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Introduction

Econophysics started out as purely empirical science. Physicists around the world analyzed
huge amounts of financial market data and discovered certainstatistical regularities, which is
now often referred to as stylized facts [1, 2]. One of these regularities is long-range, decaying as
power-law, correlations often referred to as long-range memory [2]. PSD of the time series with
long-range memory behaves as1/fβ with β values being close to1. At the same time economists
proposed, applied and further developed auto-regressive conditionally heteroskedastic (ARCH)
models [3].

Abbreviations: GARCH - generalized ARCH; SDE - stochastic differential equation; PDF - probability density

function; PSD - power spectral density.

SDE reproducing long-range memory

Previously in [4] a SDE,

d x = σ2
(

η −
1

2
λ

)

x2η−1 d t + σxη dWt, (1)

was proposed to model1/f noise, which is often related to a concept of long-range memory. This
happens because Wiener-Khinchin theorem implies that in such case auto-correlation function
of the signal does not decay or decays as a power-law functionwith exponent close to0. This
SDE reproduces not only1/f noise, but general power-law PSD with variable exponentβ:

S(f ) ∼
1

fβ
, β = 1 +

λ− 3

2η − 2
, 0.5 < β < 2. (2)

Note that Eq. (1) does not satisfy Lipschitz conditions for largex and stationary PDF of Eq.
(1) diverges for smallx, thus we implement reflective boundary conditions and placethem at
xmin andxmax. This results in Eq. (2) holding for the certain range of frequencies -fmin <
f < fmax). This is rather natural property as pure1/f noise would imply that signal has infinite
power.
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Figure 1: Statistical properties, PDF (a) and PSD (b), obtained by numerically solving SDE (1) (red squares).
Black curves show power-law approximations: (a)x−3 and (b)1/f . Used parameter set:η = 2, λ = 3,
xmin = 1, xmax = 103, σ = 1. QR code will take you to interactive HTML5+Javascript app on Physics of Risk
(http://mokslasplius.lt/rizikos-fizika) website.

Linear GARCH(1,1) model

The basic idea behind ARCH family models lies in an assumption that certain heteroskedastic
economical observables,zt, may be modeled as being composed of two parts - stochastic part,
ωt, and its time dependent volatility,σt:

zt = σtωt. (3)

Stochastic part may be usually assumed to be a simple noise (values of which follow Gaussian
distribution, though it may depend on actual application).Time dependent part is assumed to be
driven by iterative process.

GARCH(1,1) model is based on the following iterative process:

σ2t = a + bσ2t−1ω
2
t−1 + cσ2t−1. (4)

In this case newσt values depend only on the current state,σt−1. Asσt does not depend on past
history of system evolution, the model intuitively appearsto be memory-less. It exhibits Markov
property.

In the diffusion limit, iterative process behind GARCH(1,1) process, Eq. (4), may be rewritten
as SDE:

d y = (A− Cy) d t + |B|y dWt, (5)

whereWt is Wiener process (standard one dimensional Brownian motion). Parameters of this
SDE are related to parameters of Eq. (4) as follows:Ah = a, B2h = 2b2 andCh = 1 − b − c
(hereh is the infinitesimally small time step).

Eq. (5) appears to be a special case of Eq. (1) withη = 1 and exponential diffusion restriction.
While exponential diffusion restriction has a similar as effect as reflective boundary conditions,
being limited toη = 1 is severely restricting - Eq. (2) diverges, but Eq. (5) has the form of
Geometric Brownian motion, which is known to produce Brownian-like PSD,S(f ) ∼ 1/f2.
Though we are not able to control PSD, we can control PDF:

p(y) ∼ y−λ, λ = 2 +
2C

B2
= 2 +

1− b− c

b2
. (6)
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Figure 2: Statistical properties, PDF (a) and PSD (b), of numerically evaluated linear GARCH(1,1) pro-
cess Eq. (4). Used parameter set:a = 0.015, b = 0.1, c = 0.89 (red squares),0.88 (blue circles) and
0.87 (magenta triangles). QR code will take you to interactive HTML5+Javascript app on Physics of Risk
(http://mokslasplius.lt/rizikos-fizika) website.

