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SUMMARY

This paper presents a rigorous mathematical
treatment of the theory of networks, cul-
minating in a proof of the Fulkerson—Ford
Min—Cut Theorem. It makes clear the intimate
connection between the theory of connected
graphs, on which much literature is available,
and the theory of flows through a network.
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1. Intrcduction

Recently T. E. Harris has been concerned with the flow
of trains through a network of rail lines and Jjunction points
of the rail lines. As a consequence much discussion arcse in
the linear programming seminar about the general problem of
flow through a network. At the beginning these discussions
were noticeably hampered by the lack of a precise terminology
and a unified theory. Alex Boldyreff gave a number of suggestions
and references in this connection and gradually a terminology
and indeed a mathematical theory evolved. This work culminated
in the proof of the min cut max flow theorem first conjectured
by D. R. Fulkerson.

It is not to be pretended that the théory presented here
is new (see for instance [1]) but the interest in problems
concerning networks and flows through them seems to justify
a paper presenting a unifiled mathematical treatment. It is

with this in mind that this paper has been written.
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2. Graphs and Networks

A graph G is a finite collection m of points {Pi}(i=0,1,2,...,n)
and a subset A of the product set m x 7 (i.e., elements of the
form (Pi’PJ))‘ The element (Pi’Pj) has a natural geometric re—
presentation as an arc aiJ from Pi to Pj passing through no other
point of m. For this reason elements of A will be called arecs.
The points of 7 will be called nodes. A graph consisting of
two nodes and a single arc Jjoining them will be called a link.

A chain in a graph G from a node Pi to a node PJ is a
sequence of links in G{%iPJl,PJIPJQ,PJEPJB,...,PJkPJ}, where a
palr Psz denotes the link consisting of Pze'n, gne'v and the
arc a,p. Joining P£ and Pm' The points Pi and PJ are called
endpoints of the chain.

A pair of nodes in G will be said to be connected if there
is a chain in G which Jjoins them. A graph G will be called a

connected graph if every pailr of nodes in G is connected. A

pair of nodes are said to be neighbors if there 1is a link in G

which contains both of them. The neighborhood Ni of a node P1
is the set of all the nelghbors of Pi'

In a graph G we choose a node which we call the origin and
a different node Pn which we call the terminal (without loss of
generality we henceforth let Po and Pn be the origin and terminal,
respectively). In addition we assign to each arc a4 of G a
positive number 01J = ch which we call the capaclty of that
arc. This weighted graph with an origin and a terminal 1s called

a network. In a network, unless specifilically stated otherwlse,



by a chain we shall mean a chain

By a flow througn =z rezwor
{x.; , With x assigned tc the
i J
1
1 X _ . O and x > 0
(1) x4y 2 0>
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from PO to Pn'

where we interpret the symbols to mean all (i,Jj) such that Pj
“— J
belongs to No and Pi belongs to hn’
(C) i lJl S Ci,j
(2) 2 x5 =0 (j=1,2,...,n-1)
i3P.eN,
i
We further adopt the rule that X4 The value

Fon of the flow is defined by

i

(%) Fon =

-3 ;
jJa2Pr,.e NO

35" X



q

Theorem 1: If N is a network with a flow {}:7.

the veglue of the flow, then

(5) Fop = 2 03 T z *in
j3P. €N i3P, €N
J o i~ n

Proof: From (3) we may write

(6) % > X35 7T 2 2 >&J-+
j=0 13P €N =1

2

J

J}’ and Fon is
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But we note in the double sum on the left side of (6) that

each xij occurs exactly once and that in also occurs exactly

once (since PiE'_NJ

rule the double sum vanishes and the theorem follows.

implies that Pjé'Ni)’ and thus by our sign

It is

of interest to note that condition (1) is not essential for the

theorems contalned in this paper to hold.
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%, Disconnecting Sets and Cuts

If G is a2 graph with a node set m, and ™ and T, are
disjunct subsets of 7, we smll say that a set T of nodes of G
separates T and Ty if every chain beginning in T and ending
in Ts contains a point of T'. Similarly a set D of arcs in G

will be said to disconnect (to distinguish it from a node set)

