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1 Introduction
Financial “quakes” are not uncommon phenomena in the financial markets

– large stock price jumps often occur without any apparent reason [1–3]. These

“quakes” are also commonly observed in other social systems – sometimes the pop-

ularity behind works of art and fiction, such as books or movies, or trademarks has

no rational explanation [4]. Similar observations are also made by the experimen-

tal biologists [5–7] and sociologists [8, 9]. These observations may be related to the

concepts of peer pressure and herding behavior [10]. Although the herding behavior

enables creation of social institutions, it also poses a threat – increased economic and

social risks.

So far the discussion seems to be detached from the traditional physical point

of view. Let us develop this topic further by looking for the parallels between physics

and social sciences from the historical retrospective.

1.1 Historical retrospective
In the beginning of the 19th century, ideal gas laws, such as Boyle’s law (discov-

ered around the middle of the 17th century), Charles’s law (around 1780s) or Gay–

Lussac’s law (around the 1800s), were known purely from the experiments [11]. At

that time, classical mechanics was a well-developed theoretical framework, but it was

ill-suited to provide an answer in this case. No one was (and, most probably, still

is) capable to solve equations of motion for every gas particle jittering in a realistic

volume.

At the same time mathematicians, philosophers and statesmen were analyzing

demographic data [12]. As well as physicists, they were quickly overwhelmed with

the amounts of variables describing each distinct person and his behavior. In order

to deal with large amounts of data, it was decided to drop irrelevant variables and

calculate the averages of the relevant ones over each person. Around the 1850s–1870s,

this idea was introduced into physics, mainly by James Clerk Maxwell and Ludwig

Boltzmann, and used to explain ideal gas laws. The possibility that social sciences had

an impact on Boltzmann’s work is frequently highlighted in most historical reviews

(e.g., [13, 14]) by providing the following quote:

“The molecules are like so many individuals, having the most various
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states of motion, and the properties of gases only remain unaltered be-

cause the number of these molecules which on the average have a given

state of motion is constant.”

Thus, once in the past experience from social sciences enriched physics facilitates the

emergence of statistical physics.

In the first decade of the 20th century Albert Einstein and Marian Smolu-

chowski independently had shown that atoms are not just an abstract concept, that

atoms’ jittering might cause apparently erratic motion of larger particles [15, 16].

Namely, their theoretical and experimental work served as a proof of the kinetic

theory of gases, as well as the explanation for the Brownian motion. But the first

work on the Brownian motion was a doctoral dissertation defended in the 1900 by

French mathematician Louis Bachelier who derived it by assuming that stock prices

fluctuate randomly [17]. The simple model proposed by Bachelier may be seen as an

early precursor to modern risk management models based on the stochastic calculus,

such as Black-Scholes [18] or Heston [19] models.

In the mid 1900s the young British hydrologist Harold E. Hurst came to Egypt.

The young hydrologist was given a task to predict floods of the Nile based on the

past data. While analyzing the collected data Hurst noted significant long-range

auto-correlations. In the following years, he faced other similar problems and conse-

quently developed a time series analysis framework which is now known as rescaled

range analysis [20], to detect the presence and qualities of long-range correlations.

Hurst published his results only after retiring in the early 1950s [21]. His work

was well received and in the next decades became recognized as a fundamental work

opening the discussion on the detection of long-range memory.

In the 1920s, Ernst Ising in his PhD dissertation analyzed a simple model of

magnetization which is now known as the Ising model [22]. This model was one of

the first models to exhibit the pattern formation. In the 1950s, Edward Lorenz noted

that pattern formation was important in weather forecasting, and in the next fifteen

years he developed and proposed his own weather forecasting model which was non-

linear. Due to the inherent nonlinearity the model exhibited a chaotic behavior, as

Lorenz wrote [23]:

“Two states differing by imperceptible amounts may eventually evolve

into two considerably different states... If, then, there is any error what-

ever in observing the present state – and in any real system such errors
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seem inevitable – an acceptable prediction of an instantaneous state in the

distant future may well be impossible... In view of the inevitable inaccu-

racy and incompleteness of weather observations, precise very-long-range

forecasting would seem to be nonexistent.”

Nowadays this is summarized as a butterfly effect: a single unpredictable flap of but-

terfly’s wings may set off a storm in another part of the globe. Now this is somewhat

reminiscent of risk in social systems: a small, unaccounted for or completely unex-

pected event may cause a sudden significant change in the weather pattern. Around

this interesting notion, chaos theory, complexity theory, synergetics emerge [24–26],

emphasizing the nonlinear nature of our world. Physicists, mathematicians and other

representatives of the “hard” sciences take up interest in open systems which often

tend to exhibit pattern formation and emergent behavior.

In the meantime, economics developed in its own way. As in most social sci-

ences, the human nature of “particles” in question, actual people, was taken into

account. But it is hard to take the full complexity of human behavior and social

interactions into account, thus neoclassical economical theories neglected some of

these features in order to obtain analytically tractable mathematical models. This

lead to mathematically simpler models and other tools to deal with the inherent risk,

but with some essential features being left out.

A major oversimplification of human behavior is done by introducing the con-

cept of homo economicus. This economic man, by definition, is well informed, ra-

tional and self-interested [27]. Neither of these assumptions appear to be realistic,

but in physics we also tend to make simplifying approaches which usually work. In

this case, one of the major problems lies in the fact that individual rationality does

not necessarily imply collective rationality which is rather well-known from the vot-

ing paradox, or the Condorcet paradox [28]. A deeper problem, of course, is that

individual rationality itself does not exist or might be useless while solving certain

simple problems, such as the El Farol bar problem [29]. While “The End of Eco-

nomic Man”, namely, its insufficiency to model endogenous risk, was predicted a

long time ago, originally by P. Drucker in 1939 (see more recent edition of the same

book [30]), yet despite even more critique followed since then, the concept is still

alive in the core of mainstream economics [31–35].

The idea about rational agents is not inherently wrong. It might actually be

used to simplify mathematical logic behind certain models. Similar ideas work well
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in the game theory [36] and may be applied in practice [37]. The key problem here

is that mainstream economics uses the concept of homo economicus as an excuse to

reduce what should be seen as multi-agent problems to single, representative, agent

problems [38]. This idea is at odds with physical thought, with what was done by

Boltzmann and Maxwell when laying the foundation of statistical mechanics.

Market efficiency is another key idea in the core of mainstream economics

[1–3]. It assumes that traders are able to incorporate information about a tradable

object (e.g., stock, commodity, service) into its market price, namely, that the market

price reflects the true value of the object. Evidently this ought to be true, if traders in

the market behave at least somewhat like homo economicus. However, the frequency

with which local and global economic crises occur suggests that tradeable objects are

often over-valued or under-valued causing those market bubbles and crashes [1–3,31–

33, 39–43].

Frequently the mainstream economics consider large economical fluctuations

as outliers of the otherwise normal, following the Gaussian distribution, financial

fluctuations. Logic here is rather simple: as agents are rational and markets are ef-

ficient, price fluctuations should follow the exogenous information flow. As the

exogenous information flow is composed of many random events, due to the central

limit theorem it should lead to the Gaussian fluctuations. Indeed, most of the time,

or in most cases, the Gaussian distribution fits the empirical data rather well, but it

does not fit a large portion of the extreme cases. However, they may be fitted using

power-law distributions,

p (x ) ∼ x−λ . (1.1)

Interestingly enough, the power-law distribution was first considered by the Ital-

ian engineer (by education) and economist Vilfredo Pareto in the end of the 19th

century [44, 45]. In his work Pareto shows that the wealth distribution in a sta-

ble economy follows the power-law distribution. He is also quoted to say that this

result is rather general and applies to nations “as different as those of England, of Ire-

land, of Germany, of the Italian cities, and even of Peru.” Nowadays Pareto is more

commonly known for the 80–20 rule which is actually related to the power-law dis-

tribution in the sense that it highlights the importance of the outliers. Originally, in

his analysis V. Pareto had shown that ∼80% of land in Italy was owned by the ∼20%

of population. Though the rule itself was not conceived by V. Pareto, it was done a

couple decades later by J. Juran [46].
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Power-law distributions remained mostly forgotten until the works by P. Levy

[47], H. E. Stanley [48], B. Mandelbrot [49], and P. Bak [50], who have shown that

the counter-intuitive scale-free power-law behavior may be observed in open systems

and generally in systems at their critical points. Now it is accepted that power-law

distributions, as well as other power-law statistical features (such as cross-correlations,

auto-correlations, PSD and return intervals), are common to socio-economic systems

[51–65]. This doctoral dissertation is mostly concerned with the statistical features

of absolute return which is defined as

rT (t ) = ln P (t ) − ln P (t −T ), (1.2)

where P (t ) is price. In some papers, econometric and empirical papers |r (t ) |α, usu-

ally α = 2, is considered (e.g., [66–68]), although raising to power may distort the

properties of the time series for small and large values, and thus physicists often

choose to model and study α = 1. In Figure 1.1, you can see one-minute absolute

return PDF (a) and PSD (b) of a randomly selected stock (ticker symbol MMM)

from NYSE approximated by the power-law functions.
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Figure 1.1: PDF (a) and PSD (b) of normalized absolute one-minute return of the
MMM stock time series, time period from January 2005 to March 2007 (gray curves)
fitted by power-law functions (black curves). Power-law functions: p (|r |) ∼ |r |−λ with
λ = 3.6 (a), S ( f ) ∼ f −βi with β1 = 0.8 and β2 = 0.2 (b).

The empirical confirmation of power-law statistics serves as a direct indication

that conventional risk management tools, and also conventional models, underesti-

mate the probability of extremely large deviations. Extremely large deviations are no-

ticeably more probable in power-law distribution than in exponential, such as Gaus-

sian, distributions. This kind of underestimation may lead to severe consequences,

and the recent financial crisis is seen as an example [31–33, 69–71]. So, instead of

using mathematically convenient concepts of the rational economic man and market
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efficiency, one needs to work on the idea that human behavior is highly irrational,

prone to brain bugs, as well as highly heterogeneous. One needs to embrace the idea

that the human behavior is complex and non-linear, the presence of the emergent

behavior and self-organization, the extreme importance of social interactions as well

as the idea underlying statistical physics, that the peculiarities of a single individual

are not important, all that matters is the statistical description of the interactions.

1.2 Methods

Besides methods and ideas common to physics in general and statistical physics

in particular, some of which were mentioned while providing the historical con-

text (such as the statistical and stochastic analysis), we will also use two contempo-

rary frameworks, agent-based modeling and network theory, designed specifically to

model socio-economic systems. Further in this section, we provide a brief intro-

duction into the three main frameworks, agent-based modeling, network theory and

stochastic analysis, used in this dissertation.

1.2.1 Agent-based modeling

One of the best contemporary frameworks to work with in this context is

known as agent-based modeling [72–76]. As the naming of the framework implies

the key concept in it is the concept of an agent. Agents are basically highly stylized

objects which use simple rules to emulate essential behavioral features of real entities

(e.g., firms, people, etc.) acting in the modeled system. Interestingly enough, this

simplicity is still able to reproduce distinctive features of a complex behavior.

Historically, it might be reasonable to see J. von Neumann’s cellular automaton

as an early precursor of modern cellular automata and agent-based modeling [77]. It

featured a grid and certain rules on how cells present on the grid should behave. The

problem was that J. von Neumann’s automaton was rather complex: cells could be

found in 29 different states and, as should be expected, the transition rules were some-

what convoluted. J. von Neumann’s work inspired the mathematician J. H. Conway

to create a simpler automaton which is now widely known as the Game of Life [78].

The Game of Life featured only two possible cell states (“alive” or “dead”) and simple

state switching rules which were based only on the number of immediate neighbors

in the “alive” state. Surprisingly, the Game of Life exhibits a variety of still, oscillat-
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ing and moving patterns which serve as an excellent showcase of emergent complex-

ity. Numerous authors are fascinated with the idea and lots of books are dedicated to

cellular automata (with the most recent and prominent example being [79]).

This historic retrospective into cellular automata is useful in order to draw

direct parallels to physical modeling. From the physicist’s point of view, the Ising

model might be seen to have a strongest relation to these pioneering works. First

of all, in the classical handbook version of the Ising model [22], in this model the

particles are aligned in a square lattice. These particles possess an intrinsic property

of a magnetic spin, the orientation of which is chosen according to certain simple

probabilistic rules. These rules take just a neighboring spin orientation and the global

magnetic field orientation into account. But this model is able to exhibit a complex

behavior, phase transitions observed in real magnetic materials. Some works [80–83]

use ideas from the Ising model directly to build and enhance ABMs. In this type of

works, the physical concept of particle and its spin is replaced with a more general

concept of agent and its state.

Unlike for cellular automata, for most ABMs placing agents on a grid is a redun-

dant component. Namely, in a significant fraction of contemporary ABMs, agents

interact in an abstract or undefined topology. It appears that it may not matter as

long as there is some other way of observing a system state or interacting with other

agents.

Excellent examples of models with an undefined interaction topology are mod-

els inspired by the kinetic theory of gases [84]. In these models, the interacting agents

are usually chosen randomly from the whole population. The picked agents, usually

two, interact among themselves and afterwards are returned to the population with

their energies changed according to simple rules. Kinetic models have found their ap-

plications in modeling wealth distributions [85–88], although there are applications

to other fields of economics [89–92].

Some of the models are inspired by the traditional frameworks of economics.

One of the most prominent models is the model proposed by Lux and Marchesi [93].

In this model, agents evaluate their trading strategy by comparing the prospective

profits that could be generated by any of the three trading strategies. This evaluation

is formulated using utility functions (an essential concept in the economical rational

choice theory [94]), but, in stochastic interpretation, increased utility means an in-

crease in the probability to switch to that trading strategy. A similar model, relevant
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in context of the dissertation, was proposed by Kirman and Teyssiere [95].

At the same time, some are built around general ideas about the social interac-

tions themselves. The Minority Game was conceived as a simple thought experiment

building atop the idea that belonging to minority might benefit the agent in certain

economic scenarios [29]: if significantly more people are willing to buy, then it is

highly likely that the minority willing to sell could ask for unreasonably high prices

and still be able to sell. Some of the works note that people are not ideally rational

nor ideally informed and thus try to compensate their own shortcomings by imitat-

ing the behavior of the others [96–99]. Interestingly enough, in a recent paper by

J. Touloub it was shown that these two radically different approaches might lead to

equivalent behavior [100]. Namely, the results presented in the paper imply that act-

ing as a non-conformist (trying to be in the minority) might lead to the emergence

of conformism (actually belonging to the majority).

Recent reviews by Cristelli et al. [73] and Sornette [76] provide a broad out-

look into the contemporary agent-based modeling. Both of the reviews emphasize

different problems related to agent-based modeling, but suggest a similar idea on how

to move the field forward. Sornette [76] emphasizes that there is a huge variety of

the proposed ABMs which are able to reproduce some stylized facts reasonably well,

however most of these ABMs being incomparable and most of them lacking possi-

bilities to be calibrated. Thus, according to Sornette [76], the agent-based modeling

as a whole appears to lack robustness. Cristelli et al. [73] emphasize the “collision”

between the attempts to reproduce realism and recover the analytical tractability of

the proposed models. Cristelli et al. [73] state that the ideal model should posses

both of these qualities, but it might be extremely hard to achieve. Thus, Cristelli

et al. [73] encourage to look for simple yet realistic and analytically tractable ABMs.

We see “Emerging Intelligence Market Hypothesis”, proposed by Sornette [76] as an

alternative to the classical EMH, being essentially the same idea phrased using other

words. Their ideas can be brought to a common denominator by formulating the

following requirements for ABMs: ABMs should be as simple as possible, ABMs

should be analytically tractable, and ABMs should allow important realistic market

properties to emerge from the interaction among the agents.
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1.2.2 Network theory

As mentioned in the previous sections ABMs and cellular automata agents may

be placed on a two-dimensional square grid and assumed to interact with their imme-

diate four (or eight) neighbors. Yet in real social life, the interaction topology is not

like that at all. The increasing dimensionality or changing symmetry properties of

the grid (switching to a hexagonal or a triangular grid) usually doesn’t significantly

change things. As it was discussed previously, in some cases it doesn’t matter, but

there are also cases where the interaction topology is extremely important. These

cases are considered by a framework known as the network theory [101–104].

The network theory views the world as graphs, both static and evolving. Graphs

consist of vertices (alternatively referred to as nodes) and edges (alternatively referred

to as links). Edges connecting vertices might be weighted to show how important

the given edge is: e.g., not all social contacts have the same impact on the social life.

Edges might be also directed to show the directional nature of relationship: e.g., in

a scientific paper citation network it is rather clear which paper was cited by which

paper.

The most straightforward example of the network would be the Internet. We

could even view it at two different perspectives. The first perspective is that of the

organization of the online content. Namely, most of the web pages cite other web

pages and in this way help users to navigate and find the desired information. In this

context, it is easy to view a web page as a node and hyperlinks as edges connecting

nodes. Google robots crawl and index the Internet to monitor this, later this infor-

mation is used to estimate the importance of each node and may be the quality of its

content. When the user enters a keyword in Google search, complex algorithms use

this information to present the most relevant results. Another possible perspective

is the hardware perspective. We could see every more or less sophisticated hardware

(personal computer, server, router, etc.) as a network node and wiring (or established

direct connections in case of WiFi) as edges.

There are three classic handbook models in the network theory [101–104]: the

Erdos–Renyi, Watts–Strogatz and Barabasi–Albert models.

The Erdos–Renyi (also known as the random graph) model [105] is the sim-

plest random network model. In this model, the link between a pair of nodes is

present with certain probability p. The Erdos–Renyi model does not exhibit any
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interesting features, with the exception of short path lengths. This model, being

the simplest random network model, now serves as a benchmark tool for other ran-

dom network models. It is worth noting that the Erdos–Renyi model is related to

the percolation theory [106]. Namely, it produces an identical result as solving the

percolation problem on a fully connected graph.

The Watts–Strogatz model [107] is dedicated to showing that a couple of ran-

dom links (via addition or rewiring) can significantly contribute to a decrease of av-

erage path lengths in regular (e.g., grid, ring) networks. Shorter average path lengths

imply a smaller world, thus the model is often referred to as a small world model,

which is a rather surprising property to observe in networks as localized as human

society. In the 1960s group led by S. Milgram performed an experiment: some people

from Omaha (Nebraska, USA) and Wichita (Kansas, USA) were asked to pass a let-

ter to a person living in Boston. The experimenters made sure that people would not

know the addressee, but asked them to send the letter to the person who was most

likely to know the addressee. When the letters arrived to Boston researchers found

that it has reached the destination in at most 6–7 hops [108]. Apparently random

social contacts outside the usual social circle helped to achieve this result.

The Barabasi–Albert model [109] is the most recent of the three classical net-

work theory handbook models. This model explains the power-law degree (the num-

ber of links that connect to the node) distribution observed in numerous real net-

works. The examples include scientific citation, Internet hyperlink, Internet hard-

ware, sexual interaction, Facebook friend and Twitter follower networks. The power-

law degree distribution is explained by the preferential attachment mechanism: nodes

having a large degree are likely to attract more links from new nodes.

Yet neither of the three main models cover an interesting feature (in terms

of this dissertation) observed in gaming communities, their nonlinear densification

[110–114]. Namely, it is observed that the number of links in densifying networks

grows faster than linearly with the increasing number of nodes. In other words,

as network grows (in terms of nodes), the average degree of nodes in the network

also increases. There are numerous models [110–114] exhibiting this feature, but the

universal mechanism has still not been uncovered.
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1.2.3 Stochastic modeling

Both the ABM framework and the network theory provide insights into in-

teractions among the individual agents (microscopic level interactions). Stochastic

modeling (stochastic calculus) is much older framework used to deal with the dy-

namics happening on a global scale (macroscopic level). Evidently it is inferior in

comparison with the previously discussed frameworks in the sense that stochastic

models do not provide direct insights into individual level interactions: in most cases

they just reproduce the desired phenomena. Stochastic calculus is superior in the

sense that it is more or less analytically tractable, while it may be hard in case of

complex ABMs or network models.

In the beginning of the 19th century, the Scottish botanist Robert Brown ob-

served the jittery movement of pollen in a solution [115]. Initially, he thought that

pollen moved due to being alive, but repeating the experiment with a clearly inani-

mate matter (metal dust) he understood that it was not the case. Almost a century

later this phenomenon was explained independently by A. Einstein and M. Smolu-

chowski [15, 16] who predicted that the Brownian motion could serve as a proof for

the existence of atoms. The jittery motion of pollen happens due to a large number

of random collisions with atoms and molecules in a solution.

Inspired by these results, Paul Langevin, a couple of years later, proposed an

equation to describe the Brownian motion [116]:

m
d2 ~x
d t 2
= −λ

d ~x
d t
+ ~η (t ). (1.3)

The proposed equation has almost the same form as equations of motion in classical

mechanics, with the exception that ~η represents a random force which is assumed

to be uncorrelated and following the Gaussian distribution. As the derivatives of x

do not exist in the usual sense, the equation needs to be interpreted by other means:

here the Ito and Stratonovich integrals are used to give meaning to this equation. The

main difference between the interpretations is the moment when the random force

acts upon the particle, during a time tick (the Ito sense) or in-between time ticks

(the Stratonovich sense). This has some interesting consequences, such as the chain

rule of calculus holding only for the Stratonovich integral, but they do not matter

in terms of this dissertation as there are straightforward ways to convert SDEs from

one interpretation to other.
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In the general case, the Langevin equation, also referred to as the SDE, in the

Ito sense may be written as [117–119]

d x = f (x, t ) d t + g (x, t ) dW , (1.4)

where f (x, t ) (drift) and g (x, t ) (diffusion) are generalized functions driving the

evolution of the modeled system, while W is a Wiener process which is equivalent

to the one-dimensional Brownian motion. Interestingly enough, f (x, t ) and g (x, t )

may be estimated from the empirical data by observing the means and the standard

deviations of the subsequent observed values. The SDE might be also obtained from

the Fokker–Planck equation which means that it might be derived from microscopic

(individual level) considerations as long as they are simple enough to be analytically

tractable.

