Agent-based and macroscopic modeling of the complex socio-economic systems

Aleksejus Kononovicius ${ }^{1}$, Valentas Daniunas ${ }^{2}$

${ }^{1}$ Institute of Theoretical Physics and Astronomy, Vilnius University
${ }^{2}$ Institute of Lithuanian Scientific Society aleksejus.kononovicius@gmail.com

June 5-6, 2013
Vilnius, Lithuania

Herding behavior in social communities

Kirman's agent-based herding model

Each ant (=agent) at each time step
can switch the food source (=state) probabilistically:

$$
\mu_{2}=\sigma_{1}+h X, \quad \mu_{1}=\sigma_{2}+h(N-X)
$$

One-step, birth-death, process formalism

Let us assume that

the time step, Δt, is small enough for only one switch to be probable:

$$
P(X \rightarrow X-1)=X \mu_{1} \Delta t, \quad P(X \rightarrow X+1)=(N-X) \mu_{2} \Delta t
$$

In this simple case we can derive

a macroscopic, stochastic, model. General form is given by:

$$
\mathrm{d} x=\left[(1-x) \mu_{2}-x \mu_{1}\right] \mathrm{d} t+\sqrt{\frac{(1-x) \mu_{2}+x \mu_{1}}{N}} \mathrm{~d} W
$$

While for the Kirman's model the exact form is given by:

$$
\mathrm{d} x=\left[(1-x) \sigma_{1}-x \sigma_{2}\right] \mathrm{d} t+\sqrt{2 h x(1-x)} \mathrm{d} W
$$

ABM vs SDE

Figure: The probability density functions obtained from the macroscopic (curves) and the agent-based models (boxes) in two distinct cases. Model parameters: $\sigma_{1}=0.2$ and $\sigma_{2}=5$ (red), $\sigma_{1}=16$ and $\sigma_{2}=5$ (blue), $h=1$ and $N=1000$ (in all cases).

The Bass diffusion model

Let us now use the following one-agent switching probabilities:

$$
\mu_{2}=\sigma+\frac{h}{N} X, \quad \mu_{1}=0, \quad \Rightarrow \quad \frac{\mathrm{~d} X}{\mathrm{~d} t}=(N-X)\left(\sigma+\frac{h}{N} X\right)
$$

Figure: The agent-based model (circles) vs the Bass diffusion model (curve).

Global vs local interactions

Previously we have used

$$
\begin{aligned}
\mu_{2} & =\sigma_{1}+h X, & \mu_{1} & =\sigma_{2}+h(N-X) \\
\mu_{2} & =\sigma_{1}+\frac{h}{N} X, & \mu_{1} & =\sigma_{2}+\frac{h}{N}(N-X)
\end{aligned}
$$

Figure: Implications of the global (red) and local (blue) interactions.

Leadership in social communities

Let us now use the following one-agent switching probabilities:

$$
\mu_{2}=\sigma_{1}+h(M+X), \quad \mu_{1}=\sigma_{2}+h(N-X) .
$$

Figure: No leaders, $M=0$, (red) and small fraction (2\%) of leaders, $M=20$, (blue).

Agent-based herding model and predator-prey model

Predator-prey model is given by

$$
\frac{\mathrm{d} X_{i}}{\mathrm{~d} t}=\left[a_{i} X_{i}-X_{i} \sum_{j} c_{i j} X_{j}\right], \quad \forall i .
$$

The key differences are:

- the herding behavior is asymmetric in the predator-prey model,
- system size might not be fixed in the predator-prey model.

The comparison leads to:

$$
\begin{gathered}
\mathrm{d} x=\left[(n-x) \sigma_{1}-x \sigma_{2}+c x(n-x)+T_{1}(x, n)\right] \mathrm{d} t+\sqrt{2 h x(n-x)} \mathrm{d} W, \\
\mathrm{~d} n=\left[T_{1}(x, n)+T_{2}(x, n)\right] \mathrm{d} t .
\end{gathered}
$$

In the simplest case $T_{i}(x, n)=T_{i}=a_{i}$.

Financial markets I

We can assume that

agents follow chartist trading strategy,

$$
D_{c}=r_{0} N_{c}(t) \xi(t),
$$

or a fundamentalist approach,

$$
D_{f}=N_{f}(t)\left[\ln P_{f}-\ln P(t)\right]
$$

The Walrassian scenario provides us with the absolute return, y,

$$
\begin{aligned}
\frac{1}{P} \frac{\mathrm{~d} P}{\mathrm{~d} t} & =\beta\left[D_{c}+D_{f}\right], \quad p=\ln \left(\frac{P}{P_{f}}\right)=r_{0} \frac{x}{1-x} \xi=r_{0} y \xi \\
r_{\tau}(t) & =p(t)-p(t-\tau) \approx r_{0} y \eta, \quad \eta
\end{aligned}=\xi(t)-\xi(t-\tau) .
$$

Financial markets II

The macroscopic model for y is given by

$$
\mathrm{d} y=\left[\varepsilon_{1}+\left(2-\varepsilon_{2}\right) y^{1+\alpha}\right](1+y) \mathrm{d} t_{s}+\sqrt{2 y^{1+\alpha}}(1+y) \mathrm{d} W_{s}
$$

Figure: Wide spectra of obtainable probability (a) and spectral (b) density functions of absolute return, y.

Thank you!

http://mokslasplius.lt/rizikos-fizika/en/