T

and To if every chain beginning in LY and ending in L

1
contains an arc of D. If N is a network and Ty is the origin,

T, the terminal, and D disconnects L] and Ty WE shall simply

2
call D a disconnecting set. It is clear that at least one

such set exists, for the set A of all arcs is a disconnecting
set. A disconnecting set which contains no proper subset which

is a disconnecting set will be called a cut. Clearly every

disconnecting set contains a cut.
Associated with each disconnecting set D of a network N
there are two (possibly overlapping) sets of nodes:
(1) the set R(D) of all nodes of N which are not connected
to PO when D is deleted from N; and
(2) the set L(D) of all nodes of N which are not connected
to Pn when D is deleted from N.
Clearly R(D) and L(D) are not empty since, by the definition
of a disconnecting set, P  is in L(D) and P, is in R(D). The set R(D)
will simply be called the right set and L(D) the left set

defined by D.
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A chain ¢ frem P. to PJ will be called an elementary chain
L
if it contalne nc preoper sukset which 1s & chain from Pi to Pj'
Clearly every chailn contains an elementary chain. A network

in which every node is contained in a chain will be called proper.

Theorem 2: If N is a proper network and D is a cut of N, then

L(D) and R(D) are disjunct.

Proof: Suppose Pke.R(D)/f\L(D). Since N is proper, P 1is

contained in a chain {P p, ,p. P, ,...,F. P ,P P, ,e..,P P
o] il 1,71, 1, k’ "k 1p49 m'n
But {POPiq,PilPie,...,Pisz is a chain from Po to Pk and since

Pke.R(D) this chain contains an element of D. Let 25 5 be the
arc in this chain which is in D and such that no succeeding

arc of the chain is in D (i.e., the subchain* from Pj to Pk
contains no element of D). Form D' by deleting 25 5 from D. Then
D' cannot be a disconnecting set (D is a cut) hence there is an
elementary chain which contains no element of D', and thus

contains aij since D is a disconnecting set. But then PJ

must be connected to elther PO or Pn by a chain which contains

-k —
By a subchain of a chain ¢ we mean a subset ¢ of links in
¢ which is itself a chain but not necessarily having the same

endpolnts as c.
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o element of D; this chain, together with the chain from

P. to Pk’ forms a chain from either PO or Pn to Pk which contains
no element of D. This contradicts the assumption that

P, € R(D) M\ L(D). Thus we see that R(D) and L(D) are disjumct.

Theorem 2 is equivalent to:

Corollary 1: A cut divides the nodes of a proper network into

two disjunet and exhaustive sets, one containing the origin

and the other contalning the terminal.

Hereafter all networks will be assumed to be proper.

4, Value of a Cut, Flow Across a Cut

The value of a cut D is denoted by v(D) and is the sum of

the capacities of those arcs which are contained in D (i.e.,

v(p) = % Cij)‘
a..€D
1]
If N 1s a network with a flow {xij} , the flow F(D)

throwgh a cut D is the sum of the flows Xij on all those arcs

aij€ D where P, € L(D) and PJE.R(D). Thus we write

(7) F(D) = inj

2y 5€ D3P, € L(D)
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It is clear from condition (2) that v(D) > F(D) for any flow

{Xij} and any cut D.

Theorem 3: If N is a network with a floW'{xij},and D is any

cut of N,we have

(8) F(D) = F

on
Proof: From (3) we may write

(9) S R 5 x5 = F(D) = F_

i €
janeuD) 13%FNJ 2y 4 DBPieMD)

But the left side of (9) vanishes, for whenever Xij occurs so

also does xji;thus (8) follows.

Corollary 2: If N is a network with a flow {xij},and S is the

class of all cuts of N,we have

(10) F__ < min v(D)

Proof: Let D be the cut for which v(D) is a minimum (hereafter

called a minimum cut). Then F o, = F(DO) < v(DO) = min v(D).
DesS
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Let H be the set of values of flows through a network N.

Then sun P is called the capacity of N and i1s denoted
: on
P €eH
on

by c¢(N). It is clear from corollary 2 that
(11) c(N) = sup F__ < min v(D) = v(D_.)
FEH T pes ©

where S is the class of cuts of N.

5. Min=Cut Theorem and Menger's Theorem

The-min cut theorem due to Fulkerson and Ford [2] asserts
equality in (11). In order to prove this theorem we first
prove a lemma and a theorem due to Menger [1]. The proof is
along the lines of Menger's original proof; we include 4t

here since it 1s not otherwise avallable 1n English.

