Long-range memory in nonlinear GARCH(1,1) models
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Nonlinear modifications of GARCH(1,1)

Introduction

Econophysics started out as purely empirical science. i&hisaround the world analyzed
huge amounts of financial market data and discovered cestatistical regularities, which is

now often referred to as stylized facts [1, 2]. One of theg@allagities is long-range, decaying as
power-law, correlations often referred to as long-rangewony [2]. PSD of the time series with

long-range memory behaves]as"ﬁ with 3 values being close tb At the same time economists
proposed, applied and further developed auto-regresemveitionally heteroskedastic (ARCH)

models [3].

Abbreviations: GARCH - generalized ARCH; SDE - stochastic differential &mpn; PDF - probability density
function; PSD - power spectral density.

SDE reproducing long-range memory

Previously in [4] a SDE,
1
dz = o? (77 — 5)\> 1At + o AW, (1)

was proposed to mode/ f noise, which is often related to a concept of long-range nmgnidnis
happens because Wiener-Khinchin theorem implies thatah sase auto-correlation function
of the signal does not decay or decays as a power-law funafitnexponent close t6. This
SDE reproduces not only/ f noise, but general power-law PSD with variable exporment

1 A—3

0.0 < B < 2. (2)

Note that Eq. (1) does not satisfy Lipschitz conditions fmgex and stationary PDF of EqQ.
(1) diverges for smalk, thus we implement reflective boundary conditions and ptheen at
Tin @Nd ez This results in Eq. (2) holding for the certain range of treqcies -f,,,;, <

f < fmaz). This is rather natural property as puref noise would imply that signal has infinite
power.
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Figure 1: Statistical properties, PDF (a) and PSD (b), olethiby numerically solving SDE (1) (red squares).
Black curves show power-law approximations: {a)y and (b)1/f. Used parameter set) = 2, A = 3,
Tmin = L, Tmax = 10%, 0 = 1. QR code will take you to interactive HTML5+Javascript appRhysics of Risk
(http://mokslasplius.lt/rizikos-fizika) website.

Linear GARCH(1,1) model

The basic idea behind ARCH family models lies in an assumptat certain heteroskedastic
economical observables;, may be modeled as being composed of two parts - stochastic pa
we, and its time dependent volatility,:

2t = OpWt. (3)

Stochastic part may be usually assumed to be a simple naieévof which follow Gaussian

distribution, though it may depend on actual applicatidmne dependent part is assumed to be

driven by iterative process.
GARCH(1,1) model is based on the following iterative praces

0f = a+boj_ywi_| +coj_. (4)
In this case new; values depend only on the current state,;. As o; does not depend on past
history of system evolution, the model intuitively appetarbe memory-less. It exhibits Markov

property.

In the diffusion limit, iterative process behind GARCH(Lgrocess, Eqg. (4), may be rewritten
as SDE:
dy =(A—Cy)dt+ |Blyd W, (5)

wherelV; iIs Wiener process (standard one dimensional Brownian mptiBarameters of this
SDE are related to parameters of Eq. (4) as follows:= a, B*h = 2b?andCh =1—b— ¢
(hereh Is the infinitesimally small time step).

Eqg. (5) appears to be a special case of Eq. (1) with 1 and exponential diffusion restriction.
While exponential diffusion restriction has a similar afeef as reflective boundary conditions,
being limited ton = 1 is severely restricting - Eq. (2) diverges, but Eq. (5) hasftrm of
Geometric Brownian motion, which is known to produce Broanlike PSD,S(f) ~ 1/f%.
Though we are not able to control PSD, we can control PDF:

20 1—-b—c

ply) ~y A=24 5 =245

(6)
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Figure 2: Statistical properties, PDF (a) and PSD (b), of ewcally evaluated linear GARCH(1,1) pro-
cess Eq. (4). Used parameter set:= 0.015, b = 0.1, ¢ = 0.89 (red squares)).88 (blue circles) and
0.87 (magenta triangles). QR code will take you to interactiveMiLb+Javascript app on Physics of Risk
(http://mokslasplius.lt/rizikos-fizika) website.

In order to obtain differeny, we propose two nonlinear modifications of Eq. (4):

2 2

whereun > 2 is an odd integer, and

2 2
oF =a+ blaf_l\wt_ﬂ“ +o;_1— claf_l, (8)

wherep, may be any positive real number.

In both cases we obtain SDEs which are special cases of Egit(il)n = 4 and\ = u. In case
of Eq. (7), we have:

dy = <—1_—2> y“~tdt + |Blyz AWy, (9)

where the parameters are related as follows:= a, Ch = 1 — ¢, B*h = (W?*)b°. In case of
Eqg. (8), we have:

A C’
dy = (—1 . )yﬂldHB’ly%‘th, (10)
yH y§_1

where the parameters are related as follows: = a, C'h = b{|w|*) — ¢, B”h = {([Jw|* —
(lw|*)]?)b?. Both of these nonlinear GARCH(1,1) processes are ablepimdece power-law
distributions, with exponemt = ., as well as power-law PSD [5]:

S ~1/fP =1+ Z—_g (11)
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Figure 3: Statistical properties, PDF (a) and PSD (b), of ecally evaluated nonlinear GARCH process
Eq. (7) withy = 3 (red squares). Black curves show power law approximati¢asr— and (b)1/f. Used
parameter sete = 107%, b = 1072, ¢ = 1. QR code will take you to interactive HTML5+Javascript app o
Physics of Risk (http://mokslasplius.lt/rizikos-fizikagbsite.
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Figure 4. Statistical properties, PDF (a) and PSD (b), of ewcally evaluated nonlinear GARCH process
Eq. (8) withu = 3 (red squares). Black curves show power law approximati¢asr— and (b)1/f. Used

parameter seta = 1075, b = 1077, ¢ = 2\/% 1073 ~ 1.595769 - 1073. QR code will take you to interactive
HTML5+Javascript app on Physics of Risk (http://mokslasplt/rizikos-fizika) website.

Note that in both case we have selected parameters asto-sétandC’ = 0. This is necessary
as parameter€ and C’ determine if power-law behavior is possible to observeC land C’
deviate from zero - extreme events rapidly become less plelva observe.
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Figure 5: Analytical stationary PDF of (a) Eq. (7) and (b) E&) with non-zero values of' andC’. Used
parameter sets = 1079, b = 1072 andc values is set according to the parameter relations.

Conclusions

We have considered two possible nonlinear modifications GA&RCH(1,1) process and com-
pared them to a well-known nonlinear SDE (1), which is ablesfaroduce long-range memory
PSD (generating/ f noise). Numerical evaluation of Eqgs. (7) and (8) with suytaiinosen pa-
rameters confirms the presence of a wide power-law regioharPtSD of the resulting time
series. Effectively this mean that we observe indicatidriermy-range memory in memory-less
model.

The results are especialy interesting as long-range megfyPSD) is considered to be one
of the stylized facts of the financial markets as well as otmnplex systems. The obtained
results and proposed nonlinear GARCH processes shouloethd €@ creation and application

of ARCH family models that correctly reproduce the PSD offthancial time series as well.
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