Voter model for electoral and census data

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy, Vilnius University

aleksejus.kononovicius@tfai.vu.lt http://kononovicius.lt/, http://rf.mokslasplius.lt/

Contents

Theoretical premise

- 2 Empirical context
- Compartmental voter model
- Infinite capacity (C = N)
- 5 Finite capacity (C < N)
- 6 Empirical examples

7 To conclude...

Theoretical premise

1014-2020 Operational Programme for the European Union Funds Investments in Lithuania Originally voter model was defined similarly to a cellular automaton:

- Agents are the cells of a two dimensional grid.
- Each agent is in one of the two states: +1 or −1.
- During each time step:
 - agent (A) is selected,
 - its neighbor (B) is selected,
 - A copies the state of B.

Temporal evolution of the classic voter model.

Original paper: Clifford & Sudbury, Biometrika 60: 581-588 (1973).

Picture collage from: http://rf.mokslasplius.lt/voter-model/

Therefore modifications to promote "instability":

- Changing topology it is possible to delay convergence.
- Non-binary states it is possible to delay convergence.
- Panel discussions (q-Voter model) should work in some cases.
- Independent transitions works, but is N dependent.
- Agents with fixed state (zealots) works, but is *N* dependent.
- Non-extensive interactions (Kirman model) works.

In the last three cases model converges to a stationary Beta or Beta–binomial distribution.

q-Voter model: Castellano et al., PRE 80: 041129 (2009)

Kirman model: Kirman, QJE 108: 137-156 (1993), Kononovicius & Ruseckas, EPJ B 87: 169 (2014).

Total energy of a magnetic system:

$$\mathcal{H} = -\frac{1}{2} \sum_{j \neq i} J_{i,j} \vec{\sigma}_i \vec{\sigma}_j - \vec{H} \sum_i \vec{\sigma}_i,$$

here $J_{i,j}$ is interaction constant, $\vec{\sigma}_i$ is spin of *i*-th particle, \vec{H} is an external magnetic field.

- If *J_{i,j}* ≥ 0, then the state with all parallel spins is the most probable.
- If T = 0, then the said state is a stable fixed point.

Glauber dynamics of the Ising model

- Particles are placed on a grid.
- Each particle has a magnetic spin of +1 or -1.
- During each time step:
 - a particle is selected,
 - its energy in both possible states (+1 or −1) is evaluated,
 - the final state is selected according to the Boltzmann (exponential) distribution.

Distinct phases of the Ising model with Glauber dynamics.

Image source: http://rf.mokslasplius.lt/ising-model/

Empirical context

014-2020 Operational rogramme for the uropean Union Funds westments in Lithuania

Empirical data

Example ballots. We are interested in political party performance (blue).

- LT parliamentary elections. Held each 4 years. Data is available at polling station level.
- UK census. Taken each decade. Data is available at various spatial levels.

Image source: Central Electoral Commission

Data sources: CEC (full, in Lithuanian), GitHub (partial, in English); NOMIS (UK census data)

Models and Data

Models focus on temporal dynamics (left) while data is observed spatially (right).

Image sources: (left) http://rf.mokslasplius.lt/q-voter-model/, (right) http://rinkimurezultatai.lt

Simplest solution: Independent compartments

in Kirman's model (voter model with non-extensive interactions)

Rank–size distribution of the vote shares for 4 main parties in the Lithuanian Seimas 1992 elections: multi–state Kirman model (red) vs data (black).

Figure: Kononovicius, Complexity 2017: 7354642 (2017)

Similar works: (Sano et al., 2017), (Braha & de Aguiar, 2017), (Fenner et al., 2017)