1.3 Objective of the dissertation
The objective of this dissertation is to construct models of financial markets

and social processes by applying ideas and tools inherent to statistical physics, econo-

physics and nonmainstream economics.

1.4 Main tasks of the dissertation
1. To analyze the statistical properties of the bursting behavior observed in em-

pirical and model absolute return time series.

2. To examine the possible relation between the general class of SDEs reproducing

power-law PDF and PSD and models from other frameworks,such as GARCH,

agent-based modeling and network theory.

3. To propose a minimal ABM which would generate a time series exhibiting the

power-law PDF and PSD characteristic to the general class of SDEs.

4. To propose a financial market model which would generate the absolute return

time series exhibiting power-law PDF and PSD characteristic to the financial

markets.

5. To analyze the opportunities to prevent extreme events arising from the pro-

posed ABMs.
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1.5 Scientific statements

1. The analyzed empirical and model absolute return time series exhibit statisti-

cally similar burst duration PDF as well as statistically similar power-law sca-

ling in the geometric properties of bursts.

2. The nonlinear modifications of the GARCH(1,1) model generate the volatility

time series exhibiting the power-law PDF and PSD, including 1/ f noise.

3. A continuous transition from the nonextensive to extensive statistics is ob-

served when interactions become more localized.

4. The derived, from ABM based on herding behavior, SDE for long-term varia-

tion of return belongs to the general class of SDEs reproducing power-law PDF

and PSD.

5. Three-state financial market ABM generate a time series exhibiting a double

power-law, with two characteristic exponents, PSD.

6. The empirical absolute return PDF and PSD is reproduced by the consenta-

neous model which includes three-state dynamics as well as the external noise.

7. The controlled agents, interacting on the global scale, are able to decrease the

probability of extreme events. The effect persists in the three-state model when

the controlled agents trade randomly.

1.6 Scientific novelty

Agent-based modeling is an important framework in social and economic mod-

eling as ABMs provide important insights into the nature of interactions inside the

modeled systems. Using this framework allows to understand how individual level

interactions cause the observed stylized facts [72,73,120], though the exact statistical

features frequently are far more complex than stylized facts, and ABMs aiming to

reproduce exact statistical features often become too complex to be tractable [73].

Stochastic modeling, on the other hand, allows to generate a time series exhibiting

statistical features close to those observed empirically. However stochastic models

do not provide any direct insights into the process they are used to model. Thus, in
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the recent decade there were numerous calls [32] and attempts [83, 121, 122] to find

relationships among these frameworks.

In the given context, the research presented in this dissertation stands out, be-

cause we, by using the previous works on agent-based modeling by other research

groups [96,123–126], derive simple financial market ABMs compatible with stochas-

tic models derived in previous works by our research group [127–131]. The financial

market ABMs proposed in this dissertation are special in the sense that their com-

plexity is gradually built up: some are able to generate the time series exhibiting

stylized facts of the absolute return, while others are able to generate the time series

exhibiting exact empirical statistical features of the absolute return.

The research presented in this dissertation also covers the topic of extreme

event prevention. Previously this topic was developed by considering only very sim-

ple models [132, 133] or sophisticated experimental setups [8, 9]. We are the first to

test the extreme event prevention strategies in the financial market model which is

able to reproduce empirical statistical features of absolute return.

1.7 Outline of the dissertation

The list of abbreviations used in this dissertation is given in the chapter previ-

ous to the introductory chapter.

In Chapter 2, we briefly review previous works related to the general class

of SDEs reproducing power-law PDF and PSD as well as analytical and numerical

techniques used to deal with SDEs. These techniques are important in other chapters

of the dissertation. Some of the discussed novel results were published by the author

of this dissertation in [A13-A15].

In Chapter 3, we provide an empirical, numerical, and analytical analysis of the

bursting behavior of absolute return in the financial markets. The original results

were published in [A10].

In Chapter 4, we propose two nonlinear modifications of the GARCH(1,1)

volatility process which generate the time series exhibiting power-law PDF and PSD.

In essence, the modified nonlinear GARCH(1,1) volatility process proves to be sim-

ilar to the general class of SDEs reproducing power-law PDF and PSD. The original

results were published in [A2].

In Chapter 5, we provide a description of Kirman’s two-state ABM of the herd-
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ing behavior. In this chapter, we discuss the implications of interaction topology on

the population dynamics of this two-state ABM. The original results were published

in [A3].

In Chapter 6, we provide an interpretation of financial markets in terms of

ABM based on the herding behavior. Starting from the ABM and including features

important to the financial markets, we build a model which is able to reproduce

empirically observed PDF and PSD of absolute return. The original results were

published in [A4, A6-A9, A11, A12].

In Chapter 7, we discuss the opportunities of the financial extreme event pre-

vention which appears to be possible from the perspective of ABMs presented in

other chapters of this dissertation. The original results were published in [A1, A5].

In Chapter 8, we gather up the main results presented in this dissertation.

The numbered chapters are followed by a list of bibliographical references, a

list of publications and presentations by the author of this dissertation, and acknowl-

edgments.
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2 General class of SDEs exhibiting power-
law statistics

A general class of nonlinear SDEs generating signals exhibiting power-law sta-

tistical features was previously proposed, starting from the point process, in a series

of papers by Kaulakys, Ruseckas, Gontis and Alaburda [127–131]. A general expres-

sion for this class of Ito SDEs is given by

d x = σ2
(
η −

λ

2

)
x2η−1 d t + σxη dW , (2.1)

where σ sets timescale, η is noise multiplicativity (nonlinearity) parameter, λ is expo-

nent of power law PDF of x andW is a Wiener process, one-dimensional Brownian

motion.

Different modifications of this general class of SDEs were successfully used to

model trading activity and absolute return of the financial markets [134–136]. This

general class of SDEs was also successfully used to model observables from other

socio-economic systems (e.g., internet traffic [137, 138]) as well as other, not socio-

economic, systems (e.g., music [139], word occurrences [140], diffusion in non-

homogeneous media [141, 142]) suggesting that the modeled phenomena is rather

general and that the SDE, given by Eq. (2.1), captures the general essence of 1/ f

noise.

SDE (2.1) is mostly identical to SDE proposed in earlier work by Marsh and

Rosenfeld [143]. Furthermore this SDE may be also transformed, using Ito vari-

able substitution formula [119] or simply fixing certain parameter values, into other

well known stochastic processes, such as Bessel, Cox-Ingersoll-Ross or CEV pro-

cesses [144]. The important difference from these previous works is that Kaulakys,

Ruseckas, Gontis and Alaburda in their works considered η > 1, while established

econometrical models tend to consider η ≤ 1 [145].
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2.1 Numerical solution of SDEs

2.1.1 Euler-Maruyama and Milstein methods for SDEs

Let us write a general form of SDE as:

d x = A(x ) d t + B (x ) dW , (2.2)

here A(x ) is a drift function and B (x ) is a diffusion function. The simplest method

used to numerically solve SDE is based on a simple method used to numerically solve

ODEs, Euler method [146]. Application of Euler method to SDEs is referred to as

Euler-Maruyama method [118, 147]. The iterative difference equation, when using

this method, might take the following form:

x i+1 = x i + A(x i )∆t + B (x i )∆W . (2.3)

The iterative difference equation above has similar form, compared to the it-

erative difference equation obtained for ODE, with the only difference being W

process. We known that it stands for a Wiener process, or in other words one-

dimensional Brownian motion, it describes path (time evolution of coordinate) of

the one-dimensional particle hit by some random force. Central limit theorem sug-

gest that collective influence of many independent random factors follows the Gaus-

sian distribution, thus it is expected that the changes of particles coordinate will also

follow the Gaussian distribution. The standard deviation of the distribution will de-

pend on the size of time step, ∆t , actually it is known that the standard deviation will

increase as a square root of time step width. In such case we can write the difference

equation, which is identical in distribution to Eq. (2.3), as follows [118, 147]:

x i+1 = x i + A(x i )∆t + B (x i )
√
∆t ζi, (2.4)

where ζi is a Gaussian random variable with zero mean and unit variance. In hand-

books this difference equation is frequently referred to as Euler-Maruyama approxi-

mation, or Euler-Maruyama method for SDEs, [118, 147].

Another classical handbook method is Milshtein method [118,147]. Using this

method iterative difference equation takes the following form,

x i+1 = x i + A(x i )∆t + B (x i )
√
∆t ζi +

1
2
B (x i ) *

,

d B (x )
d x

�����x=x i
+
-

(
ζ 2
i − 1

)
∆t . (2.5)
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The fourth term on the right hand side provides enhanced precision. Using this

method the error scales with ∆t instead of
√
∆t as in Euler-Maruyama method. Yet

solving Eq. (2.1) using them or higher-order methods would still require use of ex-

tremely small ∆t which would increase computation times beyond the feasible.

2.1.2 Variable time step method

Note that in Eq. (2.1) both drift, A(x ), and diffusion, B (x ), functions are

power-law. Thus while solving Eq. (2.1) numerically using Euler-Maruyama or Mil-

shtein methods it appears that time series of x at some point “explode”. Although

decreasing ∆t appears to provide stability to numerical computations. But one can-

not decrease ∆t indefinitely as computation times grow unreasonably large.

Based on these observation it is rather natural to propose to scale ∆t based on

the value of x . Namely, if x is small, then its changes are small (the value changes

slower), thus larger ∆t values are able to provide sufficient precision. If x is large, then

its changes become larger (the value changes faster), thus ∆t should grow smaller.

Thus in general case, building on the Euler method,

x i+1 = x i + A(x i )ℎ(x i ) + B (x i )
√
ℎ(x i )ζi, (2.6)

ti+1 = ti + ℎ(x i ). (2.7)

From the previous experience of solving Eq. (2.1) [127,130,131], it appears that ℎ(x )

should be chosen so that in the x → ∞ limit it linearizes drift and diffusion terms:

A(x )ℎ(x ) ∝ x a, a ≤ 1 and B (x )
√
ℎ(x ) ∝ xb, b ≤ 1. (2.8)

In case of Eq. (2.1) [127, 130, 131]:

ℎ(x ) = κ2x2−2η, (2.9)

where κ is a precision parameter which should be positive and at smaller than 1.

Consequently difference equations solving Eq. (2.1) would take the following form:

x i+1 = x i + κ2
(
η −

λ

2

)
x i + κx iζi, (2.10)

ti+1 = ti + κ2x2−2η . (2.11)

29



Note that for η > 1 in the limit of small x , x → 0, ℎ(x ) diverges to infinity.

Thus, and as usually we need time series sampled at certain period T , it is natural to

restrict ℎ(x ) using min function:

ℎ(x, t ) = min(κ2x2−2η, jT − t ), where j = min{x : xT > t, x ∈ N}. (2.12)

Another possible alternative is to use original ℎ(x ) and interpolate to obtain the

discretized time series. But this alternative is too tedious to implement, thus we stick

with the simpler algorithm.

2.2 Power-law steady state PDF
Steady state PDF of x , generated by SDE (2.1), can be shown to follow power-

law distribution. In most handbooks (e.g. [117–119]) for stochastic calculus one will

find the following general formula:

ps t (x ) =
C

B2(x )
exp

[
2
∫ x A(s)

B2(s)
d s

]
, (2.13)

here
∫ x f (y) d y = F (x ) (where F is a primitive function of f ), A(x ) is drift func-

tion and B (x ) is a diffusion function of the SDE for x . Note that the formula holds

only if stationary PDF exists, if it does not exists the expression above will, most

probably, still provide a result, yet it will be incorrect. E.g., standard Brownian

motion, A(x ) = 0 and B (x ) = 1, has no stationary distribution, but the equation

above provides us with the result ps t (x ) = 1. So due caution should be exercised

and analytical results should be carefully compared to basic intuition and numerical

results.

By putting appropriate terms from Eq. (2.1) into it the following is obtained:

ps t (x ) =
C
x2η exp

[
2
(
η −

λ

2

) ∫ x d s
s

]
=

=
C
x2η exp [

(
2η − λ

)
ln(x )] =

C
x2η exp

[
ln(x2η−λ )

]
= C x−λ . (2.14)

Thus stationary distribution of time series generated by SDE (2.1) is inverse power-

law with the exponent λ. We compare this analytically obtained expression with

numerical results further in Figure 2.2.

Note that the obtained PDF (2.14) contains normalization constant C . For

1 < λ it is impossible to obtain the exact expression for it as the normalization
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integral is divergent. In numerical simulations it is clearly seen that solutions of SDE

(2.1) tend to get stuck at x = 0. In other words x = 0 absorbs the trajectories. Thus

one needs to introduce boundary conditions, limit the possible x values, to prevent

this.

Even if we solve the normalization integral divergence problem by introducing

reflective boundary from the side of small values, the n-th moments of the power-

law distribution will still diverge for all n which satisfy λ ≤ 1 + n. In order to

have distribution with all finite moments we need to introduce reflective boundary

condition from the side of large values as well. This boundary condition can be seen

to arise from real-life considerations, in [141] it was shown that if noise is correlated

on short time scales, then this restriction emerges as a side effect. The upper bound

restriction is also necessary in order for drift and diffusion functions to be Lipshitz

continuous [118, 147].

There are three simple ways to implement the restrictions: introduce boundary

conditions, exponential cutoffs or “zero” fluctuations.

Let us start by discussing introduction of boundary conditions. For example,

one may introduce reflective boundary conditions at some minimum value x = xmin

and at maximum value x = xmax . In this case stationary PDF will have the same

form as given in Eq. (2.1), if x ∈ [xmin, xmax ], and will be equal to zero otherwise.

Integration constant, in this case, will be given by:

C =
1 − λ

x1−λ
max − x1−λ

min
. (2.15)

As mentioned introduction of exponential cutoffs is viable alternative to reflec-

tive boundary conditions. One of the ways to do it is to modify the drift function of

SDE (2.1) in a following way:

Ax (x ) = σ2
[
η −

λ

2
+
m
2

( xmmin
xm
−

xm

xmmax

)]
x2η−1, (2.16)

here m sets the steepness of the cutoff (in general m > 0). In the modified case
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stationary PDF has the following form, by using Eq. (2.13) and Eq. (2.14):

ps t (x ) = C x−2η exp


2
∫ x η − λ

2 +
m
2

(
xmmin
sm −

sm
xmmax

)
s

d s


=

= C x−λ exp
[
m

(∫ x xmmin
sm−1

d s −
∫ x sm−1

xmmax
d s

)]
= (2.17)

= C x−λ exp
[
−
xmmin
xm
−

xm

xmmax

]
.

With these restrictions probability to observe x outside of vicinity of [xmin, xmax ]

decreases rapidly. Thus normalization integral no longer diverges and thus expression

for C may be obtained:

C =
m
2

(xmax xmin)
λ−1
2 K −11−λ

m


2
(
xmin
xmax

) m
2 
, (2.18)

where Kn (z ) is a modified Bessel function of the second kind [148].

Let us modify SDE (2.1) by introducing “zero” fluctuations. The modified

SDE may take the following form:

d x = σ2
(
η −

λ

2

) (
1 + x2

)η−1
x d t + σ

(
1 + x2

) η
2 dW . (2.19)

The diffusion function of this SDE as x → 0 approaches a certain fixed value, σ,

and not zero as in SDE (2.1) case. Consequently in this case additive noise facilitates

diffusion around x = 0. In this case stationary PDF has a form of a q -Gaussian [149],

or alternatively Student’s t [150], distribution:

ps t (x ) = C
(

1
1 + x2

) λ
2

= C expq

(
−
λx2

2

)
. (2.20)

In this case normalization integral no longer diverges and expression for C may be

obtained:

C =
Γ

(
λ
2

)
√
πΓ

(
λ−1
2

) . (2.21)

This case is especially interesting as there is some agreement that distributions of

some financial variables, e.g., absolute return, are well fitted by q -Gaussian distribu-

tion [135, 149].
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Figure 2.1: PDFs obtained by numerically solving SDE (2.1) with reflective bound-
aries, exponential cut-offs and “zero” fluctuations (reflective boundary placed at xmax ).
Parameters were set as follows: σ2 = 1, η = 2, λ = 3, xmin = 1, xmax = 103. Time
series were sampled with period T = 10−5.

As you can see in Figure 2.2 reflective boundary conditions (squares) simply re-

move any probability to observed x outside [xmin, xmax ] range. Exponential cutoffs

have a similar effect, with the probability to observe x decreasing exponentially fast

outside the [xmin, xmax ] range. In case of “zero” fluctuations we have flat, instead of

power-law, PDF for x � 1.

2.3 Power-law PSD
The PSD of the time series obtained by solving SDE (2.1) might be obtained

by considering the approximate scaling properties of the signals [151]. The Wiener

process, one-dimensional Brownian motion, is known to scale as

dWat
d
= a1/2 dWt . (2.22)

Here X d
= Y implies that the random variables, or the processes, X and Y follow the

same distribution.

This implies that scaling of the variable and scaling of time may be equivalent

in statistical sense. Namely, when considering Eq. (2.1), two identical SDEs are

obtained as a result of both transformations

x s = ax, or ts = a2η−2t . (2.23)

More generally this scaling relationship can be rewritten as identity for the transition

probabilities (the conditional probability that at time t the process is in the state x′

with the condition that at time t = 0 the was in the state x ):

ap (ax′, t |ax, 0) = p (x′, a2η−2t |x, 0). (2.24)
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This scaling property together with a general form of the steady state PDF,

p (x ) ∼ x−λ , leads to the PSD with power-law behavior [151]:

S ( f ) ∼
1
f β
, β = 1 +

λ − 3
2η − 2

. (2.25)

The restrictions imposed on a diffusion of x , as discussed in Section 2.2, make

relationship Eq. (2.24) only approximate. Consequently the obtained result, Eq. (2.25),

is applicable only in a certain finite range of frequencies, fmin � f � fmax . Note

that this result is rather natural as obtaining PSD with pure 1/ f β power-law behav-

ior would indicate that time series contain a signal with infinite power which itself

is physically impossible. The frequency ranges, for which Eq. (2.25) holds, where

estimated for the reflective boundary conditions in mind [151]:

σ2x2η−2
min � 2π f � σ2x2η−2

max , for η > 1, (2.26)

σ2x2−2η
max � 2π f � σ2x2−2η

min , for η < 1. (2.27)

It should be evident that the width of the frequency range becomes broader with

the increasing ratio between the maximum and the minimum reflective boundary

positions,

w β =
fmax

fmin
=

(
xmax

xmin

)2η−2
, for η > 1, (2.28)

w β =
fmax

fmin
=

(
xmin
xmax

)2−2η
, for η < 1, (2.29)

as well as with increasing |η − 1|. If η = 1, then SDE (2.1) describes Geometric

Brownian motion. PSD of Geometric Brownian motion is Brownian-like, S ( f ) ∼

1/ f 2, thus, in this case, it is known that the width of frequency range in which

Eq. (2.25) holds is zero.

Using Eq. (2.25) predictions we can see that a theoretically interesting case, 1/ f

noise, can be recovered with λ = 3 and η , 1. In Figure 2.2 we have demonstrated

this using the three possible boundary conditions, considered in Section 2.2.

Also to show that Eq. (2.25) predictions work well for other possible β, we

have selected three parameter sets to obtain power-law PSDs with distinct β. All

parameters are kept the same except λ which is equal to 3, 3.6 and 4.2. Thus PSDs

with β = 1, 1.3 and 1.6 can be observed in Figure 2.3.
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Figure 2.2: PSDs obtained by numerically solving SDE (2.1) with reflective boundaries,
exponential cut-offs and “zero” fluctuations (reflective boundary placed at xmax ). Pa-
rameters were set as follows: σ2 = 1, η = 2, λ = 3, xmin = 1, xmax = 103. Time series
were sampled with period T = 10−5.
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Figure 2.3: PSDs with different β obtained from time series generated by SDE (2.1)
with reflective boundary conditions. Parameters were set as follows: λ = 3 (squares),
3.6 (circles) and 4.2 (triangles), σ2 = 1, η = 2, xmin = 1, xmax = 103. Time series
were sampled with period T = 10−5. Black lines represent expected power-law fits:
1/ f (black line behind the squares), 1/ f 1.3 (black line behind the circles) and 1/ f 1.6

(black line behind the triangles).
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2.4 Double stochastic model for absolute return

The class of SDEs based on Eq. (2.1) is able to reproduce power-law PDF and

power-law PSD, but the actual empirical PSD of high-frequency absolute return is

fractured. Namely, the empirical PSD may be approximated by two power-law

functions having different exponents, β. In a series of papers by Gontis and oth-

ers [134, 135, 152] it was shown that both trading activity and absolute return can

be modeled by considering a more sophisticated, in comparison with Eq. (2.1), SDE

having two exponents of noise multiplicativity (two different η values).

It was proposed that absolute return may be modeled by solving the following

SDE [135]

d x = σ2

η −

λ

2
−

(
x

xmax

)2

(1 + x2)η−1(
ε
√
1 + x2 + 1

)2 x d t+

+ σ
(1 + x2)

η
2

ε
√
1 + x2 + 1

dW . (2.30)

Here the parameter ε divides the diffusion area of absolute return, x , into two re-

gions with different noise multiplicativity exponents. Note that if x � 1/ε , then

the effective exponent of noise multiplicativity is η − 1, while for 1 � x < 1/ε the

effective exponent of noise multiplicativity is just η . The existence of two diffusion

regions with different noise multiplicativity creates PSD with fracture, i.e. one ap-

proximated by two power-law functions. As we are interested in absolute returns,

defined for x > 0, the reflective boundary condition should be placed at x = 0.

