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History of Computers



Basic tools (3000 BC Ű 1600s)

Images: @Wiki, @Wiki, @Wiki

https://en.wikipedia.org/wiki/File:Kugleramme.jpg
https://commons.wikimedia.org/wiki/File:Finger_counting_China.png
https://commons.wikimedia.org/wiki/File:Countingrod.png


Clever tricks (1600s Ű 1800s)

Images: @Wiki, @Wiki, @Wiki

https://en.wikipedia.org/wiki/File:Jacquard.loom.cards.jpg
https://en.wikipedia.org/wiki/File:Pascaline_-_top_view_and_mechanism.jpg
https://upload.wikimedia.org/wikipedia/commons/4/4b/Bernegger_Manuale_136.jpg


Automation (1800s Ű 1940s)

Images: @Wiki, @Columbia U. See: Stand-up maths video on 1890 census.

https://en.wikipedia.org/wiki/File:Hand-driven-jacquard-loom.jpg
http://www.columbia.edu/cu/computinghistory/census-tabulator.html
https://www.youtube.com/watch?v=YBnBAzrWeF0


Computers wanted (... Ű 1940s?)

Image: @NASA.

https://www.dfrc.nasa.gov/Gallery/Photo/Places/HTML/E49-54.html


Modern computers (1940s Ű ...)

• Modern computers got more accessible and powerful.

• They got more userŰfriendly as well.

Images: @Wiki, @Know your meme

https://commons.wikimedia.org/wiki/File:Two_women_operating_ENIAC_(full_resolution).jpg
https://knowyourmeme.com/photos/954660-windows


Programming languages



Programming language

Formal language used to give commands to computers.

Respective trademarked logos are properties of their respective owners



How do we make stuff?

• Code is a set of commands written using

some programming language.

• Code is written in code editor.

• Compiler translates your code into binary

code.

• Compiled binary code can be then run.

• Interpreter executes your commands in

real-time.

This is just the simplest case. Bytecode compilers and transpilers are a thing too.



Low vs high ŞlevelŤ languages

• Low level languages are faster to run, but harder to write.

• High level languages are slower to run, but easier to write.



Teaching computer to make a sandwich

Low level language

1 Take knife, plate, bread, butter and

cheese.

2 Put a slice of the bread onto the plate.

3 Scoop some butter with the knife.

4 Spread the butter evenly on the slice of

bread.

5 ...

6 You have a sandwich.

High level language

1 Go to restaurant.

2 Order a sandwich.

3 Wait for order.

4 You have a sandwich.

Image: @Wiki

https://commons.wikimedia.org/wiki/Sandwich#/media/File:Sandwich_shop_in_Paris.jpg


Library

A collection of preŰmade code implementing a more sophisticated behavior, which is usually not

offered by the language itself.

Matlab has toolboxes, there might be user contributed scripts or functions

Respective trademarked logos are properties of their respective owners



Example Ű this presentation

• Is written using LATEX

• Uses ŞbeamerŤ package

(library) to deĄne the slides.

• Uses ŞgraphicxŤ package to

enable pictures.

• Uses ŞcaptionŤ package to

enable Ągure captions.

• Uses ŞlistingsŤ package to

enable code listings.

Learn LATEX. It is nice!



Making your programming life easier



You should help yourself...

Source: internet folklore



... by having a (documented) plan

• If task is of low complexity, it is Ąne to

have the plan in your mind.

• If task is of medium complexity,

formalize the plan as pseudocode.

• If task is complex, formalize it using

flowcharts.

Image: manfredsteger@Pixabay

https://pixabay.com/vectors/pixel-cells-pixel-mindmap-3704048/


Pseudocode

Informal language used to describe how the program operates.

get task

if task is very simple:

define plan in mind

otherwise if task is complicated:

define plan as flowchart

in all other cases:

define plan using pseudocode

while task not completed:

if plan is bad:

update plan

implement plan as program

test program



Flowcharts

• Start at the top.

• Rectangles Ű actions.

• Rhombus Ű decision.

• Circles Ű outcome.



DRY principle: Do not repeat yourself

%% 1st line

pick pen color black

move pen to (1,1)

draw line to (1,100)

%% 2nd line

pick pen color green

move pen to (2,1)

draw line to (2,100)

%% 3rd line

pick pen color blue

move pen to (3,1)

draw line to (3,100)

function draw_line(src,dst,color):

pick pen color color;

move pen to src;

draw line to dst;

%% 1st line

draw_line((1,1),(1,100),black);

%% 2nd line

draw_line((2,1),(2,100),green);

%% 3rd line

draw_line((3,1),(3,100),blue);



KISS principle: Keep it stupid simple

• Single function or program should fulĄll a single purpose.

• It should fulĄll that purpose well.

• Do not implement functionality, which you do not absolutely need.

• Do not overŰgeneralize functions.

Examples:

• MS Word has some basic image editing capabilities. This is not KISS, as MS Word is meant

to be word processor, not image editing software.

• Surf is KISS. It is a web browser. It has no address bar, no tabs, no bookmarks, no extensions.

Related: https://suckless.org/

https://surf.suckless.org/
https://suckless.org/


Other general guidelines

• Use meaningful names

• Nouns for variable names

• Verbs in functions names

• Use case consistently

• Indent your code consistently

• Provide comments to explain your code

• Code lines shouldnŠt be longer than 70Ű80

characters

• Be consistent in your style

Image: /r/ProgrammerHumor/

https://www.reddit.com/r/ProgrammerHumor/comments/deh9n2/saw_a_post_about_cases_decided_to_add_my_personal/


Why use proper indentantion?

get task

if task is very simple:

define plan in mind

otherwise if task is complicated:

define plan as flowchart

in all other cases:

define plan using pseudocode

while task not completed:

if plan is bad:

update plan; implement plan as program; test program

Is this code readable? It will not upset your computer, but it may upset human beings.



Next time Matlab fundamentals!
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Matlab and Alternatives



Matlab: ŞWhat?Ť and ŞWhy?Ť

• Proprietary programming language and

numerical computing environment.

• Matrix Laboratory meant for

numerical computing.

• Symbolic computing is also possible.

• It supports graphical block

programming via Simulink.

You should use Matlab because it:

• speaks math

• is for scientists

• has toolboxes

• has apps

• integrates workĆows

• is fast

• is trusted

See: https://www.mathworks.com/products/matlab/why-matlab.html

https://www.mathworks.com/products/matlab/why-matlab.html


Alternatives

• GNU Octave. Mostly compatible, actively developed by the openŰsource community.

• Scilab. Partially compatible. There is a translator from Matlab.

• FreeMat. No update since 2013.

• Python Ű general purpose language, many scientiĄc libraries, popular language.

• R Ű language used by statisticians and social scientists, numerous scientiĄc libraries, bizarre

syntax.

• Julia Ű general purpose language, both fast to write and to execute, young and very promising.

• Others: JavaScript, Java, C, . . .



Getting Matlab



Create MathWorks account

1 Go to: https://se.mathworks.com/

academia/tah-portal/

vilnius-university-31464086.html.

2 Click "Sign in to get started".

3 Log into your VU account. Follow

the instructions to create

MathWorks account.

https://se.mathworks.com/academia/tah-portal/vilnius-university-31464086.html
https://se.mathworks.com/academia/tah-portal/vilnius-university-31464086.html
https://se.mathworks.com/academia/tah-portal/vilnius-university-31464086.html


Inside MathWorks account

4 Log into your MathWorks account.



Option A: Use Matlab Online

Go to https://matlab.mathworks.com. YouŠll have to login into your MathWorks account.

https://matlab.mathworks.com


Option B: Install Matlab

1 Make sure that you have internet connection.

2 When asked enter your VU or MathWorks login data.

3 Do not install all toolboxes unless you have a lot of free space.



After install

You can rearrange the internal panels as you like.



Apps

The more toolboxes you install the more apps you will see. It seems that fewer apps are available in the web app.



Inside of an app



Basic usage of Matlab



Working in the Command Window

From there we can use Matlab interactively:

1 we enter an expression at the command prompt (Ş>>Ť)

2 and wait for the Matlab to evaluate it.

Sometimes also CLI or REPL.



Getting help in Matlab

• Use help if you know the name of the function.

• Use lookfor to Ąnd the names of the functions, which you donŠt know.



Getting help online

URL: https://www.mathworks.com/help/matlab/

https://www.mathworks.com/help/matlab/


Quitting Matlab

• Clicking X (image on the right).

• We can also quit by typing quit or exit

into the command window.

>> exit

• I will rarely use screenshots to show you the commands.

• I will provide you the code listings instead (as above).

• You do not need to type in the command prompt (Ş>>Ť).



Time to exercise!
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Variables and workspace



Variables and Ş=Ť operator

Maths/physics:

• Variable is a symbol representing

certain quantity.

• Ş=Ť symbol stands for equality. It

implies that expressions on both of its

sides have the same value.

F = G
m1m2

r2
,

x + 3 = 8,

x = 5,

x
✘
✘

✘
✘❳

❳
❳
❳

= x + 3.

CS/programming:

• Variable is a label associated with

certain value.

• The value may change.

• Ş=Ť is an assignment operator, which

assigns new value to a variable.

>> x = 5

x =

5

>> x = x + 3

x =

8



Naming variables

• Up to namelengthmax characters can be used.

• Only latin letters, digits and underscore (Ş_Ť) are allowed.

• The Ąrst character must be a letter.

• Variable names are case sensitive.

• There are some reserved words, which canŠt be used.

• Yet not everything what should be reserved actually is.

>> namelengthmax

ans =

63

>> mass1 = 1.3;

>> 3mass1 = 3.9;

>> Mass1 = 4.5;

>> for = 42;

>> pi = 4;

>> sin = 3;



Semicolon (Ş;Ť)?

>> myVar = 4 - 3

myVar =

1

Use semicolon to suppress the output:

>> myVar = 5 - 2;

How do we know what value ŞmyVarŤ holds?

>> myVar

myVar =

3



Another usage for semicolon operator

Let us calculate buoyancy force:

Fb = ρgV = ρglwt,

where ρ is density, g is acceleration due to gravity, l, w and t are dimensions of the (cuboid) body.

>> rho=1200; g=9.81; l=0.297; w=0.21; t=0.00007;

>> Fb = rho * g * l * w * t

Fb =

0.0514

Note that:

• Matlab is not aware of units.

• You should use better variable names.



who and clear

• who prints a list of variables deĄned in workspace.

• clear can be used to delete variables.

>> who

Your variables are:

Fb Mass1 ans g l mass1 myVar pi rho sin t w x

>> clear sin

>> who

Your variables are:

Fb Mass1 ans g l mass1 myVar pi rho t w x

>> clear

>> who



Numeric variable types



What is double?

whos prints detailed information about currently deĄned variables. Their type (class) included.

>> whos

Name Size Bytes Class Attributes

Fb 1x1 8 double

Mass1 1x1 8 double

ans 1x1 8 double

g 1x1 8 double

l 1x1 8 double

mass1 1x1 8 double

myVar 1x1 8 double

pi 1x1 8 double

rho 1x1 8 double

sin 1x1 8 double

t 1x1 8 double

w 1x1 8 double

x 1x1 8 double



Various numbers and various types

• Natural numbers: uint8, uint16, uint32,

uint64.

• Integer numbers: int8, int16, int32, int64.

• Real numbers: single, double.

• Complex numbers: single, double.

Image: mathisfun.com

https://www.mathsisfun.com/sets/number-types.html


Representing integers

• Integers are stored precisely, but only from minimum number (intmin) up to maximum

(intmax) number.

• Changing variable types is referred to as typecasting.

>> intmin('int16')

ans =

-32768

>> intmax('int16')

ans =

32767

>> 2^15

ans =

32768

>> 32700 + 70 - 70

ans =

32700

>> class(ans)

ans =

'double'

>> int16(int16(32700 + 70) - 70)

ans =

32697

>> class(ans)

ans =

'int16'



Representing real numbers

• There are real numbers, which we simply canŠt represent using Ąnite number of decimals:

1/3,
√

2, π.

• FixedŰpoint (ĄxedŰexponent) real numbers:

1.23 ⇒ 123
︸︷︷︸

signif .

· 10
︸︷︷︸

base

exp.
︷︸︸︷

−2 ,

1/3 ⇒ 33 · 10−2,

π ⇒ 314 · 10−2.

• Loss of signiĄcance:

100 · (1/3) ⇒ 3300 · 10−2,

100/3 ⇒ 3333 · 10−2.



Floating-point real numbers:

• Floating-point real numbers allow to store wider range of numbers by allowing for exponent

to vary.

• single precision uses 32 bits: 1 bit for sign, 8 bits for exponent, 23 bits for signiĄcand.

SigniĄcand is stored with precision up to 2−24 ≈ 5 · 10−8.

• double precision uses 64 bits: 1 bit for sign, 11 bits for exponent, 52 bits for signiĄcand.

SigniĄcand is stored with precision up to 2−53 ≈ 10−17.

• By default Matlab stores all numbers as doubles.

>> (4 * 1/5 - 1) + 1 / 5

ans =

5.5511e-17

>> fprintf('%.22f', 0.1)

0.1000000000000000055511

>> fprintf('%.22f', 0.3)

0.2999999999999999888978



Loss of signiĄcance

We know that for δ → 0:

eδ − e−δ = [1 + δ +O(δ2)]− [1 − δ +O(δ2)] ≈ 2δ.

Lets check:

>> delta = 1e-5;

>> exp(delta) - exp(-delta)

ans =

2e-5

>> delta = 1e-16;

>> exp(delta) - exp(-delta)

ans =

1.1102e-16



Partially Ąxing the problem

We know that:

a2 − b2 = (a − b)(a + b).

Lets use it:

>> a = sqrt(exp(delta)); b = sqrt(exp(-delta));

>> (a-b)*(a+b)

ans =

2.2204e-16



Vectors and matrices



whos ŞsizeŤ?

>> whos

Name Size Bytes Class Attributes

Fb 1x1 8 double

Mass1 1x1 8 double

ans 1x1 8 double

g 1x1 8 double

l 1x1 8 double

mass1 1x1 8 double

myVar 1x1 8 double

pi 1x1 8 double

rho 1x1 8 double

sin 1x1 8 double

t 1x1 8 double

w 1x1 8 double

x 1x1 8 double

In Matlab even a number (scalar) is treated as a matrix.



Vectors and matrices

• Scalar is just some numeric value (1x1).

• Vector is a column (Nx1) or a row (1xN) of values.

• Matrix is a table of values (NxM).

• Tensor is a multidimensional matrix (NxMxKx...).

• Array is any collection of elements.



Create vectors by listing values

〈variable〉 = [ 〈values separated by commas or just spaces〉 ]

>> v = [1, 2, 3, 4]

v =

1 2 3 4

>> v = [1 2 3 4]

v =

1 2 3 4

〈variable〉 = [ 〈values separated by semicolons〉 ]

>> v = [1; 2; 3; 4]

v =

1

2

3

4



Create vectors with colon (Ş:Ť) operator

〈variable〉 = 〈Ąrst〉:〈step?〉:〈last〉

>> v = 1:4

v =

1 2 3 4

>> v = 1:2:7

v =

1 3 5 7

>> v = 1:2:6

v =

1 3 5

>> v = 7:-2:1

v =

7 5 3 1



linspace and logspace functions

Linearly spaced vector (arithmetic progression):

〈variable〉 = linspace(〈Ąrst〉, 〈last〉, 〈points?〉)

>> lsp = linspace(3,15,4)

lsp =

3 7 11 15

Logarithmically spaced vector (geometric progression):

〈variable〉 = logspace(〈lg(Ąrst)〉, 〈lg(last)〉, 〈points?〉)

>> lnp = logspace(0,3,4)

lnp =

1 10 100 1000



Combining vectors

〈variable〉 = [ 〈vector A〉 〈vector B〉 ]

>> nv = [ lsp lnp ]

nv =

3 7 11 15 1 10 100 1000

>> nv = [ 1:3 3:-1:1 ]

nv =

1 2 3 3 2 1

〈variable〉 = [ 〈vector A〉; 〈vector B〉 ]

>> nm = [ 1:4 ; 4:-1:1 ]

nm =

1 2 3 4

4 3 2 1



Transposing vectors and matrices

• .′ Ű non-conjugate transpose.

• ′ Ű complex conjugate transpose.

>> v.'

ans =

7

5

3

1

>> nm.'

ans =

1 4

2 3

3 2

4 1

>> v'

ans =

7

5

3

1

>> sqrt(-v).'

ans =

0 + 7i

0 + 5i

0 + 3i

0 + 1i

>> sqrt(-v)'

ans =

0 - 7i

0 - 5i

0 - 3i

0 - 1i



Subscripting/Indexing/Slicing vectors

>> nv(5)

ans =

2

>> nv(2:4)

ans =

2 3 3

>> nv([1 4 5])

ans =

1 3 2

>> nv(2) = 58

nv =

1 58 3 3 2 1

>> nv(3:4) = 4

nv =

1 58 4 4 2 1

>> nv(10) = -3

nv =

1 58 4 4 2 1 0 0 0 -3



Subscripting/Indexing/Slicing matrices

>> nm(2,3)

ans =

2

>> nm(1:2,2:3)

ans =

2 3

3 2

>> nm(1,:)

ans =

1 2 3 4

>> nm(:,2)

ans =

2

3

>> nm(2)

ans =

4

>> nm(1,2) = 99

nm =

1 99 3 4

4 3 2 1

>> nm(2,:) = -1

nm =

1 99 3 4

-1 -1 -1 -1

>> nm(:,4) = [3 8].'

nm =

1 99 3 3

-1 -1 -1 8

>> nm(end,end) = 0

nm =

1 99 3 3

-1 -1 -1 0



Dimensions of matrices

>> length(nm)

ans =

4

>> size(nm)

ans =

2 4

>> size(nm')

ans =

4 2

>> numel(nm)

ans =

8

>> reshape(nm, [1, 8])

ans =

1 -1 99 -1 3 -1 3 0

>> length(nv)

ans =

10

>> size(nv)

ans =

1 10

>> size(nv')

ans =

10 1

>> numel(nv)

ans =

10

>> reshape(nv, [2, 5])

ans =

1 4 2 0 0

58 4 1 0 -3



Expressions and Vectorization



Expressions

Expressions are composed of: values (1), variables (amplitude, phase), operators (Ş*Ť, Ş+Ť) and

functions (sin).

>> phase = 0.4; amplitude = 2;

>> amplitude * sin(phase + 1)

ans =

1.9709

In general objects on which operators act are called operands, though they can be expressions

themselves.



PredeĄned constants

• Some mathematical constants:

• π Ű pi ,
• √

−1 Ű i, j,

• Some programming related constants:

• inf Ű inĄnity (∞),
• nan Ű not a number (a result of 0/0),
• realmax, realmin, eps, intmax, intmin Ű related to machine precission and number

representation.

• Confusingly neither of these are constants. Some are also a function!