Nonlinear modifications of GARCH(1,1)

In order to obtain differentη, we propose two nonlinear modifications of Eq. (4):

σ2t = a + b1σ
µ
t−1ω

µ
t−1 + c1σ

2
t−1, (7)

whereµ > 2 is an odd integer, and

σ2t = a + b1σ
µ
t−1|ωt−1|

µ + σ2t−1 − c1σ
µ
t−1, (8)

whereµ may be any positive real number.

In both cases we obtain SDEs which are special cases of Eq. (1)with 2η = µ andλ = µ. In case
of Eq. (7), we have:

d y =

(

A

yµ−1
−

C

yµ−2

)

yµ−1 d t + |B|y
µ
2 dWt, (9)

where the parameters are related as follows:Ah = a, Ch = 1 − c, B2h = 〈ω2µ〉b2. In case of
Eq. (8), we have:

d y =

(

A

yµ−1
−

C ′

y
µ
2
−1

)

yµ−1 d t + |B′|y
µ
2 dWt, (10)

where the parameters are related as follows:Ah = a, C ′h = b〈|ω|µ〉 − c, B′2h = 〈[|ω|µ −
〈|ω|µ〉]2〉b2. Both of these nonlinear GARCH(1,1) processes are able to reproduce power-law
distributions, with exponentλ = µ, as well as power-law PSD [5]:

S(f ) ∼ 1/fβ, β = 1 +
µ− 3

µ− 2
. (11)
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Figure 3: Statistical properties, PDF (a) and PSD (b), of numerically evaluated nonlinear GARCH process
Eq. (7) withµ = 3 (red squares). Black curves show power law approximations:(a) x−3 and (b)1/f . Used
parameter set:a = 10−6, b = 10−3, c = 1. QR code will take you to interactive HTML5+Javascript app on
Physics of Risk (http://mokslasplius.lt/rizikos-fizika)website.
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Figure 4: Statistical properties, PDF (a) and PSD (b), of numerically evaluated nonlinear GARCH process
Eq. (8) withµ = 3 (red squares). Black curves show power law approximations:(a) x−3 and (b)1/f . Used

parameter set:a = 10−6, b = 10−3, c = 2
√

2

π
· 10−3 ≈ 1.595769 · 10−3. QR code will take you to interactive

HTML5+Javascript app on Physics of Risk (http://mokslasplius.lt/rizikos-fizika) website.

Note that in both case we have selected parameters as to setC = 0 andC ′ = 0. This is necessary
as parametersC andC ′ determine if power-law behavior is possible to observe. IfC andC ′

deviate from zero - extreme events rapidly become less probable to observe.

10-32

10-24

10-16

10-8

100

10-1 100 101 102

p
(y
)

y

(a)

C=0

C=2 b

C=5 b

C=8 b

10-32

10-24

10-16

10-8

100

10-1 100 101 102

p
(y

)

y

(b)

C=0

C=-2 b

C=-5 b

C=2 b

'

'

'

'

Figure 5: Analytical stationary PDF of (a) Eq. (7) and (b) Eq.(8) with non-zero values ofC andC ′. Used
parameter set:a = 10−6, b = 10−3 andc values is set according to the parameter relations.

Conclusions

We have considered two possible nonlinear modifications of aGARCH(1,1) process and com-
pared them to a well-known nonlinear SDE (1), which is able toreproduce long-range memory
PSD (generating1/f noise). Numerical evaluation of Eqs. (7) and (8) with suitably chosen pa-
rameters confirms the presence of a wide power-law region in the PSD of the resulting time
series. Effectively this mean that we observe indications of long-range memory in memory-less
model.

The results are especialy interesting as long-range memory(1/f PSD) is considered to be one
of the stylized facts of the financial markets as well as othercomplex systems. The obtained
results and proposed nonlinear GARCH processes should be useful for creation and application
of ARCH family models that correctly reproduce the PSD of thefinancial time series as well.
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