Yet the problem with SDE (2.30) is a fact that the PSD exponents, β, are higher

than empirical ones. To solve this problem it was proposed, in [135], to introduce

a secondary stochastic process, q -Gaussian noise. Similarly trading activity model

[134] uses Poisson noise as secondary stochastic process. The time series obtained

by solving SDE (2.30), x (t ), is assumed to modulate the instantaneous q -Gaussian

fluctuations, ζq . x is embed into r0 parameter of a q -Gaussian distribution [135]:

rT (t ) = ζq {r0(t,T ), λ2}, (2.31)

whereT defines return window width. In general, the modulated parameter r0 might

be seen as measuring the instantaneous volatility of the high frequency return fluc-

tuations. Through the analysis of empirical data, presented in [135], the following
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relation to x was established:

r0(t,T ) = 1 +
r̄0
σ2T

σ2(t+T )∫
σ2t

x (k)dk, (2.32)

here we have two empirically determined parameters: r̄0 might be seen as something

similar to signal-to-noise ratio, while σ2 allows to align physical time, t , and scaled

model time, ts . Both of the parameters are determined by comparing model and

empirical PSDs. These numerical simulations demonstrate that secondary stochastic

process may help to adjust the exponents of PDF and PSD.
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Figure 2.4: PDF (a) and PSD (b) of absolute return time series obtained from the
double model (black curves) versus PDF (a) and PSD (b) of empirical one-minute
absolute return time series (gray curves). Empirical PDF and PSD were obtained by
averaging them over 26 stocks. The following model parameters were used: σ2 =

1/6 · 10−5 s−1, η = 2.5, λ = 3.6, ε = 0.017, xmax = 103, τ = 60 s, r̄0 = 0.4, λ2 = 5.

2.5 Summary
In this chapter we have briefly discussed a general class of nonlinear SDEs

proposed in earlier series of papers by Kaulakys, Ruseckas, Gontis and Alaburda

[127–131]. Models built on this class of nonlinear SDEs generate time series ex-

hibiting power-law PDF and PSD. Furthermore double stochastic model of absolute

return generates time series exhibiting PDF and PSD similar to the empirical PDF

and PSD of absolute return.

In this chapter we have also discussed some general analytical and numerical

techniques which are used in the following chapters of this dissertation.
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3 Power-law bursting behavior
In most econometric analysis the exponent of noise multiplicativity (corre-

sponding to η in SDE (2.1)) is assumed to be slightly smaller than or equal to 1 [144].

This might be related to a general Lipshitz requirement applied to SDEs [118,147] as

well as other related econometric assumptions such as existence of the unique martin-

gale measure [153]. Though there are noteable works which show that the financial

market models with η > 1 perform better than those with η ≤ 1 [134–136,145]. The

main reason behind this might be seen to be the natural tendency of the models with

η > 1 to “explode” or burst [154]. These burst events might be compared to the

flash-crashes observed in the real financial markets [132, 155, 156] and thus the com-

parison between the model, driven by SDE (2.1), bursting behavior and empirical

bursting behavior would be relevant.

3.1 Definition of bursting behavior

We define a burst as a set of points belonging to the time series, x (t ), and lying

above the fixed threshold, ℎx . Adjacent points lying above the threshold are assumed

to be a part of a single continuous burst. Similar logic applies to adjacent points lying

bellow the threshold, they are assumed to be a part of a single continuous inter-burst

period.

0

hx

xmax

�1 �2 �3

x(
t)

�

S

Figure 3.1: An example burst observed in a certain time series x (t ).

In Figure 3.1 we have plotted a simple example of a burst observed in certain

time series, x (t ) (consequently the threshold is denoted as ℎx ). Three random thresh-

old passage times, τ1, τ2 and τ3, are shown. As you can see in the figure a single burst

by itself may be described by its duration, T = τ2 − τ1, maximum value reached
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during the burst, xmax , and so-called burst size, S , which is defined as the area above

the threshold yet bellow the actual curve of the time series (area highlighted using x

pattern in the Figure 3.1). One can also consider inter-burst, θ = τ3 − τ2, (time inter-

val in which no burst is observed) and waiting, τ = τ3 − τ1, (time interval between

the start times of two consecutive bursts) times to be able to fully cover as many

statistical features, of bursty behavior, as possible.

3.2 Obtaining statistical properties of bursty be-
havior from empirical and numerical time se-
ries

In this chapter we consider bursty behavior of three different sources: a nonlin-

ear SDE (2.1), a sophisticated double stochastic model, discussed in Section 2.4, and

empirical data from NYSE.

The used empirical data set includes tick by tick data of 26 different stocks

traded on NYSE since January, 2005 to March, 2007. Price time series were sampled

from tick by tick data at one minute intervals. One-minute absolute return time

series were obtained from the price time series. Absolute return time series were

normalized in respect to the standard deviation of the return time series. Moving

average filter, with window size of one hour, was used to remove instantaneous noise

after the normalization procedure.

The nonlinear SDE time series were obtained by numerically solving SDE (2.1)

with exponential cutoff from the small value side, xmin = 1. As the nonlinear SDE is

not able to reproduce exact statistical features of the empirical absolute return time

series we have set parameters values using the following logic. We have set λ = 4

as it is well known that empirical PDFs have power-law tail with exponent values

scattered around 4. We have set η = 2 seeing it lying between η = 2.5 and 1.5 which

are present in a more sophisticated double stochastic model (discussed in Section 2.4).

We chosen σ2 value to be the same as the one used in sophisticated double stochastic

model (discussed in Section 2.4).

Double stochastic model time series were obtained as discussed in Section 2.4,

by solving SDE (2.30) and applying q -Gaussian noise. To keep comparison with

empirical data consistent we have used moving average filter in the same manner as
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with empirical data.

3.3 Analytical treatment of the burst duration

First hitting (passage) time framework is well established mathematical frame-

work used by mathematicians [144, 157] as well as physicists [119, 158]. This frame-

work appears to be applicable to the problem of burst durations as first hitting time

of the stochastic process starting on the threshold (infinitesimally above it) might be

seen as being the same as burst duration. This is true by the definition as the first

passage of threshold ends the burst.

Despite the fact that the framework is well established, models for which hit-

ting times are explicitly known are few. Furthermore most of these models are

relatively simple. Such models include, but are not limited to, Brownian motion,

Geometric Brownian motion and Bessel process [144, 157]. As there are no general

tools that could provide sufficient results related to the burst duration of SDE (2.1),

the only way to solve the problem is to reduce it to the one with known result. It

appears that after variable transformation SDE (2.1) can be transformed into Bessel

process.

The Bessel process is a stochastic process describing time evolution of Euclidean

norm of N -dimensional Brownian particle,

R(t ) = ���
��� ~W (t )(N ) ���

��� =

√√√ N∑
i=1

W 2
i (t ). (3.1)

The same process may be modeled using the following SDE:

d R =
N − 1

2
d t
R
+ dW =

[
ν +

1
2

]
d t
R
+ dW . (3.2)

In the above ν is the so-called index of the Bessel process which relates to the number

of dimensions as

ν =
N
2
− 1. (3.3)

SDE (2.1) may be reduced to the Bessel process by using appropriate Lamperti

transformation. Namely, we require that after changing the current variable x to a

new variable y, ` : x 7→ y (x ), the diffusion function in the newly obtained SDE
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should not depend on the new variable. Using the Ito variable substitution formula

[119] we obtain the following ODE

xη
d

d x
y±(x ) = ±1. (3.4)

Note that here we used both plus and minus signs as dW and − dW are statistically

equivalent.

It should be evident that the solution of Eq. (3.4) is given by:

y±(x ) = ∓
1

(η − 1)xη−1
. (3.5)

As we are interested in η > 1, the only solution with actual physical meaning is y−.

Consequently the Lamperti transformation, in our case, should have the following

form

` : x 7→ y (x ) =
1

(η − 1)xη−1
. (3.6)

Applying the obtained transformation to the drift function of SDE (2.1) results

in:

Ay = Ax
d y (x )
d x

+
1
2
B2
x
d2 y (x )
d x2 =

λ − η

2
xη−1 =

λ − η

2η − 2
1
y
. (3.7)

As diffusion function should be definitely equal to −1 (implied by Eq. (3.4)) and the

minus sign might be “absorbed” into dW (due to statistical equivalence), the simple

SDE (2.1) is reduced to the Bessel process,

d y =
(
ν +

1
2

)
d t
y
+ dW , (3.8)

with index ν = λ−2η+1
2(η−1) . The corresponding dimension of this Bessel process is given

by N = λ−1
η−1 .

So the stochastic process described by SDE (2.1) can be reduced to the Bessel

process, thus we can move forward by expecting to use some known results related

to the Bessel process. Any burst should have some starting time t0. By definition

at this very moment the stochastic process should just have crossed the threshold

and is slightly above it, x (t0) > ℎx . The burst will last until at some time t the

process will cross back the threshold ℎx from the above. In terms of Bessel process

dynamics are inverted: the burst will start with y being infinitesimally bellow ℎy
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(whete ℎy := `(ℎx )) and end when y will cross ℎy from bellow. So the burst duration

T is defined as a first passage time of stochastic process starting above threshold ℎy :

T = τ (ν )
y0,ℎy
= inf

t>t0

{
t − t0, y (t ) ≥ ℎy

}
, 0 < ℎy − y0 � 1. (3.9)

As given in [157], the following holds for 0 < y0 < ℎy :

ρ (ν )
y0,ℎy

(T ) =
ℎν−2y

yν0

∞∑
k=1

jν,k Jν
(
y0
ℎy
jν,k

)
Jν+1( jν,k )

exp *.
,
−
j2
ν,k

2ℎ2
y
T +/

-
, (3.10)

here ρ (ν )
y0,ℎy

(T ) is a PDF of the first passage time at level ℎy of Bessel process with

index ν starting from y0, Jν is a Bessel function of the first kind (the properties of

this function is discussed in [159, 160]) of order ν and jν,k is a k-th zero of Jν (the

concept of Bessel function zeros is discussed in [159, 161]).

Note that if y0 → ℎy , then ρ (ν )
y0,ℎy

(T ) → 0. This result might be expected as

stochastic process placed on the threshold crosses it instantaneously. In order to avoid

this trivial convergence. Let us assume that the burst duration PDF is the following

limit of ρ (ν )
y0,ℎy

(T ):

p (ν )
ℎy

(T ) = lim
y0→ℎy

ρ (ν )
y0,ℎy

(T )

ℎy − y0
. (3.11)

To evaluate this limit we expand Bessel function, Jν
(
y0
ℎy
jν,k

)
, around y0

ℎy
= 1. We use

Taylor series dropping all terms above the second order terms:

Jν
(
y0

ℎy
jν,k

)
≈ Jν ( jν,k ) −

(
1 −

y0

ℎy

) [
ν Jν ( jν,k ) − jν,k Jν+1( jν,k )

]
=

=

(
1 −

y0

ℎy

)
jν,k Jν+1( jν,k ). (3.12)

Note that some terms were also dropped as by definition Jν ( jν,k ) = 0 for all integer

k.

By putting this expansion into Eq. (3.11), the form of burst duration PDF

becomes noticeably simpler:

p (ν )
ℎy

(T ) = C1

∞∑
k=1

j2
ν,k exp *.

,
−
j2
ν,k

2ℎ2
y
T +/

-
, (3.13)
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hereC1 is a normalization constant. Yet this expression can still be further simplified

by taking a note that Bessel zeros, jν,k , are almost equally spaced [159, 161]. This

simple notion allows us to roughly approximate the infinite sum by integration

p (ν )
ℎy

(T ) ≈ C2

∫ ∞

jν,1
x2 exp *

,
−
x2T
2ℎ2

y

+
-
d x =

= C2



ℎ2
y jν,1 exp

(
−

j2
ν,1T
2ℎ2

y

)
T

+

√
π

2

ℎ3
y erfc

(
jν,1
√
T

√
2ℎy

)
T 3/2



. (3.14)

Note that the asymptotic behavior of the obtained PDF as T → 0 is divergent, thus

normalization constant cannot be defined unless some minimum value of T is set.

Time domain accuracy of the numerical simulation or some minimum inter-trade

time (time tick size) might be considered as a viable choices. Asymptotic behavior

of the burst duration PDF is rather clear for other values of T :

p (ν )
ℎy

(T ) ∼ T −3/2, when 0 < T �
2ℎ2

y

j2ν,1
, (3.15)

p (ν )
ℎy

(T ) ∼
exp

(
−

j2
ν,1T
2ℎ2

y

)
T

, when T �
2ℎ2

y

j2ν,1
(3.16)

The obtained result is in agreement with a general property of the diffusion

processes discussed in [158]. Namely, the asymptotic behavior of first hitting times

is expected to be power-law T −3/2 for all one dimensional stochastic processes. Note

that using Ito variable transformation formula we can transform SDE (2.1) into CIR

process, for which hitting times are also well known [162].

The exponential cutoff may be explained as a result of the positive drift term

of the Bessel process when N > 1 (ν > −0.5). The Bessel process is known to

be transient for N ≥ 2 (ν ≥ 0), namely, there is non-zero probability that the

process will not visit the same state again. This is easily understood from the physical

interpretation of the Bessel process: the higher dimensionality of Brownian particle,

the higher the probability that it will randomly move away from the origin.

As it is shown in Figure 3.2 the numerical results, obtained by solving Eq. (2.1)

with exponential cut-off from small value side, confirm that the burst duration PDF

is well approximated by Eq. (3.14). We have neglected the exponential cut-off in the

analytical derivations above, but it does not play a major role as long as xmin < ℎx .

44



10-12

10-9

10-6

10-3

100

101 102 103 104 105 106

p(
T

)

T, s

Figure 3.2: Burst duration PDF of a nonlinear SDE time series (squares, circles and tri-
angles) compared to analytical predictions for respective parameter sets (gray curves).
The model parameters were set as follows: σ2 = 1/6 · 10−5s−1, λ = 4, η = 2.5 (squares;
corresponds to ν = 0), η = 2 (circles; ν = 0.5) and η = 1.5 (triangles; ν = 2). The
threshold was set as follows: ℎx = 2.

Empirical burst duration PDF, Figure 3.3, shows a bit more sophisticated be-

havior, note the cusp between 103 s and 104 s. This is the only essential discrepancy

which may be explained by the fact that we have used moving average filter, while

preparing the time series for the analysis. This assumption is confirmed by the fact

that time series obtained from the double model, which were also affected by the

moving average filter, exhibit the same PDF of burst duration. Interestingly enough,

a double model without either q -Gaussian or moving average filter is not enough to

reproduce empirical burst duration PDF.
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Figure 3.3: Empirical burst duration PDF (gray curve) compared to a double model
burst duration PDF when q -Gaussian noise and moving average filter are not applied
(empty squares) and when q -Gaussian noise and moving average filter are applied (filled
squares). The double model parameters were set as follows: σ2 = 1/6 ·10−5s−1, λ = 3.6,
η = 2.5, ε = 0.017, xmax = 103, r̄0 = 0.4, λ2 = 5. The threshold was set as follows:
ℎx = 2.
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3.4 Power-law scaling in geometric properties of
bursts

As bursting behavior is caused by large fluctuations, which follow power-law

distribution, it is natural to expect that the geometrical properties of the bursts

should scale as power-law. Analysis of empirical data and time series generated by

solving Eq. (2.1) confirms this fact. It appears that the three variables describing

single burst, burst duration, peak value and burst size, are interdependent and their

interdependence is of power-law nature. Namely, xmax ∝ T 2
3 (see Figure 3.4), S ∝ T 5

3

(see Figure 3.5) and consequently S ∝
(
x

3
2
max

) 5
3
∝ x

5
2
max (see Figure 3.6).
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Figure 3.4: The scatter plot of the SDE (2.1) (a) and empirical (b) burst peak values,
xmax , vs burst durations, T . In both sub-figures filled squares represent median values,
while error bars indicate minimum and maximum values, in the vicinity of a given
point. Grey curves provide power-law fits with α = 2

3 . The parameters of SDE (2.1)
were the same as in Figure 3.2. The threshold was set as follows: ℎx = 2.
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Figure 3.5: The scatter plot of the SDE (2.1) (a) and empirical (b) burst size, S , vs
burst durations, T . In both sub-figures filled squares represent median values, while
error bars indicate minimum and maximum values, in the vicinity of a given point.
Grey curves provide power-law fits with α = 5

3 . The parameters of SDE (2.1) were the
same as in Figure 3.2. The threshold was set as follows: ℎx = 2.
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Figure 3.6: The scatter plot of the SDE (2.1) (a) and empirical (b) burst size, S , vs
burst peak values, xmax . In both sub-figures filled squares represent median values,
while error bars indicate minimum and maximum values, in the vicinity of a given
point. Grey curves provide power-law fits with α = 5

2 . The parameters of SDE (2.1)
were the same as in Figure 3.2. The threshold was set as follows: ℎx = 2.

Note that power-law interdependencies hold well for broader ranges in the non-

linear SDE time series than in the empirical data. This may happen because the em-

pirical data is distorted by instantaneous fluctuations and tick sizes (time, price and

thus return). Power-law interdependency is weakest for the (S, xmax ) pair.

3.5 Summary
In this chapter we have compared bursting behavior of absolute return ob-

served in empirical data of 26 NYSE stocks with bursting behavior observed in time

series generated by the stochastic models discussed in Chapter 2. Besides the demon-

strated similarity between burst duration PDFs, the most important highlight of

this chapter is the obtained analytical approximation of burst duration PDF. This

approximation was derived from the SDE (2.1), but works reasonably well as a fit

for the burst duration PDF observed in empirical data and time series obtained by

evaluating double stochastic model.

Furthermore we have found that power-law scaling behavior between the three

main variables related to burst geometry. Similar power-law scaling behavior was ob-

served both in empirical absolute return time series as well as in time series obtained

by solving SDE (2.1).
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4 Nonlinear GARCH(1,1) process exhibit-
ing power-law statistics

Slightly more than 50 years ago mathematician Benoit B. Mandelbrot, econ-

omist Eugene F. Fama as well as other contemporaries proposed a novel idea that

market volatility fluctuations might be responsible for the intermittent nature of the

observed market dynamics [163–165]. In more recent works intermittency is related

to volatility clustering phenomena [166–168]. It is believed that modeling evolution

of the second-order moment, referred to as heteroskedasticity [169–172], of the fi-

nancial observables may replicate the same intermittent nature and thus enable the

improvement of performance of option-price, and related, models [19, 173–175].

ARCH family models [19,169–175] are widely used by the practitioners to pro-

vide future forecasts based on the recent historical data. Namely, these models are

special as their parameters are usually estimated directly from the data itself. This is

rather sophisticated process as ARCH family models have explicitly built-in memory

the next state of the system may depend not only on the current state, but also on

previous states. SDEs, on the other hand, are much simpler as there is no explicitly

built-in memory – the next state of the system is assumed to depend only on the

current state. Nevertheless the general form of the iterative equations used to numer-

ically implement ARCH family models as well as numerically solve SDEs, Eq. (2.4),

are somewhat similar. This similarity allows to propose certain transformations of

ARCH process which reproduce power-law behavior similar as in the case with SDE

(2.1).

In numerous previous works it was demonstrated that the built-in memory of

ARCH family models (such as FIGARCH) enables reproduction of power-law auto-

correlations [66, 176–180]. Unlike these works here we will consider only memory-

less, dependent only on the current state (or alternatively Markovian), GARCH pro-

cesses.

4.1 Linear GARCH

In a seminal articles [169–171] economists Robert F. Engle and Tim Bollerslev

proposed an idea that certain heteroskedastic economic variables (e.g., return and
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trading activity in the financial markets) maybe modeled as a multiplicative product

of stochastic part, ωt and time dependent standard deviation (i.e. volatility), σt :

z t = σtωt . (4.1)

Here, in general, ωt might follow any distribution, but most commonly it is assumed

to follow Gaussian distribution, though other alternatives are also possible [181–

184]. Here we will assume that ωt follows Gaussian distribution with zero mean

〈ωt 〉 = 0 and unit variance 〈ω2
t 〉 = 1.

In general, temporal evolution of the standard deviation in GARCH family

models is described using the following iterative equation [170]:

σ2
t = a +

p∑
i=1

biσ2
t−iω

2
t−i +

q∑
i=1

ciσ2
t−i, (4.2)

where a, bi and ci are model parameters (it is required that a > 0, b ≥ 0 and c ≥ 0):

a represents persisting fluctuations, bi represents strength of feedback loops based on

external observable, ci represents strength of feedback loops based on internal state.

Originally Engle and Bollerslev proposed a model with feedback based only

on the external observable, defined by Eq. (4.1), [169] (this model is referred to

ARCH(p)). But a few years latter in [170] they generalized original ARCH model by

adding feedback based on the volatility itself (this model is referred to GARCH(p,q)).

Note that if either p > 1 or q > 1, then the newly generated state of the model

depends on the prior evolution of the model (namely, the model posses memory).

Consequently if both p = 1 and q = 1, then the volatility time series should posses

no memory effects as in such case the newly generated state depends only on the

current state:

σ2
t = a + bσ2

t−1ω
2
t−1 + cσ

2
t−1. (4.3)

As now we consider only p = q = 1 case, we drop the subscripts which were present

in Eq. (4.2).

