\( \def\<#1>{\left<#1\right>} \let\geq\geqslant \let\leq\leqslant % an undirected version of \rightarrow: \newcommand{\mathdash}{\relbar\mkern-9mu\relbar} \def\deg#1{\mathrm{deg}(#1)} \newcommand{\dg}[1]{d_{#1}} \newcommand{\Norm}{\mathrm{N}} \newcommand{\const}[1]{c_{#1}} \newcommand{\cconst}[1]{\alpha_{#1}} \newcommand{\Exp}[1]{E_{#1}} \newcommand*{\ppr}{\mathbin{\ensuremath{\otimes}}} \newcommand*{\su}{\mathbin{\ensuremath{\oplus}}} \newcommand{\nulis}{\vmathbb{0}} %{\mathbf{0}} \newcommand{\vienas}{\vmathbb{1}} \newcommand{\Up}[1]{#1^{\uparrow}} %{#1^{\vartriangle}} \newcommand{\Down}[1]{#1^{\downarrow}} %{#1^{\triangledown}} \newcommand{\lant}[1]{#1_{\mathrm{la}}} % lower antichain \newcommand{\uant}[1]{#1_{\mathrm{ua}}} % upper antichain \newcommand{\skal}[1]{\langle #1\rangle} \newcommand{\NN}{\mathbb{N}} % natural numbers \newcommand{\RR}{\mathbb{R}} \newcommand{\minTrop}{\mathbb{T}_{\mbox{\rm\footnotesize min}}} \newcommand{\maxTrop}{\mathbb{T}_{\mbox{\rm\footnotesize max}}} \newcommand{\FF}{\mathbb{F}} \newcommand{\pRR}{\mathbb{R}_{\mbox{\tiny $+$}}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\gf}[1]{GF(#1)} \newcommand{\conv}[1]{\mathrm{Conv}(#1)} \newcommand{\vvec}[2]{\vec{#1}_{#2}} \newcommand{\f}{{\mathcal F}} \newcommand{\h}{{\mathcal H}} \newcommand{\A}{{\mathcal A}} \newcommand{\B}{{\mathcal B}} \newcommand{\C}{{\mathcal C}} \newcommand{\R}{{\mathcal R}} \newcommand{\MPS}[1]{f_{#1}} % matrix multiplication \newcommand{\ddeg}[2]{\#_{#2}(#1)} \newcommand{\length}[1]{|#1|} \DeclareMathOperator{\support}{sup} \newcommand{\supp}[1]{\support(#1)} \DeclareMathOperator{\Support}{sup} \newcommand{\spp}{\Support} \newcommand{\Supp}[1]{\mathrm{Sup}(#1)} %{\mathcal{S}_{#1}} \newcommand{\lenv}[1]{\lfloor #1\rfloor} \newcommand{\henv}[1]{\lceil#1\rceil} \newcommand{\homm}[2]{{#1}^{\langle #2\rangle}} \let\daug\odot \let\suma\oplus \newcommand{\compl}[1]{Y_{#1}} \newcommand{\pr}[1]{X_{#1}} \newcommand{\xcompl}[1]{Y'_{#1}} \newcommand{\xpr}[1]{X'_{#1}} \newcommand{\cont}[1]{A_{#1}} % content \def\fontas#1{\mathsf{#1}} %{\mathrm{#1}} %{\mathtt{#1}} % \newcommand{\arithm}[1]{\fontas{Arith}(#1)} \newcommand{\Bool}[1]{\fontas{Bool}(#1)} \newcommand{\linBool}[1]{\fontas{Bool}_{\mathrm{lin}}(#1)} \newcommand{\rBool}[2]{\fontas{Bool}_{#2}(#1)} \newcommand{\BBool}[2]{\fontas{Bool}_{#2}(#1)} \newcommand{\MMin}[1]{\fontas{Min}(#1)} \newcommand{\MMax}[1]{\fontas{Max}(#1)} \newcommand{\negMin}[1]{\fontas{Min}^{-}(#1)} \newcommand{\negMax}[1]{\fontas{Max}^{-}(#1)} \newcommand{\Min}[2]{\fontas{Min}_{#2}(#1)} \newcommand{\Max}[2]{\fontas{Max}_{#2}(#1)} \newcommand{\convUn}[1]{\fontas{L}_{\ast}(#1)} \newcommand{\Un}[1]{\fontas{L}(#1)} \newcommand{\kUn}[2]{\fontas{L}_{#2}(#1)} \newcommand{\Nor}{\mu} % norm