NumericaL METHODS [:
Lecture I: Introduction to Computational Science

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy

email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

NIV, NI
9}5\) g@% ry \ w,?/
B 1579+ @, ; /}(
: m : E :
\:1 @) %
s = 3
7. & A Q
«ss,,m\& 05 s ysics

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

History of Computers

Numerical Methods I

using Matlab

Basic tools (3000 BC — 1600s)

Images: @Wiki, @Wiki, @Wiki

https://en.wikipedia.org/wiki/File:Kugleramme.jpg
https://commons.wikimedia.org/wiki/File:Finger_counting_China.png
https://commons.wikimedia.org/wiki/File:Countingrod.png

Clever tricks (1600s — 1800s)

14 Smus | Tangens | Secan

3t I 2506616 2582280 10]

32 2509432 2592384 103

33 2512248 2595488 10]

34 2515063 2598593 103

: ’ 3 35 l 2517879 2601699 103

,Lewa — S 36 2520694 3504805 10]

Images: @Wiki, @Wiki, @Wiki

https://en.wikipedia.org/wiki/File:Jacquard.loom.cards.jpg
https://en.wikipedia.org/wiki/File:Pascaline_-_top_view_and_mechanism.jpg
https://upload.wikimedia.org/wikipedia/commons/4/4b/Bernegger_Manuale_136.jpg

Automation (1800s — 1940s)

(i s PR PR FRLPAE

Images: @Wiki, @Columbia U. See: Stand-up maths video on 1890 census.

https://en.wikipedia.org/wiki/File:Hand-driven-jacquard-loom.jpg
http://www.columbia.edu/cu/computinghistory/census-tabulator.html
https://www.youtube.com/watch?v=YBnBAzrWeF0

Computers wanted (... — 1940s?)

Image: @NASA.

https://www.dfrc.nasa.gov/Gallery/Photo/Places/HTML/E49-54.html

Modern computers (1940s — ...)

® Modern computers got more accessible and powerful.

® They got more user—friendly as well.

Windows 10

‘We finally fixed everything

Images: @Wiki, @Know your meme

https://commons.wikimedia.org/wiki/File:Two_women_operating_ENIAC_(full_resolution).jpg
https://knowyourmeme.com/photos/954660-windows

Programming languages

Numerical Methods I

using Matlab

Programming language

Formal language used to give commands to computers. \

RTypeScript Assembly

AT

(@BASH ‘_TGO A

Respective trademarked logos are properties of their respective owners

How do we make stuft?

® Code is a set of commands written using
some programming language.

® Code is written in code editor.

® Compiler translates your code into binary
code.

Run interpreter

it
® Compiled binary code can be then run.
¢ Interpreter executes your commands in

real-time
L 4

This is just the simplest case. Bytecode compilers and transpilers are a thing too.

Low vs high “leve

® Low level languages are faster to run, but harder to write.

e High level languages are slower to run, but easier to write.

Assembly C Python

1 .module palaipsniui; 28 for(long i=0;i<realizations;i++) { 4 import numpy as np

2 begin: 29 int *series=(int *)malloc(seriesPoints*sizeo 5 import pymc3 as pm

3 CNTR=5000; 30 newNSeries(seriesPoints,gamma,mu,sigma,H,&ta 5

4 DO ciklas UNTIL CE; 31 double *complexSeries= (duub'l.e *3malluc(duubl 7 Y=np.random.dirichlet([2.5,10,1.5,15],5i
5 AR=CNTR; 32 for(long j=seriesPoints-1;j>=0;j--) {// expa 8 Vi et dn

6 TOGGLE FL1; 33 complexSeries[2*j+1]= 3 model=pm.Model ()

7 CNTR=AR; 34 complexSeries[2#j]=series[j]; 10 with model:

8 DO wait UNTIL CE; 35 } P 11 alpha=pm.Uniform(" ', lower=0.5,u
9 wait: — nop; 36 free(series); 12 Y obs=pm.Dirichlet(a=alpha,o
10 TOGGLE FL1; 37 gsl_fft_complex_radix2_forward(complexSeries 13 trace=pn.sample()

11 AxO=AR; 38 for(long j=0;j<halfSeriesPoints;j++) { 14

12 Ay0=5000; 39 // only half of complex values are usefu 15 = pm.traceplot(trace)

13 AR=Ay0-Ax0; 40 // also we no longer need imaginary part 16 ~

14 CNTR=AR; 41 complexsSeries[j]=complexSeries[2#]]*comp 17 pm.summary(trace)

15 DO waitl UNTIL CE; 42 } 18

16 waitl: nop; 43 complexSeries=(double *)realloc(complexSerie

17 ciklas: nop; 44 psdPoints=*spectraPoints;

18 TOGGLE FL1; 45 double #*cleanPsd=(double *)malloc(2*psdPoint

19 JUMP begin; 46 specModification(complexSeries, halfSeriesPoi

20 .ENDMOD; 47 free(complexSeries);

Teaching computer to make a sandwich

High level language

©® Go to restaurant.

@ Take knife, plate, bread, butter and ® Order a sandwich.
cheese. © Wait for order.

® Put a slice of the bread onto the plate. O© You have a sandwich.

© Scoop some butter with the knife.

Low level language

.

@ Spread the butter evenly on the slice of
bread.

® You have a sandwich.

Image: @Wiki

https://commons.wikimedia.org/wiki/Sandwich#/media/File:Sandwich_shop_in_Paris.jpg

A collection of pre—made code implementing a more sophisticated behavior, which is usually not
offered by the language itself.

pandas /I/pyMC3
Q@ lear: o

a | matpl: tlib
& sciPy pgthon P,

jupyter

-

®

@astrop, i

Matlab has toolboxes, there might be user contributed scripts or functions

Respective trademarked logos are properties of their respective owners

Example — this presentation

391
s g 392 \begin{frame}
® [s written using IXTEX 393 \franetitleiLiorary)
394 \begin{block}{}
113 39 395 A collection of pre--written code implementing a more sophisticated b
® Uses “beamer” package B endiolocks
397 \begin{figure}
H 3 398 \includs hics[width=0.8\textwidth]{fig/history-progr ing-languag
(llbrary) tO deﬁne the Slldes. = \e"d‘:;:;u:l;!rap ics 1=0. 8\ te 11{fig ory-pregramming-languag
400 \end{frame}
I3 . 9 461
® Uses “graphicx” package to o2 \begin frane;
463 \frametitle{Example -- this presentation}
. 404 \begin{columns}
enable pictures. a5 \begin{colum} 6. 45\textwldth}
406 \begin{b
TSR] 407 in{ }
[] Uses “Captlon package tO 408 \item Is written using \LaTeX
409 \item Uses 'beamer'' library to define the slides.
g 410 \item Uses "graphicx'' library to enable pictures.
enable ﬁgure captlons- 411 \item Uses "listings'' library to enable code listings.
412 \end{itemize}
1 . 59 413 \end{block}
® Uses “listings” package to 414 \end{column}
415 \begin{colunn}{6.45\textwidth}
s 43 416 \end{column}
enable code listings. 7 end{cotumns)

418 \end{franc}

Learn IATEX. It is nice!

Making your programming life easier

Numerical Methods I

using Matlab

You should help yourself...

“being a developer is
not stressing at all”

John - 26 yrs old

... by having a (documented) plan

o [f task is of low complexity, it is fine to
have the plan in your mind.

o [f task is of medium complexity,
formalize the plan as pseudocode.

o [f task is complex, formalize it using

flowcharts.) _‘

Image: manfredsteger @Pixabay

https://pixabay.com/vectors/pixel-cells-pixel-mindmap-3704048/

Informal language used to describe how the program operates.

get task

if task is very simple:
define plan in mind
otherwise if task is complicated:
define plan as flowchart
in all other cases:
define plan using pseudocode

while task not completed:
if plan is bad:
update plan
implement plan as program
test program

Flowcharts

Start at the top.

Rectangles — actions.

Rhombus — decision.

Circles — outcome.

Write code

Run compiler

Y

Run binary code

I

Compiled

Run interpreter

\ 4

See the output

DRY principle: Do not repeat yourself

%% 1lst line

pick pen color black
move pen to (1,1)
draw line to (1,100)

function draw_line(src,dst,color):
pick pen color color;
move pen to src;

draw line to dst;
%% 2nd line ot !

pick pen color green
move pen to (2,1)
draw line to (2,100)

%% 1lst line

draw_line((1,1), (1,100),black);
%% 2nd line

draw_line((2,1), (2,100),green);
%$% 3rd line
draw_line ((3,1), (3,100),blue);

%% 3rd line

pick pen color blue
move pen to (3,1)
draw line to (3,100)

KISS principle: Keep it stupid simple

® Single function or program should fulfill a single purpose.
® [t should fulfill that purpose well.
® Do not implement functionality, which you do not absolutely need.

® Do not over—generalize functions.

o MS Word has some basic image editing capabilities. This is not KISS, as MS Word is meant
to be word processor, not image editing software.

e Surfis KISS. It is a web browser. It has no address bar, no tabs, no bookmarks, no extensions.

Related: https://suckless.org/

https://surf.suckless.org/
https://suckless.org/

Other general guidelines

Use meaningful names
Nouns for variable names
Verbs in functions names
Use case consistently

Indent your code consistently

Provide comments to explain your code

Code lines shouldn’t be longer than 70-80

characters

Be consistent in your style

snake_case
Pros: Concise when it consists of a few words.
Cons: Redundant as hell when it gefs longer,

PascalCase

Prcs

Cors: Sarely used, (ung1)

camelCase
Pros: Widely used in the programmer community.
Cons: Looks ugly when a few methods are n—worded,

skewer-case
Pros Eosy\o pe

PEes

tal: than-underscor
Coitt Ave cans. lmauioge Tredis. ik whon o g 11

SCREAMING_SNAKE_CASE
Pros: Can demonstrate your anger with text.
Cors: Mikes sour eqes des

nocase
Pros: Looks professional.
Cons:

| §'

Image: /r/ProgrammerHumor/

https://www.reddit.com/r/ProgrammerHumor/comments/deh9n2/saw_a_post_about_cases_decided_to_add_my_personal/

use proper indentantion?

get task

if task is very simple:
define plan in mind
otherwise if task is complicated:
define plan as flowchart
in all other cases:
define plan using pseudocode

while task not completed:
if plan is bad:
update plan; implement plan as program; test program

Is this code readable? It will not upset your computer, but it may upset human beings.

Next time Matlab fundamentals!

ONIVE
o UNIVEL
0 <1579+ 5,

ﬁ"

s,
,.e
Y
%
%
@
5

&
"’.S‘is . gd

““’rAs st

ysics

NumEericaL MeTHODS I:
Laboratory Work I: Introduction to Matlab

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy
email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

s UNIVEp o UNIVg

N . Ny ,Lr—g,;?(r
$\r +1579+ /{“:l ; > /?(
= % = N
< o “
Z Py L = T
1?% \i‘é % &
Sirag NV S FARY

ysics

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

Matlab and Alternatives

Numerical Methods I ~~

using Matlab

Matlab: “What?”” and “Why?”

You should use Matlab because it:

® Proprietary programming language and
numerical computing environment.

e Matrix Laboratory meant for
numerical computing.

e Symbolic computing is also possible.

® [t supports graphical block
programming via Simulink.

speaks math

is for scientists

has toolboxes

has apps

integrates workflows
is fast

is trusted

See: https://www.mathworks.com/products/matlab/why- matlab.html

https://www.mathworks.com/products/matlab/why-matlab.html

Alternatives

® GNU Octave. Mostly compatible, actively developed by the open—source community.
® Scilab. Partially compatible. There is a translator from Matlab.
® FreeMat. No update since 2013.

® Python — general purpose language, many scientific libraries, popular language.

® R - language used by statisticians and social scientists, numerous scientific libraries, bizarre
syntax.

® Julia — general purpose language, both fast to write and to execute, young and very promising.

® QOthers: JavaScript, Java, C, ...

Getting Matlab

Numerical Methods I

using Matlab

Create MathWorks account

Vilnius University

Get Software Leam MATLAB ~ Teach with MATLAB ~ What's New

©® Go to: https://se.mathworks.com/
academia/tah-portal/ Get MATLAB and Simulink
Vilnius—univel‘sity— 3 1464086.html See list of available products

® Click "Sign in to get started".

® Log into your VU account. Follow Desktop. Online. Mobile.
the instructiOnS to create Free through your school's license.
MathWorks account.

Sign in to get started

https://se.mathworks.com/academia/tah-portal/vilnius-university-31464086.html
https://se.mathworks.com/academia/tah-portal/vilnius-university-31464086.html
https://se.mathworks.com/academia/tah-portal/vilnius-university-31464086.html

Inside MathWorks account

@ Log into your MathWorks account.

@\ MathWorks® products Soutions Academia Support Community Events

MathWorks Accou

My Account ~ Profile - Security Settings ~

Aleksejus Kononovicius

MATLAB Drive
MATLAB Online
Self-Paced Courses
Service Requests

Bug Reports

Online Services Agreement

Quotes Orders Community Profile

My Software
License Label Option
40876350 Individual Total Headcount

@ Link an additional license

@ Geta trial

Use

Academic

Option A: Use Matlab Online

Go to https://matlab.mathworks.com. You’ll have to login into your MathWorks account.

-
-

O b e Nl

o

BT e w2 Menus

File Browser

Command Window

Workspace

https://matlab.mathworks.com

Option B: Install Matlab

@ Make sure that you have internet connection.
® When asked enter your VU or MathWorks login data.
® Do not install all toolboxes unless you have a lot of free space.

4\ MathWorks Installer E=3E=E

Select installation method

==

i) MATLAB'
oq in with a MathWorks Account SIMULINK"

f Requires an Intemet connection

() Use a File Installation Key wi

N Internet connection required

MathWorks products are protected by patents (see mathworks.com/patents) and copyright laws.
By entering into the Software License Agreement that follows, you will also agree to additional
restrictions en your use of these programs. Any unauthorized use, reproduction, or distribution
may result in civil and criminal penalties.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. Please see
mathworks.com/trademarks for a list of additional trademarks. Gther product or brand names
may be trademarks or registered trademarks of their respective holders.

) Mt

After install

L B2 0 G (8 U -;"‘" -l:"': =l E=| a;wmh y B
5t A e L = 2 e Bpgnn. M
e Toied Lyt b
e e wingece |) e iredupate = | G Comnasin ¥ T e T Gasien enus
L ey = en vt e
G Al b € b ProgenFim ¢ MATLAE & REL b bm & o
biaera) St MAATLABT Wt s i, o Exmnies, oo oo g, St] [sipene. . s
LR

. Workspace
Command Window 4

File browser

You can rearrange the internal panels as you like.

e

APPS

Search

FAYORITES

]

Cptimization

Curve Fiting MUPAD
[

lotehook

MATH, STATISTICS AND OPTIMIZATION

e DB
Curve Fitting Distribution MEC Model
Fittirg Fittire

CONTROL SYSTEM DESIGN AND ANALYSIS

=

Cortrol System Cortrol System

Fuzzy Logic
Designer Tuner

Designer

SIGNAL PROCESSING AND COMMUNICATIONS

EitError Rat= Eye Diagram Fiter Builder

Analysis Stope

PID Tuner

&

ME
Optimization

 ®

stem
Idertification

MUPAD
hatelaok

Signal Analysis

&
Neural et
Clustering

g =

Linear System MPC Designer

Analyzer

Fitter Desion &
Analysis

Neuro-Fuzzy
Designer

LTE Davenlink LTE Test Made!

RMC Generator

Generator

Image
Aequisitian

Instrumert
Control

& (i
MNeural et
Fitting

Neural Ket Time:
Series

Neural Het
Pattern Reco...

=l ¢ *

=)
PID Tuner System
Idertification

LTE Throughput LTE Uplink RMC - Reaclar Equation
Analyzer Generator Calcuistor

SimBiclagy MATLAE Coder

Optinizetion

C

Application
Compiler

ToR

Ll

2 & 0O

Radar
Waveran ..

RF Design &
Analysis

Sensor Array
Analyzer

The more toolboxes you install the more apps you will see. It seems that fewer apps are available in the web app.

Inside of an app

g Tool (=]
Fle Fit View Tools Desktop Window Help aa x
B ISR EAE B0OB0
€ | untitied fit 1 +
| Polyromial - 7 Auto it
Fit name: [untited fit 1 Frl |
- it
s | CON| Degree: [1 3| i
Robust: [off -
Ydata: [y - I Bl ﬂl
I Center and scale
Zdatai | (none) =
Fit: Options
weights: | (none) =
esLits

Linear madel Polyl: =

) = pL" +p2
Coefficients (with 95% confidence bour

yvs. x
untitled fit 1

pl= 1009 (0.9888, 1.029)
p2= 00475 (003581, D.05%: >05
Goodness of fit:
SSE: 0.08798
R-square: 0.99 —
adjusted R-square: 0,3899 0
RMSE: 0.02581 A\
q ¥ 0 02 04 06 08 1
X
Table of Fits ®
Fit name = |Data |Ht type |SSE [Resquare_[oFE [adiRsa [RMsE [#coeff |vaidation... [vaidation ... [vaidatio
@ untited... iy vs. x pelyl 00880 09900 99 [o.oses ooz |2 [

Basic usage of Matlab

Numerical Methods I

using Matlab

Working in the Command Window

From there we can use Matlab interactively:
@ we enter an expression at the command prompt (“>>”)
® and wait for the Matlab to evaluate it.

Command Window
>> 244
ans =

3
>> help F

lp

help Display help text in Command Window.
help, by itself, lists all primary help topics. Each primary topic
corresponds to a folder name on the MATLAB search path.

help NAME displays the help for the functionality specified by NAME,
such as a function, operator symbol, method, class, or toolbox.
NAME can include a partial path.

Some classes require that you specify the package name. Events,
properties, and some methods require that you specify the class
name. Separate the components of the name with periods, using one
of the following forms:

Sometimes also CLI or REPL.

Getting help in Matlab

® Use help if you know the name of the function.

® Use lookfor to find the names of the functions, which you don’t know.

Command Window

»> lookfor

diff — Difference and approximate derivative.
pdeval — Evaluate the solution computed by PDEPE

»> help diff
diff Difference and approxXimate derivative.

diff(X), for a wector X, is [X(2)-X({1l) X(3)-X(2) ... X(n)-X(n-1)1.
diff(X), for a matrix X, is the matrix of row differences,
[X{2:n,:) - X(1:n-1,:)].

diff(X), for am N-D array ¥, is the difference along the first
non-singleton dimension of X.

diff (X,N) is the N-th order difference along the first non-singleton
dimension (denote it by DIM). If N >= size(X,DIM), diff takes
successive differences along the next non-singleton dimension.

diff(X,N,DIM) is the Nth difference function along dimension DIM.
If H > size(X,DIM), diff returns an empty array.

Getting help online

4\ MathWorks

Help Center

MATLAB
Getling Started with MATLAB
Language Fundamentals
Data Import and Analysis
Mathematics
Graphics
Programming
App Building
Software Development Tools
External Language Interfaces
Environment and Settings
Simulink
5G Toolbox
Aerospace Blockset
Aerospace Toolbox
Antenna Toolbox
Audio Toolbox

Automated Driving Toolbox

Documentation ~ Examples Functions =~ Videos Answers

MATLAB

The Language of Technical Computing

Millions of engineers and scientists worldwide use MATLAB® to analyze

and design the systems and products transforming our world. The
matrix-based MATLAB language is the world's most natural way to
express computational mathematics. Built-in graphics make it easy to
visualize and gain insights frem data. The desktop envirenment invites
experimentation, exploration, and discovery. These MATLAB tools and
capabilities are all rigorously tested and designed to work together.

MATLAB helps you take your ideas beyond the desktop. You can run

your analyses on larger data sets, and scale up to clusters and clouds.

MATLAB code can be integrated with other languages, enabling you to
deploy and within web, and
production systems.

Getting Started
Learn the basics of MATLAB

Language Fundamentals

Suntay arrav indevina and maninilafinn data tunee aneratare

R2019b

[Release Notes
@ PDF Documentation

URL: https://www.mathworks.com/help/matlab/

https://www.mathworks.com/help/matlab/

Quitting Matlab

® (Clicking X (image on the right).

® We can also quit by typing quit or exit) & (2] search Dacumentation
into the command window. . _
(3) [+ Community

53‘ Request Support

i Preferences

1 set Path Help

PR RS

>> exit

® | will rarely use screenshots to show you the commands.
o [will provide you the code listings instead (as above).

® You do not need to type in the command prompt (“>>").

Time to exercise!

NuMERrICcAL METHODS I:
Lecture II: Matlab Fundamentals

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy

email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

Variables and workspace

Numerical Methods I

using Matlab

Variables and “=" operator

® Variable is a symbol representing
certain quantity.

e “=" symbol stands for equality. It
implies that expressions on both of its
sides have the same value.

F:GmUZﬂz’
-
x+3 =38,
x =235,

x=x<3.

CS/programming:

Variable is a label associated with
certain value.

The value may change.

c_9

is an assignment operator, which
assigns new value to a variable.

Naming variables

e Up to namelengthmax characters can be used.

T3]

Only latin letters, digits and underscore (“_") are allowed.

The first character must be a letter.

Variable names are case sensitive.
® There are some reserved words, which can’t be used.

® Yet not everything what should be reserved actually is.

>> namelengthmax
ans =

63
>> massl = 1.3;
>> 3massl = 3.9;
>> Massl = 4.5;
>> for = 42;
>> pi = 4;
>> sin = 3;

Semicolon (

>> myVar = 4 - 3
myVvVar =
1

Use semicolon to suppress the output:

>> myVar = 5 - 2;

How do we know what value “myVar” holds?

Workspace
Name Value Min Max
[myVar 3 3 3

>> myVar
myVar =

Another usage for semicolon operator

Let us calculate buoyancy force:
Fp = pgV = pglwt,

where p is density, g is acceleration due to gravity, [, w and ¢ are dimensions of the (cuboid) body.

>> rho=1200; g=9.81; 1=0.297; w=0.21; t=0.00007;
>> Fb = rho » g *x 1 » w x t
Fb =

0.0514

Note that:
® Matlab is not aware of units.

® You should use better variable names.

who and clear

® who prints a list of variables defined in workspace.

® clear can be used to delete variables.

>> who

Your variables are:

Fb Massl ans g 1 massl myVar pi
>> clear sin

>> who

Your variables are:

Fb Massl ans g 1 massl myVar pi
>> clear

>> who

rho

rho

Numeric variable types

Numerical Methods I

using Matlab

What is double?

whos prints detailed information about currently defined variables. Their type (class) included.

>> whos
Name Size Bytes Class Attributes
Fb 1x1 8 double
Massl 1x1 8 double
ans 1x1 8 double
g 1x1 8 double
1 1x1 8 double
massl 1x1 8 double
myVar 1x1 8 double
pi 1x1 8 double
rho 1x1 8 double
sin 1x1 8 double
t 1x1 8 double
W 1x1 8 double
X 1x1 8 double

Various numbers and various types

i‘_’;‘;\\
—

/ 7/ \
® Natural numbers: uint8, uint16, uint32, / Rarfonal 'megerf\Nafuralf
uint64. \ ,,

® [nteger numbers: int8, int16, int32, int64.

