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Abstract

Recently we introduced a double stochastic process driyetimd nonlinear scaled stochastic differential
equation reproducing the main statistical propertieseféturn, observed in the financial markets [1, 2]. The
proposed model is based on the class of nonlinear stoclféticential equations, providing the long-range
processes, the power-law behavior of spectra and the pawatistributions of the probability density [3, 4].
Stochastic framework mainly gives only a macroscopic imsigto the modeled system, while microscopic
behavior currently is also of big interest. In this conttibn we will provide a version of agent based herding
model with transition to the nonlinear stochastic equatioitrading activity and return in financial markets.

Kirman’s ant colony model

In 1993 Alan Kirman proposed a model of herding behavior incatonies [5], which explained interesting
entomological observations - ant colony at a given timeasgpbingle food source even if second, identical,
food source is available. Evidently herding behavior isyMenportant in the colony, but without at least
minor individuality of ants one would not able to explain whes between the food sources, which occur
from time to time. Thus Markovian system state, defined asbaurof ants using one of the food sources,
one step switch probabillity,

(1)
(2)

IS composed of two terms; (invidual behavior) terms andl (herding behavior) terms. Original Kirman
model [5] was defined in event time scale, thus they did ndudeAt term. This term was introduced by
Alfarano [6] in order to be able to obtain stochastic diffgral equations for Kirman model

p(X = X +1) = (N — X)(o1 + hX)At,
p(X = X —1) = X[o9 + h(N — X)|At,

dz = [o1(1 — ) — o9z]dt + /2hx(1 — z)dW, (3)

herex = <, W is Wiener process.

Though this model was inspired by ant colony behavior, ipgli@d towards financial markets (see [5, 6,
7]). One can define absolute return as ratio of chartist,rasduo ber and fundamentalist, consequently
assumed ta — x, population fractions [6],

z(t)

= . 4
y(t) = (0 (4)

Using Ito formula for variable substitution [8] one can derstochastic differential equation fgr
dy = (01 — ylog — 2h))(1 + y)dt + /2hy(1 + y)dW. (5)

Though solutions of Eq. 5 can havef power spectral density, but it appears to be impossibledoves
more sophisticated (i.e. fractured) spectral density.
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Figure 1: Spectral density obtained from the stochasticahdely. 5. Red line represents numerically obtained resdtie

the black line 3 = 1.05, fits it. Model parameters were set as follows:= 0,00 =2, h=1,70=1,7 =5-107%.

Thus in order to be able to reproduce fracture in spectradideKirman’s model must be improved. In this
next sections we will propose some modifications.

Modification of Kirman’s model: variable event time scale

It is known that trading activity in the financial markets st tonstant, and that it is positively correlated
with the returns. The original transition probabilitieg).B and 2, assume that characteristic transition times
are constant. One can introduce variability by re-expngssansition probabilities as

p(X - X+1) = (N —X)(oq +%)At, (6)
pX = X —1) = xRt MN = X) ., (7)

7(X) |

herer(X) is time scale variability scenario. Note thatis not divided byr (X)) as one can assume that fun-
damentalists base their decisions on strategy and not treaatety itself. In such case stochastic differential
equation for absolute returp, becomes

o9 — 2h

2hy
@(1 + y)dW.

(8)

dy—(al—y )(1+y)dt+
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Figure 2: Appliedr(y) scenarios (a) and obtained power spectral densities (I wsing the model, Eq. 8. Model parameters:
o1 = 0y = 0.009, h = 0.003, T = 1.

As you can see in Figure 2, using simple and thus easily jaSldi () scenarios we were unable to obtain
new quality of spectral density. Though it is evident tha¢ onight use more complex scenarigg) in
order to obtain needed quality. Comparison of Eq. 8 withlsistic differential equation for return from
[1] suggest that sigmoid(y) scenario could provide fractured spectral density. Bufpitodlem is that this
scenario can not be justified by simple logic.

Despite lack of logical reasoning behind the idea of sigmaig), this idea proves to be useful for further
research as it suggests that there could be two processis dppen on a different characteristic time
scales. One of the processes being active then returnggee \lehile another then returns are small.

Modification of Kirman’s model: two process model

Interestingly enough in [6] absolute retuin,is multiplied by noise termy, in order to obtain actual returns,
r. This noise term is assumed to describe change in averag#stibainion during small time window'.
But chartist opinions can be also modeled using Kirman mofdals let's now redefine absolute return as

rp(t) = 1o ly(t)€t) —y(t = T)EE =T, 9)

where&(t) is an average chartist trader opinion. &%) = 1 — 2x,¢s, £(£) can be modeled by modeling
Tpes(t), but it also can be obtained directly by using stochastiedhtial equation

46 = (ar(1 = €) — ar(1+ E)dt +/2b(1 — )W, (10)

herea, correspond t@; andb to h from the previous equations. Alfarano [7] has obtained lsimyet less
general (in case af; = ay), equation.

By combining Eq. 5 and 10 through Eg. 9 we were able to repediacture in spectral density of(see
Figure 3). Range of frequencies whose power behaves angamisecond power law can be expanded by
introducingr(y) = y 2 scenario int¢ process (see Figure 4).
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Figure 3: Slightly fractured double model’s spectral dgnied curve), which is fitted in lowy; = 1.2, and high,5, = 0.3,
frequency ranges (black curves). Model parameters: o, = 0.009, h = 0.003, a1 = ao = 0.9, b = 0.3, ryp = 50, T" = 0.5.
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Figure 4: Fractured spectral density (red curve) obtainech the model, whed process uses(y) = v~ scenario. Black
curves fit spectral density for low§; = 1.5, and high,3, = 0.34, frequency ranges. Model parametess:.= o, = 0.009,
h =0.003,a; = ay = 0.9,b=0.3,rg =50, T = 1077.

Conclusions

We have modified Kirman’s ant colony agent based model anckadh fractured spectral density using
the two process model. This results suggests that in thedigamarkets there are at least two processes
happening on two significantly different times scales, vatie’s of those processes being dependent on
absolute returns. We have already used similar idea torob&tter agreement of the previous stochastic
model and empirical data [1, 2].
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