>> pi

pi =

3.1416

>> pi = 3; pi

pi =

3



Operator precedence

Expressions are evaluated left-to-right, though some operators are evaluated before the others.

These operators are said to have precedence over the other operators.

1 Parentheses (),

2 Exponentiation ^,

3 Unary + or −,

4 Multiplication and division \/*,

5 Addition and subtraction + −.

You know the above by heart and trust the interpreter or simply use parentheses to avoid any

possible confusion.

Find the precedence table in online documentation.

https://www.mathworks.com/help/matlab/matlab_prog/operator-precedence.html


Functions

>> help elfun

〈somewhat long list of elementary mathematical functions:trigonometric, exponential, complex, rounding and remainder
functions.〉
>> log(3)

ans =

1.0986

>> imag(sqrt(-1))

ans =

1

>> ceil(7.1)

ans =

8

>> mod(15,6)

ans =

3

Whenever we use a function as a part of command, it is said that we are calling that function.



Functions and arrays

• Some functions act on every element of an array.

• Some functions act on arrays as whole.

>> cos(-2:2)

ans =

-0.4161 0.5403 1 0.5403 -0.4161

>> abs([-5 -1; 3 0])

ans =

5 1

3 0

>> diag(ans)

ans =

5

0



Operators and arrays

Like functions, mathematical operators come in two types too:

• Array operators act on every element of an array.

• Matrix operators act on arrays as whole.

>> [1:3] - [3:-1:1]

ans =

-2 0 2

>> [1:3] * [3:-1:1]

Error using *
>> [1:3] * [3:-1:1]'

ans =

10

>> [1:3] .* [3:-1:1]

ans =

3 4 3

>> [1:3] ./ [3:-1:1]

ans =

0.3333 1 3

>> [1:3] .^ [3:-1:1]

ans =

1 4 3



Vectorization

Given that dampening is weak, the equation of

motion of the harmonic oscillator is:

x(t) = e−δt cos(ωt).

>> delta = 0.1; omega = 1;

>> t = linspace(0,30/omega,100);

>> x = exp(-delta*t) .* cos(omega*t);

>> [t' x']

ans =

0 1

0.1515 0.931

〈further output〉

>> plot(t, x)

If you donŠt use vectorization, there is little point in using Matlab at all.



Basic Input and Output



Text variables

Text variables in Matlab are stored as string or as char. The important difference is that char is

stored as a vector, while string is its own individual object.

>> s = "Hello, world!"

s =

"Hello, world!"

>> s2 = 'Hello, world!'

s2 =

'Hello, world!'

>> class(s)

ans =

'string'

>> class(s2)

ans =

'char'

>> length(s)

ans =

1

>> length(s2)

ans =

13

>> "Hello, world!" + 1

ans =

"Hello, world!1"

>> 'Hello, world!' + 1

ans =

73 102 109 〈...〉



input function

input( 〈prompt text〉 , 〈type indicator (?)〉 )

>> name = input('Hello, what is your name?', 's');

Hello, what is your name?

Beamer

>> disp(['Nice to meet you, ' name]);

Nice to meet you Beamer

>> age = input('How old are you?');

How old are you?

5

>> disp(['You were born in ' num2str(2008-age)]);

You were born in 2003

input function is not very useful from Command Window. It will be useful when we start writing

scripts.



disp function

disp( 〈variable〉 )

>> disp(pi)

3.1416

>> disp( [ 1 2 3 ] )

1 2 3

>> disp(s2)

Hello, world!

We can combine numbers and text:

〈char variable〉 = num2str( 〈numeric variable〉 )

>> disp( [ 'The answer is ', num2str(4) ] )

The answer is 4



fprintf function

fprintf Ű rather powerful formatted output function.

>> fprintf('Surely the answer is %d!\n', 3^2)

Surely the answer is 9!

• fprintf can accept as many input parameters as is needed.

• First parameter is always a text, which is called format string.

• Format string might contain multiple placeholders (such as Ş%dŤ).

• Ş\nŤ is a newline character.



Placeholders for fprintf

The letter speciĄes variable type:

• %d Ű (decimal) integer

• %f Ű Ćoating point number

• %c Ű single character

• %s Ű string or multiple characters

Field width is one of the optional parameters, which can be included in the placeholder. It

speciĄes how many characters are to be used (at least) in printing. For example:

• %5d Ű would print integer using at least 5 characters.

• %5s Ű would do the same for a string.

• %5.2f Ű would print real number using at least 5 characters, using exactly 2 decimal part.



Example placeholders

There are numerous other options, such as printing left-aligned numbers or truncating strings.

>> fprintf('|%5.2f|\n',pi)

| 3.14|

>> fprintf('|%5d|\n',4)

| 4|

>> fprintf('|%-5d|\n',4)

|4 |

>> fprintf('|%5s|\n','truncate this very long long string')

|truncate this very long long string|

>> fprintf('|%.5s|\n','truncate this very long long string')

|trunc|



Printing a vector

• If you know how many elements are in vector, you can use that to your advantage.

• If you donŠt, then you can use the fact that fprintf is vectorized.

>> v = 2:4;

>> fprintf('%d %d %d\n',v)

2 3 4

>> fprintf('%d',v), fprintf('\n')

234

>> fprintf('%d\n',v)

2

3

4



Printing a matrix

>> mat = [1:3; 4:6];

>> fprintf('%d %d %d\n',mat)

1 4 2

5 3 6

>> fprintf('%d %d %d\n',mat')

1 2 3

4 5 6

>> fprintf('%d\n',mat)

1

4

2

5

3

6

>> disp(mat)

1 2 3

4 5 6

>> disp(mat')

1 4

2 5

3 6

Matlab unfolds the matrix in not a very natural way if you use fprintf, but everything is Ąne with

disp.



plot function

plot(〈x values (?)〉, 〈y values〉, 〈line style (?)〉)

>> x = 0:0.1:(2*pi);

>> y = sin(x);

>> plot(x, y, 'r:')



Next time logic, branching and looping!
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Why care about scripting?

• Command window is meant for quick

oneŰtime calculation.

• Scripts are meant for solving more

complicated problems or creating

reusable solutions.

• Live scripts are like scripts, but they

are superior, when the main product is

not your code, but the story behind it.

Photo: Anna Shvets

https://www.pexels.com/photo/serious-young-coworkers-working-on-laptop-in-coworking-space-5324858/


Problem to be solved in a script

Problem:

A car starts from rest and accelerates uniformly over a time of 4.12 seconds. During that time it

travels distance of 60 meters. Derive the expression for the acceleration of the car. Evaluate the

expression using Matlab.

Analytical derivation:

d = v0t +
at

2

2
=

at
2

2
,

a =
2d

t2
≈ 7.07 m/s2.



Problem to be solved in a live script

Problem:

A light beam makes an angle of 25◦ with the normal of the interface, while in the medium the

angle is 15◦. What is the index of refraction of the medium? Derive the expression for the

refraction index of the medium. Evaluate the expression using Matlab.

Analytical derivation:

n1 sin θ1 = n2 sin θ2,

n2 = n1
sin θ1

sin θ2

≈ 1.63



Converting between script and live script

See: Publishing Markup, Insert Equations into the Live Editor

https://www.mathworks.com/help/matlab/matlab_prog/marking-up-matlab-comments-for-publishing.html
https://www.mathworks.com/help/matlab/matlab_prog/insert-equations.html


Generating (publishing) PDF reports



On homework

• Some of the homework problems may require you to upload scripts or functions. This

implies ordinary script or function Ąles.

• Some of the homework problems may require you to upload reports. This means you need to

upload a PDF Ąle. Generate it from either live script or ordinary script Ąle.

• First command must always be clear.

• You must always indicate who is the author of the submission.



Time to exercise!
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Relational and logical expressions



Relational operators

Relational operators are similar to the comparison operators from Math. They compare the

operands and tell if the statement involving them is true.

• Ş>Ť Ű greater than,

• Ş<Ť Ű less than,

• Ş>=Ť Ű greater than or equal (≥),

• Ş<=Ť Ű less than or equal (≤),

• Ş==Ť Ű checks for equality (=),

• Ş∼=Ť Ű checks for inequality (̸=).

>> 2 > 9

ans =

0

>> 3 < 5

ans =

1

>> 7 >= 5

ans =

1

>> class(ans)

ans =

logical



Logical or (Ş||Ť) operator

• Logical operators allow combining two relational expressions.

• OR operator results in true if either of operands (relational expressions) is true.

operand 1 operand 2

true (1) true (1) true (1)

true (1) false (0) true (1)

false (0) true (1) true (1)

false (0) false (0) false (0)

>> ( 3 < 5 ) || ( 7 < 3 )

ans =

1

>> ( 5 < 3 ) || ( 7 < 3 )

ans =

0



Logical and (Ş&&Ť) operator

• Logical operators allow combining two relational expressions.

• AND operator results in true if both of operands (relational expressions) are true.

operand 1 operand 2

true (1) true (1) true (1)

true (1) false (0) false (0)

false (0) true (1) false (0)

false (0) false (0) false (0)

>> ( 2 < 8 ) && ( 1 < 9 )

ans =

1

>> ( 2 < 8 ) && ( 9 < 1 )

ans =

0



Logical not (Ş∼Ť) operator

• Logical operators allow combining two relational expressions.

• NOT operator is unary operator, which changes value of a single operand from true to false.

operand

true (1) false (0)

false (0) true (1)

>> ∼( 0 < -5 )

ans =

1

>> ∼( -5 < 0 )

ans =

0



eXclusive OR operation

• XOR operation is implemented as a function.

argument 1 argument 2

true (1) true (1) false (0)

true (1) false (0) true (1)

false (0) true (1) true (1)

false (0) false (0) false (0)

>> xor( -5 < 0 , -3 < -2 )

ans =

0

>> xor( -5 < 0 , -2 < -3 )

ans =

1



Confusion!

>> 1 < -2 + 4

ans =

1

>> ( 1 < -2 ) + 4

ans =

4

>> 1 < -2 + 4 < 3

ans =

1

>> 1 < -2 + 8 < 3

ans =

1

>> 7 < 4 || 5 < 3 && 1 < 2

ans =

0

>> -5 && 5

ans =

1

>> 0 && 5

ans =

0

>> true = 3; true

true =

3

>> 2 == 2

ans =

1

>> ( 2 == 2 ) == true

ans =

0



is* functions

• isempty Ű is a vector/matrix/string empty?

• iskeyword Ű is the input string a keyword? iskeyword is also a constant, which gives a list of

all keywords.

• isfloat, isinteger, isnumeric, ischar, isstring, islogical

• isscalar, isvector, ismatrix

• isnan, isinf

• . . .

>> isempty([])

ans =

1

>> iskeyword('end')

ans =

1

>> isfloat(pi)

ans =

1

>> isinf(1/0)

ans =

1



Branching statements



if statement

if 〈condition〉

〈action〉

end

• Condition Ű a logical/relational expression. Expression starts

after keyword if and ends with the line.

• Action Ű single or multiple Matlab commands. Keyword end

marks the end of the commands.

• Action commands are executed only if condition is logically

true.



Example: sign change for positive numbers

Let us change the signs of numbers, but only of positive numbers. So that:

• 4 → −4,

• −2 → −2.

>> num = 4;

>> if num > 0

num = -num;

end

>> num

num =

-4

>> num = -2;

>> if num > 0

num = -num;

end

>> num

num =

-2



Example: square root of a positive number

% This script prompts user for a non-negative number and calculates square root

% of that number

clear;

num = input('Please enter a non-negative number: ');

% if input is negative, then give user a warning

% and change the number to positive

if num < 0

disp(['Negative number detected! Considering modulus instead.'])

num = abs(num);

end

% produce the output of the result

disp(['Sqrt of ' num2str(num) ' is ' num2str(sqrt(num))]);



Common misunderstanding

Lets ask the user if (s)he is Ąne:

reply = input('Is everything fine? (Y/N): ','s');

if reply == 'y' || 'Y'

disp('Good for you!')

end

Proper condition would be:

( reply == 'y' ) || ( reply == 'Y' ) lower(reply) == 'y'



Adding else clause

Sometimes we want to run one action, if the condition is

true, and another, if it is false. This can be done by adding

else clause to our if statement.

if 〈condition〉

〈action 1〉

else

〈action 2〉

end



Example: Area of a circle

% Calculate the area of a circle, but only if the radius is positive

clear;

radius = input('Please enter the radius:');

if radius <= 0

disp('Sorry, but your input is not valid')

else

area = pi * (radius ^ 2);

disp(['The area is ' num2str(area)])

end



Nested if-else statement

We can combine multiple if-else statements

to make a more complicated logic structure.

if 〈condition 1〉

〈action 1〉

else

if 〈condition 2〉

〈action 2〉

else

〈action 3〉

end

end



Example: Piecewise function

Suppose we have a piecewise function:

f (x) =











−x2 if x < 0

x3 if 0 ≤ x ≤ 2

−x + 10 if 2 < x

if x < 0

y = - (x^2);

end

if (0 <= x ) && (x <= 2)

y = x^3;

end

if 2 < x

y = -x + 10;

end

if x < 0

y = - (x^2);

else % 0 <= x

if x <= 2

y = x^3;

else % 2 < x

y = -x + 10;

end

end



Adding elseif clause

As number of conditions and actions grows larger, nested code becomes overly complicated and

hard to understand. Luckily Matlab supports elseif clauses.

if 〈condition 1〉

〈action 1〉

elseif 〈condition 2〉

〈action 2〉

elseif 〈condition 3〉

〈action 3〉

〈as many other elseif clauses as is needed〉

else

〈action N〉

end



Piecewise function example

f (x) =











−x2 if x < 0

x3 if 0 ≤ x ≤ 2

−x + 10 if 2 < x

if x < 0

y = - (x^2);

else

if x <= 2

y = x^3;

else

y = -x + 10;

end

end

if x < 0

y = - (x^2);

elseif ( x <= 2 ) % && 0 <= x

y = x^3;

else % 2 < x

y = -x + 10;

end



Confussion is still quite possible

• elseif clauses tend to give false sense of control.

• Yet the conditions are still evaluated sequentialy. This can also result in some confusion.

if x < 0

disp('The number is negative')

elseif x > 10

disp('The number is larger than 10')

elseif x > 0

disp('The number is positive')

elseif x < -10

disp('The number is less than -10')

else

disp('x is cool!')

end



switch statement

In some cases switch statement can be

simpler than if statement.

switch 〈expression〉

case 〈possible value 1〉

〈action 1〉

case 〈possible value 2〉

〈action 2〉

〈further case clauses〉

otherwise

〈default action〉

end



Example: Conversion to US style grades

points = ceil(points);

if (points == 9) || (points == 10)

disp('Grade is A');

elseif (points == 8)

disp('Grade is B');

elseif (points == 7)

disp('Grade is C');

elseif (points == 6)

disp('Grade is D');

else

disp('Grade is F');

end

points = ceil(points);

switch points

case {10, 9}

disp('Grade is A');

case 8

disp('Grade is B');

case 7

disp('Grade is C');

case 6

disp('Grade is D');

otherwise

disp('Grade is F');

end



Determined looping



for loop Ű determined repetition

for 〈loop variable〉 = 〈sequence of values〉

〈action〉

end

• Sequence of values is expected to be a vector (array/list).

• Often you will use Ş:Ť to specify the sequence.

• for loop will execute action for every value in the sequence of values.

>> for idx = 0:4

fprintf('%d ',idx)

end

0 1 2 3 4

>> for idx = [1 3 8 -5]

fprintf('%d ',idx)

end

1 3 8 -5



Flowchart representation

As long as sequence of values is not empty, do the action.



Practical example: Finite sum

Let us check if the following equality is true:

1 + 2 + . . .+ m =
m
∑

k=1

k =
m(m + 1)

2
.

m = 5;

s = 0;

for k = 1:m

s = s + k;

end

>> sum(1:m)

ans =

15



Practical example: InĄnite product

Let us check if the following equality is true:

∞
∏

k=1

(

1 −
6.25

k2

)

= 0.1273 . . .

m = 500;

p = 1;

for k = 1:m

p = p * ( 1 - 6.25/(k^2));

end

>> prod(1 - 6.25 ./ ((1:m).^2))

ans =

0.1289



Example: Ąnding minimum value

%% Finding minimum value in a vector

clear;

v = [1 2 3 4 -10 5 -1 -3];

% find minimum

m = v(1); % if we have seen just one value, its smallest by default

for val = v(2:end) % lets look at other values

if val < m % and find ones that are smaller

m = val; % set new minimum

end

end

disp(['Minimum value is ' num2str(m)]);

Better way: min and max functions.



break and continue

break is used to end the loop. continue is used to end the current iteration of the loop early.

%% Example of break

clear;

v = [1 2 3 -10 4 5 -1 -3];

for val = v

if val < 0

break

end

fprintf('%d ',val)

end

fprintf('\n',val)

>> break_example

1 2 3

%% Example of continue

clear;

v = [1 2 3 -10 4 5 -1 -3];

for val = v

if val < 0

continue

end

fprintf('%d ', val)

end

fprintf('\n')

>> continue_example

1 2 3 4 5



Nesting for loops

%% Nested for loops printing square of asterisks

clear;

nRows = 3;

nCols = 5;

for rIdx = 1:nRows % for every row

for cIdx = 1:nCols % for every column

fprintf('*') % print asterisk

end

fprintf('\n')

end

>> print_asterisks

*****

*****

*****

Also: note that we can ignore the loop variable.



Lets make a multiplication table

Lets write a script, which would print out multiplication table like the one below.

>> print_mult_table

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20



Nested for loops work well with matrices

%% Example of using nested for loops

%% to sum elements of a matrix

clear;

nRows = 4;

nCols = 5;

s = 0;

for r = 1:nRows

for c = 1:nCols

s = s + mat(r,c);

end

end

disp(s)

>> sum(mat)

ans =

10 20 30 40 50

>> sum(sum(mat))

ans =

150

>> sum(mat, 'all')

ans =

150



Vectorizing for loops



Practical example: InĄnite sum

InĄnite sum,
∞
∑

k=1

k

k3 − 3
≈

n
∑

k=1

k

k3 − 3
,

can be calculated by using for loop or by vectorization.

n = 500000;

s = 0;

for k = 1:n

s = s + k / ( k^3 -3 );

end

n = 500000;

k = 1:n;

s = k ./ ( k.^3 - 3);

sum(s)



Example: adding positive and negative numbers

Two sums:

• just positive numbers,

• just negative numbers.

>> v = [1 2 3 4 -10 5 -1 -3];

>> positives = ( v > 0 );

>> sum(v(positives))

ans =

15

>> sum(v(∼positives))

ans =

-14

• Vector used as index must be logical.

>> nonlogical = int8(positives);

>> v(nonlogical)

Array indices must be positive ...

integers or logical values.

• You can set values, too.