‘ Complex

Real numbers: single, double.

e Complex numbers: single, double. \\ Imaggnary //

-

Image: mathisfun.com

https://www.mathsisfun.com/sets/number-types.html

epresenting integers

® [ntegers are stored precisely, but only from minimum number (intmin) up to maximum
(intmax) number.

® Changing variable types is referred to as typecasting.

>> 32700 + 70 - 70
ans =
>> intmin('intl6") 32700
ans = >> class (ans)
-32768 ans =
>> intmax ('intle") 'double’
ans =
32767 >> intl6(int16 (32700 + 70) - 70)
>> 2715 ans =
ans = 32697
32768 >> class (ans)
ans =
'intl6'

Representing real numbers

® There are real numbers, which we simply can’t represent using finite number of decimals:
1/3, V2, .
® Fixed-point (fixed—exponent) real numbers:
exp.
=~
123 = 123 - 10 2,
=~ =~

signif. base
1/3=33-1072,
7= 3141072

® | oss of significance:

100 - (1/3) = 3300 - 1072,
100/3 = 3333 - 1072

Floating-point real numbers:

¢ Floating-point real numbers allow to store wider range of numbers by allowing for exponent
to vary.

® single precision uses 32 bits: 1 bit for sign, 8 bits for exponent, 23 bits for significand.
Significand is stored with precision up to 2724 ~ 5 - 1078,

® double precision uses 64 bits: 1 bit for sign, 11 bits for exponent, 52 bits for significand.
Significand is stored with precision up to 273 ~ 10717,

® By default Matlab stores all numbers as doubles.

>> (4 x 1/5 - 1) +1 / 5
ans =

5.5511e-17
>> fprintf('%$.22f', 0.1)
0.1000000000000000055511
>> fprintf('%$.22f', 0.3)
0.2999999999999999888978

Loss of significance

We know that for 6 — O:

e —e =146+ 0] —[1 -3+ 0(?)] ~ 26.

Lets check:
>> delta = le-5;
>> exp(delta) - exp(-delta)
ans =
2e-5
>> delta = le-16;
>> exp(delta) - exp(-delta)
ans =
1.1102e-16

Partially fixing the problem

We know that:
a®> —b*=(a—b)(a+Db).
Lets use it:
>> a = sqgrt(exp(delta)); b = sqgrt(exp(-delta));
>> (a-b) * (at+b)
ans =
2.2204e-16

Vectors and matrices

Numerical Methods I ~~

using Matlab

>> whos
Name Size Bytes Class Attributes
Fb 1x1 8 double
Massl 1x1 8 double
ans 1x1 8 double
g 1x1 8 double
1 1x1 8 double
massl 1x1 8 double
myVar 1x1 8 double
pi 1x1 8 double
rho 1x1 8 double
sin 1x1 8 double
t 1x1 8 double
w 1x1 8 double
X 1x1 8 double

In Matlab even a number (scalar) is treated as a matrix.

Vectors and matrices

® Scalar is just some numeric value (1x1).
® Vector is a column (Nx1) or a row (1xIN) of values.
® Matrix is a table of values (NxM).

® Tensor is a multidimensional matrix (NxMxKXx...).

Array is any collection of elements.

7
3 1 2| 3
6 8 3 2] 1 4 5 6
9 7 8] 99

11

Create vectors by listing values

{variable) = [(values separated by commas or just spaces)] ‘
> v = [1, 2, 3, 4]
v =
1 2 3 4
>> v = [1 2 3 4]
v =
1 2 3 4
(variable) = [(values separated by semicolons)]
>> v = [1; 2; 3; 4]
v =
1
2
3
4

66,9

Create vectors with colon (*:”’) operator

(variable) = (first):{step?):{last)y
> v = 1:4
v =

1 2 3 4
> v = 1:2:7
v =

1 3 5 7
> v = 1:2:06
v =

1 3 5
> v = 7:-2:1
v =

7 5 3 1

linspace and logspace functions

Linearly spaced vector (arithmetic progression):

{variable) = linspace ((first), (lasty, {points?))

>> 1lsp = linspace(3,15,4)
lsp =
3 7 11 15

Logarithmically spaced vector (geometric progression):

(variable) = logspace ((lg(first)y, <lg(last)y, {points?))

>> 1lnp = logspace (0,3,4)
lnp =
1 10 100 1000

Combining vectors

(variable) = [{(vector AY (vector B)]
>> nv = [lsp 1lnp |
nv =

3 7 11 15 1 10 100 1000
> nv = [1:3 3:-1:1]
nv =

1 2 3 3 2 1
(variable) = [{(vector A); <{vector B)]
> nm = [1:4 ; 4:-1:1]
nm =

1 2 3 4

4 3 2 1

Transposing vectors and matrices

¢ ./ — non-conjugate transpose.

e ' _ complex conjugate transpose.

>> v. >> nm. >> >> sqgrt (-v) . >> sqgrt (-v) '
ans = ans = ans = ans = ans =
7 1 4 7 0 + 71 0 - 71
5 2 3 5 0 + 5i 0 - 5i
3 3 2 3 0 + 31 0 - 31
1 4 1 1 0 + 1i 0 - 11

Subscripting/Indexing/Slicing vectors

>> nv(5) >> nv(2) = 58
ans = nv =
2 1 58 3 3 2 1
>> nv(2:4) >> nv(3:4) = 4
ans = nv =
2 3 3 1 58 4 4 2 1
>> nv([1 4 5]) >> nv(10) = -3
ans = nv =
1 3 2 1 58 4 4 2 1 0 0 0 -3

Subscripting/Indexing/Slicing matrices

>> nm(2,3) >> nm(l,2) = 99
ans = nm =
2
4
>> nm(1l:2,2:3) 4 92 ; 1
ans Z . ;; ?m(Z,:) = -
3 2 1 99 3 4
>> nm (1, :) -1 -1 -1 -1
ans I L ;; Em(1,4) = [3 8]."
>> nm(:,2) 1 99 3 3
ans z -1 -1 -1 8
’ >> nm(end,end) = 0
nm =
>> nm(2) 1 99 3 3
ans Z -1 -1 -1 0

Dimensions of matrices

>> length (nv)
>> length (nm)
ans =
ans = 10
4 .
. >> size (nv)
>> size (nm)
ans =
ans = 1 10
2 4 .
: >> size(nv')
>> size (nm')
ans =
ans = 10 1
4 2 >> numel (nv)
>> numel (nm)
ans =
ans = 10
8
>> reshape (nv, [2, 51])
>> reshape (nm, [1, 8]) ans =
ans =
1 4 2 0 O
1 -1 99 -1 3 -1 3 0 58 4 1 0 -3

Expressions and Vectorization

Numerical Methods I

using Matlab

Expressions

Expressions are composed of: values (1), variables (amplitude, phase), operators (“*”, “+”) and
functions (sin).

>> phase = 0.4; amplitude = 2;
>> amplitude x sin (phase + 1)
ans =

1.9709

In general objects on which operators act are called operands, though they can be expressions
themselves.

Predefined constants

® Some mathematical constants:
® T—pi,
« VoI-ij,
® Some programming related constants:
® inf — infinity (c0),
® nan — not a number (a result of 0/0),
® realmax, realmin, eps, intmax, intmin — related to machine precission and number
representation.

® Confusingly neither of these are constants. Some are also a function!

>> pi >> pi = 3; pi
pi = pi =
3.1416 3

Operator precedence

Expressions are evaluated left-to-right, though some operators are evaluated before the others.
These operators are said to have precedence over the other operators.

©® Parentheses (),

® Exponentiation #,

©® Unary + or —,

@ Multiplication and division V*,
@® Addition and subtraction + —.

You know the above by heart and trust the interpreter or simply use parentheses to avoid any
possible confusion.

Find the precedence table in online documentation.

https://www.mathworks.com/help/matlab/matlab_prog/operator-precedence.html

Functions

>> help elfun
{somewhat long list of elementary mathematical functions:trigonometric, exponential, complex, rounding and remainder
functions.)
>> log (3)
ans =
1.0986
>> imag (sqrt(-1))
ans =
1
>> ceil (7.1)
ans =
8
>> mod (15, 6)
ans =

Whenever we use a function as a part of command, it is said that we are calling that function.

Functions and arrays

® Some functions act on every element of an array.

® Some functions act on arrays as whole.

>> cos(—-2:2)
ans =

-0.4161 0.5403 1 0.5403 -0.4161
>> abs ([-5 -1; 3 0])

ans =
5 1
3 0
>> diag (ans)
ans =

o o |

Operators and arrays

Like functions, mathematical operators come in two types too:
® Array operators act on every element of an array.

® Matrix operators act on arrays as whole.

1:3]1 . 3:-1:1
>> [1:3] - [3:-1:1] :;s[: bt]
ans =

3 4 3

2 0 2

1:3]1 . 3:-1:1
>> [1:3] » [3:-1:1] :;s[:] [)
Error using =

0.3333 1 3
>> [1:3] « [3:-1:11" >> [1:3] A [3:-1:1]
ns — > :. . : :

10 1 4 3

Vectorization

Given that dampening is weak, the equation of
motion of the harmonic oscillator is:

x(1) = e cos(wt).
>> delta = 0.1; omega = 1; - = & - _Eqpuoilsii?irci;m os
>> t = linspace(0,30/omega,100); ngr,iclg o /\ /\
>> x = exp(—-deltaxt) .x cos(omegaxt); —kx \/ oo
>> [t' x'] TDampening 05
force 075

ans = -yv

0 1 Xv ¢Ve\ocity

0.1515 0.931

(further output)
>> plot (t, x)

If you don’t use vectorization, there is little point in using Matlab at all.

Basic Input and Output

Numerical Methods I

using Matlab

variables

Text variables in Matlab are stored as string or as char. The important difference is that char is
stored as a vector, while string is its own individual object.

>> s = "Hello, world!" >> length (s)
s = ans =

"Hello, world!" 1
>> s2 = 'Hello, world!" >> length(s2)
s2 = ans =

'Hello, world!' 13
>> class (s) >> "Hello, world!"™ + 1
ans = ans =

'string' "Hello, world!1l"
>> class (s2) >> 'Hello, world!' + 1
ans = ans =

'char' 73 102 109 <.

input function

input ({prompt text) , <{type indicator (?))) ‘

>> name = input ('Hello, what is your name?', 's');
Hello, what is your name?
Beamer
>> disp(['Nice to meet you, ' name]l);
Nice to meet you Beamer
>> age = input ('How old are you?');
How old are you?
5
>> disp(['You were born in ' num2str (2008-age)]);
You were born in 2003

input function is not very useful from Command Window. It will be useful when we start writing
scripts.

disp function

disp ((variable))

>> disp(pi)
3.1416

>> disp([1 2 3 1)
1 2 3

>> disp(s2)

Hello, world!

We can combine numbers and text:

{char variable) = num2str ({(numeric variable))

>> disp(['The answer is ', num2str(4)])
The answer is 4

fprintf function

fprintf — rather powerful formatted output function.

>> fprintf ('Surely the answer is %d!\n', 3"2)
Surely the answer is 9!

o fprintf can accept as many input parameters as is needed.
® First parameter is always a text, which is called format string.
® Format string might contain multiple placeholders (such as “%d”).

® “\n” is a newline character.

Placeholders for fprintf

The letter specifies variable type:
® %d — (decimal) integer
® Yf — floating point number
® Yc — single character

® %s — string or multiple characters

Field width is one of the optional parameters, which can be included in the placeholder. It
specifies how many characters are to be used (at least) in printing. For example:

® %5d — would print integer using at least 5 characters.
® %5s — would do the same for a string.

® %5.2f — would print real number using at least 5 characters, using exactly 2 decimal part.

Example placeholders

There are numerous other options, such as printing left-aligned numbers or truncating strings.

>> fprintf ('[%5.2f|\n",pl)

| 3.14]

>> fprintf ('[%5d/\n',4)

\ 4]

>> fprintf ('[%-5d|\n',4)

|4 |

>> fprintf('|%5s|\n', "truncate this very long long string')
|[truncate this very long long string]

>> fprintf('[%.5s|\n', 'truncate this very long long string')
|trunc]|

Printing a vector

® [f you know how many elements are in vector, you can use that to your advantage.

® [f you don’t, then you can use the fact that fprintf is vectorized.

> v = 2:4;
>> fprintf('%$d %d %d\n',v)

2 3 4

>> fprintf('%d',v), fprintf('\n'")
234

>> fprintf ('%d\n',v)

2

3

4

Printing a matrix

>> mat = [1:3; 4:6];
>> fprintf ('%d %d %d\n',mat)

142
536)
>>
>> fprintf('%d 3d %d\n',mat') ; ;;Sp(mat)
123
456
456

>> di '
>> fprintf ('%$d\n',mat) disp (mat')

w N
o U1

o W U N

Matlab unfolds the matrix in not a very natural way if you use fprintf, but everything is fine with
disp.

plot function

plot ({x values (7)), (y values), (line style (?)))

>> x = 0:0.1: (2%pi); 0
>> y = sin(x); 02
>> plot(x, y, 'r:'") 04

m:'m
ySICS

Next time logic, branching and looping!

SUNIVE,P&
1 579+ /)

KA VL ’\Li(

W e Vi ‘V/
“ 0
..
¢
e,
Ysig . guv®

'p“" Tas NV

NumericaL METHODS [:
Laboratory Work II: Scripts, Live Scripts and Reports

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy

email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

@"‘131!%, $8
$ %S 2
< 3 - o
“NGFE = i 5
e & ysics

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

Why care about scripting?

® Command window is meant for quick
one—time calculation.

® Scripts are meant for solving more
complicated problems or creating
reusable solutions.

e Live scripts are like scripts, but they
are superior, when the main product is
not your code, but the story behind it.

Photo: Anna Shvets

https://www.pexels.com/photo/serious-young-coworkers-working-on-laptop-in-coworking-space-5324858/

Problem to be solved in a script

Problem:

A car starts from rest and accelerates uniformly over a time of 4.12 seconds. During that time it
travels distance of 60 meters. Derive the expression for the acceleration of the car. Evaluate the
expression using Matlab.

Analytical derivation:

2 2
at at

a=— = 7.07 m/s>.

Problem to be solved in a live script

Problem:

A light beam makes an angle of 25° with the normal of the interface, while in the medium the
angle is 15°. What is the index of refraction of the medium? Derive the expression for the
refraction index of the medium. Evaluate the expression using Matlab.

Analytical derivation:

ny sin) = ny sin 65,

Converting between script and live script

PUBLISH

FILEVERSIONS

E B Bold
=2 = & Hyperiink
T Htalic §= Numbered List [Code

Save| Section Section S Inline LaTex

- with Titte M Monospaced [=] Image F, Display LaTex

TINLINE MARKUP INSERT BLOCK MARKUP
(= Cirlss
Save all modifed files ve >
testm test_convertm

testmix

Publish Publish
asHTML as PDF
PUBLISH

convertmix

%% Simple example script

testmix
HOME PLOT LIVEEDITOR INSERT VIEW
[[fa Normal + 3 Task ~ Section Break
S[E @ e - = = B =
— &2 Control + B Run and Advance
New [Save ‘FmdFﬂes QFind Code = 5| [@ RunSecton ™= Ru
-~ | - L& Refactor ~ - & Run to End
CODE SECTION
H = Cirlss
Save all modified fles
cy testm nvertm x || testmix x | test convertmix
Save As..
Nam{ I%
El save openfiletoa differentfile name
» Test live script

Export to PDF...
Exports the document toa PDF file.

This live script is meant to show:

= How conversion between live script and script works.

See: Publishing Markup, Insert Equations into the Live Editor

https://www.mathworks.com/help/matlab/matlab_prog/marking-up-matlab-comments-for-publishing.html
https://www.mathworks.com/help/matlab/matlab_prog/insert-equations.html

Generating (publishing) PDF reports

B Bold = Bulleted List Preformatted Text [n
&l = & Hypertini 9] | e

Save | Section Section L ' 5 Inline LaTeX M=l () &t Publish | Publish
- with Titte M Monospaced [&] Image . Display LaTeX as HTML | as PDF
FILE INSERT SECTION INSERT INLINE MARKUP INSERT BLOCK MARKUP PUBLISH
F & /s MATLABDrive 5
CURRENT FOLDER [estm x || {estmix

Name +

%% Simple example script

>

#l testmix = |G

LIVEEDITOR

EE:I IE“ Ea o GeTo ~ [p2] Normal ~

B Task ~ [I>__l Section Break

Control ~ P&l Run and Advance

o=
Save | Find Files End = Code — 3 |5 Run Section
v |~ = I Refactor + e P& Run to End
CODE SECTION
Save
= . Coss
save all modified files
cy testm x| | testmix
Save As...
Nam{ %
Save openfile toa different fle name - :
o Test live script

Export to PDF... This live script is meant to show:

ﬂ‘ 53 Exports the document toa PDF file. _
= How conversion between live s:rlpl and script work

#ll (= ExporttoWord...

® Some of the homework problems may require you to upload scripts or functions. This
implies ordinary script or function files.

® Some of the homework problems may require you to upload reports. This means you need to
upload a PDF file. Generate it from either live script or ordinary script file.

® First command must always be clear.

® You must always indicate who is the author of the submission.

authorship.m

1 %% Authorship example

ol@

Author: Aleksejus Kononovicius

. W
o

Time to exercise!

NumEericaL MeTHODS I:
Lecture III: Logic, Branching and Looping

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy
email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

s UNIVEp o UNIVg

N . Ny ,Lr—g,;?(r
$\r +1579+ /{“:l ; > /?(
= % = N
< o “
Z Py L = T
1?% \i‘é % &
Sirag NV S FARY

ysics

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

Relational and logical expressions

Numerical Methods I

using Matlab

Relational operators

Relational operators are similar to the comparison operators from Math. They compare the
operands and tell if the statement involving them is true.

® “>” _ greater than, ® “<="_1less than or equal (<),
® “<” —less than, ® “==""_ checks for equality (=),
® “>="_ oreater than or equal (>), e “~=" _ checks for inequality ().
>> 2 > 9 >> 7 >= 5
ans = ans =
1
>> 3 < 5 >> class (ans)
ans = ans =
logical

Logical or (“||”) operator

® Logical operators allow combining two relational expressions.

® OR operator results in true if either of operands (relational expressions) is true.

] operand 1 \ operand 2 \ ‘
true (1) true (1) true (1)
true (1) false (0) true (1)
false (0) true (1) true (1)
false (0) false (0) false (0)

> (3 <5) || (7 <3) > (5 <3 || (7<3)

Logical and (“&&”’) operator

® Logical operators allow combining two relational expressions.

® AND operator results in true if both of operands (relational expressions) are true.

] operand 1 \ operand 2 \ ‘
true (1) true (1) true (1)
true (1) false (0) false (0)
false (0) true (1) false (0)
false (0) false (0) false (0)

> (2<8) s& (1<9) > (2<8) & (9 <1)

Logical not (“~”") operator

® Logical operators allow combining two relational expressions.

® NOT operator is unary operator, which changes value of a single operand from true to false.

] operand \ ‘

true (1) false (0)
false (0) | true (1)

eXclusive OR operation

® XOR operation is implemented as a function.

] argument 1 \ argument 2 \ ‘

0

true (1) true (1) false (0)

true (1) false (0) true (1)

false (0) true (1) true (1)

false (0) false (0) false (0)
>> xor(-5 <0, -3 < =2 >> xor(-5 <0, -2 < =3
ans = ans

Confusion!

>> 1 < -2 +
ans =

> (1 < =2
ans =

> 1 < -2 +
ans =

> 1 < -2 +
ans =

)

>> -5 && 5
ans =

> 0 && 5
ans =

>> 7 < 4 ||
ans =

3 && 1 < 2

>> true = 3;
true =

>> 2 ==
ans =

> (2 =2)
ans =

true

true

is* functions

® jsempty — is a vector/matrix/string empty?

® jskeyword — is the input string a keyword? iskeyword is also a constant, which gives a list of

all keywords.

o jsfloat, isinteger, isnumeric, ischar, isstring, islogical

® jsscalar, isvector, ismatrix

® jsnan, isinf

>> isempty ([])
ans =
1
>> iskeyword('end')
ans =
1

>> isfloat (pi)
ans =

1
>> isinf (1/0)
ans =

1

Branching statements

Numerical Methods I

using Matlab

if statement

if {(condition)
{action)
end

® Condition — a logical/relational expression. Expression starts
after keyword if and ends with the line.

® Action — single or multiple Matlab commands. Keyword end
marks the end of the commands.

® Action commands are executed only if condition is logically
true.

C True

False

Y

Example: sign change for positive numbers

Let us change the signs of numbers, but only of positive numbers. So that:

o 4 —4,
e 2 2.
>> num = 4; >> num = —-2;

>> if num > O
num = —num;
end
>> num
num =
-4

>> if num > 0
num = —num;
end
>> num
num =
-2

Example: square root of a positive number

This script prompts user for a non-negative number and calculates square root

of that number
clear;

num = input ('Please enter a non-negative number: ');

if input is negative, then give user a warning
and change the number to positive

oo oo

if num < O
disp (['Negative number detected! Considering modulus instead.'])
num = abs (num) ;

end

% produce the output of the result
disp(['Sgrt of ' num2str(num) ' is ' num2str (sqrt(num))]);

Common misunderstanding

Lets ask the user if (s)he is fine:

reply

input ('Is everything fine? (Y/N): ','s');

4

if reply == 'y' || 'Y'
disp ('Good for you!'")

end

Proper condition would be:

(reply == 'y') || (reply == "'Y') lower (reply)

Il
Il
=

Adding else clause

Sometimes we want to run one action, if the condition is
true, and another, if it is false. This can be done by adding
else clause to our if statement. False True

if {(condition)
{action 1) A2 A‘I

{action 2) ‘ ‘

else

end

Exampl a of a circle

but only if the radius is positive

% Calculate the area of a circle,

°

clear;

radius input ('Please enter the radius:');

if radius <= 0
disp('Sorry,
else

but your input is not wvalid')

area

end

pi =

disp(['The area is

~2);
' num2str (area)])

(radius

Nested if-else statement

We can combine multiple if-else statements
to make a more complicated logic structure.

if {(condition 1)
{action 1)
else
if {condition 2)
{action 2)
else
{action 3)
end

end

Example: Piecewise function

Suppose we have a piecewise function:

—x? ifx <0
flx)=<¢x3 ifo<x<2
—x+ 10 if2<x

if x < 0 if x < 0
y = - (x72); y = — (x"2);
end else % 0 <= x
if (0 <= x) && (x <= 2) if x <= 2
y = x"3; y = x"3;
end else § 2 < x
if 2 < x y = -x + 10;
y = -x + 10; end
end end

Adding elseif clause

As number of conditions and actions grows larger, nested code becomes overly complicated and
hard to understand. Luckily Matlab supports elseif clauses.

if {(condition 1)
{action 1)
elseif {(condition 2)
{action 2)
elseif {(condition 3)
{action 3)
{as many other elseif clauses as is needed)
else
{action N)
end

Piecewise function example

—x2

X3

—x + 10

if x < 0
y = — (x72);
else
if x <= 2
y = x"3;
else
y = -x + 10;
end
end

ifx <0
ifo<x<2
if2 <x

if x < 0
y = - (8°2);
elseif (x <=2) %
y = x73;
else % 2 < x
y = -x + 10;
end

&& 0 <= x

Confussion is still quite possible

o elseif clauses tend to give false sense of control.