The iterative equation (4.3) might be approximated using stochastic calculus,

namely, by the SDE. There are two main approaches to take the diffusion limit

of the GARCH(1,1) process - one by Nelson and the other by Kluppelberg et al.

[185–188]. Nelson’s approach is the simpler of the two, but has a drawback –

the resulting COGARCH(1,1) process is driven by two stochastic processes, while
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the initial GARCH(1,1) is driven by single stochastic process, ωt . Kluppelberg’s

approach doesn’t have this drawback and thus usually is preffered to Nelson’s ap-

proach [187, 188]. But the drawback is irrelevant to us, as we are interested only

in approximating volatility process of GARCH(1,1). Thus further we follow ideas

from Nelson’s paper [185].

As per usual the parameters of the GARCH process are obtained by retro-

fitting empirical time series sampled at fixed discretization period, ℎ. Consequently

the obtained values of the parameters a, b and c are directly dependent on ℎ. To

highlight the dependence on the selected time scale subscript ℎ is added where it is

appropriate:

σ2
kℎ,ℎ = aℎ + bℎσ2

(k−1)ℎ,ℎω
2
(k−1)ℎ,ℎ + cℎσ

2
(k−1)ℎ,ℎ = σ

2
(k−1)ℎ,ℎ+

+ aℎ − (1 − bℎ − cℎ )σ2
(k−1)ℎ,ℎ + bℎσ

2
(k−1)ℎ,ℎ

(
ω2

(k−1)ℎ,ℎ − 1
)
. (4.4)

Consequently subscript representing time, t , was changed to kℎ (where k ∈ N).

As process described by Eq. (4.4) is clearly Markovian, we can easily obtain

mean drift and the second moment of σ2 per unit of time. But first let us note that

random variable ω2 − 1 has the following properties:

〈ω2 − 1〉 = 〈ω2〉 − 1 = 0, (4.5)

〈(ω2 − 1)2〉 = 〈ω4〉 − 2〈ω2〉 + 1 = 〈ω4〉 − 1 = 3(〈ω2〉)2 − 1 = 2. (4.6)

Then the mean drift per unit of time of σ2 equals:

lim
ℎ→0

〈σ2
(k+1)ℎ,ℎ − σ

2
kℎ,ℎ

ℎ

〉
= lim

ℎ→0

[
aℎ
ℎ
−

1 − bℎ − cℎ
ℎ

σ2
kℎ,ℎ

]
= A −Cσ2

t , (4.7)

and in the similar manner the second moment per unit of time equals:

lim
ℎ→0

〈
ℎ−1

(
σ2

(k+1)ℎ,ℎ − σ
2
kℎ,ℎ

)2〉
= lim

ℎ→0
ℎ−1

[(
aℎ − (1 − bℎ − cℎ )σ2

(k−1)ℎ,ℎ

)2
+

+b2
ℎσ

4
(k−1)ℎ,ℎ

〈(
ω2

(k−1)ℎ,ℎ − 1
)2〉
+ 0

]
= (4.8)

= B2σ4
t .

In the above A, B and C are continuous time parameters (we require that A > 0,

B > 0) obtained by expanding implicit dependence of aℎ , bℎ and cℎ on ℎ using

51



Taylor expansion at ℎ → 0:

aℎ = Aℎ, 1 − bℎ − cℎ = Cℎ, 2b2
ℎ = B2ℎ. (4.9)

Using the expressions obtained in Eqs. (4.7) and (4.8) we can write the follow-

ing SDE for yt = σ2
t [185]:

d y = (A −Cy) d t + By dWt =

= B2
(
1 −

λ

2
+

1
2
ymin

y

)
y d t + By dWt , (4.10)

which approximates volatility process of GARCH(1,1). In the above:

λ = 2 +
2C
B2 = 2 +

1 − bℎ − cℎ
b2
ℎ

, (4.11)

ymin =
2A
B2 =

aℎ
b2
ℎ

. (4.12)

Note that these relations were derived and thus hold in the diffusion limit, ℎ →

0. The dependence on aℎ , bℎ and cℎ might be different if they are obtained from

empirical data with larger ℎ. The approximation holds as long as bℎ is small.

Observe that by setting η = 1 in SDE (2.1) we obtain a Geometric Brownian

motion process similar to SDE (4.10). As discussed in Section 2.2 the PDF of y

should have a power-law tail with the exponent λ. The analytical predictions for the

PSD, Eq. (2.25), do not work in this case as they diverge in the limit η → 1, but

from the general properties of Geometric Brownian motion it well known that PSD

of such process should have the S ( f ) ∼ 1/ f 2 form.

4.2 Nonlinear modifications of GARCH(1,1) volatil-
ity process

As SDE (4.10) is a special case of SDE (2.1) with η = 1, it would prove usefull

to generalize mathematical form of GARCH(1,1) so that SDE obtained in the diffu-

sion limit would have η , 1. Furthermore Eq. (2.25) suggests that in such case we

would be able to reproduce larger variety of power-law PSDs. In the previous works

by Gontis and others it was shown that η > 1 case works well for reproduction of

essential statistical properties observed in high-frequency trading activity and abso-
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Figure 4.1: Statistical properties of σ2
t time series obtained by numerically solving

Eq. (4.3): stationary PDF (a) and PSD (b). The following parameter values were used:
a = 0.015, b = 0.1, c = 0.89 (squares), 0.88 (circles), 0.87 (triangles). Black lines
represent expected power-law fits: (a) p (σ2

t ) ∼ (σ2
t )−3 (black line behind the squares),

(σ2
t )−4 (black line behind the circles) and (σ2

t )−5 (black line behind the triangles), (b)
S ( f ) ∼ f −2 (black line).

lute return time series [134–136], although theoretically it was shown that η < 1 case

might be also considered [189].

We consider the following two nonlinear modifications, allowing for η > 1, of

GARCH(1,1) volatility process:

σ2
t = a + bσµ

t−1ω
µ
t−1 + cσ

2
t−1, (4.13)

here µ > 2 is required to be an odd integer, and

σ2
t = a + bσµ

t−1 |ωt−1 |
µ + σ2

t−1 − cσµ
t−1, (4.14)

while in the second case µ may be any real number. Note that in contrast to

GARCH(1,1) process, Eq. (4.3), Eqs. (4.13) and (4.14) do not ensure that σ2
t re-

mains positive. In order to avoid transitions to negative values we put a reflective

boundary at zero, σ2
t = 0.

A similar nonlinear form of the GARCH model was already considered by En-

gle and Bollerslev in [171]. The nonlinear GARCH model considered in the paper

had a form similar to both Eq. (4.13) and Eq. (4.14). The difference in comparison

with Eq. (4.13) was that Engle and Bollerslev took a modulus ofωt−1 was taken prior

to raising it to a generalized power µ (changeωµ
t−1 to |ωt−1 |

µ ). The difference in com-

parison with Eq. (4.14) was the lack of σµ
t−1 term. By fitting the nonlinear GARCH

model to empirical data Engle and Bollerslev found that for the most considered

time series µ / 2 and thus concluded that linear GARCH models are sufficient for

the most cases.
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Another attempt at studying the properties of nonlinear GARCH models was

done by Higgins and Bera in [190]. Their approach is different in a sense that they

considered evolution of higher order moment, σµ
t , and not variance, σ2

t .

Some other GARCH models propose to include different functions dependent

on past variances, σ2
t−1, or observables, z t−1, [175]. In this context it is worthwhile

to note that the last two terms of Eq. (4.14) can be seen as a Taylor series expansion

of a function, f (σt−1).

4.2.1 The diffusion limit of Eq. (4.13)

Lets proceed in a similar fashion as in Section 4.1. As before the time series

sampling may be taken into account by rewriting the iterative equation (4.13) as

follows:

σ2
kℎ,ℎ = σ

2
(k−1)ℎ,ℎ + aℎ − (1 − cℎ )σ2

(k−1)ℎ,ℎ + bℎσ
µ

(k−1)ℎ,ℎω
µ

(k−1)ℎ,ℎ . (4.15)

Recall that here µ is odd integer larger than 2. Thus we have 〈ωµ〉 = 0 and let us

choose the following notation ω̂µ = 〈ω
2µ〉.

In this case the mean drift per unit of time of σ2 equals:

lim
ℎ→0

〈σ2
(k+1)ℎ,ℎ − σ

2
kℎ,ℎ

ℎ

〉
= lim

ℎ→0

[
aℎ
ℎ
−

1 − cℎ
ℎ

σ2
kℎ,ℎ

]
= A −Cσ2

t , (4.16)

and in the similar manner the second moment per unit of time equals:

lim
ℎ→0

〈
ℎ−1

(
σ2

(k+1)ℎ,ℎ − σ
2
kℎ,ℎ

)2〉
= lim

ℎ→0
ℎ−1

[(
aℎ − (1 − cℎ )σ2

kℎ,ℎ

)2
+

+b2
ℎσ

2µ
kℎ,ℎω̂µ + 0

]
= (4.17)

= B2σ
2µ
t .

In the above A, B and C are continuous time parameters (we require that A > 0

and B > 0) obtained by expanding implicit dependence of aℎ , bℎ and cℎ on ℎ using

Taylor expansion at ℎ → 0:

aℎ = Aℎ, 1 − cℎ = Cℎ, ω̂µb2
ℎ = B2ℎ. (4.18)

Expressions obtained in Eqs. (4.16) and (4.17) allow us to write the following
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SDE for yt = σ2
t :

d y =
(

A
y µ−1

−
C
y µ−2

)
y µ−1 d t + By

µ
2 dWt =

= B2


1
2

(µ − 1)
(
y (1)

y

) µ−1
−

1
2

(µ − 2)
(
y (2)

y

) µ−2
y µ−1 d t+ (4.19)

+ By
µ
2 dWt ,

which approximates the volatility process defined by Eq. (4.13). In the above:

y (1) =

(
2A

(µ − 1)B2

) 1
µ−1

, (4.20)

y (2) =

(
2C

(µ − 2)B2

) 1
µ−2

. (4.21)

SDE (4.19) has a form similar to SDE (2.1) with the parameters in the equations

related as λ = µ and η = µ/2.

Using Eq. (2.13), as well as the comparison with SDE (2.1), it is straightfor-

ward to see that PDF of y has a region in which the probabilities scale as power-law

function with the exponent λ = µ. While y (1) and y (2) shape the exponential cut-offs:

p (y) ∼
1
y µ

exp

−

(
y (1)

y

) µ−1
+

(
y (2)

y

) µ−2
. (4.22)

As SDE (4.19) is a special case of (2.1) with 2η = µ and λ = µ, the PSD of

y time series should have a frequency range with the power-law behavior (due to

Eq. (2.25)):

S ( f ) ∼
1
f β
, β = 1 +

µ − 3
µ − 2

. (4.23)

Note, that we get 1/ f PSD which is an interesting case related to so-called long-range

memory phenomenon, when µ = 3.

The statistical properties, PDF and PSD, of the time series of y obtained by

numerically solving Eq. (4.13) with µ = 3 are shown in Figure 4.2. The reflective

boundary was used and it was placed at zero, σt = 0. As you can see in the figure

analytical predictions of power-law exponents work well, PDF has a power-law tail

with λ = 3 and over 4 decades of PSD 1/ f dependency is observed.
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Figure 4.2: Statistical properties of σ2
t time series obtained by numerically solving

Eq. (4.13) with µ = 3: stationary PDF (a) and PSD (b). The following parameter
values were used: a = 10−6, b = 10−3, c = 1. Black lines represent the expected
power-law fits: (a) p (σ2

t ) ∼ (σ2
t )−3 and (b) S ( f ) ∼ 1/ f for the PSD.

4.2.2 The diffusion limit of Eq. (4.14)

Lets repeat the same steps with Eq. (4.14). First the time series sampling should

be taken into account:

σ2
kℎ,ℎ = σ

2
(k−1)ℎ,ℎ + aℎ − cℎσ

µ

(k−1)ℎ,ℎ + bℎσ
µ

(k−1)ℎ,ℎ |ω(k−1)ℎ,ℎ |
µ . (4.24)

Recall that here µ maybe any real number larger than 2. Let us choose the following

notation – ω̄µ = 〈|ω |
µ〉.

In this case the mean drift per unit of time of σ2 equals:

lim
ℎ→0

〈σ2
(k+1)ℎ,ℎ − σ

2
kℎ,ℎ

ℎ

〉
= lim

ℎ→0

[
aℎ
ℎ
−
cℎ
ℎ
σ
µ

kℎ,ℎ +
bℎ
ℎ
σ
µ

kℎ,ℎω̄µ

]
=

= A +Cσµ
t , (4.25)

and in the similar manner the second moment per unit of time equals:

lim
ℎ→0

〈
ℎ−1

(
σ2

(k+1)ℎ,ℎ − σ
2
kℎ,ℎ

)2〉
= lim

ℎ→0
ℎ−1

[(
aℎ − cℎσ

µ

kℎ,ℎ

)2
+

+b2
ℎσ

2µ
kℎ,ℎω̄2µ+ (4.26)

+2
(
aℎ − cℎσµ) b2

ℎσ
2µ
kℎ,ℎω̄µ

]
= B2σ

2µ
t .

In the above A, B and C are continuous time parameters obtained (we require that

A > 0 and B > 0) by expanding implicit dependence of aℎ , bℎ and cℎ on ℎ using

Taylor expansion at ℎ → 0:

aℎ = Aℎ, bℎω̄µ − cℎ = Cℎ, ω̄2µb2
ℎ = B2ℎ. (4.27)
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Expressions obtained in Eqs. (4.25) and (4.26) allow us to write the following

SDE for yt = σ2
t :

d y = *
,

A
y µ−1

+
C

y
µ
2 −1

+
-
y µ−1 d t + By

µ
2 dWt =

= B2


1
2

(µ − 1)
(
y (1)

y

) µ−1
+ (4.28)

+
1
2
sign(C )

(
µ

2
− 1

) (
y (3)

y

) µ
2 −1

y µ−1 d t + By
µ
2 dWt ,

y (1) =

(
2A

(µ − 1)B2

) 1
µ−1

, (4.29)

y (3) =

(
4|C |(

µ − 2
)
B2

) 2
µ−2

. (4.30)

Using Eq. (2.13), as well as the comparison with SDE (2.1), it is straightfor-

ward to see that PDF of y has a region in which the probabilities scale as power-law

function with the exponent λ = µ. While y (1) and y (3) shape the exponential cut-offs:

p (y) ∼
1
y µ

exp

−

(
y (1)

y

) µ−1
− sign(C )

(
y (3)

y

) µ−2
. (4.31)

As SDE (4.28) is a special case of (2.1) with 2η = µ and λ = µ (similarly to SDE

(4.19)), the PSD of yt time series should also have a frequency range where Eq. (4.23)

holds.
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Figure 4.3: Statistical properties of σ2
t time series obtained by numerically solving

Eq. (4.14) with µ = 3: stationary PDF (a) and PSD (b). The following parameter

values were used: a = 10−6, b = 10−3, c = 2
√

2
π · 10

−3 ≈ 1.595769 · 10−3. Black lines
represent the expected power-law fits: (a) p (σ2

t ) ∼ (σ2
t )−3 and (b) S ( f ) ∼ 1/ f for the

PSD.

The statistical properties, PDF and PSD, of the time series of y obtained by
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numerically solving Eq. (4.14) with µ = 3 are shown in Figure 4.2. The reflective

boundary was used and it was placed at zero, σt = 0. As you can see in the figure

analytical predictions of power-law exponents work well, PDF has a power-law tail

with λ = 3 and over 3 decades of PSD 1/ f dependency is observed.

4.2.3 A remark on the power-law behavior and parameter C

It is worthwhile to note that in all cases with nonlinear GARCH model we

have selected parameters as to set C = 0. This is necessary as C (and consequently c )

might be seen as determining the “prominence” of exponential cut-off. Namely, the

larger deviation of C from zero the more prominent exponential “bump“ becomes

and power-law dependency becomes significantly less apparent. As you can see in

Figure 4.4, the PDF is very sensitive to the changes of C (even smallest deviation

from zero makes it nearly impossible to observe power-law tail of the PDF). As

1/ f PSD is closely related to the large deviations of the observable, it would be also

severely affected by the non-zero C .
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Figure 4.4: Analytical PDFs, Eqs. (4.22) and (4.31), for different values ofC (see figure
legends). Other parameters were set as follows: µ = 3, a = 10−6, b = 10−3.

4.3 Summary

In this chapter we have compared ARCH models and general class of SDEs

discussed in Chapter 2. We consider GARCH(1,1) volatility process as it has a form

of iterative equation which is reminiscent to the iterative equations used to numeri-

cally solve SDEs. Thus in the diffusion limit we can rewrite GARCH(1,1) volatility

process as SDE. We have compared SDE resulting from the original GARCH(1,1)
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volatility process to SDE (2.1) and determined that it is able to produce power-law

PDF, but only a Brownian-like PSD, S ( f ) ∼ 1/ f 2.

Thus we have proposed a two nonlinear modifications of GARCH(1,1) volatil-

ity process. Using the modified volatility process we were to recover volatility

time series exhibiting 1/ f PSD. SDEs obtained from nonlinear modifications of

GARCH(1,1) volatility process belong to a general class of SDEs described by Eq. (2.1).

The similarity suggests that using nonlinear modifications of GARCH(1,1) volatility

process should allow reproduction of PSD with different exponents, S ( f ) ∼ 1/ f β

(0 < β < 2). Formulas predicting PSD exponent, β, were also given in this chapter.

Introducing nonlinearity into GARCH(1,1) volatility process has interesting

side-effect, in both cases parameter controlling internal state feedback, c , needs to be

set almost precisely so that the corresponding parameter in the diffusion limit, C ,

equals to zero. Otherwise power-law behavior of the PDF is lost as well as ability to

reproduce PSD with varying exponent, β, values (PSD becomes Brownian-like).
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5 Modeling of the two-state system with
herding interactions

In previous chapters we have considered the SDE (2.1) and other stochastic

models built on it. The stochastic models appear to do great at reproducing em-

pirical statistical features, but they do not do as well in explaining them. Agent-

based framework enables the study of the actual reasons, based on human, firm

or other entity, behind the market dynamics. There are already some great sim-

pler [125, 126, 191–193] and more nuanced [80–82, 93] ABMs for the financial mar-

kets, but most of the well known models are able to reproduce only generalized

empirical statistical facts, not the exact empirical statistical features. Which is why

building bridges between the macroscopic (stochastic) and microscopic (agent-based)

modeling has become an active topic [72–75, 83, 121, 122, 194, 195].

Starting from the stochastic models and moving towards ABM, the top-down

bridging approach, is a rather formidable task, as a macroscopic dynamics of a com-

plex system can not be understood as a simple superposition of interacting agents. It

is also rather problematic to start from sophisticated ABMs and directly figure out

their macroscopic description in terms of stochastic calculus. Though there is a no-

table case of [83], in which financial market ABM based on Ising model [80] was

translated into SDE. But there is a simpler path: start from a simple ABM and build

up its complexity as it becomes necessary.

5.1 Kirman’s ABM of herding behavior

In the original paper [96] French economist Alan Kirman noted that entomol-

ogists and economists observe similar behavioral patterns in behavior of social insects

(e.g., ants) [5, 6] and humans [4]. Based on these observations he proposed a simple

mathematical model for herding behavior.

Namely, Kirman, in [96], cites a couple of works [5, 6] by a group of entomol-

ogists led by Pasteels, who have observed asymmetric ant behavior in a symmetric

setup. Entomologists allowed ants to reach a food source using either of the two iden-

tical paths (a nice photo of the experimental setup may be found in a more recent

paper [7]). Yet ants exploited only one on the available paths at any given moment.
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Interestingly enough, from time to time, switches between the chosen paths occured.

For a schematic representation of the entomological experiment, as well as Kir-

man’s model, see Figure 5.1. In this scheme circles represent ants (or agents) which

choose one of the two identical paths (indicated by gray lines) connecting two points

(e.g., colony and food source). Filled circles represent ants (or agents) who choose the

upper path, while empty circles represent those who choose the bottom path. Two

possible “interactions” are showcased in dashed boxes: ants (or agents, governed by

the parameter σ in the transition equations) may switch independently of the others

(single “particle interactions” on the left) or due to the influence of the others (two

“particle interactions” on the right, governed by the parameter ℎ in the transition

equations).

X

N-Xσ h

Figure 5.1: A general scheme illustrating experimental setup by Pasteels et al. [5–7] as
well as ABM proposed by Kirman [96].

So, initially, Kirman proposed that a single ant (further, in order to generalize,

we will refer to them as agents) gets to make a switch at any given point of time.

Thus the system state which may be defined as a number of agents using selected

path (or, in order to generalize, occupying selected state), X , at any given point of

time might change by one:

p (X → X + 1) = (N − X )µ21(X ,N )∆t, (5.1)

p (X → X − 1) = X µ12(X ,N )∆t . (5.2)

In the above N is a total number of agents in colony, ∆t is a small time step during

which only one transition is probable, while µi j are functions describing individual

agent decision making process when switching from state i to state j . For a physicist
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it should be straightforward to see that µi j are actually transition rates between the

two-states. Here we have assumed that state 1 represents the system state (namely,

X1 = X ) and state 2 is the other state (namely, X2 = N − X ).