A. Kononovicius (VU ITPA)

VM for electoral/census data

Complicated solution: Commuting patterns

PHYSICAL REVIEW LETTERS									
Featured	in Physics E	ditors' Suggestion							Go Mobile »
Is the Juan Fen Phys. Rev Physics	Voter Mc nández-Gracia, 7. Lett. 112 , 1587 See Focus story	odel a Mode Krzysztof Suchec 701 – Published 18 : Voter Model Works	el for Voters ki, José J. Ramasco April 2014; Erratum for US Elections	? , Maxi San Miguel Phys. Rev. Lett. 1	l, and Vícto 113 , 08990	or M. Eguil 3 (2014)	uz		
Article	References	Citing Articles	62) Supplemen	tal Material	PDF	HTML	Export	Citation	
>	ABSTRACT Vol. 112, iss. 15 The voter model has been studied extensively as a paradigmatic opinion dynamics model. However, its ability to model real opinion dynamics has not been addressed. We introduce a noisy voter model (accounting for social infrance) with recurrent mobility of agents (has a proxy for social context), where the spatial and population diversity are taken as inputs to the model. We show that the dynamics can be described as a noisy diffusive process that contains the proper anisotropic coupling topology yoten by population and mobility heregonely. The model coupures statistical features of								lssue Vol. 112, iss. 15 — 18 April 2014
									Reuse & Permissions
	U.S. pres range sp behavior the count mobility r observat	idential elections a atial correlations th of these properties ty level through con ange and the rande ions.	PHYSICAL REVIEW RESEARCH A new open access journal						

Fernandez-Garcia et al., PRL 112: 158701 (2014)

Inspiration for a "third way" approach

Kawasaki dynamics of the Ising model

- Particles are placed on a grid.
- Each particle has a magnetic spin of +1 or -1. The spin is conserved.
- During each time step:
 - a particle is selected,
 - its neighbor is selected,
 - energy of the system is evaluated: (1) if particles remain where they are, and (2) if particles swap places.
 - the final state is selected according to the Boltzmann (exponential) distribution.

Temporal evolution of the Ising model with Kawasaki dynamics $(T \ll T_c)$.

Collage from: a future post on Physics of Risk

Compartmental voter model

Based on arXiv: 1906.01842 [physics.soc-ph] (accepted to J. Stat. Mech.)

- Consider N agents of T types.
- Let agent types be fixed.
- Let agents move between M compartments of capacity C.

N=20, T=2, M=5, C=5

Dynamics

Let movement rates, from *i* to *j* for type *k*:

$$\lambda_{(k)}^{i \to j} = \begin{cases} X_i^{(k)} \left(\varepsilon^{(k)} + X_j^{(k)} \right) & \text{if } i \neq j \text{ and } N_j < C, \\ 0 & \text{otherwise,} \end{cases}$$

here $X_i^{(k)}$ is the number of type k agents in i, $\varepsilon^{(k)}$ is independent transition rate, while N_i is the number of all agents in j.

Infinite capacity (C = N)

1014-2020 Operational Programme for the European Union Funds Investments in Lithuania Given C = N one can write closed form expression for the total entry and exit rates:

$$\begin{split} \lambda_{(k)}^{i+} &= \sum_{j=1}^{M} \lambda_{(k)}^{j \to i} = \left[N^{(k)} - X_i^{(k)} \right] \left(\varepsilon^{(k)} + X_i^{(k)} \right), \\ \lambda_{(k)}^{i-} &= \sum_{j=1}^{M} \lambda_{(k)}^{i \to j} = X_i^{(k)} \left(\left[M - 1 \right] \varepsilon^{(k)} + \left[N^{(k)} - X_i^{(k)} \right] \right). \end{split}$$

Which means that $X_i^{(k)}$ is distributed according to Beta-binomial distribution in this particular case.

Numerical verification of stationary distribution

Model (red curves): N = 3000, T = 1, M = 100 and C = N (all cases), $\varepsilon^{(1)} = 2$ (a) and 0.03 (b). Beta-binomial fit (black curves): N = 3000, $\alpha = \varepsilon^{(1)}$ and $\beta = (M - 1)\varepsilon^{(1)}$ (all cases).

Here $X_i^{(1)}$ is observed over time (*i* is fixed).

Numerical inquiry into rank-size distribution

Same simulation as in the previous slide: N = 3000, T = 1, M = 100 and C = N (all cases), $\varepsilon^{(1)} = 2$ (a) and 0.03 (b).

Beta-binomial distribution provides a rather good fit as if compartments would be truly independent.

Here $X_r^{(1)}$ is observed over compartments (*r* is variable).

Finite capacity (C < N)

014-2020 Operational rogramme for the uropean Union Funds westments in Lithuania

- In general we don't know closed forms of the total entry and exit rates.
- Compartmental model is actually a multivariate finite-state Markov chain.
- In theory we can reduce any finite-state Markov chain to one-dimensional Markov chain by relabeling states.
- Alternatively, we can use the detailed balance condition.