® Yet the conditions are still evaluated sequentialy. This can also result in some confusion.

if x < 0

disp ('The number is negative')
elseif x > 10

disp('The number is larger than 10')
elseif x > 0

disp ('The number is positive')
elseif x < -10

disp ('The number is less than -10")
else

disp('x is cool!")
end

switch statement

In some cases switch statement can be
simpler than if statement.

switch {expression)

case (possible value 1)
{action 1)

case (possible value 2}
{action 2)

(further case clauses) | [

otherwise v
{default action)

A

Action 1 Action 2 Action 3 otherwise

end

Example: Conversion to US style grades

points = ceil (points);
switch points
case {10, 9}
disp('Grade is A'");
case 8
disp('Grade is B');

points = ceil (points);

if (points == 9) || (points == 10)
disp('Grade is A'");

elseif (points == 8)
disp('Grade is B');

elseif (points == 7)

i) case 7
disp('Grade is C'); . .
) . disp('Grade is C'");
elseif (points == 6) case 6
disp('Grade is D'");))
disp('Grade is D'");
else .
, , otherwise
disp('Grade is F'); , ,
disp('Grade is F'");
end

end

Determined looping

Numerical Methods I

using Matlab

for loop — determined repetition

for (loop variable) = {sequence of values)

{action)
end
® Sequence of values is expected to be a vector (array/list).
® Often you will use “:” to specify the sequence.
e for loop will execute action for every value in the sequence of values.
>> for idx = 0:4 >> for idx = [1 3 8 -5]
fprintf ('%d ', idx) fprintf ('%d ', idx)
end end
01234 138-5

Flowchart representation

As long as sequence of values is not empty, do the action.

not empty

Practical example: Finite sum

Let us check if the following equality is true:

m(m+ 1)
1424, +m=) k= 5
k=1

m = 5;

s = 0;

for k = 1:m

s = s + k;
end

>> sum(1l:m)
ans =
15

Practical example: Infinite product

Let us check if the following equality is true:

= 6.25
11 <1_k2> =0.1273....

k=1

p =P * (1 - 6.25/(k"2));
end

>> prod(l - 6.25 ./ ((1l:m)."2))
ans =
0.1289

Example: finding minimum value

$% Finding minimum value in a vector

clear;
v =1[12234-105 -1 -3];

% find minimum
m = v(l); % if we have seen just one value, 1its smallest by default
for val = v(2:end) % lets look at other values
if val < m % and find ones that are smaller
m = val; % set new minimum
end

end

disp(['Minimum value is ' num2str(m)]);

Better way: min and max functions.

break and continue

break is used to end the loop. continue is used to end the current iteration of the loop early.

3% Example of break %% Example of continue

clear; clear;
v=1[1223-10 45 -1 -3]; v=1[1223-1045 -1 -31;
for val = v for val = v

if val < O if val < O

break continue

end end

fprintf ('sd ',val) fprintf('sd ', wval)
end end

fprintf ('\n',val) fprintf ('\n'")

>> break_example >> continue_example
123 123405

Nesting for loops

[g)

%% Nested for loops printing square of asterisks

clear;
nRows = 3;
nCols = 5;
for rIdx = 1l:nRows % for every row
for cIdx = 1:nCols % for every column
fprintf ('+«'"') ¢ print asterisk
end

fprintf ('\n")
end

>> print_asterisks
* Kk Kk kK
* Kk Kk kK

* Kk Kk kK

Also: note that we can ignore the loop variable.

Lets make a multiplication table

Lets write a script, which would print out multiplication table like the one below.

>> print_mult_table
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20

Nested for loops work well with matrices

%% Example of using nested for loops
%% to sum elements of a matrix
clear;
>> sum (mat)
nRows = 4; ans =
! 10 20 30 40 50
nCols = 5;
>> sum(sum(mat))
s = 0; ans =
for r = 1:nRows 150
for ¢ = 1:nCols
>> sum(mat, 'all'")
s = s + mat(r,c);
end ans =
150
end
disp(s)

Vectorizing for loops

Numerical Methods I

using Matlab

Practical example: Infinite sum

Infinite sum,
f: _k Z k.
K3—3 L<f3_3
k=1 k=1

can be calculated by using for loop or by vectorization.

n = 500000; n = 500000;
s = 0; k = 1:n;
for k = 1:n s =%k ./ (k.”"3 - 3);

s s +k / (k"3 -3);
end sum(s)

numbers

® Vector used as index must be logical.

Two sums:
o . >> nonlogical = int8(positives);
just positive numbers, >> v(nonlogical)
° justnegaﬁvelnnnber& Array indices must be positive
integers or logical values.
> v =[1234 -105 -1 -3];
>> positives = (v > 0); ® You can set values, too.
>> sum (v (positives)) o
ans =
15 >> v (~positives) = 0
>> sum (v (~positives)) Vo=
ans - 1 2 3 4 0 5 0 O
14 >> v (~positives) = -v(~positives)
v =
1 2 3 410 5 1 3

Logical vector functions and vectorized logical operators

e Relational operators and logical “not” operator are vectorized.

® Logical && and || operators have counter—parts & and |.

o> s
Po;ltlves >> find(positives)
positives = ans —
1x8 logical array 1 2 3 4 &6
1 1 1 1 0 1 0 0 . s
o >> find(positives & (v >= 2))
>> any (positives)
ns - ans =
al 2 3 4 6
L >> find(~positives | v > 4)
>> all (positives)
ans = ans —
0 5 6 7 8

Masking: plotting positive values

Lets plot:
. 5 .. 5 *
£ sin (x)” if sin (x)” > 0, o
X =
0 otherwise. 0s
>> x = linspace (0, 2#pi); 03
>> y = sin(x) ." 5; 02
>y =y .x (y>0); o
>> plot (x, y)

Undetermined looping

Numerical Methods I

using Matlab

while loop

o for loops work well if we know the number of iterations.

® [n the other cases we have to rely on while loop.

while <{condition)
{action)
end

e Action will be repeated until condition is false.
o [f condition can’t become false, then the loop is called infinite loop.

® You terminate infinite loop by pressing Ctrl + C.

Flowchart representation

® The representation is quite similar to
the for loop.

True False
® Yet the while loop allows custom
conditions. \ 4
® As long as the condition is true, the
action will be repeated. A

Example: first factorial past threshold

Suppose we want to find a number x whose factorial is first one to be larger than certain value, A:
x! > h.

%% First factorial past threshold

clear; >> first_factorial
[6 720]
h = 500;
idx = 1;
fact = 1; >> factorial (5)
while fact < h ans =
120

idx = idx + 1;
fact = fact » idx;
end

>> factorial (6)
ans =
720

disp([idx fact]);

Practical example: Infinite sum

® Infinite sums can’t be evaluated precisely.
® for loops offer arbitrary precision.

e while loops offer for a bit more controlled approach.

Let us approximate:
(e.e] n
=3 g~>q
k! k!

k=0 k=0

— 5y

Until |S, — S,—1] < € (here ¢ is error tolerance).

Next time Matlab programs!

QBU‘N;:%) | . F
W Ky ysics

s . gty

v\“" Vi ‘V/
“,

&

sy,

Ry v

NumericaL METHODS [:
Lecture IV: Matlab programs

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy
email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

s UNIVEp o UNIVg

N . Ny ,Lr—g,;?(r
$\r +1579+ /{“:l ; > /?(
= % = N
< o “
Z Py L = T
1?% \i‘é % &
Sirag NV S FARY

ysics

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

Programs and their organization

Numerical Methods I

using Matlab

Programs and algorithms

® A computer program is a sequence of instructions that tells the computer how to accomplish
a specific task.

® An algorithm is a list of steps used to solve a specific problem.
® Often it is written in pseudocode or drawn as a flowchart.

® [t should be detailed enough to reduce the problem to manageable steps.

Tho area of acircle: Cloumey:

© Get the radius r. @ Pick a destination
® Calculate according to the formula: @® Research flights, hotels and attractions
S 2 © Book a flight, hotel

@ Plan your stay
© Output the area S. @ Print tickets and notes

Modular design

——

Ll

L
I

L
L

Break down a complicated problem into smaller
problems.

Solve the smaller problems and combine your
solutions.

In programming, its best to store the solutions in
independent modules.

These modules are then combined to make a
program.

Modular design allows multiple people to work on a
program, makes maintenance is easier. Solutions can
reused when solving similar problems.

Image: IKEA Kallax

https://www.ikea.lt

Example: Unfair coin problem

Problem: Which unfair coins can we reasonably detect, if we do 100 coin flips? Coin is referred to
as unfair, if its sides are not equally probable to be face up after a flip:

p (Heads) # p (Tails) .

® Generate a single flip by an unfair coin.

® Generate 100 flips by an unfair coin, counting heads.

Extract relevant statistics by repeating experiment multiple times.

Explore various degrees of unfairness, p (Heads), to check which coins could be detected as
unfair.

Lowest levels of abstraction

Generate a single flip:
Assume that 'ProbHead' is given
Generate a uniform r.v. 'u' in [0, 1)
If '"u' < 'ProbHead':
return 'Heads'
else:
return 'Tails'

Generate multiple flips:
Assume that 'NFlips' and 'ProbHead' are given
Initialize 'counter'
For 'NFlips' times repeat:
Generate a single flip using 'ProbHead'
If the result of a flip is 'Heads':
Increment 'counter'
return 'counter'

Middle level

® Let say we want 5% accuracy.

® Then we want to know bounds in which 95% of experiments end up.

Determine 95% bounds:
Assume that 'NTrials', 'NFlips' and 'ProbHead' are given
Create storage for the results of repeated trials
For 'NTrials' times repeat:
Generate 'NFlips' flips using 'ProbHead'
Store the result in the storage
Obtain 2.5% and 97.5% quantiles of the data in the storage
return the quantiles
end

Highest level

Ask user for number of trials to perform ('NTrials')
Ask user for number of flips to perform ('NFlips')

Create storage for the results with varied probabilities
For 'ProbHead' between 0 and 1:
Determine 95% bounds with 'NTrials', 'NFlips',
'ProbHead’
Store the bounds in the storage

Plot the bounds

Examine the output

Neheas)
|
|
|
|
|
|
|
|
— |
—a—
—e
e
el
[
G
|
|
|
|
|
|
|
|
|
|
|
|
I

10 ﬁﬁ
01 02 03 04 05 06 07 08 03 1
pihead)

Answer: It seems we would be able to distinguish unfair coins if p (Heads) is either smaller than
30% or larger than 70%.

Code is available on e-learning platform.

User—defined functions

Numerical Methods I ~~

using Matlab

Defining single output functions

® First line is know as function header.

Next we should have a description of the function (its documentation).

Function ends with keyword end.

® Output argument must be assigned some value.

File name must match function name.

function (outArg) = <(function name) ({inArgl, inArg2, ..., inArgN))
% {description (documentation) of the function)

{some other statements here)

(outArg) = {some value);
end

ingle input argument

function area = get_circle area(radius)

% calculate area of a circle
°
&
% Input:
2 radius - radius of a circle
% Output:
3 area - area of a circle
=3
s
area = pi .* (radius .” 2);
end

>> get_circle_area (5)
ans =
78.5398

Multiple input arguments

function vol = get_cone_volume(r, h)
% calculate volume of a cone
% Input:
3 r - radius of a circle at the base
% h - height of the cone
% Output:
3 vol - volume of the cone
vol = (pi/3) %= (r .~ 2) .% h;
end
>> get_cone_volume (2.5,1.5)
ans =
9.8175

Image: @Wikimedia

https://commons.wikimedia.org/wiki/File:Cone_(geometry).png

Multiple output arguments

Problem: Suppose we took a break of 4539 seconds. How many hours, minutes and seconds did
we rest?

Algorithm:
® Hours: 4539/3600 =1.2...
® Minutes: (4539 —3600-1)/60 = 15.6...
® Seconds: 4539 —3600-1—60-15 =39

>> [h, m, s] = split_breaktime (4539)
h =

1
m =

15

39

No output arguments

function say_hello(name)
function says hello addressing certain name

Input:
name - name to say hello to

do oo oo oo oo

fprintf ('Hello, %s! How do you do?\n',name);

>> say_hello ('Beamer');
Hello, Beamer! How do you do?

No output nor input arguments

function print_random
o

% function print random number
fprintf ('Your lucky number is: %d!\n',randi (100));

>> print_random
Your lucky number is: 91!

eturning value early

function out = zero_or_more (x)
% function returns 0 or x if x > 0
if x < 0
out = 0;
return
end
out = x;
end

>> zero_or_more (3)
ans =

3
>> zero_or_more (-3)
ans =

0

Advanced user—defined functions

Numerical Methods I ~~

using Matlab

Variable number of input and/or output arguments

Instead of the list of input arguments we may provide varargin.

Instead of the list of output arguments we may provide varargout.

® varargin and varargout are of cell arrays. Unlike the usual vectors/arrays these can store
values of different types.

To get the number of submitted input or output variables use nargin and nargout.

Variable input arguments

function area = get_circle_area_u(varargin)
calculates the area of a circle in square meters

Input:

radius - radius of the circle

units - units of the radius (default: meters)
Output:

area - area 1in square meters

do o oo oo do do oo op

o

radius = varargin{l}; % note curly braces!
if nargin == 2
units = varargin{2};
if units == 'i' & if units are inches
% convert to meters
radius = radius .x 2.54;
radius = radius ./ 100;
end
end
area = pi * (radius .~ 2);
end

Combining required and optional input arguments

function area = get_circle_area_u2(radius, varargin)
calculates the area of a circle in square meters

% Input:
K radius - radius of the circle
% units - units of the radius (default: meters)
% Output:
3 area - area 1in square meters
if nargin == 2 % note the 2!
units = varargin{l};
if units == 'i' $ if units are inches
% convert to meters
radius = radius .x 2.54;
radius = radius ./ 100;
end
end
area = pi x (radius .~ 2);

end

Variable number of outputs

function |

aType, varargout] =

returns its dimensions

[r c] = size(in);

if (r==1) && (c== 1)
aType = 'scalar';

elseif (r==1) || (c==1)
aType = 'vector';
varargout{l} = length(in);

else
aType = 'matrix';
varargout{l} = r;
varargout{2} = c;

end
end

get_type_size (i
function determines if input is scalar/vector/matrix and

n)

>> get_type_size ([l 2; 3 4])
ans =

'matrix’

Using nargout

function [nRows, nCols, varargout] = get_size (mat)
% get size of a matrix
% provides optional third output (number of elements)

[nRows, nCols] = size (mat);
if nargout == 3

varargout{l} = numel (mat);
end

end

>> get_size([1 2; 3 4])

ans =
2
>> [r, c, n] = get_size([1l 2; 3 4]
r =
2
c =
2
n =

Nesting functions

® We have nested branching statements. Cool!
® We have nested looping statements. Cool!

® We can nest functions. Don’t!

function <{other outer function header elements)
{body of the outer function)
function <{other inner function header elements)
{body of the inner function)
end ¢ of inner
¢body of the outer function)

o)

end % of outer

Local functions

get_volume_If.m

function v = get_volume_1f(1l,w,h)
% get volume of a cuboid

v = get_base(l,w) * h;
end % get_volume_ 1f

function b = get_base(l,w)
% local function, which calculates are of
% the base
b = 1xw;
end % end get_base

Recursion

Numerical Methods I ~~

using Matlab

Recursion

I\ WS
PROBLEMS \/

WITH V
RECQ;QS\ON.

;Pleue;e Loke one }

Image: SMBC comics

Video: Dragon dream feet (recursion meme)

https://www.smbc-comics.com/comic/recursion
https://www.youtube.com/watch?v=3K3MMtoG8rY

Recursive functions

o Recursive function is a function that calls itself.
® In many cases recursion is less efficient than using Matlab’s built—in functions and even loops.

® Though there cases where recursion is the most efficient solution.

Factorials can be defined in recursive manner:

fmy=nl=n-n—1)-n=2)-...=n-f(n—1).
All recursive function need some kind of termination condition. For factorials we have:

0l =1.

Recursive factorial

function f = get_factorial (n)

o3

% calculate factorial of input

if n ==

f =1;
else

f = n x get_factorial(n-1);
end

end

When we call recursive factorial function with input 2 the following thing happens:

get_factorial (2)

2 x get_factorial (1)

* (1 * get_factorial(0))
1+ 1)

*

(
* 1

NDNDNDN

Tail recursion

function f = get_tail_f(n, varargin)
$ calculate factorial of input
run_prod = 1;
if nargin ==

run_prod = varargin{l};
end
if n==0
f = run_prod;
else
f = get_tail_f(n-1, n % run_prod);
end
end

In many other languages tail recursion is faster than ordinary recursion, but in Matlab it’s not. In
this particular case it seems to be ~ 25 times slower (with n = 5).

Video: Tail recursion explained (Computerphile)

https://www.youtube.com/watch?v=_JtPhF8MshA

Inside tail recursive factorial

get_tail_f£(5)

5 x get_tail_f (4, 5)

20 % get_tail_f (3, 20)
60 % get_tail_f (2, 60)
120 = get_tail_f£f(1, 120)

120 » get_tail_£(0, 120)

120 % end of get_tail_f (0,
120 % end of get_tail_ f(1,
120 % end of get_tail_f(2,
120 % end of get_tail_f(3,
120 % end of get_tail_f (4,
120 % end of get_tail_f(5)

In other languages tail recursion is faster, because compiler or interpreter optimizes your code.
Note that “prod(1:5)” or “factorial(5)” would much faster.

Anonymous functions and handles

Numerical Methods I

using Matlab

Anonymous functions

¢handle) = @ ((inArgl, ..., inArgN)) <action or expression);

function v = get_volume_af(l, w, h)
% get volume of a cuboid

getBase = @(1,w) lx*w;

v = getBase(l,w) *x h;
end

® Anonymous function is a very simple, one-line function, which does not have to be stored in
a separate file.

® [t is assigned to a particular variable, which is referred to as a function handle.

® We call the function by using the function handle.

Anonymous functions

>> get_circ_area = Q(r) pi » (r ." 2);
>> get_circ_area (4);
ans =
50.2655
>> get_circ_area(l:4);
ans =
3.1416 12.5664 28.2743 50.2655

>> print_rng = Q() fprintf ('Lucky number %d!\n', randi(100));
>> print_rng()
Your lucky number is: 13!
>> print_rng
print_rng =
@() fprintf ('Lucky number %d!\n',randi(100));

Getting function handles

>> fact = @factorial;
>> fact (4)

ans = &yﬂﬁ%
08 OO re) -
24 <] Oo
06 OO DO -
04t © 4
a Q
function plot_handle (fnh) aak S 9 J
% plots function for -pi to pi il e i e
x = —-pi:.l:pi; O 2 |
y = fnh(x); 4l % g |
plot (x,y, 'ko") o5l % & 1
end % o
a8t o & |
[¢]
2 1

! 3 E E [1 2 3 4
>> plot_handle (@sin)

str2func / func2str

25

function plot_str (fns)
20

% plots function for -pi to pi °
15
fnh = str2func (fns); N
x = -pi:0.1:pi; . s o
y = fnh(x);) g Sy
plot (x,y, 'ko") . &% %
end ° 5
-10
o
-15
<
>> plot_str ('gamma') n

25 L L L

of

gamma is a special mathematical function, which is defined as

eval / evalc / feval

function plot_str2 (exps) 125
% plots function for -pi to pi

x = -pi:0.1:pi;

y = eval (exps);

plot(x,y, 'ko'") Br
end

>> plot_str2('x.”"2 - x')

e evalc captures output of eval as text.

o feval evaluates function (supplied by handle or text variable) for certain values.

Scope and workspaces

Numerical Methods I

using Matlab

Variable scope

® Scope of any variable is the workspace in which it was defined.

® Workspace created for the Command Window is called the base workspace.

Whenever function is called a new workspace is created.

Whenever function exits its workspace is cleared.

® Function variables are local by default.

Subfunctions have access to variables defined in their parent function.

Local by default

function cost
calculate price of the cylinder

get_cylinder_cost (

% Input:

K radius - base circle radius 1in

% heigh - heigh of the cylinder

% price - price of the material

% Output:

% cost - cost of the materials
areaSides = 2 % pi .% radius
areakEnds = 2 * pi * (radius.”2
area = areaSides + areaEnds; %
area = area ./ le4d; % [sqm]
cost = area .* price; % [Eur]

end

.* height;

radius, height, price)
[cm]

[cm]

[Eur/sgm]

needed [Eur]

o
°

[sgcm]

)i % [sgcm]

[sgcm]

Global variables

function s = global_sum(v)

global idx;

s = 0;

for idx = 1:length (v)
s = s + v(idx);

end

end

>> clear;
>> global_ sum(1l:3)
ans =
6
>> who
ans idx

Persistent variables

persistent variables — stay in memory until we manually clear the function.

function count_calls

o

$ this function counts how many times it was called
persistent count;
if isempty (count)
count = 0;
end
count = count + 1;

fprintf ('You rang %d times!\n', count);
end

>> count_calls; count_calls; count_calls
You rang 1 times!
You rang 2 times!
You rang 3 times!

Next time “live’’ coding session!

UNIVE, R

& £

3 1s70. Q‘S\/) J?

,W »,‘

“"TAS AW AR YSICS

v\“" Vi ‘V/
<,
e,
Fsrs L guv®

NuMERICAL METHODS I:
Laboratory Work IV: Debugging

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy
email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

s UNIVEp o UNIVg

N . Ny ,Lr—g,;?(r
$\r +1579+ /{“:l ; > /?(
= % = N
< o “
Z Py L = T
1?% \i‘é % &
Sirag NV S FARY

ysics

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

Entomology of errors

PEST CONTROL

e Run-time errors — errors found when a '9 D) @ h

script or function are running. 5 @ (\ I) %
® Logical errors — errors in our own ﬂ

e Syntax errors — mistakes in using the
language.

reasoning or specification of algorithm.

® Numerical errors — errors occurring due to

imperfect numerical representation of 4 i @
numbers. 4 ‘

pixtastock.com - 54292316

Image: @pixtastock.com

https://www.pixtastock.com/illustration/54292316

Bugs in Computer Science

® Errors in computer programs are often
referred to as a bug.

e Eliminating those errors is known as
debugging.

Trivia: In the earlier days of modern
computing programs crashed because of
literal bugs getting fried in their circuitry.