Lemma 1: Let 7T be the set of nodes of a finite graph G, and
let Wl and o be disjunct subsets of 7 such that 7 = Ty + Toe
If G is such that every arc of G joins a L] polnt to a T,
point ,and Lol cannot be separated from To in G by fewer than

n nodes, then there are n links 1In G which palrwlse have no

common endpoints.
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Proof: Let k be the maximal number of links in G which pairwise

have no common endpolnts, and let this set of links be:

K = (PlQl,P2Q2,P3Q3,...,Pka)

where Pie Ty and Qle Tse. We shall denote the set of nodes
{Pi}by 1 and {Qi} by T, A chain (AjAy,Aphs, ... Ay 1A )

in @ (r > 1) will be called of K—type if the second Ayhs,

fourth A4A5,...,2u;th AQUA2u+l"" and next to last A2P_2A2p_1
links are in K (clearly the other 1inks cannot be in K for 1links
in K are pairwise disjunct).

No K—~type chain can begin in a point of T, — vi and end
in a point of Lo ré. For if w were such a chain we could
form K + w — KNw (note that w would have to be an elementary
chain) which would be a set of k+1 links pairwise having no
common endpoints, and this would be contrary to the maximal
property of k.

Now let us construct a set M of k nodes as follows:

Let M = (RI’R2""’RK)’ We choose R, = Q (Qie ré) if there
is a K-type chain from ™ = vi to Qi‘ If there 1s no such
chain we choose Ri = Pie vi. Thus from each 1link PiQie:K we
choose either Pi or Qi but not both. By examlning the four
ways in which a 1ink PQ can l1lie in G, we shall show that M

separates vl and T in G.



RM-1498
52655
11—

Case 1: Pe Ty ri and C7eﬂé—Wé. But then PQ is a 1ink with
nc endpoint in common with any link of K,and K + P2 is a set
of k+1 1links which pairwise have no common endpoints, Thus

Case 1 is impossible.

Case 2: Pe.vl— T4 and Qe'ﬁé. Then ¢ = Qie Wé for some i, and

PC is a K—type chain from 7,— m! to Qi; thus € 1is contained
-“ A

in M,

Case 3: Pe.wi and Ceavg— Wé. Then some PQi is in K,and either
P or Qi is in M, If Qi i1s in M then there is a K—type chain

w from some Poe.vl— Wi to Qi,and the chaln w + Qi P + PC is a
K—~type chain which begins in Ty = vi and ends in T vé. ‘This
is impossible. Therefore P €M,

Case 4: Pe vi
Por @ 1s in M. If P2 is not in K, then there 1s an arc PQi

and Qe&vé. If PQ is in K,it is clear that either

which is in K, If P 1s not in M, there is a K—type chain from
some Poe Ty — vi to Qi. This chain with QiP and PR added 1s a
K—type chain from Poe.wl— Wi to Q; hence Qe M.

This exhausts the possibllities,and we see that M must
separate LY and T in G. Howevern L and To cannot be separated
in G by fewer than n nodes,so k > n and the lemma is proved.
Theorem 4 (Menger's theorem): Let T, and Wé be two disjunct
subsets of the set 7 of nodes of a finite graph G. If LEY and Ts
cannot be separated in G by fewer than n nodes of G, then there

are n chains from LY to L in G which pairwise have no common

nodes.
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Proof: We can delete from G a seguence of arcs (perhaps null)
until the property that T be separated from To by no fewer
than n nodes will be destroyed by the deletion of one more arc.
This then gives us a subgraph G' of G. If the theorem is true
for G' it is true for G. We may thus consider at the outset
only those graphs G which have the property:

(a) 1If any arc of G be deleted, T, and T, can be separated
in G by fewer than n nodes of G.

If the sets Ty and T, are exhaustive (i.e., 7 = LE + WE),
G can contain no arc Jjoining two ™, or two L points, for such
an arc may be deleted contrary to property (a). Hence every
arc of G connects a T point with 2 To point, and the conditions
of the lemma are satisfied. The other possibiliity is that
G céntainsa node PO which is 1n neither T, nor T,. it G
contalns only one arc, the theorem holds; fthus we may make
use of a complete induction on the number of arcs (i.e., we
shall assume the theorem true for all graphs of less than n
arcs and prove that this implies the theorem for 2z graph
containing n arcs.).

