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Abstract

Universal statistical properties observed in various financial markets around the world helped to es-
tablish so-called stylized facts [1, 2]. Though in [1, 2] andother scientific literature one usually finds
analysis of larger financial markets (such as New York Stock Exchange (further NYSE)), while smaller
markets tend to be overlooked. Therefore it is interesting to know how statistical properties scale with
decreasing market size.

We have analyzed tick by tick trades of 4 stocks traded on NASDAQ OMX Vilnius Stock Exchange
(further VSE), comparatively small emerging financial market, for 50 months since May 2005. Empir-
ical data was provided by VSE. We have also extended our previous analysis [3, 4] of NYSE empirical
data – 24 stocks’ tick by tick trades on NYSE traded for 27 months since January 2005. As should
be expected differing market sizes cause evident difference in mean inter-trade times –362 s in VSE,
3.02 s in NYSE. The influence of market trading activity on scaling of statistical properties of absolute
return seems less obvious.

We have obtained perfect match of distributions by ignoringzero return values, probability of which
dramatically rises if mean inter-trade times are not significantly smaller than time scale of return.
Absolute return distributions from both financial markets are well approximated byq-Gaussian dis-
tribution (see [5]) withλ ≈ 4. While power spectral densities, obviously, can’t be matched by using
previous technique. Nevertheless, power spectral densityof VSE tends to converge towards power
spectral density of NYSE at larger time scales.

Thus we can conclude that small market size doesn’t significantly contribute towards observed statis-
tical properties as essential features of statistical properties are preserved.

Comparison of trading activity in NYSE and VSE

We have analyzed tick by tick trades of 4 stocks, APG1L, PTR1L, SRS1L, UKB1L, traded on VSE
for 50 months since May, 2005. We have also extended and put touse results of our previous analysis
[3, 4] of 24 stocks, ABT, ADM, BMY, C, CVX, DOW, FNM, GE, GM, HD,IBM, JNJ, JPM, KO, LLY,
MMM, MO, MOT, MRK, SLE, PFE, T, WMT, XOM, traded on NYSE for 27 months from January,
2005.

We have started with the analysis of trading activity through the concept of mean inter-trade time,

τ̄ =
1

N

N∑

k=1

(tk+1 − tk) , (1)

here{ti} is set of trade event times, which we have evaluated for each stock in each stock exchange
separately (see Table 1). Note that, although stocks have differing mean inter-trade times, stocks from
same stock exchanges exhibit similar trading activities. We have anticipated to find this difference as
compared financial markets differ by size.

Table 1: Mean inter-trade times,τ̄ , evaluated for stocks trade on VSE and NYSE

Stock τ̄ , s Stock τ̄ , s Stock τ̄ , s Stock τ̄ , s
APG1L 337 PTR1L 565 SRS1L 381 UKB1L 164

VSE mean 362
ABT 4.09 ADM 4.22 BMY 3.27 C 1.79
CVX 2.34 DOW 3.9 FNM 5.4 GE 1.44
GM 2.34 HD 2.09 IBM 3.03 JNJ 2.64
JPM 2.41 KO 3.31 LLY 4.73 MMM 4.92
MO 3 MOT 1.66 MRK 2.47 PFE 1.24
SLE 6.58 T 2.34 WMT 1.84 XOM 1.44

NYSE mean 3.02

Statistical properties of absolute return time series

In previous section we have shown the differences between 4 VSE and 24 NYSE stocks in terms
of trading activity defined as mean inter-trade time. In thissection we will show the effect of the
difference in trading activity on high frequency returns. Let us define return as

r(t, T ) = ln(π(t + T ))− ln(π(t)) , (2)

hereπ(t) is price function of time andT is return time scale, and start with one minute case (T = 60 s).

In high-frequency case differing mean inter-trade times ofanalyzed stock exchanges play major role
as NYSE mean inter-trade time is significantly lower than return time scale, while VSE mean inter-
trade time is comparable with return time scale. Thus it would natural to expect more probable zero
return values in VSE than NYSE as due to the difference in inter-trade times probability to find deal
in time interval(t, t + T ] is significantly smaller in VSE than NYSE.

