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1 - Vilnius University, Institute of Theoretical Physics andAstronomy,2 - Vilnius University, Faculty of Physics
a - vygintas@gontis.eu,b - aleksejus.kononovicius@gmail.com

Abstract

Small scale, of order comparable with minutes or hours, timeseries drawn from empirical financial market
data yield sophisticated statistical properties. What is the most fascinating is that many of these, in classical
sense, anomalous features appear to be universal. Analysisof vast amounts of empirical data from around the
world have helped to establish a variety of so-called stylized facts [1, 2, 3], which can be seen as statistical
signatures of various financial processes. In this poster weconsider price evolution process - i.e. modeling
of return, which relates towards aforementioned external observable of financial markets as

rτ (t) = ln

[

π(t)

π(t− τ )

]

, (1)

hereπ(t) is price function of time andτ is time scale of return. It is known that the probability density
function (further in this poster abbreviated as PDF) of the return is successfully generalized within a non-
extensive statistical framework [4]. The return has a distribution that is very well fitted byq-Gaussians, only
slowly becoming Gaussian as the time scale approaches months, years and larger time scales.

Tackling modeling of the return we have started with the class of nonlinear stochastic differential equations
(recently generalized in [5]),

dx =

(

η −
λ

2

)

x2η−1dt + xηdW, (2)

whose time series haveq-Gaussian stationary distribution and1/fβ (here exponentβ = 1 + λ−3
2(η−1)

) power
spectral density (further abbreviated as PSD). Using this able class of stochastic differential equations we
have proposed a double stochastic process driven by the nonlinear scaled stochastic differential equation and
q-Gaussian noise. Time series of the proposed process yield dynamical and stationary statistical properties
resembling those of actual financial markets [6, 7].

Stochastic model withq-Gaussian PDF and1/fβ PSD

It is known that if drift,A(x), and diffusion,B(x), functions of SDE doesn’t depend on time then stationary
PDF,p(x), can be expressed trough those functions [8]. Thus we can express one of those functions trough
the PDF and another function,

A(x) =
1

2
B2(x)

∂xp(x)

p(x)
+ B(x)∂xB(x). (3)

In [6] we expressq-Gaussian for dimensionless variable,x = r
r0

, in more transparent form than original -

p(x) = C(1 + x2)−λ/2 (hereC is normalization constant). And by settingB(x) = (1 + x2)
η
2, this selection

eliminates steady state atx = 0, we obtain

dx =

(

η −
λ

2

)

(

1 + x2
)η−1

xdts +
(

1 + x2
)

η
2

dWs, (4)

herex is momentary return. Thus in order for the solutions of Eq. (4) to be compared with empirical
compounded return they should be integrated and normalizedin relevant time intervals,

Xτs(ts) =
r̄0
τs
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x(s)ds
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Figure 1: Statistical properties, (a) PDF and (b) PSD, obtained from time series generated by numerically solving Eq. (4) (red
curves) and fitting functions (blue curves) - (a)q-Gaussian,p(x), with λ = 3 and (b) power law,1/fβ, with β = 1.02. Model
parameters were set as follows:η = 2.5, λ = 3, r̄0 = 1, τs = 2 · 10−5.

Sophisticated model reproducing fractured PSD

Empirical data doesn’t exhibit1/f noise, it actually exhibits fractured spectral density. Inorder to reproduce
more sophisticated dynamics we need also more sophisticated SDE. Having in mind statistical features of
the simple version described before and results of numerical modeling with more sophisticated versions of
the SDE, we propose to model return using SDE combining two powers of multiplicativity:

dx =

[

η −
λ

2
−

(

x

xmax

)2
]

(1 + x2)η−1

(ε
√

1 + x2 + 1)2
xdts +

(1 + x2)
η
2

ε
√

1 + x2 + 1
dWs, (6)

here we have introduced parameterε which divides are ofx diffusion into to separate regions with differing
powers of multiplicativity, andxmax which helps to restrictx from diverging towards infinity of either sign.
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Figure 2: Statistical properties, (a) PDF and (b) PSD, obtained from time series generated by numerically solving Eq. (6) (red
curves) and fitting functions (blue curves) - (a)q-Gaussian,p(x), with λ = 3.6 and (b) power laws,1/fβ, with β1 = 1.24 and
β2 = 0.82. Model parameters were set as follows:η = 2.5, λ = 3.6, r̄0 = 1, τs = 10−4, ε = 0.01, xmax = 103.

Double stochastic model of return

Model PSD in Figure 2 (b) has overly high values ofβ if compared with empirical data. Though we can
decrease them by assuming that there are two processes - long-range memory process described by the SDE
(6) and momentary fluctuation process, which we propose to model asq-Gaussian noise with constant power
law tail exponent,λ2 = 5, and modulated variance related parameter

r0(ts, τs) = 1 +Xτs(ts). (7)

We can justify introduction of secondary stochastic process and from empirical point of view - in [6] we
have shown that one minute return moving average of one hour correlates with fluctuating trading activity.
This fact suggests us that in actual markets return relates with both trading activity, which is confirmed to
have long-range memory, within the market and momentary moods.
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Figure 3: Agreement of model (red curves) and empirical (NYSE - blue curves, VSE - black curves) statistical properties,(a),
(c) and (e) PDF and (b), (d) and (f) PSD, at different time scales - (a) and (b) 1 minute, (c) and (d) 10 minute, (e) and (f) 30
minute returns. Model parameters were set as follows:η = 2.5, λ = 3.6, λ2 = 5, r̄0 = 0.4, τ = 2 · 10−5/σ2 = 60 s, ε = 0.017,
xmax = 103.

Conclusion

In Figure 3 we show that proposed model is in excellent agreement with empirical data, which was drawn
from two marginally different markets - high liquidity New York Stock Exchange (abbr. NYSE; 24 stocks
traded for 27 months since January, 2005) and low liquidity NASDAQ OMX Vilnius Stock Exchange (abbr.
VSE; 4 stocks traded for 50 months since May, 2005). Having achieved success in macroscopic stochastic
modeling we are currently working on microscopical explanation of mechanics behind our model. Research
based around agent based models, which are able to reproducestylized facts, is ongoing.
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