From the above we know that time step, ∆t , should be small enough for only

one transition being possible,

p (X → X + 1) + p (X → X − 1) � 1. (5.3)

Though there are alternative interpretations which allow multiple agents to make

choice simultaneously [196–199]. This does not add anything significant dynamics

and in the large system, N → ∞, and small time step, ∆t → 0, limit [198, 199]. But

if the time step is comparatively large, then such interpretation seems to introduce

information processing lag [199]. The requirement set by Eq. (5.3) is rather general

and maybe implemented in various ways, we choose to rewrite it as:

∆t =
κ

(N − X )µ21(X ,N ) + X µ12(X ,N )
, 0 < κ � 1, (5.4)

where κ is a numerical precision parameter. In our numerical simulations we found

that κ = 0.1 is good value to use as it provides good results in reasonable time.

5.1.1 Symmetry in Kirman’s ABM

In general µi j (X ,N ) may take many different forms [200], but in case of the

Kirman’s ABM we have simple:

µ21(X ,N ) = σ + ℎX , µ12(X ,N ) = σ + ℎ(N − X ), (5.5)

where σ describes idiosyncratic switching rate (intensity of transition in a “single-

particle interactions”), while ℎ describes switching rate due to influence of the other

agents (intensity of transitions in a “two-particle interactions”). Though, there is also

alternative interpretation of the original article which rewrites µi j (X ,N ) as [123,

124]:

µ21(X ,N ) = σ +
ℎX
N
, µ12(X ,N ) = σ +

ℎ(N − X )
N

. (5.6)

This interpretation is frequently referred to as local interaction interpretation [123,

124]. In Section 5.3 we will consider the differences and similarities between these

interpretations, but for now let us stick with Eq. (5.5) which is correspondingly
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referred to as global interaction interpretation [123, 124]. Probabilities of a similar

form are present in the long-range memory model proposed by [201]. The main

difference is that the probabilities in the model proposed by Diebold are dependent

on sample size, instead of number agents.

In case of Eq. (5.5) general expression for the time step, Eq. (5.4), might be

simplified as follows

∆t =
2κ

N (2σ + ℎN )
, 0 < κ � 1. (5.7)

To obtain the above we have used the fact that model is symmetric in respect to

idiosyncratic switching rates and thus denominator maximizes itself when X = N /2.
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Figure 5.2: Three different behavioral regimes observed in Kirman’s model: (a) preva-
lent herding behavior (σ = 0.01), (b) balanced behavior (σ = 1) and (c) prevalent
individualistic behavior (σ = 100). Other model parameters were set as follows: ℎ = 1,
N = 100.

Time series shown in Figure 5.2 showcase three different behavioral regimes.

The observed behavioral regime clearly depends on σ
ℎ ratio. Let us further denote

this ratio as ε. If ε < 1, then herding behavior prevails: most of the time majority

of agents occupy the same state as everybody else (the agents agree). If ε > 1, then

individualistic behavior prevails: agents select their state randomly (the agents dis-

agree). While in the region around ε = 1 balanced behavior is observed: a conflict
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between individualistic behavior and herd following causes seemingly unstable sys-

tem dynamics. These insights are confirmed by the stationary PDF of the time series

generated using same parameter sets (see Figure 5.3).
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Figure 5.3: Stationary PDFs of X in the three different behavioral regimes observed
in Kirman’s model: prevalent herding behavior (squares; σ = 0.01), balanced behavior
(circles; σ = 1) and prevalent individualistic behavior (triangles, σ = 100). Other
model parameters were set as follows: ℎ = 1, N = 100.

So as ε might be seen as parameter allowing to switch between the behavioral

regimes, ℎ might be seen as influencing fluctuation rates. Simple mathematics, ts =

ℎt , gives us the following:

p (X → X + 1) = (N − X ) (ε + X ) ∆ts, (5.8)

p (X → X − 1) = X (ε + [N − X ]) ∆ts . (5.9)

5.1.2 Asymmetry in Kirman’s ABM

The model can be simply generalized by assuming that states are not equivalent

to each other. Entomologists have observed ants in asymmetric setups and found that

ants do not neglect the path which is worse (e.g., longer) than its alternative [5–7].

As we have seen previously ℎ is related to the event time scale. Thus one

might argue that ℎ is specific to the transitions between two considered states and

is not a property of any of the two-states (though alternative interpretations are

possible [202,203]). Consequently only ε is open to be related to the “attractiveness”

(perceived fitness) of each state. Having this in mind we can rewrite the transition
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probabilities as follows:

p (X → X + 1) = (N − X )(ε1 + X )∆ts, (5.10)

p (X → X − 1) = X (ε2 + [N − X ]) ∆ts . (5.11)

In the above ε1 can be seen as attractiveness of the system state, while ε2 can be seen

as attractiveness of the other state.

Appropriate ∆t values are chosen following the same logic as previously. In-

deed, if εi are not very different, then one can simply use Eq. (5.7) as inspiration:

∆ts =
2κ

N (ε1 + ε2 + N )
. (5.12)

Looking for a better precision one might add correction term:

∆ts =
2κ

N (ε1 + ε2 + N ) +
(
ε1−ε2

2

)2 . (5.13)
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Figure 5.4: Influence of asymmetric individual behavior on the stationary PDF. Param-
eters were set as follows: ε1 = 0.2 (squares) and 16 (circles), ε2 = 5, ℎ = 1, N = 100.

As it should be expected slightest difference in σi value cause movement of the

PDF maxima (see Figure 5.4). The maxima moves towards the more attractive state

side. Namely, agents try to occupy the more attractive state more frequently than its

alternative, though the alternative is not be completely neglected.

5.2 Analytical treatment of Kirman’s ABM
It should be evident that by definition such ABM lacks memory as agent tran-

sition probabilities depend only on the current system state. This lack of memory
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suggest that it should be possible to formalize the ABM as SDE. There are couple

of different ways how to approach derivation of SDE describing the same dynamics

as Kirman’s ABM. One is based on the notion of probability fluxes [123], while the

other is based on the expansion of one step operators [124].

5.2.1 Macroscopic description using birth-death process for-
malism

As stochastic calculus normally operates with continuous variables as well as

continuous time, we need to assume that number of agents, N , in the system is

large enough for x = X/N to be continuous. Though it is more convenient just

to take infinity limit, N → ∞. Let x describe the system state, then the transition

probabilities per unit of time take the following form:

π+(x ) = (1 − x )
(
ε1

N
+ x

)
, (5.14)

π−(x ) = x
(
ε2

N
+ {1 − x }

)
. (5.15)

The relation between the discrete one-step transition probabilities, p (X → X ± 1),

and continuous transition rates, π±, is rather straightforward:

p (X → X ± 1) = N 2π±(x )∆ts . (5.16)

Now by using one-step operators, E and E−1, we can write down the master

equation:

∂

∂t
p (x, t ) = N 2

{
(E − 1)[π−(x )ω(x, t )] + (E−1 − 1)[π+(x )ω(x, t )]

}
. (5.17)

Let us recall the definition of one step operators, E and E−1, [204] and expand

them in small step limit (up to the second term):

E[ f (x )] = f (x + ∆x ) ≈ f (x ) + ∆x
d

d x
f (x ) +

∆x2

2
d2

d x2 f (x ), (5.18)

E−1[ f (x )] = f (x − ∆x ) ≈ f (x ) − ∆x
d

d x
f (x ) +

∆x2

2
d2

d x2 f (x ). (5.19)

Putting these Taylor expansions into the master equation results in the follow-
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ing Fokker–Plank equation:

∂

∂t
p (x, t ) = −N

∂

∂x
[{π+(x ) − π−(x )}p (x, t )]+

+
1
2
∂2

∂x2 [{π+(x ) + π−(x )}p (x, t )]. (5.20)

By introducing custom drift, A(x ), and diffusion, B (x ), functions:

A(x ) = N {π+(x ) − π−(x )} = ε1(1 − x ) − ε2x, (5.21)

B (x ) = π+(x ) + π−(x ) = 2x (1 − x ) +
ε1

N
(1 − x ) +

ε2

N
x ≈

≈ 2x (1 − x ), (5.22)

one can rewrite the Fokker–Planck equation as SDE in Ito sense:

dx = A(x )dts +
√
B (x )dWs =

= [ε1(1 − x ) − ε2x ]dts +
√
2x (1 − x )dWs . (5.23)

In Figure 5.5 we have shown that this SDE approximates the dynamics of ABM rather

well, even with not a large number of agents, N = 100.

Steady state PDF of x , in merit of Eq. (2.13), is given by:

p (x ) = C xε1−1(1 − x )ε2−1, (5.24)

where C is a normalization constant which is given by:

C =
1∫ 1

0 xε1−1(1 − x )ε2−1 d x
=
Γ(ε1 + ε2)
Γ(ε1)Γ(ε2)

=
1

B (ε1, ε2)
. (5.25)

Its mathematical form is identical to the so-called Beta distribution [159] and, as

shown in Section 5.3, can be transformed to have a mathematical form identical to

the q -Gaussian distribution.

It is worth noting that derivation of Eq. (5.23) does not significantly depend

on actual forms of π±(x ). The only requirement is that π±(x ) should stay bounded

as long as N → ∞. As derivation is rather universal, it is open to possible generaliza-

tions. These generalizations will be further elaborated in the following chapters of

this dissertation.
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Figure 5.5: Comparison of statistical properties, (a) PDF and (b) PSD, obtained from
ABM (squares and circles) and its macroscopic approximation by SDE (gray curves
behind squares and circles). Model parameters were set as follows: ε1 = 0.2 (squares,
gray curve behind the squares) and 16 (circles, gray curve behind the circles), ε2 = 5,
ℎ = 1, N = 100 (squares and circles).

5.2.2 Bass Diffusion model as a special case of Kirman’s
ABM

Bass Diffusion model, proposed by F. M. Bass in [205], is a prominent model

in the Marketing theory [206–209]. This model is a basic model offering forecast of

the adoption rate of a new product or technology. Mathematically it is formulated as

ODE with a boundary condition:

d
d t

X (t ) = [N − X (t )]
[
p +

q
N

X (t )
]
, (5.26)

X (0) = 0. (5.27)

In the above X (t ) gives a number of current consumers, of the product or technology

entering the market, at time t , N is market potential (total number of agents pos-

sibly interested in the new product), p is the so-called coefficient of innovation (the

likelihood for individual to adopt new product based on individual decision, due to

influence of commercials or similar external factors) and q is the so-called coefficient

of imitation (a measure of likelihood for individual to adopt new product based on

peer pressure, knowing that other individuals own it). This nonlinear ODE serves

as a macroscopic description of new product adoption by consumers widely used in

business planning [206].

It is straightforward to note that Bass Diffusion model operates using the same

concepts as Kirman’s model [96]. Though there are two essential differences, the

first is that Bass Diffusion model assumes that products are durable. This means
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that current consumers never switch back to being potential consumers. Second

important difference is that agents in the market are assumed to interact only locally,

namely, with their friends and colleagues (small number of people compared to the

whole system). Mathematically this translates into the following per agent per unit

of time transition rates:

π+(x ) = (1 − x )
(
σ

N
+

ℎ
N

x
)
, (5.28)

π−(x ) = 0. (5.29)

We use Eq. (5.16) to recover the corresponding transition probabilities for the ABM.

The obtained unidirectional ABM in essence is very similar to the Linear and

GLM models discussed in [197], with the essential difference being that the models

in [197] are defined in terms of probability that a single agent will take opinion of

other single agent into account. In our case, in Kirman’s model, σ and ℎ are assumed

to reflect aggregate behavior, namely, σ and ℎ values represent the collective influence

of all agents on any single agent. Despite the essential difference, in the small step

limit, ∆t → 0, all models provide the same mathematical expressions.

In case of the transition rates (5.28) and (5.29) the macroscopic description

functions, namely, drift, A(x ), (check with Eq. (5.21)) and diffusion, B (x ), (check

with Eq. (5.22)) become

A(x ) = N π+(x ) = (1 − x )
(
σ + ℎx

)
, (5.30)

B (x ) = π+(x ) =
(1 − x )
N

(
σ + ℎx

)
. (5.31)

If total number of agents is extremely large, then one can neglect B (x ). This leaves

us with ODE identical to the Bass Diffusion model ODE, Eq. (5.26), with σ = q and

p = ℎ. This serves as a direct proof that Bass Diffusion model is an unidirectional

case of Kirman’s herding model.

In Figure 5.6 we demonstrate the similarity of results obtained from the macro-

scopic Bass Diffusion model, Eq. (5.26), and microscopic unidirectional Kirman’s

ABM. The agreement of the results is achieved as long as market potential grows

larger, as well as with the increasing observation time interval, τ.
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Figure 5.6: Comparison of the time series obtained from the macroscopic Bass Dif-
fusion model (gray curves) and the unidirectional Kirman’s ABM (black dots). Dif-
ferent sub-figures showcase differing market potentials ((a), (b) N = 1000; (c), (d)
N = 10000) and differing observation time intervals ((a), (c) τ = 0.1; (b), (d) τ = 1).
Other model parameters were set as follows: σ = 0.01, ℎ = 0.275.
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5.3 Implications of interaction topology
In Section 5.2 we have seen that in the N → ∞ limit we may obtain either SDE

or ODE as a macroscopic description of Kirman’s ABM. This depends on the scale

of agent interactions. If any agent may interact with any other agent, namely, the

agents interact globally, then SDE is obtained. Alternatively, if agent may interact

only in its small (compared to N ) neighborhood, namely, the agents interact locally,

then ODE is obtained. For large but finite, N � 1, agent-based simulations similar

results were obtained [210, 211]. Namely, if agents interact globally, then power-law

PDF is observed for many different N . Yet if agents interact locally, then power-law

PDF quickly transitions to Gaussian-like PDF with growing N . The same obser-

vations were made by Traulsen et al., who have obtained similar macroscopic SDE

from slightly different assumptions originating from the game theory, [212–214].

This dependence suggests that it might be interesting to define Kirman’s model to be

executed on some definite topology (network) with variable scale of agent interac-

tions.

5.3.1 Network formation algorithm generating variable scale
of interactions

In [210] Kirman’s ABM was tested on three network topologies: random net-

work, small world network and scale-free network. Here we propose a new network

formation algorithm which is able to generate networks with variable of agent inter-

actions using a single parameter. Thus depending on the parameter generated topolo-

gies may describe either local or global interactions, furthermore intermediate, or

“hybrid”, interactions topologies may be obtained as well. Networks generated us-

ing the proposed algorithm exhibit sub-linear increase of the mean degree, 〈d〉, with

the increasing number of nodes, N , in the network,

〈d〉 ∝ N α, 0 ≤ α ≤ 1, (5.32)

where α is the mean degree scaling exponent. Namely, the generated network ex-

hibits network densification observed in different real-life social systems [110–114].

As a base model for the proposed network formation algorithm we have chosen

a Barabasi–Albert model [109] which we further extend by adding an additional step.

The work flow of the modified algorithm is implemented as described bellow:
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1. Form a network with two nodes and link between them.

2. Add a new node to the network.

3. Form a link between the new node and chosen old node. The old node should

be chosen as per-usual in Barabasi–Albert model, using the linear “rich gets

richer” scheme,

pi ∝ di, (5.33)

where i is the index of the old node.

4. Form additional links to the neighbors of the chosen old node with the proba-

bility

p = p0d−γ, (5.34)

here p0 is a probability that link will be formed when γ = 0, d is a degree of

the old node chosen during the step 3, while γ is scaling exponent.

5. Repeat from Step 2 to Step 4 until number of nodes in the network reaches N .

See Figure 5.7 for an example illustrating this algorithm. Previously two nodes

(3 and 4) were added to the network. During another iteration of the algorithm,

step 2, Node 5 was added. Using the linear “rich gets richer” scheme (step 3) it was

linked to Node 2 (dashed line without arrow). During the additional step (step 4)

Node 5 may form links to Node 1 and Node 3 (as they are neighbors of Node 2),

but not Node 4 (as it is not a direct neighbor of Node 2), with probability given by

Eq. (5.34) (with di = 2).

Procedure performed in Step 4 was inspired by a similar techniques used in

other network formation algorithms which exhibit sub-linear mean degree scaling:

the triad formation [110, 114], friends of friends [111] and forest fire [112] network

formation algorithms. Our approach is similar to the ones discussed in [110,111,114]

in a sense that the additional links are formed only with the direct neighbors of the

chosen node. We differ from [111] in our choice of base model, we have chosen

Barabasi–Albert model and not random network model. Furthermore, in compari-

son with [110, 111, 114], we add a random amount of links instead of fixed amount

of links. The forest fire algorithm [112] also adds random amount of links, but it
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Figure 5.7: An example iteration of network formation algorithm. Node 5 has just
joined the network and formed a link with Node 2. It may further form links, accord-
ing to Eq. (5.34), with Nodes 1 and 3.

considers only γ = 0 case. In [112] sub-linear mean degree scaling is achieved simply

by repeating the linking with new neighbors of neighbors (friends of friends) until

no new links are formed. It is worth noting that there are more network forma-

tion models which exhibit the desired scaling of the mean degree, but most of them

are too general and consequently lack any direct connections to the actual processes

happening in the socio-economic systems [215–217].

In Figure 5.8 you can see how the mean degree scaling depends on parameters

γ. These, as well as other, simulations indicated that for γ ∈ [0, 1) the following

relation to the mean degree scaling exponent holds:

α ≈ (1 − γ)2. (5.35)

For γ > 1, α rapidly saturates at α = 0.

In Figure 5.9 we have shown that the proposed network formation algorithm

is able to produce topologies comparable with random network model as well as

scale-free network model. With small γ the network topology looks like completely

random structure, while Gaussian-like degree PDF is observed. While the opposite

result is observed with γ approaching 1 and becoming larger, nodes align into scale-

free structure. For intermediate values of γ random links are observable as well as

characteristic features of scale-free topology (such as hubs). Mean degree scaling is

the same as was shown in Figure 5.8.
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5.3.2 Two-state ABM based on herding behavior executed on
the generated interaction topologies

In general per-agent transition rates of a symmetric Kirman’s ABM are now

different for each agent:

µ(i) (
S → S′

)
= σ + ℎni

(
S′

)
. (5.36)

here i is an index representing agent, S is state agent i is currently in, S′ is state

the agent may switch to, ni (S′) is a function which gives us a number of agent’s i

neighbors which are in the state S′.

Although in numerical simulations we will have to use Eq. (5.36), in order to

obtain analytical insights we may still use mean-field approach. Taking average of a

per-agent transition rate over all agents in state S yields the following,

〈µ(i) (S → S′)〉 = σ + ℎ〈d〉
NS ′

N
, (5.37)

where NS ′ is a total number of agents in the state S′. These averages are exactly the

same as corresponding system-wide transition rates discussed in Section 5.1,

µ21 = 〈µ
(i) (2→ 1)〉, µ12 = 〈µ

(i) (1→ 2)〉. (5.38)

5.3.3 Mean-field approximation

In merit of discussion in Section 5.2, we may hope that the following SDE

describes the macroscopic dynamics of the generalized Kirman’s ABM

d x = σ(1 − 2x ) d t +
√

2ℎ〈d〉x (1 − x ) + σ
N

dWt . (5.39)
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Figure 5.9: Different network topologies generated using the proposed network for-
mation algorithm: random network ((a) topology and (b) degree PDF), scale-free net-
work ((e) topology and (f) degree PDF) and “hybrid” network ((c) topology and (d)
degree PDF). Network topology snapshots ((a), (c) and (e)) were taken at N = 100.
While degree PDFs were obtained from networks with N = 104 (for random network
topology) and with N = 3 · 104 (“hybrid” and scale-free topologies) nodes. Black lines
in (d) and (f) provide power-law fit (with exponent λ = 3) for the tail of the PDF. Fol-
lowing parameter values were used: p0 = 0.3, γ = 0 (random network), 0.3 (“hybrid”
network), 1 (scale-free network).
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This SDE should applicable to any interaction topology provided N is large enough.

In previous section we have proposed a network formation algorithm in which mean

degree scales as a power of number of nodes,

〈d〉 = d0N α, (5.40)

d x = ε(1 − 2x ) d ts +
√

2N αx (1 − x ) + ε
N

dWs, (5.41)

ε =
σ

ℎd0
, ts = ℎd0t . (5.42)

The steady state PDF of x driven by SDE (5.41) according to Eq. (2.13) is given

by

p (x ) = C [ε + 2N αx (1 − x )]εN
1−α−1 . (5.43)
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Figure 5.10: Scaling of the numerically obtained steady state PDF with three different
values of mean degree scaling exponent: α = 0 (squares), α = 0.5 (circles) and α =

1 (triangles). The following parameter set was used: σ = 1.5, ℎ = 1, N = 3000,
p0 = 0.75, ∆t = 2 · 10−5 and γ = 1 (α = 0), 0.3 (α = 0.5) and 0 (α = 1). Gray
solid lines show the corresponding mean-field approximations of the steady state PDF,
Eq. (5.43). Scaling constant, d0, was estimated by observing scaling of the mean degree
〈d〉: d0 = 3.2 (α = 0), d0 = 1.24 (α = 0.5) and d0 = 0.6 (α = 1).

See Figure 5.10 and Figure 5.11 for a comparison between the mean-field ap-

proximation, Eq. (5.43), and actual numerically obtained steady state PDF of the

ABM described by Eq. (5.36). During numerical computation we have chosen a fixed

time step ∆t and considered transition probabilities pi (S → S′)∆t . The time step

must be chosen such that all transition probabilities would make sense, i.e. pi < 1 for

all i, though in order to compare this case with original Kirman’s ABM one should

use time step small enough for only one transition to be possible. For a given interac-

tion topology (network structure), we synchronously update the state of each agent

according to their own transition probabilities.
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Figure 5.11: Scaling of the numerically obtained steady state PDF with the increasing
number of agents in the model: N = 100 (squares), N = 500 (circles) and N = 3000
(triangles). The following parameter set was used: σ = 1.5, ℎ = 1, p0 = 0.75, γ = 0.15,
∆t = 2 · 10−5. Gray solid lines show the corresponding mean-field approximation of
the steady state PDF, Eq. (5.43). Scaling constant, d0, was estimated to be equal to 0.9
by observing scaling of the mean degree 〈d〉.

