuming that the oper-

ators acting upon shell 
 belong to the �rst group, the once acting upon � belong to the

second, and the ones acting upon � belong to the third group, we obtain the following

order of operators:

a
a
y



a�a

y

�
: (44)
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Figure 2: Diagrams for distribution 
, �, �, 
.
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Figure 3: Diagrams for graphical transformations.

Using the generalized graphical technique of angular momentum by Gaigalas et al. [52],

we couple the operators of second quantization into tensorial product D12 (see Figure 2):

D12 =

24ha(�
) � a
(�
)

i(�12�12)
�
"
�
a
(��) �

�
a
(��)

#(�012�012)35(kk)
p;�p

: (45)

In the course of obtaining D12 graphically, a recoupling matrix D13 appears, whose an-

alytical expression is readily obtained by using the graphical technique of Jucys and

Bandzaitis [51]. All the needed expressions are obtained in the same way.

In obtaining these expressions, as well as in representing them graphically, it is very

convenient to use the rule of changing the sign of a node, existing in the graphical technique

of angular momentum (see Jucys and Bandzaitis [51]). Therefore now we will treat an

example of using such a rule.

Suppose, we have the following correspondence between diagrams (Figure 3):

D14 �! D15; (46)
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in which the second quantization operators are in the order a(�3) ~a(�4) a(�1) ~a(�2). Our

goal is to obtain the diagram corresponding to the order a(�1) ~a(�2) a(�3) ~a(�4). Bearing in

mind that the second quantization operators anticommute with each other and they all

act on di�erent electronic shells and we are not changing the order of their coupling into

tensorial product, we arrive at

D14 �! (�1)4D16 = D16: (47)

Let us also discuss another situation: we have de�ned the disposition of the operators

and we want to couple them into certain tensorial product. Suppose that we want to

represent graphically the following tensorial product:

�h
a
(�1) � ~a(�2)

i(�1�1)
�
h
a
(�3) � ~a(�4)

i(�2�2)�(��)
: (48)

For this purpose we have to rearrange the generalized Clebsch{Gordan coe�cient,

which is de�ning the scheme of coupling of the operators into the tensorial product. It is

easy to notice that this coe�cient will properly de�ne the tensorial product, if we change

the sign of the vertex "a" in diagram D16:

D14 �! (�1)�1+�2��+�1+�2��D17: (49)

The procedures described are fairly simple, however, they are su�cient for the majority

of cases. The more complete description of this generalized graphical approach may be

found in Gaigalas et al. [52], Gaigalas [62], Gaigalas and Merkelis [68].

All the analytical expressions for distributions 1{42 from Table 1 are presented in

the paper Gaigalas et al. [M6]. They are written down using the generalized graphical

methodology of angular momentum, and the vortex sign change rule, which was discussed

in this section. As a consequence of that, the analytical expressions for 42 terms may

be written down via 6 di�erent expressions. This, undoubtedly, facilitates a lot the

implementation of methodology proposed in Gaigalas et al. [M6].

This graphical method is useful for getting analytical expressions in the other areas of

atomic theory, too. See, e.g., Bogdanovich et al. [73, 74].
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2.2 New simpli�cations for Breit{Pauli Hamiltonian [M8, M17]

The general tensorial form of any two{particle operator proposed in subsection 2.1.1 (Eq.

(7)) is sutable for evaluation of diagonal and non{diagonal matrix elements in a uniform

way. It allows one to make the most of the advantages of Racah algebra (see Racah

[5, 6, 7, 8]). So further we will investigate two{particle operator in the framework of this

formalism.

In this section we will discuss some special cases of distributions from Table 1 for spin{

other{orbit [M8] and orbit{orbit [M17] interaction operators. In these cases of coincidence

some of the submatrix elements vanish, and therefore can be omitted in spin{angular

integrations, thus simplifying the calculations of matrix elements.

2.2.1 Spin{other{orbit interaction operator

For the distribution ����, on the basis of de�nition of submatrix elements (25) and the

relation for radial integrals

V
k�1 (nilinjlj; ni0li0nj0lj0) + V

k�1 (ni0 li0nj0 lj0; nilinjlj)

= kN
k (nilinj lj; ni0 li0nj0 lj0)� (k + 1)Nk�2 (njljnili; nj0 lj0ni0li0) (50)

we easily see that those integrals compensate each other in tensorial structures (kk1; 101)

and (kk1; 011) [M8]:

�
n���n���




H(kk1;�1�21)
soo




n���n����
= �2 � 2�2 (2k + 1)

1=2
�
l�




C(k)



 l��2 n(k (k + 1))

�1=2
(l� (l� + 1) � k (k + 1)� l� (l� + 1))
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V
k�1 (n�l�n�l�; n�l�n�l�)

o
= 0: (51)

Then from expressions (47), (48) and (49) of [M6], and using expression (25) for Hsoo

12 ,

we obtain the �nal tensorial form of spin{other{orbit interaction operator acting within

a particular shell of electrons �:

cHsoo

12 (����)
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We also have from (24) and (26):
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An expression equivalent to (52) (with (53) and (54)) was already presented in the mono-

graph Jucys and Savukynas [3], formulae (13.23) and (13.24), where a matrix element of

spin{other{orbit interaction within a single shell of equivalent electrons is de�ned. The

di�erences are that they use the coordinate representation, and the Marvin notation of

radial integrals (see Marvin [75]), where

Mk (nili; njlj) = N
k (nilinj lj; nilinj lj) : (55)

Thus, there are four terms H(k�1k1;101)
soo

, H(k�1k1;011)
soo

, H(k+1k1;101)
soo

and H
(k+1k1;011)
soo

having

di�erent tensorial structure for this distribution instead of six (see expression (23)). All

of them are general in the sense that they may be applied to obtain matrix elements of

spin{other{orbit interaction operator for distribution ���� between functions with any

number of open electronic shells (see [M6]).

For the distributions ���� and ���� we also have that the submatrix elements�
n���n���




H(kk1;�1�21)
soo




 n���n���� and
�
n���n���




H(kk1;�1�21)
soo




 n���n���� vanish, on

the basis of the same relation (50). Then from expressions (50) and (51) of [M6], we obtain

the �nal tensorial form of the spin{other{orbit interaction operator for the distribution

����:
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9=; (56)

and for the distribution ����:
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9=; : (57)

The expression (57) can be obtained from (56) by interchange � *) � and anticommu-

tation of the second quantization operators. We present it here because according to the

approach of [M6] the condition � < � is imposed upon �, �, so the distributions ����

and ���� are di�erent.

We obtain the submatrix elements appearing in (56) and (57) from (24) and (26).

In these two cases the tensorial form of the spin{other{orbit [M8] interaction operator

also contains the radial integrals of only one type, as in (52), i.e. Nk (nilinjlj; ni0li0nj0lj0).

These tensorial forms (56) and (57) are general in the sense that they may be applied

to obtain matrix elements for given distributions between functions with any number of

open electronic shells, as stated already in subsection 2.1.1. Then the case of just two

open electronic shells would be a special one, and it was treated by [3]. Those authors had

obtained expressions for matrix elements of direct interaction terms diagonal with respect
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to con�guration, containing one type of radial integrals, (see formulae (27.2){(27.4) there),

and our expressions (56) and (57) are equivalent to the operators they used (except that

we have used second quantization). Jucys and Savukynas [3] had also presented matrix

elements of exchange terms for two open shells case in their (27.7){(27.9). Their operators

for these cases correspond to our operators for distributions ���� and ����. For these

distributions there are no vanishing tensorial structures in the spin{other{orbit interaction

operator, so the simpli�cation mentioned above is no longer possible. Then we directly

use a general approach as described in subsection 2.1.1.

2.2.2 Orbit{orbit interaction operator

In this subsection we will discuss some special cases for the orbit{orbit interaction operator

[M17].

Let us at �rst consider the distribution ����. Using the (29) we express the coe�cient

Zk as

Zk (n�l�n�l�; n�l�n�l�) = Z
0

k
(n�l�n�l�; n�l�n�l�) + Z

00

k
(n�l�n�l�; n�l�n�l�) ; (58)

where

Z
0

k
(n�l�n�l�; n�l�n�l�)

= k (k + 1)
h
2T k+1 (n�l�n�l�; n�l�n�l�)

�Uk+1 (n�l�n�l�; n�l�n�l�)� U
k+1 (n�l�n�l�; n�l�n�l�)

�
k (k + 1) (k + 3)

2 (k + 1) (2k + 3)

�
N

k (n�l�n�l�; n�l�n�l�) +N
k (n�l�n�l�n�l�n�l�)

�#
; (59)

Z
00

k
(n�l�n�l�; n�l�n�l�)

= �k (k + 1)
h
2T k�1 (n�l�n�l�; n�l�n�l�)

�Uk�1 (n�l�n�l�; n�l�n�l�)� U
k�1 (n�l�n�l�; n�l�n�l�)�

k (k + 1) (k � 2)

2k (2k � 1)

�
�
N

k�2 (n�l�n�l�; n�l�n�l�) +N
k�2 (n�l�n�l�; n�l�n�l�)

�i
: (60)
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Let us start to evaluate the expression (59). We can rewrite the T k+1 (n�l�n�l�; n�l�n�l�)

using the relation

T
k (nilinjlj; ni0li0nj0lj0) + T

k (ni0 li0njlj; nilinj0 lj0) = U
k (nilinj lj; ni0 li0nj0lj0) ; (61)

from [76] as

2T k+1 (n�l�n�l�; n�l�n�l�)

=
h
T
k+1 (n�l�n�l�; n�l�n�l�) + T

k+1 (n�l�n�l�; n�l�n�l�)
i

= U
k+1 (n�l�n�l�; n�l�n�l�) : (62)

With the help of equation

U
k (nilinjlj; ni0li0nj0lj0) + U

k (ni0 li0nj0 lj0; nilinjlj)

= �
(k � 1)(k + 2)

2k + 1

n
N

k�1 (nilinjlj; ni0li0nj0lj0) +N
k�1 (nj ljnili; nj0 lj0ni0li0)

o
+A (nilinj lj; ni0li0nj0lj0) ; (63)

where

A (nilinj lj; ni0li0nj0lj0) =
�
2

4

Z
1

0
Ri (r)Rj (r)Ri0 (r)Rj0 (r) r

2
dr: (64)

we are rewriting the Uk+1 (n�l�n�l�; n�l�n�l�) as

U
k+1 (n�l�n�l�; n�l�n�l�)

=
1

2

h
U
k+1 (n�l�n�l�; n�l�n�l�) + U

k+1 (n�l�n�l�; n�l�n�l�)
i

= �
k (k + 3)

2 (2k + 3)

h
N

k (n�l�n�l�; n�l�n�l�) +N
k (n�l�n�l�; n�l�n�l�)

i

+
1

2
A (n�l�n�l�; n�l�n�l�) : (65)

So, inserting equations (62) and (65) in the (59) we have:

Z
0

k
(n�l�n�l�; n�l�n�l�) = �

k (k + 1)

2
A (n�l�n�l�; n�l�n�l�) : (66)

After similar rearrangements of the expression (60) we have [M17]:

Z
00

k
(n�l�n�l�; n�l�n�l�) =

k (k + 1)

2
A (n�l�n�l�; n�l�n�l�) : (67)

40



So, �nally

Zk (n�l�n�l�; n�l�n�l�) = 0 (68)

or

�
n���n���




H(kk0;000)
oo1 +H

(kk0;000)
oo2 +H

(kk0;000)
oo4




n���n���� = 0: (69)

It means that for distributions ���� we do not need to calculate matrix elements of the

terms H
(kk0;000)
oo1 , H

(kk0;000)
oo2 and H

(kk0;000)
oo4 at all. In a similar way it is possible to prove

that

Zk (n�l�n�l�; n�l�n�l�) = Zk (n�l�n�l�; n�l�n�l�) = Zk (n�l�n�l�; n�l�n�l�)

= Zk (n�l�n�l�; n�l�n�l�) = Zk (n�l�n�l�; n�l�n�l�) = Zk (n�l�n�l�; n�l�n�l�)

= Zk (n�l�n
 l
; n�l�n
l
) = Zk (n�l�n
l
; n�l�n
l
) = 0: (70)

So, for the distributions ����, ����, ����, ����, ����, ����, ����, �
�
, 
�
�

we do not need to calculate matrix elements of H
(kk0;000)
oo1 , H

(kk0;000)
oo2 and H

(kk0;000)
oo4 terms,

too. In these cases the orbit{orbit interaction operator contains the term H
(kk0;000)
oo3

only. The matrix element of this term has the radial integral of only one type, i.e.

N
k�1 (njljnili; nj0lj0ni0 li0).

It is well known in the literature [3] that the matrix elements of the orbit{orbit operator

HOO, (ns
2 1
S kHOOkns2 1

S) and (ns n0s 1
S kHOOkns n0s 1

S), are zeroes. It is possible

to generalize these statements using the results of the habilitation work. We see that for

direct part of any diagonal matrix elements or the o�{diagonal matrix elements of the

type�
:::nl

N
:::n

0
l
0N 0

::: LS kHOOk :::nlN�1:::n0l0N
0�1
::: L

0
S
0
�
we need to calculate the matrix

element of H
(kk0;000)
oo3 operator only. Using the fact that

�
0



C(1)




 0� = 0, we strightfor-

wardly from (33) �nd values of these matrix elements in the case l; l0 = 0. These values

and values of exchange part of diagonal matrix elements are equal to zero in this case.

This is valid for matrix elements between functions with any number of open electron

shells.
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Remaining 33 distributions from Table 1 have all terms H
(kk0;000)
oo1 , H

(kk0;000)
oo2 , H

(kk0;000)
oo3

and H
(kk0;000)
oo4 . For calculation of matrix elements of these distributions we need to �nd

the values of T k�1 (njljnili; nj0lj0ni0 li0), U
k�1 (nj ljnili; nj0 lj0ni0li0),

N
k�1 (njljnili; nj0 lj0ni0 li0), N

k�2 (njljnili; nj0lj0ni0 li0) and N
k (njljnili; nj0lj0ni0li0) inte-

grals (see (30) and (33)).

2.3 Matrix elements in non{relativistic theory [M3, M6, M9,

M10, M13, M14, M16]

2.3.1 Matrix elements between complex con�gurations

In this section we will discuss in more detail several ways to obtain matrix elements of

a two{particle operator in non{relativistic atomic theory. As it was mentioned earlier in

the Introduction, up to now the Fano calculation scheme [9] is the most popular one. Its

general expression when a two{particle operator acts upon di�erent shells is presented in

(3).

The general expression for a matrix element in other cases is similar to (3). For

example, when the operator acts only upon one shell, we have
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�
�Rd
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;�ket

�
: (71)

As we see here, in contrast to (3), the summation is performed only over one array

n, � of quantum numbers, because the operator acts only upon one shell. But here

a summation over fTg occurs, though, which indicates the summation over arrays of

intermediate terms �00
i
L
00
i
S
00
i
, �000

i
L
000
i
S
000
i
, �0V

i
L
0V
i
S
0V
i
.

42



Remembering the relationship between a CFP and a reduced matrix element of a

second quantization operator (see �Spakauskas et al. [46], Rudzikas and Kaniauskas [39]):

�
l
N
�LS




a(ls)


 lN�1 �0L0S0�
= (�1)N+(N+1)'(N)

q
N [L;S]

�
l
N
�LS




lN�1 (�0L0S0) ; l
�

(72)

we see that the Racah algebra in expressions (3) and (71) is used only on the level of

CFP. In separate cases, e.g., when the two{particle operator acts upon one or two shells,

it is possible to use expressions which exploit the Racah algebra at a higher level, i.e.

to take more advantage of the tensor algebra (see Judd [77], Jucys and Savukynas [3]).

For example, let us investigate the case when a matrix element is calculated for bra and

ket functions having one shell only. The tensorial forms (38) and (39) are of value here.

Taking the second one of these, we have
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!9>=>; : (73)
Using the relationships between the tensorial product of creation and annihilation

operators and the tensorial quantities U (k) and V (k1) (see Rudzikas and Kaniauskas [39]),

the expression (73) for matrix elements can be writen down in terms of U (k) and V
(k1).

In comparing (71) to (73) we see that the summation over intermediate terms �00
i
L
00
i
S
00
i
,

�
000
i
L
000
i
S
000
i
, �0V

i
L
0V
i
S
0V
i

is already performed in expression (73). So, in this case the Racah

algebra is exploited at the level of standard quantities U (k) ir V (k1). This simpli�es

calculations a lot:

� For zero matrix elements are easily tracked down from triangular conditions even

before the actual calculation is performed. In case (73) only the triangular conditions

�(L; k; L0) and �(S; k; S0) are present, but their numbermay be greater in other cases.
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(In the above, the notation �(L; k; L0) means the triangular condition j L � L
0 j�

k � L + L
0.)

� The tables of standard quantities (see Nielson and Koster [17], Karazija et al. [18],

Cowan [2], Gaigalas [M10, M16]) may be used.

� The recoupling matrix is simpler in this case, and it has an analitical expression.

So, the expressions exploiting the Racah algebra at the level of U (k) and V (k1) are much

more advantageous than (3). Such expressions are obtained for all two{particle operators.

For example, the expressions for spin{other{orbit operator are presented in papers Horie

[78], Karazija et al. [79] and Vizbarait_e et al. [80], the ones for spin{spin operator { in

papers Horie [78] and Karazija et al. [81], and the ones for orbit{orbit operator in the

monograph Jucys and Savukynas [3]. The shortcoming of the expressions of this type

is that the Racah algebra is exploited to its full extent in separate cases only. This is

discussed in detail in paper by Gaigalas et al. [M3].

Gaigalas et al. [M6] on the basis of two{partical operator tensorial form (7) have

proposed a methodology which allows one to take all the advantages of the Racah algebra

in the most general case. According to the approach by Gaigalas et al. [M6], a general

expression of submatrix element for any two{particle operator between functions with u

open shells can be written down as follows:
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; (74)

where � refers to the array of coupling parameters connecting the recoupling matrix

R
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�i; �j ; �

0
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; �

0
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;�ket
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�
to the submatrix element

T

�
ni�i; nj�j; n

0
i
�
0
i
; n

0
j
�
0
j
;�bra

;�ket
;�;�

�
. The exprssion (74) has summations over in-

termediate ranks �12, �12, �
0
12, �

0
12, Kl, Ks in T

�
ni�i; nj�j; n

0
i
�
0
i
; n

0
j
�
0
j
;�bra

;�ket
;�;�

�
.
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In calculating the spin{angular part of a submatrix element using (74), one has to

compute the following quantities (for more details see Gaigalas [M6]):

1. The recoupling matrix R

�
�i; �j; �

0
i
; �

0
j
;�bra

;�ket
;�
�
. This recoupling matrix ac-

counts for the change in going from matrix element�
 u (LS)




 bG �nili; njlj; n0il0i; n0jl0j�


 u (L0S0)�, which has u open shells in the bra and

ket functions, to the submatrix element

T

�
ni�i; nj�j ; n

0
i
�
0
i
; n

0
j
�
0
j
;�bra

;�ket
;�;�

�
, which has only the shells being acted upon

by the two{particle operator in its bra and ket functions.

2. The submatrix element T
�
ni�i; nj�j; n

0
i
�
0
i
; n

0
j
�
0
j
;�bra

;�ket
;�;�

�
, which denotes the

submatrix elements of operators (8){(12). Here � refers to the array of coupling

parameters connecting the recoupling matrix R
�
�i; �j ; �

0
i
; �

0
j
;�bra

;�ket
;�
�
to the

submatrix element.

3. Phase factor � (for more details see Gaigalas [M6]).

4. �0
�
ni�i; nj�j; n

0
i
�
0
i
; n

0
j
�
0
j
;�
�
, which is proportional to the radial part and corre-

sponds to one of � (n�;�),...,� (n���; n���; n
�
 ; n���;�). It consists of a subma-

trix element
�
ni�inj�j




g(�1�2k;�1�2k)


n0
i
�
0
i
n
0
j
�
0
j

�
, and in some cases of simple factors

and 3nj{coe�cients (for more details see Gaigalas [M6]).

In the next sections we shall discuss the �nding of these quantities.

2.3.2 Recoupling matrix

While seeking the matrix elements of one{ or two{particle operators, it is necessary to ob-

tain the values of a recoupling matrix R
�
�i; �j ; �

0
i
; �

0
j
;�bra

;�ket
;�
�
, if we use the method-

ology by Gaigalas et al. [M6] (see expresion (74)), or the recoupling matrices

Rd

�
�i; �j ; �

0
i
; �

0
j
; �1; �2; �; �1; �2; �;�

bra
;�ket

�
and

Re

�
�i; �j ; �

0
i
; �

0
j
; �1; �2; �; �1; �2; �;�

bra
;�ket

�
, if we use the methodology by Fano [9]

(see expresion (3)).
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Meanwhile, for the more complex con�gurations, i.e. the ones having many open shells,

the recoupling matrices are muchmore complicated. Beside that, the complexity of a two{

particle operator adds to this. When the tensorial structure of an operator is complex,

the recoupling matrix is rather complex, too, e.g., the spin{other{orbit operator (see

Gaigalas [M8]). While attempting to calculate the spin{angular part of matrix elements

in all the mentioned cases, a general methodology for calculating the recoupling matrices

is necessary. It has to be e�cient, too, because the speed of calculation of spin{angular

parts of matrix elements depends on that.

The majority of methodologies to obtain spin{angular parts are based on the Fano [9]

calculation scheme (see, e.g., Glass [11], Glass and Hibbert [12], Grant [10]). In �nding

the matrix elements using this, one of the tasks is to obtain the recoupling matrices for

direct and exchange terms.

The �rst program to calculate the recoupling matrices of this type, NJSYM, was

written by Burke [27]. It performs the calculations in two stages: 1) the recoupling

matrix is expressed as a sum of products of the 6j{coe�cients; 2) this expression is used

in calculation.

