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Financial fluctuations
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Figure: Statistical properties of the absolute one minute returns in the fi-
nancial markets: (a) probability and (b) spectral density. Similar statistical
properties are also observed for the trading activity.

Frequent large deviations (fat tails), long-range memory (power law
spectral density and thus, due to W-K theorem, auto-correlation).
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The wild side of the financial markets
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Experiment by Deneubourg

Taken from [Detrain & Deneubourg, 2006 (Physics of Life Reviews)].
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Kirman’s formulation of herding model

X dynamics
are determined by the one-step transition probabilities:

p(X → X + 1) = (N −X)σ1 + hX(N −X),
p(X → X − 1) = Xσ2 + hX(N −X).
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Statistical properties of Kirman’s herding model
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Figure: Probability density functions of x = X/N in the Kirman’s herding
model: (a) σ = σ1 = σ2, (b) σ1 6= σ2. (a) σ < h (red curve), σ = h (blue
curve), σ > h (magenta curve). (b) h > σ1 > σ2 (red curve), h < σ1 < σ2

(blue curve).
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Model of human behavior? (restaurant scenario)

Which restaurant would You choose?
Experimentally it was determined that most people choose restaurant
which has more visitors!
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Model of human behavior? (vs Bass diffusion model)
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Figure: Incoming new consumers: Bass diffusion model (red curve) againt
agent based simulation using Kirman herding model (blue curves). Compar-
ison is made for the different number of agents in the system and different
discretization periods.
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Defining returns

If market is quickly stabilized,

Df +Dc = 0,

r(t) ≈ r0
X(t)

N −X(t)
∆ξ(t).

One can assume that
the two states in the population
dynamics correspond to the
chartist trading strategy, excess
demand given by

Dc = −r0X(t)ξ(t),

and fundamentalist trading
strategy,

Df = [N −X(t)] ln
Pf
P (t)

.
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Stochastic model for the modulating return

Stochastic model,
explicitly derived from the previous ABM (one can use birth-death
process formalism), for y = X

N−X is given by:

dy =

[
ε1 + y

2− ε2
τ(y)

]
(1 + y)dts +

√
2y

τ(y)
(1 + y)dWs,

σ2 →
σ2
τ(y)

, h→ h

τ(y)
,

εi =
σi
h
, ts = ht.
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Comparison with other stochastic processes I

The SDE for y � 1 and assuming that τ(y) ∼ y−α becomes:

dy = (2− ε2)y2+αdts +
√

2y
3+α
2 dWs.

Which has identical form as the general class of SDE reproducing power
law statistics (PDF and PSD) [Ruseckas et al., 2011 (Phys. Rev. E)]:

dx =

(
η − λ

2

)
x2η−1dts + xηdWs.

Comparison yields η = 3+α
2 , λ = ε2 + α+ 1. Thus we can expect that:

p(y) ∼ y−ε2−α−1, S(f) ∼ f−β, β = 1 +
ε2 + α− 2

1 + α
.
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Reproducing 1/f noise
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Figure: Reproducing 1/f noise in three cases, α = 0 (red squares), α = 1
(blue circles) and α = 2 (magenta triangles). Other model parameters were
set as follows: ε1 = 0.1, ε2 = 2 − α. All model data are fitted by: (a) λ = 3,
(b) β = 1.
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Comparison with other stochastic processes II

The aforementioned general class of SDE
is interesting as it incorporates several widely known stochastic
processes into it:

Bessel process (η = 0): dx = − λ
2xdt+ dW .

Squared Bessel process (η = 0.5): dx = 1−λ
2 dt+

√
xdW .

CIR process (η = 0.5, m = 1, xmin = 0, xmax = 1; the
m-exponential diffusion restriction must be applied):
dx = 1−λ−x

2 dt+
√
xdW .

CEV process (η = λ/2, m = 2η − 2, xmin = 1, xmax →∞; the
m-exponential diffusion restriction must be applied):
dx = (η − 1)xdt+ xηdW .

The same processes should be also reflected by the ABM. Note that
CEV and CIR processes can be obtained from the ABM by assuming
that ε2 = 2.
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CEV-like case
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Figure: Numerical results obtained from the CEV-like case, α = 0 (red
squares), α = 1 (blue circles) and α = 2 (magenta triangles). Other model
parameters were set as follows: ε1 = ε2 = 2.

dy = ε1ydts +
√

2y
3+α
2 dWs, p(y) ∼ y−3−α, S(f) ∼ f−1− α

1+α .
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Variety of reproducible λ and β values
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Figure: Wide spectra of obtainable λ and β values. Model parameters were
set as follows: α = 1, ε1 = 0.1, ε2 = 0.1 (red plus), 0.5 (green cross), 1 (blue
stars), 1.5 (magenta open squares), 2 (cyan filled squares) and 3 (orange open
circles). Black curves correspond to the limiting cases: (a) λ1 = 2 and λ2 = 5,
(b) β1 = 0.5, β2 = 2
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Formulation of the three group agent based model

Transition probabilities for ~X = {Nf , Np},
having in mind that No = N −Nf −Np:

p({Nf , Np} → {Nf − 1, Np}) = Nf (εcf/2 +No)∆ts,

p({Nf , Np} → {Nf + 1, Np}) = No(εcf +Nf )∆ts,

p({Nf , Np} → {Nf − 1, Np + 1}) = Nf (εcf/2 +Np)∆ts,

p({Nf , Np} → {Nf + 1, Np − 1}) = Np(εcf +Nf )∆ts,

p({Nf , Np} → {Nf , Np − 1}) = Np(εcc +HNo)∆ts,

p({Nf , Np} → {Nf , Np + 1}) = No(εcc +HNp)∆ts.
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Stochastic three group model

Stochastic model for ~X = {nf , ξ = no−np
1−nf

}:

dnf =
1− 2nf
τ(nf , ξ)

εcfdts +

√
2(1− nf )nf
τ(nf , ξ)

dWs,1,

dξ = − 2Hεccξ

τ(nf , ξ)
dts +

√
2H(1− ξ2)
τ(nf , ξ)

dWs,2.

Similar equations were obtained in Evolutionary Game Theory from
mathematical considerations see [Traulsen et al., 2012 (Phys. Rev. E)].
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Fractured spectral density

Figure: Fractured spectral density of various observables. Yet obtained using
different parameter sets.
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Key points

Nonlinear stochastic model possessing power law spectral density,
S(f) ∼ 1/fβ, can be obtained from a microscopic agent based
model.
The nonlinear herding terms in the transition probabilities are
essential in reproduction of 1/f noise.
Introducing variability of trading activity generalizes model and
offers more modeling possibilities.
Three group model is able to capture fractured spectral density,
but still must be further developed

For further reference see [Kononovicius & Gontis, 2012 (Physica A)],
[Ruseckas, Kaulakys & Gontis, 2011 (EPL)].
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http://mokslasplius.lt/rizikos-fizika/en

Thank You!

A. Kononovicius (ITPA VU) Herding behavior 2012-07-09 20 / 20


