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Abstract

The characteristic feature of the complex socio-economic systems is a tight coupling of the constituent parts.
Social cooperation, spontaneous emergence, formation of financial bubbles, financial flash-crashes and even
mass panic actually may be a result of this coupling and also certain general gimmicks of human psychology
[1, 2]. In this context we can see the individuals (or firms or other socio-economic entities) as generalized
agents, which are tightly coupled with other agents via the herding interactions [3, 4]. Previous empirical
research, from a point of view of the behavioral biology and sociology (see recent papers by Jens Krauze
[5, 6]), has shown that one can use the tight coupling to control the collective behavior of large groups of
individuals. In this contribution we approach the same problem from an agent-based modeling point of view.
Namely, we study the dynamics of the agent-based herding model, original proposed in [7], in which certain
agents are controlled externally.

Agent-based herding model
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Figure 1: A photo of experiment (on the left) which inspired the agent-based herding model (schematic representation onthe
right). Here we haveN ants, which take food to their colony. Ants may use one of the two available paths. Interestingly
enough most of the time they tend to exploit only one path. This happens due to the importance of two-agent interactions,h

terms, in comparison to a single-agent transitions,σ terms.

Mathematical definition of the transition probabilities requires a definition of two-agent interactions. If the
agents are able to interact on the global scale, their transition probabilities will have the following form,

µ(i → j) =
[

σj + hXj

]

∆t. (1)

While if they are interacting only on the local scale (i.e., only with their direct neighbors), the transition
probabilities take the following form,

µ(i → j) =

[

σj +
h

N
Xj

]

∆t. (2)

Herei andj are indices representing the available states,∆t is a small time period (small enough for one
transition to be probable).

Controlled agents and their impact

Let consider the impact of individual agents on system at a global level. It should be evident at agents acting
on the local scale influence their immediate neighbors, which may (or may not) spread the control further. If
system is large enough then at a certain point the influence ofsuch agents will be stopped from spreading.
On the other hand if the individual acts on the global scale, then it is seen by many agents at every time.
Thus its influence spreads infinitely. So let us use controlled agents, with otherwise “inflexible” opinion (this
concept was introduced in [8]), which interact on global scale, while other agents interact on local scale:

µ(i → j) =

[

σj +
h

N
Xj + hMj

]

∆t, (3)

whereMj is a number of controlled agents in the statej. Note thatN no longer stands for a total number
of agents in the system, now it represents a total number of other agents, which switch their opinion via
endogenous interactions.
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Figure 2: (a): A comparison of a numerically calculated stationary PDF with no controlled agents,M1 = 0 andM2 = 0 (red
squares), and stationary PDF with controlled agents,M1 = 20 andM2 = 0 (magenta circles),M1 = 0 andM2 = 20 (blue
triangles). (b): A convergence of agent-based model,M1 = 20 andM2 = 0, (magenta squares) versus the analytical prediction
Eq. (5). Model parameters were set as follows:σ1 = σ2 = 2, h = 1, N = 104.

As you can see in the figure above an extremely small number of the controlled agents is able to make a
significant impact onto the stationary distribution. This brings up an interesting question how fast is the
convergence towards this stationary distribution. It is pretty straightforward (use the Master equation and
one-step formalism [10]) to obtain ordinary differential equation describing the macroscopic dynamics of
the considered agent-based system:

ẋ = (σ1 + hM1)(1− x)− (σ2 + hM2)x. (4)

The solution of this equation is an exponential function of time:

x(t) = x̄ + [x(0)− x̄]e−[h(M1+M2)+σ1+σ2]t. (5)

Thus the convergence is exponential fast with the rate dependent on the individual transition rates,σi, and
amount of controlled agents in each state,Mi. In the abovēx is the stationary point:

(σ1 + hM1)(1− x̄)− (σ2 + hM2)x̄ = 0, ⇒ x̄ =
hM1 + σ1

h(M1 +M2) + σ1 + σ2
. (6)

Similar dynamics are observed if the ordinary agents are also interacting on the global scale [9]. The only
difference is that the system dynamics are significantly more random and the stationary PDF of the model
becomes power-law instead of Gaussian.

Controlling catastrophic events in the financial markets

Unlike in the society, in the financial markets any trader maymake transactions with any other trader. Thus
in the financial market model all of the agents should also interact on the global scale. The macroscopic
dynamics of the financial markets will no longer be given by the ODE, one needs to use stochastic calculus
[11, 12]. As our previous works have shown the trading in financial markets has two separate time scales
- a slow process representing fundamentalist-chartist switching and a fast process representing optimism-
pessimism mood fluctuations.

A slow process is a stochastic process based on modulating return, y, which is defined as a ratio between
agents using chartist trading strategies and agents using fundamental trading strategies [11]. SDE fory has
the following form:

dy =
[

σ1 + (2− σ2)y
1+α

]

(1 + y)dt +

√

2hy1+α(1 + y)dW. (7)

The stationary probability density function ofy is a power-law,p(y) ∼ y−ε2−α−1, thus large crashes and
bubbles become probable. In order to prevent them we might use a simple rule - if absolute returny is larger
thanylim we introduceM agents trading based on the fundamentals.

Another possibility to prevent catastrophic events is to control the fast mood process, macroscopic dynamics
of which are given by

dξ =
[

(1− ξ)σpo − (1 + ξ)σop
]

dt +
√

2h
(

1− ξ2
)

dW. (8)

Let us “moderate” the time series of mood,ξ, by a similar rule as in case withy: if ξ > ξmax, then we
introduceM agents into the pessimist state, while ifξ < ξmin, then we introduceM agents into the optimist
state. A similar approach was proposed in [13], where agentsusing random trading strategy were used to
calm the markets.
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Figure 3: Original time series (red curves) and the same timeseries under “moderation” (blue curves). In the subfigure (a) we
plot price time series obtained while using a model fory, while in the subfigure (b) we plot the chartist mood,ξ, time series.
Model for y parameters were set as follows:σ1 = 0.1, σ2 = 1, h = 10−5, α = 1, ylim = 0.3, M = 10. Model forξ parameters
were set as follows:σop = σpo = 1, h = 10−5, ξmin = −ξmax = −0.5, M = 10.

Note that in the figure above we see a large impact of the proposed simple policies carried out by small fixed
number of agents,M = 10, onto the infinitely sized systems,N → ∞. On the left we see that price time
series become significantly smoother, while usingy “moderation” policy. On the right we see that the policy
does not allow for mood to reach extreme values and is effectively constrained in the[ξmin, ξmax] range.

Conclusions

In this contribution we have approached modeling of the control of complex socio-economic systems.
Namely, we have modified a well known agent-based herding model, originally introduced in [7], to include
agents, whose state “inflexible” and is preset by us. The control over a small fixed number of the agents
enabled us to significantly influence the behavior of the other agents, who still act based on the original rules
of the model.

We find our model setup well-backed with the related experiments in the behavioral sociology and behavioral
biology carried out in [5, 6]. We believe that the presented imagery of society while being simplistic still
reflects certain general features of social life - ordinary people usually interact with their “neighborhood”
(i.e. friends, coworkers and other acquaintances), while “leaders” are usually well known and frequently
seen by broader society.

In this contribution we keep our imagery of financial marketssimplistic, but it is already able to reproduce
some of the results obtained from using other models for the financial markets (e.g., [13]). In future we plan
to work further in this direction by considering a more sophisticated herding model of financial markets (e.g.
three group modeling [12]).

Part of the research covered in this contribution was published in [9]. Some of the new material will be used
in future research and scientific publications.
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