Tutlys [82] wrote a program to calculate spin{angular parts of matrix elements, AN-

GULA, which expressed the recoupling matrix in terms of Clebsch{Gordan coe�cients

before the actual calculations. While �nding the recoupling matrix by the Clebsch{Gordan

coe�cient summation, this program eliminates trivial coe�cients from the expression.

Bar{Shalom and Klapisch [28] developed a new program NJGRAF. This program

calculates the recoupling matrix in several stages. On the basis of graphical methodology

by Jucys, Levinson and Vanagas [65], the recoupling matrix is analysed graphically and an

optimal expression is found. Afterwards, the value of recoupling matrix itself is calculated.

An analogous program RECOUP was written by Lima [83], and a program NEWGRAPH

was written by Fack et al. [84]. All these (NJGRAF, RECOUP and NEWGRAPH) are

based on the same principle. An optimal analytical expression for the recoupling matrix

is obtained by graphical method, and then the calculations are carried out according to it.

But the optimal expressions they �nd are di�erent quite often, and are not really optimal.
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As it was mentioned above, the methodology of spin{angular calculation based on the

Fano calculation scheme has a shortcoming that the intermediate sums appear in complex

recoupling matrices. Due to these summations and the complexity of the recoupling

matrix itself, the associated computer codes become rather time consuming. A solution

to this problem was found by Burke et al. [13]. They tabulated separate standard parts

of recoupling matrices along with CFP at the beginning of a calculation and then used

them later on to calculate the coe�cients needed.

As was mentioned in introduction of this work a computer codes by Glass [11], Glass

and Hibbert [12], Burke et al. [13], Froese Fischer [85], Fischer [14] and Dyall et al. [15]

use the program NJSYM (Burke [27]) or NJGRAF (Bar{Shalom and Klapisch [28]) for

the calculation of recoupling matrices. Both are rather time consuming when calculating

matrix elements of complex operators or electronic con�gurations with many open shells.

In order to simplify the calculations, Cowan [2] suggested grouping matrix elements into

'classes' (see Cowan [2], Figure 13{15). Unfortunately this approach was not generalized

to all two{electron operators. Perhaps this is the reason why Cowan's approach is not

widely used although the program itself, based on this approach, is well known.

Gaigalas et al. [M6] proposed a methodology where the analytical expressions for

recoupling matrices are obtained for the most general case. In this methodology, ana-

logically as in Cowan [2], the matrix elements are attributed to four di�erent groups.

The operators acting upon only one shell belong to the �rst group (distribution 1 from

Table 1), the ones acting upon two { to the second (distributions 2{10 from Table 1),

upon three { to the third (distributions 11{18 from Table 1), and upon four { to the

fourth group (distributions 19{42 from Table 1) respectively. Each group has a di�erent

recoupling matrix.

One interacting shell

Let us assume that the operators of second quantization act upon shell a as in distri-

bution 1 of Table 1, where a � �. Then the recoupling matrix has the expression:

R (la; La; k)

= [La]
�1=2

� (L1; L
0

1) :::�
�
La�1; L

0

a�1

�
�

�
La+1; L

0

a+1

�
:::� (Lu; L

0

u
)
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Table 2: Parameters for equation (76).

u a ' J T T
0

2 1 L1 + 2L01 � L2 � L
0 + k L2; L L

0

2 2 L1 + L+ L
0
2 + k L1 L L

0

u 6= 2 1 L1 + 2L01 � L2 � L
0
12 + k L2; L12 L

0
12

u 6= 2 2 L1 + L12 + L
0
2 + k L1 L12 L

0
12

u 6= 2 a > 2 L12:::a�1 + L12:::a + L
0
a
+ k L12:::a�1 L12:::a L

0
12:::a

�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

� (L1; L
0
1; k) ; for u = 1

C1; for u = 2

C1C2 (k; a+ 1; u� 1)C3; for a < 3; u > 2

� (L12; L
0
12) :::�

�
L12:::a�1; L

0
12:::a�1

�
�C1C2 (k; a+ 1; u� 1)C3;

for a > 3; a 6= u; u > 2

� (L12; L
0
12) :::�

�
L12:::a�1; L

0
12:::a�1

�
C3; for a = u; u > 2;

; (75)

where

C1 = (�1)' [La; T 0]
1=2

8><>: k L
0
a
La

J T T
0

9>=>; (76)

and the values of parameters ', J , T and T 0 present in expression (76) are given in Table

2. The remaining two coe�cients are

C2 (k; kmin; kmax)

=
kmaxY
i=kmin

(�1)k+Li+L12:::i�1+L
0

12:::i [L12:::i�1; L
0

12:::i]
1=2

8><>: k L
0
12:::i�1 L12:::i�1

Li L12:::i L
0
12:::i

9>=>; (77)

and

C3 = (�1)' [J; T 0]1=2
8><>: k J

0
J

j T T
0

9>=>; ; (78)
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Table 3: Parameters for equation (78).

u ' j J J
0

T T
0

u 6= a k + Lu + L12:::u�1 + L
0

Lu L12:::u�1 L
0
12:::u�1 L L

0

a k � L12:::u�1 + 2Lu + L
0
u
� L L12:::u�1 Lu L

0
u L L

0

where the parameters ', j, J , J 0, T and T 0 are given in Table 3.

When the total rank k = 0, the recoupling matrix becomes simply

R (la; La; 0)

= � (L1; L
0

1) � (L2; L
0

2) � (L12; L
0

12) :::�
�
La�1; L

0

a�1

�
�

�
L12:::a�1; L

0

12:::a�1

�
� (La; L

0

a
)

�� (L12:::a; L
0
12:::a) �

�
La+1; L

0
a+1

�
�

�
L12:::a+1; L

0
12:::a+1

�
:::� (Lu; L

0
u
) � (L;L0) : (79)

Expression (79) is equivalent to (13.60) of Cowan [2].

Two interacting shells

In this case let us assume that the operators of second quantization act upon the shells

a and b (distributions 2{10 in Table 1, where for distributions 2{5 a � �, b � � and for

others (6{10) a = minf�; �g, b = maxf�; �g). Then

R (la; La; lb; Lb; �12; �
0

12; k)

= (�1)� [La; Lb]
�1=2

� (L1; L
0

1) :::�
�
La�1; L

0

a�1

�
�

�
La+1; L

0

a+1

�
:::�

�
Lb�1; L

0

b�1

�
��

�
Lb+1; L

0

b+1

�
:::� (Lu; L

0

u
)
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�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

C4 (K12;K
0
12; k; 1)C2 (k; 3; u� 1)C3; for a = 1; b = 2

C1C2 (K12; a+ 1; b� 1)C4 (K12;K
0
12; k; 1)

�C2 (k; b+ 1; u� 1)C3;
for a < 3; b > 2; b 6= u

C1C2 (K12; a+ 1; b� 1)C4 (K12;K
0
12; k; 1) ; for a < 3; b = u

� (L12; L
0
12) :::�

�
L12:::a�1; L

0
12:::a�1

�
C1

�C2 (K12; a+ 1; b � 1)C4 (K12;K
0
12; k; 1)

�C2 (k; b+ 1; u� 1)C3;

for a � 3; b > 2; b 6= u

� (L12; L
0
12) :::�

�
L12:::a�1; L

0
12:::a�1

�
C1

�C2 (K12; a+ 1; b � 1)C4 (K12;K
0
12; k; 1) ;

for a � 3; b = u

(80)

where

� =

8><>: 0 for � < �;

�12 + �
0
12 � k for � > �;

(81)

and

C4 (k1; k2; k; P ) = [J1; J2; J
0

3; k]
1=2

8>>>>><>>>>>:
J
0
1 k1 J1

J
0
2 k2 J2

J
0
3 k J3

9>>>>>=>>>>>;
: (82)

The values of parameters J1, J
0
1, J2, J

0
2, J3 and J

0
3 present in the expression (82) must

be taken from Table 4. For the case � < � in Eq. (80) K12 = �12, K
0
12 = �

0
12 and when

� > �; then K12 = �
0
12, K

0
12 = �12. When the total rank k = 0, and �12 = �

0
12 = k, the

recoupling matrix has the form:

R (la; La; lb; Lb; k; k; 0)

= [La; L
0

b
; k]

�1=2
� (L1; L

0

1) :::�
�
La�1; L

0

a�1

�
�

�
La+1; L

0

a+1

�
:::�

�
Lb�1; L

0

b�1

�
��

�
Lb+1; L

0

b+1

�
:::� (Lu; L

0

u
) � (L12; L

0

12) :::�
�
L12:::a�1; L

0

12:::a�1

�
� (L12:::b; L

0

12:::b) :::� (L;L
0)
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Table 4: Parameters for equation (82).

P a b u J1 J
0
1 J2 J

0
2 J3 J

0
3

1 1 2 u 6= b L1 L
0
1 L2 L

0
2 L12 L12

1 1 2 b L1 L
0
1 L2 L

0
2 L L

1 a 6= 1 b 6= 2 b L1:::u�1 L
0
1:::u�1 Lu L

0
u L L

0

1 in all other cases L1:::b�1 L
0
1:::b�1 Lb L

0
b

L1:::b L
0
1:::b

2 in all cases L1:::c�1 L
0
1:::c�1 Lc L

0
c

L1:::c L
0
1:::c

Table 5: Parameters for equation (84).

P Case J1 J
0
1 J2

1 a = 1 and b = 2 La L
0
a

L12:::b

1 b 6= u L1:::b�1 L
0
1:::b�1 L12:::b

1 b = u L1:::b�1 L
0
1:::b�1 L

2 c 6= u L1:::c�1 L
0
1:::c�1 L12:::c

2 c = u L1:::c�1 L
0
1:::c�1 L

3 d 6= u L1:::d�1 L
0
1:::d�1 L12:::d

3 d = u L1:::d�1 L
0
1:::d�1 L

�

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

C5 (1) ; for a = 1; b = 2

C1C2 (k; a+ 1; b� 1)C5 (1) ; for a < 3

� (L12; L
0
12) :::�

�
L12:::a�1; L

0
12:::a�1

�
�C1C2 (k; a+ 1; b� 1)C5 (1) ;

for a � 3

; (83)

where

C5 (P ) = (�1)k+Lb+J
0

1
+J2 [J1; L

0

b
]
1=2

8><>: k L
0
b
Lb

J2 J1 J
0
1

9>=>; : (84)

The values of parameters J1, J
0
1 and J2 present in the expression (84) must be taken from

Table 5.

Formula (83) has no analogue in Cowan [2]. Our expressions for the recoupling matrix
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do not depend on CFP and have no intermediate summations. Therefore they will be

very convenient for practical calculations.

Three interacting shells

When the operators of second quantization act upon three shells a, b and c (distribu-

tions 11{18 in the Table 1), we have:

R (la; La; lb; Lb; lc; Lc; k1; k2; �12; �
0

12; k)

= [La; Lb; Lc]
�1=2

� (L1; L
0

1) :::�
�
La�1; L

0

a�1

�
�

�
La+1; L

0

a+1

�
:::�

�
Lb�1; L

0

b�1

�
��

�
Lb+1; L

0

b+1

�
:::�

�
Lc�1; L

0

c�1

�
�

�
Lc+1; L

0

c+1

�
:::� (Lu; L

0

u
)
X
j12

(�1)� C6

�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

C4 (K1;K2; j12; 1)C2 (j12; 3; c� 1)

�C4 (j12;K3; k; 2)C2 (k; c+ 1; u� 1)C3;
for a = 1; b = 2

C1C2 (K1; a+ 1; b� 1)C4 (K1;K2; j12; 1)

�C2 (j12; b+ 1; c� 1)C4 (j12;K3; k; 2)

�C2 (k; c+ 1; u � 1)C3;

for a < 3

� (L12; L
0
12) :::�

�
L12:::a�1; L

0
12:::a�1

�
C1

�C2 (K1; a+ 1; b� 1)C4 (K1;K2; j12; 1)

�C2 (j12; b+ 1; c� 1)C4 (j12;K3; k; 2)

�C2 (k; c+ 1; u � 1)C3;

for a � 3;

; (85)

where parameters a, b, c, �, K1, K2, K3 and coe�cient C6 are given in Table 6. The

coe�cient C 0
6 (k1; k2; k3; k4; k5; k6) is

C
0

6 (k1; k2; k3; k4; k5; k6) = (�1)k1+k2�k3+2k5 [k3; k6]
1=2

8><>: k1 k2 k3

k4 k5 k6

9>=>; : (86)

From (7) we have that in expressions (85) and (86) the ranks k1 = l�, k2 = l�.

When the total rank k = 0, and �12 = �
0
12 = k, the recoupling matrix has the form:

R (la; La; lb; Lb; lc; Lc; k1; k2; k; k; 0)
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Table 6: Parameters for equation (85).

Case a b c � K1 K2 K3 C6

� < � < 
 � � 
 0 k1 k2 �
0
12 � (j12; �12)

� < � < 
 � � 
 k1 + k2 � �12 k2 k1 �
0
12 � (j12; �12)

� < 
 < � � 
 � 0 k2 �
0
12 k1 C

0
6 (�

0
12; k2; j12; k1; k; �12)

� < 
 < � � 
 � k1 + k2 � �12 k1 �
0
12 k2 C

0
6 (�

0
12; k1; j12; k2; k; �12)


 < � < � 
 � � 2k1 + k2 � �12+ �
0
12 k1 k2 C

0
6 (�

0
12; k1; j12; k2; k; �12)

+�012 � j12


 < � < � 
 � � k1 + k2 � �12 �
0
12 k2 k1 C

0
6 (�

0
12; k2; j12; k1; k; �12)

= (�1)� [La; Lb; L0c;K3]
�1=2

� (L1; L
0

1) :::�
�
La�1; L

0

a�1

�
�

�
La+1; L

0

a+1

�
:::�

�
Lb�1; L

0

b�1

�
��

�
Lb+1; L

0
b+1

�
:::�

�
Lc�1; L

0
c�1

�
�

�
Lc+1; L

0
c+1

�
:::� (Lu; L

0
u
)

�� (L12; L
0

12) :::�
�
L12:::a�1; L

0

12:::a�1

�
� (L12:::c; L

0

12:::c) :::� (L;L
0)

�

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

C4 (K1;K2;K3; 1)C2 (K3; b+ 1; c� 1)C5 (2) ; for a = 1; b = 2

C1C2 (K1; a+ 1; b � 1)C4 (K1;K2;K3; 1)

�C2 (K3; b+ 1; c � 1)C5 (2) ;
for a < 3

� (L12; L
0
12) :::�

�
L12:::a�1; L

0
12:::a�1

�
C1

�C2 (K1; a+ 1; b� 1)C4 (K1;K2;K3; 1)

�C2 (K3; b+ 1; c � 1)C5 (2) ;

for a � 3

; (87)

where the parameters �, K1, K2, K3 values are given in Table 7.

The recoupling matrix for three interacting shells (87) has the same advantages as the

equivalent quantity, Eq. (83), for two shells.

Four interacting shells

When the operators of second quantization act upon four shells a, b, c and d (distri-

butions 19{42 in the Table 1), we have:

R (la; La; lb; Lb; lc; Lc; ld; Ld; k1; k2; �12; k3; k4; �
0

12; k)

= [La; Lb; Lc; Ld]
�1=2

� (L1; L
0

1) :::�
�
La�1; L

0

a�1

�
�

�
La+1; L

0

a+1

�
:::�

�
Lb�1; L

0

b�1

�
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Table 7: Parameters for equation (87).

Case � K1 K2 K3

� < � < 
 0 k1 k2 k

� < � < 
 k1 + k2 � k k2 k1 k

� < 
 < � 2k1 k2 k k1

� < 
 < � k1 � k2 � k k1 k k2


 < � < � 2k k k1 k2


 < � < � k1 + k2 + k k k2 k1

��
�
Lb+1; L

0

b+1

�
:::�

�
Lc�1; L

0

c�1

�
�

�
Lc+1; L

0

c+1

�
:::�

�
Ld�1; L

0

d�1

�
��

�
Ld+1; L

0

d+1

�
:::� (Lu; L

0

u
)

�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

C4 (k1; k2; �12; 1)C2 (�12; 3; c� 1)C7 (c; d)

�C2 (k; d+ 1; u� 1)C3;
for a = 1; b = 2

C1C2 (k1; a+ 1; b� 1)C4 (k1; k2; �12; 1)

�C2 (�12; b+ 1; c� 1)C7 (c; d)

�C2 (k; d+ 1; u� 1)C3;

for a < 3

� (L12; L
0
12) :::�

�
L12:::a�1; L

0
12:::a�1

�
C1

�C2 (k1; a+ 1; b � 1)C4 (k1; k2; �12; 1)

�C2 (�12; b+ 1; c� 1)C7 (c; d)

�C2 (k; d+ 1; u� 1)C3;

for a � 3

; (88)

where

C7 (kmin; kmax)
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=

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

X
I

C8 (I)C10 (I) ; for kmax � kmin = 1

X
I1

X
I2

C8 (I1)C9 (I1; I2; kmin + 1)C10 (I2) ; for kmax � kmin = 2

X
I1

X
I2

C8 (I1)C11 (I1; I2)C10 (I2) ; for kmax � kmin < 2

; (89)

C8 (I)

= (�1)�12+L
0

12:::c
�I

[Lc; I; L12:::c�1; L
0

12:::c]
1=2

�

8><>: k3 L
0
c

Lc

L12:::c�1 L12:::c I

9>=>;
8><>: L

0
12:::c�1 �12 L12:::c�1

I L
0
c

L
0
12:::c

9>=>; ; (90)

C9 (I1; I2; i)

= (�1)2(I1+Li)+L12:::i+L
0

12:::i
+k3+�12 [L12:::i�1; I1; I2; L

0

12:::i]
1=2

�

8><>: L12:::i�1 I1 k3

I2 L12:::i Li

9>=>;
8><>: L

0
12:::i�1 I1 �12

I2 L
0
12:::i Li

9>=>; ; (91)

C10 (I)

= (�1)2(I+k3)+k4+�12+�
0

12
+k+L12:::d+L

0

12:::d
+Ld+L

0

d
+L0

12:::d�1

� [�12; �
0

12; Ld; I; L
0

12:::d; L12:::d�1]
1=2X

x

(�1)x [x]

8><>: I �
0
12 x

k L
0
12:::d�1 �12

9>=>;
�

8><>: I �
0
12 x

k4 L12:::d�1 k3

9>=>;
8><>: L12:::d�1 k4 x

L
0
d

L12:::d Ld

9>=>;
8><>: L

0
12:::d�1 k x

L12:::d L
0
d
L
0
12:::d

9>=>; ; (92)

C11 (I1; I2)

= (�1)I1�I2+L
0

12:::c
�L0

12:::d�1 [I1; I2]
1=2
X
x

[x]C2 (x; c+ 1; d � 1)
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�

8><>: k3 �12 x

L
0
12:::c L12:::c I1

9>=>;
8><>: k3 �12 x

L
0
12:::d�1 L12:::d�1 I2

9>=>; : (93)

From (7) we have that in the expressions (88), (91), (92) and (93) the ranks k1 = l�,

k2 = l�, k3 = l
, k4 = l�.

When the total rank k = 0 and �12 = �
0
12 = k, the recoupling matrix has the form:

R (la; La; lb; Lb; lc; Lc; ld; Ld; k1; k2; k; k3; k4; k; 0)

= [La; Lb; Lc; L
0

d
; k]

�1=2
� (L1; L

0

1) :::�
�
La�1; L

0

a�1

�
�

�
La+1; L

0

a+1

�
:::�

�
Lb�1; L

0

b�1

�
��

�
Lb+1; L

0

b+1

�
:::�

�
Lc�1; L

0

c�1

�
�

�
Lc+1; L

0

c+1

�
:::�

�
Ld�1; L

0

d�1

�
��

�
Ld+1; L

0

d+1

�
:::� (Lu; L

0

u
) � (L12; L

0

12) :::�
�
L12:::a�1; L

0

12:::a�1

�
�� (L12:::d; L

0

12:::d) :::� (L;L
0)

�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

C4 (k1; k2; k; 1)C2 (k; b+ 1; c� 1)

�C4 (k; k3; k4; 1)C2 (k4; c+ 1; d� 1)C5 (3) ;
for a = 1; b = 2

C1C2 (k; a+ 1; b� 1)C4 (k1; k2; k; 1)

�C2 (k; b+ 1; c� 1)C4 (k; k3; k4; 2)

�C2 (k4; c+ 1; d � 1)C5 (3) ;

for a < 3

� (L12; L
0
12) :::�

�
L12:::a�1; L

0
12:::a�1

�
C1

�C2 (k; a+ 1; b� 1)C4 (k1; k2; k; 1)

�C2 (k; b+ 1; c� 1)C4 (k; k3; k4; 2)

�C2 (k4; c+ 1; d � 1)C5 (3)

for a � 3

: (94)

Expression (94) has also no analogue in Cowan [2].

Thus, we have studied all possible cases of matrix elements of arbitrary two{electron

operators. The expressions for recoupling matrices ((83), (87) and (94)) obtained in this

subsection are simpler and, thus, more convenient for practical applications, than those

of Cowan [2], except for the simplest case k = 0 of an operator acting on one shell (79),

where they are equivalent.
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2.3.3 Calculation of tensorial quantities

In this subsection we will consider the submatrix elements

T

�
ni�i; nj�j; n

0
i
�
0
i
; n

0
j
�
0
j
;�bra

;�ket
;�;�

�
appearing in (74). As the spin{angular part of

expression (74) contains the tensors (8){(12), so we will discuss the derivation of submatrix

elements of these operators, and will present the expressions for these quantities. It is

worth noting that these tensorial quantities all act upon the same shell. So, all the

advantages of tensor algebra and the quasispin formalism may be exploited e�ciently.

