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Abstract

Recently we have proposed a stochastic model of absolute return reproducing the main statistical features
of empirical data [1, 2]. The proposed model is based on the general form SDE [3], which is known to
exhibit power law bursting behavior [4, 5]. In this contribution we compare bursting behavior observed in
the empirical data and in the proposed model. Explicit form of burst duration PDF for the general form SDE
is derived. As this contribution is based on [6], see it for more details.

Burst statistics of the time series

Intermittent, or bursty, behavior is observed in many complex systems ranging from astronomy and geology
to biology and finance [7]. As most of these complex systems have discrete observables (ex., number of
the earthquakes, their aftershocks and etc.) the most direct way to understand the intermittency is to use the
point process formalism [8]. In this contribution we analyze certain continuous stochastic models, which
were actually derived from the same point process models [1], thus enabling us to use hitting time formalism.
Bellow, in Fig. 1, we introduce different observables we consider to be related to the bursty behavior of
continuous time series.
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Figure 1: Time series exhibiting bursty behavior,I(t). HerehI is threshold value, above which bursts are detected.ti are the
three visible threshold passage events.Imax is the highlighted burst’s peak value. The highlighted areais called burst size,
S. The other relevant statistical properties are defined as:T = t2 − t1 (burst duration),θ = t3 − t2 (inter-burst time) and
τ = T + θ = t3 − t1 (waiting time).

The nonlinear stochastic model

Previously [1, 2] we have proposed a stochastic model model driven by the nonlinear SDE,
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The resulting time series, are obtained by using theq-Gaussian noise withλ = 5 andr0 = 1+r̄0
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The obtained time series posses power law probability density function and fractured spectral density.

The above stochastic model appears to be too complex to tackle analytically. Yet to understand the bursty
behavior of the financial markets, and the model itself, we can study a stochastic model driven by a simpler
SDE

dx =

(

η −
λ

2

)

x2η−1dts + xηdWs. (2)

This SDE posses very similar statistical features - it reproduces time series with the power law probability
density,p(x) ∼ x−λ, and single power law spectral density,S(f ) ∼ f−β (β = 1 + λ−3

2(η−1)
).

The understanding of burst dynamics of the (2) also proves useful as in certain cases it can be reduced to
widely known and used stochastic processes, namely Bessel process (η = 0, ts = t), squared Bessel process
(η = 1/2, ts = 2t), CIR (add linear restriction from the top,η = 1/2, ts = σ2t) and CEV processes (add
restriction from bottom withm = 2η − 2, λ = 2η, ts = σ2t).

Obtaining burst duration

In order to obtain the analytical expression of the burst duration probability density function we assume that
the burst duration is the same as the first hitting time of the stochastic process starting infinitesimally near
the threshold. This approach can be backed by the recalling that the main financial market observables are
actually discrete. As we are willing to use known results of the first hitting times, we have to transform (2)
into the other known stochastic process. The Bessel processappears to be the best choice:
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Figure 2: Fitting model (a) and empirical (b) data with (5). Model parameters were set as follows:λ = 4 (all three cases),
η = 2.5 (red squares),2 (blue circles) and1.5 (magenta triangles). Model data fitted usingν = 0 (red curve),0.5 (blue curve),
2 (magenta curve). Empirical data fitted assumingν = −0.2.
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Figure 3: Comparison of the empirical data (red squares), data obtained by solving a more complex SDE (blue circles) and
data obtained from the double stochastic model (magenta triangles). Model parameters were set as follows:η = 2.5, λ = 3.6,
xmax = 103, ǫ = 0.017, r̄0 = 0.4. Data obtained by solving a more complex SDE fitted assuming thatν = 0 (blue curve).

From the transformation,y(x), follows that we have to use the known results for the Bessel process, where
the starting point lies bellow the certain threshold. This first hitting time is equivalent to the inter-burst
duration ofy, while note that we look for the burst duration ofx. The needed result is given in [9]:
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To evaluate the above in the infinitesimal limit we have to expandJν
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Statistical properties of the other burst related variables
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Figure 4: Scatter plots of three burst related variables,T , S andxmax, observed in the simple model ((a), (c), (e)) and empirical
data ((b), (d), (f)). Curves provide power law fits with the exponents:α = 0.66 ((a), (b)),1.66 ((c), (d)),2.5 ((e), (f))

Conclusions

• The proposed stochastic model offers analytical treatmentfor the bursty behavior. Which would be com-
plicated under the point process formalism.

• Simple stochastic model, (2), is enough to reproduce most ofthe statistical features of bursty behavior in
the financial markets.

• Double stochastic model, driven by (1) andq-Gaussian noise, may be used to recover PDF of burst dura-
tions.

• Numerical modeling suggests that the stochastic models forabsolute return should be nonlinear with large
powers of noise multiplicativity,η > 1.

Acknowledgments

We would like to thank Dr. Stefan Reimann for his valuable input to the preparation of [6], on which this
contribution is based. The authors acknowledge the supportby the EU COST Action MP0801 Physics of
Competition and Conicts stimulating our international cooperation. We acknowledge the support by the EU
SF Project “Science for Business and Society” in creating our own online presentation platform [10].

References

[1] V. Gontis, J. Ruseckas and A. Kononovicius (2010): A Non-linear Stochastic Model of Return in
Financial Markets, in: Stochastic Control, ed. C. Myers, Scyio.

[2] V. Gontis, J. Ruseckas and A. Kononovicius (2010): A long-range memory stochastic model of the
return in financial markets, Physica A 389. arXiv:0901.0903[q-fin.ST].

[3] J. Ruseckas and B. Kaulakys (2010): 1/f noise from nonlinearstochastic differential equations, Phys.
Rev. E 81.

[4] B. Kaulakys, M. Alaburda and V. Gontis (2009): Modeling scaled processes and clustering of events
by the nonlinear stochastic differential equations, AIP Conference Proceedings 1129.

[5] M. Alaburda and B. Kaulakys (2011): Simulation of bursting,rare and extreme events by nonlinear
stochastic differential equations, JDySES 2 (2).

[6] V. Gontis, A. Kononovicius and S. Reimann (2012): The class of nonlinear stochastic models as
a background for the bursty behavior in financial markets, Advances in Complex System 15 (1).
arXiv:1201.3083 [q-fin.ST].

[7] J. Kleinberg (2003): Bursty and hierarchical structure in streams, Data Mining and Knowledge Dis-
covery 7.

[8] M. Karsai, K. Kaski, A. L. Barabasi and J. Kertesz (2012): Universal features of correlated bursty
behaviour, NIH Scientic Reports 2.

[9] A. N. Borodin and P. Salminen (2002): Handbook of Brownian Motion.

[10] Physics of Risk: Models of competition and conflicts in economics, http://mokslasplius.lt/rizikos-
fizika/en.