>> v(∼positives) = 0

v =

1 2 3 4 0 5 0 0

>> v(∼positives) = -v(∼positives)

v =

1 2 3 4 10 5 1 3



Logical vector functions and vectorized logical operators

• Relational operators and logical ŞnotŤ operator are vectorized.

• Logical && and || operators have counterŰparts & and |.

>> positives

positives =

1x8 logical array

1 1 1 1 0 1 0 0

>> any(positives)

ans =

1

>> all(positives)

ans =

0

>> find(positives)

ans =

1 2 3 4 6

>> find(positives & ( v >= 2 ))

ans =

2 3 4 6

>> find(∼positives | v > 4)

ans =

5 6 7 8



Masking: plotting positive values

Lets plot:

f (x) =

{

sin (x)5
if sin (x)5

> 0,

0 otherwise.

>> x = linspace(0, 2*pi);

>> y = sin(x) .^ 5;

>> y = y .* ( y > 0 );

>> plot(x, y)



Undetermined looping



while loop

• for loops work well if we know the number of iterations.

• In the other cases we have to rely on while loop.

while 〈condition〉

〈action〉

end

• Action will be repeated until condition is false.

• If condition canŠt become false, then the loop is called infinite loop.

• You terminate inĄnite loop by pressing Ctrl + C.



Flowchart representation

• The representation is quite similar to

the for loop.

• Yet the while loop allows custom

conditions.

• As long as the condition is true, the

action will be repeated.



Example: Ąrst factorial past threshold

Suppose we want to Ąnd a number x whose factorial is Ąrst one to be larger than certain value, h:

x! > h.

%% First factorial past threshold

clear;

h = 500;

idx = 1;

fact = 1;

while fact < h

idx = idx + 1;

fact = fact * idx;

end

disp([idx fact]);

>> first_factorial

[ 6 720 ]

>> factorial(5)

ans =

120

>> factorial(6)

ans =

720



Practical example: InĄnite sum

• InĄnite sums canŠt be evaluated precisely.

• for loops offer arbitrary precision.

• while loops offer for a bit more controlled approach.

Let us approximate:

e =
∞
∑

k=0

1

k!
≈

n
∑

k=0

1

k!
= Sn.

Until |Sn − Sn−1| < ε (here ε is error tolerance).



Next time Matlab programs!
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Programs and their organization



Programs and algorithms

• A computer program is a sequence of instructions that tells the computer how to accomplish

a speciĄc task.

• An algorithm is a list of steps used to solve a speciĄc problem.

• Often it is written in pseudocode or drawn as a Ćowchart.

• It should be detailed enough to reduce the problem to manageable steps.

The area of a circle:

1 Get the radius r.

2 Calculate according to the formula:

S = πr2

3 Output the area S.

Journey:

1 Pick a destination

2 Research Ćights, hotels and attractions

3 Book a Ćight, hotel

4 Plan your stay

5 Print tickets and notes



Modular design

• Break down a complicated problem into smaller

problems.

• Solve the smaller problems and combine your

solutions.

• In programming, its best to store the solutions in

independent modules.

• These modules are then combined to make a

program.

• Modular design allows multiple people to work on a

program, makes maintenance is easier. Solutions can

reused when solving similar problems.

Image: IKEA Kallax

https://www.ikea.lt


Example: Unfair coin problem

Problem: Which unfair coins can we reasonably detect, if we do 100 coin Ćips? Coin is referred to

as unfair, if its sides are not equally probable to be face up after a Ćip:

p (Heads) ̸= p (Tails) .

• Generate a single Ćip by an unfair coin.

• Generate 100 Ćips by an unfair coin, counting heads.

• Extract relevant statistics by repeating experiment multiple times.

• Explore various degrees of unfairness, p (Heads), to check which coins could be detected as

unfair.



Lowest levels of abstraction

Generate a single flip:

Assume that 'ProbHead' is given

Generate a uniform r.v. 'u' in [0, 1)

If 'u' < 'ProbHead':

return 'Heads'

else:

return 'Tails'

Generate multiple flips:

Assume that 'NFlips' and 'ProbHead' are given

Initialize 'counter'

For 'NFlips' times repeat:

Generate a single flip using 'ProbHead'

If the result of a flip is 'Heads':

Increment 'counter'

return 'counter'



Middle level

• Let say we want 5% accuracy.

• Then we want to know bounds in which 95% of experiments end up.

Determine 95% bounds:

Assume that 'NTrials', 'NFlips' and 'ProbHead' are given

Create storage for the results of repeated trials

For 'NTrials' times repeat:

Generate 'NFlips' flips using 'ProbHead'

Store the result in the storage

Obtain 2.5% and 97.5% quantiles of the data in the storage

return the quantiles

end



Highest level

Ask user for number of trials to perform ('NTrials')

Ask user for number of flips to perform ('NFlips')

Create storage for the results with varied probabilities

For 'ProbHead' between 0 and 1:

Determine 95% bounds with 'NTrials', 'NFlips',

'ProbHead'

Store the bounds in the storage

Plot the bounds



Examine the output

Answer: It seems we would be able to distinguish unfair coins if p (Heads) is either smaller than

30% or larger than 70%.

Code is available on eŰlearning platform.



UserŰdeĄned functions



DeĄning single output functions

• First line is know as function header.

• Next we should have a description of the function (its documentation).

• Function ends with keyword end.

• Output argument must be assigned some value.

• File name must match function name.

function 〈outArg〉 = 〈function name〉(〈inArg1, inArg2, ..., inArgN〉)

% 〈description (documentation) of the function〉

〈some other statements here〉

〈outArg〉 = 〈some value〉;

end



Single input argument

function area = get_circle_area( radius )

% calculate area of a circle

%

% Input:

% radius - radius of a circle

% Output:

% area - area of a circle

%

area = pi .* (radius .^ 2);

end

>> get_circle_area(5)

ans =

78.5398



Multiple input arguments

function vol = get_cone_volume( r, h )

% calculate volume of a cone

%

% Input:

% r - radius of a circle at the base

% h - height of the cone

% Output:

% vol - volume of the cone

%

vol = (pi/3) * ( r .^ 2) .* h;

end

>> get_cone_volume(2.5,1.5)

ans =

9.8175

Image: @Wikimedia

https://commons.wikimedia.org/wiki/File:Cone_(geometry).png


Multiple output arguments

Problem: Suppose we took a break of 4539 seconds. How many hours, minutes and seconds did

we rest?

Algorithm:

• Hours: 4539/3600 = 1.2 . . .

• Minutes: (4539 − 3600 · 1)/60 = 15.6 . . .

• Seconds: 4539 − 3600 · 1 − 60 · 15 = 39

>> [h, m, s] = split_breaktime(4539)

h =

1

m =

15

s =

39



No output arguments

function say_hello( name )

% function says hello addressing certain name

%

% Input:

% name - name to say hello to

%

fprintf('Hello, %s! How do you do?\n',name);

>> say_hello('Beamer');

Hello, Beamer! How do you do?



No output nor input arguments

function print_random

% function print random number

fprintf('Your lucky number is: %d!\n',randi(100));

>> print_random

Your lucky number is: 91!



Returning value early

function out = zero_or_more(x)

% function returns 0 or x if x > 0

if x < 0

out = 0;

return

end

out = x;

end

>> zero_or_more(3)

ans =

3

>> zero_or_more(-3)

ans =

0



Advanced userŰdeĄned functions



Variable number of input and/or output arguments

• Instead of the list of input arguments we may provide varargin.

• Instead of the list of output arguments we may provide varargout.

• varargin and varargout are of cell arrays. Unlike the usual vectors/arrays these can store

values of different types.

• To get the number of submitted input or output variables use nargin and nargout.



Variable input arguments

function area = get_circle_area_u(varargin)

% calculates the area of a circle in square meters

%

% Input:

% radius - radius of the circle

% units - units of the radius (default: meters)

% Output:

% area - area in square meters

%

radius = varargin{1}; % note curly braces!

if nargin == 2

units = varargin{2};

if units == 'i' % if units are inches

% convert to meters

radius = radius .* 2.54;

radius = radius ./ 100;

end

end

area = pi * ( radius .^ 2 );

end



Combining required and optional input arguments

function area = get_circle_area_u2(radius, varargin)

% calculates the area of a circle in square meters

%

% Input:

% radius - radius of the circle

% units - units of the radius (default: meters)

% Output:

% area - area in square meters

%

if nargin == 2 % note the 2!

units = varargin{1};

if units == 'i' % if units are inches

% convert to meters

radius = radius .* 2.54;

radius = radius ./ 100;

end

end

area = pi * ( radius .^ 2 );

end



Variable number of outputs

function [ aType, varargout ] = get_type_size(in)

% function determines if input is scalar/vector/matrix and

% returns its dimensions

[r c] = size(in);

if ( r == 1 ) && ( c== 1)

aType = 'scalar';

elseif ( r == 1 ) || ( c == 1)

aType = 'vector';

varargout{1} = length(in);

else

aType = 'matrix';

varargout{1} = r;

varargout{2} = c;

end

end

>> get_type_size([1 2; 3 4])

ans =

'matrix'



Using nargout

function [nRows, nCols, varargout] = get_size(mat)

% get size of a matrix

% provides optional third output (number of elements)

[nRows, nCols] = size(mat);

if nargout == 3

varargout{1} = numel(mat);

end

end

>> get_size([1 2; 3 4])

ans =

2

>> [r, c, n] = get_size([1 2; 3 4])

r =

2

c =

2

n =

4



Nesting functions

• We have nested branching statements. Cool!

• We have nested looping statements. Cool!

• We can nest functions. DonŠt!

function 〈other outer function header elements〉

〈body of the outer function〉

function 〈other inner function header elements〉

〈body of the inner function〉

end % of inner

〈body of the outer function〉

end % of outer



Local functions

get_volume_lf.m

function v = get_volume_lf(l,w,h)

% get volume of a cuboid

v = get_base(l,w) * h;

end % get_volume_lf

function b = get_base(l,w)

% local function, which calculates are of

% the base

b = l*w;

end % end get_base



Recursion



Recursion

Image: SMBC comics

Video: Dragon dream feet (recursion meme)

https://www.smbc-comics.com/comic/recursion
https://www.youtube.com/watch?v=3K3MMtoG8rY


Recursive functions

• Recursive function is a function that calls itself.

• In many cases recursion is less efficient than using MatlabŠs builtŰin functions and even loops.

• Though there cases where recursion is the most efficient solution.

Factorials can be deĄned in recursive manner:

f (n) = n! = n · (n − 1) · (n − 2) · . . . = n · f (n − 1).

All recursive function need some kind of termination condition. For factorials we have:

0! = 1.



Recursive factorial

function f = get_factorial(n)

% calculate factorial of input

if n == 0

f = 1;

else

f = n * get_factorial(n-1);

end

end

When we call recursive factorial function with input 2 the following thing happens:

get_factorial(2)

2 * get_factorial(1)

2 * (1 * get_factorial(0))

2 * (1 * 1)

2 * 1

2



Tail recursion

function f = get_tail_f(n, varargin)

% calculate factorial of input

run_prod = 1;

if nargin == 2

run_prod = varargin{1};

end

if n == 0

f = run_prod;

else

f = get_tail_f(n-1, n * run_prod);

end

end

In many other languages tail recursion is faster than ordinary recursion, but in Matlab itŠs not. In

this particular case it seems to be ∼ 25 times slower (with n = 5).

Video: Tail recursion explained (Computerphile)

https://www.youtube.com/watch?v=_JtPhF8MshA


Inside tail recursive factorial

get_tail_f(5)

5 * get_tail_f(4, 5)

20 * get_tail_f(3, 20)

60 * get_tail_f(2, 60)

120 * get_tail_f(1, 120)

120 * get_tail_f(0, 120)

120 % end of get_tail_f(0, ...

120 % end of get_tail_f(1, ...

120 % end of get_tail_f(2, ...

120 % end of get_tail_f(3, ...

120 % end of get_tail_f(4, ...

120 % end of get_tail_f(5)

In other languages tail recursion is faster, because compiler or interpreter optimizes your code.

Note that Şprod(1:5)Ť or Şfactorial(5)Ť would much faster.



Anonymous functions and handles



Anonymous functions

〈handle〉 = @( 〈inArg1, ..., inArgN〉 ) 〈action or expression〉;

function v = get_volume_af(l, w, h)

% get volume of a cuboid

getBase = @(l,w) l*w;

v = getBase(l,w) * h;

end

• Anonymous function is a very simple, oneŰline function, which does not have to be stored in

a separate Ąle.

• It is assigned to a particular variable, which is referred to as a function handle.

• We call the function by using the function handle.



Anonymous functions

>> get_circ_area = @(r) pi * (r .^ 2);

>> get_circ_area(4);

ans =

50.2655

>> get_circ_area(1:4);

ans =

3.1416 12.5664 28.2743 50.2655

>> print_rng = @() fprintf('Lucky number %d!\n', randi(100));

>> print_rng()

Your lucky number is: 13!

>> print_rng

print_rng =

@() fprintf('Lucky number %d!\n',randi(100));



Getting function handles

>> fact = @factorial;

>> fact(4)

ans =

24

function plot_handle(fnh)

% plots function for -pi to pi

x = -pi:.1:pi;

y = fnh(x);

plot(x,y,'ko')

end

>> plot_handle(@sin)



str2func / func2str

function plot_str(fns)

% plots function for -pi to pi

fnh = str2func(fns);

x = -pi:0.1:pi;

y = fnh(x);

plot(x,y,'ko')

end

>> plot_str('gamma')

gamma is a special mathematical function, which is deĄned as

Γ(z) =

∫
∞

0

x−ze−xdx.



eval / evalc / feval

function plot_str2(exps)

% plots function for -pi to pi

x = -pi:0.1:pi;

y = eval(exps);

plot(x,y,'ko')

end

>> plot_str2('x.^2 - x')

• evalc captures output of eval as text.

• feval evaluates function (supplied by handle or text variable) for certain values.



Scope and workspaces



Variable scope

• Scope of any variable is the workspace in which it was deĄned.

• Workspace created for the Command Window is called the base workspace.

• Whenever function is called a new workspace is created.

• Whenever function exits its workspace is cleared.

• Function variables are local by default.

• Subfunctions have access to variables deĄned in their parent function.



Local by default

function cost = get_cylinder_cost( radius, height, price )

% calculate price of the cylinder

%

% Input:

% radius - base circle radius in [cm]

% heigh - heigh of the cylinder [cm]

% price - price of the material [Eur/sqm]

% Output:

% cost - cost of the materials needed [Eur]

%

areaSides = 2 * pi .* radius .* height; % [sqcm]

areaEnds = 2 * pi * (radius.^2); % [sqcm]

area = areaSides + areaEnds; % [sqcm]

area = area ./ 1e4; % [sqm]

cost = area .* price; % [Eur]

end



Global variables

function s = global_sum(v)

global idx;

s = 0;

for idx = 1:length(v)

s = s + v(idx);

end

end

>> clear;

>> global_sum(1:3)

ans =

6

>> who

ans idx



Persistent variables

persistent variables Ű stay in memory until we manually clear the function.

function count_calls

% this function counts how many times it was called

persistent count;

if isempty(count)

count = 0;

end

count = count + 1;

fprintf('You rang %d times!\n',count);

end

>> count_calls; count_calls; count_calls

You rang 1 times!

You rang 2 times!

You rang 3 times!



Next time ŞliveŤ coding session!
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Entomology of errors

• Syntax errors Ű mistakes in using the

language.

• Run–time errors Ű errors found when a

script or function are running.

• Logical errors Ű errors in our own

reasoning or speciĄcation of algorithm.

• Numerical errors Ű errors occurring due to

imperfect numerical representation of

numbers.

Image: @pixtastock.com

https://www.pixtastock.com/illustration/54292316


Bugs in Computer Science

• Errors in computer programs are often

referred to as a bug.

• Eliminating those errors is known as

debugging.

Trivia: In the earlier days of modern

computing programs crashed because of

literal bugs getting fried in their circuitry.

Image: Autopilot@Wikimedia.

https://commons.wikimedia.org/wiki/File:IBM_700_logic_module.jpg


Patches in Computer Science

Patch is a set of changes to a computer program. These

changes may Ąx bugs, add functionality or update the

program.

Trivia: In the old days programs were encoded as holes on

the tape. What if you made a hole were you havenŠt

intended?

Image: kekline@twitter.

https://twitter.com/kekline/status/1268646458854641665


MatlabŠs debugging tool

See: Debug a Matlab program

https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html


Time to exercise!
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What is probability?



Event frequency

Flip a coin and observe the frequency of

heads:

f̂ =
Nheads

Nflips

.

As Nflips approaches inĄnity, f̂ approaches p.



Elementary events

• Probability is likelihood that event will happen.

• Probability is number of ways event can happen divided by the number of ways any event can

happen.

Assume that we observe two particles, which can have ↑ or ↓ spins. Possibilities:

• both in up state, ↑↑,

• Ąrst in up state, the other in down state, ↑↓,

• Ąrst in down state, the other in up state, ↓↑,

• both in down state, ↓↓.



Graphical interpretation

• Two people agreed to meet between 9

am and 10 am.

• Either will wait for 15 minutes and then

leave.

• Meeting probability is the ratio

between the shaded area and whole

area.



Conceptualization Ű Venn diagrams

• A, B and C Ű non–elementary events.

Non-elementary events are composed

of elementary events.

• 0 ≤ P(A) ≤ 1.

• P(A or B) ≤ P(A) + P(B).

• P(A and B) = P(A) · P(B|A).

Image: @Wiki

https://en.wikipedia.org/wiki/File:Venn3tab.svg


Independent events



Probability distributions



Probability distributions and random variables

• Probability distribution is a function which encodes the probabilities of a random variable

taking certain value.

• Random variable Ű an outcome of a random observation.

• Number of minutes it will take for Lithuanian national team of football to score a goal in

competitive game.
• Number of Ąsh youŠll catch during your next Ąshing trip.
• Number of lightnings that will hit during the next storm.
• Number of people who would say they like Donald Trump.
• Number of slides in this presentation.



Discrete distributions

Discrete distribution is deĄned by a set of possible outcomes and their respective probabilities.

This information can be shown graphically or as a table.

X p(X)

1 0.1

2 0.5

π 0.3

4 0.025

4.5 0.075



Cumulative distribution function

Previous slide featured probability

mass function, while this slide features

cumulative distribution function

deĄned as:

P(x) = p(X < x),

S(x) = p(X > x) = 1 − P(x).

Here S(x) is a survival function.



CDF also makes sense for continuous variables

CDF is deĄned as a continuous function. This allows us to introduce continuous random variables.



Probability density function

For continuous random variables we need to introduce probability density function:

p(x)dx = P(x)− P(x − dx), ⇒ p(x) =
d

dx
P(x).



Uniform distribution

p(x) =

{

1
b−a

, x ∈ [a, b]

0, otherwise

>> uniform_data = ( 5 - 3 ) * rand(1, 100) + 3;

>> uniform_int_data = randi([3, 5], 1, 100);



Binomial distribution

p(x) =
n!

x!(n − x)!
qx(1 − q)n−x.