Image: Autopilot@Wikimedia.

https://commons.wikimedia.org/wiki/File:IBM_700_logic_module.jpg

Patches in Computer Science

Patch is a set of changes to a computer program. These

changes may fix bugs, add functionality or update the
program.

Trivia: In the old days programs were encoded as holes on

the tape. What if you made a hole were you haven’t
intended?

The “Patch”

e -
B ri—-L-L-"(

‘e
©
.
e (o)
c©
©

s e v SpasnAchves s

Image: kekline@twitter.

https://twitter.com/kekline/status/1268646458854641665

Matlab’s debugging tool

pLOTS APPS EDITOR PUBLISH FILE VERSIONS VIEW PLOTS APPS EDITOR PUBLISH FILE VERSIONS VEW
= B @~ = B &~ =]
A PeoTo v - E > B 3 runection A Plcoto ~ e > B 3 Runsection
Files QU Fnd v 2 % | Breakpoints | Run Runand [Advance Fles QU Fnd v ° % % Breakpoints |Run| Runand [Advance
3 & - v Advance 5 & - ~ | Advance

NAVIGATE NAVIGATE EDT | BREAKPOINTS RUN
Clear All

€ |/ > MATLABDri Clear all breakpoints in all files € / > MATLABDrive >

== | DER infinite_prod.m
Set/Clear i 2 - Jclears
Set or Clear breakpoint on current Line

A Enable/Disable oo |ermphes o oy

Enable or Disable on current Line =

dm dm - [16

APPS EDITOR PUBLISH FILE VERSIONS VIEW cotne P
4@] while abs(conv_step) > target_err
EWE WORKSPACE - INFINITE_PRODO |~ vy el = SRurD =
q < I , - value_¢ alues
A et~ G %3 3 1 L stepin Function allstack a Name Value size mult = (4%idx*2) / (4*idx"2 - 1);
b R %3
Fles (QFnd v o Breakpoints Continue Step | [Step Out [nfiite_prod De;;.;mq T e = value = value * mults| .
El e < S 28 = value - value_old;
NAVIGATE EDT | BREAKPOINTS DEBUG H iox 5 xt 25 idx = idx + 17
& | > MATLAB Drive > EH mutt 1.0101 x1 30 ond.
DER infinite_prod.m [target_err 1.0000e-08 1x1 CCOMMAND WINDOW
2 - clear; [value 1.4861 E 2
EH value_old 14861 x 2 value_old = value;

% here i
- target_err = le-8;

=t

26 mult = (4*idx"2) / (4*idx"2 - 1);

2 value = value * mult;

See: Debug a Matlab program

https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html

Time to exercise!

NuMERICAL METHODS I:
Lecture VI: Randomness and Statistics

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy

email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

What is probability?

Numerical Methods I

using Matlab

Event frequency

Flip a coin and observe the frequency of 08

heads: § 06
J; _ Nheads %
Nﬂtpv g 0.4 W
As Njyips approaches infinity, f approaches p. o2

0 200 400 800 800 1000
Flips

Elementary events

® Probability is likelihood that event will happen.

® Probability is number of ways event can happen divided by the number of ways any event can
happen.

Assume that we observe two particles, which can have 1 or | spins. Possibilities:
® both in up state, 11,
® first in up state, the other in down state, 1/,
® first in down state, the other in up state, |7,

both in down state, ..

Graphical interpretation

60
55t
® Two people agreed to meet between 9 S 50f
am and 10 am. @ :g'
e Either will wait for 15 minutes and then é 35¢
leave. 3 zg
® Meeting probability is the ratio S 207
between the shaded area and whole 2 13
[e]
area. & s

0 i L I i L L I 1
0 5 10 15 20 25 30 35 40 45 50 55 60
Possible arrival time of Person 1

Conceptualization — Venn diagrams

000

A, B and C — non—elementary events.
Non-elementary events are composed
of elementary events.

0<P(A)<1.
P(AorB) < P(A) + P(B).
P(Aand B) = P(A) - P(B|A).

Image: @Wiki

https://en.wikipedia.org/wiki/File:Venn3tab.svg

Independent events

Probability distributions

Numerical Methods I

using Matlab

Probability distributions and random variables

® Probability distribution is a function which encodes the probabilities of a random variable
taking certain value.

¢ Random variable — an outcome of a random observation.

® Number of minutes it will take for Lithuanian national team of football to score a goal in
competitive game.

Number of fish you’ll catch during your next fishing trip.

Number of lightnings that will hit during the next storm.

Number of people who would say they like Donald Trump.

Number of slides in this presentation.

Discrete distributions

Discrete distribution is defined by a set of possible outcomes and their respective probabilities.
This information can be shown graphically or as a table.

06

I X | p(x)

0 1| o1

= 2 | 05

- T | 03
02 4 |0.025
4.5 | 0.075

T 1

1 2 31416 4 45

Cumulative distribution function

Previous slide featured probability
mass function, while this slide features
cumulative distribution function 075
defined as:)
g 05

P(x) =p(X < x), 4

Sx)=pX >x)=1-P(x). 0.25
Here S(x) is a survival function. 0

< 0 1 2 31416 4 45 6

CDF also makes sense for continuous variables

CDF is defined as a continuous function. This allows us to introduce continuous random variables. |

0.8r

061

Px)

04r

02¢

Probability density function

For continuous random variables we need to introduce probability density function:

p(x)dx =P(x) — P(x —dx), = px)= (%CP(X).

Uniform distribution

p(x) o b—a’ X E [a7b]
0, otherwise
1
05
04 08
03 06
= 02 = 0.4
0.1 02
0
0
0.1
2 3 4 5 6 2 3 4 5 6
X X
>> uniform_data = (5 - 3) * rand(1l, 100) + 3;

>> uniform_int_data = randi([3, 5], 1, 100);

Binomial distribution

|
1714
7) = 1—qg)"*
P = a1 =)
02
o 1 (o} [nRORO}
015 @ @ 08
@ @
£ o1 §06
® ® 04
0.05
[T ol
o O(f ?O o ,<><?T
0 5 10 15 20 0 5 10 15 20
X X

>> binomial_data = binornd (20, 0.5, [1, 100]);

Exponential distribution

p(x) = rexp(—rx).

0.2
1
0.15 0.8
Z 01 x 06

s &

0.4

0.05
0.2
0 o}

0 5 10 15 20 0 5 10 15 20

>> exp_data = exprnd(5, [1, 100]);

Poisson distribution

) = 7 exp(ro
= exp(—r
x!
02
o) 1 5?79
0.15 o 08
g oa x 08
04 i
0.05 T o]
@ 02
o ‘ T T Pog. 002 T
) 5 10 15 0 5 10 15
X X

>> poisson_data = poissrnd(5, [1, 100]);

Normal (Gaussian) distribution

14
1
12
1 08
08
= 06
=06 &
04
04
02 02
o 0
0 1 2 3 4 0 1 2 3 4
X X
>> normal_data = normrnd (2, 0.3, [1, 1001);

>> normal_data_2 = 0.3 x randn (1, 100) + 2;

Other “paranormal” distributions

® Triangle distribution

® [og-normal distribution
® Weibull

® Gamma

® Beta

NORMAL BISTRIBUTION

® Pareto
e Student’s T

® Geometric A Ty

%a-‘—‘.

See: online documentation for full list of supported distributions.

Image: M. Freeman, J Epidemiol Community Health. 2006 Jan; 60(1): 6.

https://mathworks.com/help/stats/supported-distributions.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2465539/

Summary statistics

Numerical Methods I

using Matlab

Central tendency: Mean (average)

Mean of the experimental data:

For the know distributions:

p= xplx), = /OO xp(x)dx.

raging in Matlab

>> mn = mean (data);
>> mn = trimmean (data); $% trims 2% of highest and lowest values

There are other kinds of averages, such as harmonic mean,

n

H =

)
P

and geometric mean:

>> H = harmmean (data) ;
>> G geomean (data) ;

Spread: Minimum, maximum and range

min and max are obvious, range tells us

how spread out the observations are: Other tricks applicable to min and max:
>> data_min = min(data); >> [min_val, min_idx] = min (data);
>> data_max = max (data); >> min_vals = min(datal, dataZ2?);
>> data_range = range (data);

I\

Variance and standard deviation

Variance is another a measure of how spread out the observatlons are. For the experimental data:

02:<(x—)> Var(x 72)9 ,
For the known distributions:

o =Y (—p)plx), o= /OO (x — p)°p(x)dx.

i — 00

Standard deviation is defined as square root of variance.

>> sigmaSq = var (data);
>> sigmal = sqgrt (sigmaSq);
>> sigma2 = std(data);

Other summary statistics

® Mode — the most frequent observed value.
® Median — the middle value in the sample.
® Quartiles — nth quartile is the largest value in the first 7 of data.
® Percentiles — similar to quartiles, but split into 100 equal parts.
® (QQuantiles — similar to percentiles, but splits into two unequal parts.
>> data = sort(randi(100,1,11)); % generate observations
>> disp(['data [' num2str(data) ']'l);
>> disp(['-——- Summary ———---— "1);
>> disp (['Mean = ' num2str (mean (data))]);
>> disp(['Median = ' num2str (median(data))]l);
>> disp(['Ql = ' num2str (prctile(data,25))]);
>> disp(['0Q2 = ' num2str (prctile(data,50))1);
>> disp(['Q3 = ' num2str (prctile(data,75))1);

Summary statistics in action

World: Total Population

-
= ‘/
|43 Ed

- I‘
] — median
= | — = B0% prediction interval
- «++ 95% prediction interval
o — obsened

- 0.5 child

s} sample trajectories
o J

= 2

=

B o -

z

2

£ =
~

-
o - ','
a
w (.’
ﬂ}l‘
e -
"
-
= a®
.
o

T T T T T T T T T T T T T T T T
1950 1960 1970 1980 1980 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

SoUrce: LINMed NSNons, Depanment nomicand Social Afteis, Fapulation Division (2017)
Werld Population Prospesis. The 2017 Revision. hilp fesa. un omgenpdivpe/

Screenshot from: https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/

https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/

Empirical distributions

Numerical Methods I

using Matlab

Empirical CDF

>> data = 5*rand(l, 1000);
>> [fregs, x] = ecdf (data);
>> plot (x, fregs);

>> data = 5*rand (1, 1000);
>> ecdf (data)

1 . : . : —

1 — ;

e 0.9f -
0.9f ya -
P 08}
0.8 o i
Ve 07F
S a
07 -~ 1 .
S 0.6 ﬁH
e
06 ~] ~ ,
05h / g I
/ 0.4l r;

0.4& // B o

.) -/ 03l B r—H'J

y E
L _ | g
03 » o2l I
/
02t s 1 o1l —
/
01r [] 0 .
~ 0 1 2 3 4 5
0L . . I 1 X

Empirical histograms

>> data = 5*rand (1, 1000);
>> [fregs, x] = histcounts(data);
>> plot (x(2:end), freqgs)

>> data = 5*rand (1, 1000);
>> histogram(data, 50);

35

125

120
115 F /\\
110

K\ / \ /_
N/ \ ,
\V4

105

95
90

85t \\”\7 /

80 L L L L L L L L
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

imating distribution parameters

Distribution—centric functions:

>> [a, b, aci, bci] = unifit (uniform_data);

>> [p, pci] = binofit (binomial_data, n);

>> [la, laci] = poissfit (poisson_data);

>> [mu, sigma, muci, sigmaci] = normfit (normal_data);

Generalized function:

>> params = mle (normal_data, 'distribution', 'norm');

Distribution fitter app

>> distributionFitter

<« EIPY
CURRENTFOLDS

> WATLAS DIve >

Distribution Fiter
Fils View Toois Help

Display type: | Densiy (°0F) v

oats NewFi. | [Manage .

Evauate

Excude

i g

Fit Manager
Tabis orfis

Pt Contbounds | Name Datasot

NawFi.

Help

Ot

Data

New Fit
Fitnam:
D
Distbuton.
Excuson e

Nomal

Nomai it
s s v
Normal S

Bimbaum-Saunders
Bur

Distbuion para EpsionSkewNomal

mu focation)

sigma (scle)

Resuts:

ClccAgpiy 0t

Hop

Exponental

Extame value

Gamma

Gensraiized Extame Valve

Generatzed Pareo

Halfhomal

nverse Gaussian

LogLogistc

Logisse
Nakagani
Non-parametic
Nomal
Rayiign
Rican
Stable

wanagots| [Closo

Kolmogorov—Smirnov test

>> norm_data = normrnd(0, 1, [1, 1000]);
>> kstest (norm_data)

ans = /{|
1 i 1
ogica £ o8 g
0 /Hy
0.6
max (exp_data), 101);

04 HJ
>> cdf_y = expcdf (exp_data, 1);

0.2
>> kstest (exp_data, 'cdf', ...
[cdf_x'", cdf_y'])
0
ans = 4 2 0 2 4

logical X
0

>> exp_data = exprnd(l, [1, 1000]);
>> cdf_x = linspace (min (exp_data),

Cumulative Probability

Image: @Wiki

https://commons.wikimedia.org/wiki/File:KS_Example.png

Central limit theorem

Numerical Methods I ~~

using Matlab

Values of the standardized sum of random values X;,

1 n
Sn == HZ[X,-—M],
i=1
are distributed according to the normal distribution with zero mean and unit variance:
Su ~ N(0,1).

This is true if (1) X; are at least weakly independent and (2) follow various distributions with finite
means and variances.

Example: sum of 5 uniform r.v. formally

5
1
Si=— ZX[with X; ~U (—\/5, \/g) .
V5 <
i=1
>> n = 5; samples = 1000;
>> data = unifrnd(-sqrt(3), sgrt(3), [n, samples]);
>> data = sum(data);

>> data = data ./ sqgrt(n);

>> kstest (data)
ans =
logical
0

Example: sum of 5 uniform r.v. visually

p(x)

04

0.35¢
03r
025¢

0.15¢
01r
0.05¢

Empirical

Normal(0,1)|]

-4

Empirical
Normal(0,1)

-2

Random number generators

Numerical Methods I

using Matlab

True random number generators

A Million Random Digits with 100,000 Normal Deviates

by RAD

Hardcover ~ Paperback Digital ~ Other

Secalby

A MILLION

Random Digits Buy used

100.000 Normal Deviates

sty s copen. g

RAND

1SBN-13: 5780823030474
ISBN-10: 0833030477
Wy is 1SBN imporant? «

Images: Aliko Sunawang @Pexels, Pixabay @Pexels, @ Amazon, Tookapic @Pexels

Video: Tom Scott: The Lava Lamps That Help Keep The Internet Secure

https://www.pexels.com/photo/blue-red-and-white-dice-1225131/
https://www.pexels.com/photo/ball-casino-chance-gamble-33267/
https://www.amazon.com/Million-Random-Digits-Normal-Deviates/dp/0833030477
https://www.pexels.com/photo/night-television-tv-video-8158/
https://www.youtube.com/watch?v=1cUUfMeOijg

Pseudorandom number generators

First select xq (the “seed”), a, b and m. Then iteratively do:

Xi+1 = (ax; + b) mod m.
Suppose a =7, b =5, m = 65536, xo = 11437869.

14

12

4
®

08

px)
Px)

06

04

02

Our pseudorandom number generator

The good. Distribution appears to be mostly uniform.

The bad. Values cycle after roughly 17 thousand iterations.

The terrible. Consecutive values appear to be slightly autocorrelated.

The lesson. Use builtin random number generator.

Another lesson. Set seed to enable better reproducibility.

Autocorrelated? Correlation coefficient

Correlation coefficient:
oe p= (Xr — pux)(Y; — py))
_0s VA — px)2)((Y; — py)?)
~ 0.4
Autocorrelation function:
0.2
X, — X —
VIl sy — 6=) K — gu0)

0 02 04 06 0.8 1 N <(Xt - MX)2>

rho=-0 90488

Correlation # causation

Total revenue generated by arcades
correlates with

Computer science doctorates awarded in the US

Correlation: 98.51% (r=0.985065)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
$2 billion 2000 degrees
[al
o
3
=
u s
2 1500 degrees T
o n
] -)
- $1.5billion 2
3 o
2 1000 degrees &
- 8
Q
o
T
in
1 billion 500 degrees
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-# Computer science doctorates 4+ Arcade revenue

Screenshot from: https://www.tylervigen.com/spurious-correlations

https://www.tylervigen.com/spurious-correlations

General method to sample from various distributions

® CDF, P(x), gives values in interval [0, 1].
¢ CDF, P(x), is a monotonic function.
® | ets generate uniformly distributed random value, u.

® [ets invert CDF to convert u into some x.

For example, for exponential distribution:

In(1 — u)

Px)=1-e™ = x=Plu)=- 3

In the above if u ~ U/(0, 1), then x will follow exponential distribution.

Generating random numbers in Matlab

® These things are nice to know and understand. Especially “seed”.

® Some distributions have their dedicated *rnd functions. If these do not exist, you can use
makedist and random functions instead.

® Just be careful to understand what parameters the functions accept as input.

>> rng (169, 'twister')

>> rng (169, 'twister') >> exp_obj = makedist ('exponential', 5);
>> exprnd(5) >> random (exp_ob7j)
ans = ans =

2.0054 2.0054
>> betarnd (3, 4) >> dist_obj = makedist ('Beta', 3, 4);
ans = >> random (dist_ob7j)

0.5121 ans =

0.5121

See: online documentation.

https://mathworks.com/help/stats/supported-distributions.html

Next time file input and output!

\)va&,)
S A ysIcs

X ‘\\‘m 7 ‘V/

NumericaL METHODS [:
Lecture VII: File input and output

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy
email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

s UNIVEp o UNIVg

N . Ny ,Lr—g,;?(r
$\r +1579+ /{“; ; > /é
= % = N
< o “
~ Py L = &
1?% \i‘é % &
Sirag NV S FARY

ysics

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

Minimal file input and output

Numerical Methods I

using Matlab

save command

save (file name) (variable name(s)) —ascii

>> mat = rand(3,2);
>> save test.dat mat -ascii

o [f file does not exist, it will be created.
o [f it exists, it will be overwritten.

® [f you are storing multiple variables, they should have the same number of columns.

ad command

>> load test.dat

>> who

Your variables are:

test mat

>> test

test =

{contents of a matrix read from test.dat file)

>> test - mat $ recovery is imperfect

ans =
1.0e-08 =
-0.1133 -0.0795
-0.4566 -0.4801
0.1678 0.1761

It is better to use save and load commands with binary *.mat files.

Appending data to a file

>> mat = rand(3,3);
>> save test.dat mat -ascii —-append

Few things to notice and understand:

EXISting data

® We have added another qualifier
“-append”.

® While we can append data of any shape
to existing file, to read this file properly
we must ensure that our data remains
rectangular.

Newsdaita

load and plot example

plotTimeTemp.m » timeTemp.dat

1‘012345678910 11 12 13 14 15 16 17 18 19 20 21 22 23
33332211111.52 3 4 4 4 4 3 2 2 1 1 11

]

a5] @ Read ’time_temp.dat’ file

‘ e] ® Separate data row—wise:

® First row: day time in hours.

® Second row: temperature in degrees

Celsius.

©® Plot the data

Lower level file I/O

Numerical Methods I |

using Matlab

The basic file I/0O algorithm

Under the hood save function does the following three basic things:
® Open the file for writing or appending.
® Write the data to the file.
® (Close the file.

load function proceeds similarly:
® Open the file for reading.
® Read rectangular data from the file.
® Close the file.

fopen — open the file

(file identifier) = fopen ((file path string), {permission string)) ;

o file identifier - variable, which will be used to reference this particular “opening” of this
particular file.

o file path string - path to the file.

® permission string - is the file for reading, writing or appending?

File path

® File path is how we find
certain files or directories on
computers (for example,
when using file managers).

® Paths can be absolute or
relative.

® For our purposes relative
paths will be more useful.

Manage

Wiew Picture Tools

Share

Home

< v 4 [c\Users\Name\Documents\MATLAE|

7 Quick access

[This PC
) 3D Objects

€ / > [MATLABDrive » lecs » lec-07]

LDER >> pwd
ans =

mp.m "/MATLAB Drive/lecs/lec-07"

E—

Additional Material: Udacity: “Absolute and Relative Paths”

https://www.youtube.com/watch?v=ephId3mYu9o

Why relative paths?

’fid = fopen('./data/experimentl.dat','w'); ‘

® Here we have a relative path to a file “experiment].dat”.
® The file is located in a directory “data”.

® The directory is in the current working directory.

Relative paths are flexible. On your computer the absolute path to the file might be different from
the absolute path on my computer. Then the script which uses absolute paths will break. Using
relative paths we just have to ensure that “data” stays together with the script.

Error handling fopen

fopen will return —1 if something went wrong when trying to open the file. Otherwise it will
return integer > 3, which will serve as file identifier.

fid = fopen('data/experimentl.dat');

if fid == -1
disp('File was not opened')
else
disp ('Reading the data')
(further code)
end

Note: by default fopen opens files with read permission

fclose — close the file

When we are done working with file we can close it using fclose.

fclose ({file identifier or "all’)) ;

® [If we pass “all” instead of identifier, then all currently opened files will be closed.

o fclose will return 0 if everything went fine and —1 if something went wrong.

fprintf — write to file

‘ fprintf (file identifier), <(format string), <(variables)) ; ‘

There are other low—level functions, but we can use what we already know. We just need to pass
another input argument. Though note:

® The new input argument (file identifier) goes first.

o fprintf returns the number of bytes written to file. So if you don’t add the semicolon it will be
printed to Command Window. This does not happen if you write to Command Window
instead of a file.

Before using fprintf make sure that you have opened file for writing (‘“w” permission string) or
appending (“a” permission string).

fprintf uniform data example

% generate data
data = rand(10,3);

% write data to file

file_idx = fopen('rand.csv','w');
fprintf(file_idx, '%.3f,%.3f,%.3f\n', data');
fclose (file_idx);

fprintf is vectorized and “data” is a matrix of double therefore we can do it simply like that.

fprintf mixed data example

% generate data

names = {'Luca McCarthy', 'Kai Robinson', 'Josh Walker', 'Jacob Doyle',
'Bradley Rees', 'Byron Molina', 'Jaycob Russell', 'Johnathan Hopper',
'Callen Gibson', 'Dean Roberson'};

nStudents = length (names) ;

grades = 7xrand(nStudents, 3) +3;

o

% write to file
fid = fopen('rand_grades.csv','w');
for idx = 1:nStudents
fprintf (fid, '%s,%.2f,%.2f,%.2f\n', names{idx}, ...
grades (idx, 1) ,grades (idx, 2),grades (idx,3));
end
fclose (fid);

We need to loop over available data.

ide note: sprintf — write to a variable

>> (variable) = sprintf ({template string), {variables storing values to be used in the template)) ;

>> name = input ('What is your name? ', 's')
What is your name? Ishmael
name =
'Ishmael’
>> age_prompt_text = sprintf ('How old are you, %s? ', name);
>> age = input (age_prompt_text)

How old are you, Ishmael? 170
age =
170

fscanf — read file to matrix

General template:

{variable to store data) = fscanf ((file identifier), {format string), <{expected data dimensions)) ; ‘

Lets read “rand.csv”’, which we have written few slides before.

fid = fopen('rand.csv');
data = fscanf (fid, '%f,%f,%f', [10,31);
fclose (fid);

>> class (data)
ans =
double

textscan — read file to cell array

General template:

{variable to store data) = textscan ((file identifier), {(format string)) ;

Lets read “rand_grades.csv”, which we have written few slides before.

fid = fopen('rand_grades.csv');
data = textscan(fid, '%s %$f $f %f', 'Delimiter', ',"');
fclose (fid);

>> class (data)
ans =
cell

Possible confusion due to delimiter being specified outside format string

fgetl and fgets — read line by line

These functions are almost identical, they only differ in how they treat the end of line symbols:
fgetl removes them, fgets keeps them.