Ilet us delete from G 2ll arcs which have Po for an endpoint.
This leaves a subgraph G' in which T, can be separated from T
by r < n nodes (Pl’PQ""’Pr)’bUt the set M = (Po’Pl’PQ""’Pr)
is a set of r + 1 nodes which separates LE from T in G, and

hence r + 1 > n. These two inequalities thus imply r = n — 1,
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and M has exactly n elements.
Divide M into three sets of nodes Mo, Ml’ ME’ where Pi
is in Ml’ M2’ or Mo according as 1t is in Ty, Tp, OF neither

(thus POG.MO). Hence M = M_ + M, + M,, where M_, M;, and M

27 1 2

are pairwise disjunct.

We shall say a chain 1s of type wy if 1t connects a point
of'vr1 - M1 with a point of Mo + M2 and passes through no other
point of M. The set of all chains of type Wy forms a subgraph
G1 of G. Simllarly we define chains of type W, to be those
chalns which connect a point of Ty = M2 wlth a polnt of MO + M1
and pass through no other point of M. The set of all chains
of type Wo forms a subgraph G2 of G. We shall show that all nodes
which are common to G1 and G2 belong to M. Thus if a chain

(RP1 seeesPy A,AP P P, ) is of type wy, and
Kk

1 en” T e 1

(ijl,...,PJ A,APJ +1,...,Pi P, ) is of type w,, then
S S

r—]l “r
(rp, ,...,P, A) andg (QP, ,...,P
1, 1k J T s

LY to T, containing no point of M; this is impossible.

A) together form a chain from

From the preceding remarks, Gl and G2 can contain no common
arcs. For if an arc were common to Gl and G2, so would both
endpoints be common, and would thus both have to belong to M;
but no chain of G1 or G2 can contain two points of M, and thus
no arc Jolning two points of M can belong to either G1 or G2.

Through Po there 1s a chain from LAY to To which passes through

no other point of M (otherwise 7, would already be separated
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from T by 2 set of n — 1 nodes). Hence this chain decomposes
into two chains, one from 7. — M. to PO and the other from

—_ ’ -
Ty — M, <o PO. The first 1s of type Wy ancd the second of type

W Hence neither G. nor G2 is the null graph,and G1 as well

o
as G2 contains fewer arcs than G.

Let mys My, Mg be the number of elements in the sets
Mo’ Ml’ Mg,respeotively. In Gl’ T, = M1 cannot Le Separated
from Mo + M2 by fewer than m, + my polnts. For if M' separates

* 1
T — M1 from MO + M2 in GY then M' + M1 separates Ty from 7o

in M,and M' + M1 >n = m + My + my implies M? > mO + T, .
To see that M!' + M1 separates L from T in G,let w be any
chain from ™ to L which contains no element of Ml' Then

W must.begin in T = M1 and must contein an element of Mo + ME;
tixe:fe:f01°e W contains & chain of type Wy which must contain
an element of M'. Hence w contains an element of M!',

Since G1 possesses fewer arcs than G, we may apply our
inductive assumption and say there are m + My pairwise disjunct
chains from T — M1 to MO + M2 in Gl' Since m, + o, 1s the
number of elements of Mo + Mg, each point in MO + M2 belongs
to one and only one of these chains as an endooint, whereas
a point of IVI:L which does not belong to G1 is not in any of
these chalns. Let the chalns passing through the points of M2
be Tl’TQ""’Tm sand those through the points of MO be

2
Ui,Ué,...,U& . In like manner one defines, reversing the roles
0



of G1 and GE’ m,

Tt U” UH
Ll’ Sreees m_

Mo,then ftogether they
mO such chains from Wl
from the fact that

M. On the same grounds, the m, tom + My

Vl’VZ""’le

Corollary 3:

+ m, ch

I Ur an
i
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ins of G andg

p cnal: 5t

I

V.‘.V,\,...,V >
-7 Im

ia

[OR

U" pass through the same point of

(%

e

form a chain from T, to 72. There are

to Tyt Ul’UQ""’UmO' This follows

& commen poirnt of G, and G, must belong to
1 -

= n chains U1:U2:"" m

; Tl’Tg""’T of G are pairwise disjunct.

Il

~
fat

If G is a finite graph and LAY and T, are disjunct

subsets of the node set mT,and if Lo and L cannot be separated

by fewer than n nodes in G, then the maximum number of chains

from wl to L which pairwise have no common nodes is n.

Proof:

There are at most n such chains since every chain must

contaln an element of the minimum separating set.

with theorem & establishes the corollary.

6. Proof of the Min—Cut Theorem

This along

Now with Menger's theorem as a tool, let us return to the

min—cut theorem.