To obtain the mean-field steady state PDF we use the parameter d0 which is

obtained by observing the scaling of the mean degree 〈d〉 during network formation.

In both Figure 5.10 and Figure 5.11 we observe good agreement between the numer-

ically obtained PDF and its mean-field approximation. The width of the steady state

PDF increases with larger values of α, as is shown in Figure 5.10 and decreases with

increasing number of agents N , as can be inferred from Figure 5.11. In the limit

of N → ∞ the PDF narrows down to Dirac’s Delta function for α < 1 or retains

power-law form otherwise.

5.3.4 Continuous transition between non-extensive and ex-
tensive statistics

Note that Eq. (5.43) can be rewritten as a q -Gaussian,

p (x ) = C ′ expq


−Aq

(
x −

1
2

)2
, (5.44)

with

q = 1 −
1

εN 1−α − 1
, Aq = 2N 1−α 1 − 1

εN
α−1

1
2ε + N −α

. (5.45)

In the above expq (·) is the q -exponential function which is defined as

expq (x ) ≡ [1 + (1 − q )x ]
1

1−q
+ , (5.46)
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here [x ]+ = x if x > 0, and [x ]+ = 0 otherwise. The steady state PDF having a

q -Gaussian form for finite values of N is in agreement with known fact that Tsallis

generalized canonical distribution which describes systems in contact with a finite

heath bath [218, 219]. The fact that we have obtained q -Gaussian distribution with

finite N confirms the idea that small systems are similar to large ones with true long-

range interactions.

Observe the scaling of q in Figure 5.12. Note how the q ≈ 1 region expands

with increasing N , this means that power-law distributions become lost and only

Gaussian-like distribution remains as result of growing system size.

Figure 5.12: The dependence of a q -Gaussian non-extensivity parameter, q (given by
Eq. (5.45)), on system size, N , and mean degree scaling exponent, α. White color
represents extensive behavior q ≈ 1, while black color non-extensive q < 1 (see color
scale for more details).

If the interaction topology allows global interactions, α = 1 (〈d〉 ∼ N ), and no

matter how large the system is (though it should still be large enough for x = X/N

to appear continuous), then the steady-state PDF takes the following power-law form

p (x ) =
Γ(2ε)
Γ(ε)2

[x (1 − x )]ε−1. (5.47)

This corresponds to a q -Gaussian with non-extensivity parameter given by

q = 1 −
1

ε − 1
. (5.48)

On the other hand, if interaction topology allows only local interactions, α = 0

(〈d〉 ∼ const), and the system infinitely large, N → ∞, then the steady state PDF is

a Dirac’s Delta function centered on x0 = 0.5. As real systems are never infinite, for

large N the steady state PDF has a Gaussian-like form. If α < 1 and N � 1 then
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q tends to 1 and from the properties of the q -exponential function we get that the

steady state PDF is approximately,

p (x ) ∼ exp

−N 1−αA

(
x −

1
2

)2
, (5.49)

A =



2
1
2ε+1

, α = 0

4ε, 0 < α < 1
(5.50)

In all cases but α = 1 we observe the so-called N -dependence problem [210],

shape and variance of the distribution is lost with the increasing size of the system,

N . The variance of x is lost proportionally to 1/
√
N 1−α law. Fluctuations decay as

usual, 1/
√
N if α = 0, and decays slower as α approaches 1.

5.4 Summary
In this chapter we have discussed Kirman’s ABM which was proposed in [96].

This model exhibits two distinct behavioral regimes: individualistic or herd behavior.

If individualistic behavior prevails, then both of the available states are occupied by

comparable numbers of agents at any given time. If herding behavior prevails, then

only one state is occupied by most of agents at any given time. The occupied state is

switched from time to time.

It is well known that this ABM based on herding behavior may have two differ-

ent interpretations, herding interactions might be assumed to happen locally or glob-

ally. We have generalized herding interactions in respect to this dichotomy. The gen-

eralized model, with the help of novel network formation model, allows to observe

what happens when interactions happen on intermediate (neither local nor global)

scale. Using the generalized model we observed continuous transition from the non-

extensive, characterized by q -Gaussian PDF of the population fraction, statistics to

extensive, characterized by Gaussian PDF of the population fraction, statistics.

80



6 ABMs of the financial markets
Applicability of SDE (2.1) appears to be universal. In recent works by Gontis,

Ruseckas, Kaulakys and Kononovicius it was demonstrated that by slightly modify-

ing this SDE as well as adding some other ingredients to the stochastic model may

enable reproduction of the high-frequency financial market data [134–136]. Yet the

problem is that stochastic modeling itself does not provide any direct insights into

microscopic origin of phenomena. Thus providing agent-based reasoning for SDE

(2.1) is a rather challenging task.

In this chapter we discuss agent-based financial market setup as well as derive

SDEs describing macroscopic evolution of the market. This yields an agent-based

reasoning for SDE (2.1) as well as model reproducing empirical statistical properties

of absolute return.

6.1 Financial market interpretation

6.1.1 Introducing price formation into Kirman’s ABM

Kirman’s ABM defines population dynamics in two-state agent-based system

with herding interactions. In order to be able to recover financial markets observables

we need to define those states in the financial market terms. In most ABMs proposed

by econophysicists during the last 15 years [73] there is a common assumption that

agents are of the two types: fundamentalists and chartists (sometimes referred to as

noise traders). Some of the approaches, such as [93], further subdivide chartists into

optimists and pessimists.

The distinction between fundamentalists and chartists arises rather naturally

from the two possible extremely distinct approaches to the trading in financial mar-

kets. Some traders trade based on the released economical information about com-

panies linked to stocks. Based on this information they estimate the true value of the

stock. Other traders ignore this long term information as they try to make money

fast. Namely, these traders try to anticipate the rapid changes in market moods, short

term trends.

Economical information might be seen as fundamental to the market, there-

fore traders trading based on it might be referred to as fundamentalists. In the same
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manner the value of the stock might be referred to as the fundamental price, P f (t ).

In the fundamentalist point of view market price, P (t ), given enough time, should

converge towards the fundamental price. Consequently if P f (t ) > P (t ), then fun-

damentalists will expect price to grow in the future and thus they will place “buy”

orders. In the opposite situation, P f (t ) < P (t ), fundamentalists will place “sell”

orders as the price should decrease in the future. Fundamentalists’ incentive to act

might be assumed to be proportional to the ratio between price and value, as in the

financial markets relative prices provide more information than its absolute value.

Most commonly these ideas are mathematical expressed as

D f (t ) = X f (t ) ln
P f (t )

P (t )
, (6.1)

here D f (t ) is a total excess demand generated by the fundamentalists’ and X f (t )

gives a total number of them.

Anticipating rapid changes in the market might be compared to gamble for a

short time profits. Forecasting tools, mostly based on technical analysis, are avail-

able to help traders at their gamble. Technical analysis, as opposed to fundamental

analysis, is based on analyzing the market behavior related to the stock in interest.

Before the computer era technical analysis was performed simply by drawing charts

and looking for patterns in them, thus traders relying on technical analysis might be

referred to as chartists. The selection of technical analysis tools is rather large and

consequently their predictions may be wildly different. Chartists’ excess demand

mathematically may be expressed as

Dc (t ) = r0Xc (t )ξ (t ), (6.2)

where r0 determines the relative impact of chartist trader and ξ (t ) is a chartists’

mood, while Xc (t ) gives a total number of chartists,

ξ (t ) =
Xo (t ) − Xp (t )

Xc (t )
. (6.3)

In the above Xo is a number of chartists who have made optimistic forecast (i.e.

suggesting to buy) and Xp is a number of chartists who have made pessimistic forecast

(i.e. suggesting to sell).

These demands can be used to defined price via Walrassian law [220]. The

original Walras law assumes that trading in the market occurs trough the market

maker, who sets fair price. As fair price should stabilize the market, thus according to
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the original Walras, the total demand in the market should be zero. A contemporary

form Walras law relaxes this assumption by saying that market adjust itself at a certain

speed β:

1
P (t )

d P (t )
d t

= β

N∑
i=1

Di (t ) = β

[
X f (t ) ln

P f (t )

P (t )
+ r0Xc (t )ξ (t )

]
, (6.4)

1
βN P (t )

d P (t )
d t

= −x f (t ) ln
P (t )
P f (t )

+ r0xc (t )ξ (t ), (6.5)

where x i = Xi/N . Assuming that total number of agents, N = X f (t ) + Xc (t ), ( it is

conserved by definition of the model) is large allows to set left hand side of equation

to zero and obtain:

P (t ) = P f (t ) exp

r0

xc (t )
x f (t )

ξ (t )

. (6.6)

Without loss of generality let us assume that fundamental price is fixed, P f (t ) = P f .

Here we can introduce logarithmic relative price,

p (t ) = ln
P (t )
P f

, (6.7)

which will later on allow for a more compact notation.

Return is defined as difference between two logarithmic prices separated by

some time period T . Having in mind Eq. (6.6) yields the following:

rT (t ) = p (t ) − p (t −T ) = r0


xc (t )
x f (t )

ξ (t ) −
xc (t −T )
x f (t −T )

ξ (t −T )

. (6.8)

Note that as the number of agents is fixed we can rewrite x f (t ) in terms of xc (t ):

x f (t ) = 1−xc (t ). One can make adiabatic approximation of return by assuming that

fundamentalist-to-chartist population dynamics are significantly slower than mood,

ξ , fluctuations:

rT (t ) = r0y (t )ζT (t ), (6.9)

here y (t ) = xc (t )
1−xc (t ) is a long-term variation of return which we further refer to as

modulating return (representing comparatively slow chartist-fundamentalist dynam-

ics), and ζT (t ) = ξ (t ) − ξ (t −T ) represents fast switching of the chartists’ forecasts.

As ξ (t ) process is fast, its changes may be approximated as simple, e.g., Gaussian,

noise [123].
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6.1.2 Introducing variable trading activity

Original Kirman model [96] assumes that agents interact at a constant rate, ℎ.

This might be true in case of an ant colony, but in the financial markets situation is

quite different, the interaction rates, or in other words, trading activity noticeably

vary. This variability might be accounted for by introducing macroscopic feedback

function τ(X ) into per agent transition rate, µi j :

µ21(X ,N ) = σ1 +
ℎX
τ(X )

, µ12(X ,N ) =
σ2 + ℎ(N − X )

τ(X )
. (6.10)

At this point we have to assume that X represent number of chartists traders, while

N − X stands for the number of fundamentalists in the market. As fundamentalist

traders are assumed to trade, they will switch to irrational chartist trading strategies

strictly according to the plan which is represented by a fixed individual transition

rate (i.e., σ1 not being divided by τ(X )).

Note that analytical treatment of Kirman’s ABM does not depend on the actual

form of µi j (see Section 5.2). Thus we can write down SDE for x by simply looking

at Eq. (5.23):

d x =
[
ε1(1 − x ) −

ε2x
τ(x )

]
d ts +

√
2x (1 − x )
τ(x )

dWs . (6.11)

6.2 SDE for the modulating return

In Section 6.1 we have defined the slow component of actual returns as mod-

ulating return y = x
1−x . Using Ito variable transformation formula [119] one can

obtain SDE for it:

d y (x ) =
[
Ax (x )∂xy (x ) +

1
2
B2
x (x )∂2

xy (x )
]
d t + Bx (x )∂xy (x ) dW , (6.12)

where Ax (x ) and Bx (x ) is the old drift and diffusion functions from SDE in respect

to x , Eq. (6.11), while other terms are just derivatives of y:

∂xy (x ) =
d y
d x
=

1
1 − x

+
x

(1 − x )2
=

1
1 − x

(1 + y), (6.13)

∂2
xy (x ) =

d2 y
d x2 =

2
(1 − x )2

+
2x

(1 − x )3
=

2
(1 − x )2

(1 + y). (6.14)
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By putting all of these together we obtain

d y =
[
ε1 + y

2 − ε2

τ(y)

]
(1 + y) d ts +

√
2y
τ(y)

(1 + y) dWs . (6.15)

It is reasonable to assume that τ(y) = y−α, as it is well known that returns and trading

activity correlate [54, 61, 221, 222]. The best correlation is reported to be achieved

when trading volume is compared to squared returns, V (r ) ∼ r 2, [61]. This further

suggests that α = 2 should be a good choice.

Note that if we consider only the highest powers of y in Eq. (6.15),

d y = (2 − ε2)y2+α d ts +
√

2y3+α dWs, (6.16)

then the obtained SDE is identical to SDE (2.1). The relationship between the pa-

rameters of both SDEs are as follows:

η =
3 + α

2
, λ = ε2 + α + 1. (6.17)

The similarity between SDEs implies that PSD of y should have a frequency in range

in which:

S ( f ) ∼ 1/ f β, β = 1 +
λ − 3
2η − 2

= 1 +
ε2 + α − 2

1 + α
. (6.18)

Power-law PDF, of the p (y) ∼ y−λ form, should also be observed.

As you can see in Figure 6.1 we are able to reproduce 1/ f noise in three distinct

cases: α = 0 (corresponds to the original Kirman model), α = 1 and α = 2.
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Figure 6.1: Reproducing 1/ f noise by numerically solving Eq. (6.15) in three distinct
cases – α = 0 (squares), α = 1 (circles) and α = 2 (triangles). The following parameter
set was used: ε1 = 0, ε2 = 2−α. Gray lines show expected power-law fits for (a) PDF –
y−3, and (b) PSD – 1/ f .
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SDE (6.15) maybe also easily reduced to SDE describing a CEV process [144,

154],

d x = ax d t + b xη dW , (6.19)

which is also known to provide power-law spectral densities of 1/ f β form with

β = 2 −
1 + ε

2(η − 1)
, (6.20)

where ε is arbitrary small number. By setting ε2 = 2 we linearize drift function of

SDE (6.15) and, for large y, obtain:

d y = ε1y d ts +
√

2y3+α dWs . (6.21)

In Figure 6.2 we show that predictions for the PSD work well in case of SDE (6.15)

with ε2 = 2 and ε = 0.12.
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Figure 6.2: (a) PDF and (b) PSD of y obtained by numerically solving Eq. (6.15), with
linearized drift function, in three distinct cases: α = 0 (squares), α = 1 (circles) and
α = 2 (triangles). The following parameter set was used: ε1 = 3, ε2 = 2. Gray lines
behind the symbols provide power-law fits with exponents (a) λ = 3 (squares), λ = 4
(circles) and λ = 5 (triangles), (b) β = 0.88 (squares), β = 1.45 (circles) and β = 1.6
(triangles).

See Figure 6.3 for a highlight of possibilities to reproduce power-law PDFs and

PSDs with different exponents offered by SDE Eq. (6.15).

It is important to note that similar results were previously obtained by Kir-

man and Teyssiere [95]. The main difference between the approaches is that Kirman

and Teyssiere consider significantly more complicated version of the original herding

model which cannot be treated analytically. The presense of long-range memory in

absolute return time series is confirmed numerically by showing that model is capa-

ble to reproduce power-law auto-correlations. We on the other hand have proposed

a simple model which we have linked to a general class of SDEs, properties of which

were determined analytically.
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Figure 6.3: Variety of (a) PDFs and (b) PSDs with different exponents obtainable by
numerically solving Eq. (6.15). Black lines represent the limiting power-law function,
minimum and maximum exponent, cases with: (a) λmin = 2 and λmax = 5, (b) βmin =

0.5 and βmax = 2. The following parameter set was used: α = 1, ε1 = 0.1, ε2 = 0.1
(plus), 0.5 (cross), 1 (star), 1.5 (open square), 2 (filled square) and 3 (open circle).

6.3 Different time scales of absolute return fluctu-
ations

Ability to reproduce power-law statistics is great feature of the model, but in

order to reproduce empirical stylized facts model needs to be more sophisticated. If

mood changes, ζ , are assumed to be a simple noise, such as Gaussian, q -Gaussian or

spin noise (as in [123]), then the higher frequencies of yζ PSD become completely

flat (the white noise is observed). Namely, the fracture in the model becomes too

extreme (see Figure 6.4), in actual empirical data one observes that in higher fre-

quencies PSD becomes slightly flatter (second power-law with lower exponent, see

Figure 1.1). Thus assuming that ζ dynamics is just a simple noise is not sufficient to

reproduce fractured PSD of absolute returns.

Recall double stochastic model discussed in Chapter 2. In the double model

SDE with two exponents of multiplicativity, Eq. (2.30), was used to reproduce frac-

ture in PSD. Due to similarity between the SDEs, we could achieve similar result

by assuming specific form of τ(y) scenario. Actually by using sigmoid form of τ(y)

we would obtain SDE similar to Eq. (2.30) from Kirman’s ABM. But purpose is to

provide microscopic (agent-based) logic for such choice.

6.3.1 Three-state ABM

To obtain a more sophisticated model chartists may be split into two groups:

optimists and pessimists. These two groups may interact both among themselves
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Figure 6.4: Statistical properties, (a) PDF and (b) PSD, of r = yζ time series obtained
numerically by solving Eq. (6.15) and applying q -Gaussian noise (ζ0 = 1 and λ = 5).
The following parameter set was used: α = 0 (squares), α = 1 (circles) and α = 2
(triangles), ε1 = 0 (all cases), ε2 = 2−α (all cases). Gray lines show power-law fits: x−3
for PDF (a), and 1/ f 1.25 (line behind the squares), 1/ f (lines behind the circles and
the triangles) of PSD (b).

as well as with fundamentalists. This effectively brings us from a two-state herding

model, Figure 5.1, to a three-state herding model, Figure 6.5 (a). The three-state

model may be greatly simplified by using adiabatic approximation reducing model to

what is seen in Figure 6.5 (b), but lets do this step by step.

X

X X
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σcc

σcc

hf

σcf

σfc

Xf

Xo Xp

Xo Xp+Xc=

(b)

Figure 6.5: Schematic representation of the three-state model in (a) full and (b) sim-
plified form. The arrows point in the directions of the possible transitions, note that
they can be grouped into three pairs. In our modelic setup each of the transition pairs
is modeled using the original Kirman’s model. The relevant parameters are grouped
around the corresponding pairs of arrows.

As can be seen in Figure 6.5 (a) in the three-state case we have total of six

possible one step transition probabilities. In general form we can write all of these

transition probabilities as:

p (Xi + 1,X j − 1,Xk ) = X j (σ j i + ℎ j iXi )∆t, (6.22)
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where i, j and k subscript might take any distinct value from the set { f , o, p}. Recall

that herding behavior itself is considered to be a property intrinsic to agents and not

to the state, thus herding parameters are symmetric, ℎi j = ℎ j i . This is important to

note as there is a group of researchers examining consequences of asymmetric herding

behavior [202, 203].

6.3.2 Analytical treatment of the three-state ABM

As total number of agents is fixed, N = X f + Xo + Xp , one can describe three

state system using two-dimensional state vector, {X f ,Xo }. Let us assume that N is

large enough to secure continuity of x i = Xi
N . Then we can introduce continuous

transition probability, π i, j (x f , xo):

p (X f + i,Xo + j,Xp + k) = N 2π i, j (x f , xo)∆t . (6.23)

In the above i, j and k stand for the change of each state’s occupation. As we consider

only one step transition probabilities, then i, j and k must take distinct values from

the set {−1, 0, 1}. Consequently, i + j +k = 0 holds true and vector of change, {i, j, k},

can be fully described by only two of its components {i, j }.

The transition probabilities imply the master equation for the probability to

find the system in the state {x f , xo } at given time t , p (x f , xo, t ):

∂t p =
∑
i, j

(
Ei, j − 1

)
π−i,− jp, (6.24)

here the sum runs over non-equal i and j which take values from the set {−1, 0, 1}.

In the above we have generalized original one-dimensional one step operator for the

two-dimensional case:

Ei, j [ f (x, y)] = f (x + i∆x, y + j∆y), (6.25)

here i and j obey the same rule as previously, while ∆x and ∆y are the smallest

possible increments of x and y respectively.

Expanding the two variable one step operator using the Taylor series in the

limit of small increments and keeping terms up to the second order terms, allows us

to rewrite Eq. (6.24) as a Fokker–Plank equation:

∂tω = −
∑
i
∂x i

[
D1

iω
]
+

∑
i, j
∂x i

{
∂x j

[
D2

i jω
] }
, (6.26)
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where i and j belong to the set { f , o}, and

D1
f = σo f xo + σp f (1 − xo − x f ) − (σ f o + σ f p )x f , (6.27)

D1
o = σ f ox f + σpo (1 − xo − x f ) − (σo f + σop )xo, (6.28)

D2
f f = ℎ f ox f xo + ℎ f px f (1 − xo − x f ), (6.29)

D2
oo = ℎ f ox f xo + ℎopxo (1 − xo − x f ), (6.30)

D2
o f = D2

f o = −ℎ f ox f xo . (6.31)

The Fokker–Plank equation, Eq. (6.26), can be greatly simplified by making

a rather straightforward notion that there is no qualitative difference between the

optimism and pessimism:

σop = σpo = σcc, σ f o = σ f p = σ f c/2, σo f = σp f = σc f ,

ℎ f o = ℎ f p = ℎ f c = ℎ1, ℎop = ℎcc = H ℎ1. (6.32)

Further simplifications may be done by recalling the previous assumption that char-

tists switch between the pessimism and optimism extremely fast (adiabatic approxi-

mation):

H � 1, σcc � σc f , σcc � σ f c, (6.33)

where H is a transition intensity ratio between ℎcc and ℎ f c . Under these assumptions

the terms of Eq. (6.26) may be simplified to the following form:

D1
f = σc f (1 − x f ) − σ f c x f , (6.34)

D1
o ≈ σcc (1 − x f − 2xo), (6.35)

D2
f f ≈ ℎ1(1 − x f )x f , (6.36)

D2
oo ≈ H ℎ1xo (1 − x f − xo) + ℎ1x f xo, (6.37)

D2
o f = D2

f o ≈ −ℎ1x f xo . (6.38)

The dynamics described by a Fokker–Plank equation, Eq. (6.26), may be also de-

scribed as a set of two SDEs.