Table 2: Zero return probabilities,p(0), evaluated for stocks trade on VSE and NYSE

Stock p(0), % Stock p(0), % Stock p(0), % Stock p(0), %
APG1L 95.08 PTR1L 96.86 SRS1L 96.56 UKB1L 92.1

VSE mean 95.15
ABT 22.89 ADM 28.03 BMY 33.6 C 22.63
CVX 13.77 DOW 22.3 FNM 20.7 GE 27.01
GM 23.9 HD 20.1 IBM 14.33 JNJ 20.81
JPM 24.47 KO 27.1 LLY 21.28 MMM 17.1
MO 17.41 MOT 28.74 MRK 25.32 PFE 27.67
SLE 43.51 T 32.94 WMT 20.11 XOM 13.24

NYSE mean 23.71

Interestingly despite different probability spikes at zero return value (see Table 2) distributions of
absolute return for non-zero return values are very similar. As we see in Figure 1 (a) average, for
different stock exchanges, probability density functionshave similarq-Gaussian shapes [5], which
overlaps if we renormalize distributions for non-zero return interval. Thus we see that the only major
difference in absolute return distributions is caused by the market size itself, while power law behavior
remains approximately the same.

As expected due to aforementioned differences between stock exchanges we obtain power spectral
densities with some evident quantitative differences, though as we see in Figure 1 (b) those disagree-
ments are not as major as in the probability distribution case - qualitative double power law behavior is
retained. Obviously we can’t ignore zero return values in the return time series in order to obtain better
overlapping of power spectral densities, though one can expect to improve overlapping by increasing
return time scale,T . In Figure 1 (d) and (f), correspondinglyT = 600 s case andT = 1800 s case, we
see improving agreement between power spectral densities of two different stock exchanges.

Increasing return time scale,T , should also solve problem of overly high zero return probabilities,
though we still needed to ignore zero return probabilities in order to obtain matches seen in Figure
1 (c) and (e). Thus one can expect to find natural agreement of probability density functions at even
larger return time scales,T . Though analyzing empirical data at those time scales,T > 7200 s, might
prove to be meaningless as interesting statistical properties would be lost, due to their non-stationary
nature, or become immeasurable, due to Nyquist sampling theorem.
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Figure 1: Comparison of empirical statistical properties of absolute returns time series of stocks traded on the NYSE
(black thin lines) and VSE (gray lines). Probability density function of normalized absolute returns is given on
(a),(c),(e) and powers spectral density on (b),(d),(f). (a) and (b) representsT = 60s return time scale case; (c) and
(d) T = 600s; (e) and (f)T = 1800s. Empirical statistical properties from NYSE was averaged over 24 stocks and
empirical data from VSE was averaged over 4 stocks.

Conclusions

We have analyzed statistical properties of marginally different financial markets. Despite large differ-
ence in trading activity, expressed in our work as very different mean inter-trade times, both financial
markets exhibit qualitatively same statistical behavior in terms of absolute returns. By applying few
simple techniques, discussed above, one can also obtain quite good quantitative agreement.

Acknowledgment

We would like to express our gratitude towards NASDAQ OMX Vilnius Stock Exchange, which pro-
vided empirical data for this research.

References

[1] Cont R. (2005):Long range dependence in financial markets. In: Fractals in Engineering V, p.
159 - 179, Springer, London.

[2] Engle R. F. (2000):The Econometrics of Ultra High Frequency Data. In: Econometrica 68, p. 1
- 22.
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[4] Gontis V., Ruseckas J., Kononovičius A. (2010):Long-range memory stochastic model of the
return in financial markets. In: Physica A 389, p. 100 - 106.

[5] Gell-Mann Cf., Tsallis C. (2004):Nonextensive Entropy - Interdisciplinary Applications. Oxford
University Press, New York.