>> binomial_data = binornd(20, 0.5, [1, 100]);



Exponential distribution

p(x) = r exp(−rx).

>> exp_data = exprnd(5, [1, 100]);



Poisson distribution

p(x) =
(rt)x

x!
exp(−rt).

>> poisson_data = poissrnd(5, [1, 100]);



Normal (Gaussian) distribution

p(x) =
1√

2πσ2
exp

(

−(x − µ)2

2σ2

)

.

>> normal_data = normrnd(2, 0.3, [1, 100]);

>> normal_data_2 = 0.3 * randn(1, 100) + 2;



Other ŞparanormalŤ distributions

• Triangle distribution

• Log-normal distribution

• Weibull

• Gamma

• Beta

• Pareto

• StudentŠs T

• Geometric

See: online documentation for full list of supported distributions.

Image: M. Freeman, J Epidemiol Community Health. 2006 Jan; 60(1): 6.

https://mathworks.com/help/stats/supported-distributions.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2465539/


Summary statistics



Central tendency: Mean (average)

Mean of the experimental data:

µ = E(x) = x̄ = ⟨x⟩ = 1

N

N
∑

j=1

xj.

For the know distributions:

µ =
∑

i

xip(xi), µ =

∫

∞

−∞

xp(x)dx.



Averaging in Matlab

>> mn = mean(data);

>> mn = trimmean(data); % trims 2% of highest and lowest values

There are other kinds of averages, such as harmonic mean,

H =
n

∑

i
1
xi

,

and geometric mean:

G = n

√

∏

i

xi.

>> H = harmmean(data);

>> G = geomean(data);



Spread: Minimum, maximum and range

min and max are obvious, range tells us

how spread out the observations are:

>> data_min = min(data);

>> data_max = max(data);

>> data_range = range(data);

Other tricks applicable to min and max:

>> [min_val, min_idx] = min(data);

>> min_vals = min(data1, data2);



Variance and standard deviation

Variance is another a measure of how spread out the observations are. For the experimental data:

σ2 =
〈

(x − µ)2
〉

= Var(x) =
1

N − 1

N
∑

j=1

(xj − µ)2,

For the known distributions:

σ2 =
∑

i

(xi − µ)2p(xi), σ2 =

∫

∞

−∞

(x − µ)2p(x)dx.

Standard deviation is deĄned as square root of variance.

>> sigmaSq = var(data);

>> sigma1 = sqrt(sigmaSq);

>> sigma2 = std(data);



Other summary statistics

• Mode Ű the most frequent observed value.

• Median Ű the middle value in the sample.

• Quartiles Ű nth quartile is the largest value in the Ąrst n
4

of data.

• Percentiles Ű similar to quartiles, but split into 100 equal parts.

• Quantiles Ű similar to percentiles, but splits into two unequal parts.

>> data = sort(randi(100,1,11)); % generate observations

>> disp(['data [' num2str(data) ']']);

>> disp(['----- Summary -----']);

>> disp(['Mean = ' num2str(mean(data))]);

>> disp(['Median = ' num2str(median(data))]);

>> disp(['Q1 = ' num2str(prctile(data,25))]);

>> disp(['Q2 = ' num2str(prctile(data,50))]);

>> disp(['Q3 = ' num2str(prctile(data,75))]);



Summary statistics in action

Screenshot from: https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/

https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/


Empirical distributions



Empirical CDF

>> data = 5*rand(1, 1000);

>> [freqs, x] = ecdf(data);

>> plot(x, freqs);

>> data = 5*rand(1, 1000);

>> ecdf(data)



Empirical histograms

>> data = 5*rand(1, 1000);

>> [freqs, x] = histcounts(data);

>> plot(x(2:end), freqs)

>> data = 5*rand(1, 1000);

>> histogram(data, 50);



Estimating distribution parameters

DistributionŰcentric functions:

>> [a, b, aci, bci] = unifit(uniform_data);

>> [p, pci] = binofit(binomial_data, n);

>> [la, laci] = poissfit(poisson_data);

>> [mu, sigma, muci, sigmaci] = normfit(normal_data);

Generalized function:

>> params = mle(normal_data, 'distribution', 'norm');



Distribution Ątter app

>> distributionFitter



KolmogorovŰSmirnov test

>> norm_data = normrnd(0, 1, [1, 1000]);

>> kstest(norm_data)

ans =

logical

0

>> exp_data = exprnd(1, [1, 1000]);

>> cdf_x = linspace(min(exp_data), ...

max(exp_data), 101);

>> cdf_y = expcdf(exp_data, 1);

>> kstest(exp_data, 'cdf', ...

[cdf_x', cdf_y'])

ans =

logical

0

Image: @Wiki

https://commons.wikimedia.org/wiki/File:KS_Example.png


Central limit theorem



The theorem

Values of the standardized sum of random values Xi,

Sn =
1

σ
√

n

n
∑

i=1

[Xi − µ] ,

are distributed according to the normal distribution with zero mean and unit variance:

Sn ∼ N (0, 1).

This is true if (1) Xi are at least weakly independent and (2) follow various distributions with Ąnite

means and variances.



Example: sum of 5 uniform r.v. formally

Si =
1√
5

5
∑

i=1

Xi, with Xi ∼ U
(

−
√

3,
√

3
)

.

>> n = 5; samples = 1000;

>> data = unifrnd(-sqrt(3), sqrt(3), [n, samples]);

>> data = sum(data);

>> data = data ./ sqrt(n);

>> kstest(data)

ans =

logical

0



Example: sum of 5 uniform r.v. visually



Random number generators



True random number generators

Images: Aliko Sunawang @Pexels, Pixabay@Pexels, @Amazon, Tookapic@Pexels

Video: Tom Scott: The Lava Lamps That Help Keep The Internet Secure

https://www.pexels.com/photo/blue-red-and-white-dice-1225131/
https://www.pexels.com/photo/ball-casino-chance-gamble-33267/
https://www.amazon.com/Million-Random-Digits-Normal-Deviates/dp/0833030477
https://www.pexels.com/photo/night-television-tv-video-8158/
https://www.youtube.com/watch?v=1cUUfMeOijg


Pseudorandom number generators

First select x0 (the ŞseedŤ), a, b and m. Then iteratively do:

xi+1 = (axi + b) mod m.

Suppose a = 7, b = 5, m = 65536, x0 = 11437869.



Our pseudorandom number generator

• The good. Distribution appears to be mostly uniform.

• The bad. Values cycle after roughly 17 thousand iterations.

• The terrible. Consecutive values appear to be slightly autocorrelated.

• The lesson. Use builtin random number generator.

• Another lesson. Set seed to enable better reproducibility.



Autocorrelated? Correlation coefficient

Correlation coefficient:

ρ =
⟨(Xt − µX)(Yt − µY )⟩

√

⟨(Xt − µX)2⟩⟨(Yt − µY )2⟩
.

Autocorrelation function:

ρ(τ) =
⟨(Xt − µX)(Xt+τ − µX)⟩

⟨(Xt − µX)2⟩ .



Correlation ̸= causation

Screenshot from: https://www.tylervigen.com/spurious-correlations

https://www.tylervigen.com/spurious-correlations


General method to sample from various distributions

• CDF, P(x), gives values in interval [0, 1].

• CDF, P(x), is a monotonic function.

• Lets generate uniformly distributed random value, u.

• Lets invert CDF to convert u into some x.

For example, for exponential distribution:

P(x) = 1 − e−λx, ⇒ x = P−1(u) = − ln(1 − u)

λ
.

In the above if u ∼ U(0, 1), then x will follow exponential distribution.



Generating random numbers in Matlab

• These things are nice to know and understand. Especially ŞseedŤ.

• Some distributions have their dedicated *rnd functions. If these do not exist, you can use

makedist and random functions instead.

• Just be careful to understand what parameters the functions accept as input.

>> rng(169, 'twister')

>> exprnd(5)

ans =

2.0054

>> betarnd(3,4)

ans =

0.5121

>> rng(169, 'twister')

>> exp_obj = makedist('exponential', 5);

>> random(exp_obj)

ans =

2.0054

>> dist_obj = makedist('Beta', 3, 4);

>> random(dist_obj)

ans =

0.5121

See: online documentation.

https://mathworks.com/help/stats/supported-distributions.html


Next time file input and output!
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Minimal Ąle input and output



save command

save 〈Ąle name〉 〈variable name(s)〉 -ascii

>> mat = rand(3,2);

>> save test.dat mat -ascii

• If Ąle does not exist, it will be created.

• If it exists, it will be overwritten.

• If you are storing multiple variables, they should have the same number of columns.



load command

>> load test.dat

>> who

Your variables are:

test mat

>> test

test =

〈contents of a matrix read from test.dat Ąle〉

>> test - mat % recovery is imperfect

ans =

1.0e-08 *
-0.1133 -0.0795

-0.4566 -0.4801

0.1678 0.1761

It is better to use save and load commands with binary *.mat Ąles.



Appending data to a Ąle

>> mat = rand(3,3);

>> save test.dat mat -ascii -append

Few things to notice and understand:

• We have added another qualiĄer

Ş-appendŤ.

• While we can append data of any shape

to existing Ąle, to read this Ąle properly

we must ensure that our data remains

rectangular.



load and plot example

1 Read Štime_temp.datŠ Ąle

2 Separate data rowŰwise:

• First row: day time in hours.
• Second row: temperature in degrees

Celsius.

3 Plot the data



Lower level Ąle I/O



The basic Ąle I/O algorithm

Under the hood save function does the following three basic things:

• Open the Ąle for writing or appending.

• Write the data to the Ąle.

• Close the Ąle.

load function proceeds similarly:

• Open the Ąle for reading.

• Read rectangular data from the Ąle.

• Close the Ąle.



fopen Ű open the Ąle

〈Ąle identiĄer〉 = fopen( 〈Ąle path string〉, 〈permission string〉);

• Ąle identiĄer - variable, which will be used to reference this particular ŞopeningŤ of this

particular Ąle.

• Ąle path string - path to the Ąle.

• permission string - is the Ąle for reading, writing or appending?



File path

• File path is how we Ąnd

certain Ąles or directories on

computers (for example,

when using Ąle managers).

• Paths can be absolute or

relative.

• For our purposes relative

paths will be more useful.

Additional Material: Udacity: ŞAbsolute and Relative PathsŤ

https://www.youtube.com/watch?v=ephId3mYu9o


Why relative paths?

fid = fopen('./data/experiment1.dat','w');

• Here we have a relative path to a Ąle Şexperiment1.datŤ.

• The Ąle is located in a directory ŞdataŤ.

• The directory is in the current working directory.

Relative paths are Ćexible. On your computer the absolute path to the Ąle might be different from

the absolute path on my computer. Then the script which uses absolute paths will break. Using

relative paths we just have to ensure that ŞdataŤ stays together with the script.



Error handling fopen

fopen will return −1 if something went wrong when trying to open the Ąle. Otherwise it will

return integer > 3, which will serve as Ąle identiĄer.

fid = fopen('data/experiment1.dat');

if fid == -1

disp('File was not opened')

else

disp('Reading the data')

〈further code〉

end

Note: by default fopen opens Ąles with read permission



fclose Ű close the Ąle

When we are done working with Ąle we can close it using fclose.

fclose(〈Ąle identiĄer or ŠallŠ〉);

• If we pass ŞallŤ instead of identiĄer, then all currently opened Ąles will be closed.

• fclose will return 0 if everything went Ąne and −1 if something went wrong.



fprintf Ű write to Ąle

fprintf(〈Ąle identiĄer〉, 〈format string〉, 〈variables〉);

There are other lowŰlevel functions, but we can use what we already know. We just need to pass

another input argument. Though note:

• The new input argument (Ąle identiĄer) goes Ąrst.

• fprintf returns the number of bytes written to Ąle. So if you donŠt add the semicolon it will be

printed to Command Window. This does not happen if you write to Command Window

instead of a Ąle.

Before using fprintf make sure that you have opened Ąle for writing (ŞwŤ permission string) or

appending (ŞaŤ permission string).



fprintf uniform data example

% generate data

data = rand(10,3);

% write data to file

file_idx = fopen('rand.csv','w');

fprintf(file_idx, '%.3f,%.3f,%.3f\n', data');

fclose(file_idx);

fprintf is vectorized and ŞdataŤ is a matrix of double therefore we can do it simply like that.



fprintf mixed data example

% generate data

names = {'Luca McCarthy', 'Kai Robinson', 'Josh Walker', 'Jacob Doyle', ...

'Bradley Rees', 'Byron Molina', 'Jaycob Russell', 'Johnathan Hopper', ...

'Callen Gibson', 'Dean Roberson'};

nStudents = length(names);

grades = 7*rand(nStudents,3)+3;

% write to file

fid = fopen('rand_grades.csv','w');

for idx = 1:nStudents

fprintf(fid,'%s,%.2f,%.2f,%.2f\n',names{idx},...

grades(idx,1),grades(idx,2),grades(idx,3));

end

fclose(fid);

We need to loop over available data.



Side note: sprintf Ű write to a variable

>> 〈variable〉 = sprintf( 〈template string〉, 〈variables storing values to be used in the template〉 );

>> name = input('What is your name? ', 's')

What is your name? Ishmael

name =

'Ishmael'

>> age_prompt_text = sprintf('How old are you, %s? ', name);

>> age = input(age_prompt_text)

How old are you, Ishmael? 170

age =

170



fscanf Ű read Ąle to matrix

General template:

〈variable to store data〉 = fscanf(〈Ąle identiĄer〉, 〈format string〉, 〈expected data dimensions〉);

Lets read Şrand.csvŤ, which we have written few slides before.

fid = fopen('rand.csv');

data = fscanf(fid,'%f,%f,%f',[10,3]);

fclose(fid);

>> class(data)

ans =

double



textscan Ű read Ąle to cell array

General template:

〈variable to store data〉 = textscan(〈Ąle identiĄer〉,〈format string〉);

Lets read Şrand_grades.csvŤ, which we have written few slides before.

fid = fopen('rand_grades.csv');

data = textscan(fid, '%s %f %f %f', 'Delimiter', ',');

fclose(fid);

>> class(data)

ans =

cell

Possible confusion due to delimiter being speciĄed outside format string



fgetl and fgets Ű read line by line

These functions are almost identical, they only differ in how they treat the end of line symbols:

fgetl removes them, fgets keeps them.

〈variable to store line〉 = fgetl(〈Ąle identiĄer〉);

〈variable to store line〉 = fgets(〈Ąle identiĄer〉);

You will most often use these functions in while loop:

while ∼feof(〈Ąle identiĄer〉) % while not end of file

〈variable to store line〉 = fgetl(〈Ąle identiĄer〉);

〈further code to process the line〉

end



fgetl example

% cell array to store data

data ={};

% read the data

cols = 0; % number of columns in our file

delim = ','; % delimiter used to separate values in the file

fid = fopen('rand_grades.csv');

n_lines_read = 0;

while ∼feof(fid)

line_read = fgetl(fid);

if cols == 0

% determine number of columns from the first line

cols = length(strfind(line_read, delim)) + 1;

end

data(end+1, 1:cols) = strsplit(line_read, delim);

n_lines_read = n_lines_read + 1;

end

fclose(fid);

data(:,2:cols) = mat2cell(cellfun(@str2double, data(:,[2:4])), ...



fgetl example in detail

• We read data to cell array (as it is mixed).

• We read line by line using fgetl

• We keep track of the number of lines read so that we could put data in appropriate row.

• We are splitting the lines into separate values (columns) by using strsplit.

• We determine number of columns from the Ąrst line.

• Our output is cell array of size 10 × 4 (if the Ąle generate few slides before is used).

The code could be improved by converting the appropriate cells to numerical values (currently all

cells containing strings). This would not be very hard, but a bit messy.



High level Ąle I/O



How to manually create a table

You can create a table with named columns (though names are optional):

〈variable to store table〉 = table(〈var1〉, 〈...〉, 〈varN〉, ...

'VariableNames', 〈names for columns〉);

You can also preallocate memory for table:

〈variable to store table〉 = table('Size', 〈size of preallocated table: [nRows nCols]〉, ...

'VariableTypes', 〈cell array with strings indicating types〉, ...

'VariableNames', 〈names for columns〉);

Additional material: Online documentation on table

https://www.mathworks.com/help/matlab/ref/table.html


readtable

This function can read delimited text Ąles (Ş.txtŤ, Ş.datŤ or Ş.csvŤ) and spreadsheet Ąles (Ş.xslsŤ,

Ş.xlsxŤ, Ş.odsŤ and some others).

〈variable to store table〉 = readtable(〈Ąle path string〉, ...

〈options as ...ImportOptions object〉, ...

〈advanced options as Name-Value pairs〉)

• Usually ŞĄle path stringŤ will be the only input argument youŠll pass.

• Other input arguments are optional and used for advanced conĄguration.



Graphical data import tool



readtable and how to deal with tables

I have downloaded a data set containing football matches from Holland. I have saved the data Ąle

as Şholland.csvŤ.

>> data = readtable('holland.csv');

>> summary(data)

〈some quick statistical description of all columns〉

>> data.tier = []; % delete some column

>> minSeason = min(data.Season); % get info about column

>> data1995 = data( data.Season == 1995, :); % filter (subset) data

>> data1995.tgoal = data1995.hgoal + data1995.vgoal; % add column

>> data1995 = sortrows(data1995, 'tgoal', 'descend'); % sort data

>> hgoal1995 = grpstats(data1995,'home','sum','DataVars','hgoal'); % pivot data

Data source: https://github.com/jalapic/engsoccerdata/

For more examples see Şholland.mŤ on the e-learning platform

https://github.com/jalapic/engsoccerdata/


Numerical, ordinal and nominal data

• Numerical data can be processed using variety of mathematical tools: comparison,

summation, averaging and others.

• Textual data can be of two types:

• Ordinal data can be ordered, but no other mathematical operation make sense.
• Nominal data canŠt be summarized using mathematical tools. We can only count number of

elements belonging to the category.

In the Holland football data set:

• Number of goals are examples of numerical data.

• ŞSeasonŤ and ŞTierŤ are examples of ordinal data.

• Team name is excellent example of nominal data.



Categorical data in Matlab

>> data.Season = categorical(data.Season,'Ordinal',true);

>> data.tier = categorical(data.tier,'Ordinal',true);

>> data.home = categorical(data.home);

>> data.visitor = categorical(data.visitor);

>> % list all distinct elements in a categorical column

>> categories(data.home)

ans =

{'ADO Den Haag'}

{'AFC Ajax'}

{'AZ Š67 Alkmaar'}

〈...〉



Custom ordering of the ordinal data

By default data is ordered in alphabetical order, but you can set custom order. For example, assume

that we have patient database, which contains selfŰevaluation of overall health: patients could say

that their health is ŞPoorŤ, ŞFairŤ or ŞGoodŤ.

