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Abstract

Recently we have proposed a stochastic model of absolutenregproducing the main statistical features
of empirical data [1, 2]. The proposed model is based on tmemge form SDE [3], which is known to
exhibit power law bursting behavior [4, 5]. In this contrloun we compare bursting behavior observed in
the empirical data and in the proposed model. Explicit fofiouwrst duration PDF for the general form SDE
IS derived. As this contribution is based on [6], see it forendetalls.

Burst statistics of thetime series

Intermittent, or bursty, behavior is observed in many carpglystems ranging from astronomy and geology
to biology and finance [7]. As most of these complex systemyg ligscrete observables (ex., number of
the earthquakes, their aftershocks and etc.) the most eweacto understand the intermittency is to use the
point process formalism [8]. In this contribution we an&@yzertain continuous stochastic models, which
were actually derived from the same point process model#1d$ enabling us to use hitting time formalism.

Bellow, in Fig. 1, we introduce different observables we sidar to be related to the bursty behavior of
continuous time series.

Figure 1: Time series exhibiting bursty behavibt). Hereh; is threshold value, above which bursts are detecteake the
three visible threshold passage events,. Is the highlighted burst’s peak value. The highlighted aseealled burst size,
S. The other relevant statistical properties are defined/as: ¢, — ¢; (burst duration)f = t; — t, (inter-burst time) and
T =T+ 60 = t3 — t; (waiting time).

The nonlinear stochastic model

Previously [1, 2] we have proposed a stochastic model madamby the nonlinear SDE,
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The resulting time series, are obtained by using;tB&aussian noise with = 5 andrg = 1+7;—2 |ftt+7 x(s)ds‘.
The obtained time series posses power law probability defisiction and fractured spectral density.

The above stochastic model appears to be too complex tcetacklytically. Yet to understand the bursty
behavior of the financial markets, and the model itself, westady a stochastic model driven by a simpler
SDE

A
do = (77 — 5) 21t + 1AW, (2)

This SDE posses very similar statistical features - it rdpogs time series with the power law probability

density,p(z) ~ +~*, and single power law spectral densify,f) ~ FP@B=1+ %).

The understanding of burst dynamics of the (2) also provefulias in certain cases it can be reduced to
widely known and used stochastic processes, namely Basgsgs ¢ = 0, ts = t), squared Bessel process

(n = 1/2, ts = 2t), CIR (add linear restriction from the top,= 1/2, ts = o2t) and CEV processes (add
restriction from bottom withn = 2n — 2, A = 2n, ts = o°t).

Obtaining burst duration

In order to obtain the analytical expression of the bursation probability density function we assume that
the burst duration is the same as the first hitting time of thehastic process starting infinitesimally near
the threshold. This approach can be backed by the recalimighe main financial market observables are
actually discrete. As we are willing to use known resultshef first hitting times, we have to transform (2)
Into the other known stochastic process. The Bessel praggssars to be the best choice:

1 1\ dt A—2n+1
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Figure 2: Fitting model (a) and empirical (b) data with (5)od&l parameters were set as follows= 4 (all three cases),
n = 2.5 (red squares), (blue circles) and.5 (magenta triangles). Model data fitted using- 0 (red curve).5 (blue curve),
2 (magenta curve). Empirical data fitted assuming —0.2.
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Figure 3: Comparison of the empirical data (red squaresa olatained by solving a more complex SDE (blue circles) and
data obtained from the double stochastic model (mageiatagies). Model parameters were set as follows: 2.5, A = 3.6,
Tmaz = 10°, € = 0.017, 7y = 0.4. Data obtained by solving a more complex SDE fitted assunhiag/t= 0 (blue curve).
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From the transformationy(x), follows that we have to use the known results for the Besselgss, where
the starting point lies bellow the certain threshold. Thistfhitting time is equivalent to the inter-burst
duration ofy, while note that we look for the burst duration.af The needed result is given in [9]:
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To evaluate the above in the infinitesimal limit we have toasg/, (%—ijyk) near%—z = 1. And sincej, ;.
are almost equally spaced (fb), we can replace the sum by integration, which yields:
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Figure 4: Scatter plots of three burst related variallesy andzx,,..., observed in the simple model ((a), (c), (e)) and empirical
data ((b), (d), (f)). Curves provide power law fits with th@erents:a = 0.66 ((a), (b)),1.66 ((c), (d)),2.5 ((e), (f))

Conclusions

e The proposed stochastic model offers analytical treatriogrthe bursty behavior. Which would be com-

plicated under the point process formalism.

e Simple stochastic model, (2), is enough to reproduce masteo$tatistical features of bursty behavior in

the financial markets.

e Double stochastic model, driven by (1) appddsaussian noise, may be used to recover PDF of burst dura-

tions.

e Numerical modeling suggests that the stochastic modeth®olute return should be nonlinear with large

powers of noise multiplicativityy > 1.
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