Double stochastic model of return in financial markets
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Abstract

Small scale, of order comparable with minutes or hours, gerees drawn from empirical financial market
data yield sophisticated statistical properties. Whatesmost fascinating is that many of these, in classical
sense, anomalous features appear to be universal. Analysist amounts of empirical data from around the
world have helped to establish a variety of so-called stgifacts [1, 2, 3], which can be seen as statistical
sighatures of various financial processes. In this posteromsider price evolution process - I.e. modeling
of return, which relates towards aforementioned exterbhaéovable of financial markets as
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herern(t) is price function of time and is time scale of return. It is known that the probability déns
function (further in this poster abbreviated as PDF) of #eim is successfully generalized within a non-
extensive statistical framework [4]. The return has a tigtron that is very well fitted by-Gaussians, only
slowly becoming Gaussian as the time scale approaches sygelfrs and larger time scales.
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Tackling modeling of the return we have started with the<@shonlinear stochastic differential equations
(recently generalized in [5)),
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whose time series haveGaussian stationary distribution afnﬂfﬁ (here exponent = 1 + ﬁ) power

spectral density (further abbreviated as PSD). Using this elass of stochastic differential equations we
have proposed a double stochastic process driven by themaeankcaled stochastic differential equation and
g-Gaussian noise. Time series of the proposed process Wwahkhacal and stationary statistical properties

resembling those of actual financial markets [6, 7].

Stochastic model withg-Gaussian PDF andl/ f” PSD

It is known that if drift, A(z), and diffusion,B(z), functions of SDE doesn’t depend on time then stationary
PDF,p(x), can be expressed trough those functions [8]. Thus we caeexpne of those functions trough
the PDF and another function,

+ B(x)0:B(x). (3)

In [6] we express)-Gaussian for dimensionless variable= TLO In more transparent form than original -

p(z) = C(1 + 22)~*/2 (hereC is normalization constant). And by settidg(x) = (1 + z2)2, this selection
eliminates steady state at= 0, we obtain
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herex IS momentary return. Thus in order for the solutions of Eq) tGgdbe compared with empirical
compounded return they should be integrated and normahzesdevant time intervals,
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Figure 1: Statistical properties, (a) PDF and (b) PSD, olethifrom time series generated by numerically solving Ep(rétl
curves) and fitting functions (blue curves) - (@5aussianp(z), with A = 3 and (b) power law} / f?, with 5 = 1.02. Model
parameters were set as follows= 2.5 \=3,7p =1, 7, =2-107°.

Sophisticated model reproducing fractured PSD

Empirical data doesn’t exhibit/ f noise, it actually exhibits fractured spectral densityoider to reproduce
more sophisticated dynamics we need also more sophigti&idE. Having in mind statistical features of
the simple version described before and results of numanodeling with more sophisticated versions of
the SDE, we propose to model return using SDE combining tweep® of multiplicativity:
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here we have introduced parametevhich divides are of diffusion into to separate regions with differing
powers of multiplicativity, and,,,,, which helps to restrict from diverging towards infinity of either sign.
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Figure 2: Statistical properties, (a) PDF and (b) PSD, olethifrom time series generated by numerically solving Ep(résl
curves) and fitting functions (blue curves) - @§zaussianp(x), with A = 3.6 and (b) power lawsl/ f7, with 3, = 1.24 and
By = 0.82. Model parameters were set as follows= 2.5, A = 3.6, 7y = 1, 7, = 1074, € = 0.01, 20z = 10°.

Double stochastic model of return

Model PSD in Figure 2 (b) has overly high valuesff compared with empirical data. Though we can
decrease them by assuming that there are two processesralogg memory process described by the SDE
(6) and momentary fluctuation process, which we propose tefras;-Gaussian noise with constant power
law tail exponent)\> = 5, and modulated variance related parameter

ro(ts, 7s) = 1+ X1 (ts). (7)

We can justify introduction of secondary stochastic precasd from empirical point of view - in [6] we
have shown that one minute return moving average of one lwuelates with fluctuating trading activity.
This fact suggests us that in actual markets return relaiiasboth trading activity, which is confirmed to
have long-range memory, within the market and momentaryds.oo

Figure 3: Agreement of model (red curves) and empirical (E¥®Ilue curves, VSE - black curves) statistical proper{iap,

(c) and (e) PDF and (b), (d) and (f) PSD, at different timeeasal(a) and (b) 1 minute, (c) and (d) 10 minute, (e) and (f) 30
minute returns. Model parameters were set as folloys: 2.5, A = 3.6, \y = 5,7 = 0.4, 7 = 2-107°/0* = 605, € = 0.017,
Tonar = 10°.

Conclusion

In Figure 3 we show that proposed model is in excellent agem¢nvith empirical data, which was drawn
from two marginally different markets - high liquidity Newo¥k Stock Exchange (abbr. NYSE; 24 stocks
traded for 27 months since January, 2005) and low liquidysBAQ OMX Vilnius Stock Exchange (abbr.
VSE; 4 stocks traded for 50 months since May, 2005). Havirdmgeaed success In macroscopic stochastic
modeling we are currently working on microscopical exptaoraof mechanics behind our model. Research
based around agent based models, which are able to reprsiglized facts, is ongoing.
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