In general case a set of SDEs may be written as vector equation

d ~x = ~Ad t + [B · d ~W ], (6.39)
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with the state vector ~x , vector of the drift functions ~A, matrix of the diffusion func-

tions B, and the vector of Brownian motion ~W . While ~A are straightforwardly

related to the first order terms of the Fokker–Plank equation, D1
i , the problem lies

in the relation between B and the second order terms of the Fokker–Plank equation,

D2
i j . It is known that they are related as [117]

D2
i j =

1
2

∑
k

BikB jk, ∀i, j, (6.40)

but this relation provides us with only three linearly independent equations. We

arbitrarily introduce forth equation into our system by requiring that our B would

be symmetric:

2D2
f f = 2ℎ1(1 − x f − xo)x f + 2ℎ1x f xo = B2

f f + B2
f o, (6.41)

2D2
oo = 2H ℎ1xo (1 − x f − xo) + 2ℎ1x f xo = B2

oo + B2
o f , (6.42)

2D2
f o = 2D2

o f = −2ℎ1x f xo = Bo f B f f + BooB f o, (6.43)

B f o = Bo f . (6.44)

Solving the above explicitly might be somewhat problematic, thus let us solve the

above by guessing mathematical form of the solutions,

B f f =
√
A − C, Boo =

√
B − C, B f o =

√
D + C. (6.45)

The “guessed” form is inspired by the two-state model. Also note that with this

“guess” the first two equations are solved immediately. Namely, from them we obtain

the following:

A = 2ℎ1x f (1 − x f − xo), (6.46)

B = 2H ℎ1xo (1 − x f − xo), (6.47)

D = 2ℎ1x f xo . (6.48)

The third equation needs to be solved to obtain C, but the exact answer has a very

complicated form. The expression for C becomes more compact if adiabatic approx-

imation is applied:

C ≈ −2ℎ1x f xo . (6.49)
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Thus we have,

B2
f f = 2ℎ1x f (1 − x f ), (6.50)

B2
oo = 2ℎ1xo (x f + H [1 − x f − xo ]) ≈ 2H ℎ1xo (1 − x f − xo), (6.51)

B f o ≈ 0, (6.52)

and the set of SDEs takes the following form

d x f = [(1 − x f )σc f − x f σ f c ] d t +
√

2ℎ1x f (1 − x f ) dW1, (6.53)

d xo = (1 − x f − 2xo)σcc d t +
√

2H ℎ1xo (1 − x f − xo) dW2. (6.54)

The obtained set of SDEs is rather unwieldy, because the second SDE involves

x f which can only be obtained by solving the first SDE. SDEs might be decoupled

by considering mood, ξ , as alternative variable instead of xo. Variable substitution,

which should be done in the Fokker–Planck equation (6.26), leads to the following

set of decoupled SDEs:

d x f = [(1 − x f )σc f − x f σ f c ] d t +
√

2ℎ1x f (1 − x f ) dW1, (6.55)

d ξ = −2ξσcc d t +
√

2H ℎ1(1 − ξ2) dW2. (6.56)

6.3.3 Variable trading activity in the three-state ABM

The final ingredient is to include variable trading activity. We have already

done this with the two-state model back in Section 6.1.2. At that time we assumed

that chartist switching behavior is affected by the trading activity, τ function, and

fundamentalists’ idiosyncratic switching rate, σ f c , is not. This assumption might be

kept as is, but the form of τ function might be changed to reflect the more detailed

information about the system available in the three-state model. Namely, we can

now include chartist mood, ξ , into τ:

τ(x f , ξ ) =
1

1 +
����
1−x f
x f

ξ
����
α =

1
1 + |p |α

. (6.57)
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The final form of SDEs including variable trading activity is given by:

d x f =



(1 − x f )εc f
τ(x f , ξ )

− x f ε f c


d ts +

√
2x f (1 − x f )

τ(x f , ξ )
dWs,1, (6.58)

d ξ = −
2ξH εcc
τ(x f , ξ )

d ts +

√
2H (1 − ξ2)
τ(x f , ξ )

dWs,2, (6.59)

here we have introduced scaled time ts = ℎ1t as well as scaled model parameters:

εc f =
σc f
ℎ1

, ε f c =
σ f c
ℎ1

, εcc = σcc
H ℎ1

. By numerically solving these SDEs we obtain

fractured PSD of the absolute return, defined as modulus of Eq. (6.8), see Figure 6.6.
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Figure 6.6: PDF (a) and PSD (b) of absolute return, defined as modulus of Eq. (6.8),
numerically calculated from the three-state ABM. The squares represent the numerical
results obtained by solving a system of SDEs (6.58) and (6.59). Model parameters were
set as follows: εc f = ε f c = εcc = 3, H = 100, r0 = 1, α = 2. The gray curves provide
power-law fits: (a) λ = 3.5, (b) β1 = 1.4 and β2 = 0.4.

In Figure 6.6 we have shown that numerical solutions of the SDEs (6.58) and

(6.59) results in fractured PSD of the absolute return. Though the power-law expo-

nents, β1 as well as β2, of the numerically obtained PSD are noticeably larger than

those observed in the empirical data.

6.4 Incorporating the exogenous noise

Let us recall the basic idea behind the ARCH family models (see Section 4.1):

certain, heteroskedastic, economical observables might be modeled as two different

processes [19,169–175]. One of these processes, volatility process, describes compar-

atively long term dynamics, while the second process is just an instantaneous fluctu-

ations, noise. Similarly we may see the three-state ABM dynamics as comparatively

longer term process which shapes market volatility at a given time, while exogenous
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noise accounts for various minute instantaneous factors. Similarly as it is done in

ARCH family models we assume that return over given time interval, T , is given by:

rT (t ) = b (t ){1 + a |p (t ) |}ζq, (6.60)

where ζq is a q -Gaussian noise (with zero mean and unit variance), parameter a

allows to adjust the influence of endogenous three-state ABM dynamics on the ob-

served return and b (t ) will be discussed in the next section (at this point one may

use b (t ) = 1). In general case variance of ζq should depend on return time window,

T , but due to normalization procedure applied to the empirical and model data the

dependence might be neglected. Empirical analysis as well as numerical modeling

performed in [135, 136] shows that power-law tail of the exogenous noise should be

λ = 5 (this implies q = 1.4), while ARCH family models frequently use Gaussian

noise (which would imply q = 1).

As you can see in Figure 6.7 q -Gaussian noise provides good fit to the empirical

PDF which appears to be better than the fit provided by the model with Gaussian

noise, Figure 6.8. To show case universality of the model we also compare the nu-

merical results, those with q -Gaussian noise, to the empirical data from smaller stock

exchanges: Warsaw, Figure 6.9, and Vilnius, Figure 6.10. The obtained fits are rea-

sonable, having in mind that discreteness effects are far stronger in smaller stock

exchanges. The observed differences might be blamed on a simple fact, that “empty”

time windows become more probable the smaller stock exchange is.

6.5 Introducing intra-day seasonality
It is rather straightforward to take another discrepancy (in comparison with

empirical data) into account. Note that empirical PSD have spikes which coincide

with the length of trading session in the respective stock exchanges. E.g., NYSE

had a fixed trading session length throughout whole data set, equal to 390 minutes.

The first spike appears at frequency corresponding to this period. Let us assume the

following form of intra-day pattern and include them into b (t ) which is present in

Eq. (6.60):

b (t ) = exp
[
−

({t mod 390} − 195)2

w2

]
+ 0.5, (6.61)

where w = 20 quantifies the width of intra-day activity burst (spike in the PSD).
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Figure 6.7: PDF and PSD of the absolute return time series for selected NYSE stocks
(BMY, GM, MO, T). Empirical PDFs and PSDs (gray curves) compared to model
PDFs and PSDs (black squares) in different return time windows, T : (a) and (b) 1
minute; (c) and (d) 3 minutes; (e) and (f) 10 minutes; (g) and (h) 30 minutes. Model
parameters are as follows: εc f = 0.1, ε f c = 3, εcc = 3, H = 300, ℎ = 10−8s−1, α = 2,
a = 0.5, λ = 5 (q -Gaussian noise with q = 1.4 is used).
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Figure 6.8: PDF and PSD of the absolute return time series for selected NYSE stocks
(BMY, GM, MO, T). Empirical PDFs and PSDs (gray curves) compared to model
PDFs and PSDs (black squares) in different return time windows, T :(a) and (b) 1
minute; (c) and (d) 3 minutes; (e) and (f) 10 minutes; (g) and (h) 30 minutes. Model
parameters are as follows: εc f = 0.1, ε f c = 3, εcc = 3, H = 300, ℎ = 10−8s−1, α = 2,
a = 0.5, q = 1 (Gaussian noise is used).
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Figure 6.9: PDF and PSD of the absolute return time series for selected WSE stocks
(KGHM, PZU, TPSA). Empirical PDFs and PSDs (gray curves) compared to model
PDFs and PSDs (black squares) in different return time windows, T : (a) and (b) 1
minute; (c) and (d) 3 minutes; (e) and (f) 10 minutes; (g) and (h) 30 minutes. Model
parameters are the same as in Figure 6.7.
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Figure 6.10: PDF and PSD of the absolute return time series for selected VSE stocks
(APG1L, IVL1L, PTR1L, SAB1L, TEO1L). Empirical PDFs and PSDs (gray curves)
compared to model PDFs and PSDs (black squares) in different return time windows,
T : (a) and (b) 1 minute; (c) and (d) 3 minutes; (e) and (f) 10 minutes; (g) and (h) 30
minutes. Model parameters are the same as in Figure 6.7.
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Note that, here time is measured in minutes. The further improved fit of the PSD is

shown in Figure 6.11.

102

104

106

10-6 10-5 10-4 10-3 10-2

S
(f
)

f

(a)

102

104

106

10-6 10-5 10-4 10-3 10-2

S
(f
)

f

(b)

102

104

106

10-6 10-5 10-4 10-3 10-2

S
(f
)

f

(c)

102

104

106

10-6 10-5 10-4 10-3 10-2

S
(f
)

f

(d)

Figure 6.11: PSD of the absolute return time series for selected NYSE stocks (BMY,
GM, MO, T). Empirical PSDs (gray curves) compared to model PSDs (black squares)
in different return time windows, T : (a) 1 minute; (b) 3 minutes; (c) 10 minutes; (d)
30 minutes. Model parameters are the same as in Figure 6.7, b (t ) dependence changes
according to Eq. (6.61).

6.6 Summary

In this chapter we have considered financial market interpretation based on

the ABM based on herding behavior. First we discussed interpretation of the ABM

based on herding behavior in terms of the financial markets. This discussion enabled

us to relate certain economical variables to the endogenous population dynamics of

the ABM. We have started our analysis from the simpler model for the long-term

component of absolute return, so-called modulating return. The obtained SDE for

the modulating return, Eq. (6.15), belongs to the general class of SDEs reproducing

power-law PDF and PSD, Eq. (2.1). Thus the two-state ABM can be seen as providing

agent-based reasoning, from the financial market perspective, to the aforementioned

class of SDEs.

In this chapter we have also extended ABM based on herding behavior to in-
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clude three state dynamics which happen on two distinct event time scales. The

three-state ABM is able to generate time series with fractured PSD of absolute return.

Though the exponents of the PSD were larger than those observed in the empirical

time series.

Considering endogenous three-state ABM population dynamics as a source of

market volatility allows to introduce exogenous noise into the model. The exogenous

noise is able to decrease exponents of fractured PSD to match those observed in the

empirical absolute return PSD. To show that the model is able to generate absolute

return time series with the same PDF and PSD as observed in empirical data we have

compared model results with three different stock exchanges: NYSE, WSE and VSE.

To reproduce spikes observed in empirical PSD we have also included intra-day

seasonality into the three-state model.
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7 Controlling financial fluctuations using
herding interactions
Imitative behavior and peer pressure between the individuals in social systems

enables a possibility for a small fraction of the system to make a significant impact on

the collective behavior. The influence of the small number of individuals on the col-

lective behavior of a crowd was studied in a series of experiments by Dyer et al. [8].

People participating in these experiments were asked to move randomly, but to stay

with a crowd. Some of the people in a crowd, a small number of them, were asked to

move in a certain direction. It was expected that they will be able to lead the whole

crowd in that direction. The results of the experiment have shown that 4−10 directed

individuals were enough to lead the crowds of up to 200 people. It is interesting to

note that the necessary number of directed individuals grows slower than the total

number of people in the crowd. Consequently the movement of even larger crowds

could be also controlled in a similar fashion without a further significant increase in

a total number, not percentage, of the directed individuals. In the context of this

dissertation we could see the directed individuals in the aforementioned experiment

as the controlled individuals. Similar experiments were preformed with animals by

using controlled robots [9].

The success behind these experiments encourage theoretical understanding of

the possibilities to control socio-economic systems. As such understanding might

suggest new policy making tools which could prevent disastrous events occurring

simply due to endogenous interactions. From a mathematical point of view these

ideas were tested in papers by Schweitzer et al. [133] as well as Biondo et al. [132,

223,224]. Schweitzer et al. considered the problem from the well-known Prisonner’s

Dilemma setup, while Biondo et al. relied on a generic earthquake, Olami-Feder-

Christensen, model. While we approach from the perspective of a model which is

able to reproduce main statistical features of actual empirical data of the financial

markets.

7.1 Control of the two-state model
Let us start by introducing the controlled agents into the original Kirman’s

model discussed in Chapter 5. Suppose that we have M agents, whose choice of the
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state is controlled externally, into the Kirman’s model. Namely, unlike the ordinary

agents, the controlled agents do not switch their state due to endogenous interactions,

though they are able to trigger endogenous switches of the ordinary agents.

As we have discussed in Chapter 5 the agents may interact either locally or glob-

ally. If the interaction is local, then the herding terms disappear or become negligible

in the macroscopic description of the system with large number of agents. In order

for the controlled agents to make a significant impact on a whole macroscopic system

they have to interact globally. In such case, depending on how the ordinary agents

interact we have two set of the one-step transitions probabilities: one analogous to

Eq. (5.5) (global interaction case),

µ21(X ,N ) = σ1 + ℎ(M1 + X ), (7.1)

µ12(X ,N ) = σ2 + ℎ(N − X + M − M1), (7.2)

and other analogous to Eq. (5.6) (local interaction case),

µ21(N ,X ) = σ1 +
ℎX
N
+ ℎM1, (7.3)

µ12(N ,X ) = σ2 +
ℎ(N − X )

N
+ ℎ(M − M1). (7.4)

In the above expressions of µi j M1 is a number of the controlled agents (M1 ≤ M ) in

the state which is occupied by X ordinary agents. From a purely mathematical point

of view the influence of the controlled agents can be included into the individual

behavior parameters, σi . Namely, one can set σ̃1 = σ1 + ℎM1 and σ̃2 = σ2 +

ℎ(M −M1) to return to the original form of the herding model with shifted individual

preferences, σ̃i .

Similar approaches may be found in [202, 203, 211]. In [202, 203] the external

forces are assumed to drive the periodic fluctuations of the herding behavior param-

eter, while in our case the controlled agents act on individual behavior parameters.

In [211] a case where small number of core agents influence behavior of large number

of periphery agents is considered, while our approach does not include any hierarchy

of the agents.

The macroscopic dynamics influenced by the controlled agents, in the limit
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N → ∞, are given by, for the global interaction case,

d x = [(σ1 + ℎM1)(1 − x ) − (σ2 + ℎ{M − M1})x ] d t+

+

√
2ℎx (1 − x ) dW , (7.5)

and, for the local interaction case,

d x = [(σ1 + ℎM1)(1 − x ) − (σ2 + ℎ{M − M1})x ] d t . (7.6)

It should be straightforward to determine that the mean of stationary PDF of SDE

(7.5), x̄ , equals the fixed point of Eq. (7.6), x f ,

x̄ = x f =
ℎM1 + σ1

ℎM + σ1 + σ2
. (7.7)

Note that the long term impact of the controlled agents depends only on their num-

ber and on the idiosyncratic transition rates of the ordinary agents. So, if controlled

agents act globally, one can use a fixed number of them to influence the behavior of

an infinitely large system.
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Figure 7.1: A comparison of a numerically calculated stationary PDF with no con-
trolled agents, M = M1 = 0 (squares), and stationary PDF with controlled agents,
M = M1 = 20 (circles) and M = 20 and M1 = 0 (triangles), in the global interaction
(a) and local interaction (b) case. Model parameters were set as follows: σ1 = σ2 = 2,
ℎ = 1. A stochastic model, Eq. (7.5), was used for (a) and ABM with N = 104 was
used for (b).

In Figure 7.1 we numerically confirm that a fixed small number of the con-

trolled agents (M = 20) enables us to significantly shift the stationary PDF of the

macroscopic variable to the desired end despite the fact that the agents have strong

individualistic tendencies, σi > ℎ. As we can see in Figure 7.2 as few as two con-

trolled agents are enough to significantly influence the stationary PDF of the model

if herding behavior, σi < ℎ, is prevalent.
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Figure 7.2: A comparison of a numerically calculated stationary PDF with no con-
trolled agents, M = M1 = 0 (squares), and stationary PDF with controlled agents,
M = M1 = 20 (circles) and M = 20 and M1 = 0 (triangles), in the global interaction (a)
and local interaction (b) case. Model parameters were set as follows: σ1 = σ2 = 0.5,
ℎ = 1. A stochastic model, Eq. (7.5), was used for (a) and ABM with N = 104 was
used for (b).

An important question in this context is how fast the controlled agents are able

to make the desired impact. Or namely, how fast the statistical properties of the

system, PDF and mean, converge to the stationary ones. In case the ordinary agents

interact locally the answer can be obtained analytically by solving corresponding

ODE, Eq. (7.6). Its solution is given by:

x (t ) = x f + [x (0) − x f ] exp(−[ℎM + σ1 + σ2]t ), (7.8)

here x (0) is the initial condition and x f is a fixed point of Eq. (7.6) which is given

by Eq. (7.7).

It is a more complex task to solve the global interaction case, macroscopic

dynamics of which is given by SDE (7.5). One would have to find the eigenvalues of

the Fokker–Planck equation [117]. The problem is that the corresponding Fokker–

Planck equation appears to be too complex to be dealt with analytically. A viable

alternative, of course, is a numerical simulation. In Figure 7.3 we plot the results of a

numerical simulation which show that the convergence times are finite for both mean

and stationary PDF. Furthermore the obtained results show that the convergence

of the mean is well described by Eq. (7.8), and thus the convergence in both cases

happen exponentially fast.
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Figure 7.3: Time evolution of the mean (a) and the PDF (b) of 1000 time series ob-
tained by numerically solving the SDE (7.5). Subfigure (a): squares represent the mean
trajectory (average over ensemble of 1000 realizations), the solid curve is a plot of
Eq. (7.8), while dashed line represents the expected mean. Subfigure (b): different
types of points represent PDF snapshots at distinct times (squares t = 0.05, circles
t = 0.1, triangles t = 0.15), the solid curve represents the initial condition (the PDF at
t = 0), while dashed curve represents the expected PDF. Model parameters were set as
follows: σ1 = σ2 = 2, ℎ = 1, M = M1 = 20.

7.2 Control of the three-state model

In previous section we have shown that even a few controlled agents are able

to make significant impact on the two-state model. Thus controlling the dynamics

of modulating return, see Section 6.2, is rather straightforward task from the model

point of view. Implementing control in a more realistic, three-state, model is a more

challenging task.

Of course it is obvious that the most effective market control method would

be introduction of M agents with predefined fundamentalist trading behavior. This

would increase parameter σc f by ℎM , or ε̃c f = εc f +M . Observe, in Figure 7.4, that

as M increases the PDF of p (t ) becomes narrower: larger deviations of p (t ) become

significantly less probable and standard deviation decreases. This process may be also

seen as a convergence of q -Gaussian-like (power-law asymptotic behavior) distribu-

tion towards Gaussian-like distribution (exponential asymptotic behavior), similarly

to what was discussed in Section 5.3. Evidently this control strategy yields excellent

results, but its main drawback is a simple fact that currently there is no conventional

agreement on how to estimate fundamental price, though some approaches are being

conducted by performing behavioral experiments [225–228].

The beneficial role of noise in many physical systems is widely recognized.

It is a well known that certain amounts of noise allows to strengthen the actual

patterns exhibited by the dynamical system [229–232]. While the idea itself is not
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Figure 7.4: Stationary PDF of absolute log-price, |p (t ) |, when predefined fundamen-
talists, M = 0; 1; 2; 4; 8, are present. Results were obtained by numerically solving
equations Eqs. (6.58) and (6.59). Parameters were as follows: ε̃c f = 0.1 + M , ε f c = 3,
εcc = 3, H = 300, a = 0.5, α = 2.

new to physics it was just only recently applied to socio-economic systems. E.g., it

was shown that random promotions might lead to more efficient hierarchical struc-

tures [233] as well as “accidental” politicians potentially improving legislature pro-

cess [234]. In a couple of more recent publications this idea was applied to the fi-

nancial markets. In terms of the financial markets this idea appears to be somewhat

controversial as the EMH suggests that non-rational agents should be driven out from

the market [235]. But the stochastic trading appears to work both as investment strat-

egy as well as extreme event prevention strategy, at least in generic setups [132, 224].