We obtain the submatrix elements of operator (8) by straightforwardly using the

Wigner{Eckart theorem in quasispin space (see Rudzikas [4]):

�
l
N
�QLS




a(qls)
mq




 lN 0

�
0
Q
0
L
0
S
0
�

= � [Q]
�1=2

264 Q
0 1=2 Q

M
0
Q

mq MQ

375 �l �QLS ���������a(qls)��������� l �0Q0
L
0
S
0
�
; (95)

where the last multiplier in (95) is the so{called completely reduced (reduced in the

quasispin, orbital and spin spaces) matrix element.

The value of the submatrix element of operator (9) is obtained by

�
nl

N
�QLS





ha(q�)mq1
� a

(q�)
mq2

i(klks)



nlN 0

�
0
Q
0
L
0
S
0

�

=
X
kq ;mq

[Q]
�1=2

264 q q kq

mq1 mq2 mq

375
264 Q

0
kq Q

M
0
Q

mq MQ

375
�
�
nl �QLS

���������W (kqklks)
���������nl �0Q0

L
0
S
0
�
: (96)

On the right{hand side of equations (95) and (96) only the Clebsch{Gordan coe�cient264 Q
0

kq Q

M
0
Q

mq MQ

375 depends on the number N of equivalent electrons. Di�erent notations

for it occur, e.g., A
QQ

0
kq

MQMQ0
mq

in Eckart [86], S
Q
0
kq

QM
0

Q
mq

in Wigner [87], (Q0
kqM

0
Q
mqjQ0

kqQMQ)

in Condon and Shortley [88] or Judd [37].�
nl �QLS

���������W (kqklks)
���������nl �0Q0

L
0
S
0
�
denotes reduced in quasispin space submatrix ele-

ment (completely reduced matrix element) of the triple tensor
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W
(kqklks) (nl; nl) =

h
a
(qls) � a

(qls)
i(kqklks)

. It is related to the RCFP in a following way:

�
nl �QLS

���������W (kqklks)
���������nl �0Q0

L
0
S
0
�

= (�1)Q+L+S+Q
0+L0+S0+kq+kl+ks [kq; kl; ks]

1=2

�
X

�00Q00L00S00

�
l �QLS

���������a(qls)��������� l �00Q00
L
00
S
00
� �
l �

00
Q
00
L
00
S
00
���������a(qls)��������� l �0Q0

L
0
S
0
�

�

8><>: q q kq

Q
0
Q Q

00

9>=>;
8><>: l l kl

L
0
L L

00

9>=>;
8><>: s s ks

S
0
S S

00

9>=>; : (97)

In the other three cases (10), (11), (12) we obtain the submatrix elements of these

operators by using (2.28) of Jucys and Savukynas [3]:

(nlN �QLS





hF (�1�1) (n�) �G
(�2�2) (n�)

i(kk)



nlN 0

�
0
Q
0
L
0
S
0)

= (�1)L+S+L
0+S0+2k

[k]
X

�00Q00L00S00

(nlN �QLS




F (�1�1) (n�)



 nlN 00

�
00
Q
00
L
00
S
00)

�(nlN
00

�
00
Q
00
L
00
S
00



G(�2�2) (n�)




nlN 0

�
0
Q
0
L
0
S
0)

�

8><>: �1 �2 k

L
0
L L

00

9>=>;
8><>: �1 �2 k

S
0
S S

00

9>=>; ; (98)

where F (�1�1) (n�), G(�2�2) (n�) are one of (8) or (9) and the submatrix elements are

de�ned correspondingly by (95), (96) and (97). N 00 is de�ned by the second quantization

operators occurring in F (�1�1) (n�) and G(�2�2) (n�).

As is seen, by using the approach Gaigalas et al. [M10], the calculation of the spin{

angular parts of matrix elements between functions with u open shells is reduced to

requiring the RCFP or the tensors (for exampleW (kqklks) (nl; nl)), which are independent

of the occupation number of the shell and are acting on one shell of equivalent electrons.

The main advantage of this approach is that the standard data tables in such a case

will be much smaller in comparison with tables of the usual coe�cients U (k)
; V

(k1k2) (see

Jucys and Savukynas [3]) and, therefore, many summations will be less time{consuming.

Also one can see that in such an approach the submatrix elements of standard tensors and

RCFP actually can be treated in a uniform way as they all are the completely reduced
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matrix elements of the second quantization operators. Hence, all methodology of calcu-

lation of matrix elements will be much more universal in comparison with the traditional

one (see Cowan [2], Jucys and Savukynas [3], Wybourne [89]).

The moste complete tables of standard quantities were presented by Gaigalas et al.

[M10] for LS{coupling and by Gaigalas et al. [M16] for jj{coupling. They are general and

should be used for all spin{angular integration schemes. The tabulation was performed for

all f{shells (LS{coupling) and for all shells with j � 9=2 (jj{coupling). These tabulations

have been encouraged in particular by systematic MCDF studies on open d� and f�shell

elements [90, 91] and [M15] where correlation e�ects force to include single, double, and

(sometimes even) triple excitations within large active spaces. Additional motivation

arise from the recent experiments and the discovery of heavy and superheavy elements

(Z > 95) for which excitations into j = 9=2 subshells are inevitable.

Other scienti�c area for which it is very important to know the values of standard

quantities is related with the problem of the coupling scheme optimization [92], [M13].

In order to obtain consistent results for the jj{LS transformation coe�cients (see, e.g,

[93, 94, 95]), it was found by Dyall and Grant [96] that it is necessary to adopt the quasispin

phase conventions for CFP. This is the same convention as applied by Gaigalas et al. [M10,

M16] for the RCFP for LS{coupling and jj{coupling. Thus, the transformation matrix

from jj� to LS�coupling can now be easily obtained by using the tables [M10, M16].

2.4 Matrix elements in relativistic theory [M6, M14, M21]

2.4.1 One{particle operator

In relativistic atomic theory, each electron shell nl (apart from ns) is split into two

subshells with j = l � 1=2 = l�. Instead of the con�guration state function
���lN�LSJ�,

we then have to deal with jnlj1N1j2
N2�1J1�2J2Ji2. In this notation, the orbital angular

momentum l is left to denote the parity of the con�guration. A closed subshell contains

2The matrix elements of the operators with respect to the relativistic wave functions are denoted as

h k k i to distinguish them clearly from the case of non{relativistic functions, when we use simple

brackets ( k k ).
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2j+1 electrons. A separation of an electron con�guration nlN into (jj�coupled) subshells

is unique only for closed shells and for shells with a single vacancy. In general, several

jj{coupled con�gurations with di�erent distributions of the electrons can be found for

each single non{relativistic con�guration.

The matrix elements of a one{particle scalar operator bF (0) between con�guration state

functions with u open shells can be expressed as a sum over one{electron contributions

h u(J)



 bF (0)




 u(J 0)i = X
ni�i;nj�j

h u(J)



 bF (ni�i; nj�j)


 u(J 0)i; (99)

where

h u(J)



 bF (ni�i; nj�j)


 u(J 0)i

= (�1)�+1
q
2ji + 1 R

�
ji; jj ;�

bra
;�ket

�
�(�i; �j)

�
ni�i




f (0)


nj�j�
�
�
�(ni; nj)

�
j
Ni

i �iQiJi





ha(q ji)

1=2 � a
(q ji)

�1=2

i(0)



 jNi

i �
0

i
Q
0

i
J
0

i

�

+(1� �(ni; nj))

�
j
Ni

i
�iQiJi




a(q ji)1=2




 jN 0

i

i
�
0

i
Q
0

i
J
0

i

�

�
�
j
Nj

j �jQjJj




a(q jj)
�1=2




 jN 0

j

j �
0

j
Q
0

j
J
0

j

��
: (100)

All states are de�ned in jj{coupling. h u (J)k and k u (J 0)i are respectively bra and

ket functions with u open subshells, � � (2j + 1)(l � j),
�
ni�i




f (0)


 nj�j� is the one{

electron reduced matrix element of the operator bF (0), �bra � (Ji; Jj; Ji0; Jj0)
bra

and �ket �

(Ji; Jj; Ji0; Jj0)
ket

denote the respective sets of active subshell angular momenta. The

operators a(q j)
mq

are second quantization operators in quasispin space of rank q = 1=2. The

operator a
(q j)

1=2mj
= a

(j)
mj

creates electrons with angular momentum quantum numbers j;mj

and its conjugate a
(q j)

�1=2mj
= ~a(j)

mj
= (�1)j�mja

y(j)
�mj

annihilates electrons with the same

quantum numbers j;mj in a given subshell.

The general expression (99) can be used for any scalar one{particle physical operator.

It only remains to de�ne the one{electron submatrix element

�
niliji




f (0)


nj ljjj�
in (99). The only operator required in this implementation is the matrix element of the
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Dirac operator, a tensor operator of rank zero,

�
niliji




cHD




 njljjj� = I(niliji; niliji)�(�i; �j); (101)

where I(niliji; niliji) is de�ned by [10, Eq. (22)]. The Dirac kinetic energy operator,

denoted by T in [16, Eq. (3.13)], can be obtained from this by setting the nuclear charge

Z = 0.

The value of pure spin{angular coe�cients3 for one{particle scalar operator we will

get with the help of (99) and keeping in mind that the one{electron submatrix element is

equal to one �
niliji




f (0)


nj ljjj� = 1: (102)

The recoupling matrix R
�
ji; jj;�

bra
;�ket

�
in (99) is particularly simple. It is either a

product of delta functions (see (79)) when ni�i = nj�j or a combination of delta functions

and 6j�coe�cients (see (83)) when ni�i 6= nj�j .

By applying the Wigner{Eckart theorem in quasispin space we obtain the submatrix

elements of operators of type a(qj)
mq

in the form [M3]

�
j
N
�QJ




a(q j)
mq




 jN 0

�
0
Q
0
J
0
�

= �[Q]�1=2

264 Q
0 1=2 Q

M
0
Q

mq MQ

375 �j �QJ ���������a(q j)��������� j �0Q0
J
0
�
; (103)

where the last factor is RCFP. The submatrix elements of the simplest compound tensor

operator of type
h
a
(q j)
mq2

� a
(q j)
mq2

i(kj)
uses

�
nj

N
�QJ





ha(q j)mq1
� a

(q j)
mq2

i(kj)



njN 0

�
0
Q
0
J
0

�

=
X
kq ;mq

[Q]
�1=2

264 q q kq

mq1 mq2 mq

375
264 Q

0
kq Q

M
0
Q

mq MQ

375
�
�
nj �QJ

���������W (kqkj)
���������nj �0Q0

J
0
�
; (104)

3The pure spin{angular coe�cients of one{ or two{particle operator are de�ned as the spin{angular

coe�cients divided by a one{ or two{electron submatrix elements of that operator, respectively.
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where
�
nj �QJ

���������W (kqkj)
���������nj �0Q0

J
0
�
denotes the reduced matrix element of the tensor

operator W (kqkj) (nj; nj) =
h
a
(q j) � a

(q j)
i(kqkj)

in quasispin space. In terms of the fully

RCFP
�
j �QJ

���������a(qj)��������� j �0Q0
J
0
�
, we �nd�

nj �QJ

���������W (kqkj)
���������nj �0Q0

J
0
�

= (�1)Q+J+Q
0+J 0+kq+kj [kq; kj ]

1=2
X

�00Q00J 00

8><>:
q q kq

Q
0
Q Q

00

9>=>;
8><>:

j j kj

J
0
J J

00

9>=>;
�
�
j �QJ

���������a(q j)��������� j �00Q00
J
00
� �
j �

00
Q
00
J
00
���������a(q j)��������� j �0Q0

J
0
�
: (105)

This construction has the advantage that the completely reduced matrix elements on the

right{hand side of (103) and (104) are independent of the occupation number of the shell,

and so it reduces requirements of storage in comparison with earlier work.

The phase factor � arises from the reordering needed to match the recoupled creation

and annihilation operators in the bra and ket vectors. We have

� = 0: (106)

when ni�i = nj�j; otherwise

� = 1 +
b�1X
r=a

Nr; (107)

where Nr is the occupation number of subshell r, a = minfi; jg, and b = maxfi; jg.

2.4.2 Two{particle operator

According to (74), the matrix element of any two{particle scalar operator bG(kk0) between

con�guration state functions with u open shells can be written

h u(J)



 bG(kk0)




 u(J 0)i
=

X
ni�i;nj�j ;ni0�i0 ;nj0�j0

h u(J)



 bG(ni�i; nj�j; ni0�i0 ; nj0�j0)


 u(J 0)i; (108)

where

h u (J)



 bG (ni�i; nj�j ; ni0�i0; nj0�j0)




 u (J 0)i
=
X
k12

(�1)��0(niliji; njljjj ; ni0li0ji0; nj0 lj0jj0;�)

�T
�
niji; njjj ; ni0ji0; nj0jj0;�

bra
;�ket

;�;�
�
R

�
ji; jj; ji0; jj0 ;�

bra
;�ket

;�
�
; (109)
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� speci�es the recoupling scheme required for each matrix element and �, when required,

speci�es the coupling scheme of the tensor operators de�ning each matrix element. The

operator bG(kk0) couples tensor operators of rank k for each electron to give an overall

scalar operator.

From (109) we see that the matrix element of any two{particle operator can be written

as a sum over all possible sets of active shell quantum numbers ni�i, nj�j , ni0�i0 , nj0�j0.

The systematic analysis of [M6] aims to minimize the computation needed in this expan-

sion. The parameter distributions are presented in Table 8. Note that for distributions

2{5 and 19{42 the subshell labels are ordered so that � < � < 
 < �, while for distribu-

tions 6{18 no conditions upon the ordering are imposed. We discuss these structures in

more detail below.

The recoupling coe�cients de�ned in [97, 98, 99] did not reduce the recoupling coef-

�cients to their simplest forms but relied on the analysis module of the NJSYM package

(later NJGRAF) to perform the reduction mechanically. The analysis [M6] leads to sim-

pler forms denoted by R
�
ji; jj; ji0; jj0 ;�

bra
;�ket

;�
�
in (109). In the case of one interacting

shell R
�
ji; jj; ji0; jj0 ;�

bra
;�ket

;�
�
reduces to delta functions (see (79)). For two, three and

four interacting shells, the recoupling coe�cients are given by (83), (87) and (94), replac-

ing l; L by j; J respectively. The recoupling parameters � for each distribution can be

found in Table 8.

The expressions T
�
niji; njjj ; ni0ji0; nj0jj0;�

bra
;�ket

;�;�
�
in (109) are matrix elements

of standard subshell creation/annihilation operators

a = a
(qj)
mq
; (110)

W =
h
a
(qj)
mq1

� a
(qj)
mq2

i(k12)
; (111)

aW =

�
a
(qj)
mq1

�
h
a
(qj)
mq2

� a
(qj)
mq3

i(k12)�(k2)
; (112)

Wa =

�h
a
(qj)
mq1

� a
(qj)
mq2

i(k12)
� a

(qj)
mq3

�(k2)
; (113)

WW =

�h
a
(qj)
mq1

� a
(qj)
mq2

i(k)
�
h
a
(qj)
mq3

� a
(qj)
mq4

i(k)�(0)
: (114)

The creation and annihilation operators in (110){(114) refer to a single subshell. The
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Table 8: Scheme of the de�nitions for matrix elements of any two{particle

operator. The operators a, W, aW and Wa de�ned in (110){(114) act on the indicated

subshells.

No. i j i
0

j
0 � � � � 
 � '

1. � � � � { j�; k WW { { { {

{ j� W { { { {

2. � � � � k j�; j� W W { { 0

3. � � � � k j�; j� W W { { 0

4. � � � � k12 j�; j� W W { { 0

5. � � � � k12 j�; j� W W { { 0

6. � � � � k12 j�; j� W W { { j� + j� + k12

7. � � � � j� j�; k12 aW a { { k + k12

8. � � � � j� j�; k12 aW a { { k

9. � � � � j� j�; k12 a Wa { { k + k12

10. � � � � j� j�; k12 a Wa { { k

11. � 
 � 
 j�; j�; k { a a W { 1 + j� + j� � k

12. 
 � 
 � j�; j�; k { a a W { 1 + j� + j� � k

13. 
 � � 
 j�; j�; k12 { a a W { 1 + j� + j� � k12

14. � 
 
 � j�; j�; k12 { a a W { 1 + j� + j� � k12

15. 
 
 � � j�; j�; k12 { a a W { j� + j
 + k12

16. 
 
 � � j�; j�; k12 { a a W { j� + j


17. � � 
 
 j�; j�; k12 { a a W { j� + j� + k12

18. � � 
 
 j�; j�; k12 { a a W { j� + j


19. � � 
 � j�; j�; j
; j� { a a a a j� + j� + k12

20. � � 
 � j�; j�; j
; j� { a a a a j� + j
 + k12

21. � � � 
 j�; j�; j
; j� { a a a a j� + j


22. � � � 
 j�; j�; j
; j� { a a a a j� + j


23. 
 � � � j�; j�; j
; j� { a a a a j� + j� + k12

24. 
 � � � j�; j�; j
; j� { a a a a j� + j� + k12

25. � 
 � � j�; j�; j
; j� { a a a a j� + j�

26. � 
 � � j�; j�; j
; j� { a a a a j� + j�

27. � 
 � � j�; j�; j
; j� { a a a a 0

28. � 
 � � j�; j�; j
; j� { a a a a 0

29. 
 � � � j�; j�; j
; j� { a a a a 0

30. 
 � � � j�; j�; j
; j� { a a a a 0
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Table 8: (continued).

No. i j i
0

j
0 � � � � 
 � '

31. � � � 
 j�; j�; j
; j� { a a a a j� + j� + j
 + j�

32. � � 
 � j�; j�; j
; j� { a a a a j� + j� + j
 + j�

33. � � 
 � j�; j�; j
; j� { a a a a j� + j� + j
 + j�

34. � � � 
 j�; j�; j
; j� { a a a a j� + j� + j
 + j�

35. � � � 
 j�; j�; j
; j� { a a a a 1 + j
 + j� � k

36. � � 
 � j�; j�; j
; j� { a a a a 1 + j
 + j� � k

37. � � 
 � j�; j�; j
; j� { a a a a 1 + j
 + j� � k12

38. � � � 
 j�; j�; j
; j� { a a a a 1 + j
 + j� � k12

39. � 
 � � j�; j�; j
; j� { a a a a 1 + j� + j� � k

40. 
 � � � j�; j�; j
; j� { a a a a 1 + j� + j� � k

41. � 
 � � j�; j�; j
; j� { a a a a 1 + j� + j� � k12

42. 
 � � � j�; j�; j
; j� { a a a a 1 + j� + j� � k12

evaluation of the submatrix elements of operator of type a (110) and the simplest com-

pound tensor operator of type W (111) was explained in Subsection 2.4.1. For types

(112){(114), we use the formula

�
nj

N
�QJ





hU (k1)(nj)� V
(k2)(nj)

i(k)



njN 0

�
0
Q
0
J
0

�
(115)

= (�1)J+J
0+k[k]1=2

X
�00Q00J 00

8><>: k1 k2 k

J
0
J J

00

9>=>;
�
�
nj

N
�QJ




U (k1)(nj)



njN 00

�
00
Q
00
J
00
� �
nj

N
00

�
00
Q
00
J
00



V (k2)(nj)




njN 0

�
0
Q
0
J
0
�
;

where U (k1) (nj) ; V (k2) (nj) are either of type (110) or type (111). The occupation number

N
00 is de�ned by second quantization operators occurring in U (k1) (nj) and V (k2) (nj).

The phase factors � in (109) arise from the reordering necessary to match the recou-

pled creation and annihilation operators in bra and ket vectors contributing to the matrix

element. For each of the cases considered in Table 8 we �nd

Cases 1{6 :

� = 0: (116)
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Cases 7{18 :

� = 1 +
j�1X
r=i

Nr; (117)

where Nr is the occupation number of subshell r. If � < �, then i = �; j = �, and if

� > �, then i = �; j = �.

Cases 19{42 :

� =
��1X
k=�

Nk +
��1X
k=


Nk: (118)

The coe�cients �0 (niliji; njljjj ; ni0li0ji0; nj0lj0jj0 ;�) for the di�erent cases tabulated in

Table 8 have di�erent muliplicative factors de�ned as follows:

Case 1 : Single subshell (����)

�0

IIa
(n�l�j�; n�l�j�; n�l�j�; n�l�j�;�)

=
1

2
[k]�1=2

�
n�l�j�n�l�j�




g(kk)


n�l�j�n�l�j�� � (k12; k) (119)

and

�0

IIb
(n�l�j�; n�l�j�; n�l�j�; n�l�j�;�)

= (�1)k [j�]
�1=2

�
n�l�j�n�l�j�




g(kk)


 n�l�j�n�l�j�� � (k12; 0) : (120)

Cases 2, 3, 11, 12, 27, 29, 31, 32, 35, 36, 39, 40 : Subshell assignments ����; ����,

�
�
, 
�
�, �
��, 
���, ���
, ��
�, ���
, ��
�, �
��, 
���

�0 (niliji; njljjj; ni0li0ji0 ; nj0lj0jj0 ;�)

= (�1)'
1

2
[k]

�1=2
�
nilijinjljjj




g(kk)


ni0li0ji0nj0lj0jj0� � (k12; k) : (121)

Cases 6, 15{26 : Subshell assignments ����, 

��, 

��, ��

, ��

, ��
�, ���
,

���
, ��
�, 
���, �
��, 
���, �
��

�0 (niliji; nj ljjj ; ni0li0ji0; nj0 lj0jj0;�)

= (�1)1+k+'
1

2
[k12]

1=2

8><>: ji ji0 k

jj0 jj k12

9>=>;
�
nilijinj ljjj




g(kk)


ni0li0ji0nj0lj0jj0� :(122)
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Cases 4, 5, 7, 8, 9, 10, 13, 14, 28, 30, 33, 34, 37, 38, 41, 42 : Subshell arrangements

����, ����, ����, ����, ����, ����, 
��
, �

�, �
��, 
���, ��
�, ���
, ��
�,

���
, �
��, 
���

�0 (niliji; njljjj; ni0li0ji0 ; nj0lj0jj0 ;�)

= (�1)'
1

2
[k12]

1=2

8><>: ji ji0 k

jj jj0 k12

9>=>;
�
nilijinjljjj




g(kk)


 ni0li0ji0nj0 lj0jj0� : (123)

The phase factors ' in expressions (121){(123) are de�ned in column ' of Table 8. This

construction exploits the common tensorial structure of the Coulomb, Breit and Gaunt

interactions [10] and exploits this similarity to simplify the calculation of spin{angular co-

e�cients. The relativistic jj{coupling expressions for the two{electron submatrix element

of the Coulomb interaction [10, 100] is

�
nilijinj ljjj




g(kk)


ni0li0ji0nj0lj0jj0� = (�1)(li+lj�li0�lj0 )=2

�hnilijikC(k)kni0li0ji0ihnj ljjjkC(k)knj0lj0jj0iRk(nilijinj ljjjni0li0ji0nj0lj0jj0): (124)

The same construction can be used for the Gaunt interaction (the leading part of the

magnetic Breit interaction) [10, Eq. (91)] and for the full transverse Breit interaction

[10, Eq. (101)], although the selection rules and the two{electron submatrix elements

corresponding to (123) are, of course, di�erent.