{variable to store line) = fgetl ({file identifier)) ;
{variable to store line) fgets ({file identifier)) ;

You will most often use these functions in while loop:

while ~feof ({file identifier)) % while not end of file
{variable to store line) = fgetl ({file identifier)) ;
(further code to process the line)

end

fgetl example

% cell array to store data
data ={};

% read the data
cols = 0; % number of columns in our file
delim = ','; % delimiter used to separate values in the file
fid = fopen('rand_grades.csv');
n_lines_read = 0;
while ~feof (fid)
line_read = fgetl (fid);
if cols ==
% determine number of columns from the first line

cols = length(strfind(line_read, delim)) + 1;
end
data (end+1l, l:cols) = strsplit(line_read, delim);
n_lines_read = n_lines_read + 1;
end
fclose (fid);

data(:,2:cols) = mat2cell (cellfun(@str2double, data(:,[2:41)),

fgetl example in detail

We read data to cell array (as it is mixed).

We read line by line using fgetl

We keep track of the number of lines read so that we could put data in appropriate row.
® We are splitting the lines into separate values (columns) by using strsplit.
® We determine number of columns from the first line.

® Qur output is cell array of size 10 x 4 (if the file generate few slides before is used).

The code could be improved by converting the appropriate cells to numerical values (currently all
cells containing strings). This would not be very hard, but a bit messy.

High level file I/0

Numerical Methods I

using Matlab

How to manually create a table

You can create a table with named columns (though names are optional):

{variable to store table) = table ({varl), <...), {(varN),
'VariableNames', <{names for columns)) ;

You can also preallocate memory for table:

(variable to store table) = table ('Size', (size of preallocated table: [nRows nCols]),
'VariableTypes', <(cell array with strings indicating types),
'VariableNames', <{names for columns)) ;

Additional material: Online documentation on table

https://www.mathworks.com/help/matlab/ref/table.html

readtable

This function can read delimited text files (“.txt”, “.dat” or “.csv’’) and spreadsheet files (“*.xsls”,

LR I3

“xlsx”, “.ods” and some others).

{variable to store table) = readtable ({file path string),
(options as ...ImportOptions object),
{advanced options as Name-Value pairs}))

® Usually “file path string” will be the only input argument you’ll pass.

® QOther input arguments are optional and used for advanced configuration.

Graphical data import tool

HOME PL

IMPORT

Simulink

SIMULINK

L._:ﬁ Eﬁ LL;‘] U] Upload ==| Go toFile &, Lj

New New New J;LJ Download u Find Files || Import Clear Favorites Clear

Script Live Seript ¥ Data || Workspace ¥ 5 Commands ¥

FILE VARIABLE CODE
= E / » MATLAB Drive > lecs > lec-07

~ E3] L3
CURRENT FOLDER rand_grades.csv

Name a A B c D
&
£ fget_rand.m LucaMcCa... Varl 2 Var 3 Var 4
& . .
“] fprintf_mixed.m Text ~ Number ~ Number ~ Number =~
#) forintf_uniform.m 1 [LucaMcCa.. 9.97 5.8 7.06
#) fscanf_rand.m 2 |KaiRobins... 3.55 4.82 6.85
& plotTimeTemp.m 3 |Josh Walker 6.1 8.6 401
andiesy . || 4 |Jacob Doyle 3.75 6.02 8.97

readtable and how to deal with tables

I have downloaded a data set containing football matches from Holland. I have saved the data file
as “holland.csv”.

>> data = readtable('holland.csv');
>> summary (data)
{some quick statistical description of all columns)

>> data.tier = []; % delete some column
>> minSeason = min (data.Season); % get info about column
>> datal995 = data(data.Season == 1995, :); % filter (subset) data

>> datal995. tgoa datal995.hgoal + datal995.vgoal; % add column
>> datal995 = sortrows(datal995, 'tgoal', 'descend'); % sort data
>> hgoall995 = grpstats(datal995, '"home', 'sum', 'DataVars', 'hgoal'); % pivot data

Data source: https://github.com/jalapic/engsoccerdata/

For more examples see “holland.m” on the e-learning platform

https://github.com/jalapic/engsoccerdata/

Numerical, ordinal and nominal data

e Numerical data can be processed using variety of mathematical tools: comparison,
summation, averaging and others.
e Textual data can be of two types:

® Ordinal data can be ordered, but no other mathematical operation make sense.
* Nominal data can’t be summarized using mathematical tools. We can only count number of
elements belonging to the category.

In the Holland football data set:
® Number of goals are examples of numerical data.
® “Season” and “Tier” are examples of ordinal data.

® Team name is excellent example of nominal data.

Categorical data in Matlab

>> data.Season = categorical (data.Season, 'Ordinal',true);
>> data.tier = categorical (data.tier, 'Ordinal', true);
>> data.home = categorical (data.home);

>> data.visitor = categorical (data.visitor);
>> % list all distinct elements in a categorical column
>> categories (data.home)
ans =
{"ADO Den Haag'}
{"AFC Ajax'}
{'AZ ’67 Alkmaar'}
(D

Custom ordering of the ordinal data

By default data is ordered in alphabetical order, but you can set custom order. For example, assume
that we have patient database, which contains self—evaluation of overall health: patients could say
that their health is “Poor”, “Fair” or “Good”.

>> patients.selfEval = categorical (patients.selfEval,
{'Poor', 'Fair', 'Good', "Excellent'}, 'Ordinal', true);

>> % lets get patients with good health or better

>> patiens(patiens.selfEval >= 'Good')

(list of patients with *’Good’ or "Excellent’ self—evaluation)

Jjoin — combining tables

® Two tables can be combined by a shared column.
® [f there are multiple shared columns, you can select which column to use.

e Data which is absent in either table, will be removed.

>> Tl = table([10;4;2;3;71,15;4;9;6;11,110;3,;8;8;41);
>> T2 table([6;1;1;6;8]1,([5;4;9;6;11);
>> join(T1l, T2, 'Keys', 'Var2'")
T=5x4 table
Varl_T1 Var2 Var3 Varl_T2

10 5 10 6
4 4 3 1
2 9 8 1
3 6 8 6
7 1 4 8

Be sure to study the documentation of join. Also see outerjoin and innerjoin

https://www.mathworks.com/help/matlab/ref/table.join.html
https://www.mathworks.com/help/matlab/ref/outerjoin.html
https://www.mathworks.com/help/matlab/ref/innerjoin.html

writetable

This function can write delimited text files (“.txt”, “.dat” or “.csv’’) and spreadsheet files (‘“*.xsls”,

“xlsx”, “.ods” and some others).

writetable ({variable storing table), <(file path string),
{advanced options as Name-Value pairs))

Specific example:

writetable (datal995, 'hollandl1995.x1s');

Next time beyond the basic plot!

\)va&,)
S A ysIcs

X ‘\\‘m 7 ‘V/

NumEericaL MeTHODS I:
Lecture VIII: Beyond the basic plot

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy
email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

s UNIVEp o UNIVg

N . Ny ,Lr—g,;?(r
$\r +1579+ /{“:l ; > /?(
= % = N
< o “
Z Py L = T
1?% \i‘é % &
Sirag NV S FARY

ysics

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

Programmatic plotting

Numerical Methods I

using Matlab

Simplest plot possible

>> x = linspace (0, 2xpi, 11);
>> y = sin(x);
>> plot(x, vy);

Plot looks better if we increase number of points

0.5
>> x = linspace (0, 2xpi, 101);
0 >> y = sin(x);
>> plot (x, Vy);
-0.5

Our plot lacks frame labels

>> xlabel ('time');
>> ylabel ('sine of time');

0.5

sine of time

-0.5

time

Fancy title anyone?

>> title('sin(t), t \in [0, 2 \pi]l'");

sin(t),t €[0,2 =]

0.5

sine of time
o

-05

time

ling the curve

>> plOt(Xl Yr 'r__');
>> xlabel ('time');
>> ylabel ('sine of time');

1 — ! - .
/ AN
, \
Y \
/ \ |
05 | .
\
o / \
£ /
Z o ']
5] \ /
0] \ /
% \ /
\ /]
-0.5 \ y
\ /
\ /
1 AN
0 2 4 6

More curves

>> y2 = cos(Xx);

>> plot(x, y, 'r--', %, y2,

Tkx');

>> xlabel ('time');

>> ylabel ('sine,

cosine of time');

05t /

-05

sine, cosine of time

Alternative to add curves

>>
>>
>>
>>
>>
>>

plot(x, vy, 'r——");
hold on;

plot(x, y2, 'kx');
hold off;

xlabel ('time"');

ylabel ('sine, cosine of time');

sine, cosine of time

05

Adding legend (after the fact

>> legend('sine', 'cosine');

14

RN ; N
\ — — —sine

* cosine
%)

0.5

q) 7
£
©
g 0 7
3 /
© /
] /
c -05]
@ /
/
/
1 .
0 2 4 6

Adding legend (as you plot)

>>

>>
>>

>>
>>

plot(x, vy, 'r—-"',
'DisplayName', 'sine');

hold on;

plot(x, y2, 'kx',
'DisplayName', 'cosine');

hold off;

legend ('show');

sine, cosine of time

05

— — —sine
* cosine

Switching between frame and axes

‘ >> box off;

v
\4

box on;

sine, cosine of time

sine, cosine of time

05 /

-0.5

— — —sine
* cosine

Adding grid

>> grid on;

14

RN T R
\ — — —sine

* cosine
%)

o 05 E]
£
°
2 0 7
3 /
o /
[} /
05]
.% /
/
/
1 .
0 2 4 6

Programmatic interaction with figure and axes handles

(figure handle) = gcf () ;
{axes handle) = gca () ;

(figure handle) = figure ({integer figure id)) ;

>>
>>

fig =
ax =

gcf();
gca();

>>
>>
>>

ax.XLim = [0, 11;
fig.PaperUnits =
fig.PaperSize =
fig.PaperPosition
ax.Color

ans =

111

>>
>>

'inches';

(4,

317
[o,

0,

4,

31

>> set(gca(), 'XLim', [0, 11);
>> set (gcf (),
'PaperUnits', 'inches',
'PaperSize', [4, 31,
'PaperPosition', [0, O, 4,

>> get (gca(), 'color')
ans =

111

31)

5 & ®
*

sine, cosine of time

~

o

What customization options there are?

There are a lot of them. To see them:
® Explore them using the plot tool.
® https://se.mathworks.com/help/matlab/ref/matlab.graphics.axis.axes-properties.html
® https://se.mathworks.com/help/matlab/ref/matlab.ui.figure-properties.html

Documentation Examples Functions Videos Answers

« Documentation Home
Axes Properties

EUAATEAR Axes appearance and behavior

« Graphics

« Formatting and Annotal

Axes properties control the appearance and behavior of an e object. By changing property values, you can mi

« MATLAB

« Graphics

«3. Scene Control

5 Fontiame —Font name
supported font name | ' FixedwWidcn
« MATLAB

https://se.mathworks.com/help/matlab/ref/matlab.graphics.axis.axes-properties.html
https://se.mathworks.com/help/matlab/ref/matlab.ui.figure-properties.html

Multiple figures from one script

3500

figure(1);
plot (x_1, y_1); e
figure(2);
plot(x_2, y_2); e

figure (3);
plot(x_3, y_3);

1000

The graphical plot tool

Numerical Methods I

using Matlab

There is a graphical plot tool

PLOTS
7 FAVORITES
SELECTION AKX AR * Yoot o * *
< J o VARV, \VARV/
= I % MATLAE
plot Plot as multip... bar scatter
CURRENT FOLDER
e e MATLAB LINE PLOTS
: o o w &
ANA AAY \/-\\ i
. (R, VARV, NN Y J
¥ plot Plot as multip... semilogx semilogy loglog area
3 : MATLAE STEM AND STAIR PLOTS
stem stairs

MATLAB BAR PLOTS

I W F | iam b *

Which allows you to edit plot by clicking

FIGURE

5 : 8 - [#] Fitting 1|
H g MR EH ER O B ™\ | @ s

Camera Plot Edit | Inspector

Legend Removel... Colorbar RemoveC... Grid Remove ... X-Grid ¥-Grid TextArrow Fig Link plot
ANNOTATIONS TOOLS EDIT

Figure 1

08

06

04

02

And then you can even generate the code

HOME PLOTS FIGURE .
ave
- X-Label Y-Label Title Legend Remowvel... |
_ % Save

c B ATLAB Drive »
” ave A5

_I'II

g | _g# Generate Code...

Plot types

Numerical Methods I

using Matlab

Logarithmic axes

Lithuania
106 ‘
>> % Double log base 10 axes
>> loglog(x, Vv);
B 104
a 10
>> § X axis log base 10, Y axis linear _g
>> semilogx(x, V); GE)
:% 102
>> $ X axis linear, Y axis log base 10
>> semilogy (x, V);
100 ' ' '
0 100 200 300 400

Day since the start of pandemic

Subplots

% rows, cols, id % rows, cols, id
subplot (1,2,1); subplot (1,2, 2);
plot(x,y,"'r=—="); plot (x,y2,':m");
108 108
(%]
8 104 8 10
8 8
3 B
£ g
5 102 3 102
o / o
100 f 100 [
0 100 200 300 400 0 100 200 300 400

Day since the start of pandemic

Day since the start of pandemic

tiledlayout allows for alternative approach

Scatter plot

>> subplot(1,2,1);
>> plot(x, y);
>> subplot(1,2,2);

v

>> plot(x, y, '.");

80 80
60 60 g
40 40 1
20 20 g

0 0 g
-20 -20 g
-40 -40 g
-60 . . . 60 L . .

-200 -100 0 100 200 -200 -100 0 100 200

scatter offers similar functionality

Stairs plot

stairs (x,

V)i

1400

1200

-
o
o
o

o]
o
o

600

400

Confirmed cases

200

0

50

60 70 80 90 100
Day since the start of pandemic

I have used this type of plot to show you CDFs of a discrete distribution.

Stem plot

stem_plot = stem(x, vy);

stem_plot.BaselLine.LineStyle = 'none';
100
2 50+
(2}
: T
2 T
g 0 Tﬁ@? ?
S %@’ Ll
2
_50 L

50 60 70 80 90 100
Day since the start of pandemic

I have used this type of plot to show you PMFs of a discrete distribution.

Error bar plot

% generate fake noisy data

15 T T T -
std = 0.02; @ Measurements
x = linspace(0, 1, 11); theory +
err = 3xstdx ((1+x).%2);
y = x + (err/3) .x randn(size(x));

% the plot

errorbar(x, y, err, 'rs');
hold on;

plot(x, x, 'k'");

hold off;

legend ('Measurements', 'theory'); 0 dz 04 de Oé]

Pie chart

pie ({data), {labels)) ;

0-9 y/o 80+ y/o

70-79 ylo

10-19 y/o
60-69 y/o
20-29 y/o
50-59 y/o
30-39 y/o

40-49 y/o

Data source: https://osp.stat.gov.lt/gyventojail

https://osp.stat.gov.lt/gyventojai1

Bar chart

% create category ids

bar (cat_ids, data);
% ensure proper labels

set (gca (), 'XTickLabel',

cat_ids = 1l:length(data_labels);

set (gca (), 'XTick', cat_ids);

data_labels);

x10°

0-9y/o

10-19y/o 20-29y/o 30-39 y/o

80+ y/o

Data source:

https://osp.stat.gov.1t/gyventojail

https://osp.stat.gov.lt/gyventojai1

Polar plot

% generate data 150

angle = linspace(0,2%pi, 101);
radius = sin(2xangle);

180
% the plot

polarplot (angle, radius)

210

240 300
270

Numerical Methods I

using Matlab

o

data

= linspace(0,8%pi,101);
= t.*sin(t);

= t.*xcos(t);

MOOW o

% plot
plot3(x, vy, t);

30

20

10 —

20 20

-20 -20

x = linspace (0, 2*pi, 31);
y = linspace (0, 2xpi, 31);
[mesh_x, mesh_y] = meshgrid(x, vy);

mesh_z = sin(mesh_x) .% sin(mesh_y);

subplot (211);

contour (mesh_x, mesh_y, mesh_z);
colormap ('hot');

colorbar();

subplot (212);

contourf (mesh_x, mesh_y, mesh_z);
colormap ('hot');

colorbar () ;

2 pi

pi

-0.2
-0.4
-0.6

-0.8

0.6
04
0.2

-0.2
-0.4
-0.6
-0.8

=\
HE:

> x = 1:5;

>> vy = 1:5;

>> [mesh_x, mesh_yl=meshgrid(x, vy)

mesh_x =
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

mesh_y =
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

Customizations not shown in the slide

% let the ticks point outwards
set (gca (), 'TickDir', 'out"');

% set custom tick locations on x axis
set (gca (), 'XTick', [0 pi 2*pil);

% custom tick labels
set (gca (), 'XTickLabel', {'0" "pi' '2 pi'});

% Do the similar thing on the y-axis
set (gca(), 'YTick', [0 pi 2+pi]);
set (gca (), 'YTickLabel', {'0' 'pi' '2 pi'});

“Image” plot

The code remains mostly the same with a caveat: imagesc takes x and y values as vectors, while

contourf takes matrices. z values in both cases must be matrices.

imagesc(x, vy, 2z);

Note that y axis is flipped. Also see image function.

Surf plot

surf(x, vy, z);

2 AEEm@an
1 ' S,
/ 05 ///”""““‘\R‘
27774 AP
0 N A
V7N AN
05 /%S AN

O LT

2 pi

Other plot types

® area — if you want to fill the area under the curve.
® quiver — vector fields often used by certain branches of Physics.

® plotmatrix — if you want to see correlations and distributions within your data.

MATLAB Plot Gallery Q

L N — 8 Tilsoiwors , Conat sl

Standard Plots

e it 20 1) Lnepa @ L Pt) Cateine Pt (1) Fuoeto Pl (1) Fuction it)
XN/ ,jé

Line Pl 30 LogiogPla

See: Matlab Plot Gallery.

https://www.mathworks.com/products/matlab/plot-gallery.html
https://www.mathworks.com/products/matlab/plot-gallery.html

Exporting plots

Numerical Methods I

using Matlab

In the GUI you have save option

o /N ® PDF — excellent format if you are producing
TSI EE—— graph and your final product will be a PDF
ma MM R M E file.

— ' ® PNG - excellent format for graph or image
— ‘ with limited number of colors.
] ® JPEG - excellent format for images with

large number of colors.

e Problem! Matlab has its own very strong
R B opinions on how your figures must look.

TIFF image

Saveas | TFFnoc

Type Fortable

Cancel

See: Save Figure with Specific Size, Resolution, or Background Color (Matlab tutorial)

Also: export_fig toolbox (Matlab File Exchange)

https://se.mathworks.com/help/matlab/creating_plots/save-figure-at-specific-size-and-resolution.html
https://se.mathworks.com/matlabcentral/fileexchange/23629-export_fig

My save_to_pdf function

function save_to_pdf (paper_size, file_name)
This function saves current figure to png file.

Input args:
* paper._size (size of the paper in inches).
* file name (path or file name including or excluding extension).

do do oo oo oo oo

o

% first lets set the desired size of the figure
set (gcf(), ...

'PaperUnits', 'inches', ...

'PaperSize', paper_size,...

'PaperPosition', [0 O paper_sizel);

% save current figure to file
print ('-dpdf', file_name)
end

My save_to_png function

function save_to_png(paper_size, dpi, file_name)

This function saves current figure to png file.

Input args:

* paper._size (size of the paper in inches).

* dpi (dots per inch).

* file name (path or file name including or excluding extension).

do oo oo oo oo oo oo

)

% first lets set the desired size of the figure
set (gcf (), ...

'PaperUnits', 'inches', ...

'PaperSize', paper_size,...

'PaperPosition', [0 O paper_sizel]);
% save current figure to file

print ('-dpng', sprintf('-r%d',dpi), file_name)
end

Next time “live’’ coding session!

UNIVE, R

& £

3 1s70. Q‘S\/) J?

,W »,‘

“"TAS AW AR YSICS

v\“" Vi ‘V/
<,
e,
Fsrs L guv®

NumEericaL MeTHODS I:
Lecture X: Sorting and Searching

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy
email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

s UNIVEp o UNIVg

N . Ny ,Lr—g,;?(r
$\r +1579+ /{“:l ; > /?(
= % = N
< o “
Z Py L = T
1?% \i‘é % &
Sirag NV S FARY

ysics

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

Searching algorithms

Numerical Methods I

using Matlab

>> data = di 0,10 1, 10
dataa*a randi ([I L) >> data = reshape (data, 2, 5)
6 4 5 0 0 3 4 1 7 0 data6:5 0o
>> find(dat
ans in e 103
12 3 6 7 8 9 ;>_[r, c, v] = find(data == 4, 1)
>> find(data == 4) 2
ans = c =
2 7 1
>> % find just one instance S
>> find(data == 4, 1) .
logical
ans = 1
2

Linear search

@ Get data vector and decide on what we are looking for.

@® Startati = 1.

© Check if i-th value matches what we are looking for, if so stop the search.

® Increment i and return to step 3.

function idx = search_linear (data,
target)
for idx = 1l:length(data)
if data(idx) == target
return
end
end
end

>> data = randi (10, [1, 81)
data =

9 10 2 10 7 1 3 ©6
>> search_linear (data, 10)
ans =

2

Watch: LINEAR search with FLAMENCO dance (Youtube video)

https://www.youtube.com/watch?v=-PuqKbu9K3U

Binary search

@ Get sorted data vector and decide on what we are looking for.
® Figure out the mid-point of the consider data vector M.

© If value at M is greater than the value we are looking for, then ignore the M-th value and
values after it. Also, go back to step 2.

@ If value at M is less than the value we are looking for, then ignore the M-th value and values
before it. Also, go back to step 2.

@ Otherwise, if value at M is equal to the value we are looking for, then simply return M.

Width of search space
-------------- Middle element of

N i search space

- |
1213579131922

Watch: BINARY search with FLAMENCO dance; Image (modified): @Wikimedia

https://www.youtube.com/watch?v=iP897Z5Nerk
https://commons.wikimedia.org/wiki/File:Binary_search.svg

Time complexity of algorithms

® How long will it take for linear search to find an element in data vector of size N?