This kind of approach would be of great value as introduction of stochastic traders,

unlike fundamentalist traders, is very simple in terms of implementation. Though

the realistic introduction of the stochastic agents into the three-state model, and their

impact on the macroscopic behavior, is not straightforward.

The main problem is to define how the introduction of stochastic agents will

impact the population dynamics between agent groups. Recall that Kirman’s herd-

ing model is an ad hoc Markov process on the microscopic, individual agent, level.

Agents are free of any rationality, they are assumed to have zero intelligence. Namely,

they change the behavior with certain probability just in response to the contact with

another agent. In the considered model this contact is equivalent to a market trans-

action.

Recall that we can see the three state dynamics as two independent processes

(see Figure 6.5): fundamentalists-chartists process and optimists-pessimists process.

As time scales of these processes are different up to three orders of magnitude we can

assume them to be totally independent. In this approximation agents participate in
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both two-state processes simultaneously.

We have already discussed the impact of controlled agents on the population

dynamics between two agent groups. Here we apply the same logic, stochastic agents

influence ordinary agents to switch to the direct opposites of the considered groups.

In the slow fundamentalist-chartist process, when a fundamentalist makes a trade

with a stochastic agent, he perceives stochastic agent as chartist. While, on the other

hand, when a chartist makes trade with a stochastic agent, the chartist perceives

stochastic agent as fundamentalist. In a similar way for the faster optimist-pessimist

process, optimists perceive stochastic agents as pessimists, while pessimists perceive

stochastic agents as optimists. In all cases any ordinary agent can trade with only a

half of stochastic agents, those who submit opposite trade orders. Therefore in both,

fast and slow, processes stochastic agents should be perceived as an additional M /2

agents belonging to the direct opposite of any considered group.

Mathematically the impact of stochastic agents in this setup of two independent

herding processes may be formalized in the following way: ε̃ f c = ε f c + M /2, ε̃c f =

εc f + M /2, ε̃op = εop + M /2 and ε̃po = εpo + M /2. In Fig. 7.5 we demonstrate

that stochastic trading has a considerable effect diminishing price deviations from the

fundamental value.
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Figure 7.5: Stationary PDF of absolute log-price, |p (t ) |, in case when stochastic
traders, M = 0; 2; 4; 8, are assumed to have symmetric impact. Results were ob-
tained by numerically from Eqs. (6.58) and (6.59). Parameters were set as follows:
ε̃cc = 3 + M /2 ε̃ f c = 3 + M /2, ε̃c f = 0.1 + M /2, H = 300, a = 0.5, α = 2.

7.3 Summary

In this chapter we have demonstrated that controlled agents are able to sig-

nificantly impact the observed dynamics of the whole system. The effect may be
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observed only if they interact with normal agents globally. This might be especially

useful in financial market applications, were, according to the proposed model, inter-

actions occur on global scale.

Evidently financial fluctuations are suppressed, exponents of power-law distri-

bution decreased, if the controlled agents use fundamentalist trading strategy. Yet

this is somewhat hard to implement by the policy makers as this strategy relies on

economical concepts which are not clearly defined.

We have also found that financial fluctuations are suppressed, exponents of

power-law distribution decreased, in the proposed three-state model , if controlled

agents are trading randomly. This result is counter-intuitive and may be easily imple-

mented by the policy makers.
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8 Conclusions
1. The Bursting behavior observed in empirical a one-minute absolute return time

series has a power-law nature. Statistical similar power-law dependencies were

observed in the numerical time series obtained by solving Eq. (2.1) and evalu-

ating the double stochastic model.

2. The nonlinear SDEs generating the time series exhibiting the power-law PDF

and PSD, were obtained from the nonlinear modification of the GARCH(1,1)

model.

3. The nonlinear SDEs generating the time series exhibiting the power-law PDF

and PSD describing the long-term variability of return were obtained from

ABM based on the herding behavior. The ABM was extended by considering

fluctuations in agent interaction intensity.

4. Having considered the three-state ABM as a source of financial market volatil-

ity, we have obtained the financial market model generating the absolute return

time series exhibiting the PDF and PSD similar to the empirical absolute return

PDF and PSD.

5. Controlled agents, in the ABM based on the herding behavior, can make a

significant impact on the observed dynamics, if they are allowed to interact on

a global scale.
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90. K. Staliūnas, Bose–Einstein condensation in financial systems, Nonlinear Anal-

ysis: Modelling and Control 10, 247–256 (2005).

91. A. S. Chakrabarti, B. K. Chakrabarti, Microeconomics of the ideal gas like

market models, Physica A 388, 4151–4158 (2009).

92. D. Maldarella, L. Pareschi, Kinetic models for socio-economic dynamic of spec-

ulative markets, Physica A 391, 715–730 (2012).

93. T. Lux, M. Marchesi, Scaling and criticality in a stochastic multi-agent model of

a financial market, Nature 397, 498–500 (1999).

94. D. M. Hausman, Philosophy of economics, in E. N. Zalta (ed.), The Stanford

Encyclopedia of Philosophy (2013).

95. A. Kirman, G. Teyssiere, Microeconomic models for long memory in the

volatility of financial time series, Studies in Nonlinear Dynamics and Econo-

metrics 5, 281–302 (2002).

96. A. P. Kirman, Ants, rationality and recruitment, Quarterly Journal of Eco-

nomics 108, 137–156 (1993).

97. L. Zhao, G. Yang, W. Wang, Y. Chen, J. P. Huang, H. Ohashi, H. E. Stan-

ley, Herd behavior in a complex adaptive system, Proceedings of the National

Academy of Sciences of the United States of America 108, 15058–15063 (2011).

98. Y. Shapira, Y. Berman, E. Ben-Jacob, Modelling the short term herding be-

haviour of stock markets, New Journal of Physics 16, 053040 (2014).

99. G. Mosquera-Donate, M. Boguna, Follow the leader: Herding behavior in het-

erogeneous populations, Physical Review E 91, 052804 (2015).

118



100. J. Touloub, The hipster effect: When anticonformists all look the same,

preprint published on arxiv 1410.8001 (2015).

101. M. O. Jackson, Social and Economic Networks (Princeton University Press,

2010).

102. M. J. Newman, Networks: An Introduction (Oxford University Press, 2010).

103. R. Cohen, S. Havlin, Complex Networks: Structure, Robustness and Function

(Cambridge University Press, 2010).

104. A. L. Barabasi, Network Science (Cambridge University Press, 2015), to be pub-

lished, available online.

105. P. Erdos, A. Renyi, On random graphs, Publicationes Mathematicae 6, 290–297

(1959).

106. D. Stauffer, A. Aharony, Introduction to Percolation Theory (CRC Press, 1994).

107. D. J. Watts, S. H. Strogatz, Collective dynamics of small-world networks, Na-

ture 393, 440–442 (1998).

108. S. Milgram, The small world problem, Psychology Today 2, 60–67 (1967).

109. R. Albert, A. L. Barabasi, Statistical mechanics of complex networks, Reviews

of Modern Physics 74, 47–97 (2002).

110. P. Holme, B. J. Kim, Growing scale-free networks with tunable clustering,

Physical Review E 65, 026107 (2002).

111. M. O. Jackson, B. W. Rogers, Meeting strangers and friends of friends: How

random are social networks?, American Economic Review 97, 890–915 (2007).

112. J. Leskovec, J. Kleinberg, C. Faloutsos, Graph evolution: Densification and

shrinking diameters, Transactions on Knowledge Discovery from Data 1,

1217301 (2007).

113. M. Balint, V. Posea, A. Dimitriu, A. Iosup, An analysis of social gaming net-

works in online and face to face bridge communities, in Proceedings of the Third

International Workshop on Large-scale System and Application Performance (New

York, USA, 2011), 35–42.

119



114. P. Moriano, J. Finke, On the formation of structure in growing networks, Jour-

nal of Statistical Mechanics 2013, P06010 (2013).

115. P. Morters, Y. Peres, Brownian motion (Cambridge University Press, 2010).

116. D. S. Lemons, A. Gythiel, Paul Langevin’s 1908 paper “On the theory of brow-

nian motion”, American Journal of Physics 65, 1079 (1997).

117. H. Risken, The Fokker–Planck Equation: Methods of Solutions and Applications

(Springer, 1996), 3 edition.

118. V. Mackevicius, Stochastic Analysis (Vilnius University Press, 2005).

119. C. W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 2009).

120. R. Axelrod, Advancing the art of simulation in the social sciences, Complexity

3, 16–32 (1997).

121. M. S. Pakkanen, Microfoundations for diffusion price processes, Mathematics

and financial economics 3, 89–114 (2010).

122. L. Feng, B. Li, B. Podobnik, T. Preis, H. E. Stanley, Linking agent-based mod-

els and stochastic models of financial markets, Proceedings of the National

Academy of Sciences of the United States of America 22, 8388–8393 (2012).

123. S. Alfarano, T. Lux, F. Wagner, Estimation of agent-based models: The case of

an asymmetric herding model, Computational Economics 26, 19–49 (2005).

124. S. Alfarano, T. Lux, F. Wagner, Time variation of higher moments in a finan-

cial market with heterogeneous agents: An analytical approach, Journal of Eco-

nomic Dynamics and Control 32, 101–136 (2008).

125. V. Alfi, M. Cristelli, L. Pietronero, A. Zaccaria, Minimal agent based model

for financial markets I: Origin and self-organization of stylized facts, European

Physical Journal B 67, 385–397 (2009).

126. V. Alfi, M. Cristelli, L. Pietronero, A. Zaccaria, Minimal agent based model

for financial markets II: Statistical properties of the linear and multiplicative

dynamics, European Physical Journal B 67, 399–417 (2009).

120



127. B. Kaulakys, J. Ruseckas, Stochastic nonlinear differential equation generating

1/f noise, Physical Review E 70, 020101 (2004).

128. V. Gontis, B. Kaulakys, Modeling financial markets by the multiplicative se-

quence of trades, Physica A 344, 128–133 (2004).

129. B. Kaulakys, V. Gontis, M. Alaburda, Point process model of 1/ f noise vs a

sum of Lorentzians, Physical Review E 71, 1–11 (2005).

130. B. Kaulakys, J. Ruseckas, V. Gontis, M. Alaburda, Nonlinear stochastic models

of 1/f noise and power-law distributions, Physica A 365, 217–221 (2006).

131. B. Kaulakys, M. Alaburda, Modeling scaled processes and 1/ f β noise using non-

linear stochastic differential equations, Journal of Statistical Mechanics P02051

(2009).

132. A. E. Biondo, A. Pluchino, A. Rapisarda, D. Helbing, Stopping financial

avalanches by random trading, Physical Review E 88, 062814 (2013).

133. F. Schweitzer, P. Mavrodiev, C. J. Tessone, How can social herding enhance

cooperation?, Advances in Complex Systems 16, 1350017 (2013).

134. V. Gontis, B. Kaulakys, J. Ruseckas, Trading activity as driven poisson process:

comparison with empirical data, Physica A 387, 3891–3896 (2008).

135. V. Gontis, J. Ruseckas, A. Kononovicius, A long-range memory stochastic

model of the return in financial markets, Physica A 389, 100–106 (2010).

136. V. Gontis, J. Ruseckas, A. Kononovicius, A non-linear stochastic model of re-

turn in financial markets, in C. Myers (ed.), Stochastic Control (InTech, 2010).

137. V. Gontis, B. Kaulakys, J. Ruseckas, Point process models of 1/f noise and

internet traffic, AIP Conference Proceedings 776, 144–149 (2005).

138. B. Kaulakys, M. Alaburda, V. Gontis, T. Meskauskas, J. Ruseckas, Modeling of

flows with power-law spectral densities and power-law distributions of flow in-

tensities, in A. Schadschneider (ed.), Traffic and Granular Flow (Springer, 2007),

volume 5, 587–594.

121



139. D. J. Levitin, P. Chordia, V. Menon, Musical rhythm spectra from Bach to

Joplin obey a 1/f power law, Proceedings of the National Academy of Sciences

of the United States of America 109, 3716–3720 (2012).

140. B. Kaulakys, M. Alaburda, V. Gontis, Point processes modeling of time se-

ries exhibiting power-law statistics, AIP Conference Proceedings 922, 535–538

(2007).

141. R. Kazakevicius, J. Ruseckas, Power law statistics in the velocity fluctuations

of brownian particle in inhomogeneous media and driven by colored noise,

Journal of Statistical Mechanics P02021 (2015).

142. R. Kazakevicius, J. Ruseckas, Anomalous diffusion in nonhomogeneous me-

dia: Power spectral density of signals generated by time-subordinated nonlinear

langevin equations, Physica A 438, 210–222 (2015).

143. T. A. Marsh, E. R. Rosenfeld, Stochastic processes for interest rates and equilib-

rium bond prices, The Journal of Finance 38, 635–646 (1983).

144. M. Jeanblanc, M. Yor, M. Chesney, Mathematical Methods for Financial Markets

(Springer, Berlin, 2009).

145. K. C. Chan, G. Andrew Karolyi, F. A. Longstaff, A. B. Sanders, An empirical

comparison of alternative models of the short-term interest rate, The Journal

of Finance XLVII, 1209–1227 (1992).

146. W. H. Press, S. A. Teukolsky, W. T. Vetterling, Numerical Recipies (Cambridge

University Press, 2007), 3 edition.

147. P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations

(Springer, Berlin, 1999).

148. E. W. Weinstein, Modified Bessel function of the second kind, from Math-

World – A Wolfram Web Resource: http://mathworld.wolfram.com/

ModifiedBesselFunctionoftheSecondKind.html.

149. C. M. Gell-Mann, C. Tsallis, Nonextensive Entropy – Interdisciplinary Applica-

tions (Oxford University Press, New York, 2004).

122

http://mathworld.wolfram.com/ModifiedBesselFunctionoftheSecondKind.html
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheSecondKind.html


150. E. W. Weinstein, Student’s t-distribution, from MathWorld – A Wolfram Web

Resource: http://mathworld.wolfram.com/Studentst-Distribution.

html.

151. J. Ruseckas, B. Kaulakys, Scaling properties of signals as origin of 1/f noise,

Journal of Statistical Mechanics 2014, P06004 (2014).

152. V. Gontis, B. Kaulakys, Long-range memory model of trading activity and

volatility, Journal of Statistical Mechanics P10016, 1–11 (2006).

153. D. Davydov, V. Linetsky, Pricing and hedging path-dependent options under

the CEV process, Management Science 47, 949–965 (2001).

154. S. Reimann, V. Gontis, M. Alaburda, Interplay between positive feedbacks in

the generalized CEV process, Physica A 390, 1393–1401 (2011).

155. D. O. Cajueiro, B. M. Tabak, Multifractality and herding behavior in the

japanese stock market, Chaos, Solitons and Fractals 40, 497–504 (2009).

156. J. P. Bouchaud, Crises and collective socio-economic phenomena: Simple mod-

els and challenges, Journal of Statistical Physics 151, 567–606 (2013).

157. A. N. Borodin, P. Salminen, Handbook of Brownian Motion (Birkhauser, Basel,

Switzerland, 2002), 2 edition.

158. S. Redner, A guide to first-passage processes (Cambridge University Press, 2001).

159. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formu-

las, Graphs, and Mathematical Tables (Dover, New York, 1972).

160. E. W. Weinstein, Bessel function of the first kind, from Math-

World – A Wolfram Web Resource: http://mathworld.wolfram.com/

BesselFunctionoftheFirstKind.html.

161. E. W. Weinstein, Bessel function zeros, from MathWorld – A Wolfram Web

Resource: http://mathworld.wolfram.com/BesselFunctionZeros.html.

162. C. S. Chou, H. J. Lin, Some properties of cir processes, Stochastic Analysis and

Applications 24, 901–912 (2006).

123

http://mathworld.wolfram.com/Studentst-Distribution.html
http://mathworld.wolfram.com/Studentst-Distribution.html
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/BesselFunctionZeros.html


163. B. Mandelbrot, The variation of certain speculative prices, The Journal of Busi-

ness 36, 394 (1963).

164. E. F. Fama, The behavior of stock-market prices, The Journal of Business 38,

34–105 (1965).

165. R. N. Mantegna, H. E. Stanley, Introduction to Econophysics: Correlations and

Complexity in Finance (Cambridge University Press, 2000).

166. A. W. Lo, Long-term memory in stock market prices, Econometrica 59, 1279–

313 (1991).

167. Z. Ding, C. W. J. Granger, R. F. Engle, A long memory property of stock mar-

ket returns and a new model, Journal of Empirical Finance 1, 83–106 (1993).

168. J. Ruseckas, B. Kaulakys, Intermittency in relation with 1/f noise and stochastic

differential equations, Chaos 23, 023102 (2013).

169. R. Engle, Autoregresive conditional heteroscedasticity with estimates of the

variance of United Kingdom inflation, Econometrica 50, 987–1008 (1982).

170. T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal

of Econometrics 31, 307–327 (1986).

171. R. Engle, T. Bollerslev, Modeling the persistence of conditional variances,

Econometric Reviews 5, 1–50 (1986).

172. J. Campbell, A. Lo, A. MacKinlay, The Econometrics of Financial Markets

(Princeton University Press, Princeton, USA, 1997).

173. M. Potters, R. Cont, J. P. Bouchaud, Financial markets as adaptive systems, EPL

41, 239–244 (1998).

174. J. P. Fouque, K. R. Sircar, G. Papanicolaou, Derivatives in Financial Markets

with Stochastic Volatility (Cambridge University Press, Cambridge, 2000).

175. T. Bollerslev, Glossary to ARCH (GARCH), CREATES Research Paper

(2008).

176. L. Giraitis, R. Leipus, D. Surgailis, ARCH(∞) models and long memory, in

T. G. Anderson, R. A. Davis, J. Kreis, T. Mikosh (eds.), Handbook of Financial

Time Series (Springer Verlag, Berlin, 2009), 71–84.

124



177. C. Conrad, Non-negativity conditions for the hyperbolic garch model, Journal

of Econometrics 157, 441–457 (2010).

178. M. E. H. Arouri, S. Hammoudeh, A. Lahiani, D. K. Nguyen, Long memory

and structural breaks in modeling the return and volatility dynamics of precious

metals, The Quarterly Review of Economics and Finance 52, 207–218 (2012).

179. L. Giraitis, H. L. Koul, D. Surgailis, Large Sample Inference for Long Memory

Processes (World Scientific, 2012).

180. M. Tayefi, T. V. Ramanathan, An overview of FIGARCH and related time

series models, Austrian Journal of Statistics 41, 175–196 (2012).

181. L. Borland, Option pricing formulas based on a non-gaussian stock price model,

Physical Review Letters 89, 098701 (2002).

182. T. H. Rydberg, N. Shephard, Dynamics of trade-by-trade price movements:

Decomposition and models, Journal of Financial Econometrics 1, 2–25 (2003).

183. E. Scalas, T. Kaizoji, M. Kirchler, J. Huber, A. Tedeschi, Waiting times between

orders and trades in double-auction markets, Physica A 366, 463–471 (2006).

184. E. Jondeau, S. H. Poon, M. Rockinger, Financial Modeling Under Non-Gaussian

Distributions (2007).

185. D. B. Nelson, ARCH models as diffusion approximations, Journal of Econo-

metrics 45, 7–38 (1990).

186. C. Kluppelberg, A. Lindner, R. Maller, A continuous-time GARCH process

driven by a Levy process: stationarity and second-order behaviour, Journal of

Applied Probability 41, 601–622 (2004).

187. A. M. Lindner, Continuous time approximations to GARCH and stochastic

volatility models, in Handbook of Financial Time Series (Springer, 2008).

188. C. Kluppelberg, R. Maller, A. Szimayer, The COGARCH: A review, with news

on option pricing and statistical inference (2010).

189. J. Ruseckas, B. Kaulakys, 1/f noise from nonlinear stochastic differential equa-

tions, Physical Review E 81, 031105 (2010).

125



190. M. L. Higgins, A. K. Bera, A class of nonlinear ARCH models, International

Economic Review 33, 137–158 (1992).

191. D. Challet, M. Marsili, R. Zecchina, Statistical mechanics of systems with het-

erogeneous agents: Minority games, Physical Review Letters 84, 1824–1827

(2000).

192. J. D. Farmer, P. Patelli, I. Zovko, The predictive power of zero intelligence

in financial markets, Proceedings of the National Academy of Sciences of the

United States of America 102, 2254–2259 (2005).

193. T. A. Schmitt, R. Schafer, M. C. Munnix, T. Guhr, Microscopic understanding

of heavy-tailed return distributions in an agent-based model, EPL 100, 38005

(2012).

194. S. H. Chen, S. P. Li, Econophysics: Bridges over a turbulent current, Interna-

tional Review of Financial Analysis 23, 1–10 (2012).

195. M. Ortisi, V. Zuccolo, From minority game to Black–Scholes pricing, Applied

Mathematical Finance 20, 578–598 (2013).

196. L. Goldenberg, B. Libai, E. Muller, Using complex systems analysis to advance

marketing theory development, Academy of Marketing Science Review 9, 1–18

(2001).

197. G. Fibich, R. Gibori, E. Muller, A Comparison of Stochastic Cellular Automata

Diffusion with the Bass Diffusion Model, Technical report, NYU Stern School of

Business (2010).

198. P. Purplys, Mikroskopinis ir makroskopinis naujų produktų sklaidos modeliav-
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