The value of pure spin{angular coe�cients for two{particle operator we will get if we

take into account that the two{electron submatrix element is equal to one

�
nilijinjljjj




g(kk)


ni0 li0ji0nj0lj0jj0� = 1 (125)

in �0. So the pure spin{angular coe�cient for operators with the same tensorial structure

have the same value.

* * *

The approach to matrix element evaluation, presented in this section, is based on the

combination of the angular momentum theory as described in Jucys and Bandzaitis [51],
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on the concept of irreducible tensorial sets (Judd [37], Rudzikas and Kaniauskas [39]), on a

generalized graphical approach (Gaigalas et al. [52]), on the second quantization in coupled

tensorial form (Rudzikas and Kaniauskas [39]), on the quasispin approach (Rudzikas [4]),

and on the use of reduced coe�cients of fractional parentage (Rudzikas [4], Rudzikas [101],

Judd [37]). All this, in its entity, introduces a number of new features, in comparison with

traditional approaches:

� It is possible to use the algebraic expressions for the recoupling matrices,

� Before the calculations, it is possible to check triangular conditions of both non-

interacting and interacting shells;

� To apply Tables of standard quantities;

� Easily to move from the common de�nition of the two{particle operator to the

expression of the concrete operator, as well as in general case to include in it sim-

pli�cations of the operator analyzed.

All that may be applied to both diagonal and non{diagonal, with respect to con�gu-

rations, matrix elements.
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3 SOFTWARE FOR SPIN{ANGULAR INTEGRA-

TION [M4, M18, M19, M20, M21]

In this section there will be discussed the software created in this work. All these programs

are based on the approach of spin{angular integration developed in this habilitation work.

The program for evaluating the expressions from the theory of angular momentum is

presented in subsection 3.1. The program to calculate pure spin{angular coe�cients in

jj{coupling is described in 3.2. The library for integration over spin{angular variables in

LS{coupling is reported in 3.3.

3.1 Program for evaluating the expressions from the theory of

angular momentum [M20]

3.1.1 The program Racah III

During recent years, the Racah program [102, 103] has been found useful for evaluating

expressions from the theory of angular momentum [104, 105]. The interactive and mod-

ular design of this package does not only support numerical computations of standard

expressions (as other libraries do) but also facilitate current research work which is based

on the techniques of Racah's algebra [5, 6, 7, 8]. The Racah program is particularly help-

ful for such (complex) expressions for which the known algebraic and gaphical methods

start to become tedious and prone to making errors.

Beside of further applications, atomic structure theory is one of the main areas which,

tradiationaly, makes use of the rotational symetry of free atoms. In this theory, the ef-

�cient evaluation of many{electron matrix elements for di�erent one{ and two{particle

operators plays a very crucial role. These oparators can be a part of the atomic Hamil-

tonian, or they describe the interaction of the electrons with other particles and �elds.

By exploiting the techniques of Racah's algebra in atomic structure [2], the evaluation of

these matrix elementsmay often be considerably simpli�ed by carrying out the integration

over the spin{angular coordinates analytically.

Di�erent computational schemes have been developed to evaluate many{electron ma-
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trix elements, including those for open{shell structure [9, 10, 4] and [M6]. They deal with

di�erent couplings of the individual angular momenta as well as di�erent notations for

classifying the subshell states of equivalent electrons for open{shell con�gurations. One

of the most popular scheme ist due to Fano [9] which is based on the CFP. Each computa-

tion method exploits a set of standard quantities to decompose the many{electron matrix

elements. Quantities which occur frequently are i) CFP, ii) RCFP, iii) the reduced matrix

elements of the unit tensors U (k) and V
(k1) in LS�coupling or of T (k) in jj�coupling,

respectively, and iv) the completely reduced matric elements of the single{particle op-

erator W (kqklks) (LS�coupling) or W (kqkj) (jj�coupling). Of course, details in the �nal

evaluation depend on the underlying coupling scheme, phase coventions, and on quite a

number of di�erent notations which are found in the literature. For all these quantities

is common, however, that they are closely related to angular momentum theory.

Among these standard entities, the RCFPs play a central role in that most of the other

quantities above can be represented in terms of these coe�cients. The well{known CFPs,

for example, can be expressed as a product of Wigner 3j{ and corresponding RCFPs

which are independent of the occupation number N of the subshell states. Similarly, the

(completely) reduced matrix element of the unit tensor can be written as a weighted sum

of products of Wigner 6j{coe�cients and RCFPs where the summation is always �nite

owing to triangular conditions for the quantum numbers.

In practice, however, the handling and the application of such standard entities in

the evaluation of open{shell matrix elements is not always that simple and often requires

considerable e�ort to bring new implementations into work. Compilations of various

coe�cients and matrix elements can be found (in printed form) in the literature, but

their arrangement and notation is often not very suitable for numerical studies. Therefore,

in order to facilitate the usage of these (reduced) coe�cients and matrix elements, was

developed by Gaigalas et al. [M20] the Racah III which provides the user with a fast

and interactive access to these quantities. The program is written in Maple [106]. In

the following subsections there will be presented the main commands of Racah III and

we will present several examples of using this program.
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Table 9: Additional commands of the Racah package.

Racah cfp() Computes a CFP in either LS{ or jj{coupling.

Racah rcfp() Return a RCFP in either LS{ or jj{coupling.a

Racah reduced T() Calculates a reduced matrix element of standard operator

T
(k) in jj{coupling.

Racah reduced U() Calculates a reduced matrix element of the standard opera-

tor U (k) in LS{coupling.b

Racah reduced V() Calculates a reduced matrix element of the standard opera-

tor V (k1) in LS{coupling.

Racah reduced W() Calculates a completely reduced matrix element either of

the standard operators W (kqklks) in LS{coupling or of the

W
(kqkj) in jj{coupling.

Racah set coupling scheme() Set the correct framework for evaluating CFP and RCFP as

well as reduced matrix elements.

a The RCFP is taken from [M10, M16].
b In the present program the submatrix elements of U (k) are de�ned as in [4, 18].

3.1.2 Commands of Racah III

The Racah package [102, 103] has been designed originally for simplifying expressions

from the theory of angular momentum [107, 108]. Emphasis was paid to developing

an interactive and user{friendly tool which does not require detailed knowlegde neither

about the group{theoretical background [109, 110] which leads to these expressions nor

about techniques for their simpli�cation. Previous set of Racah procedures concerned

both, numerical computations as well as the simpli�cation of complex expressions due to

the use of graphical and sum rules where a simpli�cation means to reduce the number

of summation variables, integrals, and/or Wigner nj� symbols. Here, there is extented

these features of the Racah program by adding the knowledge about important standard

quantities in the evaluation of matrix elements.

These reduced coe�cients and matrix elements of spherical tensorial operators are

closely related to the theory of angular momentum. This stimulate the present exten-

sion which creates a fast access to these quantities in di�erent classi�cation and coupling
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schemes. We currently support the computation of the RCFP's and the completely re-

duced matrix elements of W (kqkj) and W
(kqklks) as well as the CFP's and the reduced

matrix elements of T (k), U (k) and V
(k1). Table 9 gives a brief overview of the addi-

tional procedures which are relevant to the user; these procedures are based on develop-

ments [102, 103]. In total, 18 new procedures have been added to the Racah program in

the present work. Since all coe�cients are evaluated directly to their numerical values,

no additional data structures had to be de�ned for the present work.

One procedure, namely Racah set coupling scheme(), di�ers from previous work in

that it "assigns" a (string) value to the global variable Racah save coupling scheme()

which speci�es the currently coupling scheme and the choice of quantum numbers to

classify the individual subshells states. The `valu` of this variable also speci�es how the

quantum numbers for the reduced coe�cients and matrix elements are to be interpreted

to ensure a large 
exibility of the program. The command Racah set coupling scheme()

must therefore be invoked before any other quantity can be evaluated. It is supported

in the present version the classi�cation schemes LS quasispin, LS seniority, jj quasispin,

jj seniority.

3.1.3 Example

To illustrate the usage of the present extension, we `prove` the relation

�
j
N
�QJ




jN�1 (�0Q0
J
0) ; j

�

=
(�1)N+Q�MQq

N [J ]

0B@ Q 1=2 Q
0

�MQ 1=2 M
0
Q

1CA�j �QJ ���������a(qj)��������� j �0Q0
J
0
�
: (126)

For this, we consider the left{ and right{hand side of Eq. (126) separately for j =

7=2; N = 4; � = 2; J = 2; �0 = 1; and J 0 = 7=2. Again, we use seniority notation for

the CFP
�
j
N
��QJ




jN�1 (�0� 0Q0
J
0) ; j

�
on the lhs

> Racah set coupling scheme(jj seniority);

> left := Racah cfp(7/2,4,2,2,1,7/2,algebraic);

left := 1=3
p
3 .
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To obtain the value from the rhs

(�1)N+Q�MQq
N [J ]

0B@ Q 1=2 Q
0

�MQ 1=2 M
0
Q

1CA�j �QJ ���������a(qj)��������� j �0Q0
J
0
�

(127)

we have, in addition, the quantum numbersQ = (
(2j+1)

2
��)=2 = 1,MQ = (N� (2j+1)

2
)=2 =

0, Q0 = 3=2, M 0
Q
= �1=2

> right := Racah rcfp(7/2,2,2,1,7/2,algebraic);

> w3jr := Racah set(w3j,1,1/2,3/2,0,1/2,-1/2);

> right := right * Racah compute(w3jr,algebraic);

> right := right * (-1)^ (4+1+0) / sqrt(4*(2*2+1));

right := 1=30
p
10 � 6 � 5 .

This is a very simple example to establish (new) `relations` among the standard quan-

tities in the evaluation of matrix elements for open{shell con�gurations. Although, of

course, such a numerical treatment will not prove any analytic relation it may help to

obtain further hints on such symmetries. We therefore hope that our present tool will help

to point towards new relations wich have not yet been found by other, group{theoretical

studies.

Racah program may in
uence also the work in neighboured �elds like nuclear struc-

ture and the scattering of particles and light at composite systems. In these �elds, nu-

merical studies are often based on similar entities which could be incorporated as well in

the framework of the Racah package.

3.2 Program to calculate pure spin{angular coe�cients in rela-

tivistic atomic physics [M18, M21]

3.2.1 Program organization

The program ANCO [M18, M21] constructs the pure spin{angular coe�cients for one{

(Eqs. (99) and (102)) and two{electron (Eqs. (108) and (125)) operators contributing

to matrix elements of the Dirac{Coulomb{Breit Hamiltonian. The coe�cients Trs(ab)
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(Eqs. (99) and (101)) and V k

rs
(abcd) (Eqs. (108) and (124)) used in GRASP92 [16] and in

earlier version of the system are available as an option. The new format generates what

we have called pure spin{angular momentum coe�cients which can be used unchanged

with any one{particle tensor operator of rank 0, and any two{particle interaction. The

Coulomb and Breit interactions use di�erent subsets of the complete set of the two{particle

pure spin{angular coe�cients, which are selected automatically when multiplying by the

relevant two{electron submatrix elements to complete the matrix element calculation.

The MCP and MCBP modules of GRASP92 calculated the full matrix elements for each of

these subsets, so that the new formulation reduced the computational overheads and the

memory requirements, which renders ANCO more suitable for large scale problems.

ANCO is written in Fortran 90/95 [111] and is designed as an addition to the RATIP

package [112]. There are three new modules rabs rcfp [M18], rabs recoupling and

rabs anco [21] for extracting spin{angular coe�cients relating to formula (108). The pro-

gram rabs rcfp supports the computation of the CFP, the RCFP, the completely reduced

matrix elements of the operator W (kqkj) as well as the matrix elements of the unit tensor

T
(k). The module rabs recoupling evaluates recoupling coe�cients R

�
ji; jj;�

bra
;�ket

�
(Eqs. (79) and (83)) and R

�
ji; jj; ji0; jj0 ;�

bra
;�ket

;�
�
(Eqs. (79), (83), (87) and (94)) as

described in [M6], module rabs rcfp [M18] evaluates the

T

�
niji; njjj ; ni0ji0; nj0jj0;�

bra
;�ket

;�;�
�
(the main equations are (103), (104), (105)

and (115)) whilst rabs anco evaluates all the contributions to (108) for both scalar one{

and two{particle operators.

3.2.2 Timing of ANCO

Tests and timing studies using the Dirac{Coulomb Hamiltonian only were performed for

the 3s23p6 1
S state of Ar I with the common closed shells 1s22s22p6 for di�erent values

of �nal orbital momentum J . The wave function expansions used were:

1. 3SD: Singles and doubles excitations from 3s23p6 to the active set f3s; 3p; 3dg con-

tains 14 con�guration state functions (CSF) for J = 0 and 34 CSF (the maximum)

for J = 2.
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Table 10: Timing Comparison for GRASP92 and ANCO codes. Times are given in

hours, minutes, seconds.

ASF Number of Running time of Speed

expan. -upCSF T
k

rs
(ab) or V

k

rs
(abcd) v

k

rs
(abcd) GRASP92 ANCO

t
k
rs
(ab)

4SDT (J=0) 2 149 3 606 756 023 1 530 086 00:08:11 00:03:01 2.7 (5.4)

4SDT (J=1) 5 786 14 017 4 070 156 8 188 130 00:59:01 00:15:19 3.9 (7.8)

4SDT (J=2) 8 016 21 356 7 018 885 14 077 044 01:42:47 00:26:28 3.9 (7.8)

4SDT (J=3) 8 378 21 342 7 634 136 15 290 955 01:53:55 00:30:37 3.7 (7.4)

4SDT (J=4) 7 284 15 971 6 111 074 12 260 139 01:33:17 00:23:01 4.1 (8.2)

4SDT (J=5) 5 349 9 435 3 810 165 7 656 054 00:50:27 00:14:18 3.6 (7.2)

4SDT (J=6) 3 370 4 556 1 836 602 3 706 544 00:21:52 00:06:40 3.3 (6.6)

4SDT (J=7) 1 788 1 789 693 761 1 412 443 00:07:26 00:02:29 3.0 (6.0)

5SD (J=0) 468 621 75 192 150 455 00:00:32 00:00:17 1.9 (3.8)

5SD (J=1) 1 134 2 324 395 450 792 560 00:03:10 00:01:29 2.1 (4.2)

5SD (J=2) 1 609 3 704 697 651 1 395 839 00:06:27 00:02:44 2.4 (4.8)

5SD (J=3) 1 584 3 441 721 907 1 444 095 00:06:43 00:02:59 2.3 (4.6)

5SD (J=4) 1 361 2 500 558 223 1 117 681 00:05:15 00:02:17 2.3 (4.6)

5SD (J=5) 920 1 361 314 909 632 306 00:02:30 00:01:22 1.8 (3.6)

5SD (J=6) 559 644 141 328 284 102 00:01:02 00:00:36 1.7 (3.4)

5SD (J=7) 259 226 44 137 89 398 00:00:15 00:00:12 1.3 (2.6)

2. 3SDT: Singles, doubles and triples excitations from 3s23p6 to the active set f3s; 3p; 3dg.

The maximum number of CSF is 145 for J = 2.

3. 4SD: Singles and doubles excitations from 3s23p6 to the active set

f3s; 3p; 3d; 4s; 4p; 4d; 4fg. The maximum number of CSF is 465 for J = 2.

4. 4SDT: Singles, doubles and triples excitations from 3s23p6 to the active set

f3s; 3p; 3d; 4s; 4p; 4d; 4fg.

5. 5SD; Singles and doubles excitations from 3s23p6 to the active set

f3s; 3p; 3d; 4s; 4p; 4d; 4f; 5s; 5p; 5d; 5f; 5gg.

We �rst considered simple cases with a small number of CSF (3SD, 3SDT, 4SD with

J = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Although ANCO generates the full set of pure spin{angular
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coe�cients for both one{ and two{particle operators, the calculation runs 1.4{2.3 times

faster than an equivalent calculation with GRASP92 because of the lower computational

overheads. Table 10 demonstrates similar enhanced performance for the much larger

4SDT and 5SD examples, showing the improvement expected for large scale calculations.

From the results presented in the Table 10 we conclude that the new program is not

much faster in simple cases, but does better in more complicated cases. The fact that ANCO

calculates approximately twice the number of angular coe�cients as GRASP92 reduces the

e�ective cost per coe�cient by a further factor of two (the values in brackets).

3.3 The library for integration over spin{angular variables in

non{relativistic atomic physics [M4, M19]

3.3.1 Program organization

In order to obtain accurate values of atomic quantities it is necessary to account for

relativistic and correlation e�ects (see, e.g., Froese Fischer et al. [113, 14]). Relativistic

e�ects may be taken into account as Breit{Pauli corrections or in a fully relativistic

approach. In both cases for complex atoms and ions, a considerable part of the e�ort

must be devoted to integrations over spin{angular variables, occurring in the matrix

elements of the operators under consideration.

Many existing codes for integrating are based on scheme �rst proposed by Fano [9]. In

this approach, the integrations over spin{angular variables constitute a considerable part

of the computation, especially when atoms with many open shells are treated, and the

operators are non{trivial. Over the last decade, an e�cient approach for �nding matrix

elements of any one{ and two{particle atomic operator between complex con�gurations

has been developed [M3, M6, M8, M9, M10, M14, M17]. It is free of the shortcomings

of previous approaches [M14]. This method is introduced in the library SAI presented

in this subsection. This library was incorporated in other codes, for example, in BREIT

from MCHF ASP [113, 14] (see [114]). It extends the capabilities of these programs and has

resulted in faster execution of spin{angular integrations.

The library SAI presented in this subsection aimed at the spin{angular integration
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for any one{ and two{paricle operator in LS{coupling. It is a separate unit. It can be

easily adapted to the old programs as, for example, MCHF ASP [113, 14] or can easily be

used to create a new one. It contains �ve modules { sai recls, sai sqlsf1, sai sqlsf2,

sai nore and sai dudu. They are classi�ed according to the methodology presented in

papers [M3, M6, M8, M9, M10, M14, M16, M17], and adhere to the principles of modular

programming (although FORTRAN 77 [115] does not fully support this).

This library sai recls contains 20 routines for calculation of recoupling matrices

R

�
�i; �j; �

0

i
; �

0

j
;�bra

;�ket
;�
�

= R

�
li; lj; l

0

i
; l
0

j
;�bra

l
;�ket

l
;�l
�
R

�
s; s; s; s;�bra

s
;�ket

s
;�s

�
; (128)

which are de�ned in subsection 2.3.2 (Eqs. (75), (79), (80), (83), (85), (87), (88) and (94)).

Most of the subroutines from this module use common blocks CONSTS and MEDEFN

from MCHF ASP [113, 14].

The section sai sqlsf1 [M19], (standard quantities in LS{coupling, part one) is a

collection of utilities used by the modules sai recls sai nore and sai dudu. They

compiute the submatrix element T
�
ni�i; nj�j ; n

0
i
�
0
i
; n

0
j
�
0
j
;�bra

;�ket
;�;�

�
for s{, p{ and

d{subshells in Eq. (74). But most of the subroutines are independent and may be useful

for other programs. 67 subroutines are contained in this library (the main equations are

(95), (96), (97) and (98)).

The library sai sqlsf2 [M19] is the second part of standard quantities in LS{coupling.

Everything in it is related to the f{shells. The tables of CFP for f{shell (see [M10]) and

the term characteristics are in this library. This library can be used in other programs

to its full extent, by employing programs from sai sqlsf1 library. These are the sub-

routines SLS, RWLS, W1, AWP1LS, WAP1LS, WWLS1, WWPLS1. The remaining two

subroutines may also be used independently.

The library sai nore is for calculating the spin{angular parts of matrix elements for

a scalar two{particle operator. It contains 18 subroutines. Most of the subroutines from

this module use common blocks CONSTS and MEDEFN from MCHF ASP [14, 113]. The

calculations are performed according to (74). The special case of this library is realized in
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the program HF96 [M4]. It allows the calculation of term dependent Hartree{Fock orbitals

and energies in LS{coupling for con�gurations with no more than two open subshells,

including f{subshells.

The library sai dudu is meant for the calculation of matrix elements of any one{ or

two{ particle operator. It contains 44 subroutines. Most of the subroutines from this

module use common blocks CONSTS and MEDEFN from MCHF ASP [14, 113]. Similarly

as the sai nore library, it uses the methodology described in subsection 2.3.1. Therefore

the arrangement of library sai dudu is analogous to that of library sai nore.

