Noisy voter model of the parliamentary attendance data

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy, Vilnius University

email: aleksejus.kononovicius@tfai.vu.lt www: http://kononovicius.lt, https://rf.mokslasplius.lt

The question

What is the nature of the anomalous diffusion,

 $\sigma_t \sim t^{\alpha}$, with $\alpha \approx 0.9$,

in the parliamentary attendance data?

Talk based on: Kononovicius, J Stat Mech 2020: 063045 (2020)

Obtaining registration to vote data

🕹 Atviri duomenys 🛛 🗙 +					
$\leftarrow \rightarrow \mathbb{C} \bigcirc \triangle$ https://www.lrs.lt/sip/portal.show?p_r=35391&p_k=1	₽	∎ Ω	佥	»	≡
Seimo posédžio klausimo svarstymo eiga: * nurodytas posédžio darbotvarkės klausimas (pvz60462) http://apps.lrs.lt /sip/p2b.ad_sp_klausimo_svarstymo_eiga?darbotvarkes_klausimo_id=-60462 * nurodytas posédžio eigos klausimas (pvz26811) http://psp.lrs.lt /sip/p2b.ad_sp_klausimo_svarstymo_eiga?svarstomo_klausimo_id=-26811					
Seimo narių registracijos rezultatai: * nurodyta registracija (pvz26114) http://apps.lrs.lt /sip/p2b.ad_sp_registracijos_rezultatai?registracijos_ld=-26114					
Seimo narių balsavimo dėl klausimo rezultatai: * nurodytas balsavimas (pvz27089) http://apps.lrs.lt /sip/p2b.ad_sp_balsavimo_rezultatai?balsavimo_id=-27089					
Kiti duomenų rinkiniai					
Seimo posėdžių, spaudos konferencijų, kitų renginių transliacijos: * http://apps.lrs.lt/sip/p2b.seimas_tiesiogiai					U
Naujausi teisės aktų projektai: * http://apps.lrs.lt/sip/p2b.tais_docs					

Cumulative attendance series

- Assume presence if 1+ registrations in said a day.
- Representative attendance series: $\eta_t^{(i)} = 1$ if present, otherwise $\eta_t^{(i)} = 0$.
- Join attendance series of the "swapped" representatives.
- Cumulative attendance series:

$$x_t^{(i)} = \sum_{k=1}^t \eta_k^{(i)}.$$

Additional processing

- Detect replacements and join the records.
- Replace troublesome records ($\sim 10\%$) with a random sample of valid records.
- Consider all cumulative attendance series during a single legislature (141 records) as a single statistical ensemble.

Processed data: https://github.com/akononovicius/lithuanian-parliamentary-presence-data

Statistical moments of the ensembles

Mean, μ_t , shows a boring linear dependence.

While σ_t exhibits sublinear ($\alpha \approx 0.9$) growth.

Phenomenological model

[VRJM2019] have observed that $P_t(x_t^{(i)} = X)$ is well approximated by a scaled Beta distribution.

It was shown that the following diffusion equation could be an appropriate model:

$$\frac{\partial P_t}{\partial t} = Dt^{\beta} \frac{\partial}{\partial X} \left[X^{-\theta} \frac{\partial}{\partial X} \left(X^{\gamma} P_t^{\nu} \right) \right]$$

[VRJM2019]: Vieira et al., PRE 99: 042141 (2019).

Noisy voter model

Let the agents switch between the attending (I = 1) and the absent (I = 0) states with probabilities:

$$p_{1\to 0}^{(i)} = h\left[\varepsilon_0 + \frac{X_0}{N}\right], \qquad p_{0\to 1}^{(i)} = h\left[\varepsilon_1 + \frac{X_1}{N}\right] = h\left[\varepsilon_1 + \left(1 - \frac{X_0}{N}\right)\right].$$

Unlike in the original NVM many agents may switch at the same time.

Anomalous diffusion modeled by NVM

Numerical exploration of the model reveals that:

$$\sigma_t \approx \frac{\theta_0 t}{\sqrt{\theta_1 + St}}.$$

Here:

- θ_0 depends on asymmetry.
- $\theta_1 \approx 1.4$.
- $S = h (1 + \varepsilon_0 + \varepsilon_1).$

Parameters: $\varepsilon_0 = 0.1$, $\varepsilon_1 = 10$ and N = 141 (all cases), $h = 10^{-4}$ (red dots), 10^{-3} (green dots), $3 \cdot 10^{-2}$ (blue dots).

Imperfect behavior: Intents and actions

- Let NVM describe how agents' intent, *I*, evolves.
- Let the agents behave imperfectly: randomness in actions.
- Let q_I be the probability that agent with intent I attends the session (takes action A = 1).

Anomalous diffusion modeled by the imperfect NVM

Parameters: $\varepsilon_0 = \varepsilon_1 = 0.06$, $h = 1.5 \cdot 10^{-2}$, N = 141 (all cases), $q_0 = q_1 = 0.5$ (red dots), $q_0 = 0.43$ and $q_1 = 0.57$ (green dots), $q_0 = 0.32$ and $q_1 = 0.68$ (blue dots). Fits: $\alpha = 0.5$ (red line), 0.6 (green line) and 0.75 (blue line).

Reproducing empirical anomalous diffusion

Averaged empirical σ_t (red dots) vs model σ_t (black line). Parameters: $\varepsilon_0 = 0.21$, $\varepsilon_1 = 0.43$, $h = 7.1 \cdot 10^{-4}$, N = 141, $q_0 = 0.8$ and $q_1 = 0.98$.

Reproducing empirical distribution

95% of $x_t^{(i)}$ are within the dashed lines (empirical data – red, model – black). Median $x_t^{(i)}$ is represented by a dot. Parameters same as before.

Reproducing attendance streaks

Probability density function of the attendance streak length (empirical data - red, model - black). Parameters same as before.

- Here the ensemble is multiple agents within the same NVM.
- Perfect NVM has two regimes: balistic and normal diffusion.
- Imperfect NVM enables reproduction of superdiffusion.
- Superdiffusion may emerge due to coordination between the individuals.
- Superdiffusion may emerge due to relatively slow dynamics.
- Taking ensemble of NVMs leads to balistic regime [KK2021].
- Transformation of observable and time may lead to other regimes [KK2021].

Thank you for your attention!

email: aleksejus.kononovicius@tfai.vu.lt www: http://kononovicius.lt, https://rf.mokslasplius.lt