>> patients.selfEval = categorical(patients.selfEval, ...

{'Poor','Fair','Good','Excellent'}, 'Ordinal', true);

>> % lets get patients with good health or better

>> patiens( patiens.selfEval >= 'Good' )

〈list of patients with ŠGoodŠ or ŠExcellentŠ selfŰevaluation〉



join Ű combining tables

• Two tables can be combined by a shared column.

• If there are multiple shared columns, you can select which column to use.

• Data which is absent in either table, will be removed.

>> T1 = table([10;4;2;3;7],[5;4;9;6;1],[10;3;8;8;4]);

>> T2 = table([6;1;1;6;8],[5;4;9;6;1]);

>> join(T1, T2, 'Keys', 'Var2')

T=5x4 table

Var1_T1 Var2 Var3 Var1_T2

_______ ____ ____ _______

10 5 10 6

4 4 3 1

2 9 8 1

3 6 8 6

7 1 4 8

Be sure to study the documentation of join. Also see outerjoin and innerjoin

https://www.mathworks.com/help/matlab/ref/table.join.html
https://www.mathworks.com/help/matlab/ref/outerjoin.html
https://www.mathworks.com/help/matlab/ref/innerjoin.html


writetable

This function can write delimited text Ąles (Ş.txtŤ, Ş.datŤ or Ş.csvŤ) and spreadsheet Ąles (Ş.xslsŤ,

Ş.xlsxŤ, Ş.odsŤ and some others).

writetable(〈variable storing table〉, 〈Ąle path string〉, ...

〈advanced options as Name-Value pairs〉)

SpeciĄc example:

writetable(data1995, 'holland1995.xls');



Next time beyond the basic plot!
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Programmatic plotting



Simplest plot possible

>> x = linspace(0, 2*pi, 11);

>> y = sin(x);

>> plot(x, y);
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Plot looks better if we increase number of points
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>> x = linspace(0, 2*pi, 101);

>> y = sin(x);

>> plot(x, y);



Our plot lacks frame labels

>> xlabel('time');

>> ylabel('sine of time');
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Fancy title anyone?

>> title('sin(t), t \in [0, 2 \pi]');
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Styling the curve

>> plot(x, y, 'r--');

>> xlabel('time');

>> ylabel('sine of time');
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More curves

>> y2 = cos(x);

>> plot(x, y, 'r--', x, y2, 'k*');

>> xlabel('time');

>> ylabel('sine, cosine of time');
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Alternative way to add curves

>> plot(x, y, 'r--');

>> hold on;

>> plot(x, y2, 'k*');

>> hold off;

>> xlabel('time');

>> ylabel('sine, cosine of time');
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Adding legend (after the fact)

>> legend('sine', 'cosine');
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Adding legend (as you plot)

>> plot(x, y, 'r--', ...

'DisplayName', 'sine');

>> hold on;

>> plot(x, y2, 'k*', ...

'DisplayName', 'cosine');

>> hold off;

>> legend('show');
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Switching between frame and axes

>> box off; >> box on;
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Adding grid

>> grid on;
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Programmatic interaction with Ągure and axes handles

〈Ągure handle〉 = figure(〈integer Ągure id〉);

〈Ągure handle〉 = gcf();

〈axes handle〉 = gca();

>> fig = gcf();

>> ax = gca();

>> ax.XLim = [0, 1];

>> fig.PaperUnits = 'inches';

>> fig.PaperSize = [4, 3];

>> fig.PaperPosition = [0, 0, 4, 3];

>> ax.Color

ans =

1 1 1

>> set(gca(), 'XLim', [0, 1]);

>> set(gcf(), ...

'PaperUnits', 'inches', ...

'PaperSize', [4, 3], ...

'PaperPosition', [0, 0, 4, 3])

>> get(gca(), 'color')

ans =

1 1 1



What customization options there are?

There are a lot of them. To see them:

• Explore them using the plot tool.

• https://se.mathworks.com/help/matlab/ref/matlab.graphics.axis.axes-properties.html

• https://se.mathworks.com/help/matlab/ref/matlab.ui.Ągure-properties.html

https://se.mathworks.com/help/matlab/ref/matlab.graphics.axis.axes-properties.html
https://se.mathworks.com/help/matlab/ref/matlab.ui.figure-properties.html


Multiple Ągures from one script

figure(1);

plot(x_1, y_1);

figure(2);

plot(x_2, y_2);

figure(3);

plot(x_3, y_3);



The graphical plot tool



There is a graphical plot tool



Which allows you to edit plot by clicking



And then you can even generate the code



Plot types



Logarithmic axes

>> % Double log base 10 axes

>> loglog(x, y);

>> % X axis log base 10, Y axis linear

>> semilogx(x, y);

>> % X axis linear, Y axis log base 10

>> semilogy(x, y);
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Subplots

% rows, cols, id

subplot(1,2,1);

plot(x,y,'r--');

% rows, cols, id

subplot(1,2,2);

plot(x,y2,':m');
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Scatter plot

>> subplot(1,2,1);

>> plot(x, y);

>> subplot(1,2,2);

>> plot(x, y, '.');
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Stairs plot

stairs(x, y);
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Stem plot

stem_plot = stem(x, y);

stem_plot.BaseLine.LineStyle = 'none';
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I have used this type of plot to show you PMFs of a discrete distribution.



Error bar plot

% generate fake noisy data

std = 0.02;

x = linspace(0, 1, 11);

err = 3*std*((1+x).^2);

y = x + (err/3) .* randn(size(x));

% the plot

errorbar(x, y, err, 'rs');

hold on;

plot(x, x, 'k');

hold off;

legend('Measurements', 'theory');
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Pie chart

pie(〈data〉,〈labels〉);

0-9 y/o
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80+ y/o

Data source: https://osp.stat.gov.lt/gyventojai1

https://osp.stat.gov.lt/gyventojai1


Bar chart

% create category ids

cat_ids = 1:length(data_labels);

bar(cat_ids, data);

% ensure proper labels

set(gca(), 'XTick', cat_ids);

set(gca(), 'XTickLabel', data_labels);
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Polar plot

% generate data

angle = linspace(0,2*pi,101);

radius = sin(2*angle);

% the plot

polarplot(angle, radius)
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3D plots



Basic 3D plot

% data

t = linspace(0,8*pi,101);

x = t.*sin(t);

y = t.*cos(t);

% plot

plot3(x, y, t);



Contour plot

x = linspace(0, 2*pi, 31);

y = linspace(0, 2*pi, 31);

[mesh_x, mesh_y] = meshgrid(x, y);

mesh_z = sin(mesh_x) .* sin(mesh_y);

subplot(211);

contour(mesh_x, mesh_y, mesh_z);

colormap('hot');

colorbar();

subplot(212);

contourf(mesh_x, mesh_y, mesh_z);

colormap('hot');

colorbar();
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meshgrid

>> x = 1:5;

>> y = 1:5;

>> [mesh_x, mesh_y]=meshgrid(x, y)

mesh_x =

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

mesh_y =

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5



Customizations not shown in the slide

% let the ticks point outwards

set(gca(),'TickDir','out');

% set custom tick locations on x axis

set(gca(),'XTick',[0 pi 2*pi]);

% custom tick labels

set(gca(),'XTickLabel',{'0' 'pi' '2 pi'});

% Do the similar thing on the y-axis

set(gca(),'YTick',[0 pi 2*pi]);

set(gca(),'YTickLabel',{'0' 'pi' '2 pi'});



ŞImageŤ plot

The code remains mostly the same with a caveat: imagesc takes x and y values as vectors, while

contourf takes matrices. z values in both cases must be matrices.

imagesc(x, y, z);
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Note that y axis is Ćipped. Also see image function.



Surf plot

surf(x, y, z);



Other plot types

• area Ű if you want to Ąll the area under the curve.

• quiver Ű vector Ąelds often used by certain branches of Physics.

• plotmatrix Ű if you want to see correlations and distributions within your data.

See: Matlab Plot Gallery.

https://www.mathworks.com/products/matlab/plot-gallery.html
https://www.mathworks.com/products/matlab/plot-gallery.html


Exporting plots



In the GUI you have save option

• PDF Ű excellent format if you are producing

graph and your Ąnal product will be a PDF

Ąle.

• PNG Ű excellent format for graph or image

with limited number of colors.

• JPEG Ű excellent format for images with

large number of colors.

Problem! Matlab has its own very strong

opinions on how your Ągures must look.

See: Save Figure with SpeciĄc Size, Resolution, or Background Color (Matlab tutorial)

Also: export_Ąg toolbox (Matlab File Exchange)

https://se.mathworks.com/help/matlab/creating_plots/save-figure-at-specific-size-and-resolution.html
https://se.mathworks.com/matlabcentral/fileexchange/23629-export_fig


My save_to_pdf function

function save_to_pdf(paper_size, file_name)

% This function saves current figure to png file.

%

% Input args:

% * paper_size (size of the paper in inches).

% * file_name (path or file name including or excluding extension).

%

% first lets set the desired size of the figure

set(gcf(),...

'PaperUnits', 'inches',...

'PaperSize', paper_size,...

'PaperPosition', [0 0 paper_size]);

% save current figure to file

print('-dpdf', file_name)

end



My save_to_png function

function save_to_png(paper_size, dpi, file_name)

% This function saves current figure to png file.

%

% Input args:

% * paper_size (size of the paper in inches).

% * dpi (dots per inch).

% * file_name (path or file name including or excluding extension).

%

% first lets set the desired size of the figure

set(gcf(),...

'PaperUnits', 'inches',...

'PaperSize', paper_size,...

'PaperPosition', [0 0 paper_size]);

% save current figure to file

print('-dpng', sprintf('-r%d',dpi), file_name)

end



Next time “live” coding session!
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Searching algorithms



Ąnd

>> data = randi([0,10], 1, 10)

data =

6 4 5 0 0 3 4 1 7 0

>> find(data)

ans =

1 2 3 6 7 8 9

>> find(data == 4)

ans =

2 7

>> % find just one instance

>> find(data == 4, 1)

ans =

2

>> data = reshape(data, 2, 5)

data =

6 5 0 4 7

4 0 3 1 0

>> [r, c, v] = find(data == 4, 1)

r =

2

c =

1

v =

logical

1



Linear search

1 Get data vector and decide on what we are looking for.

2 Start at i = 1.

3 Check if i-th value matches what we are looking for, if so stop the search.

4 Increment i and return to step 3.

function idx = search_linear(data, ...

target)

for idx = 1:length(data)

if data(idx) == target

return

end

end

end

>> data = randi(10, [1, 8])

data =

9 10 2 10 7 1 3 6

>> search_linear(data, 10)

ans =

2

Watch: LINEAR search with FLAMENCO dance (Youtube video)

https://www.youtube.com/watch?v=-PuqKbu9K3U


Binary search

1 Get sorted data vector and decide on what we are looking for.

2 Figure out the mid-point of the consider data vector M.

3 If value at M is greater than the value we are looking for, then ignore the M-th value and

values after it. Also, go back to step 2.

4 If value at M is less than the value we are looking for, then ignore the M-th value and values

before it. Also, go back to step 2.

5 Otherwise, if value at M is equal to the value we are looking for, then simply return M.

Watch: BINARY search with FLAMENCO dance; Image (modiĄed): @Wikimedia

https://www.youtube.com/watch?v=iP897Z5Nerk
https://commons.wikimedia.org/wiki/File:Binary_search.svg


Time complexity of algorithms

• How long will it take for linear search to Ąnd an element in data vector of size N?

• What about binary search?

Time complexity of an algorithm is how the run time scales as we increase the size of the problem.

• Your algorithm is extraordinary excellent if O(1).

• Your algorithm is excellent if O (ln (n)).

• Your algorithm is good if O (n).

• Decent if O
(

n
2
)

?

Watch: Big O Notation (Youtube video)

https://www.youtube.com/watch?v=v4cd1O4zkGw


Sorting algorithms



What is sorting?

Sorting is the process of putting a list in order, either descending (highest to lowest) or ascending

(lowest to highest).

>> d = [1, 5, 8, 4, 3];

>> sort(d, 'descend') % from highest to lowest

ans =

8 5 4 3 1

>> sort(d, 'ascend') % from lowest to highest

ans =

1 3 4 5 8



Sorting in Matlab

>> data = rand(3)

data =

0.9076 0.4755 0.0260

0.6679 0.9352 0.1918

0.0784 0.1513 0.0913

>> sort(data) % sort along each column independently

ans =

0.0784 0.1513 0.0260

0.6679 0.4755 0.0913

0.9076 0.9352 0.1918

>> sortrows(data, 2) % sort rows by second column

ans =

0.0784 0.1513 0.0913

0.9076 0.4755 0.0260

0.6679 0.9352 0.1918



Getting indexes when sorting

Suppose you have two separate vectors with related data and want to sort both of them by values in

one of them. Then you need to know how the index was reordered in that vector.

>> v1 = rand(1,10); v2 = 3*v1 + rand(1,10);

>> [sv1, idx] = sort(v1)

sv1 =

0.0525 0.1906 0.2238 〈...〉

idx =

3 5 6 1 9 4 10 2 7 8

>> sv2 = v2(idx)

sv2 =

0.4967 0.9619 1.0953 〈...〉

Note that most of the time Şsv1Ť will have strictly ascending values, while Şsv2Ť will usually have

ascending values.



Sorting text

>> words = char('Labas', 'Hello', ...

'Konnichiwa', 'Gutten tag')

>> sort(words)

ans =

Gabae

Helli

Konnoc iaa

Luttsnhtwg

>> sort(words, 2)

ans =

Laabs

Hello

Kachiinnow

Gaegntttu

>> sortrows(words)

ans =

Gutten tag

Hello

Konnichiwa

Labas



Selection sort

1 Find the smallest (largest) value on the list.

2 Swap that value with the Ąrst value.

3 Continue repeating these steps, but ignore values already sorted.

{1, 5, 8, 4, 3} →

{ 1 , 5, 8, 4, 3} →

{ 1, 3 , 8, 4, 5} →

{ 1, 3, 4 , 8, 5} →

{ 1, 3, 4, 5, 8 }

Watch: Select-sort with Gypsy folk dance (Youtube video)

https://www.youtube.com/watch?v=Ns4TPTC8whw


Bubble sort

1 Compare two neighboring elements.

2 Swap them if they are in the incorrect order.

3 Go through the list as much times as it is needed.

{ 1, 5 , 8, 4, 3} → {1, 5, 8 , 4, 3} → {1, 5, 4, 8 , 3} → {1, 5, 4, 3, 8 } ⇒

{ 1, 5 , 4, 3, 8} → {1, 4, 5 , 3, 8} → {1, 4, 3, 5 , 8} → {1, 4, 3, 5, 8 } ⇒

{ 1, 4 , 3, 5, 8} → {1, 3, 4 , 5, 8} → {1, 3, 4, 5 , 8} → {1, 3, 4, 5, 8 }.

Note that we need to do another pass through to verify that no additional swaps are possible.

Watch: Bubble-sort with Hungarian folk dance (Youtube video)

https://www.youtube.com/watch?v=lyZQPjUT5B4


In comparison. . .

• What do you think is the time complexity of both algorithms?

• Both of these are not memory intensive.

• Bubble sort can be a bit faster.

• Bubble sort is easier to implement.

• We can do both better and worse than that.



Bogo sort

BOGO SÖRT idea-instructions.com/bogo-sort/

v1.2, CC by-nc-sa 4.0

1

2

A

2
3 4 5

3

5
A 4 2

4

3

5
A 4 2

A

2
3 4 5

x

1

. . .

!

3

5

This method is meant as a joke. DonŠt use it in practice. Complexity: t ∼ n!; Image: https://idea-instructions.com/

https://idea-instructions.com/


Quick sort

KVICK SÖRT idea-instructions.com/quick-sort/

v1.2, CC by-nc-sa 4.0

1xnx

1

2

4

3

KVICK SÖRT KVICK SÖRT6

1x
5

1x

Average complexity: t ∼ n log n. Can be somewhat memory intensive; Image: https://idea-instructions.com/; Watch: Quick-sort with Hungarian folk dance (Youtube video).

https://idea-instructions.com/
https://www.youtube.com/watch?v=ywWBy6J5gz8


Merge sort

x

MERGE SÖRT

MERGE SÖRT idea-instructions.com/merge-sort/

v1.2, CC by-nc-sa 4.0

1xnx

1

2

3

4

MERGE SÖRT

Complexity: t ∼ n log n. Can be very memory intensive; Image: https://idea-instructions.com/

https://idea-instructions.com/


Next time linear algebra!
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Quick reminder problem



Supply cost problem

ŞMatlaBestŤ owns three factories and two shops. The three factories are able to produce 10, 5 and

6 units of goods per day. The two shops are able to sell 14 and 7 units per day. Transportation costs

between the factories and shops are encoded as a matrix:

T =

[

3 5 6

5 4 7

]

.

Two alternatives supply plans are suggested by the management:

S1 =

[

10 4 0

0 1 6

]

, S2 =

[

8 0 6

2 5 0

]

.

>> T = [3 5 6; 5 4 7];

>> S_1 = [10 4 0; 0 1 6];

>> S_2 = [8 0 6; 2 5 0];



Checking for constraints and costs:

Do supply plans, S1 and S2 satisfy the constraints?

>> sum(S_1)

ans =

10 5 6

>> sum(S_1')

ans =

14 7

>> sum(S_2)

ans =

10 5 6

>> sum(S_2')

ans =

14 7

What are the costs of S1 and S2 plans?

>> sum(T .* S_1, 'all')

ans =

96

>> sum(T .* S_2, 'all')

ans =

90

Some functions and operators act on matrices. Some operators act on individuals elements in the matrices.



Giving out delivery info to drivers and shop managers:

Where the driver from Factory 1 should drive?

>> S_2(:, 1)

ans =

8

2

Which deliveries should manager of Shop 2 accept?

>> S_2(2, :)

ans =

2 5 0

We can easily index whole rows and whole columns. We can also index values and submatrices too.



ProĄt by different shops

Suppose that for some reason proĄt is a function of the units of goods delivered from the same

factory:

Pj (Xi) ∼
√

Xi.

>> shop_factory_profit = sqrt(S_2)

shop_factory_profit =

2.8284 0 2.4495

1.4142 2.2361 0

Some functions act on elements of a matrix.



Adding new shop and factory

Let us add a new shop, which is able to sell 6 units:

>> T = [T; 10 6 2]

T =

3 5 6

5 4 7

10 6 2

>> S_2 = [S_2; 0 0 0]

S_2 =

8 0 6

2 5 0

0 0 0

Let us add a new factory, which will produce 6 units:

>> T = [T [4; 8; 3]]

T =

3 5 6 4

5 4 7 8

10 6 2 3

>> S_2 = [S_2 [0; 0; 6]]

S_2 =

8 0 6 0

2 5 0 0

0 0 0 6

We can easily add rows and columns to the matrix.



What we already know

• How to manually create matrices.

