Modeling of Lithuanian parliamentary elections using ABM

Aleksejus Kononovicius

Institute of Theoretical Physics and Astronomy, Vilnius University aleksejus.kononovicius@tfai.vu.lt http://kononovicius.lt

prof. dr. Aine Ramonaite (Institute of International Relations and Political Science, Vilnius University)

Also a big thanks to my usual colleagues Julius Ruseckas and Vygintas Gontis (ITPA, VU) for their interest in this venture.

Empirical analysis

A. Kononovicius LT elections and ABM

The Lithuanian parliamentary election system

Basic facts:

- Elections are being held each 4 years.
- All of the 141 seats are being contested.
- 71 electoral districts.
- Two-tier voting system:
 - District representative
 - Open party list

Elected district representatives by party (colors) in 2008 elections

Image source: screenshot of http://rinkimurezultatai.lt/

Example ballots

We analyze

- voting for major parties (their lists) in 1992, 2008, 2012 elections.
- results at the smallest scale available (polling stations).

Image source: Central Electoral Commission

Freely available from:

- Central Electoral Commission: https://rinkejopuslapis.lt
- Baltic Institute of Advanced Technology: http://rinkimurezultatai.lt
- My github repository: https://github.com/akononovicius/lithuanianparliamentary-election-data

1992 election results I Vote-share PDF

Vote-share PDF (gray curve) of four parties with average vote-share above 5% (a)-(c) and all other smaller parties combined (d). Fits (red curve) are provided assuming Beta distribution.

1992 election results II

Vote-share rank-size distribution

Rank-size distribution (gray curve) of four parties with average voteshare above 5% (a)-(c) and all other smaller parties combined (d). Fits (red curve) are provided assuming Beta distribution.

All outliers are present in vote-share data of a single party, which represents Lithuanian ethnic minorities (darker curve), while other small parties have no outliers (brighter curve). Fit (red curve) is provided assuming a mixture of two Beta distributions, fit (blue curve) is provided assuming Beta distribution.

Similar observation made in T. Fenner et al., arXiv:1609.04282 [physics.soc-ph].

Beta distribution and oft-used alternatives

Comparison of Weibull ($\lambda = 0.25$, k = 4), Gaussian ($\mu = 0.23$ and $\sigma = 0.065$) and Beta ($\varepsilon_1 = 9.5$, $\varepsilon_2 = 30.5$) distributions.

R. F. da Paz et al., Springer Proc Math Stat, 2015.

J. Fernndez-Gracia et al., Phys Rev Lett 112, 2013.

2008 election results I Vote-share PDF

Vote-share distribution (gray curve) of seven parties with average vote-share above 5% (a)-(g) and all other smaller parties combined (h). Fits (red curve) are provided assuming a mixture of two Beta distributions.

2008 election results II

Vote-share rank-size distribution

Rank-size distribution (gray curve) of seven parties with average voteshare above 5% (a)-(g) and all other smaller parties combined (h). Fits (red curve) are provided assuming a mixture of two Beta distributions.

2012 election results I Vote-share PDF

Vote-share distribution (gray curve) of seven parties with average vote-share above 5% (a)-(g) and all other smaller parties combined (h). Fits (red curve) are provided assuming a mixture of two Beta distributions.

2012 election results II

Vote-share rank-size distribution

Rank-size distribution (gray curve) of seven parties with average voteshare above 5% (a)-(g) and all other smaller parties combined (h). Fits (red curve) are provided assuming a mixture of two Beta distributions.

Agent-based model of imitative voting

A. Kononovicius LT elections and ABM

Imitative (herding) behavior in social insects

Upper image taken from Detrain & Deneubourg, PLR 3 (2006)

Formulation of the two-state model

- Pick one random agent.
- If agent is "red", then agent switches to "blue" with probability

$$P_{r \to b} = [\varepsilon_b + (N - X)]h\Delta t,$$

otherwise the agent is "blue", the switching probability to "red" is

$$P_{b\to r} = [\varepsilon_r + \mathbf{X}]h\Delta t.$$

Stationary distribution of x = X/N is Beta,

$$p(x) \propto x^{\varepsilon_r - 1} (1 - x)^{\varepsilon_b - 1}.$$

Kirman, QJE 108, 137-156 (1993)

Formulation of the M-state model

- Pick a random agent.
- If agent votes for *i* party, the probability to switch to any other party is given by:

$$P_{i} = \sum_{j \neq i} \left[\varepsilon_{j} + X_{j} \right] h\Delta t = \left[\varepsilon_{-i} + (N - X_{i}) \right] h\Delta t$$

If agent decides to switch, the party is picked proportionaly based on P˜_{i,j} ∝ ε_j + X_j.

Should be equivalent to a noisy multi-state Voter model.

Illustration of the three-state case

$$P_A = [\varepsilon_{-A} + (N - X_A)] h\Delta t = [\varepsilon_B + X_B + \varepsilon_C + X_C] h\Delta t = \tilde{P}_{A,B} + \tilde{P}_{A,C}.$$

Due to similarity to the two-state model, we expect that each $x_i = X_i/N$ is distributed according to Beta distribution with parameters ε_i and ε_{-i} .

Thus stationary distribution of vote-share vector, $\vec{x} = \{x_1, \ldots, x_M\}$, should be Dirichlet distribution:

$$p(\vec{x}) \propto \prod_{i=1}^{M} x_i^{\varepsilon_i - 1}.$$

Reproducing results of 1992 elections

A. Kononovicius LT elections and ABM

Modeling implications and the actual data

Party	$\hat{\varepsilon}_i$	$\hat{\varepsilon}_{-i}$	R^2_{PDF}	R^2_{RS}
SK	3.9	16.6	0.95	0.994
LKDP	2.2	16	0.92	0.995
LDDP	5.7	6.1	0.91	0.998
Other	3.3	14.4	0.91	0.86
	15.1			

A restriction follows from the model:

$$\varepsilon_{-i} = \sum_{j=1}^{M} \varepsilon_j - \varepsilon_i,$$

which does not hold for the data. Over-fitting?

Bayesian inference of ε_i

We split data of 1992 elections into two sets:

- minority party vote share > 20% (94 polling stations),
- minority party vote share < 20% (1966 polling stations).

> :	20%	polling	stations
-----	-----	---------	----------

Party	ε_i	
SK	0.65 ± 0.1	
LKDP	0.35 ± 0.05	
LDDP	2.5 ± 0.2	
Other	4.7 ± 0.4	
	8.2	

<20% polling stations

Party	ε_i	
SK	3.8 ± 0.1	
LKDP	2.55 ± 0.1	
LDDP	9.3 ± 0.2	
Other	3.7 ± 0.1	
	19.35	

Reproducing 1992 elections

Vote-share PDF of the three main parties (a)-(c) and the other party (d).

Rank-size distribution of the three main parties (a)-(c) and the other party (d).

To summarize...

A. Kononovicius LT elections and ABM

- We have shown that vote-share distributions are well approximated by a mixture of two Beta distributions.
- We have presented a simple model, which reproduces Beta and, more generally, Dirichlet distribution.
- We have used Bayesian inference to infer model parameters from the 1992 election results.
- We have used the inferred parameters to reproduce the 1992 election results.

A. Kononovicius, arXiv:1704.02101 [physics.soc-ph]

Thank You!

aleksejus.kononovicius@tfai.vu.lt http://kononovicius.lt, http://rf.mokslasplius.lt/en/