® What about binary search?

Time complexity of an algorithm is how the run time scales as we increase the size of the problem.

Your algorithm is extraordinary excellent if O(1).

Your algorithm is excellent if O (In (n)).

Your algorithm is good if O (n).
Decent if O (n?)?

Watch: Big O Notation (Youtube video)

https://www.youtube.com/watch?v=v4cd1O4zkGw

Sorting algorithms

Numerical Methods I

using Matlab

What is sorting?

Sorting is the process of putting a list in order, either descending (highest to lowest) or ascending
(lowest to highest).

> d = [1, 5, 8, 4, 3];
>> sort (d, 'descend') % from highest to lowest
ans =

8 5 4 3 1
>> sort(d, 'ascend') &% from lowest to highest
ans =

1 3 4 5 8

Sorting in Matlab

>> data = rand(3)
data =

0.9076 0.4755 0.0260

0.6679 0.9352 0.1918

0.0784 0.1513 0.0913
>> sort (data) $ sort along each column independently
ans =

0.0784 0.1513 0.0260

0.6679 0.4755 0.0913

0.9076 0.9352 0.1918
>> sortrows (data, 2) % sort rows by second column
ans =

0.0784 0.1513 0.0913

0.9076 0.4755 0.0260

0.6679 0.9352 0.1918

Getting indexes when sorting

Suppose you have two separate vectors with related data and want to sort both of them by values in
one of them. Then you need to know how the index was reordered in that vector.

>> vl = rand(1,10); v2 = 3%vl + rand(1l,10);
>> [svl, idx] = sort (vl)

svl
.0525 0.1906 0.2238 (..

ol

idx
356194102 7 8

>> sv2 = v2(idx)

sv2 =
0.4967 0.9619 1.0953 <(..»

Note that most of the time “sv1” will have strictly ascending values, while “sv2” will usually have
ascending values.

Sorting text

>> words = char ('Labas', 'Hello',

'Konnichiwa',
>> sort (words)
ans =
Gabae
Helli
Konnoc iaa
Luttsnhtwg
>> sort (words, 2)
ans =

Laabs

Hello
Kachiinnow

Gaegntttu

'Gutten tag')

>> sortrows (words)
ans =

Gutten tag

Hello

Konnichiwa

Labas

Selection sort

@ Find the smallest (largest) value on the list.
® Swap that value with the first value.

® Continue repeating these steps, but ignore values already sorted.

{1,5,8,4,3} —
{{1],5,8,4,3} —
{{1,3].8,4,5} —
{{1,3,4]8,5} -
{1,3458]

Watch: Select-sort with Gypsy folk dance (Youtube video)

https://www.youtube.com/watch?v=Ns4TPTC8whw

Bubble sort

@® Compare two neighboring elements.
® Swap them if they are in the incorrect order.

©® Go through the list as much times as it is needed.

{{1,5],8,4,3} = {1,[5,8]4,3} — {1,5,(4,8],3} — {1,5,4,[3,8]} =
{{1,5]4,3,8} — {1,[4,5],3,8} - {1,4,(3,5],8} — {1,4,3,[5,8]} =
{,3,5,8} — {1,,5,8} — {1,3,,8} — {1,3,4,}.

Note that we need to do another pass through to verify that no additional swaps are possible.

Watch: Bubble-sort with Hungarian folk dance (Youtube video)

https://www.youtube.com/watch?v=lyZQPjUT5B4

In comparison...

What do you think is the time complexity of both algorithms?

Both of these are not memory intensive.

Bubble sort can be a bit faster.

Bubble sort is easier to implement.
We can do both better and worse than that.

BOGO SORT R avie 10EA |

T8 -

¥ ¢ Y -
"

U= @

P d

This method is meant as a joke. Don’t use it in practice. Complexity: ¢ ~ n!; Image: https://idea-instructions.com/

https://idea-instructions.com/

Quick sort

o
KV|CK SORT idea-instructions.com/quick-sort/ m
V12,CC by-nc-sa 4.0

AL TN bl =p

x

ﬁf&f

Average complexity: r ~ nlog n. Can be somewhat memory intensive; Image: https://idea-instructions.com/; Watch: Quick-sort with Hungarian folk dance (Youtube video).

https://idea-instructions.com/
https://www.youtube.com/watch?v=ywWBy6J5gz8

Merge sort

.
M E RGE so RT idea-instructions.com/merge-sort/ m
V12,CC by-nc-sa 4.0

ket 1l R {f “Ja
ﬁf&]} &

[¢) [e)

Wﬂmﬂ

Complexity: ¢ ~ nlog n. Can be very memory intensive; Image: https:/idea-instructions.com/

https://idea-instructions.com/

Next time linear algebra!

NumEeRricAL METHODS I:
Lecture XI: Linear Algebra

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy
email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

s UNIVEp o UNIVg

N . Ny ,Lr—g,;?(r
$\r +1579+ /{“:l ; > /?(
= % = N
< o “
Z Py L = T
1?% \i‘é % &
Sirag NV S FARY

ysics

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

Quick reminder problem

Numerical Methods I

using Matlab

Supply cost problem

“MatlaBest” owns three factories and two shops. The three factories are able to produce 10, 5 and
6 units of goods per day. The two shops are able to sell 14 and 7 units per day. Transportation costs
between the factories and shops are encoded as a matrix:

3 5 6
=
Two alternatives supply plans are suggested by the management:

S1 =

10 4 O’ 522[8 0 6]

0 1 6 25 0
> T = [3 5 6; 54 7];

> S_1 = [10 4 0; 0 1 6];

> S_2 = [8 0 6; 2 5 07;

Checking for constraints and costs:

Do supply plans, S; and S; satisfy the constraints?

>> sum(S_1) >> sum(S_2)
ans = ans =

10 5 6 10 5 6
>> sum(S_1") >> sum(S_2"')
ans = ans =

14 7 14 7

What are the costs of S; and S, plans?

>> sum (T .+ S_1, 'all'") >> sum(T .» S_2, 'all'")
ans = ans =
96 90

Some functions and operators act on matrices. Some operators act on individuals elements in the matrices.

Giving out delivery info to drivers and shop managers:

Where the driver from Factory 1 should drive?

> S _2(:,
ans

NN oo |

1)

Which deliveries should manager of Shop 2 accept?

We can easily index whole rows and whole columns. We can also index values and submatrices too.

Profit by different shops

Suppose that for some reason profit is a function of the units of goods delivered from the same

factory:
P; (Xi) ~ v/ Xi.

>> shop_factory_profit = sqgrt(S_2)
shop_factory_profit =

2.8284 0 2.4495

1.4142 2.2361 0

Some functions act on elements of a matrix.

Adding new shop and factory

Let us add a new shop, which is able to sell 6 units:

> T = [T; 10 6 2] > S 2 = [S_2; 0 0 0]
T = S_2 =

3 5 6 8 0 o6

5 4 2 5 0

10 2 0 0 O

>> T = [T [4; 8; 311 >> S_2 = [S_2 [0; 0; 6]1]
T = S_2 =

3 5 6 4 8 0 6 0

5 4 7 8 2 5 0

10 2 3 0 0 0 &6

We can easily add rows and columns to the matrix.

What we already know

e How to manually create matrices.

How to index matrices.

That some functions work element—wise, while others work on the matrices as single objects.

That operators may work element—wise, or treat the matrices as single objects.

How to add rows and columns to the matrices.

® That zeros creates a matrix, which is full of 0.
>> zeros (3) >> zeros ([3, 51])
ans ans

o o o |
o
o

o o o |l
o
o
o
o

Making matrices

Numerical Methods I

using Matlab

® Square matrix is an N X N matrix.
® Diagonal of a square matrix is a vector of a; ; elements.

® Trace is a sum of all elements in the diagonal, Tr(A) = Zi\’: 1 Gi i

>> mat = reshape(1:16,4,4)" >> diag(mat) '
mat = ans =
1 5 9 13 1 6 11 16
2 6 10 14 >> trace (mat)
3 7 11 15 ans =
4 8 12 16 34

Use reshape to change the shape of matrix or vector.

Symmetric and diagonal matrices

Symmetric, every s;; is equal to s;; (i # j):

1 4 9
S=14 2 8
9 8 3
>> r = randi (5, 3);
> s =1r + r';
s =
8 15
15 2
3 4 18

D=

oS O =
S NN O

w O O

10
C I=10 1
00

Diagonal, every d; ;, with i # j, is zero:

- O O

>> diag(1:3)
ans

o o
o N o
w o o

>> eye (3)
ans

o o
o~ o
= o o

diag is an example of poor design.

Other common square matrices

Banded: Lower triangular: Upper triangular:
1 1 0 0 1 0 0 O 1 2 3 4
1 110 21 00 01 2 3
B = — _
01 1 1 L=13 21 0 U=10 01 2
0 0 I 1 4 3 2 1 0 0 0 1
>> full (spdiags(..
ones(4,3), -1:1, 4, 4)) >> tril (s) >> triu(s)
ans = ans = ans =
1 1 0 O 8 0 0 8 15 3
1 1 1 0 15 2 0 0 2 4
0 1 1 1 3 4 18 0 0 18
o o0 1 1

Note: spdiags creates sparse representation of a matrix. full converts it in to a proper matrix.

Use istril and istriu to check if matrices are lower/upper triangular.

Operations with matrices

Numerical Methods I

using Matlab

Matrix addition (subtraction)

® Matrices are always added and subtracted element—wise.

® Matrices must have the same size.

> A = [12; 1 2]; B= [10 10; 20 20];

9 8

19 18
>> C = [100 200 300; 100 200 3007];
> A + C
Matrix dimensions must agree.

Multiplication (division) by a scalar

If matrix is multiplied (divided) by scalar, then the operation is applied element—wise:

> 3 « A
ans =
3 6
3 6

If you want to multiply two matrices element—wise:

>> A .x B
ans =
10 20
20 40

Multiplication by a matrix

o [f the left matrix is M x N matrix, then
the right matrix must be N x K matrix
(“inner dimensions” must agree):

12 b'..E

..oc

Ayp X Boz = Cy3.

® The result will be M x K matrix (based
on the “outer dimesnions”).

W
jut

® Each element is calculated as: A q Iq -

n =1
Cij = E ai kbi ;- —
k=1

Image (modified): Konradek @ Wiki

https://en.wikipedia.org/wiki/File:Matrix_multiplication_diagram_2.svg

Matrix multiplication using Matlab

Ann, Bob and Carol owns stocks of Companies X and Y:

100 O
S=1]0 50
25 25

Currently stocks are valued at 0.25 and 0.45 monies/stock. How much value does the stock
portfolios held by Ann, Bob and Carol have?

>> S = [100 0; 0 50; 25 25 1; >> S x P!

> P = [0.25 0.45]; ans =

>> S % P 25.0

Error using = 22.5

Incorrect dimensions {...) 17.5

>> P % S >> P x S'

Error using * ans =

Incorrect dimensions (...) 25.0 22.5 17.5

What is division?

With scalars we take an inverse of a right scalar:
1
a-b=ag--=a-b L.
Same logic applies to matrix division.

What does it mean to be an inverse of something?

For a square matrix A:
AxA'=1

Note that non-square matrices do not have proper inverses, though they have pseudoinverses.

One of the more common ones is Moore—Penrose pseudoinverse (see the documentation of pinv).

Testing matrix inverses in Matlab

For scalars the result is trivial:

But can be easily verified:

>> inv (3)
ans =
0.3333

For matrices the result is not trivial:

> A x B

o ol
— o

> A = [1 2; 3 4];
>> B = 1inv (A)
B =
-2.0 1.0
1.5 -0.5

Lets try a trick:

> A / B >> A % A

ans = ans =
7.0 10.0 7
15.0 22.0 15

10
22

Vector multiplication: dot product

Dot product of two vectors @ and b is defined as:

n
J-E:albl+agb2+...+anbn:ZaibiZﬁXET.

i=1l

>> = 1:4; b = 2:5;

a. >> a « b' ¢ [1Ix4] * [4x1] = [1x1]
>> size (a)
ans — ans =

14 40

>>
>> size(b') dot (a,b)
ans — ans =
4
4 1 0

In Physics we use dot product to calculate amount of useful work done by moving objects.

Read: “Understanding the dot product” by BetterExplained

https://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/

Vector multiplication: cross product

Cross product can be defined as:

a® b = |d||b| sin()7.

or
0 —as3 an bl
Ei@l;z az 0 —ay by| =
—day ay 0 b3

axb
N b
n
o
ab; — azby bxa a
azby — abs =-axb
airby — axby

>> cross([1 0 0],[0 1 0])
ans =

>> cross ([0 1 0],[1 0 0])
ans

00 -1

In Physics we use cross product to calculate angular momentum, torque and Lorentz force.

Read: “Understand the cross product” by BetterExplained; Image: Konradek @ Wiki

https://betterexplained.com/articles/cross-product/
https://en.wikipedia.org/wiki/File:Matrix_multiplication_diagram_2.svg

Matrix exponentiation

Element-wise exponentiation is not the same as matrix exponentiation:

AP £ A? = A xA.

Although they are related:
A" = [VD, V'] = vD{"v—1,

here V is a matrix composed of eigenvectors and D, is a diagonal matrix containing eigenvalues.

> A = [11; 0 2]; >> AAD

>> A."2 ans —

ans = 13
L 0 4
0 4

Eigen...what? Later.

Exponentiation: Markovian weather model

Transition matrix:

v o5 02)

20%

ey
_/ State updating:

40%

04 0.8

St+1 = TSt.

What is our weekly forecast? Given that today is sunny, §; = [(1)} :

5i=T5i_ =T%_,=...=T 5.

Images (modified): @Flaticon, Yug@ Wikimedia

https://image.flaticon.com/icons/svg/218/218775.svg
https://commons.wikimedia.org/wiki/File:Clouds_Cute_for_CSS_sprites.svg

Transpose

Transpose interchanges rows and columns:

1 4
A:LlL § Z] AT =12 5
3 6
>> A [1:3; 1615 > A = A * 1i;
>> A' >> A'
ans = ans =
14 -1i —-41
25 -21 =51
3 6 -31i -61
>> A.' >> A.'
ans = ans =
14 11 41
25 21 5i
3 6 3i 61

Augmentation

Sometimes we need to augment the original matrix:

1 2 31 0 0

A=14 5 6/0 1 O

7 8 9|0 0 1

>> [A; eye(size(A))]
>> A = reshape(1:9,3,3)"'; ans =

>> [A eye(size(A))] 1 2 3
ans = 4 5 6
123100 7 8 9
456010 1 0 O
78 9001 0 1 0
0 0 1

2-by-2 systems

Numerical Methods I

using Matlab

Solving graphically

Problem: .
X+y=8
{X+y:8 B F e g x-2y=-1
x_2y:_1 Lo
Transform into y(x) form: =4r
3,
y=8—x
2,
y=1
11 2 3 4 5 6

Plot = b3

Solving algebraically

x+y=38 2x +2y =16 3x =15
= = =
x—2y=-1 x—2y=-1

x=25 X = x=25
= =
5—2y=-—1 2y =6 =3

Notice that we have:
® multiplied equations by a non—zero scalar,
® added a multiple of one equation to another equation,

® rearranged terms in the equations.

Solving with linear algebra

For our particular case:

In general:

Lets multiply both sides by an inverse of A:

Solving with linear algebra in Matlab

> A = [11; 1 -2]; % coefficients
>> b = [8; -1]; % right hand side
>> x = inv (A) *b % solution
x =

5.0

3.0
>> Axx — b % verification
ans =

1.0e-15 =

0
0.8882

In theory this method could be used to solve any n X n system.

“Hidden” meaning

® Matrices are transformations from one
space to another.

® Solving systems of linear equations
using linear algebra,

A% = b,

is equivalent to looking for X which
after the transformation becomes b.
Original vectors (black) and new vectors (red).

Watch: “Essence of Linear Algebra” by 3BluelBrown

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

Uniqueness of the transformation

System of linear equations can be solved only if the transformation is unique.

determinant = 1 determinant=0.3 determinant=0
15 15 15
1 : ot . L IR .
AN
05 05 05 : N
0 : 0 P 0 : ™
~
05 05 05 : M
, o
A H H L 1 B : B 1 . : . \
15 i 15 i 15 H i i ™~
-1.5 -1 -0.5 0 0.5 1 15 -1.5 -1 -0.5 0 0.5 1 15 -1.5 -1 -05 0 0.5 1 15

Parallelogram of two vectors (gray) and transformed parallelogram (red).

Another way: Linear independence

Let n1; be a vector, which belongs to some collection of vectors (771, 711y, . . ., m,). If any non-trivial
linear combination of these vectors is zero,

k
j{:ﬁ@QjZZO, \Nﬂhcy;éo.
=1

then these vectors are said to be linearly dependent. Rank is a number of linearly independent rows
in a matrix.

> M= [1 00 1;
01 1 0; ... > v = [10-21];
100 0; ... >> v o« M
100 -171; ans =

>> rank (M) 0O 0 0 O

3

So, when does a system have a solution?

e Ifrank(A) # rank([A|b]), then system has no solution.
® Otherwise, if rank(A) is equal to the number of variables, then the solution is unique.

® Otherwise, if rank (A) is less than the number of variables, then there are infinitely many

solutions.
>> rank (A) >> rank (M)
ans = ans =
2 3
>> rank ([A bl) >> rank ([M (1:4)'])
ans = ans =
2 4

Solving systems of linear equations using linear algebra

Numerical Methods I ~~

using Matlab

Elementary row operations

When solving algebraically we have:
® rearranged terms in the equations,

® added multiple of one equation to the

other,
® multiplied equations by a non—zero
scalar.
> A = [11; 1 -2]; b = [8; -11;
A_aug = [A b]
A_aug =
1 1 8
1 -2 -1
>> A_aug(l, :) = A_aug(l, :) - A_aug(2,
A_aug =
0o 3

1 -2 -1

Using Gauss—Jordan elimination we can:

® add multiple of one row to the other
row,

® swap rows,

® multiply row by a non—zero scalar.

>> A_aug = A_aug([2 11, =)
A_aug =
1 -2 -1
0 3 9
>> A_aug (2, :) = A_aug(2, :) / 3
A_aug =
1 -2 -1
0 1 3

Solving 2-by-2 system

We can solve
x—y=2
2x 4+ 3y =0
using elementary row operations. Gauss elimination:
1 -1 2:>_1 —1] 2 :>_1 —1
2 310 0 5 |4 0

Jordan back—substitution:

In Matlab

> A = [1 -1; 2 3];
> b = [2; 0];
>> rref ([A b])
ans =
1 0 1.2
0 1 -0.8

Given a matrix rref returns reduced row echelon form (after Gauss—Jordan elimination).

rref behind the scenes uses “partial pivoting” technique to reduce numerical errors. Though they
are not completely eliminated.

Solving with left division

We know that solutions of system of linear equations are given by:

¥=A""D.
>> 4 \ 3 > 3 / 4
ans = ans =
0.75 0.75

>> A = magic(3); b=ones(3,1);
> A \ b
ans =
{some vector X)
>> inv(A) x b
ans =
{the same vector X)

Matlab suggests using left division instead of inv.

LU decomposition: What? Why?

e Both Gauss—Jordan elimination and LU decomposition have time complexity of O(N?).

® LU decomposition is a way to solve system of linear equations without the prior knowledge
of b. It is a way to encode what happens during Gauss—Jordan elimination using upper
triangular matrix U and lower triangular matrix L.

® To obtain inverse:

PA = LU,

(PA)~' = (LO)™',

APl =UIL
A-'=Uu"'L7'p.

LU decomposition by hand

Let us decompose:

1 -1 0
A=12 3 1
I 0 1
1 0 0 I -1 0
O,=|-21 0 = 0O xA=10 5 1],
-1 0 1 0 1 1
1 0 0 1 -1 0
0O,= |0 1 0 = (OzXO])XA: 0O 5 1
0 -02 1 0 0 08

Watch: “The LU Decomposition” by MathTheBeautiful

https://www.youtube.com/watch?v=HS7RadfcoFk

Direct lu in Matlab

> A=[1 0 2; 1 -1 1; 0 2 11;
>> [L, U, P] = 1lu(d);
>> I_inv = inv(L); U_inv = inv (U);
>> solver = @(b) U_inv % L_inv % P % Db;
>> solver ([1; 0; 071)." >> (A \ [1; 0; 0])."
ans= ans=
-3 -1 2 -3 -1 2
>> solver ([0; 1; 0])." >> (A \ [0; 1; 0])."
ans= ans=
4 1 -2 4 1 -2
>> solver ([0; 0; 17)." >> (A \ [0; 0; 11)."
ans= ans=
2 1 -1 2 1 -1

Eigenvalues and Eigenvectors

Numerical Methods I

using Matlab

Matrices are transformations

Suppose we currently have vector ¥ = (x, y)
and we act on it with matrix

10
a=l 5.

we get a new vector r# = (x, —2y).

We care about things that persist

170
o5 ® Vectors, v, which do not change their

' orientation are called eigenvectors.

0 81 ® Their magnitude is instead scaled by A,
05!] which is called eigenvalue.

4l | ® These v and \ are obtained by solving

“eigenproblem’:
15}
AV = \V.
2t

For our earlier transformation matrix we have,

)\1 = 1,)\2 = —2, and \71 = (1,0), \72 = (0, 1).

Non-trivial problem with non—diagonal transformation matrix

Let out transformation matrix to have the
following shape:

A=z i

For this transformation matrix we have:

Al=25, \=-2,
| . ‘ V1 =~ (0.894,0.447),
-1 0 1 2 3 vy & (—0.24,0.97).

Solving by hand

We have:
AV = \V
This can be rearranged:
(A= A)V=0.

For non-zero V this is possible only if

det(A — AI) = 0.
In our case:

2—-A 1 _ o 1 B
’ _3/2_)\—(2—/\)(—3/2—/\)—2—>\—5/\—5—0.

Solutions: \; = 2.5 and \, = —2.

Solving by hand for)\,
2 1 x| X -1/2 1] _ |0
bl [=2ol) = [A0

@ Lets multiply first row by —2.
® Lets add first row multiplied by —2 to second row.

1 -2|0
0 010

There are multiple eigenvectors: x = 2y. It is customary to choose such eigenvector that |V |2 = Il

1
P=x+y"=5P%=1 = y= \[5 ~ 0447 = V=~ (0.894,0.447).

AR N

Lets add first row multiplied by —1/2 to second row.
4 1|0
0 00
There are multiple eigenvectors: y = —4x. It is customary to choose such eigenvector that |V |2 = 1:

1
P=x+y*=1Tx*=1 = x= 7702425 = im (—0.2425,0.9701).

Reconstructing the matrix using eigenvectors and eigenvalues

A=VxDxV!

here:
® V — matrix with columns corresponding to eigenvectors.
® D — matrix with corresponding eigenvalues on the diagonal.

e V! _inverse of V.