3.3.2 Timing of new angular code for MCHF ASP

Tests and timing studies of library SAI were performed for the 3d54s2 4
G state of Fe II

with the common closed shells 1s22s22p63s23p6. The wave function expansions used were:

1. 4SD: Singles and doubles excitations from 3d54s2 to the active set f3d; 4s; 4p; 4d; 4fg

contains 467 con�guration state functions (CSF).

2. 5SD: Singles and doubles excitations from 3d54s2 to the active set

f3d; 4s; 4p; 4d; 4f; 5s; 5p; 5d; 5fg contains 1963 CSF.

3. 6SD: Singles and doubles excitations from 3d54s2 to the active set

f3d; 4s; 4p; 4d; 4f; 5s; 5p; 5d; 5f; 6s; 6p; 6d; 6fg contains 4492 CSF.

4. 4SDT: Singles, doubles and triples excitations from 3d54s2 to the active set

f3d; 4s; 4p; 4d; 4fg contains 2548 CSF.

Table 11 demonstrate the problem size, times of the old (BREIT) and new (GBREIT

[114]) codes, the ration �tBREIT=�tGBREIT .

In the �rst case, the calculations included only electrostatic electron interaction oper-

ator HCoulomb. In the second case there was the analysis of both Coulomb operator and

Breit{Pauli operators. As it is indicated in the Table 11, based on the methods created

in the work, the written program GBREIT calculates 5{12 times faster, compared to Fano

scheme written program.
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Table 11: Comparison of time for old and new code. The time in hours, minutes,

seconds is given as hh:mm:ss.

Expansion 1) 2) 3) 4)

Size 467 1963 4492 2548

Case i)

BREIT 00:19:00 02:35:00 09:35:00 06:40:00

GBREIT 00:01:32 00:29:35 01:55:00 01:21:00

Speed-up 7.5 5.7 5.0 5.0

Case ii)

BREIT 4:05:06 29:49:08

GBREIT 0:20:14 05:00:09

Speed-up 12.11 6

In the cases when in the analyzed con�gurations there are fN , with N > 2 shells,

there was no analysis of time characteristics of programs performed. This is due to the

fact that the old program BREIT cannot perform such calculations.

* * *

The three independent programs (Racah III, ANCO and SAI) are considered in this

section. The programs ANCO and SAI not only support large scale computations of open{

shell atoms in atomic theory but may be applied widely in the quantum chemistry as well

as in the theory of the solid state physics. The program Racah III may in
uence the

work in neighboured �elds like nuclear structure and the scattering of particles.
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4 PRACTICAL APPLICATIONS OF THEMETHOD-

OLOGYAND SOFTWARE DEVELOPEDTOATO-

MIC THEORY [M1, M2, M5, M7, M11, M12, M13,

M15, M22]

This section provides the results got with the help of the methods developed in the

habilitation work as well as of the software written for calculation of the spin{angular

coe�cients. The codes support large scale computations of open{shell atoms using multi-

con�guration Hartree{Fock, multicon�guration Dirac{Hartree{Fock or con�guration in-

teraction approaches. It also may help to develope codes for calculating the spin{angular

parts of e�ective operators from many{body perturbation theory [116, 117] and orthogo-

nal operators or for evaluating Hamiltonian in LS{ and jj{coupling as well as for various

versions of semi{empirical methods.

The codes not only support large scale compiutations of open{shell atoms but may

also help for correct and optimal calssi�cation of the energy spectra measured. The best

way to achieve this is by calculations of energy spectra in one coupling scheme (usually

LS) and subsequent transformation of the weights of the wave functions, obtained after

diagonalization of the energy matrix, to the other coupling schemes [4]. A few examples

of such a procedure are presented for a number of ions in Gaigalas et al. [M13].

The codes are also intented for approaches and/or calculations presented in [64, 118,

119, 120, 121]. Some very accurate calculations were performed using these codes (see,

e.g., [122, 123, 124] and [M12, M15, M22]). The programs created in the work may be

applied widely in the quantum chemistry as well as in the theory of the solid state physics,

where the exact wave functions of an atom are required [125, 126]. They may be of use

in the analysis of the derivatives of the molecules and crystals, formed by heavy atoms.

Further section provides some calculations that further illustrate the possibilities and

e�ciency of the methods and programs.
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4.1 The 2s2 1
S0{2s2p

3
P1 intercombination line of B II and C III

[M7]

The 2s2 1
S0{2s2p

3
P1 intercombination line of C III is a case of particular interest in

astrophysics [127] and has become somewhat of a test case, both for theory [128, 129,

130] and experiment [131, 132]. The earlier multi{con�guration Hartree{Fock (MCHF)

calculations for this transition in C III [129] and also for B II [133] used a program

which, under certain situations, produced an error in the spin{other{orbit interaction, an

error found while implementing ideas for the evaluation of matrix elements based on the

approach from Subsection 2.1. As was discussed in paper by Froese Fischer and Gaigalas

[M7], the e�ect of this error becomes less important for more highly ionized members of

the series, but does a�ect the B II and C III values at the level of accuracy that is now

our goal.

In addition, a detailed study of this transition in C III using the multi{con�guration

Dirac{Fock (MCDF) approach [134] has suggested an adjustment or "normalization"

process that di�ers slightly from the procedure advocated by Fleming et al. [128, 135].

The computed normalized results are extremely stable with respect to changes in the

computational model once core{polarization has been included, and allow us to predict

reliable values with smaller uncertainty estimates.

For B II, the wave functions obtained by the process described in [133] were used in

the Breit{Pauli calculations as before and transition rates obtained with the help of the

biorthogonal transformation methods [136] which applied the spin{angular integration

from Subsection 2.1, too. In the case of C III, earlier wave functions were used for valence

and core{valence calculations, but new calculations including some correlation in the core

were performed and followed closely the procedure used in MCDF calculations [134]. That

is, calculations for initial and �nal states were performed completely independently; each

started with a complete active space calculation for an active set of orbitals followed by

single and double substitutions with at most electron coming from the 1s2 core. Details

may be found in earlier papers [129, 133, 134].

In the Fleming et al. [128, 135] papers, a "�ne{tuning" method was used that modi�ed
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the computed transition rate for three factors: the rations of experimental and computed

transition energies, singlet and triplet term separation, and �ne structure splitting de�ned

as E(3P2){E(
3
P0). The adjustment for observed transition energy is clearly appropriate,

by de�nition. In e�ect, a transition calculation is a calculation for the transition matrix

element. In the present transition, the Breit{Pauli mixing of terms is almost entirely the

singlet{triplet mixing in the �nal state: the 2s2 1
S0 and 2p2 3

P0 mixing in the initial state

is a rather small correction. Thus, the 2 � 2 model for the �nal state is an accurate model

and adjusting for the singlet{triplet separation will improve the predicted transition rate.

Adjusting for the �ne structure splitting, which is only indirectly related to the 3
P1 state,

is a somewhat di�erent matter. Indeed, it improves the valence correlation results since

both the splitting and the transition rate are too small. However, once an accurate ratio

of the experimental and computed splitting cannot be related directly to an incorrect

mixing of the singlet and triplet terms. At best it is an indication of the quality of the

wave function for the J = 2, 0 state and, indirectly by association, also an indication of

J = 1 in the absence of mixing. For C III, where a splitting of 80.05 cm�1 is observed

[137], an MCDF [134] estimate of QED e�ects [138, 139] would reduced that value by 0.19

cm�1 to 79.86 cm�1 whereas the Zhu and Chung [140] estimate was a reduction of 0.23

cm�1. Thus, we "normalize" for the �rst two factors and use the �ne structure splitting

as a parameter for comparison and for the estimation of uncertainty. The Table 12 shows

the results for the revised B II calculations. In a sense, many of the spectrum parameters

of the core{valence (CV) calculation are in better agreement with observed one than for

the more di�cult calculation that also includes some correlation in the core. This is seen

in the smaller normalization correction. However, as we will see from C III where more

reliable comparisons can be made with other theories, there is a small core{correlation

e�ect. In B II, there are no accurate �ne structure splitting observations and we propose a

transition rate of 10.27 � 0.20 s�1where the uncertainty was selected somewhat arbitrarily

to include the CV value.

The Table 13 shows similar, though somewhat more detailed results for C III. Valence

correlation predicts transition rates that are too small as is the �ne structure splitting;

inclusion of core{valence greatly improves the transition energy and the term separation,
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Table 12: Breit{Pauli transition data for the 2s2 1
S0 � 2s2p 3

P1 in B II. The

transition energy (�E) and level separations are in cm�1. The 3
P0� 1

S0 separation refers

to the term separation of 2p2 3
P0 and 2s2 1

S0. Both calculated and normalized transition

rates are reported. Calculations for all models used orbital set with principal quantum

number n � 7 optimized on the primary (1S and 3
P
o, respectively) and with an extra

layer optimized on the secondary (2p2 3
P and 2s2p 1

P
o) term, respectively.

Aki(s
�1)

Calc'n �E 1
P
o

1 �
3
P
o

1
3
P
o

2 �
3
P
o

0
3
P0 �

1
S0 Calc. Norm.

(i) Valence correlation

n=7 37 562 36 528 20.97 99 817 9.06 9.14

(ii) Core{valence

n=7 37 453 36 528 20.97 99 308 10.45 10.41

(iii) Partial core correlation and core{valence

n=7 37 303 36 225 22.19 98 902 10.14 10.27

Other theory [140] 37 345 36 065 22.2

Exp't [141] 37 340 36 057 22.8 98 910

Exp't [142] 37 340 36 057 21.6 � 0.8a 98 910

a Uncertainties determined from quoted uncertainity of the measured wavelength.
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Table 13: Breit{Pauli transition data for the 2s2 1
S0 � 2s2p 3

P1 transition in

C III. The transition energy (�E) and level separations are in cm�1. The 3
P0 � 1

S0

separation refers to the term separation of 2p2 3
P0 and 2s2 1

S0. Normalized values are

scaled to the observed singlet{triplet energy separation. The oscillator strength for the

allowed transition is also reported. Calculations are now based on orbital set of di�ering

sizes as indicated by n, but with n � 6.

Aki(
1
S0 �

3
P
o

1 )(s
�1)

Calc'n �E 1
P
o

1 �
3
P
o

1
3
P
o

2 �
3
P
o

0
3
P0 �

1
S0 Calc. Norm. gf(1S0 �

1
P
o

1 )

(i) Valence correlation

n=7 52 728 50 673 70.10 138 740 95.2 96.1

(ii) Core{polarization

n=6 52 513 50 100 80.24 137 811 103.81 103.66

(iii) CAS (n=3) + SD (core{valence)

n=7 52 374 50 138 79.62 137 504 102.22 103.04 0.7565

n=8 52 376 50 129 79.66 137 514 102.28 103.06 0.7568

n=8a 52 374 50 105 79.65 137 496 102.33 103.10 0.7570

n=8b 52 374 50 087 79.65 137 488 102.45 103.07 0.7570

n=9 52 379 50 123 79.67 137 520 102.40 103.08 0.7568

(iv) CAS (n=4) + SD (core{valence)

n=7 52 269 50 125 79.67 137 636 101.69 103.08 0.7561

n=8 52 267 50 116 79.72 137 645 101.67 103.03 0.7563

n=9 52 357 50 112 79.72 137 404 102.23 103.05 0.7563

Exp't 52 391 49 961 80.05 137 426 120.9

[131, 141]

a Core valence with some triplet substitutions.
b Triple substitutions and secondary terms (2p2 3

P; 2s2p 1
P
o) with two layers of extra

orbitals.
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but overestimates the �ne structure splitting and also the transition rate. Indeed, the

�ne{tuned result for this calculation (103.17 s�1) is in better agreement with the value

ultimately recommend than the normalized value included in the table. It is the �nal two

sets of calculations that start with a complete active space calculation (the �rst with all

possible con�gurations states from orbitals with principal quantum number n � 3; the

second with n � 4), and then add the single and double substitutions for outer correlation

and core{valence that show the stability of the normalized values as parameters of the

calculation are changed. Though the calculated values range from 101.69{102.45 s�1, the

normalized values are essentially constant, ranging only from 103.03{103.10 s�1. Even so,

there is still a discrepancy in the computed �ne structure splitting. This can be a basis for

an estimate of uncerainty. Using the smaller QED estimate of 0.19 cm�1 which leads to

a larger discrepancy, adjusting by the factor [(80.05{0.19)/79.72]2, and correcting for the

fact that the Breit{Pauli gf value for the allowed transition di�ers from the best MCDF

prediction by 0.2% we can estimate the uncertainty and obtain the value of 103.0 � 0.4

s�1, a value to be compared with 102.9 � 1.5 s�1 for the more di�cult MCDF calculations

[134].

The latter are both in excellent agreement with the recently proposed value of 102.94

� 0.14 s�1 obtained by Doerefert et al. [132] from an extremely accurate storage ring

experiment, but di�ers signi�cantly form the value of 120.9 � 7 s�1 obtained from an ion

trap experiment by Kwong et al. [131].

4.2 The 2s2 1
S0 � 2s3p 3

P
o
1 intercombination line in the Be{like

sequence [M5]

The 2s2 1
S0 � 2s2p 3

P
o

1 intercombination line in the Be{like sequence has been studied

extensively theoretically (Froese Fischer [129], Fleming et al. [128, 135], Ynnerman and

Froese Fischer [133, 130]). In the Breit{Pauli scheme, it provides a critical test of the

wave function in that not only the transition energy needs to be predicted accurately

but also the mixing of LS terms and �ne structure splitting (Fleming, et al. [135]). By

using these properties, along with systematic methods, an estimate of the uncertainty in
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the computed transition rate can be obtained. In C III and N IV the uncertainty in the

computed result is in the order of 2{3%. In a fully relativistic Dirac approach, there is

extensive cancellation in the transition matrix element and Breit corrections are extremely

important, particularly for lower nuclear charges. Using the accurate theoretical results

from C III and N VI, Curtis and Ellis [143] performed semi{empirical studies to predict

the 2s2�2s2p resonance and intercombination transitions in the Be isoelectronic sequence.

The 2s2 1
S0 � 2s3p 3

P
o

1 transition has not been investigated theoretically nearly as

extensively to the same level of accuracy. Curtis et al. [144] have analysed also the

2s2�2s3p transitions through the isoelectronic sequence, obtaining the transition rate for

the intercombination line from the di�erence in lifetimes of the J = 1 and the J = 2; 0

levels. Some new experimental data were also presented. Their semi{empirical method

was applied and transition data were predicted both for the allowed transition and the

intercombination line.

From a theoretical point of view, the �n = 1 transitions di�er from �n = 0 transitions

in that now wave functions are required for an excited state, not lowest of its symmetry.

Also important is the fact that the electron cloud of the initial state is compact, whereas

the �nal state has an orbital that is much more di�use. The recently developed non{

orthogonal methodology (Olsen et al. [136]) can be used to advantage in such cases.

Recently we reported results for the allowed 2s2 1
S0�2s3p 1

P
o

1 transition for the elements

with Z = 4 { 10 (Froese Fischer et al. [145]) using the non{relativistic MCHF approach

for which the Breit{Pauli correction was small. Though there was cancellation in the

calculation of the line strength in Be I, for higher Z the cancellation decreased and an

agreement in length and velocity (see Rudzikas et al. [146]) was reached of 1 part in 4,000

for Ne VII. To obtain this excellent agreement it was essential to include the e�ect of core{

polarization. Inclusion of some correlation in the core continued to improve agreement in

length and velocity form of the oscillator strength, but by C III the core{core e�ect on

the gf{value already was less than 5 in 2,400. In a �nal step, Breit{Pauli calculations

were performed to capture small relativistic corrections.

In this Subsection, we report some systematic studies for determining the transition
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rate for the spin{forbidden transition 2s2 1
S0� 2s3p 3

P
o

1 of the Be{like sequence that may

provide insight into how transition probability calculations may be performed for more

complex systems [M5]. Calculations are reported for the range of Z = 4 { 10.

Table 14 reports the transition data for these calculations. Unlike the allowed transi-

tions where length and velocity forms of the line strength (or oscillator strength) can be

used as a test for accuracy, Breit{Pauli calculations must rely on other related factors.

Included in this table are:

1. the 3
P
o

1 � 1
P
o

1 energy separation which, in a �rst{order theory, would in
uence the

strength of the mixing;

2. the 3
P
o

1 � 3
P
o

0 energy separation which checks the e�ect of the mixing on the �ne

structure, though in light elements this separation is not signi�cantly a�ected by

singlet/triplet mixing;

3. the 3
P
o

2�
3
P
o

0 energy separation which is not a�ected by the dominant singlet/triplet

mixing, but checks the adequacy of the Breit{Pauli approximation;

4. the 3
P
o

1 �
1
S0 transition energy;

5. the 1
P
o

1 � 1
S0 transition energy;

6. the transition rate A(1P o

1 ) determined from the previous calculation (Froese Fischer

et al. [145]) where the orbitals were optimized for the 1
P
o term.

All these are \accuracy indicators" for the transition rate, A(3P o

1 ), for decay from 2s3p 3
P
o

1

to the 2s2 1
S0 ground state. The experimental value are mostly from Bashkin and

Stoner [147] and Kelly [137]. For F II, the values reported by Engstr�om [148] are in-

cluded. With this exception, the experimental value listed is the value closest to the

highly accurate theoretical energy level determined by Zhu and Chung [140] (who tabu-

late a complete comparison).

The Table 14 shows that 3
P
o

1 is lower than 1
P
o

1 , only in Be I and B II, that thereafter,

in the range of Z considered here, 3
P
o

1 is the higher state, although the separation is

never very large. There is an indication that the extra orbitals used in the expansion
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Table 14: Transition data for the 2s2 1
S0 � 2s3p 3

P
o

1 transition of Be I{Ne VII.

All energies are in cm�1 and transition rates in s�1. The notation x.xx(nn) denotes

x.xx�10nn.

n
3
P
o

1 �
1
P
o

1
3
P
o

1 �
3
P
o

0
3
P
o

2 �
3
P
o

0 �E A(3P o

1 ) �E A(1P o

1 )

(3P o

1 �
1
S0) (1P o

1 �
1
S0)

Be I

Valence Correlation

n = 4 �1395 0.08 0.39 58774 0.287 60169 1.159(7)

n = 5 �1370 0.08 0.40 58785 0.330 60155 1.073(7)

n = 6 �1363 0.07 0.39 58789 0.334 60152 1.038(7)

Core-valence and Valence Correlation

n = 6 �1323 0.10 0.46 58947 0.534 60270 8.564(6)

n = 7 �1308 0.09 0.46 58943 0.568 60252 7.853(6)

n = 8 �1306 0.09 0.46 58943 0.572 60249 7.772(6)

Experimental energy and A(1P o

1 ) from theory (see text)

�1285 0.091 0.374 58909 60187 7.12(6)

B II

Valence Correlation

n = 4 �218 1.16 4.33 143845 6.652(4) 144063 4.465(8)

n = 5 �217 1.17 4.36 143856 6.743(4) 144073 4.661(8)

n = 6 �215 1.17 4.36 143862 6.864(4) 144077 4.676(8)

Core-valence and Valence Correlation

n = 6 �102 1.21 4.67 144076 3.622(5) 144178 5.011(8)

n = 7 �119 1.23 4.67 144064 2.640(5) 144183 5.014(8)

n = 8 �126 1.24 4.68 144063 2.406(5) 144189 5.020(8)

Experimental energy and A(1P o

1 ) from theory (see text)

�113 1.30 4.74 143990 144103 5.042(8)

C III

Valence Correlation

n = 4 611 5.42 17.98 259582 5.644(5) 258891 3.458(9)

n = 5 684 5.46 18.05 259592 5.782(5) 258908 3.466(9)

n = 6 684 5.47 18.06 259600 5.803(5) 258916 3.478(9)

Core-valence and Valence Correlation

n = 6 798 5.66 18.80 259829 4.725(5) 259031 3.572(9)

n = 7 778 5.67 18.81 259820 4.980(5) 259042 3.571(9)

n = 8 769 5.67 18.82 259818 5.144(5) 259049 3.589(9)

Experimental energy and A(1P o

1 ) from theory (see text)

780 5.67 18.75 259711 258931 3.598(9)
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Table 14: (continued).

n
3
P
o

1 �
1
P
o

1
3
P
o

1 �
3
P
o

0
3
P
o

2 �
3
P
o

0 �E A(3P o

1 ) �E A(1P o

1 )

(3P o

1 �
1
S0) (1P o

1 �
1
S0)

N IV

Valence Correlation

n = 4 1382 15.66 50.04 405878 3.319(6) 404496 1.048(10)

n = 5 1376 15.72 50.18 405890 3.357(6) 404514 1.186(10)

n = 6 1373 15.74 50.18 405899 3.380(6) 404526 1.190(10)

Core-valence and Valence Correlation

n = 6 1483 16.10 51.54 406143 3.106(6) 404659 1.207(10)

n = 7 1461 16.16 51.60 406137 3.209(6) 404676 1.206(10)

n = 8 1451 16.12 51.59 406131 3.273(6) 404680 1.213(10)

Experimental energy and A(1P o

1 ) from theory (see text)

1465 15.83 51.2 405988 404522 1.214(10)

O V

Valence Correlation

n = 4 1940 36.06 111.75 582757 1.986(7) 580817 2.951(10)

n = 5 1932 36.15 111.97 582767 2.001(7) 580836 2.950(10)

n = 6 1931 36.22 112.09 582781 2.013(7) 580850 2.959(10)

Core-valence and Valence Correlation

n = 6 2037 36.78 114.25 583048 1.902(7) 581011 2.988(10)

n = 7 2011 36.81 114.28 583048 1.954(7) 581037 2.984(10)

n = 8 2002 36.88 114.34 583041 1.985(7) 581039 2.998(10)

Experimental energy and A(1P o

1 ) from theory (see text)

2015 36.7 113.9 582840 580825 3.000(10)

F VI

Valence Correlation

n = 4 2402 72.13 217.00 790265 9.866(7) 787863 6.130(10)

n = 5 2399 72.38 217.44 790280 9.924(7) 787887 6.115(10)

n = 6 2393 72.50 217.63 790296 9.985(7) 787903 6.138(10)

Core-valence and Valence Correlation

n = 6 2498 73.32 220.88 790609 9.526(7) 788111 6.184(10)

n = 7 2467 73.44 220.94 790621 9.771(7) 788154 6.172(10)

n = 8 2457 73.50 221.06 790610 9.908(7) 788153 6.197(10)

Experimental energy and A(1P o

1 ) from theory (see text)

2482 73. 221. 790326 787844 6.200(10)
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Table 14: (continued).

n
3
P
o

1 �
1
P
o

1
3
P
o

1 �
3
P
o

0
3
P
o

2 �
3
P
o

0 �E A(3P o

1 ) �E A(1P o

1 )

(3P o

1 �
1
S0) (1P o

1 �
1
S0)

Ne VII

Valence Correlation

n = 4 2791 131.56 382.37 1028461 4.012(8) 1025670 1.130(11)

n = 5 2779 131.88 382.94 1028486 4.142(8) 1025707 1.124(11)

n = 6 2780 132.13 383.44 1028503 4.172(8) 1025723 1.130(11)

Core-valence and Valence Correlation

n = 6 2886 133.25 388.00 1028897 3.994(8) 1026011 1.137(11)

n = 7 2848 133.44 388.19 1028932 4.102(8) 1026084 1.134(11)

n = 8 2838 133.62 388.37 1028917 4.156(8) 1026079 1.138(11)

Experimental energy and A(1P o

1 ) from theory (see text)

2809 132.8 388.2 1028499 1025690 1.138(11)

of the 1
P
o

1 to compensate for the fact that all other orbitals were optimized on the 3
P

state, were not su�cient to determine the energy of 1
P
o

1 relative to 3
P
o

1 to the desired

accuracy, except for Ne VII. In all cases but the latter, the energy of 1
P
o

1 is too high

and the separation too small. However, it should be mentioned that the Breit{Pauli

interaction reduces the separation, at least for the higher members of the sequence, and

in F IV, for example, it reduced a separation of 2581 cm�1 to 2457 cm�1, over{correcting

by 11 cm�1. This over{correcting might be related to the 3
P
o

2 �
3
P
o

0 separation being too

large. The inclusion of core{polarization improves the �ne structure splitting and the

term energy separation, even in B II which is hardly typical since the singlet and triplet

states are almost degenerate. In all cases except Be I where there is extensive cancellation

in the transition matrix element, the rate of decay of 2s3p 1
P
o

1 to the ground state in this

calculation is in excellent agreement with the values obtained when optimizing orbitals

on the 2s3p 1
P
o

1 state (Froese Fischer et al. [145]).