T = 1 and M = 2 (temporal)

Model (red): N = 1000 (all), C = 600 ((a) and (b)) and 800 ((c) and (d)), $\varepsilon^{(1)} = 2$ ((a) and (c)) and 0.03 ((b) ir (d)). Truncated Beta–binomial distribution (black): N = 1000, $\alpha = \varepsilon$, $\beta = (M - 1)\varepsilon$ (all).

2014-2020 Operational Programme for the European Union Funds Investments in Lithuania

M = 2 and T = 2, M = 3 and T = 1 (temporal)

Model (red): N = 100, M = 2 and T = 2 ((a) and (b)), N = 90, M = 3 and T = 1 ((c) and (d)), C = 40 (c), 60 ((a) and (d)) and 80 (b), $\varepsilon = 2$ ((a) and (c)) and 0.03 ((b) and (d)). Analytical result obtained via Markov chains (black).

2014-2020 Operational Programme for the European Union Funds Investments in Lithuania

A. Kononovicius (VU ITPA)

Spatio-temporal symmetry in rank-size distributions

Parameters: N = 2600, T = 2, M = 100, C = 30 and $\varepsilon = 2$

Note that here we consider $f_i^{(k)} = X_i^{(k)} / N_i$.

A. Kononovicius (VU ITPA)

Empirical examples

014-2020 Operational rogramme for the uropean Union Funds westments in Lithuania

- T number of types (from data).
- $N^{(k)}$ total number of type k agents in the system (from data).
- M number of compartments (from data).
- *C* capacity of compartments.
- $\varepsilon^{(k)}$ independent transition rate for type k agents.

In total the model has 2T + 3 parameters:

- T + 2 parameters are obtained directly from data,
- T + 1 must be fitted.

Ethnic groups in London (UK census 2011)

Considered groups (black curves): (a) White, (b) Asian, (c) Black, (d) other. Model (red areas): $N^{(w)} = 48515$, $N^{(a)} = 12865$, $N^{(b)} = 11470$ and $N^{(o)} = 4495$ (N = 77345), $\varepsilon^{(w)} = 2.5$, $\varepsilon^{(a)} = 4$, $\varepsilon^{(b)} = 1.5$, $\varepsilon^{(o)} = 15$, M = 155, C = 600.

2014-2020 Operational Programme for the European Union Funds Investments in Lithuania

Red areas show 95% confidence intervals.

A. Kononovicius (VU ITPA)

Religious groups in Leicester (UK census 2011)

Considered groups (black curves): (a) Christians, (b) no religion, (c) other. Model (red areas): $N^{(c)} = 30411$, $N^{(n)} = 8829$ and $N^{(o)} = 15151$ (N = 54391), $\varepsilon^{(c)} = 2.5$, $\varepsilon^{(n)} = 0.01$, $\varepsilon^{(o)} = 50$, M = 109, C = 600.

Red areas show 95% confidence intervals.

A. Kononovicius (VU ITPA)

VM for electoral/census data

Working class in Sheffield (UK census 2011)

Considered groups (black curves): (a) higher, (b) intermediate and (c) lower occupations, (d) unemployed. Model (red areas): $N^{(1)} = 29876$, $N^{(2)} = 22310$, $N^{(3)} = 38218$ and $N^{(u)} = 6596$ (N = 97000), $\varepsilon^{(1)} = 3$, $\varepsilon^{(2)} = 50$, $\varepsilon^{(3)} = 12$, $\varepsilon^{(u)} = 2$, M = 194,

Vote shares in Vilnius (LT Seimas election 1992)

Considered groups (black curves): (a) Sajudzio koalicija, (b) Lietuvos krikscioniu demokartu partija, (c) Lietuvos demokratine darbo partija, (d) other. Model (red areas): $N^{(s)} = 11125$, $N^{(l)} = 2581$, $N^{(d)} = 17978$ and $N^{(o)} = 12816$ (N = 44500), $\varepsilon^{(s)} = \varepsilon^{(l)} = \varepsilon^{(d)} = 25$, $\varepsilon^{(o)} = 75$, M = 89, C = 600.

A. Kononovicius (VU ITPA)

To conclude...