We can easily raise matrix to any power, n:
A" =V x D" x v

We can even find its inverse withn = —1.

Eigenproblem in Matlab

>> V * D * inv (V)
ans

NN
[
o

o O
=
€]

0.9701

> A = [2 1; 2 -3/21;
>> [V, D] = eig(Ah)
v:
0.8944 -0.2425
0.4472 0.9701
D:
2.5000 0
0 -2.0000
> A % V(:, 1) / D(1,1)
ans =
0.8944
0.4472
> A « V(:, 2) / D(2,2)
ans =
-0.2425

>> V % (D.”3) x inv (V)

ans =
13.0 5.25
10.5 -=5.375
>> A"3
ans =
13.0 5.25

10.5 -5.375

Next time interpolation and extrapolation!

E,UNIVE% uNlL;;
15 2 -1579+

-é-'
s

ysics

£
=
<
Z,
Z

NumEericaL MeTHODS I:
Lecture XII: Interpolation and Extrapolation

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy

email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

UNIV, UNIVg,
$§%-1579€0J/6 & vln"u—['?d}é
s Bz z
% o 2 @
N N
e I et ysics

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

1000 , . ‘ : :
O Experimental data
8oy T Interpolation ¢ Interpolation — inferring values
Extrapolation -
= 600l ; datad] between the observed points.
o True fit . . .
= e Extrapolation — inferring values
2 400t . .
2 outside the observed points.
[
S 2007 e Data fitting — inferring model
ol] parameter values, which would
match the data the best.)

200 H i i . L
0 0.01 002 0.03 004 005 0.06

volume (m3)

Weierstrass Approximation Theorem

If function f (x) is continuous for x € [a, b], then we can find such polynomial P(x), so that

If (x) — P(x)| < e.

Here P(x) is an interpolating function and ¢ is some small number.

Due to this theorem we can assume that:
k
f(x) = P(x) = Zaixk_’ =dad-f,
i=1

where f is the basis function vector and d is the coefficients vector. In this lecture our f will
contain powers of x.

Direct approach to interpolation

Numerical Methods I “

using Matlab

Direct approach

Suppose we have n data points: (xj,y;), (x2,¥2), ... and (X, Y). J

Using direct approach:
® our interpolating function will be a polynomial of the order n — 1,
® we will have to estimate n coeflicients.

To do that we have to solve n equations, which we obtain by requiring that interpolating function
passes all data points:

P ()Cl') =Y.

Vandermonde matrix

To figure out the coefficients, we need to solve a set of linear equations:
Va =y.

In the above V is known as Vandermonde matrix. Its values are the powers of the x values of the
data we want to interpolate:

n—1 n—2
x| 1 x| L 1
= n—
X, X, 1
V =

: : 1
n—1 n—2
Xy Xy 1

From linear algebra we know that:

General case with two data points

Suppose we have two data points, (x;,y;) and (x2,y,), and we want to do linear interpolation
between them. We have to solve:

aix; +a =Yyi,
ajxy +ax = yz,

which we can rewrite as a system of linear equations:
Va=y.

Where:

Example with two data points

Let our data points be: (0,0.5) and (1,0).

>> x = [0; 11;
>> vy = [0.5; 0];
>> vMat = vander (x)
vMat =
01
11
>> vMat \ y
ans =
-0.5
0.5
x 1
P(x) 5t 5

0.8

06

04}

0.2

0.5

15

Why (not to) use direct approach?

Disadvantages:
® V is often ill-conditioned.
Advantages: J ® Poor time complexity.

® Really easy to implement. ® Algorithm is unstable.

® Recompute on each new data point.

® Interpolation order fixed.

Lagrange interpolation method

Numerical Methods I “

using Matlab

Lagrange polynomials

In this approach we have a different set of basis functions, Lagrange polynomials:

Lx= J] ==

Xi — X,
m=1,m#i ! m

Then interpolating function, polynomial of order n — 1, has the following form:

P(x) =Y Li(x)y:
i=1

Let us see how this method works

Suppose we have (0, 1), (1,0) and (2, 4). J

The interpolating function is then given by:

P(x) = Li(x) - 1+ La(x) - 0+ L3(x) - 4.

Where:
() —x3) (x—1)(x—2)
Lix) = (x1 —x2)(x1 —x3) 2 ’
(= x)(x—x) x(x—1)
La(x) = (x3 —x1)(x3 —x2) 2

The result of Lagrange interpolation

8
6
The expansion leads to: 4
5 7
P(X):Exz_i)c‘i‘]. 2 \\/@/
0 L

Why (not to) use Lagrange interpolation?

Advantages: Disadvantages:
® Comparatively easy to implement. ® Algorithm is unstable.
® No need to invert a matrix. ® Recompute on each new data point.

® FHaster than direct approach. ® Interpolation order is fixed.

Newton’s divided differences

Numerical Methods I

using Matlab

Newton’s divided differences

@ Start with a single data point, n = 1.
® Reuse previous results as you add n + 1-th data point.
© Increment n. Go back to Step 2.

Mathematically:
ap = yi, :>P(1)(x) =a,
[a1] + az(x2 = x1) = 2, =POx) =ar+ay(x—x1),
’al +a2(x3 —xl) ‘+03(X3 —X])(X3 —XZ) = Y3, =>P(3)(x) =a; +a (x —xl) T

- +az (x —x1) (x —x2),
n—1

P(nil)(-xn) +an H(-xn —.X[) :yYh jP(n)('x) = ...

i=1

Solving the equations

We can solve these equations one by one:

ay = yi,
v =[]
a = —
X2 — X1

y3—»m _ y2 _yl
X3—X2

X — X1
asz =)
X3 — X1
_ 0p—1— 011 5
a, = = 01n

Xn — X1

Here ¢;; are known as divided differences.

0 — matrix of divided differences

Y1
2
0= |3

Yn

We will need to fill in the matrix, column by column, to figure out the first row.

51’,}':

a as

02p 023

o

032 033

))

0 0

dig1j—1 — dij—1

Xigj—1 — X

N
&

oS o O O

® Suppose we have: (0,0), (1, 1),
(2,—1), (3,0).
® [ets get third order (cubic)

interpolation. 05+ ,
® Suppose we want to add (4, —1) data i
point. 05¢ , -

® What if we want just first order (linear) Al
interpolation?

151

-
T

o

) 15

Why (not to) use Newton’s method?

Advantages:

® Faster than Lagrange method. Disadvantages:

® Troublesome expansion.

Easy to add new data points.
® Discontinuous derivative of the

interpolating piecewise polynomial.

Interpolation order need not be fixed.

Algorithm is stable.

Runge’s phenomenon

Numerical Methods I ~~

using Matlab

Some functions are well “interpolated”

f(x) = sin(x).

1 order 3 order 5 order
1 ey 1 1
05 A 05 05
:’ A}
of @—4—9 0 0
[y 1
] I
-0.5 VoL -0.5 -0.5
Y 7
-1 M -1 -1
-5 0 -5 0 -5 0
7 order 9 order 11 order
1 1 1
05 05 05
0 0 0
-0.5 -0.5 -05
-1 -1 -1
-5 0 -5 0 -5 0

Others, such as Runge’s function, are not

9 order
1 n 1 n 1 "
A A Y
05 f.;“b‘\ 05 "fﬂl\ 05 if “&
4 NS A P
’ AN o\ ~,
ot"/ hanet I -""J ol o<>7“” e
1 0 1 - 0 -1‘ 0 1
11 order 13 order 15 order
1 o 1 r 1
ﬁ 2" \ ﬁ \ ;
05| 4 \x 05 x‘ 05! | | b\
\ & Yo, I oy ’L‘,f o
el *e0 o oo v \‘ p
J
1 0 1 -1 .

7 order

0

Problems arise with non—smooth data

1 order 3 order 5 order
1 1 1
0.5 0.5 0.5
0 0 0

0 5 10 15 0 5 10 15 0 5 10 15

7 order 9 order 11 order
1 1 1
0.5 05 0.5
o] 0 0

Hermite and spline interpolation

Numerical Methods I “

using Matlab

Cubic Hermite interpolation

Suppose we have (x1,y;,y]) and (x2,y2,y5). We want to use cubic interpolation between these two
points:
P(3) (x) = a1x3 aF Clzxz —+ azx + a4.

Lets take the direct approach:

P(S)(Xl) = ale I azxf aF aszxy + a4 = Vi,

P(B)(XQ) = alxg T Clzx% aF aszxy aF ajs = ya,

= 3a1x? + 2axx1 + a3 + 0 =y},

= 3a1x3 4 2a0x) + a3 + 0 = y).

Cubic Hermite interpolation with known derivatives

We can rewrite the system of equations as:

3 2

x; oxp o x1 1| |a; Vi
Vi — x% x% X2 1| |ap _ >
3x2 2 1 0f |a; ¥
3x% 2x;1 1 Of |aa vh

Solution:

pchip does not need derivatives

Matlab infers derivatives based on the slopes between known points:

5; = Yi+1 — Vi

o hi = xiy1 — x;.

® [f9; 1 -0; <O, then x; is likely a local extremum point. So:
i =0.

® Otherwise x; is an intermediate point. In this case a weighted harmonic mean is taken:

w1+ wo wi w2
/ - + =
i di—1 0

w1 = 2h; + hi_1, wp = h; +2h; .

ing pchip with given points

% define data points

data_x = 0:6; 3
data_y = [1 2 3 2 1 0 0]; 25l
% choose x at which to get 25
3 the interpolation
min_x = min (data_x); 157
max_x = min (data_x); 1€
X = linspace(min_x, max_x);
05+
% get the interpolation o A
[

Y = pchip(data_x, data_y, X); 0

ing pchip to get the interpolating function

)

% define data points
data_x = 0:6;
data_y = sin(data_x);

get the interpolation function

as piecewise polynomial
inter_pp = pchip(data_x, data_y);
interpolate = @ (X) ppval (inter_pp, X);

oo oo

get the values of interpolating
function

= linspace (0, 6, 101);

interpolate (X);

oo oo

=X

Cubic Spline interpolation

Cubic Hermite interpolation ensures that:

PP (x)) = PP (ms),
= %Pl@(x)

X=X;

d
apg—)l (x)

X=X;

Cubic spline interpolation takes into account second derivatives:

>
= @Pi(()

X=X;

d?
w2t)

X=X;

ing spline with given points

% define data points
data_x = 0:6; 35
data_y = [1 2 3 2 1 0 0]; 3t

25+
% choose x at which to get 5l é
3 the interpolation
min_x = min (data_x); 1'5/
max_x = min (data_x); ¢
X = linspace(min_x, max_x); o5l

O +]

% get the interpolation
Y = spline(data_x, data_y, X); 03 1 2 3 4 5 6

ing spline to get the interpolating function

)

% define data points
data_x = 0:6;
data_y = sin(data_x);

get the interpolation function
as piecewise polynomial

inter_pp = spline(data_x, data_y);

interpolate = @ (X) ppval (inter_pp, X);

o oo

get the values of interpolating
function

= linspace (0, 6, 101);

interpolate (X);

oo oo

=X

Spline can be used for 2D data

$ get interpolating curve in 08r 5
3 two dimensions
curve = cscvn([data_x; data_y]); 061 .
L 5
% plot the curve 04
fnplt (curve, 'r'); 4
02

e

Generalized interpolation functions in Matlab

Numerical Methods I ~~

using Matlab

interpl, interp2, interp3 and interpn

% generate data o5l
x = 0:7; y = sin(x);

% Interpolate

x_v = linspace (0, 7, 101);

y_v = interpl(x, vy, x_v,

nearest
linear
pchip
spline

0 2 4 6 8

{method name (optional))) ; 05f

griddedInterpolant

interpolate = griddedInterpolant (x, Vy);
x_v = linspace (0, 7, 101);
y_v = interpolate(x_v);

/ | /

-0.5¢

scatteredInterpolant

interpolate = scatteredInterpolant (x', y', z');

int_x = linspace (0, 2xpi, 31); py = linspace (0, 2*pi, 31);
[int_mesh_x, int_mesh_y] = meshgrid(int_x, int_y);
int_mesh_z = interpolate (int_mesh_x, int_mesh_y);

N=100 N=1000

B '\'\

U A
Q\ﬁ*\l ﬂ\\\ “'.\\\\\\\\

\\\‘\\\\ i
llIl \ \\" 0,

Numerical Methods I ~~

using Matlab

Least squares fitting

® [et x be the independent variable.
® [ety be the dependent variable.
® Let us make the observations: (x1,y1), (x2,¥2), - - -, (Xn, Yn)-

® Assume that the observations are imperfect reflection of some model:

m

yilx) & Y agfi (i, 6)),

J=1

or as a system of linear equations:
y ~ Xa.

® We already know how to solve for n = m and for exact equality. But what if n > m and there
are errors making the relationship approximate?

Minimizing residuals

Residuals are the differences between the observations and the model:

ri =Yyi — Zajﬁ'(xia 9_;)

J=1

Our goal is to find model parameters (9_; which minimize r;.

e One-norm (ME): R| = %2?:1 |7:].
¢ Infinity-norm (Chebyshev fit): Ro, = max; |ry|.
® Least-squares (MSE): R, = 1 5 | i

Moore—Penrose pseudo—inverse

If X is rectangular with more rows than columns:
Xd ~y,
X"Xa ~ X'y,
a ~ Py.
In the above P is a Moore—Penrose pseudo—inverse of X:

P = (X'X)"'x’.

If X is square and if its inverse exists:
P=X"

This property suggests that P might actually do some kind of minimization.

pinv to get a linear fit

X = [data_x"'" ; ones (numel (data_x),1)];
a = pinv(X) * data_y';

Estimated dependence 0.10*x + 2.85

20

15¢

10t

o

0 20 40 60 80 100

= polyfit (data_x, data_y, 3);

0.15

0.1

Estimated dependence 1.00*x° -1.68*x> +0.85*x -0.13

More general non—linear fitting: Isqcurvefit

pars = lsqgcurvefit (fit_func, guess,data_x,data_y);

Estimated dependence N(-0.01,1.00)
0.6 T ; : T .

Fitting using a generalized function fit

fit_func = Q@(al,a2,x) alxx + a2;

fit_obj = fit(data_x', data_y', fit_func, 'StartPoint', [0 0]);
pars = coeffvalues (fit_obj);

cis = confint (fit_obj);

Estimated dependence 0.99*x -2.97
05 T : T . T

Other functions to consider

regress — linear regression.

® mvregress — multivariate linear regression.

fitlm — fitting linear model to data. A lot of helper function to regularize fitting problem.

fitrlinear — as fitlm but faster for high—dimensional data.

There is also the Curve Fitting app, which allows you to solve problems by clicking.

https://www.mathworks.com/help/curvefit/curvefitting-app.html

Next time root finding!

UNIVE, \JNIL}:
S R
579, ‘5‘/,(\6 &P 1579+ '?J/

5 ECOM (42

'p&’TAs\l OS Fs \\u\ ySICS

NumEeRricAL METHODS I:
Lecture XIII: Root finding

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy
email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

s UNIVEp o UNIVg

N . Ny ,Lr—g,;?(r
$\r +1579+ /{“:l ; > /?(
= % = N
< o “
Z Py L = T
1?% \i‘é % &
Sirag NV S FARY

ysics

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

x* is the root, or a zero, of a function f(x), if

fx*) =o0.

In an earlier lecture we have already seen how to find roots of linear functions:
ax*+b=0 = xF=-——.
Sometimes it is as easy for non—linear functions:
sin(x*) =0 = x/ =mi.

But in general finding root of a non—linear function is not an easy task.

Why do we care about zeros?

We can obtain approximations of irrational numbers
by finding zeros of the associated functions:

¥ —-2=0.

® [n statics problems we care about the balance of
forces.

® In dynamical problems we know that bodies tend to
move in a trajectory that requires the least effort.

® When solving social problems social scientists
frequently assume that humans maximize their utility.

Image: webbshow @Pexels

https://www.pexels.com/photo/time-lapse-photography-of-flowing-waterfall-2406395/

We can find roots through logical reasoning

Let us find the roots of:

x will be a root in two cases:

We can find roots by the eye

Let us find the roots of:

within some arbitrary interval.

12

>> explore_visually
(other output)

-1.56 => £(-1.56) = -0.002
-1.0 —> £(-1.0) = 0.001
1.0 => £(1.0) = 0.003
1.56 —> £(1.56) = -0.002

ginput function is used to get graphical input

Bracketing methods

Numerical Methods I |

using Matlab

Wobbly table theorem

‘Watch: Numberphile: Fix a Wobbly Table (with Math),

Mathologer: The fix-the-wobbly-table theorem.

https://www.youtube.com/watch?v=OuF-WB7mD6k
https://www.youtube.com/watch?v=aCj3qfQ68m0

Intermediate value theorem

If value of a continuous function, f(x), takes values of different signs at points a and b,

fla)f (b) <0,
then there is such x* (in (a, b)) for which f(x*) = 0.

Bisection method

@ Split the interval in two.
® Pick either left or right interval depending on for which:

f(a,)f(b,) < 0.

© Continue “splitting” and “picking” until b; — a; < ¢.

1 1
a d=(a+c)2 c=(a+b)2 b
X

Input:
fx, % function under consideration
a(l), b(l), % interval bounds
error_tolerance

while interval is wider than error_tolerance

find midpoint, set c(i)

if fx changes sign in interval [a(i),
select a new interval [a(i), c(i)]

else if fx changes sign in interval [c (i), b(i)]
select a new interval [c (i), b(i)]

else
return c (1)

end

c(i)]

end

return midpoint of the last interval

Example with multiple roots

Find roots of
s x> 3
fx)=x"— 5 ¥
4
5l
With ¢ = 1073:

° [_27 _0‘5]: x1 ~ —0.99988.
® [—0.5,1]: x, = —0.00012.
® [1,2]: x3~ L.5.

f(x)
N

Multiple roots and function poles

What if we select [—1.5,0.5]? | Whatif we select [—1,1]?]

&2 o
4 -10
8 20
8 R
2 1 0 1 2 30 1 0 1 2

Challenge: What is the length of the interval after n steps? How fast we will reach desired error E?J

Why (not to) use Bisection method?

Disadvantages:

P — ® may converge to a pole

® may not find a root of even multiplicity
® guaranteed convergence

. ® needs bracketing interval
® predictable convergence rate

e will find just one root in the bracketing

® well-defined error interval

® slow

Estimate v/2 using Bisection method

1.46

Let us find the root of
flx) =x*—2.

Lets approximate it with tolerance of
€ = 107°. Let the initial bracketing interval
be [1.4,1.5].

False position method

False position, or regula falsi, method is an advanced bracketing method. It uses linear
interpolation as splitting technique. J

(x)

Mathematically put

Find interpolating function coeflicients K; and K,. These will have to satisfy:

Kia; + K, :f(ai) and Kib; + K> :f(b,').

Find the root of the interpolating function c;:

Kici+K=0 = cl-:—ﬁj — frachif (@) — af (b:)f (a5) — £ (B2).

® If f(ai)f (c;) <0, then pick left interval.
o If f(c;)f (bi) < 0, then pick right interval.

® (Otherwise the root is c;.

Input:
fx, % function under consideration
a(l), b(l), % bounds of initial interval
error_tolerance

while interval is wider than error_tolerance
find linear interpolation for a(i) and b (i) gx
find where gx = 0, set c (i)
if fx changes sign in interval [a (i),
select a new interval [a (i), c(i)]
else if fx changes sign in interval [c(i), b(i)]
select a new interval [c (i), b(i)]

c(i)]

else
return c (i)
end
end

return c (1)

Why (not to) use False position method?

Disadvantages:
® may converge to a pole
Advantages: ® may not find a root of even multiplicity
® guaranteed convergence ® needs bracketing interval
* well—defined error e will find just one root in the bracketing
® ysually faster than Bisection method interval

¢ unpredictable convergence rate

® slower than iterative methods

Estimate v/2 using False position method

1.44

Let us find the root of 142}

flx)=x*-2. i

1.38¢

Lets approximate it with tolerance of 6]
e = 107°. Let the initial bracketing interval

be [1,2]. 134

‘ 1.32

Note: bracketing interval is broader than with Bisection method.

Iteration methods

Numerical Methods I

using Matlab

Fixed point iteration method

Fixed point x* of a function g(x) is defined as:

For stable fixed points, if xq is inside the x*’s basin of attraction:
X1 = g(x), X —xiqa] <e.

Relying on this property we can iterate and expect that at some point x;+; will be close to x*:

IXiy1 — x| < e.

Pseudocode

Input:
gx, % function under consideration
x(1l), % initial guess
error_tolerance,
max_1iterarations

while |x(i)-x(i-1)]| > error_tolerance and i < max_iterations
x(1i+1) = gx(x(1));
i = 1i+1;

end

if i >= max_iterations
raise error
end

return the last estimate of x (1)

How is this applicable to the root problem?

Assume that we want to find roots of:
f(x) = cos(x) — x.
Let us rewrite this equation as:

x =cos(x) or x=2mn=+ arccos(x).

Both of these options are of form:

x = g(x).

Iteratively solving x = g(x)

085r

08r

07r

065+

086
0

cos(x;) | arccos(x;)
1| 0.5 0.75
2 | 0.7316 0.7227
31 0.744 0.141
4 1 0.7357 0.763
5] 0.7413 0.7027
6 | 0.7375 0.7914
7 | 0.7401 0.6575
8 | 0.7384 0.8532
9 | 0.7395 0.5486
10 | 0.7387 0.99

0.5 06 07 08 09

Lets compare the derivatives near x*:

d
o cos(x) ~ —0.674,

x=x*

05 086 07 08 09 1

d
— ~ —1.484.
o arccos(x)

x=x*

X; vs x; 1 plots are called iterative maps.

Finding multiple roots

Let us return to

Fx) = 1= (20,

At first extracting g(x) seems problematic. Lets:

f)+x—x=0 = gx)—x=0 = gk =nx

IV

After 10001 linearly spaced guesses in [—3m, 37].

Iterative relations can hide complex patterns

Assume that we have:
2 2
Xi+1 = a1x; + aoX;y; + a3x; + aqy; + sy,

Yir1 = B1Y7 + Boyixi + Bayi + Bax? + Bsxi,

where «; and (; are parameter vectors.

Screenshots from Randomly generated strange attractors (Physics of Risk)

http://rf.mokslasplius.lt/randomly-generated-strange-attractors/

Why (not to) use Fixed point iteration method?

Disadvantages:
Advantages: ® convergence is not guaranteed
® needs only an initial guess e selecting proper g(x) is not always
® faster than bracketing methods trivial

® error is not well-defined

Estimating /2 using Fixed point iteration method

Let us find the root of

f(x) =% 2.
Lets approximate it with tolerance of ¢ = 107%. Let our initial guess be 1.4.
15 g0 =x+ (0 15 g0 =x+0.11x) 1415 g =x-0.1f(x)

1 *&(1«&%&%‘\
.) 1 1.414

H mﬂw}ﬁlmfﬁlﬁ M T s ol
B o
2 ISEST SRS S 1; Kmﬂ 1::

Newton—Raphson method (geometric perspective)

@ Make a guess x;.