In Table 15, the present transition energies are compared with other theory and ex-

periment. The Z{expansion results of Ralchenko and Vainshtein [149] are based on per-

turbation theory along with an adjustable parameter. The GRASP results were obtained

using a fully relativistic Dirac{Coulomb Hamiltonian with Breit corrections (Fritzsche and

Grant [150]). Only valence correlation was considered and the same orbitals were used to
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Table 15: Comparison of 2s2 1
S0 � 2s3p 3

P
o

1 transition energies (in cm�1).

Z Z-exp.a GRASPb FCPCc MCHFd Exp.e

6 259 613 { 259 713 259 818 259 711

7 405 960 406 040 405 992 406 131 405 988

8 582 871 582 770 582 839 583 041 582 840

9 790 395 790 470 790 331 790 610 790 326

10 1 028 591 1 028 680 1 028 505 1 028 917 1 028 499

a Ralchenko and Vainshtein [149]
b Fritzsche and Grant [150]
c Zhu and Chung [140]
d present work
e Bashkin and Stoner [147]; Kelly [137]

describe both the initial and �nal states. The full{core plus{correlation (FCPC) method

of Zhu and Chung [140] starts with an accurate description of the 1s2 core common to

both states, and then adds correlation corrections determined from restricted variational

calculations. These are extrapolated and corrected for a number of small e�ects to yield

the total non{relativistic energy. To these are added relativistic, mass{polarization, and

QED corrections [151, 152]. Clearly, of these energies, the FCPC energies are the most

accurate whereas the present MCHF energies are 100 { 400 cm�1 too high. In the study of

the allowed transition (Froese Fischer et al. [145]), the main e�ect of core correlation was

to reduce the transition energy. Thus we attribute the present discrepancy to this source.

In this table we have included the Bashkin and Stoner [147] value from the transition

energy since the Engstr�om [148] value of 790 312 cm�1 deviates by 19 cm�1 from the

FCPC values, a deviation much larger than for other members of the sequence.

The �ne structure splitting from the present calculation is compared in Table 16 with

values from FCPC (Zhu and Chung [140]) and experiment. For F VI and Ne VII, there

is disagreement among the reported experimental values, in which case we included those

given by Bashkin and Stoner [147], consistenly in better agreement with our theory in

Table 15. For comparison we also include the Engstr�om [148] value for F VI. Ne VII is

the �rst ion where the singlet/triplet coupling shifts the energy of the 3
P
o

1 signi�cantly.
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Table 16: Comparison of the 3
PJ �3

P0 �ne structure splitting (in cm�1) with

other theory and experiment.

B II C III N IV O V F VI Ne VII

i) 3
P
o

1 �
3
P
o

0

MCHFa 1.24 5.67 16.12 36.88 73.50 133.62

FCPCb 1.20 5.58 16.1 36.7 72.8 132.1

Exp.c 1.30 5.67 15.83 36.7 73. 132.8

Exp.d 72.

ii) 3
P
o

2 �
3
P
o

0

MCHFa 4.68 18.82 51.59 114.34 221.06 388.37

FCPCb 4.60 18.61 51.3 113.7 219.6 385.5

Exp.c 4.74 18.75 51.2 113.9 221. 388.2

Exp.d 220.

a present work
b Zhu and Chung [140]
c Bashkin and Stoner [147]; Kelly [137]
d Engstr�om [148]

In the FCPC results, this was computed using �rst{order perturbation theory yielding

an increase in energy of 10.1 cm�1 whereas the corresponding MCHF shift from direct

diagonalization of the Breit{Pauli interaction matrix, both with and without single/triplet

mixing, was 10.25 cm�1. The J = 2 � 0 separation is independent of the singlet/triplet

mixing and our result here is in good agreement with experiment.

Transition rates are tabulated in Table 17 for valence correlation (v) and also for core{

valence (cv) calculations. Both have been adjusted for the fact that the energy level data

are not in accurate agreement with observation. To �rst order, the transition rate would

be proportional to �
�E(3P o

1 �
1
S0)

�3  �E(3P o

2 �
3
P
o

0 )

�E(3P o

1 �1P
o

1 )

!2

;

where �E(3P o

2 �
3
P
o

0 ) is assumed to be a measure of the Breit{Pauli interaction. As

shown in Fleming et al. [135], adjusting computed transition rates by correction factors

derived from the above relation, improves the accuracy of computed values. Thus, in

Table 17, the adjusted values for valence correlation, v(adj), and core{valence, cv(adj),
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Table 17: Breit{Pauli transition rates (106s�1) for the 2s2 1
S0�2s3p 3

P
o

1 transition

from valence correlation (v) and core{valence (cv) calculations, as computed

and when adjusted to the observed �ne structure splitting and transition en-

ergy. A recommended value (rv) is also given along with an uncertainty (in parentheses).

Z v v(adj) cv cv(adj) rv

5 0.069 0.294 0.241 0.306 0.27(6)

6 0.580 0.482 0.514 0.496 0.50(2)

7 3.38 3.09 3.27 3.16 3.2(1)

8 20.13 19.05 19.85 19.42 19.6(4)

9 99.85 97.4 99.08 98.7 98.9(9)

10 417.20 410. 415.6 414.4 415.(4)

are also reported. It is remarkable to note the agreement in the adjusted values for

B II, when the computed values di�er by a factor of three. Of course, such adjustments

rely on accurate experimental value. The especially large deviation of our term energy

separation in F VI from experiment, suggests that these experimental energy levels have

not been determined to su�cient accuracy. Instead, for adjustment purposes, we use a

slightly larger separation of 2 460.8 cm�1 by Zhu and Chung [140], consistent with other

deviations. In all cases, the adjustment process changes the core{valence result the least,

but in Ne VII, valence correlation was less a�ected. In fact, as Z increases, the transition

energy from valence correlation alone, is in better agreement with experiment than the

core{valence calculation. From this data, a recommended transition rate was determined

from the average of the core{valence and its adjusted value, the uncertainty being roughly

equal to the size of the adjustment. In contrast to the allowed transition, the addition of

core{valence correlation, which accounts for the polarization of the core by the presence

of the valence electrons, has a decreasing e�ect on the transition rate for the six ions

considered.

In Table 18, the present recommended value is compared with other theory and exper-

iment. For higher members of the isoelectronic sequence, the agreement with the trend

predicted by Curtis et al. [144] from a semi{empirical study of experimental data is ex-
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Table 18: Comparison of present Breit{Pauli transition rates (106s�1) for the

2s2 1
S0� 2s3p 3

P
o

1 transition with other theory, experiment, and semi{empirical

values predicted by Curtis et al. [144]. Numbers in parentheses represent the un-

certainty.

Z MCHFa GRASPb CIV3c Z-expd Curtis et al.

Exp. Pred.

5 0.27(6) 0.1

6 0.50(2) 0.520 0.4

7 3.2(1) 1.40 3.07 4.97 3.3(20)f 2.8

8 19.6(4) 16.4 18.3 22.2 22.6(4) 19.

9 98.9(9) 85.5 88.6 95.9 102(9) 100.

10 415.(4) 385. 275. 370. 430(60) 418.

a present work
b Fritzsche and Grant [150]
c Hibbert [154]
d Ralchenko and Vainshtein [149]
f Engstr�om et al. [153]
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ceptional. For N IV, agreement is better with experiment (Engstr�om et al. [153]), though

the error bar for the experiment is large. For C III, our value di�ers only slightly from the

value obtained by Hibbert [154] but is somewhat larger than what is predicted by Curtis

et al. [144]. Since the latter include B II in their trend, we have included it in Tables 17

and 18 as well. Because the order of 2s3p 3
P
o

1 and 2s3p 1
P
o

1 levels changes in going from

C III to B II, an irregular behaviour can be expected. Though this computed transition

rate is likely to be a�ected by core correlation more than others, a value larger than pre-

dicted by Curtis et al. [144] semi{empirical model is plausible. Of the other theoretical

results, both GRASP (Fritzsche and Grant [150]) and the Z{expansion results (Ralchenko

and Vainshtein [149]) show improving trends as Z increases, as expected from the theory.

CIV3 (Hibbert [154]) however is the reverse, with low{Z being the more reliable.

So, �naly we can made some conclusions. The theoretical computation of the transition

rate for the �n = 1, 2s2 1
S0 � 2s3p 3

P
o

1 intercombination line is considerably more

di�cult from that for the �n = 0 intercombination line for the Be{like sequence. The

�nal state is now an excited state, and the contribution from the spin{orbit contribution

of the outer 3p is considerably less than that of the 2p. Thus, two{body operators of

the Breit{Pauli Hamiltonian play a more important role. Recently, Fritzsche and Froese

Fischer [155] have performed a non{orthogonal GRASP calculation for F VI where orbitals

were independently optimized for the initial and �nal states. The valence correlation

transition energy was 790342 cm�1 (compared with 790326 cm�1 for experiment) and the

transition rate was 100.18 �106 and 100.76�106 for the Coulomb and Babushkin gauges,

respectively. No systematic studies were reported and agreement in the gauges could be

accidental. It is possible that a more extensive multicon�guration Dirac{Fock calculation,

including also the e�ect of polarization of the core, can resolve some of the uncertainties.

On the whole, the present agreement with the semi{empirical trend predicted by Curtis

et al. [144] is encouraging.
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4.3 Breit{Pauli energies, transition probabilities, and lifetimes

for 2s, 2p, 3s, 3p, 3d, 4s 2
L levels of the lithium sequence

[M11]

With the aid of powerful workstations and systematic methods, a considerable improve-

ment in accuracy has been achieved in the calculation of non{relativistic transition data

for light atoms using the MCHF method (see [156] for a review). Accuracy criteria for

such calculations are agreement in length and velocity form of the line strength or os-

cillator strength along with a simultaneous close agreement with the observed transition

energy. For the 2s22p 2
P
o � 2s2p2 2

D transition in B I, for example, the length and

velocity gf{values di�ered by less than 0.4% when the non{relativistic transition energy

di�ered from the observed by about 0.1% [157]. Besides neglecting the �nite nuclear mass

and relativistic e�ects, most of these calculations have been benchmark calculations of

isolated resonance transitions.

In this Subsection we report results of Breit{Pauli calculations for a portion of a

spectrum of lithium and lithium{like ions with nuclear charge Z � 8. Included are the

energies of all J{levels of the six lowest 2s; 2p; 3s; 3p; 3d; 4s 2
L terms and all allowed

transitions between the levels of these terms. From the latter, the lifetime of each level can

be computed, the quantity measured in experimental techniques relying on the analysis

of decay curves. For some transitions, lifetimes immediately provide transition rates, but

for excited states a knowledge of branching ratios is needed before measured lifetimes can

yield transition rates. Thus, theoretical calculations for excited states play a valuable role

in spectroscopy.

This work was undertaken to test the accuracy of our codes for the Breit{Pauli approx-

imation as well as the application of our techniques to excited states. The computational

method follows standard procedures [113]. For more datails see [M11].

The con�guration states included in the expansions of the di�erent termswere obtained

by including all possible CSFs of a given LS symmetry that could be constructed from

orbitals with n � 10, l � 7 (k orbitals), and with at least one orbital in the con�guration

with n � 4. The largest expansion for this rule{based scheme was for 2
D where the
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interaction matrix size was 15,606. A distributed version of the Breit{Pauli code using a

message passing interface was used to generate the interaction matrix and obtain selected

eigenvalues and eigenvectors. Once the eigenvectors were determined, a non{orthogonal

version of the transition code was used to compute transition data [136].

Table 19 shows the energy levels in cm�1 relative to the ground state for part of the

lithium sequence with Z � 8, comparing observed and computed energies, and their dif-

ference, observed minus computed. If we assume the observed energy levels are accurate,

this di�erence represents the error in our approximation. For lithium, the observed energy

levels were from the very accurate tabulations reported by Radziemski et al. [158], for

beryllium from [159], for boron from [160], for carbon from [161] and all others from the

NIST tabulations [162]. The di�erences with observed energies range from a few cm�1

for lithium to as many as 84 cm�1 in oxygen (Z = 8). Not included in this work were

the QED e�ects which are particularly important for the 2s 2
S ground states. In the

case of O+5, Chung [163] reports a QED correction which would add 29.5 cm�1 to the

di�erences between observed and computed, reducing the error by about a factor of two,

except in the case of 3d 2
D. The results reported here are entirely ab initio: there has

been no extrapolation with respect to the basis or the angular quantum number in the

non{relativistic wave function. The errors reported in Table 19 represent an imbalance

in the correlation included in the individual calculations (particularly the correlation in

the core), and an incomplete representation of the relativistic shift and other Breit{Pauli

operators computed from a basis optimized for the non{relativistic Hamiltonian. For

the 2
P
o and 2

D states the di�erence in the errors for the two J{levels is the discrepancy

between theory and observation in the �ne structure splitting.

Table 20 analyzes the �nes tructure splitting more carefully. For the 2p 2
P
o

1=2;3=2 state, a

very accurate calculation has been reported by Yan and Drake [164] in perfect agreement

with experiment for lithium. We also compare the present results with FCPC results

obtained byWang et al. [165] that include a small QED correction, increasing the splitting.

Thus, our uncorrected results should be smaller than the observed ones which is not the

case for N V (Z = 7). For 3p of B+2, our splitting is too large by 0.025 cm�1 or 0.25%.

The �ne structure splitting for 3d is also reported. Di�erences with observation are now
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Table 19: Comparison of observed and computed Breit{Pauli excitation ener-

gies in cm�1 as a function of Z, along with the di�erence, observed{computed.

For lithium, observed values are from [158], for beryllium from [159], for boron from [160],

for carbon from [161], and all others from the NIST publication [162].

Level n Z = 3 4 5 6 7 8

2p 2
P
o

1=2

Exp. 14903.6481 31928.76 48358.40 64483.8 80463.2 96375.0

MCHF 14904.1089 31932.27 48367.61 64503.2 80500.2 96441.0

Di�. -0.4608 -3.51 -9.21 -19.4 -37.0 -66.0

2p 2
P
o

3=2

Exp. 14903.9835 31935.34 48392.50 64591.0 80721.9 96907.5

MCHF 14904.4423 31938.82 48401.64 64610.3 80759.1 96972.8

Di� -0.4588 -3.48 -9.14 -19.3 -37.2 -65.3

3s 2
S1=2

Exp. 27206.0952 88231.91 180202.09 302847.8 456126.6 640039.8

MCHF 27203.9689 88230.45 180203.33 302861.4 456165.5 640126.5

Di�. 2.1263 1.46 -1.24 -13.6 -38.9 -86.7

3p 2
P
o

1=2

Exp. 30925.5530 96495.36 192951.40 320048.9 477765.7 666113.2

MCHF 30924.0285 96494.71 192952.65 320061.6 477792.3 666169.4

Di�. 1.5245 0.65 -1.25 -12.7 -26.6 -56.2

3p 2
P
o

3=2

Exp. 30925.6494 96497.28 192961.42 320080.4 477842.0 666269.8

MCHF 30924.1241 96496.64 192962.69 320093.1 477867.6 666324.5

Di�. 1.5253 0.64 -1.27 -12.7 -25.6 -54.7

3d 2
D3=2

Exp. 31283.0505 98054.57 196068.89 324878.5 484404.3 674625.7

MCHF 31280.5311 98052.61 196067.89 324882.3 484407.0 674632.9

Di�. 2.5194 1.96 1.00 -3.8 -2.7 -7.2

3d 2
D5=2

Exp. 31283.0866 98055.12 196071.81 324887.7 484426.3 674676.8

MCHF 31280.5671 98053.19 196070.81 324891.5 484429.5 674679.5

Di�. 2.5195 1.93 1.00 -3.8 -3.2 -2.7

4s 2
S1=2

Exp. 35011.5432 115464.40 237698.45 401346.6 606348.8 852696.

MCHF 35009.2270 115461.45 237695.60 401352.1 606363.3 852736.8

Di�. 2.3162 2.95 2.85 -5.5 -14.5 -40.8
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Table 20: Comparison of the �ne structure separation (in cm�1) with other

theory (FCPC [165], HR [165]) and experiment. For lithium, observed values are

from [158], for beryllium from [159], for boron from [160], and all others from the NIST

publication [162].

Term Method n Z = 3 4 5 6 7 8

2p 2
P MCHF 0.3334 6.5542 34.032 107.085 259.919 531.76

FCPC 0.3333 6.5569 34.038 107.06 258.74 530.94

HR 0.335273

Exp. 0.3353 6.58 34.10 107.2 258.7 532.5

3p 2
P MCHF 0.0957 1.9280 10.045 31.529 75.275 155.07

FCPC 0.0954 1.9263 10.019 31.519 76.180 156.37

Exp. 0.0964 1.92 10.02 31.5 76.3 156.6

3d 2
D MCHF 0.0360 0.5759 2.913 9.206 22.480 46.629

Exp. 0.0361 0.55 2.92 10.5 22.0 51.1

more variable and may be due to uncertainty in the experimental value.

The 2s � 2p transition in lithium has been determined to high precision by Yan and

Drake [166], whose paper contains an extensive review of the literature for this transi-

tion. Using a Hylleraas expansion, correlation and �nite nuclear mass are treated to high

accuracy. When a small relativistic correction is included, their results are in excellent

agreement with the most accurate experiment by McAlexander et al. [167]. Recently their

work has been extended to the iso{electronic sequence [168] and compared with earlier

work by Chung [169]. Agreement between the two theories is excellent (within a few

units in the last place reported by Chung) though the Yan et al. [168] non{relativistic

f{values have been determined to about nine signi�cant digits. In order to correct these

for relativistic e�ects, they rely on relativistic many{body perturbation theory (RMBPT)

tabulations [170] believed not to be su�ciently accurate for low Z because of an incom-

plete treatment of correlation. In Table 21 we compare the present Breit{Pauli transition

or decay rates for the 2p 2
P
o

1=2 and 2p 2
P
o

3=2 levels.

The accuracy of the present methodology can be assessed from this extensively studied

transition. In Table 21, six digits are quoted in order to show the di�erence between our
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Table 21: Comparison of present decay rates for 2p 2
P
o states of the lithium

sequence (in units of 108 s�1) with HR [168] and RMBPT [170] values. (MCHFa

normalized to the obseved transition energy).