Let us assume, for the following theorems 5

and 6, that the capacities cij in the network N are integers.

We now replace each arc aij by ¢

1J

parallel®* arcs aiJk

of

*Two arcs will be said to be parallel if they Jjoin the same

pair of nodes.
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unit capaclity to obtaln a new network* N'. It 1s clear that

c(Nt) = ¢(N).

Theorem 5: Let N be a network for which the ciJ are lntegers
and let N' be 1ts assoclated network, formed as above. If a
cut of N' contains one of the parallel arcs Jjolning Pi and
Pj, it must contain them all.
Proof: Suppose that aijl 1s contained 1n a cut D' of N!' and
that aiJE is not in D'. There 18 a chain which contains 2451
and no other element of D' (otherwise aijl could be deleted
from D' and a disconnecting set would still remain). But if
the link containing Pi’ EJ’ and 8y 41 in this chain is replaced
by the 1link Pi’Pj’aiJQ’ a chain is formed which contains no
element of D!'; but D' is a disconnecting set and the theorem
follows.

This theorem establishes the fact that a cut D' of N!
is assoclated with a cut D of N, and that v(D!') = v(D). That
a cut D of N defines a cut D' of N! is clear. Further, v(D!)

is the number of arcs in D' since each arc has unit capacity.

*The new configuration strictly filts our definition of a
network only when we also lnsert a fictitlous intermediate
node on each of the parallel arcs.
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Theorem 6: The capacity c(N) = ¢(N') is at least as great as
the maximum number of chains in N' which pairwise have no arcs

in common.

Proof: A flow of 1 can be attached to each arc of these chains,

and a flow of O to other arcs of N?t.

We are now in a position to prove the min—cut theorem.

Theorem 7: If N is a network and S is the class of cuts of

N then

(12) ¢(N) = min v(D)
DeS
Proof: (a) The cy 4 are integers:

Form the associated network N'. Replace each link of N!
by a node. Whenever two links of N'!' have a node of N' in common,
the nodes whilch replace these links are Joined. The set T |
1s the set of nodes which replace those links of N' which
contain Po' The set T, 1s the set of nodes which replace
links contalning Pn. We assume that no link contalns both
Po and Pn since the extension of the theorem to this case is
clear. This gives us a graph G and two disjJunct subsets LEY
and T, of nodes of G. A minimum cut of N' maps in (1 -1)

fashion into 2 minlmum set of nodes separating LAY and Ty in G.
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The maximum set of chains in N' which palrwlse have no arcs
in common maps in (1 — 1) fashion into the maximum number of
chains from LY to L in G which pairwise have no nodes in

common. If H is the maximum number of such chains in N', then

corollary % asserts that

(13) H= min v(D)
DeS

Theorem 6 asserts then that

(1%) c(N) > H= min v(D)
DesS

Now (14), together with (11), establishes the theorem for

case (a).

(b) The c,, are rational:

1J
let k be a common denominator for the ciJ’ and consider
the network N formed from N by multiplying each capacity cij

of N by k. The capacities kc1J of arcs in N are now integers

and case (a) applies to yield

(15) ke(N) = ¢(N) = _min v(D) = k¥ min v(D)
DeS DeS

where the first and last equalities are consequences of the

linearity of c¢(N) and v(D), respectively.
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(c) The c are arbltrary, positive, real numbers:

1J
Make lower and upper rational approximations to the cij'

Let v, c¢(N); v, 2(N) be the value of the minimum cut and capacity

of the network for the lower and upper rational approxlimations,

respectively. By the definition of c(N) and case (b) we have
(16) v=2c(N) <c(N) <T(N) =¥

By the continuity of v as a function of the ciJ we have
v = v and vV —> vV as the rational approximatlons converge to
the ciJ’ so that the theorem follows.

G. Dantzig and D. R. Fulkerson have produced a llnear
programming proof of the theorem and have developed as by—
products efficient techniques for computing maximal flows
through networks [3]. The nature of their proof makes 1t
clear that Menger's theorem or the Fulkerson—Ford Max Flow
Min Cut theorem are in reality consequences of the famous
Min Max Theorem of Game Theory (or the Duality Theorem of
Linear Programming).

It is clear from the preceding that the nature of flows
through networks is intimately connected with the theory of
graphs on which there 1s an abundant literature. No attempt

has been made here to include an exhaustive list of references

since reference 1 contains an extensive bibllography.
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