® Find a tangent line to f(x) at x;.

© Find where the tangent line intersects
y=0.

fx)

@ That point is a new guess. Repeat from ol w
Step 2. ’

0 x_{i+1} X_i 2
X

Newton—Raphson method (Taylor series perspective)

® Assume that f(x) is almost linear around the root.
® [et x be our current best guess of the root.

® | et difference between the guess and the true “root” be h = x* — x.

Then the Taylor series expansion of f(x) (in the limit 2z — 0):

f&) = fx+h) = f(x) + bf'(x) + O(?).

Lets drop the higher order terms and solve:

fx) f(xi)

fx)=0 = h=- = xiH:xi_f/(x,')'

Pseudocode

Input:
fx, % function under consideration
fpx, % its derivative
x(1l), % initial guess
error_tolerance,
max_1iterations

while [x(i)-x(i-1)| > error_tolerance and 1 < max_iterations
h = —fx(x(1))/fpx(x(1));
X (i+1) = x (i) + h;
i = 1i+1;

end

if i >= max_iterations
raise error
end

return x (1)

y (not to) use Newton—Raphson method?

Advantages:
® fast

® casily generalized to complex roots and
multidimensional functions

Disadvantages:
® convergence is not guaranteed
® requires knowledge of a derivative

® error is not well-defined

—12xB 45— 6 0t — 92 —4x—10 =0

Generated by using a Java program from Newton-Raphson method (Physics of Risk).

http://rf.mokslasplius.lt/newton-raphson/

Estimating /2 using Newton—Raphson method

Let us find the root of
f(x) =% -2.

Lets approximate it with tolerance of ¢ = 1075, Let our initial guess be 2.

Derivative not known?

Rely on the Secant method, which is equivalent to Newton—Raphson method, but the derivative is
approximated by:
~ —fx=Ax) _ fxi) —f(xiz1)
o) = TO LG =AY) —f i)
fx)= lim ~ —

Then:

h = _f) ~ () (xi = xie1)

f'(x) fxi) = f(xiz1)

Repeated roots?

Polynomial of order n has n real or complex roots. These roots must not be unique. They can
repeat. For example:

Such roots wouldn’t be found using the original equation of Newton—Raphson method, because the
first m — 1 derivatives of a function would be equal to zero (here m is multiplicity of the root) near
the root: .

dl

e f(x) =0.

x=x*

Bypassing the problem with repeated roots

Lets keep the higher order terms in Taylor series expansion and use them to define a different A. If
we keep terms up to the second order:

2
FO%) = £+) = 7<)+ hf' () + () + OGF),

Mﬂ@:.ﬂwiJQ%f G

Xi+1 _xl—|—m1n(h+(x,),h ())

)

~—

Another way to bypass the problem with repeated roots

Consider convergence of the step function instead:

ho) = —f:(é))'
Then:

Xiv1 = xi + ha(x;).

Eventually you’ll arrive at:

h(xo) =0, = f(xso) 0.

Root finding in multiple dimensions

Numerical Methods I W

using Matlab

Root of a multidimensional (vector) function

Let the problem be:
@) =(alxr, . oxn)s e fulxr, .o yx,)) =0.

Assume that we have estimate root X() and 7 is displacement from the true root. Taylor series:

—

FED+R) =fED) + V| -F+O(AP).

Solving for h: afi ofi
Ox; T Oxy
I = _A—lf()‘c’(i)), where A = | o &
O O
Ox e Oxy,

So that: i+ = 7D _ p,)

Two—dimensional example (calculation)

Assume that we want to determine zeros of:
f@) = (o —x3 +3,(x +2)2 — x).

Matrix A is given by:

B 2x1 —2x7
2 +2) -1
xXg = [1; 11;
for its = 1:10
£ = [xg(1)"2 - xg(2)72+3; (xg(l)+2)"2 - xg(2) 1;
A = [2xxg(l) -2xxg(2); 2*(xg(l)+2) -1];
h=-2a\ f;
xg = xg + h;
end

Two—dimensional example (visualization)

2.5 =

Root finding in Matlab

Numerical Methods I “

using Matlab

roots function

>> roots([3 -4 1]) % roots of 3*xx"2-4*x+1
ans =

1.00000

0.33333
>> polyval ([3 -4 1],ans') % lets check
ans =

0 0

>> roots([1 0 0 =3 0 0]) % roots of x"5-3#x"2
ans =
-0.72112 + 1.249021
-0.72112 - 1.249021
1.44225 + 0.000001
0.00000 + 0.000001
0.00000 + 0.000001
>> polyval([1 0 0 -3 0 0],ans') % check
ans =
¢very small numbers ~ 1074}

fzero function

>> fzero('sin', sqrt(2))
ans = 0

>> fzero(@sin, 3*sqrt(2))
ans = 6.2832

>> fzero(@(x) sin(x), —-1.5%sqgrt(2))
ans = —-3.1415

fminunc function

>> fminunc(@sin, 0)

ans = -1.5708

>> [xmin, valmin] = fminunc (@sin, 1.5)

xmin = 4.7124

valmin = -1

>> [xmin, valmin] = fminunc(@(x) besselj(l,x),0.1)
xmin = -1.8412

valmin = -0.58187

>> [xmin, valmin] = fminunc (@ (x) besselj(1l,x),2)
xmin = 5.3315

valmin = -0.34613

>> [xmin, valmin] = fminunc (@ (x) besselj(l,x),20)
xmin = 99.736

valmin = -0.079894

fminbnd function

>> fminbnd(@sin, 0, 2*pi)
ans = 4.7124

>> [xmin, valmin] = fminbnd(@cos, 0, 2xpi)

xmin = 3.1416

valmin = -1

>> [xmin, valmin] = fminbnd(@(x) besselj(l,x), 0, pi)

xmin = 4.5994e-05
valmin = 2.2997e-05

>> [xmin, valmin] = fminbnd (@ (x) besselj(l,x), pi, 2*pi)
xmin = 5.3315

valmin = -0.3461

>> [xmin, valmin] = fminbnd (@ (x) besselj(l,x), 31, 93)

xmin = 62.0323
valmin = -0.1013

“Optimize” Live Editor task

INSERT
— - Section Break 2
L L #feoro v 4 s = > @
B I UPB v 2} Runand Advance
New Save FindFiles (Find ~ Run Section Run Step
- - 18 Refactor ~ 4 RuntoEnd -
FILE NAVIGATE TEXT CODE SECTION RUN =
@ @I & /> MATLABDrve > lecs > lec-13 > optimize -
CURRENT FOLDER optimize.mix
Name & Y| Optimize O B
) objective_fn.m =
~ Speci &
£l optimize.mix Specify problem type
> 2
N7 ‘
Objective Linear Quadratic Least squares Nonlinear

Nonsmooth
Examples: f(x,y) = x/y. f (x) = cos(x), f(x) = log(x), f(x) = %, f(x) = x*, Solve F(x) =0, ..

Unconstrained ‘ Emwerbounds
Constraints Linear equaltty

Examples: cos(x) <0,22 =0

[upper bounas [Linear inequaity
E.;.J Nonlinear ‘ LJ Integer

|| |[$2] second-order cone

Solver fmincon - Constrained nonlinear v @
~ Select problem data
Objective function | From file v | | objective_fn... | [New...| @
~ Function inputs
Optimization input | x

v

Following Get Started with Optimize Live Editor Task (Matlab tutorial)

https://se.mathworks.com/help/optim/ug/get-started-optimize-live-editor-task.html

Next time numerical calculus!

05 \,\NIVgp‘y

1579+ 7

ﬁ\’

k4

2

5
&

Srag N

ysics

NuMERrICcAL METHODS I:
Lecture XIV: Numerical Calculus

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy

email: aleksejus.kononovicius @tfai.vu.lt
www: http://kononovicius.1t/

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/

Numerical differentiation

Numerical Methods I

using Matlab

Derivatives

Derivative is a measure of change, which formally defined as follows:

d . S+ h) —fx)
/
= = lim——F————~,
Fo) =g/ @ ==
When we work analytically we can have as small 4 as we want, we also have tables, which tells us

the derivatives of various mathematical functions.

When solving problems numerically we usually know only the function values at certain points:

yi = f(x:).

So we will not be able to take the limit, but we may approximate it using numerical differentiation
methods.

Simple forward difference

Let us use the definition itself as an approximation:

e et
Df () = T H 1 =

Look at the Taylor series expansion of a function:
h2
Vie1 =f(xi +h) =f(x) + hf' (x;) + Ef”(x,-) +....

We can use this expansion to estimate the error of this method:

Yi+1 — Vi

, h
=)+

2f”(xl-) 4+ ...

How well does it work?

Let us consider:

f(x) = sin(x).

05¢
Analytically we know that: i
g
f(x) = cos(x). 5
x = linspace (0, 2xpi, 31); 0.5¢

y = sin(x);
yp = Ccos(X); ; ‘ . : ; ;
vpo_sfd = diff(y) ./ diff (x); 0 1 2 3 4 5 6

Simple Backward Difference

Vi — Yi—1 Vi — Yi—1 J

Df (x;) = =

Xi — Xi—1 h

Smaller 4 doesn’t result in smaller error

10” f f
f f E y)
5 10° | | | e
& | | &®
[(H] .\ : : B
E \ N N 4
= 10-5 \.‘ : : /]
©
S % e, T
2 ~ :® f
e} g : ~ ‘. :
P
Z’ N
10" 5 ' 5
10™ 10° 107 10° 107
h

Absolute true error for derivative of sine at x = 2.5.

Simple Central Difference

Yi+1 — Yi—1 Yi+1 — Yi—1
Df (x;) = = .
f () Xiy1 — Xi—1 2h

This is slightly better, because:

h? h

yirr =f O+ h) =£@) + ' () + f"(0) + D)+
h? &

yiet =f(x —h) =f£(x) = bf' (1) + S () = D) + ..

Therefore:

Yitl —Yi—1 _ 4 hj (3)
B —f(x)+12f (x)+....

Also known as Symmetric Difference Quotient

Revisiting sine

[sin(T

Comparing errors

Absolute True Error

10

10

10

10

10

10

-2

4| : : e

-G “". : : /’:/
o . : -~ :
8| Y) /,;

: 3 e
10 : i ‘.)‘

b

e

12 ; ; s Iy

~e : P

10™ 10°

Absolute true error for derivative of sine at x = 2.5.

10

3

Richardson’s method

Df (x1) = 4le(xi)3_D2f(xi).

In the above Dy is the Simple Central Difference using k steps:

Yi+k — Yi—k Yi+k — Yi—k
D x fr— fr— .
o () Xitk — Xi—k 2kh

Expanding and rearranging the terms:

8()’i+1 - yi—l) - ()’i+2 - yi—z)

Df (x;) = oK

Derivation of Richardson’s formula

We know that:
Yitl = Yiml _ e h s
D)= = P
) = T — () + O 4+)+
VoY =Yira oy ey B)
Lets get rid of f©):
4D f (x;) — ; &

Revisiting sine

[sin(T

Comparing errors

10" .

: — 7
: : i : /
: Lo : ’
: ,ff’ 4

s : - Y

107 | Cai 3 1]

~ @ / /o
! ~ @ -~ : :
10% Lo Tt ‘

.10 S,
10 LR e Do f .

Absolute True Error
\
0

: ~ :
1072 ES /’ ...*.. L ﬁ R

10’1‘1 . . Y
10° 10

Absolute true error for derivative of sine at x = 2.5.

Is there an optimal h?

Optimal 4, is the one for which round-off error,

Em
hy’

Ero =

is equal to approximation error, which can be assumed to be approximately equal to the highest
order remaining term. For Richardson’s method:

4
€4 %@ (5)(x)‘
pp 12 ’
Kt 12
co=eapr = =IO = K=
h, 12

For [sin(x)]’ at x = 2.5, we obtain: h, ~ 1.27 - 1073,

Second and higher order derivatives

Numerical Methods I ~~

using Matlab

Three—point forward difference formula

Second derivative is a derivative of a derivative:

i+ h) = f'(6) yir2 — 2yi01 i

f// (xi) h hz

Taylor series expansion at two different (forward) points:

h? 3
Fla+h) =£() +hf' () + 56+ D0+

4n’
£ 4 2) = () + 2" () + 2% () + 5D () +
Subtract them so that the first derivative would disappear:
"

—fOx) +....

flx +2h) —2f (x + h) = —f(x) + K3 " (x) + c

Centered difference formula

Taylor series expansion at two different (on both sides) points:

h? n h*
Flath) =f0)+hf' () + (0 + V) + VW +.
_ iy ey ey e
F& = 1) =f@) = ') + ") = O + 2O+

Add them so that the first derivative would disappear:

4
FlB) 41—) = 2 (0) () 4+ F D)

h)—2 —h i1 — 2yi o
f”(x)%f(x—*—) f}l(2X)+f(x): Yi+1 h);+y 1 |

Comparing errors

Absolute True Error

Forward
Centered

10

Absolute true error for derivative of sine at x = 2.5.

Direct approach to higher order derivatives

You will need at least N + 1 points for the N-th order derivative.

Use Taylor series expansion to figure out the formula. Do what you can to make the lower
derivatives cancel out.

® Alternatively recall that higher order derivative is derivative of a lower order derivative.

® Use centered differences if possible.

Polynomial interpolation approach

® Approximate the “true” function by interpolating between the observed values.

® Assume that the derivatives of the interpolating function are an approximation of the
derivatives of the “true” function.

function first derivative function first derivative
Z/\ N ;/.\
Of -
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
second derivative third derivative second derivative third derivative

Numerical derivatives in Matlab

Numerical Methods I

using Matlab

diff — function we used to approximate the derivatives

>> x=linspace (0, 2xpi);
>> y=sin(x);

>> yp=diff(y) ./ diff(x); 0.5 b
>> yp=(y(2:end) - y(l:end-1)) ./ Z o0
(x(2:end) - x(l:end-1)); =

>> size (x) >> size (yp)
ans = ans = -1

1 100 1 99 X

gradient — first order derivative

grav_potential = @(x,y) — 1 ./ sqgrt(x."2 + y."2);
(... generate 2D data ...)
[grav_mesh_x, grav_mesh_y] = gradient (potential);

Definition:

Sl

Vf =

SE
“"l
ol

del2 — second order derivative (Laplacian operator)

grav_field = Q@(x,y) - log(sgrt(x.”"2 + y."2));
(... generate 2D data ...)
rho = del2 (field_grid);

Definition:

2 0?2
A =V = <8£+ayf>

polyder — analytically deal with polynomials

Lets find derivative of:

f(x) =x3 +4x* —x+2.

Obviously:
f(x) =3x* +8x — 1.
>> coeffs = [1 4 -1 2];
>> polyder (coeffs)
ans =

38 -1

Numerical integration

Numerical Methods I ~~

using Matlab

Riemann integral

In theory:

b (b—a)/h
f(x)dx = lim |h E f(x)
@ h—0 -
i=0
In numerical applications there will be subtleties.

4 / 4 / 4 /
35 / 35 /,/ 35) /

3 / 3 3 /
25 / 25 / 25 /

2 / 2 / 2 y
15 / 15 */* 15 ya

1 // 1 s 1 —
05 e 0.5 = 0.5 e

I _ —t

Riemann sums

Numerically we can approximate an integral by the left sum:

n—1

/xnf(x)dx ~hy f(x),
X1 i=1
by the right sum:
| et n Yt
& i=2

or by the center (middle) sum:

T n—1 s

M i=1

Lets approximate [, sin(x)dx

2.03

2.02}

2M

1.99¢

1.98

| =ft
= Mid
——— Right

1.97
10

10

10

Comparing errors

4

10 ! !
® Left | i /I
I

Mid |
5 . : ¢
= 107 - ® Rightf.o ; P
st : : Fe
Lo I 4
S o o ®
= 10° | S / J
(M -~ : :
E & //é.
3 .. o
0 T =
< 10" & g -
o
e .
s
rd
12

10

Trapezoid method

Lets do linear interpolation between two known points:

X — X X — X
P(x) = 1+ 2.
x| — X X2 — X|

Then integrate the interpolating function:

/ x)dx = / LCI_XZx—xz)+x2y_2x1(x—x1)]dx:

l’
xl):)’22)’1h.

Y1 2
(xz —X1> aF = Y

) 7 2 =

The approximation, /, will be given by:

n—1

I~ hnz_if(xﬂrl);'f(xi) _ hz)’z+1 + Vi .

Lets approximate f; (1 —x)3dx

— Trapz

2nd degree interpolation: Simpson’s 1/3 rule

Given 2nd degree interpolation between three equidistant points, P(x), we can approximate the
integral between these points as:

x1+2h]’l
/ P(x)dx:...:§(y1—i—4y2—|—y3).

X1
If number of data points, 7, is odd, then the approximation:

n—1

2
I~ 3 Z Vaim1 +4y2i + y2it1] -
=il

=

Lets try [, sin(x)dx again

225

22}

215}

217

2.05}

— Simpson
— Mid

3rd degree interpolation: Simpson’s 3 /8 rule

Given 3rd degree interpolation between four equidistant points, P(x), we can approximate the
integral between these points as:

X1+3h 3h
/ P(x)dx:...:§(y1+3y2+3)’3+y4)~

X1
If n — 1 is divisible by 3, then the approximation is given by:

n—1
IN%ZS:(i—2 + 3y3i-1 + 3y3i + ¥3it1)
~ g — Y3i—2 V3i—1 Y3i T Y3i+1) -

Lets try [, sin(x)dx again

225

22}

215}

217

2.05}

— Simpson 3/8
= Simpson 1/3
— Mid

Comparing errors

10" : :
® Simpson 1/3|:
Simpson 3/8 |
5 10° ® Trapezoid |
L
w s ;
2 3 é :
— 10 _ / R 4
& g e J
= : :
3 IV I
0 13 ® / i |
< 10 : o 8 . : //
P A
: /.
Loy
s
& 5 -4 -2]

Both Simpson’s rules appear to have the same error?

® Though this looks strange, it is indeed true. In fact,
e~ ht.

® Simpson’s 3/8 rule is still useful as Simpson’s 1/3 rule requires odd number of points.

¢ Simply make a composite rule with 1/3 rule being used for the most of the points, while 3/8
rule would be used only near one of the edges.

Problematic integrals

Numerical Methods I |

using Matlab

Improper integrals

Lets integrate:

/ " exp(—2?)dr.

—00

As (1) the integrand is symmetric and (2) 1

decays monotonically, we can approximate
the integral by: 0
" 0.6

I(u) = 2/ exp(—x?)dx.
0 0.4
Numerically, we will increase u until: 0.2
[[(u) —I(u+h)| <e. % 2 a4 o 1 2 3

Integrands with singularities

Lets integrate:
exp(—x)
0o Vx

To do that split the integral:

/00+a ex}iﬁidx /+a eXIi[)dx -

0+a1 x_|_L
%/ ——2dx+1(0+a,1) =
0

N
(2a1/z 2

In the above « is some small number.

% — ;aS/Z) +1(a,1).

Not all singularities are removable. For example 1/x.

Indefinite integrals

Lets integrate:
I(x) = /exp(—xz)dx.

We have to rewrite it as a definite integral:

h(x) = / " exp(—)d,

here a is some point. Depending on the problem we may want anti—derivative to be zero at a. In
this case anti—derivative is zero at a = 0, so lets:

A~

11 (X) ~ jz((),x).

Numerical integration in Matlab

Numerical Methods I ~

using Matlab

trapz — trapezoid method for data

>> x = linspace (0, pi, 11);

>> y = sin(x);

>> trapz(x, V)

ans =
1.9835

>> cumtrapz(x, Vy)

ans =
0 0.0485 0.1894 0.4088 0.6853 0.9918 1.2982 1.5747
1.7941 1.9350 1.9835

integral — general method for functions

>> % improper integral
>> integral (@ (x) exp(-x."2), —-Inf, Inf)

ans =
1.7725
>> % integral with removable singularity
>> fun = @(x) exp(-x."2) ./ sqgrt(x);
>> integral (fun,0,1)
ans =
1.6897

>> % non-removable singularity
>> integral (@(x) 1./x,0,1)
Warning: Infinite or Not-a-Number value encountered.

ans =
Inf

>> % indefinite integral (not vectorized!)

>> indef = @(x) integral (@ (u) exp(-u.”2), -Inf, x);

Lookup quadgk, which also return error estimate.

polyint — analytical method for polynomials

Lets find an integral of:

fx) =% +4* —x+2
Obviously:
1 4
de= 4+ 23 _ 2249
/f(x) 4x —|—3x 2x + 2x
>> coeffs = [1 4 -1 271;
>> polyint (coeffs)
ans =
0.25 1.3333 -0.5 2 0

The end of the theoretical part of the course!

E,UNIVE% uNlL;;
15 2 -1579+

-é-'
s

ysics

£
=
<
Z,
Z

	Lecture I: Introduction to Computational Science
	History of Computers
	Programming languages
	Making your programming life easier

	Laboratory Work I: Introduction to Matlab
	Matlab and Alternatives
	Getting Matlab
	Basic usage of Matlab

	Lecture II: Matlab Fundamentals
	Variables and workspace
	Numeric variable types
	Vectors and matrices
	Expressions and Vectorization
	Basic Input and Output

	Laboratory Work II: Scripts, Live Scripts and Reports
	Lecture III: Logic, Branching and Looping
	Relational and logical expressions
	Branching statements
	Determined looping
	Vectorizing for loops
	Undetermined looping

	Lecture IV: Matlab programs
	Programs and their organization
	User–defined functions
	Advanced user–defined functions
	Recursion
	Anonymous functions and handles
	Scope and workspaces

	Laboratory Work IV: Debugging
	Lecture VI: Randomness and Statistics
	What is probability?
	Probability distributions
	Summary statistics
	Empirical distributions
	Central limit theorem
	Random number generators

	Lecture VII: File input and output
	Minimal file input and output
	Lower level file I/O
	High level file I/O

	Lecture VIII: Beyond the basic plot
	Programmatic plotting
	The graphical plot tool
	Plot types
	3D plots
	Exporting plots

	Lecture X: Sorting and Searching
	Searching algorithms
	Sorting algorithms

	Lecture XI: Linear Algebra
	Quick reminder problem
	Making matrices
	Operations with matrices
	2-by-2 systems
	Solving systems of linear equations using linear algebra
	Eigenvalues and Eigenvectors

	Lecture XII: Interpolation and Extrapolation
	Direct approach to interpolation
	Lagrange interpolation method
	Newton's divided differences
	Runge's phenomenon
	Hermite and spline interpolation
	Generalized interpolation functions in Matlab
	Data fitting

	Lecture XIII: Root finding
	Bracketing methods
	Iteration methods
	Root finding in multiple dimensions
	Root finding in Matlab

	Lecture XIV: Numerical Calculus
	Numerical differentiation
	Second and higher order derivatives
	Numerical derivatives in Matlab
	Numerical integration
	Problematic integrals
	Numerical integration in Matlab