Method n Z = 3 4 5 6 7 8

2p 2
P
o

1=2 { 2s 2
S1=2

MCHF 0.368960 1.12958 1.89069 2.63205 3.36234 4.08832

MCHFa 0.368926 1.12923 1.88961 2.62970 3.35771 4.07993

HR 0.36894 1.1289(1) 1.8886(1) 2.6281(1) 3.3556(2) 4.0764(2)

RMBPT 0.3690 1.129 1.889 2.630 3.357 4.078

2p 2
P
o

3=2
{ 2s 2

S1=2

MCHF 0.368986 1.13032 1.89494 2.64592 3.39648 4.15928

MCHFa 0.368952 1.12998 1.89387 2.64364 3.39179 4.15088

HR 0.36896(2) 1.1297(1) 1.8932(1) 2.6425(1) 3.3905(2) 4.1487(2)

RMBPT 0.3690 1.130 1.894 2.644 3.392 4.150

results and those of the Hylleraas result (HR) and RMBPT. For low Z, given the nature

of the three methods, it is di�cult to say with certainty which is the de�nitive value. The

experimental measurement [167], for 2p 2
P
o

1=2 , converted to a decay rate, is 0.368976(95)

108 s�1, a result in agreement with all three methodologies. For higher Z, the present

decay rates are a�ected by the neglect of QED corrections [171]. Because the rate depends

on the �E3, any error in the theoretical transition energy is magni�ed. Transition energies

can often be measured accurately. In such cases, theoretical results can be normalized to

the observed transition energy, yielding the most reliable transition rates. Such normalized

values are also shown in Table 21 and agree closely with RMBPT values (which likewise

had been normalized to observed transition energies). Included with the HR values is an

estimate of uncertainty: from the agreement between the MCHF normalized results and

RMBPT, it would appear that some of these estimates are no the low side. As shown in

Table 22, the present decay rates from 3s 2
S1=2 to the 2p 2

P
o

1=2 and 2p 2
P
o

3=2 levels also

are in excellent agreement with the similar quantities reported by Johnson et al. [170].

The accuracy of computed transition data depends on both the accuracy of the tran-

sition energy and the accuracy of the line strength. The accuracy of the former is best
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Table 22: Comparison of present decay rates for 3s 2
S to 2p 2

P
o states of the

lithium sequence (in units of 109 s�1) with RMBPT [170] values.

Method n Z = 3 4 5 6 7 8

3s 2
S1=2 { 2p 2

P
o

1=2

MCHF 0.011154 0.13609 0.53744 1.4188 3.0354 5.6952

RMBPT 0.01114 0.1359 0.5367 1.418 3.032 5.680

3s 2
S1=2 { 2p 2

P
o

3=2

MCHF 0.022306 0.27212 1.0745 2.8365 6.0679 11.386

RMBPT 0.02228 0.2719 1.074 2.840 6.073 11.39

determined from experiment, where often (though not always!) more reliable values can

be obtained. The sensitivity of the line strength to cancellations in the calculation of

the one{electron radial dipole matrix element and correlation can be assessed through a

comparison of the deviation from unity of the ratio of the length (independent of transi-

tion energy) and velocity (dependent on transition energy) matrix elements in the non{

relativistic limit. The most stable line strength is for the 2p � 3d transition where both

radial functions have the same sign so that there is no cancellation in the one{electron

dipole matrix element. At the same time, the transition energy is su�ciently large that

it can be computed to a relatively high accuracy fairly readily. On the other hand, the

3s�3p one{electron radial dipole matrix element is sensitive to cancellation and the tran-

sition energy, being small, cannot be computed to a high accuracy, manifesting itself in a

relatively large discrepancy in the length (Sl) and velocity (Sv) form of the line strength

obtained from non{relativistic wave functions. Thus, we propose to use the deviation

from unity of Sl=Sv as a measure of the uncertainty in the strength. To this needs to

be added some uncertainty due to relativistic corrections. In this particular study, the

relativistic e�ects on the line strength are small, in fact less than 2% for the highest ion,

O
+5. Assuming that these e�ects themselves are captured accurately to within 2% in our

methodology, the result is an uncertainty of 0.4 parts per thousand for Z = 8.

In the paper [M11] we present similar data for the six terms and dipole transitions

between these terms, for Z = 3 to Z = 8. Table I from [M11] contains energy level infor-
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mation, the �ne structure splitting, and the lifetimes computed from the allowed E1 tran-

sitions. These values are similar to the non{relativistic values reported by Chung [169],

but show the relativistic e�ect. Table II reports the transition energy, line strength (in

length from), oscillator strength, and transition rate.

4.4 The negative ion of boron [M1, M2]

Ab initio calculations of electron a�nities for even small systems have been a challenge for

many atomic and molecular codes. Quantum chemical calculations strive for "chemical

accuracy" of 1 kcal/mol (about 40meV), but in experimental atomic physics an accuracy

of a few meV is desirable. Though the electron a�nity of carbon has been measured to an

accuracy of 0.3 meV [172], the experimental uncertainty in the electron a�nity of boron

is 10 meV [172].

Many calculations for electron a�nities have been performed for the �rst row elements,

including boron. Most are quantum chemical basis{set methods [173, 174] where basis{set

truncation errors are present as well as errors arising from an unbalanced treatment of

correlation in the atom and anion. Some very acurate valence correlation results have

been reported by Noro et al. [175] using multireference con�guration interaction calcu-

lation. The best results were obtained when the weight of the reference states was the

same in both systems. In boron the quadrupole correction appeared not to be needed

since it changed their value of 278 meV to 273 meV. The former compared well with

the experimental value of 277(10) meV [172] but, in fact, both are within experimental

uncertainty. For carbon, their corrected value of 1.264 eV was the more accurate when

compared with the most recent electron a�nity of 1.2629(3) eV [172]. In this subsection

there is presented the study of the electron a�nity of ground state [M1] and the excited

2s2p2 4
P state [M2]. The Table 23 compares the present results with other theories and

experiment of the electron a�nity of ground state.

Most theoretical results are for valence correlation. Let us consider this limit �rst,

omitting the relativistic correction.

Because of the greater complexity of correlation in the anion, some correlation can
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Table 23: A comparition of the present non{relativistic electron a�nities (in

meV) from di�erent theories.

Reference Valence corr. With core polarization Experiment

Hotop and Lineberger [172] 277(10)

Present 273.2(2) 279.5(20)

Sundholm and Olsen [178] 286.6(17) 267.8(20)

Noro et al. (with correction) [175] 273

Kendell et al. [173] 263

Raghavachari [174] 269

Kancerevi�cius [176] 32

easily be lost and most of the theories have predicted electron a�nities that are too small.

Raghavachari [174] used a perturbation scheme with which it is di�cult to compare other

than the �nal value. Kancerevi�cius [176] used multicon�guration approximation only for

the outer shells. Kendell et al. [173] and Noro et al. [175] both used a multireference

single and double con�guration interaction scheme but with di�erent bases. The latter

recognized the importance of computing energy di�erences from calculations where the

weight to the reference con�gurations was the same in both states. They also used the

Davidson correction [177] for estimating the remaining quadrupole corrections. Plots of

the energies as a function of the weight of the reference state were 
atter and easier to

extrapolate. For boron, their estimate of the electron a�nity was 273 meV, though their

uncorected value of 278 meV appeared to be more accurate in that the agreement with

experiment was better. However, we believe this limit is 273.2 meV, in agreement with

their corrected value.

In many respects, the present calculations are most like those of Sundholm and

Olsen [178]. In fact, for valence correlation up to n = 5 our total energies are in perfect

agreement. However, thereafter, Sundholm and Olsen estimate e�ects in a di�erential

manner from which they determine the valence correlation limit to be 269.6(17) meV.

It would appear that the di�erent e�ects are enhanced when they are all considered to-

gether. Again, the e�ect of core{valence correlation was estimated from a small expansion

including only s and p orbitals in the basis. A reduction in the electron a�nity was pre-
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dicted by this process whereas in our calculation a small increase was predicted from

core{valence together with core rearrangement. Buth of us agree on the reduction of the

electron a�nity by the relativistic e�ect though our estimate of -1.1 meV was obtained

from the n = 9 valance correlation calculation using the non{�ne{structure contributions

of the Breit{Pauli Hamiltonian (omitting the orbit{orbit interaction).

4.5 Atomic properties of lithium{like ions [M12]

The multicon�guration Hartree{Fock method (MCHF) is used for calculating the non{

relativistic limit of electric dipole transition probabilities, isotope shifts and hyper�ne

structure parameters involving the terms 3s 2
S, 3p 2

P
o, 3d 2

D, 4s 2
S, and 4p 2

P
o of the

stable isotopes of ions Li I, Be II, B III, C IV, N V and O VI. Comparison with the most

recent observations and other theoretical calculations is done for selected examples.

4.5.1 Oscillator strengths

The length and velocity oscillator strengths of the resonance line 2s� 2p are compared in

Table 24 with the non{relativistic full{core{plus correlation (FCPC) results of Chung [169]

and with the Hylleraas{type variational (HV) results of Yan et al. [168], corresponding to

the in�nite nuclear mass limit (f1). The present MCHF approach cannot compete with

this exceptional accuracy, but as it can be seen from this table, is of the same quality as

the FCPC method.

4.5.2 Isotope shifts

As an illustration of the accuracy of the present results, we compare the present results

with observation and other theories for neutral lithium. The isotope shifts of a series of

lines have been measured for the isotope pair 6;7Li using Fourier{transform spectroscopy

by Radziemski et al. [158] and, for the resonance line, isotope shifts have been derived from

Doppler{free frequency{modulation spectroscopy (Sansonetti et al. [179]). The transition

isotope shifts (in cm�1) are reported in Table 25 for the eight E1 transitions considered

and are compared with observation. The agreement is very nice, even in cases for which
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Table 24: Comparison between theoretical non{relativistic oscillator strengths

in lithiumlike ions

MCHF FCPC HV

fl fv fl fv f1

2s 2
S � 2p 2

P
o

Li I 0.74704 0.74690 0.74704 0.74704 0.746 956 939 6(98)

Be II 0.49812 0.49807 0.49813 0.49820 0.498 067 381(25)

B III 0.36327 0.36325 0.36329 0.36340 0.363 243 128 5(92)

C IV 0.28423 0.28421 0.28429 0.28429 0.284 204 795 2(30)

N V 0.23299 0.23298 0.23299 0.23300 0.232 970 178 3(15)

O VI 0.19724 0.19724 0.19725 0.19725 0.197 228 627 94(79)

strong cancellation occurs between normal mass shift (NMS) and speci�c mass shift (SMS)

contributions.

4.5.3 Hyper�ne structures

The purpose of our study is to evaluate the accuracy of the hyper�ne parameters cal-

culated with the MCHF method using large con�guration expansions. The most recent

theoretical work on hyper�ne structures in lithium{like ions is due to Guan andWang [180]

who studied the convergence of the non{relativistic parameters using \full core plus cor-

relation" (FCPC) wave functions for the low{lying states 1s2ns 2 and 1s2np 2
P
o(n � 5).

Table 26 collects the MCHF results for some levels of 7Li I for which experimental data

are available. In the same table, a second set of theoretical results labelled MCHFc is

presented, corresponding to the MCHF values corrected for both relativistic e�ects and

�nite nuclear mass. The �nite nuclear mass e�ect has been introduced by multiplying the

MCHF result by the appropriate mass scaling factor (�=m)3. The relativistic e�ects are

taken into account by using the Dirac{Fock/Hartree{Fock ratio of the hyper�ne param-

eters obtained in the one{con�guration approximation. For 2s and 3s, Hylleraas{type

variational (HV) calculations are also available (Yan et al. [181]) for comparison.

The signi�cant discrepancy for 3s 2
S of 7Li I between theory and experiment, pointed

out by Yan et al. [181], is con�rmed by the MCHF study. A similar problem appears for
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Table 25: Comparison between theoretical non{relativistic and experimental

isotope shifts

Transition MCHF (this work) Obs.(FS)

NMS SMS total

2s 2
S � 2p 2

P
o 0.1940 0.1573 0.3512 0.3511(5)

2s 2
S � 3p 2

P
o 0.4025 0.0740 0.4765 0.48(2)

2p 2
P
o
� 3s 2

S 0.1601 -0.1293 0.0308 0.0311(10)

2p 2
P
o
� 3d 2

D 0.2132 -0.1204 0.0927 0.0932(15)

2p 2
P
o
� 4s 2

S 0.2617 -0.1239 0.1378 0.1383(10)

3s 2
S � 3p 2

P
o 0.0484 0.0461 0.0945 0.0943(10)

3p 2
P
o
� 3d 2

D 0.0047 -0.0372 -0.0325 {

3p 2
P
o
� 4s 2

S 0.0532 -0.0406 0.0125 0.0127(10)

Table 26: Comparison between theoretical non{relativistic and experimental

hyper�ne parameters

Theory Experiment

Ion Level A(MHz) Method A(MHz) ref.

7Li I 2s 2
S1=2 401.714 HV 401.7520433(5) Beckmann et al. [182]

401.352 FCPC

401.63 MCHF (this work)

401.76 MCHFc (this work)

3s 2
S1=2 93.251 FCPC 94.68(22) Stevens et al. [183]

93.09 HV

93.055 MCHF (this work)

93.084 MCHFc (this work)

4s 2
S1=2 35.068 FCPC 36.4(4) Kowalski et al. [184]

35.08 MCHF (this work)

35.09 MCHFc (this work)

3d 2
D3=2 838.6 kHz MCHF (this work) 843(41) kHz Burghardt et al. [185]

838.4 MCHFc (this work)

3d 2
D5=2 343.2 kHz MCHF (this work) 343.6(1.0) kHz Burghardt et al. [185]

343.1 MCHFc (this work)
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the more excited state 4s 2
S for which both the FCPC and MCHF values fall outside the

experimental uncertainty. For 7Li 3d 2
D3=2;5=2, the hyper�ne interaction constants A have

been determined using two{photon Doppler{free laser spectroscopy. To the knowledge of

the authors, our work provides the �rst theoretical evaluation of these and the agreement

between theory and observation is very satisfactory.

4.6 Ab initio studies on energies and lifetimes for [Ar]3d84p 2S+1
L

levels of Ni II [M15]

Nickel is known to be an essential component in the manufacturing of stainless steel and

other corrosion{resistant alloys. In combination with titanium and chromium, various

nickel alloys occur inside of magnetic fusion devices as a �rst{wall material. Therefore,

knowing the spectral data of nickel at di�erent stages of ionization is important both for

plasma diagnostics and for a better understanding of the in
uence of impurities on the

temporal behaviour of fusion plasmas. Moreover, reliable data for the highly abundant

iron{group elements not only are helpful in fusion research but are also needed for the

interpretation of astronomical observations since the iron{group elements often dominate

the photospheric spectra of many stellar objects. For a reliable spectral synthesis, for

example, one not only requires information about a few individual lines but also often

needs the (theoretical) knowledge of the line intensities for a whole spectral range in order

to be able to substract away the dominant parts of some spectrum, thereby opening up

access to much weaker lines of other, lower{abundance elements.

For the low{lying levels of Ni II, the need for accurate transition data has led to several

compilations in the past which list wavelengths and transition probabilities in the optical

and near{ultraviolet region [186, 187]. A critical and very useful review on the available

transition data of nickel atoms and ions (at di�erent stages of ionization) was carried

out, in particular, by Wiese and Musgrove [188], who provide wavelengths and transition

rates for several prominent lines as well as for less intense ones. However, as pointed out

by Wiese and Musgrove, some of the transition probabilities are (presumably) not very

accurate and provide just a �rst approximation to these spectra. Also, the overall amount
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of available data remains small and much work needs to be done before these spectra

are fully understood. Apart from earlier measurements on Ni II in the past, Ferreroem

et al. [189] recently determined branching rations for several strong lines from which

they derived absolute transition probabilities by applying semiempirical computations of

lifetimes that they compared with the lifetime measurements of Lawler and Salih [190].

The rather small amount of the presently available data for Ni II is related to the lack

of accurate structure calculations on spectra with open d shells. For a long time, such

computations have not been feasible due to the complexity of this open{shell structure. To

demonstrate recent progress in the �eld of atomic structure calculations and to facilitate

the identi�cation of further lines of the (low{lying) Ni II spectrum, we reported the energy

and lifetimes calculations for Ni II in the paper [M15]. These calculations were performed

using multicon�guration Dirac{Fock method. The Table 27 lists the excitation energies

of the 18 even{parity levels (from the 3d9 and 3d84s) and the 45 odd{parity levels. The

liftimes of odd{parity levels included in it as well.

All energies in Table 27 are given with respect to the 2
D5=2 ground state. Even

though di�erences of up to 2000 cm
�1 occur for a few of the higher levels, the levels

ordering is well reproduced with only a very few "crossings" for levels with di�erent

symmetries. Somewhat larger deviations arise for the two highest levels (3d74s4p 6
F3=2

and 3d74s4p 6
F1=2), which, in fact, belong to the 3d74s4p con�guration. These two levels

are described only very approximately in the present computation.

4.7 Studies of Gd ionization energy from [Xe]4f75d6s2 9
D to

[Xe]4f75d6s 10
D [M22]

There is considerable current interest in understanding lanthanide chemistry and physics,

for example, in the �eld of catalysis (Jeske et al. [191] and high{temperature supercon-

ductors (Rao and Raveau [192]). The ground con�gurations of those chemical elements

have one open 4f{shell. This fact brings major di�culties for their theoretical study and

is the main reason of the sparseness of theoretical data on lanthanides. The aim of the

work Gaigalas et al. [M22] was to apply the MCHF approach to evaluate Gd ionization
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Table 27: Excitation energies and liftimes for Ni II.

Ni II Levels Energy (cm�1) Lifetimes (ns)

Cal. Exp. [193] Length Velocity

even-parity

3d9 2
D5=2 0.00 0.00

3d9 2
D3=2 1503.40 1506.94

3d84s 4
F9=2 6607.36 8393.90

3d84s 4
F7=2 7922.01 9330.04

3d84s 4
F5=2 8878.02 10115.66

3d84s 4
F3=2 9295.52 10663.89

3d84s 2
F7=2 12140.31 13550.39

3d84s 2
F5=2 13890.34 14995.57

3d84s 4
P5=2 23581.05 23108.28

3d84s 2
D3=2 24345.30 23796.18

3d84s 4
P3=2 25738.96 24788.20

3d84s 4
P1=2 25662.15 24835.93

3d84s 2
D5=2 25904.63 25036.38

3d84s 2
P3=2 30053.83 29070.93

3d84s 2
P1=2 30681.53 29593.46

3d84s 2
G9=2 33760.76 32499.53

3d84s 2
G7=2 33841.97 32523.54

3d84s 2
S1=2 64649.62 68709.76

odd-parity

3d84p 4
D7=2 49367.60 51557.85 2.62 2.37

3d84p 4
D5=2 50833.69 52738.45 2.58 2.36

3d84p 4
G9=2 51046.58 53365.17 2.54 3.18

3d84p 4
G11=2 50914.90 53496.49 2.30 2.96

3d84p 4
D3=2 50876.20 53634.62 2.63 2.39

3d84p 4
D1=2 52326.12 54176.26 2.63 2.41

3d84p 4
G7=2 52262.47 54262.63 2.41 2.97

3d84p 4
F9=2 52308.56 54557.05 2.35 2.61

3d84p 4
G5=2 52929.67 55018.71 2.39 3.04

3d84p 2
G9=2 53438.86 55299.65 2.52 4.01

3d84p 4
F7=2 53441.05 55417.84 2.28 2.52

3d84p 4
F5=2 54296.04 56075.26 2.29 2.46

3d84p 2
G7=2 54384.79 56371.41 2.84 3.28
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Table 27: (continued).

Ni II Levels Energy (cm�1) Lifetimes (ns)

Cal. Exp. [193] Length Velocity

3d84p 4
F3=2 54523.06 56424.49 2.32 2.52

3d84p 2
F7=2 55166.12 57080.55 1.12 1.20

3d84p 2
D5=2 55440.46 57420.16 1.83 1.57

3d84p 2
F5=2 56610.26 58493.21 2.10 1.93

3d84p 2
D3=2 56970.20 58705.95 1.80 1.25

3d84p 4
P5=2 66418.58 66571.34 2.40 2.40

3d84p 4
P3=2 66512.96 66579.71 2.54 2.51

3d84p 4
P1=2 67092.37 67031.02 2.68 2.73

3d84p 2
F5=2 67480.84 67694.64 2.38 2.69

3d84p 2
F7=2 67853.95 68131.21 2.26 2.63

3d84p 2
D3=2 68163.41 68154.31 2.12 2.05

3d84p 2
P1=2 68382.88 68281.62 2.69 2.64

3d84p 2
D5=2 68848.17 68735.98 2.08 2.03

3d84p 2
P3=2 69034.72 68965.65 2.50 2.46

3d84p 4
D5=2 70992.44 70635.46 2.23 2.56

3d84p 4
D3=2 71075.84 70706.77 2.26 2.67

3d84p 4
D1=2 70891.95 70748.70 2.27 2.67

3d84p 4
D7=2 71067.06 70778.12 2.18 2.55

3d84p 2
D5=2 72085.42 71770.83 2.41 2.59

3d84p 2
D3=2 72577.04 72375.42 2.06 2.12

3d84p 2
P3=2 73015.99 72985.65 1.26 1.25

3d84p 2
P1=2 74181.40 73903.25 1.27 1.25

3d84p 2
S1=2 74820.07 74283.33 2.09 2.14

3d84p 4
S3=2 74921.03 74300.93 1.91 2.12

3d84p 2
H9=2 75783.57 75149.48 2.66 3.59

3d84p 2
H11=2 76172.04 75721.68 2.60 3.40

3d84p 2
F7=2 76648.30 75917.63 1.69 1.48

3d84p 2
F5=2 77104.81 76402.03 1.63 1.45

3d84p 2
G7=2 80796.37 79823.03 0.64 0.51

3d84p 2
G9=2 80901.72 79923.88 2.12 2.36

3d74s4p 6
F3=2 109084.45 88582.01

3d74s4p 6
F1=2 108456.76 88881.59
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energy. The methodology (see Subsection 2.1) and developments (see Subsection 3.3)

implemented in the ATSP MCHF code [14, 113] allow to study the con�gurations with

open f{shells without any restrictions.

