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Abstract

The characteristic feature of the complex socio-econogstems is a tight coupling of the constituent parts.
Social cooperation, spontaneous emergence, formationasfdial bubbles, financial flash-crashes and even
mass panic actually may be a result of this coupling and agaio general gimmicks of human psychology
[1, 2]. In this context we can see the individuals (or firms timep socio-economic entities) as generalized
agents, which are tightly coupled with other agents via taelimg interactions [3, 4]. Previous empirical
research, from a point of view of the behavioral biology andiglogy (see recent papers by Jens Krauze
[5, 6]), has shown that one can use the tight coupling to obitte collective behavior of large groups of
iIndividuals. In this contribution we approach the same [Ealfrom an agent-based modeling point of view.
Namely, we study the dynamics of the agent-based herdinginhmaginal proposed in [7], in which certain
agents are controlled externally.

Agent-based herding model
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Figure 1: A photo of experiment (on the left) which inspirée agent-based herding model (schematic representatithreon
right). Here we havéV ants, which take food to their colony. Ants may use one of the available paths. Interestingly

enough most of the time they tend to exploit only one paths Haippens due to the importance of two-agent interactfons,
terms, in comparison to a single-agent transitiengerms.

Mathematical definition of the transition probabilitiegjueres a definition of two-agent interactions. If the
agents are able to interact on the global scale, their trangrobabilities will have the following form,

(1)

While if they are interacting only on the local scale (i.enJyowith their direct neighbors), the transition
probabilities take the following form,

p(i — j) = |oj+hX;| At.

(i — j) = [0]- +% j] At. (2)

Here: andj are indices representing the available statesis a small time period (small enough for one
transition to be probable).

Controlled agents and their impact

Let consider the impact of individual agents on system abballlevel. It should be evident at agents acting
on the local scale influence their immediate neighbors, wmay (or may not) spread the control further. If
system is large enough then at a certain point the influensedaf agents will be stopped from spreading.
On the other hand Iif the individual acts on the global scdientit is seen by many agents at every time.
Thus its influence spreads infinitely. So let us use contit@lgents, with otherwise “inflexible” opinion (this
concept was introduced in [8]), which interact on globalscahile other agents interact on local scale:

h
p(e — j) = |o; + =X, +hM;| At, (3)

N J
whereM; Is a number of controlled agents In the stateNote that/V no longer stands for a total number

of agents in the system, now it represents a total numberha&r gtgents, which switch their opinion via
endogenous interactions.
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Figure 2: (a): A comparison of a numerically calculatedistatry PDF with no controlled agentd/; = 0 and M, = 0 (red
squares), and stationary PDF with controlled agemfs,= 20 and M, = 0 (magenta circles))/; = 0 and M, = 20 (blue
triangles). (b): A convergence of agent-based matigl= 20 and M, = 0, (magenta squares) versus the analytical prediction
Eq. (5). Model parameters were set as follows= 0y =2, h = 1, N = 10*.

As you can see in the figure above an extremely small numbédreofantrolled agents is able to make a
significant impact onto the stationary distribution. Threngs up an interesting question how fast is the
convergence towards this stationary distribution. [t istyyr straightforward (use the Master equation and
one-step formalism [10]) to obtain ordinary differentigluation describing the macroscopic dynamics of
the considered agent-based system:

T = (o1 +hMi)(1 —x)— (09 + hM>)x. (4)
The solution of this equation is an exponential functionimiet
2(t) = z + [2(0) — z]e” MMi+M)For+onll (5)

Thus the convergence is exponential fast with the rate dkpdron the individual transition rates,, and
amount of controlled agents in each staltg, In the abover is the stationary point:

hMy + o1
h(M1 + Mg) + 01+ 09

(01 +hMy)(1 —2) — (o9 +hMy)x =0, = T= (6)

Similar dynamics are observed if the ordinary agents aeiateracting on the global scale [9]. The only
difference is that the system dynamics are significantlyamandom and the stationary PDF of the model
becomes power-law instead of Gaussian.

Controlling catastrophic events in the financial markets

Unlike in the society, in the financial markets any trader mmeake transactions with any other trader. Thus
In the financial market model all of the agents should alseratt on the global scale. The macroscopic
dynamics of the financial markets will no longer be given by @DE, one needs to use stochastic calculus
[11, 12]. As our previous works have shown the trading in far@nmarkets has two separate time scales
- a slow process representing fundamentalist-chartigcbmig and a fast process representing optimism-
pessimism mood fluctuations.

A slow process is a stochastic process based on modulatumgpre, which is defined as a ratio between
agents using chartist trading strategies and agents usnitamental trading strategies [11]. SDE fdnas
the following form:

dy = |o1 + (2 — 02>y1+&} (1+y)dt + \/thHO‘(l + y)dW. (7)
The stationary probability density function gfis a power-lawp(y) ~ y—2~*~1 thus large crashes and
bubbles become probable. In order to prevent them we mighé ssnple rule - if absolute retugnis larger
thany;,,,, we introduce)M agents trading based on the fundamentals.

Another possibility to prevent catastrophic events is tatam the fast mood process, macroscopic dynamics
of which are given by

4 = [(1 — E)apo — (1 +E)ogp] dt + 1/2h (1 — €2)dW. (8)

Let us “moderate” the time series of moad,by a similar rule as in case witht if & > &,,42, then we
Introducel agents into the pessimist state, whil€ & &,,,;,,, then we introducé/ agents into the optimist
state. A similar approach was proposed in [13], where agesitg) random trading strategy were used to

calm th5e markets.
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Figure 3: Original time series (red curves) and the same sienes under “moderation” (blue curves). In the subfiguyev@a
plot price time series obtained while using a modelifowhile in the subfigure (b) we plot the chartist mogdtime series.
Model fory parameters were set as follows: = 0.1, 00 = 1, h = 107, o = 1, yi, = 0.3, M = 10. Model for ¢ parameters
were set as followss,, = 0, = 1, h = 1072, &in = —Eae = —0.5, M = 10.

Note that in the figure above we see a large impact of the peabsimple policies carried out by small fixed
number of agents)/ = 10, onto the infinitely sized system8] — oo. On the left we see that price time
series become significantly smoother, while ugjrighoderation” policy. On the right we see that the policy
does not allow for mood to reach extreme values and is effdgtconstrained in th&,,,;,,, {maz| range.

Conclusions

In this contribution we have approached modeling of the brdf complex socio-economic systems.
Namely, we have modified a well known agent-based herdingamodginally introduced in [7], to include
agents, whose state “inflexible” and is preset by us. Therobatver a small fixed number of the agents
enabled us to significantly influence the behavior of therdlgents, who still act based on the original rules
of the model.

We find our model setup well-backed with the related expemnism the behavioral sociology and behavioral
biology carried out Iin [5, 6]. We believe that the presentadgery of society while being simplistic still
reflects certain general features of social life - ordinagpgde usually interact with their “neighborhood”
(i.e. friends, coworkers and other acquaintances), whdaders” are usually well known and frequently
seen by broader society.

In this contribution we keep our imagery of financial mark&taplistic, but it is already able to reproduce
some of the results obtained from using other models for ttan@ial markets (e.g., [13]). In future we plan
to work further in this direction by considering a more s@bicated herding model of financial markets (e.qg.
three group modeling [12]).

Part of the research covered in this contribution was plétian [9]. Some of the new material will be used
In future research and scientific publications.
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