• How to index matrices.

• That some functions work elementŰwise, while others work on the matrices as single objects.

• That operators may work elementŰwise, or treat the matrices as single objects.

• How to add rows and columns to the matrices.

• That zeros creates a matrix, which is full of 0.

>> zeros(3)

ans =

0 0 0

0 0 0

0 0 0

>> zeros([3, 5])

ans =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



Making matrices



Square matrix

• Square matrix is an N × N matrix.

• Diagonal of a square matrix is a vector of ai,i elements.

• Trace is a sum of all elements in the diagonal, Tr(A) =
∑N

i=1 ai,i.

>> mat = reshape(1:16,4,4)'

mat =

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

>> diag(mat)'

ans =

1 6 11 16

>> trace(mat)

ans =

34

Use reshape to change the shape of matrix or vector.



Symmetric and diagonal matrices

Symmetric, every si,j is equal to sj,i (i ̸= j):

S =





1 4 9

4 2 8

9 8 3



 .

>> r = randi(5, 3);

>> s = r + r';

s =

8 15 3

15 2 4

3 4 18

Diagonal, every di,j , with i ̸= j, is zero:

D =





1 0 0

0 2 0

0 0 3



 , I =





1 0 0

0 1 0

0 0 1



 .

>> diag(1:3)

ans =

1 0 0

0 2 0

0 0 3

>> eye(3)

ans =

1 0 0

0 1 0

0 0 1

diag is an example of poor design.



Other common square matrices

Banded:

B =









1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1









.

Lower triangular:

L =









1 0 0 0

2 1 0 0

3 2 1 0

4 3 2 1









.

Upper triangular:

U =









1 2 3 4

0 1 2 3

0 0 1 2

0 0 0 1









.

>> full(spdiags( ...

ones(4,3), -1:1, 4, 4))

ans =

1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1

>> tril(s)

ans =

8 0 0

15 2 0

3 4 18

>> triu(s)

ans =

8 15 3

0 2 4

0 0 18

Note: spdiags creates sparse representation of a matrix. full converts it in to a proper matrix.

Use istril and istriu to check if matrices are lower/upper triangular.



Operations with matrices



Matrix addition (subtraction)

• Matrices are always added and subtracted elementŰwise.

• Matrices must have the same size.

>> A = [1 2; 1 2]; B = [10 10; 20 20];

>> A + B

ans =

11 12

21 22

>> B - A

ans =

9 8

19 18

>> C = [100 200 300; 100 200 300];

>> A + C

Matrix dimensions must agree.



Multiplication (division) by a scalar

If matrix is multiplied (divided) by scalar, then the operation is applied elementŰwise:

>> 3 * A

ans =

3 6

3 6

If you want to multiply two matrices elementŰwise:

>> A .* B

ans =

10 20

20 40



Multiplication by a matrix

• If the left matrix is M × N matrix, then

the right matrix must be N × K matrix

(Şinner dimensionsŤ must agree):

A4,2 × B2,3 = C4,3.

• The result will be M × K matrix (based

on the Şouter dimesnionsŤ).

• Each element is calculated as:

ci,j =

n
∑

k=1

ai,kbk,j.

Image (modiĄed): Konradek@Wiki

https://en.wikipedia.org/wiki/File:Matrix_multiplication_diagram_2.svg


Matrix multiplication using Matlab

Ann, Bob and Carol owns stocks of Companies X and Y:

S =





100 0

0 50

25 25



 .

Currently stocks are valued at 0.25 and 0.45 monies/stock. How much value does the stock

portfolios held by Ann, Bob and Carol have?

>> S = [ 100 0; 0 50; 25 25 ];

>> P = [ 0.25 0.45 ];

>> S * P

Error using *
Incorrect dimensions 〈. . .〉

>> P * S

Error using *
Incorrect dimensions 〈. . .〉

>> S * P'

ans =

25.0

22.5

17.5

>> P * S'

ans =

25.0 22.5 17.5



What is division?

With scalars we take an inverse of a right scalar:

a ÷ b = a ·
1

b
= a · b−1.

Same logic applies to matrix division.

What does it mean to be an inverse of something?

a · a−1 = 1.

For a square matrix A:

A × A−1 = I.

Note that non-square matrices do not have proper inverses, though they have pseudoinverses.

One of the more common ones is MooreŰPenrose pseudoinverse (see the documentation of pinv).



Testing matrix inverses in Matlab

For scalars the result is trivial:

>> inv(3)

ans =

0.3333

For matrices the result is not trivial:

>> A = [1 2; 3 4];

>> B = inv(A)

B =

-2.0 1.0

1.5 -0.5

But can be easily veriĄed:

>> A * B

ans =

1 0

0 1

Lets try a trick:

>> A / B

ans =

7.0 10.0

15.0 22.0

>> A * A

ans =

7 10

15 22



Vector multiplication: dot product

Dot product of two vectors a⃗ and b⃗ is deĄned as:

a⃗ · b⃗ = a1b1 + a2b2 + . . .+ anbn =

n
∑

i=1

aibi = a⃗ × b⃗T .

>> a = 1:4; b = 2:5;

>> size(a)

ans =

1 4

>> size(b')

ans =

4 1

>> a * b' % [1x4] * [4x1] = [1x1]

ans =

40

>> dot(a,b)

ans =

40

In Physics we use dot product to calculate amount of useful work done by moving objects.

Read: ŞUnderstanding the dot productŤ by BetterExplained

https://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/


Vector multiplication: cross product

Cross product can be deĄned as:

a⃗ ⊗ b⃗ = |⃗a||⃗b| sin(θ)⃗n.

or

a⃗ ⊗ b⃗ =





0 −a3 a2

a3 0 −a1

−a2 a1 0









b1

b2

b3



 =





a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1





T

>> cross([1 0 0],[0 1 0])

ans =

0 0 1

>> cross([0 1 0],[1 0 0])

ans =

0 0 -1

In Physics we use cross product to calculate angular momentum, torque and Lorentz force.

Read: ŞUnderstand the cross productŤ by BetterExplained; Image: Konradek@Wiki

https://betterexplained.com/articles/cross-product/
https://en.wikipedia.org/wiki/File:Matrix_multiplication_diagram_2.svg


Matrix exponentiation

ElementŰwise exponentiation is not the same as matrix exponentiation:

A(2) ̸= A2 = A × A.

Although they are related:

An = [VDλV−1]n = VD
(n)
λ V−1,

here V is a matrix composed of eigenvectors and Dλ is a diagonal matrix containing eigenvalues.

>> A = [1 1; 0 2];

>> A.^2

ans =

1 1

0 4

>> A^2

ans =

1 3

0 4

Eigen. . .what? Later.



Exponentiation: Markovian weather model

Transition matrix:

T =

[

0.6 0.2
0.4 0.8

]

.

State updating:

s⃗t+1 = T⃗st.

What is our weekly forecast? Given that today is sunny, s⃗1 =

[

1

0

]

:

s⃗i = T⃗si−1 = T2s⃗i−2 = . . . = Ti−1s⃗1.

Images (modiĄed): @Flaticon, Yug@Wikimedia

https://image.flaticon.com/icons/svg/218/218775.svg
https://commons.wikimedia.org/wiki/File:Clouds_Cute_for_CSS_sprites.svg


Transpose

Transpose interchanges rows and columns:

A =

[

1 2 3

4 5 6

]

, AT =





1 4

2 5

3 6



 .

>> A = [1:3; 4:6];

>> A'

ans =

1 4

2 5

3 6

>> A.'

ans =

1 4

2 5

3 6

>> A = A * i;

>> A'

ans =

-1i -4i

-2i -5i

-3i -6i

>> A.'

ans =

1i 4i

2i 5i

3i 6i



Augmentation

Sometimes we need to augment the original matrix:

A =





1 2 3 1 0 0

4 5 6 0 1 0

7 8 9 0 0 1





>> A = reshape(1:9,3,3)';

>> [A eye(size(A))]

ans =

1 2 3 1 0 0

4 5 6 0 1 0

7 8 9 0 0 1

>> [A; eye(size(A))]

ans =

1 2 3

4 5 6

7 8 9

1 0 0

0 1 0

0 0 1



2-by-2 systems



Solving graphically

Problem:

{

x + y = 8

x − 2y = −1

Transform into y(x) form:

{

y = 8 − x

y = 1+x
2

Plot ⇒



Solving algebraically

{

x + y = 8

x − 2y = −1
⇒

{

2x + 2y = 16

x − 2y = −1
⇒

{

3x = 15

x − 2y = −1
⇒

{

x = 5

5 − 2y = −1
⇒

{

x = 5

2y = 6
⇒

{

x = 5

y = 3

Notice that we have:

• multiplied equations by a nonŰzero scalar,

• added a multiple of one equation to another equation,

• rearranged terms in the equations.



Solving with linear algebra

For our particular case:
[

1 1

1 −2

]

×

[

x

y

]

=

[

8

−1

]

In general:

Ax⃗ = b⃗.

Lets multiply both sides by an inverse of A:

A−1Ax⃗ = A−1b⃗,

I⃗x = A−1b⃗,

x⃗ = A−1b⃗.



Solving with linear algebra in Matlab

>> A = [1 1; 1 -2]; % coefficients

>> b = [8; -1]; % right hand side

>> x = inv(A)*b % solution

x =

5.0

3.0

>> A*x - b % verification

ans =

1.0e-15 *
0

0.8882

In theory this method could be used to solve any n × n system.



ŞHiddenŤ meaning

• Matrices are transformations from one

space to another.

• Solving systems of linear equations

using linear algebra,

Ax⃗ = b⃗,

is equivalent to looking for x⃗ which

after the transformation becomes b⃗.
Original vectors (black) and new vectors (red).

Watch: ŞEssence of Linear AlgebraŤ by 3Blue1Brown

https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab


Uniqueness of the transformation

System of linear equations can be solved only if the transformation is unique.

Parallelogram of two vectors (gray) and transformed parallelogram (red).



Another way: Linear independence

Let m⃗j be a vector, which belongs to some collection of vectors (m⃗1, m⃗2, . . . , m⃗n). If any non-trivial

linear combination of these vectors is zero,

k
∑

j=1

m⃗jcj = 0, with cj ̸= 0.

then these vectors are said to be linearly dependent. Rank is a number of linearly independent rows

in a matrix.

>> M = [1 0 0 1; ...

0 1 1 0; ...

1 0 0 0; ...

1 0 0 -1];

>> rank(M)

3

>> v = [1 0 -2 1];

>> v * M

ans =

0 0 0 0



So, when does a system have a solution?

• If rank(A) ̸= rank([A|⃗b]), then system has no solution.

• Otherwise, if rank(A) is equal to the number of variables, then the solution is unique.

• Otherwise, if rank(A) is less than the number of variables, then there are inĄnitely many

solutions.

>> rank(A)

ans =

2

>> rank([A b])

ans =

2

>> rank(M)

ans =

3

>> rank([M (1:4)'])

ans =

4



Solving systems of linear equations using linear algebra



Elementary row operations

When solving algebraically we have:

• rearranged terms in the equations,

• added multiple of one equation to the

other,

• multiplied equations by a nonŰzero

scalar.

Using GaussŰJordan elimination we can:

• add multiple of one row to the other

row,

• swap rows,

• multiply row by a nonŰzero scalar.

>> A = [1 1; 1 -2]; b = [8; -1]; ...

A_aug = [A b]

A_aug =

1 1 8

1 -2 -1

>> A_aug(1, :) = A_aug(1, :) - A_aug(2, :)

A_aug =

0 3 9

1 -2 -1

>> A_aug = A_aug([2 1], :)

A_aug =

1 -2 -1

0 3 9

>> A_aug(2, :) = A_aug(2, :) / 3

A_aug =

1 -2 -1

0 1 3



Solving 2-by-2 system

We can solve
{

x − y = 2

2x + 3y = 0

using elementary row operations. Gauss elimination:

[

1 −1 2

2 3 0

]

⇒

[

1 −1 2

0 5 −4

]

⇒

[

1 −1 2

0 1 −0.8

]

Jordan backŰsubstitution:
[

1 −1 2

0 1 −0.8

]

⇒

[

1 0 1.2
0 1 −0.8

]



In Matlab

>> A = [1 -1; 2 3];

>> b = [2; 0];

>> rref([A b])

ans =

1 0 1.2

0 1 -0.8

Given a matrix rref returns reduced row echelon form (after GaussŰJordan elimination).

rref behind the scenes uses Şpartial pivotingŤ technique to reduce numerical errors. Though they

are not completely eliminated.



Solving with left division

We know that solutions of system of linear equations are given by:

x⃗ = A−1b⃗.

>> 4 \ 3

ans =

0.75

>> 3 / 4

ans =

0.75

>> A = magic(3); b=ones(3,1);

>> A \ b

ans =

〈some vector x〉

>> inv(A) * b

ans =

〈the same vector x〉

Matlab suggests using left division instead of inv.



LU decomposition: What? Why?

• Both GaussŰJordan elimination and LU decomposition have time complexity of O(N3).

• LU decomposition is a way to solve system of linear equations without the prior knowledge

of b⃗. It is a way to encode what happens during GaussŰJordan elimination using upper

triangular matrix U and lower triangular matrix L.

• To obtain inverse:

PA = LU,

(PA)−1 = (LU)−1 ,

A−1P−1 = U−1L−1,

A−1 = U−1L−1P.



LU decomposition by hand

Let us decompose:

A =





1 −1 0

2 3 1

1 0 1



 .

O1 =





1 0 0

−2 1 0

−1 0 1



 ⇒ O1 × A =





1 −1 0

0 5 1

0 1 1



 ,

O2 =





1 0 0

0 1 0

0 −0.2 1



 ⇒ (O2 × O1)× A =





1 −1 0

0 5 1

0 0 0.8



 .

Watch: ŞThe LU DecompositionŤ by MathTheBeautiful

https://www.youtube.com/watch?v=HS7RadfcoFk


Direct lu in Matlab

>> A = [1 0 2; 1 -1 1; 0 2 1];

>> [L, U, P] = lu(A);

>> L_inv = inv(L); U_inv = inv(U);

>> solver = @(b) U_inv * L_inv * P * b;

>> solver([1; 0; 0]).'

ans=

-3 -1 2

>> solver([0; 1; 0]).'

ans=

4 1 -2

>> solver([0; 0; 1]).'

ans=

2 1 -1

>> (A \ [1; 0; 0]).'

ans=

-3 -1 2

>> (A \ [0; 1; 0]).'

ans=

4 1 -2

>> (A \ [0; 0; 1]).'

ans=

2 1 -1



Eigenvalues and Eigenvectors



Matrices are transformations

Suppose we currently have vector r⃗ = (x, y)
and we act on it with matrix

A =

[

1 0

0 −2

]

,

we get a new vector r⃗′ = (x,−2y).



We care about things that persist

• Vectors, v⃗, which do not change their

orientation are called eigenvectors.

• Their magnitude is instead scaled by λ,

which is called eigenvalue.

• These v⃗ and λ are obtained by solving

ŞeigenproblemŤ:

Av⃗ = λ⃗v.

For our earlier transformation matrix we have,

λ1 = 1, λ2 = −2, and v⃗1 = (1, 0), v⃗2 = (0, 1).



NonŰtrivial problem with nonŰdiagonal transformation matrix

Let out transformation matrix to have the

following shape:

A =

[

2 1

2 −3/2

]

.

For this transformation matrix we have:

λ1 = 2.5, λ2 = −2,

v⃗1 ≈ (0.894, 0.447),

v⃗2 ≈ (−0.24, 0.97).



Solving by hand

We have:

Av⃗ = λ⃗v.

This can be rearranged:

(A − λI)⃗v = 0.

For non-zero v⃗ this is possible only if

det(A − λI) = 0.

In our case:

∣

∣

∣

∣

2 − λ 1

2 −3/2 − λ

∣

∣

∣

∣

= (2 − λ)(−3/2 − λ)− 2 = λ2 −
1

2
λ− 5 = 0.

Solutions: λ1 = 2.5 and λ2 = −2.



Solving by hand for λ1

[

2 1

2 −3/2

] [

x

y

]

= 2.5

[

x

y

]

⇒

[

−1/2 1

2 −4

]

=

[

0

0

]

.

1 Lets multiply Ąrst row by −2.

2 Lets add Ąrst row multiplied by −2 to second row.
(

1 −2 0

0 0 0

)

There are multiple eigenvectors: x = 2y. It is customary to choose such eigenvector that |⃗v|2 = 1:

|⃗v|2 = x2 + y2 = 5y2 = 1 ⇒ y =

√

1

5
≈ 0.447 ⇒ v⃗ ≈ (0.894, 0.447).



Solving by hand for λ2

[

2 1

2 −3/2

] [

x

y

]

= −2

[

x

y

]

⇒

[

4 1

2 1/2

]

=

[

0

0

]

.

Lets add Ąrst row multiplied by −1/2 to second row.

(

4 1 0

0 0 0

)

There are multiple eigenvectors: y = −4x. It is customary to choose such eigenvector that |⃗v|2 = 1:

|⃗v|2 = x2 + y2 = 17x2 = 1 ⇒ x =

√

1

17
≈ 0.2425 ⇒ v⃗ ≈ (−0.2425, 0.9701).



Reconstructing the matrix using eigenvectors and eigenvalues

A = V × D × V−1,

here:

• V Ű matrix with columns corresponding to eigenvectors.

• D Ű matrix with corresponding eigenvalues on the diagonal.

• V−1 Ű inverse of V.

We can easily raise matrix to any power, n:

An = V × D(n) × V−1.

We can even Ąnd its inverse with n = −1.



Eigenproblem in Matlab

>> A = [2 1; 2 -3/2];

>> [V, D] = eig(A)

V =

0.8944 -0.2425

0.4472 0.9701

D =

2.5000 0

0 -2.0000

>> A * V(:, 1) / D(1,1)

ans =

0.8944

0.4472

>> A * V(:, 2) / D(2,2)

ans =

-0.2425

0.9701

>> V * D * inv(V)

ans =

2.0 1.0

2.0 1.5

>> V * (D.^3) * inv(V)

ans =

13.0 5.25

10.5 -5.375

>> A^3

ans =

13.0 5.25

10.5 -5.375



Next time interpolation and extrapolation!
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What is what?

• Interpolation – inferring values

between the observed points.

• Extrapolation – inferring values

outside the observed points.

• Data fitting – inferring model

parameter values, which would

match the data the best.



Weierstrass Approximation Theorem

If function f (x) is continuous for x ∈ [a, b], then we can find such polynomial P(x), so that

|f (x)− P(x)| < ε.

Here P(x) is an interpolating function and ε is some small number.

Due to this theorem we can assume that:

f (x) ≈ P(x) =

k
∑

i=1

aix
k−i = ~a ·~f ,

where~f is the basis function vector and ~a is the coefficients vector. In this lecture our~f will

contain powers of x.



Direct approach to interpolation



Direct approach

Suppose we have n data points: (x1, y1), (x2, y2), ... and (xn, yn).