4.7.1 Restricted active space construction

In a MCHF approach, the wave function is expressed as a liner combination of con�gura-

tion state functions which are antisymmetrized products of one{electron spin{orbitals. A

set of orbitals, or active set (AS), determines the set of all possible CSFs or the complete

active space (CAS) for a multicon�guration Hartree{Fock (MCHF) calculations. The size

of the latter grows rapidly with the number of electrons and also the size of the active

set. Most MCHF expansions are therefore limited to a restricted active space (RAS).

Model I. It follows already from the single con�guration Hartree{Fock calculation

that 4f function (mean distance< r > is 0.78897 a.u.) is closer to the nucleus than 5s, 5p,

5d, 6s (mean distances < r > = 1.45141, 1.61997, 2.46260 and 4.57121 a.u. respectively).

Therefore it is quite reasonable to assume that ionization energy from 4f75d16s2 9
D

to 4f75d16s1 10
D can be evaluated by using the wave functions of

1s22s22p63s23p63d104s24p64d105s25p64f7 � [Xe]4f7

obtained solving the single con�guration Hartree{Fock equations. When solving the

MCHF equations, these shells are frozen and only the remaining shells from the active set

are allowed to vary. In other terms it is assumed that both the Gd atom and Gd+ ion in

the ground state have the same core [Xe]4f7 8
7S and that correlation e�ects within the

core compensate each other between the neutral atom and the ion.

In order to check this assumption, two sets of RAS where chosen for neutral Gd and

singly ionized Gd+. In the �rst expansion the single and double excitations f4f; 5d; 6sg to

the active set f5f; 5g; 6p; 6dg were chosen (see column Ia fromTable 28). For [Xe]4f75d16s2

RAS expansion contains 2045 con�gurations and for [Xe]4f75d16s1, the RAS function con-

tains 305 con�gurations. In the second expansion (see column Ib from Table 28), SD from

f4f; 5d; 6sg to the active set f5f; 5g; 6p; 6d; 6f; 6g; 6h; 7s; 7p; 7dg were included. The num-

ber of CSFs becomes 10074 and 1445 for Gd and Gd+ respectively. Our MCHF results
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Table 28: Comparison of ionization energies (IE) in di�erent approaches in

eV. NCSF is the number of con�guration state functions.

Ia Ib IIa IIb HF CI [194] Expt. [195, 196]

NCSF (9D) 2045 10074 75 321

NCSF (10D) 305 1445 6 24

IE 5.08 5.21 5.50 5.57 4.525 5.249 6.150

are close to the large scale non{relativistic con�guration{interaction (CI) calculations

performed by Sekiya et al. [194].

Model II. Let us assume as above that both the Gd atom and the Gd+ ion have in

the ground state the same core [Xe]4f7 8
7S. As above, excitations from f4f; 5d; 6sg are

considered but only con�gurations of the form

[Xe]4fN 8
7S nln

0
l
0 (N = 7; 6)

are kept in the RAS expansions.

The results of calculations are presented in Table 28, columns IIa ir IIb. In approach IIa,

the RAS expansions were obtained taking single and doubles excitations from f4f; 5d; 6sg

to the active set f5f; 5g; 6p; 6dg, producing 75 and 6 CSFs respectively. In approach IIb,

SD excitations from f4f; 5d; 6sg to the active set f5f; 5g; 6p; 6d; 6f; 6g; 6h; 7s; 7p; 7dg were

considered with 321 and 24 con�gurations for Gd and Gd+ respectively.

As we can see, Model II leads to IE values which are closer to experiment than the

values resulting from Model I or from the CI non{relativistic calculations of Sekiya et

al. [194]. We conclude that Model II is more appropriate for the calculation of accurate

Gd ionization potentials and that RAS must be constructed on that basis. The size

of RAS expansions has been reduced substancially. This gain factor is fairly important

because a much larger number of shells can be included for building the CSFs expansions.
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Table 29: Comparison of non{relativistic ionization energies in di�erent ap-

proaches, in eV.

Cases NCSF NCSF E( 9
D) E( 10

D) IP

( 9
D) ( 10

D) a.u. a.u. eV

Non-relat. MCHF (S, D)

Ib 10 074 1445 -10820.8459 -10820.6545 5.208

Non-relat. MCHF (S, D)

IIa 75 6 -10820.7003 -10820.4983 5.496

IIb 321 24 -10820.7042 -10820.4996 5.568

IIc 804 58 -10820.7046 -10820.4997 5.576

Non-relat. MCHF (S, D, T)

IIIa 125 6 -10820.7010 -10820.4983 5.515

IIIb 974 24 -10820.7052 -10820.4996 5.596

IIIc 3806 58 -10820.7056 -10820.4997 5.604

Non-relat. HF calculation -10820.6612 -10820.4949 4.525

Non-relat. CI (see Sekiya et al. [194]) -10820.8548 5.249

4.7.2 6s ionization energy

Calculations are performed in the framework of Model II. Table 29 presents IE using

non{relativistic MCHF approach. The RAS rules for Ia, IIa, IIb were discussed above.

For IIc the RAS expansion was constructed as for IIa and IIb, but considering singles and

doubles exitations from f4f; 5d; 6sg to a larger set

f5f; 5g; 6p; 6d; 6f; 6g; 6h; 7s; 7p; 7d; 7f; 7g; 7h; 7i; 8s; 8p; 8dg :

For IIIa, IIIb and IIIc the RAS wave functions were formed as for IIa, IIb and IIc but also

including the triple excitations. In this way, the RAS expansions for the ground state of

the Gd atom contain up to 125, 974 and 3806 con�gurations for the a, b, c active sets.

For the ground state of singly ionized Gd+, the number of con�gurations remained the

same.

As already mentioned, the Ib results are fairly close to the non{relativistic CI calcu-

lations of Sekiya et al. [194]. One can expect that with the increase of the active space,

the result will approach the non{relativistic CI data. However, using RAS expansions

built on the basis of Model II, the simplest case (IIa) gives results which are much more
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Table 30: Comparison of ionization energies in di�erent approaches with rel-

ativistic corrections, in eV.

Cases NCSF( 9
D) NCSF( 10

D) E( 9
D) E( 10

D) IP

a.u. a.u. eV

Relativistic MCHF (S, D)

Ib 10 074 1445 -11221.68661 -11221.49031 5.341

Relativistic MCHF (S, D)

IIa 75 6 -11221.52628 -11221.31761 5.678

IIb 321 24 -11221.53826 -11221.32587 5.780

IIc 804 58 -11221.54190 -11221.32853 5.806

Relativistic MCHF (S, D, T)

IIIa 125 6 -11221.52696 -11221.31761 5.697

IIIb 974 24 -11221.53932 -11221.32587 5.808

IIIc 3806 58 -11221.54305 -11221.32853 5.837

HF with relativistic correction (see Sekiya et al. [194]) 4.89

Relativistic HF (see [197, 198])

-11274.2171 -11274.0259 5.204

CI with Davidson Q correction (see Sekiya et al. [194])

-10820.8662 5.468

Estimate (see Sekiya et al. [194]) 5.84

Experiment (see [195, 196]) 6.150

accurate than those of Sekiya et al. [194], using CI with Davidson Q correction (CI+Q)

for taking the quadrupols into account (see Table 30). The e�ect of correlation on Gd

ionization energy is much more important than it was thought before.

Our �nal results are presented in Table 30. They are obtained using MCHF method

including the relativistic shift corrections and the various RAS expansions decribed above.

They are compared with the relativistic HF (see [197, 198]), with the results of Sekiya

et al. [194] and experimental data [195, 196]. As expected, the best agreement with

observation is achieved using Model IIIc. Our approach gives the most accurate results,

compared to CI with Davidson Q correction method used in [197, 198].

Our results are in excellent agreement with the estimated results of Sekiya et al. [194]

which have been obtained by adding the extra relativistic corrections, estimated from

both non{relativistic and relativistic HF calculations, to the CI+Q values.
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* * *

So, the software based on improvements presented in habilitation work allows us to

e�ciently account for correlation efects practically for any atom or ion of periodical table,

atoms with open f
N shell included in both non{relativistic and relativistic approxima-

tions.
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5 CONCLUSIONS

The approach to matrix element evaluation, presented in the habilitation work, is based on

the combination of the angular momentumtheory as described in Jucys and Bandzaitis [51],

on the concept of irreducible tensorial sets (Judd [37], Rudzikas and Kaniauskas [39]), on a

generalized graphical approach (Gaigalas et al. [52]), on the second quantization in coupled

tensorial form (Rudzikas and Kaniauskas [39]), on the quasispin approach (Rudzikas [4]),

and on the use of reduced coe�cients of fractional parentage (Rudzikas [4], Rudzikas [101],

Judd [37]). All this, in its entity, introduces a number of new features, in comparison

with traditional approaches. Based on the development of the above{mentioned methods

(Section 2) in the habilitation work there is a software created (see Section 3) for theo-

retical studies of many{electron atoms and ions. These are three independent programs

(Racah III, ANCO and SAI). The calculations performed in the work demonstrate the ef-

fectiveness of the methods and programs. The following main conclusions may be drawn

from the results of the habilitation work:

1. A number of theoretical methods is known in atomic physics that facilitate a lot the

treatment of spin{angular parts of matrix elements, among them the theory of angu-

lar momentum, its graphical representation, the quasispin, the second quantization

in its coupled tensorial form. But while treating the matrix elements of physical

operators in general including ones, non{diagonal with respect to con�gurations,

the methods mentioned above are usually applied only partly or ine�ciently.

An idea of unifying all these methods in order to optimize the way to treat the

general form of matrix elements of physical operators in atomic spectroscopy is

presented and carried out in this work. It allows us to investigate e�ciently even

the most complex cases of atoms and ions, in the both non{relativistic and relaivistic

approaches.

2. In the methodology described, the application of Wick's theorem for the products

of second quantization operators from Table 1 and Table 8, where they have the

values of quantum numbers already de�ned, is proposed. This allows one to obtain
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immediately the optimal tensorial expressions for any operator, using the method-

ology of second quantization in coupled tensorial form. Then, in treating the matrix

elements of physical operators, the advantages of a new modi�cation of the Racah

algebra are exploited to their full extent.

3. The general tensorial expressions of a two{particle operator (see (7) and (74)),

presented in this work, allow one to exploit all the advantages of tensorial al-

gebra. In particular, this is not only a reformulation of spin{angular calcula-

tions in terms of standard quantities, but also the determination beforehand from

symmetry properties, which matrix elements are equal to zero without perform-

ing further explicit calculations. That is determined from the submatrix elements

T

�
ni�i; nj�j ; n

0
i
�
0
i
; n

0
j
�
0
j
;�bra

;�ket
;�;�

�
(see Subsection 2.3.1).

4. The tensorial form of any operator presented as products of tensors a(q�), W (kqk�),h
a
(q�)�W

(kqk�)
i(KqK�)

,
h
W

(kqk�) � a
(q�)

i(KqK�)
,
h
W

(kqk�) �W
(k0qk

0

�
)
i(KqK�)

, (� = ls

for LS{coupling and � = j for jj{coupling) allows one to exploit all the advantages

of a new version of Racah algebra based on quasispin formalism. So, the application

of the Wigner{Eckart theorem in quasispin space for (7) and (74) provides an oppor-

tunity to use the tables of reduced coe�cients of fractional parentage and tables of

the other standard quantities (Subsections 2.3.3 and 2.4), which do not depend on

the occupation number of a shell of equivalent electrons. Thus, the volume of tables

of standard quantities is reduced considerably in comparison with the analogous

tables of submatrix elements of tensorial operators U (k), V (k1) (for LS{coupling) or

T
(k) (for jj{coupling) and the tables of coe�cients of fractional parentage. These

tables cover all the electronic con�gurations needed in practice. This undoubtedly

makes the inclusion of shells of equivalent f{electrons (for LS{coupling) or j = 9=2

(for jj{coupling) with arbitrary occupation numbers considerably easier, and the

process of selecting the standard quantities from the tables becomes simpler.

5. The formulas (7) and (74) are suitable to calculate any possible cases of matrix el-

ements, non{diagonal with respect to con�gurations and acting upon the quantum

numbers of up to four di�erent shells included. Tensorial parts of these two{particle
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operators are expressed in terms of �ve types (8){(12) for LS{coupling and (110){

(114) for jj{coupling of tensorial products of second quantization operators acting

in quasispin space. Distribution of shells, upon which the second quantization oper-

ators are acting, that appear in the submatrix elements of any two{particle operator

when the wave functions have an arbitrary number of open shells is presented in

Table 1 for LS{coupling and Table 8 for jj{coupling. All this leads to the most

general and e�cient tensorial expressions of an arbitrary two{particle operator.

6. The new modi�cation of the diagrammatic technique presented in this work allows

us to �nd graphically in an e�cient way the irreducible tensorial expressions for

general two{particle operator in all cases of shell's distributions 1{42 from Table 1

and Table 8.

7. The simpli�cations of some terms of the Breit{Pauli Hamiltonian written in the

general irreducible tensorial form and suitable for evaluation of the both diagonal

and non{diagonal, with respect to con�gurations, matrix elements in the case of

arbitrary number of open shells (namely, spin{other{orbit (see, e.g., formulas (52),

(56) and (57)) and orbit{orbit ((69) and (70))) simpli�es their calculation and, thus,

increases the e�ciency of the methodology and software presented in this work.

8. The tensorial forms of a two{particle operator (see (7) and (74)), allow one to obtain

simple expressions for the recoupling matrices (Subsection 2.3.2 e.g., formulas (75),

(79), (80), (83), (85), (87), (88) and (94)). Hence, the computer code based on this

approach would use immediately the analytical formulas for recoupling matrices

R

�
�i; �j ; �

0
i
; �

0
j
;�bra

;�ket
;�
�
. This feature also saves computing time, because i)

complex calculations leading �nally to simple analytical expressions (Bar{Shalom

and Klapisch [28]) are avoided, and ii) a number of momenta triads (triangular

conditions) can be checked before the explicit calculation of a recoupling matrix

leading to a zero value. These triangular conditions may be determined not only for

the terms of shells that the operators of second quantization act upon, as is the case

of the submatrix elements T
�
ni�i; nj�j ; n

0
i
�
0
i
; n

0
j
�
0
j
;�bra

;�ket
;�;�

�
, but also for the

rest of the shells and resulting terms.
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9. In this approach both diagonal and non{diagonal, with respect to con�gurations,

matrix elements are considered in a uniform way, and are expressed in terms of

the same quantities, namely, reduced coe�cients of fractional parentage or reduced

submatrix elements of standard tensors, which are independent of the number of

electrons in a shell. The di�erence is only in the values of the projections of the

quasispin momenta of separate shells. The complete numerical tables of these quan-

tities allow practical studies of any atom or ion of periodical table using the both

LS{ or jj{coupling.

10. The Racah III (see Section 3.1) program facilitates the use of standard quantities

in the evaluation of many{electron matrix elements in atomic structure theory. It is

based on symbolic programming. The program Racah III developed in this work

is useful for evaluating the expressions from the theory of angular momentum and

helpful for such (complex) expressions for which the known algebraic methods start

to become tedious and prone to making errors. All basic entities are now easily

accessible or can be modi�ed within a few additional lines of code. In the past,

such developments were often hampered by the low 
exibility in using the reduced

coe�cients of fractional parentage and reduced matrix elements.

11. The program ANCO (see Section 3.2) is designed for large scale atomic structure

calculations and its computational cost is less than that of the corresponding angular

modules of GRASP92 [16]. From the results presented in Table 10 we conclude that

the new program though not much faster in simple cases, works much better in more

complicated cases. The fact that ANCO calculates approximately twice the number

of spin{angular coe�cients as GRASP92 reduces the e�ective cost per coe�cient by

a further factor of two. Therefore, the computer programs based on the approach

presented in the habilitation work allow one to use the new program organization

for large scale calculation: spin{angular coe�cients are calculated when they are

needed without using hard disk; therefore the calculation with this program is much

faster.

12. The library SAI (see Section 3.3) supports large scale computations of open{shell
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atoms using multicon�gurationHartree{Fock or con�guration interaction approaches

and may be useful for developing codes for calculating the spin{angular parts of ef-

fective operators from many{body perturbation theory and orthogonal operators

or for evaluating the relativistic Hamiltonian in LS{coupling as well as for various

versions of semi{empirical methods.

13. Timing comparison of old and new codes indicates that for complex electronic con-

�gurations new programs are much faster, leading to speed{up of 3{8 times (see

Table 10) or even 5{12 times (see Table 11).

Beyond further developments in atomic structure theory, programs presented may

in
uence also the research work in neighbouring �elds like nuclear structure and the

scattering of particles and light in composite systems. In these �elds, quantitave

investigations are often based on very similar entities which could be incorporated

as well in the framework of the Racah III package.

14. The methods developed and software based on the improvements presented in the

habilitation work allows us to e�ciently account for correlation e�ects practically

for any atom or ion of periodical table, atoms with open fN shell included in both

non{relativistic and relativistic approximations.

15. Indeed, ab initio calculations performed indicate that the methods developed as

well as the programs written enable us to get energies, wavelengths of electronic

transitions, oscillator strengths, transition probabilities, lifetimes of excited levels,

electron a�nities of negative ions, isotope shifts, hyper�ne structure as well as

the other atomic properties of high accuracy in di�erent approximations and using

computer equipment of di�erent capacity and type.

� Transition rate, computed using MCHF for the 2s2 1
S0 � 2s3p 3

P
o

1 intercombi-

nation line, leads to the value of 10.27 � 0.20 s�1 for B II and 103.0 � 0.4s�1

for C III. The latter is in excellent agreement with the value of 102.94 � 0.14

s�1 obtained by Doerfert et al. [132] from an extremely accurate storage ring

experiment.
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� The results from systematic MCHF studies of the 2s2 1
S0� 2s3p 3

P
o

1 intercom-

bination line in the Be{like sequence in the rage of Z = 4 { 10, reported for

valence and core{valence models of correlation, indicate that, the inclusion of

core{valence correlation is essential for obtaining good agreement for the �ne

structure splitting. The most accurate transition rates are in good agreement

with the rates predicted from a semi{empirical analysis of experimental data.

� Systematic MCHF procedures, applied to the study of the electron a�nity of

boron, for a valence correlation calculation give an electron a�nity of 273.2(2)

meV, which is reduced by 1.1 meV by a relativistic correction. Core polar-

ization and core rearrangement were found to increase the electron a�nity to

279.5(20) meV. The latter agrees well with the experimental value of 277(10)

meV. An electron a�nity of the boron relative to the 2s2p2 4
P state is predicted

(1.072 eV).

� A complete tabulation of wavelengths and transition probabilities is presented

for transitions between the 3d9 � 3d84p and the 3d84s � 3d84p con�gurations

of Ni II. For these con�gurations with an open d shell, we applied extensive

MCDF wave functions to compute excitation energies, transition probabilities,

and lifetimes. Our ab initio data are compared with available measurements

and other calculations, where the overall agreement is seen to be satisfactory.

Experimental data are still very scarce for these two transition arrays. There-

fore, the present data set not only supports the evaluation of the currently

available data base, but may also help to identify or calibrate additional (less

intense and intercombination) lines in the low{lying spectrum of Ni II.

� The ab initio results of Gd ionization energy from 4f75d6s2 9
D to 4f75d6s 10

D

are in excellent agreement with experimental, data thus also demonstrating

the e�ciency of the approach and software even for very complex electronic

con�gurations and heavy atoms.

16. The created programs were installed in the computers of di�erent capacity in a

number of countries (Vanderbilt University (Computer Science Department, USA),
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Universite Libre De Bruxelles (Laboratoire de Chimie Physique Mol�eculaire, Bel-

gium), Universit�at Kassel (Fachbereich Physik, Germany), Institute of Theoretical

Physics and Astronomy (Department of the Theory of an Atom, Lithuania), Vilnius

Pedagogical University (General Physics Department, Vilnius), Vilnius Technical

University (Computer department, Vilnius)) and they were, are and will be success-

fully used to get various characteristics of high accuracy of many{electron atoms

and ions. The created methods and programs fully enable us to use both the parallel

and symbolic programming as well as the existing resources of supercomputers and

personal computers.
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Pad_eka

D_ekoju Teorin_es �zikos ir astronomijos institutui, sudariusiam sa�lygas atlikti �si� darba�.

Rei�skiu nuo�sird�zia� pad_eka� savo 1989 m. apgintos daktaro disertacijos vadovui akademikui

Zenonui Rudzikui, pad_ejusiam �zengti pirmuosius �zingsnius moksliniamedarbe, u�z nuolatini�

d_emesi�, parama� ir konsultacijas sprend�ziant mokslines problemas, si�ulytas id_ejas, nuo�sird�zia�

pagalba� ra�sant habilitacini� darba� bei vertingas pastabas.

D_ekoju prof. P. Bogdanovi�ciui ir prof. R. Karazijai u�z vertingus patarimus ir artimiau-

siems kolegoms dr. A. Bernotui, dr. G. Merkeliui ir habil. dr. J. Kaniauskui u�z vaisinga�

bendradarbiavima�.

Esu d_ekingas prof. Ch. Froese Fischer (Vanderbilto universitetas, JAV), prof. M. Go-

defroid (Briuselio universitetas, Belgija), habil. dr. S. Fritzsche (Kaselio universitetas,

Vokietija), prof. I. Grant (Oksfordo universitetas, Did�zioji Britanija) ir prof. A. Audzi-

joniui (Vilniaus pedagoginis universitetas) u�z bendradarbiavima�, pasi�ulymus, galimybe�

atlikti kai kuriuos skai�ciavimus ir dali� habilitaciniame darbe apibendrinamu� tyrimu� ir

L. Kuzmickytei { u�z kruop�stu� habilitacinio darbo santraukos perskaityma� ir vertingas

pastabas.

D_ekoju visiems Teorin_es �zikos ir astronomijos instituto bendradarbiams ir darbuoto-

jams, pad_ejusiems dirbti �si� darba�.
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