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Abstract

Recently we introduced a double stochastic process driven by the nonlinear scaled stochastic differential
equation reproducing the main statistical properties of the return, observed in the financial markets [1, 2]. The
proposed model is based on the class of nonlinear stochasticdifferential equations, providing the long-range
processes, the power-law behavior of spectra and the power-law distributions of the probability density [3, 4].
Stochastic framework mainly gives only a macroscopic insight into the modeled system, while microscopic
behavior currently is also of big interest. In this contribution we will provide a version of agent based herding
model with transition to the nonlinear stochastic equations of trading activity and return in financial markets.

Kirman’s ant colony model

In 1993 Alan Kirman proposed a model of herding behavior in ant colonies [5], which explained interesting
entomological observations - ant colony at a given time exploits single food source even if second, identical,
food source is available. Evidently herding behavior is very important in the colony, but without at least
minor individuality of ants one would not able to explain switches between the food sources, which occur
from time to time. Thus Markovian system state, defined as number of ants using one of the food sources,
one step switch probability,

p(X → X + 1) = (N −X)(σ1 + hX)∆t, (1)
p(X → X − 1) = X [σ2 + h(N −X)]∆t, (2)

is composed of two termsσi (invidual behavior) terms andh (herding behavior) terms. Original Kirman
model [5] was defined in event time scale, thus they did not include∆t term. This term was introduced by
Alfarano [6] in order to be able to obtain stochastic differential equations for Kirman model

dx = [σ1(1− x)− σ2x]dt +
√

2hx(1− x)dW, (3)

herex = X
N , W is Wiener process.

Though this model was inspired by ant colony behavior, it is applied towards financial markets (see [5, 6,
7]). One can define absolute return as ratio of chartist, assumed to bex and fundamentalist, consequently
assumed to1− x, population fractions [6],

y(t) =
x(t)

1− x(t)
. (4)

Using Ito formula for variable substitution [8] one can derive stochastic differential equation fory,

dy = (σ1 − y[σ2 − 2h])(1 + y)dt +
√

2hy(1 + y)dW. (5)

Though solutions of Eq. 5 can have1/f power spectral density, but it appears to be impossible to recover
more sophisticated (i.e. fractured) spectral density.
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Figure 1: Spectral density obtained from the stochastic model, Eq. 5. Red line represents numerically obtained result,while
the black line,β = 1.05, fits it. Model parameters were set as follows:σ1 = 0, σ2 = 2, h = 1, r0 = 1, T = 5 · 10−3.

Thus in order to be able to reproduce fracture in spectral density Kirman’s model must be improved. In this
next sections we will propose some modifications.

Modification of Kirman’s model: variable event time scale

It is known that trading activity in the financial markets is not constant, and that it is positively correlated
with the returns. The original transition probabilities, Eq. 1 and 2, assume that characteristic transition times
are constant. One can introduce variability by re-expressing transition probabilities as

p(X → X + 1) = (N −X)(σ1 +
hX

τ (X)
)∆t, (6)

p(X → X − 1) = X
σ2 + h(N −X)

τ (X)
∆t, (7)

hereτ (X) is time scale variability scenario. Note thatσ1 is not divided byτ (X) as one can assume that fun-
damentalists base their decisions on strategy and not market activity itself. In such case stochastic differential
equation for absolute return,y, becomes

dy =

(

σ1 − y
σ2 − 2h

τ (y)

)

(1 + y)dt +

√

2hy

τ (y)
(1 + y)dW. (8)
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Figure 2: Appliedτ (y) scenarios (a) and obtained power spectral densities (b) while using the model, Eq. 8. Model parameters:
σ1 = σ2 = 0.009, h = 0.003, T = 1.

As you can see in Figure 2, using simple and thus easily justifiableτ (y) scenarios we were unable to obtain
new quality of spectral density. Though it is evident that one might use more complex scenariosτ (y) in
order to obtain needed quality. Comparison of Eq. 8 with stochastic differential equation for return from
[1] suggest that sigmoidτ (y) scenario could provide fractured spectral density. But theproblem is that this
scenario can not be justified by simple logic.

Despite lack of logical reasoning behind the idea of sigmoidτ (y), this idea proves to be useful for further
research as it suggests that there could be two processes, which happen on a different characteristic time
scales. One of the processes being active then returns are large, while another then returns are small.

Modification of Kirman’s model: two process model

Interestingly enough in [6] absolute return,y, is multiplied by noise term,η in order to obtain actual returns,
r. This noise term is assumed to describe change in average chartist opinion during small time windowT .
But chartist opinions can be also modeled using Kirman model! Thus let’s now redefine absolute return as

rT (t) = r0 |y(t)ξ(t)− y(t− T )ξ(t− T )| , (9)

whereξ(t) is an average chartist trader opinion. Asξ(t) = 1 − 2xpes, ξ(t) can be modeled by modeling
xpes(t), but it also can be obtained directly by using stochastic differential equation

dξ = (a1(1− ξ)− a2(1 + ξ))dt +
√

2b(1− ξ2)dW, (10)

hereai correspond toσi andb to h from the previous equations. Alfarano [7] has obtained similar, yet less
general (in case ofa1 = a2), equation.

By combining Eq. 5 and 10 through Eq. 9 we were able to reproduce fracture in spectral density ofr (see
Figure 3). Range of frequencies whose power behaves according to second power law can be expanded by
introducingτ (y) = y−2 scenario intoξ process (see Figure 4).
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Figure 3: Slightly fractured double model’s spectral density (red curve), which is fitted in low,β1 = 1.2, and high,β2 = 0.3,
frequency ranges (black curves). Model parameters:σ1 = σ2 = 0.009, h = 0.003, a1 = a2 = 0.9, b = 0.3, r0 = 50, T = 0.5.
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Figure 4: Fractured spectral density (red curve) obtained from the model, whenξ process usesτ (y) = y−2 scenario. Black
curves fit spectral density for low,β1 = 1.5, and high,β2 = 0.34, frequency ranges. Model parameters:σ1 = σ2 = 0.009,
h = 0.003, a1 = a2 = 0.9, b = 0.3, r0 = 50, T = 10−3.

Conclusions

We have modified Kirman’s ant colony agent based model and achieved fractured spectral density using
the two process model. This results suggests that in the financial markets there are at least two processes
happening on two significantly different times scales, withone’s of those processes being dependent on
absolute returns. We have already used similar idea to obtain better agreement of the previous stochastic
model and empirical data [1, 2].
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