Using direct approach:

• our interpolating function will be a polynomial of the order n − 1,

• we will have to estimate n coefficients.

To do that we have to solve n equations, which we obtain by requiring that interpolating function

passes all data points:

P (xi) = yi.



Vandermonde matrix

To figure out the coefficients, we need to solve a set of linear equations:

V~a = ~y.

In the above V is known as Vandermonde matrix. Its values are the powers of the x values of the

data we want to interpolate:

V =











xn−1
1 xn−2

1 . . . 1

xn−1
2 xn−2

2 . . . 1
...

...
. . . 1

xn−1
n xn−2

n . . . 1











From linear algebra we know that:

~a = V−1~y.



General case with two data points

Suppose we have two data points, (x1, y1) and (x2, y2), and we want to do linear interpolation

between them. We have to solve:
{

a1x1 + a2 = y1,

a1x2 + a2 = y2,

which we can rewrite as a system of linear equations:

V~a = ~y.

Where:

V =

[

x1 1

x2 1

]

, ~a =

[

a1

a2

]

, ~y =

[

y1

y2

]

.



Example with two data points

Let our data points be: (0, 0.5) and (1, 0).

>> x = [0; 1];

>> y = [0.5; 0];

>> vMat = vander(x)

vMat =

0 1

1 1

>> vMat \ y

ans =

-0.5

0.5

P(x) = −
x

2
+

1

2
.



Why (not to) use direct approach?

Advantages:

• Really easy to implement.

Disadvantages:

• V is often ill–conditioned.

• Poor time complexity.

• Algorithm is unstable.

• Recompute on each new data point.

• Interpolation order fixed.



Lagrange interpolation method



Lagrange polynomials

In this approach we have a different set of basis functions, Lagrange polynomials:

Li(x) =
n
∏

m=1,m 6=i

x − xm

xi − xm

.

Then interpolating function, polynomial of order n − 1, has the following form:

P(x) =
n

∑

i=1

Li(x)yi.



Let us see how this method works

Suppose we have (0, 1), (1, 0) and (2, 4).

The interpolating function is then given by:

P(x) = L1(x) · 1 + L2(x) · 0 + L3(x) · 4.

Where:

L1(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
=

(x − 1)(x − 2)

2
,

L3(x) =
(x − x1)(x − x2)

(x3 − x1)(x3 − x2)
=

x(x − 1)

2
.



The result of Lagrange interpolation

The expansion leads to:

P(x) =
5

2
x2 −

7

2
x + 1.



Why (not to) use Lagrange interpolation?

Advantages:

• Comparatively easy to implement.

• No need to invert a matrix.

• Faster than direct approach.

Disadvantages:

• Algorithm is unstable.

• Recompute on each new data point.

• Interpolation order is fixed.



Newton’s divided differences



Newton’s divided differences

1 Start with a single data point, n = 1.

2 Reuse previous results as you add n + 1-th data point.

3 Increment n. Go back to Step 2.

Mathematically:

a1 = y1, ⇒ P(1)(x) = a1,

a1 + a2(x2 − x1) = y2, ⇒ P(2)(x) = a1 + a2 (x − x1) ,

a1 + a2(x3 − x1) + a3(x3 − x1)(x3 − x2) = y3, ⇒ P(3)(x) = a1 + a2 (x − x1)+

. . . , + a3 (x − x1) (x − x2) ,

P(n−1)(xn) + an

n−1
∏

i=1

(xn − xi) = yn, ⇒ P(n)(x) = . . . .



Solving the equations

We can solve these equations one by one:

a1 = y1,

a2 =
y2 − y1

x2 − x1

,

a3 =

y3−y2

x3−x2
−

y2 − y1

x2 − x1

x3 − x1

,

. . .

an =
δ2,n−1 − δ1,n−1

xn − x1

= δ1,n.

Here δi,j are known as divided differences.



δ – matrix of divided differences

δ =















y1 a2 a3 . . . an

y2 δ2,2 δ2,3 . . . 0

y3 δ3,2 δ3,3 . . . 0
...

...
...

. . . 0

yn 0 0 . . . 0















We will need to fill in the matrix, column by column, to figure out the first row.

δi,j =
δi+1,j−1 − δi,j−1

xi+j−1 − xi

.



Example

• Suppose we have: (0, 0), (1, 1),
(2,−1), (3, 0).

• Lets get third order (cubic)

interpolation.

• Suppose we want to add (4,−1) data

point.

• What if we want just first order (linear)

interpolation?



Why (not to) use Newton’s method?

Advantages:

• Faster than Lagrange method.

• Easy to add new data points.

• Interpolation order need not be fixed.

• Algorithm is stable.

Disadvantages:

• Troublesome expansion.

• Discontinuous derivative of the

interpolating piecewise polynomial.



Runge’s phenomenon



Some functions are well “interpolated”

f (x) = sin(x).



Others, such as Runge’s function, are not

f (x) =
1

1 + 25x2
.



Problems arise with non–smooth data



Hermite and spline interpolation



Cubic Hermite interpolation

Suppose we have (x1, y1, y
′
1) and (x2, y2, y

′
2). We want to use cubic interpolation between these two

points:

P(3)(x) = a1x3 + a2x2 + a3x + a4.

Lets take the direct approach:

P(3)(x1) = a1x3
1 + a2x2

1 + a3x1 + a4 = y1,

P(3)(x2) = a1x3
2 + a2x2

2 + a3x2 + a4 = y2,

d

dx
P(3)(x)

∣

∣

∣

∣

x=x1

= 3a1x2
1 + 2a2x1 + a3 + 0 = y′1,

d

dx
P(3)(x)

∣

∣

∣

∣

x=x2

= 3a1x2
2 + 2a2x2 + a3 + 0 = y′2.



Cubic Hermite interpolation with known derivatives

We can rewrite the system of equations as:

V~a =









x3
1 x2

1 x1 1

x3
2 x2

2 x2 1

3x2
1 2x1 1 0

3x2
2 2x1 1 0

















a1

a2

a3

a4









=









y1

y2

y′1
y′2









Solution:

~a = V−1~y.



pchip does not need derivatives

Matlab infers derivatives based on the slopes between known points:

δi =
yi+1 − yi

hi

, hi = xi+1 − xi.

• If δi−1 · δi ≤ 0, then xi is likely a local extremum point. So:

y′i = 0.

• Otherwise xi is an intermediate point. In this case a weighted harmonic mean is taken:

w1 + w2

y′i
=

w1

δi−1

+
w2

δi

, w1 = 2hi + hi−1, w2 = hi + 2hi−1.



Using pchip with given points

% define data points

data_x = 0:6;

data_y = [1 2 3 2 1 0 0];

% choose x at which to get

% the interpolation

min_x = min(data_x);

max_x = min(data_x);

X = linspace(min_x, max_x);

% get the interpolation

Y = pchip(data_x, data_y, X);



Using pchip to get the interpolating function

% define data points

data_x = 0:6;

data_y = sin(data_x);

% get the interpolation function

% as piecewise polynomial

inter_pp = pchip(data_x, data_y);

interpolate = @(X) ppval(inter_pp, X);

% get the values of interpolating

% function

X = linspace(0, 6, 101);

Y = interpolate(X);



Cubic Spline interpolation

Cubic Hermite interpolation ensures that:

P
(3)
i−1(xi) = P

(3)
i (xi),

d

dx
P
(3)
i−1(x)

∣

∣

∣

∣

x=xi

=
d

dx
P
(3)
i (x)

∣

∣

∣

∣

x=xi

.

Cubic spline interpolation takes into account second derivatives:

d2

dx2
P
(3)
i−1(x)

∣

∣

∣

∣

x=xi

=
d2

dx2
P
(3)
i (x)

∣

∣

∣

∣

x=xi

.



Using spline with given points

% define data points

data_x = 0:6;

data_y = [1 2 3 2 1 0 0];

% choose x at which to get

% the interpolation

min_x = min(data_x);

max_x = min(data_x);

X = linspace(min_x, max_x);

% get the interpolation

Y = spline(data_x, data_y, X);



Using spline to get the interpolating function

% define data points

data_x = 0:6;

data_y = sin(data_x);

% get the interpolation function

% as piecewise polynomial

inter_pp = spline(data_x, data_y);

interpolate = @(X) ppval(inter_pp, X);

% get the values of interpolating

% function

X = linspace(0, 6, 101);

Y = interpolate(X);



Spline can be used for 2D data

% get interpolating curve in

% two dimensions

curve = cscvn([data_x; data_y]);

% plot the curve

fnplt(curve,'r');



Generalized interpolation functions in Matlab



interp1, interp2, interp3 and interpn

% generate data

x = 0:7; y = sin(x);

% interpolate

x_v = linspace(0, 7, 101);

y_v = interp1(x, y, x_v, ...

〈method name (optional)〉);



griddedInterpolant

interpolate = griddedInterpolant(x, y);

x_v = linspace(0, 7, 101);

y_v = interpolate(x_v);



scatteredInterpolant

interpolate = scatteredInterpolant(x', y', z');

int_x = linspace(0, 2*pi, 31); py = linspace(0, 2*pi, 31);

[int_mesh_x, int_mesh_y] = meshgrid(int_x, int_y);

int_mesh_z = interpolate(int_mesh_x, int_mesh_y);



Data fitting



Least squares fitting

• Let x be the independent variable.

• Let y be the dependent variable.

• Let us make the observations: (x1, y1), (x2, y2), . . ., (xn, yn).

• Assume that the observations are imperfect reflection of some model:

yi(xi) ≈
m
∑

j=1

ajfj(xi, ~θj),

or as a system of linear equations:

~y ≈ X~a.

• We already know how to solve for n = m and for exact equality. But what if n > m and there

are errors making the relationship approximate?



Minimizing residuals

Residuals are the differences between the observations and the model:

ri = yi −
m
∑

j=1

ajfj(xi, ~θj).

Our goal is to find model parameters ~θj which minimize ri.

• One-norm (ME): R1 = 1
n

∑n
i=1 |ri|.

• Infinity-norm (Chebyshev fit): R∞ = maxi |ri|.

• Least-squares (MSE): R2 = 1
n

∑n
i=1 |ri|

2
.



Moore–Penrose pseudo–inverse

If X is rectangular with more rows than columns:

X~a ≈ ~y,

XT X~a ≈ XT~y,

~a ≈ P~y.

In the above P is a Moore–Penrose pseudo–inverse of X:

P = (XT X)−1XT .

If X is square and if its inverse exists:

P = X−1.

This property suggests that P might actually do some kind of minimization.



pinv to get a linear fit

X = [data_x' ; ones(numel(data_x),1)];

a = pinv(X) * data_y';



polyfit for polynomial fits

a = polyfit(data_x, data_y, 3);



More general non–linear fitting: lsqcurvefit

pars = lsqcurvefit(fit_func,guess,data_x,data_y);



Fitting using a generalized function fit

fit_func = @(a1,a2,x) a1*x + a2;

fit_obj = fit(data_x', data_y', fit_func, 'StartPoint',[0 0]);

pars = coeffvalues(fit_obj);

cis = confint(fit_obj);



Other functions to consider

• regress – linear regression.

• mvregress – multivariate linear regression.

• fitlm – fitting linear model to data. A lot of helper function to regularize fitting problem.

• fitrlinear – as fitlm but faster for high–dimensional data.

• There is also the Curve Fitting app, which allows you to solve problems by clicking.

https://www.mathworks.com/help/curvefit/curvefitting-app.html


Next time root finding!
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What root is?

x∗ is the root, or a zero, of a function f (x), if

f (x∗) = 0.

In an earlier lecture we have already seen how to find roots of linear functions:

ax∗ + b = 0 ⇒ x∗ = −b

a
.

Sometimes it is as easy for non–linear functions:

sin(x∗) = 0 ⇒ x∗i = πi.

But in general finding root of a non–linear function is not an easy task.



Why do we care about zeros?

• We can obtain approximations of irrational numbers

by finding zeros of the associated functions:

x2 − 2 = 0.

• In statics problems we care about the balance of

forces.

• In dynamical problems we know that bodies tend to

move in a trajectory that requires the least effort.

• When solving social problems social scientists

frequently assume that humans maximize their utility.

Image: webbshow@Pexels

https://www.pexels.com/photo/time-lapse-photography-of-flowing-waterfall-2406395/


We can find roots through logical reasoning

Let us find the roots of:

f (x) = 1 − (x2)cos(x).

x will be a root in two cases:

cos(x) = 0 ⇒ xi =
π

2
+ π · i,

x2 = 1 ⇒ x = ±1.



We can find roots by the eye

Let us find the roots of:

f (x) = 1 − (x2)cos(x),

within some arbitrary interval.

>> explore_visually

〈other output〉

-1.56 -> f(-1.56) = -0.002

-1.0 -> f(-1.0) = 0.001

1.0 -> f(1.0) = 0.003

1.56 -> f(1.56) = -0.002

ginput function is used to get graphical input



Bracketing methods



Wobbly table theorem

Watch: Numberphile: Fix a Wobbly Table (with Math),

Mathologer: The fix-the-wobbly-table theorem.

https://www.youtube.com/watch?v=OuF-WB7mD6k
https://www.youtube.com/watch?v=aCj3qfQ68m0


Intermediate value theorem

If value of a continuous function, f (x), takes values of different signs at points a and b,

f (a)f (b) < 0,

then there is such x∗ (in (a, b)) for which f (x∗) = 0.



Bisection method

1 Split the interval in two.

2 Pick either left or right interval depending on for which:

f (ai)f (bi) < 0.

3 Continue “splitting” and “picking” until bi − ai < ε.



Pseudocode

Input:

fx, % function under consideration

a(1), b(1), % interval bounds

error_tolerance

while interval is wider than error_tolerance

find midpoint, set c(i)

if fx changes sign in interval [a(i), c(i)]

select a new interval [a(i), c(i)]

else if fx changes sign in interval [c(i), b(i)]

select a new interval [c(i), b(i)]

else

return c(i)

end

end

return midpoint of the last interval



Example with multiple roots

Find roots of

f (x) = x3 − x2

2
− 3

2
x.

With ε = 10−3:

• [−2,−0.5]: x1 ≈ −0.99988.

• [−0.5, 1]: x2 ≈ −0.00012.

• [1, 2]: x3 ≈ 1.5.



Multiple roots and function poles

What if we select [−1.5, 0.5]? What if we select [−1, 1]?

Challenge: What is the length of the interval after n steps? How fast we will reach desired error ε?



Why (not to) use Bisection method?

Advantages:

• guaranteed convergence

• predictable convergence rate

• well–defined error

Disadvantages:

• may converge to a pole

• may not find a root of even multiplicity

• needs bracketing interval

• will find just one root in the bracketing

interval

• slow



Estimate
√

2 using Bisection method

Let us find the root of

f (x) = x2 − 2.

Lets approximate it with tolerance of

ε = 10−6. Let the initial bracketing interval

be [1.4, 1.5].



False position method

False position, or regula falsi, method is an advanced bracketing method. It uses linear

interpolation as splitting technique.



Mathematically put

Find interpolating function coefficients K1 and K2. These will have to satisfy:

K1ai + K2 = f (ai) and K1bi + K2 = f (bi).

Find the root of the interpolating function ci:

K1ci + K2 = 0 ⇒ ci = −K2

K1

= fracbif (ai)− aif (bi)f (ai)− f (bi).

• If f (ai)f (ci) < 0, then pick left interval.

• If f (ci)f (bi) < 0, then pick right interval.

• Otherwise the root is ci.



Pseudocode

Input:

fx, % function under consideration

a(1), b(1), % bounds of initial interval

error_tolerance

while interval is wider than error_tolerance

find linear interpolation for a(i) and b(i) gx

find where gx = 0, set c(i)

if fx changes sign in interval [a(i), c(i)]

select a new interval [a(i), c(i)]

else if fx changes sign in interval [c(i), b(i)]

select a new interval [c(i), b(i)]

else

return c(i)

end

end

return c(i)



Why (not to) use False position method?

Advantages:

• guaranteed convergence

• well–defined error

• usually faster than Bisection method

Disadvantages:

• may converge to a pole

• may not find a root of even multiplicity

• needs bracketing interval

• will find just one root in the bracketing

interval

• unpredictable convergence rate

• slower than iterative methods



Estimate
√

2 using False position method

Let us find the root of

f (x) = x2 − 2.

Lets approximate it with tolerance of

ε = 10−6. Let the initial bracketing interval

be [1, 2].

Note: bracketing interval is broader than with Bisection method.



Iteration methods



Fixed point iteration method

Fixed point x∗ of a function g(x) is defined as:

x∗ = g(x∗).

For stable fixed points, if x0 is inside the x∗’s basin of attraction:

xi+1 = g(xi), |x∗ − xi+1| < ε.

Relying on this property we can iterate and expect that at some point xi+1 will be close to x∗:

|xi+1 − xi| < ε.



Pseudocode

Input:

gx, % function under consideration

x(1), % initial guess

error_tolerance,

max_iterarations

while |x(i)-x(i-1)| > error_tolerance and i < max_iterations

x(i+1) = gx(x(i));

i = i+1;

end

if i >= max_iterations

raise error

end

return the last estimate of x(i)



How is this applicable to the root problem?

Assume that we want to find roots of:

f (x) = cos(x)− x.

Let us rewrite this equation as:

x = cos(x) or x = 2πn ± arccos(x).

Both of these options are of form:

x = g(x).



Iteratively solving x = g(x)

cos(xi) arccos(xi)

1 0.75 0.75

2 0.7316 0.7227

3 0.744 0.141

4 0.7357 0.763

5 0.7413 0.7027

6 0.7375 0.7914

7 0.7401 0.6575

8 0.7384 0.8532

9 0.7395 0.5486

10 0.7387 0.99



Why arccos(xi) does not converge?

Lets compare the derivatives near x∗:

d

dx
cos(x)

∣

∣

∣

∣

x=x∗
≈ −0.674,

d

dx
arccos(x)

∣

∣

∣

∣

x=x∗
≈ −1.484.

xi vs xi+1 plots are called iterative maps.



Finding multiple roots

Let us return to

f (x) = 1 − (x2)cos(x).

At first extracting g(x) seems problematic. Lets:

f (x) + x − x = 0 ⇒ g(x)− x = 0 ⇒ g(x) = x.

After 10001 linearly spaced guesses in [−3π, 3π].



Iterative relations can hide complex patterns

Assume that we have:

xi+1 = α1x2
i + α2xiyi + α3xi + α4y2

i + α5yi,

yi+1 = β1y2
i + β2yixi + β3yi + β4x2

i + β5xi,

where αi and βi are parameter vectors.

Screenshots from Randomly generated strange attractors (Physics of Risk)

http://rf.mokslasplius.lt/randomly-generated-strange-attractors/


Why (not to) use Fixed point iteration method?