2014-2020 Operational Programme for the European Union Funds Investments in Lithuania

Some key points and outlying questions

- We have proposed the compartmental voter model, which is not a model for voters (in contrast to Fernandez-Garcia *et al.*).
- The proposed model reproduces census and electoral data rather well.
- Demographic processes are likely reason for spatial electoral heterogeneity.
- Does spatio-temporal symmetry hold for any finite birth-death process or is this property unique to the voter model?
- Does voter model on a grid produce similar results?
- How does this model compare to human mobility models?

This talk was based on a preprint

Compartmental voter model

Aleksejus Kononovicius*

Institute of Theoretical Physics and Astronomy, Vilnius University

Abstract

Numerous models in opinion dynamics focus on the temporal dynamics within a single spatial unit (e.g., country). While the opinions are often observed across multiple spatial units (e.g., polling stations) at a single point in time (e.g., elections). Aggregates of these observations, while quite useful in many applications, neglect the underlying spatial heterogeneity in opinions. To address this issue we build a simple compartmental agent-based model in which all agents have fixed opinions, but are able to change their compartments. We demonstrate that this model is able to generate compartmental rank-size distributions consistent with the empirical data.

1 Introduction

Most well-known models of opinion dynamics seem to imply that a steady state, either consensus or polarization, is inevitable [1]. However, local and spatial heterogeneity and ongoing exchange of opinions and cultural traits is a characterizing feature of social systems. Variety modifications of the well-known models were proposed to account for these features, such as inflexibility [8] or spontaneous flipping [1]. Some of the models were modified to account for the theories from the social sciences [1]. [3]. Effects of these modifications are still being actively reconsidered in context of network theory, non–linearity, complex contagion and applications towards financial markets [1] [2]. Nevertheless even these modified models assume that opinion dynamics occur and

Available online as arXiv: 1906.01842 [physics.soc-ph] (accepted to J. Stat. Mech.).

email: aleksejus.kononovicius@tfai.vu.lt www: http://kononovicius.lt/, http://rf.mokslasplius.lt/

Let T = 1 and M = 2. Detailed balance condition:

$$p\left(X_{i}^{(k)}\right)\lambda_{i+}^{(k)}\left(X_{i}^{(k)}\right) = p\left(X_{i}^{(k)}+1\right)\lambda_{i-}^{(k)}\left(X_{i}^{(k)}+1\right).$$

Lets rearrange:

$$p\left(X_{i}^{(k)}+1\right) = \frac{\lambda_{i+}^{(k)}\left(X_{i}^{(k)}\right)}{\lambda_{i-}^{(k)}\left(X_{i}^{(k)}+1\right)}p\left(X_{i}^{(k)}\right).$$

This can be solved recurrently from $X_i^{(k)} = N - C$ to *C*. It can be easily verified that the solution is truncated Beta–binomial distribution.

A. Kononovicius (VU ITPA)

Appendix: Obtaining stationary distribution by using Markov chains

- Let N = 10, T = 2, M = 2, C = 6.
- Then the state vector is $\{X_1^{(1)}, X_1^{(2)}\}$.
- List all possible state vectors: $\{0, 4\}, \ldots, \{5, 1\}$.
- Relabel: $\{0,4\} \to 0, \{0,5\} \to 1, \dots$
- Write down transition matrix and find its eigensystem.
- Obtain the desired result: $P(X_1^{(1)} = 0) = P(\{0, 4\}) + P(\{0, 5\}) + P(\{0, 6\}).$

While M is small, there is not much point to consider rank–size distributions. Though we can look from a different perspective.

- Let N = 11, T = 1, M = 2 and C = 9.
- State vector is $\{X_1^{(1)}\}$.
- Possible states: {2}, ..., {9}.
- Consider evolution of state vector as a Markov chain.
- Use the fact that for rank-size distributions some of the states are symmetric (e.g., {2} and {9}).

Appendix: Spatio-temporal symmetry in RSDs

Parameters:
$$N = 11$$
, $T = 1$, $M = 2$, $C = 9$ and $\varepsilon = 3$.

X	Analytical	Spatial	Temporal
2 or 9	0.1730	0.1787	0.1723
3 or 8	0.2358	0.2397	0.2391
4 or 7	0.2830	0.2815	0.2835
5 or 6	0.3082	0.3001	0.3051

The catch is that we are interested in T > 1 and $M \gg 1$. Also We are interested not in *X*, but in $f_i^{(k)} = X_i^{(k)}/N_i$.