Advantages:

• needs only an initial guess

• faster than bracketing methods

Disadvantages:

• convergence is not guaranteed

• selecting proper g(x) is not always

trivial

• error is not well–defined



Estimating
√

2 using Fixed point iteration method

Let us find the root of

f (x) = x2 − 2.

Lets approximate it with tolerance of ε = 10−6. Let our initial guess be 1.4.



Newton–Raphson method (geometric perspective)

1 Make a guess xi.

2 Find a tangent line to f (x) at xi.

3 Find where the tangent line intersects

y = 0.

4 That point is a new guess. Repeat from

Step 2.



Newton–Raphson method (Taylor series perspective)

• Assume that f (x) is almost linear around the root.

• Let x be our current best guess of the root.

• Let difference between the guess and the true “root” be h = x∗ − x.

Then the Taylor series expansion of f (x) (in the limit h → 0):

f (x∗) = f (x + h) = f (x) + hf ′(x) +O(h2).

Lets drop the higher order terms and solve:

f (x∗) = 0 ⇒ h = − f (x)

f ′(x)
⇒ xi+1 = xi −

f (xi)

f ′(xi)
.



Pseudocode

Input:

fx, % function under consideration

fpx, % its derivative

x(1), % initial guess

error_tolerance,

max_iterations

while |x(i)-x(i-1)| > error_tolerance and i < max_iterations

h = -fx(x(i))/fpx(x(i));

x(i+1) = x(i) + h;

i = i+1;

end

if i >= max_iterations

raise error

end

return x(i)



Why (not to) use Newton–Raphson method?

Advantages:

• fast

• easily generalized to complex roots and

multidimensional functions

Disadvantages:

• convergence is not guaranteed

• requires knowledge of a derivative

• error is not well–defined

−12x13 +5x8
−6x5 +9x4

−9x2
−4x−10 = 0

Generated by using a Java program from Newton-Raphson method (Physics of Risk).

http://rf.mokslasplius.lt/newton-raphson/


Estimating
√

2 using Newton–Raphson method

Let us find the root of

f (x) = x2 − 2.

Lets approximate it with tolerance of ε = 10−6. Let our initial guess be 2.



Derivative not known?

Rely on the Secant method, which is equivalent to Newton–Raphson method, but the derivative is

approximated by:

f ′(x) = lim
∆x→0

f (x)− f (x −∆x)

∆x
≈ f (xi)− f (xi−1)

xi − xi−1

.

Then:

h = − f (x)

f ′(x)
≈ − f (xi)(xi − xi−1)

f (xi)− f (xi−1)
.



Repeated roots?

Polynomial of order n has n real or complex roots. These roots must not be unique. They can

repeat. For example:

x2 = 0 ⇒ x∗ = 0.

Such roots wouldn’t be found using the original equation of Newton–Raphson method, because the

first m − 1 derivatives of a function would be equal to zero (here m is multiplicity of the root) near

the root:

f (x) = (x − x∗)mg(x) ⇒ di

dxi
f (x)

∣

∣

∣

∣

x=x∗
= 0.



Bypassing the problem with repeated roots

Lets keep the higher order terms in Taylor series expansion and use them to define a different h. If

we keep terms up to the second order:

f (x∗) = f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) +O(h3),

f (x∗) = 0,

h(±)(x) =
−f ′(x)±

√

(f ′(x))2 − 2f (x)f ′′(x)

2f ′′(x)
,

xi+1 = xi +min(h+(xi), h
−(xi)).



Another way to bypass the problem with repeated roots

Consider convergence of the step function instead:

h(x) = − f (x)

f ′(x)
.

Then:

h2(x) = − h(x)

h′(x)
,

xi+1 = xi + h2(xi).

Eventually you’ll arrive at:

h(x∞) ≈ 0, ⇒ f (x∞) ≈ 0.



Root finding in multiple dimensions



Root of a multidimensional (vector) function

Let the problem be:
~f (~x) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) = ~0.

Assume that we have estimate root ~x(i) and ~h is displacement from the true root. Taylor series:

~f (~x(i) +~h) = ~f (~x(i)) +∇ ~f

∣

∣

∣

~x(i)
·~h +O(|~h|2).

Solving for ~h:

~h = −A−1~f (~x(i)), where A =







∂f1
∂x1

. . .
∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . .
∂fn
∂xn






.

So that: ~x(i+1) = ~x(i) −~h.



Two–dimensional example (calculation)

Assume that we want to determine zeros of:

~f (~x) = (x2
1 − x2

2 + 3, (x1 + 2)2 − x2).

Matrix A is given by:

A =

(

2x1 −2x2

2(x1 + 2) −1

)

xg = [1; 1];

for its = 1:10

f = [ xg(1)^2 - xg(2)^2+3; (xg(1)+2)^2 - xg(2) ];

A = [ 2*xg(1) -2*xg(2); 2*(xg(1)+2) -1];

h = - A \ f;

xg = xg + h;

end



Two–dimensional example (visualization)



Root finding in Matlab



roots function

>> roots([3 -4 1]) % roots of 3*x^2-4*x+1

ans =

1.00000

0.33333

>> polyval([3 -4 1],ans') % lets check

ans =

0 0

>> roots([1 0 0 -3 0 0]) % roots of x^5-3*x^2

ans =

-0.72112 + 1.24902i

-0.72112 - 1.24902i

1.44225 + 0.00000i

0.00000 + 0.00000i

0.00000 + 0.00000i

>> polyval([1 0 0 -3 0 0],ans') % check

ans =

〈very small numbers ∼ 10−14.〉



fzero function

>> fzero('sin', sqrt(2))

ans = 0

>> fzero(@sin, 3*sqrt(2))

ans = 6.2832

>> fzero(@(x) sin(x), -1.5*sqrt(2))

ans = -3.1415



fminunc function

>> fminunc(@sin, 0)

ans = -1.5708

>> [xmin, valmin] = fminunc(@sin, 1.5)

xmin = 4.7124

valmin = -1

>> [xmin, valmin] = fminunc(@(x) besselj(1,x),0.1)

xmin = -1.8412

valmin = -0.58187

>> [xmin, valmin] = fminunc(@(x) besselj(1,x),2)

xmin = 5.3315

valmin = -0.34613

>> [xmin, valmin] = fminunc(@(x) besselj(1,x),20)

xmin = 99.736

valmin = -0.079894



fminbnd function

>> fminbnd(@sin, 0, 2*pi)

ans = 4.7124

>> [xmin, valmin] = fminbnd(@cos, 0, 2*pi)

xmin = 3.1416

valmin = -1

>> [xmin, valmin] = fminbnd(@(x) besselj(1,x), 0, pi)

xmin = 4.5994e-05

valmin = 2.2997e-05

>> [xmin, valmin] = fminbnd(@(x) besselj(1,x), pi, 2*pi)

xmin = 5.3315

valmin = -0.3461

>> [xmin, valmin] = fminbnd(@(x) besselj(1,x), 31, 93)

xmin = 62.0323

valmin = -0.1013



“Optimize” Live Editor task

Following Get Started with Optimize Live Editor Task (Matlab tutorial)

https://se.mathworks.com/help/optim/ug/get-started-optimize-live-editor-task.html


Next time numerical calculus!



Numerical Methods I:

Lecture XIV: Numerical Calculus

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy

email: aleksejus.kononovicius@tfai.vu.lt

www: http://kononovicius.lt/

https://www.ff.vu.lt/tfai
mailto:aleksejus.kononovicius@tfai.vu.lt
http://kononovicius.lt/


Numerical differentiation



Derivatives

Derivative is a measure of change, which formally defined as follows:

f ′(x) =
d

dx
f (x) = lim

h→0

f (x + h)− f (x)

h
.

When we work analytically we can have as small h as we want, we also have tables, which tells us

the derivatives of various mathematical functions.

When solving problems numerically we usually know only the function values at certain points:

yi = f (xi).

So we will not be able to take the limit, but we may approximate it using numerical differentiation

methods.



Simple forward difference

Let us use the definition itself as an approximation:

Df (xi) =
yi+1 − yi

xi+1 − xi

=
yi+1 − yi

h
.

Look at the Taylor series expansion of a function:

yi+1 = f (xi + h) = f (xi) + hf ′(xi) +
h2

2
f ′′(xi) + . . . .

We can use this expansion to estimate the error of this method:

yi+1 − yi

h
= f ′(xi) +

h

2
f ′′(xi) + . . . .



How well does it work?

Let us consider:

f (x) = sin(x).

Analytically we know that:

f ′(x) = cos(x).

x = linspace(0, 2*pi, 31);

y = sin(x);

yp = cos(x);

yp_sfd = diff(y) ./ diff(x);



Simple Backward Difference

Df (xi) =
yi − yi−1

xi − xi−1

=
yi − yi−1

h
.



Smaller h doesn’t result in smaller error

Absolute true error for derivative of sine at x = 2.5.



Simple Central Difference

Df (xi) =
yi+1 − yi−1

xi+1 − xi−1

=
yi+1 − yi−1

2h
.

This is slightly better, because:

yi+1 = f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(x) + . . . ,

yi−1 = f (x − h) = f (x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f (3)(x) + . . . .

Therefore:
yi+1 − yi−1

2h
= f ′(x) +

h2

12
f (3)(x) + . . . .

Also known as Symmetric Difference Quotient



Revisiting sine



Comparing errors

Absolute true error for derivative of sine at x = 2.5.



Richardson’s method

Df (xi) =
4D1f (xi)− D2f (xi)

3
.

In the above Dk is the Simple Central Difference using k steps:

Dkf (xi) =
yi+k − yi−k

xi+k − xi−k

=
yi+k − yi−k

2kh
.

Expanding and rearranging the terms:

Df (xi) =
8(yi+1 − yi−1)− (yi+2 − yi−2)

12h
.



Derivation of Richardson’s formula

We know that:

D1f (xi) =
yi+1 − yi−1

2h
= f ′(x) +

h2

12
f (3)(x) +

h4

240
f (5)(x) + . . . ,

D2f (xi) =
yi+2 − yi−2

4h
= f ′(x) +

h2

3
f (3)(x) +

h4

15
f (5)(x) + . . . .

Lets get rid of f (3):

4D1f (xi)− D2f (xi)

3
= f ′(x) +

h4

12
f (5)(x) + . . . .



Revisiting sine



Comparing errors

Absolute true error for derivative of sine at x = 2.5.



Is there an optimal h?

Optimal ho is the one for which round-off error,

εro ≈ εm

ho

,

is equal to approximation error, which can be assumed to be approximately equal to the highest

order remaining term. For Richardson’s method:

εapp ≈ h4
o

12
|f (5)(x)|,

εro = εapp ⇒ εm

ho

=
h4

o

12
|f (5)(x)| ⇒ h5

o =
12εm

|f (5)(x)| .

For [sin(x)]′ at x = 2.5, we obtain: ho ≈ 1.27 · 10−3.



Second and higher order derivatives



Three–point forward difference formula

Second derivative is a derivative of a derivative:

f ′′(xi) ≈
f ′(xi + h)− f ′(xi)

h
≈ yi+2 − 2yi+1 + yi

h2
.

Taylor series expansion at two different (forward) points:

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(x) + . . . ,

f (x + 2h) = f (x) + 2hf ′(x) + 2h2f ′′(x) +
4h3

3
f (3)(x) + . . . .

Subtract them so that the first derivative would disappear:

f (x + 2h)− 2f (x + h) = −f (x) + h2f ′′(x) +
7h3

6
f (3)(x) + . . . .



Centered difference formula

Taylor series expansion at two different (on both sides) points:

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(x) +

h4

24
f (4)(x) + . . . ,

f (x − h) = f (x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f (3)(x) +

h4

24
f (4)(x) + . . . .

Add them so that the first derivative would disappear:

f (x + h) + f (x − h) = 2f (x) + h2f ′′(x) +
h4

12
f (4)(x) + . . . ,

f ′′(x) ≈ f (x + h)− 2f (x) + f (x − h)

h2
=

yi+1 − 2yi + yi−1

h2
.



Comparing errors

Absolute true error for derivative of sine at x = 2.5.



Direct approach to higher order derivatives

• You will need at least N + 1 points for the N-th order derivative.

• Use Taylor series expansion to figure out the formula. Do what you can to make the lower

derivatives cancel out.

• Alternatively recall that higher order derivative is derivative of a lower order derivative.

• Use centered differences if possible.



Polynomial interpolation approach

• Approximate the “true” function by interpolating between the observed values.

• Assume that the derivatives of the interpolating function are an approximation of the

derivatives of the “true” function.



Numerical derivatives in Matlab



diff – function we used to approximate the derivatives

>> x=linspace(0, 2*pi);

>> y=sin(x);

>> yp=diff(y) ./ diff(x);

>> yp=(y(2:end) - y(1:end-1)) ./ ...

(x(2:end) - x(1:end-1));

>> size(x)

ans =

1 100

>> size(yp)

ans =

1 99



gradient – first order derivative

grav_potential = @(x,y) - 1 ./ sqrt(x.^2 + y.^2);

〈... generate 2D data ...〉

[grav_mesh_x, grav_mesh_y] = gradient(potential);

Definition:

∇f =
∂f

∂x
·~i + ∂f

∂y
·~j.



del2 – second order derivative (Laplacian operator)

grav_field = @(x,y) - log(sqrt(x.^2 + y.^2));

〈... generate 2D data ...〉

rho = del2(field_grid);

Definition:

∆f = ∇2f =
1

4

(

∂2f

∂x2
+

∂2f

∂y2

)

.



polyder – analytically deal with polynomials

Lets find derivative of:

f (x) = x3 + 4x2 − x + 2.

Obviously:

f ′(x) = 3x2 + 8x − 1.

>> coeffs = [1 4 -1 2];

>> polyder(coeffs)

ans =

3 8 -1



Numerical integration



Riemann integral

In theory:
∫ b

a

f (x)dx = lim
h→0



h

(b−a)/h
∑

i=0

f (xi)





In numerical applications there will be subtleties.



Riemann sums

Numerically we can approximate an integral by the left sum:

∫ xn

x1

f (x)dx ≈ h

n−1
∑

i=1

f (xi),

by the right sum:
∫ xn

x1

f (x)dx ≈ h

n
∑

i=2

f (xi),

or by the center (middle) sum:

∫ xn

x1

f (x)dx ≈ h

n−1
∑

i=1

f

(

xi+1 + xi

2

)

.



Lets approximate
∫ π

0
sin(x)dx



Comparing errors



Trapezoid method

Lets do linear interpolation between two known points:

P(x) =
x − x2

x1 − x2

y1 +
x − x1

x2 − x1

y2.

Then integrate the interpolating function:

∫ x2

x1

P(x)dx =

∫ x2

x1

[

y1

x1 − x2

(x − x2) +
y2

x2 − x1

(x − x1)

]

dx =

=
y1

2
(x2 − x1) +

y2

2
(x2 − x1) =

y2 + y1

2
h.

The approximation, I , will be given by:

I ≈ h

n−1
∑

i=1

f (xi+1) + f (xi)

2
= h

n−1
∑

i=1

yi+1 + yi

2
.



Lets approximate
∫ 3

0
(1 − x)3dx



2nd degree interpolation: Simpson’s 1/3 rule

Given 2nd degree interpolation between three equidistant points, P(x), we can approximate the

integral between these points as:

∫ x1+2h

x1

P(x)dx = . . . =
h

3
(y1 + 4y2 + y3) .

If number of data points, n, is odd, then the approximation:

I ≈ h

3

n−1
2

∑

i=1

[y2i−1 + 4y2i + y2i+1] .



Lets try
∫ π

0
sin(x)dx again



3rd degree interpolation: Simpson’s 3/8 rule

Given 3rd degree interpolation between four equidistant points, P(x), we can approximate the

integral between these points as:

∫ x1+3h

x1

P(x)dx = . . . =
3h

8
(y1 + 3y2 + 3y3 + y4) .

If n − 1 is divisible by 3, then the approximation is given by:

I ≈ 3h

8

n−1
3

∑

i=1

(y3i−2 + 3y3i−1 + 3y3i + y3i+1) .



Lets try
∫ π

0
sin(x)dx again



Comparing errors



Both Simpson’s rules appear to have the same error?

• Though this looks strange, it is indeed true. In fact,

ε ∼ h4.

• Simpson’s 3/8 rule is still useful as Simpson’s 1/3 rule requires odd number of points.

• Simply make a composite rule with 1/3 rule being used for the most of the points, while 3/8

rule would be used only near one of the edges.



Problematic integrals



Improper integrals

Lets integrate:
∫

∞

−∞

exp(−x2)dx.

As (1) the integrand is symmetric and (2)

decays monotonically, we can approximate

the integral by:

I(u) = 2

∫ u

0

exp(−x2)dx.

Numerically, we will increase u until:

|I(u)− I(u + h)| < ε.



Integrands with singularities

Lets integrate:
∫ 1

0

exp(−x)√
x

dx.

To do that split the integral:

∫ 0+α

0

exp(−x)√
x

dx +

∫ 1

0+α

exp(−x)√
x

dx ≈

≈
∫ 0+α

0

1 − x + x2

2√
x

dx + I(0 + α, 1) ≈

≈
(

2α1/2 − 2

3
α3/2 − 1

5
α5/2

)

+ I(α, 1).

In the above α is some small number.

Not all singularities are removable. For example 1/x.



Indefinite integrals

Lets integrate:

I1(x) =

∫

exp(−x2)dx.

We have to rewrite it as a definite integral:

I2(x) =

∫ x

a

exp(−x2)dx,

here a is some point. Depending on the problem we may want anti–derivative to be zero at a. In

this case anti–derivative is zero at a = 0, so lets:

Î1(x) ≈ Î2(0, x).



Numerical integration in Matlab



trapz – trapezoid method for data

>> x = linspace(0, pi, 11);

>> y = sin(x);

>> trapz(x, y)

ans =

1.9835

>> cumtrapz(x, y)

ans =

0 0.0485 0.1894 0.4088 0.6853 0.9918 1.2982 1.5747

1.7941 1.9350 1.9835



integral – general method for functions

>> % improper integral

>> integral(@(x) exp(-x.^2), -Inf, Inf)

ans =

1.7725

>> % integral with removable singularity

>> fun = @(x) exp(-x.^2) ./ sqrt(x);

>> integral(fun,0,1)

ans =

1.6897

>> % non-removable singularity

>> integral(@(x) 1./x,0,1)

Warning: Infinite or Not-a-Number value encountered.

ans =

Inf

>> % indefinite integral (not vectorized!)

>> indef = @(x) integral(@(u) exp(-u.^2), -Inf, x);

Lookup quadgk, which also return error estimate.



polyint – analytical method for polynomials

Lets find an integral of:

f (x) = x3 + 4x2 − x + 2.

Obviously:
∫

f (x)dx =
1

4
x4 +

4

3
x3 − 1

2
x2 + 2x.

>> coeffs = [1 4 -1 2];

>> polyint(coeffs)

ans =

0.25 1.3333 -0.5 2 0



The end of the theoretical part of the course!
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