without argument \newcommand{\nor}[1]{\Nor(#1)} \newcommand{\bool}[1]{\hat{#1}} % Boolean version of f \newcommand{\bphi}{\phi} % boolean circuit \newcommand{\xf}{\boldsymbol{\mathcal{F}}} \newcommand{\euler}{\mathrm{e}} \newcommand{\ee}{f} % other element \newcommand{\exchange}[3]{{#1}-{#2}+{#3}} \newcommand{\dist}[2]{{#2}[#1]} \newcommand{\Dist}[1]{\mathrm{dist}(#1)} \newcommand{\mdist}[2]{\dist{#1}{#2}} % min-max dist. \newcommand{\matching}{\mathcal{M}} \renewcommand{\E}{A} \newcommand{\F}{\mathcal{F}} \newcommand{\set}{W} \newcommand{\Deg}[1]{\mathrm{deg}(#1)} \newcommand{\mtree}{MST} \newcommand{\stree}{{\cal T}} \newcommand{\dstree}{\vec{\cal T}} \newcommand{\Rich}{U_0} \newcommand{\Prob}[1]{\ensuremath{\mathrm{Pr}\left\{{#1}\right\}}} \newcommand{\xI}{\boldsymbol{I}} \newcommand{\plus}{\mbox{\tiny $+$}} \newcommand{\sgn}[1]{\left[#1\right]} \newcommand{\ccompl}[1]{{#1}^*} \newcommand{\contr}[1]{[#1]} \newcommand{\harm}[2]{{#1}\,\#\,{#2}} %{{#1}\,\oplus\,{#2}} \newcommand{\hharm}{\#} %{\oplus} \newcommand{\rec}[1]{1/#1} \newcommand{\rrec}[1]{{#1}^{-1}} \DeclareRobustCommand{\bigO}{% \text{\usefont{OMS}{cmsy}{m}{n}O}} \newcommand{\dalyba}{/}%{\oslash} \newcommand{\mmax}{\mbox{\tiny $\max$}} \newcommand{\thr}[2]{\mathrm{Th}^{#1}_{#2}} \newcommand{\rectbound}{h} \newcommand{\pol}[3]{\sum_{#1\in #2}{#3}_{#1}\prod_{i=1}^n x_i^{#1_i}} \newcommand{\tpol}[2]{\min_{#1\in #2}\left\{\skal{#1,x}+\const{#1}\right\}} \newcommand{\comp}{\circ} % composition \newcommand{\0}{\vec{0}} \newcommand{\drops}[1]{\tau(#1)} \newcommand{\HY}[2]{F^{#2}_{#1}} \newcommand{\hy}[1]{f_{#1}} \newcommand{\hh}{h} \newcommand{\hymin}[1]{f_{#1}^{\mathrm{min}}} \newcommand{\hymax}[1]{f_{#1}^{\mathrm{max}}} \newcommand{\ebound}[2]{\partial_{#2}(#1)} \newcommand{\Lpure}{L_{\mathrm{pure}}} \newcommand{\Vpure}{V_{\mathrm{pure}}} \newcommand{\Lred}{L_1} %L_{\mathrm{red}}} \newcommand{\Lblue}{L_0} %{L_{\mathrm{blue}}} \newcommand{\epr}[1]{z_{#1}} \newcommand{\wCut}[1]{w(#1)} \newcommand{\cut}[2]{w_{#2}(#1)} \newcommand{\Length}[1]{l(#1)} \newcommand{\Sup}[1]{\mathrm{Sup}(#1)} \newcommand{\ddist}[1]{d_{#1}} \newcommand{\sym}[2]{S_{#1,#2}} \newcommand{\minsum}[2]{\mathrm{MinS}^{#1}_{#2}} \newcommand{\maxsum}[2]{\mathrm{MaxS}^{#1}_{#2}} % top k-of-n function \newcommand{\cirsel}[2]{\Phi^{#1}_{#2}} % its circuit \newcommand{\sel}[2]{\sym{#1}{#2}} % symmetric pol. \newcommand{\cf}[1]{{#1}^{o}} \newcommand{\Item}[1]{\item[\mbox{\rm (#1)}]} % item in roman \newcommand{\bbar}[1]{\underline{#1}} \newcommand{\Narrow}[1]{\mathrm{Narrow}(#1)} \newcommand{\Wide}[1]{\mathrm{Wide}(#1)} \newcommand{\eepsil}{\varepsilon} \newcommand{\amir}{\varphi} \newcommand{\mon}[1]{\mathrm{mon}(#1)} \newcommand{\mmon}{\alpha} \newcommand{\gmon}{\alpha} \newcommand{\hmon}{\beta} \newcommand{\nnor}[1]{\|#1\|} \newcommand{\inorm}[1]{\left\|#1\right\|_{\mbox{\tiny $\infty$}}} \newcommand{\mstbound}{\gamma} \newcommand{\coset}[1]{\textup{co-}{#1}} \newcommand{\spol}[1]{\mathrm{ST}_{#1}} \newcommand{\cayley}[1]{\mathrm{C}_{#1}} \newcommand{\SQUARE}[1]{\mathrm{SQ}_{#1}} \newcommand{\STCONN}[1]{\mathrm{STCON}_{#1}} \newcommand{\STPATH}[1]{\mathrm{PATH}_{#1}} \newcommand{\SSSP}[1]{\mathrm{SSSP}(#1)} \newcommand{\APSP}[1]{\mathrm{APSP}(#1)} \newcommand{\MP}[1]{\mathrm{MP}_{#1}} \newcommand{\CONN}[1]{\mathrm{CONN}_{#1}} \newcommand{\PERM}[1]{\mathrm{PER}_{#1}} \newcommand{\mst}[2]{\tau_{#1}(#2)} \newcommand{\MST}[1]{\mathrm{MST}_{#1}} \newcommand{\MIS}{\mathrm{MIS}} \newcommand{\dtree}{\mathrm{DST}} \newcommand{\DST}[1]{\dtree_{#1}} \newcommand{\CLIQUE}[2]{\mathrm{CL}_{#1,#2}} \newcommand{\ISOL}[1]{\mathrm{ISOL}_{#1}} \newcommand{\POL}[1]{\mathrm{POL}_{#1}} \newcommand{\ST}[1]{\ptree_{#1}} \newcommand{\Per}[1]{\mathrm{per}_{#1}} \newcommand{\PM}{\mathrm{PM}} \newcommand{\error}{\epsilon} \newcommand{\PI}[1]{A_{#1}} \newcommand{\Low}[1]{A_{#1}} \newcommand{\node}[1]{v_{#1}} \newcommand{\BF}[2]{W_{#2}[#1]} % Bellman-Ford \newcommand{\FW}[3]{W_{#1}[#2,#3]} % Floyd-Washall \newcommand{\HK}[1]{W[#1]} % Held-Karp \newcommand{\WW}[1]{W[#1]} \newcommand{\pWW}[1]{W^{+}[#1]} \newcommand{\nWW}[1]{W^-[#1]} \newcommand{\knap}[2]{W_{#2}[#1]} \newcommand{\Cut}[1]{w(#1)} \newcommand{\size}[1]{\mathrm{size}(#1)} \newcommand{\dual}[1]{{#1}^{\ast}} \def\gcd#1{\mathrm{gcd}(#1)} \newcommand{\econt}[1]{C_{#1}} \newcommand{\xecont}[1]{C_{#1}'} \newcommand{\rUn}[1]{\fontas{L}_{r}(#1)} \newcommand{\copath}{\mathrm{co}\text{-}\mathrm{Path}_n} \newcommand{\Path}{\mathrm{Path}_n} \)

Can the Max(A)/Min(A) gap be large in approximation?

As in the book, for a finite set $A\subseteq \NN^n$ of feasible solutions, $\Min{A}{r}$ and $\Max{A}{r}$ denote, respectively, the minimum size of a $(\min,+)$ and of a $(\max,+)$ circuit approximating the minimization problem $f(x)=\min_{a\in A}\skal{a,x}$, resp., the maximization problem $f(x)=\max_{a\in A}\skal{a,x}$ on a given set $A\subseteq \NN^n$ of feasible solution with the factor $r$.

We already know that for homogeneous sets $A\subseteq \{0,1\}^n$ (all vectors have the same number of $1$s) the equalities $\Max{A}{1}=\Min{A}{1}=\Un{A}$ hold (Lemma 1.34(1)). The situation, however, is entirely different if we consider approximating circuits: when treating families $\f\subseteq 2^{[n]}$ as sets $A\subseteq \{0,1\}^n$ of their characteristic $0$-$1$ vectors, Corollary 4.13(2) gives us doubly-exponentially many in $n$ homogeneous sets $A\subseteq\{0,1\}^n$ such that the gap $\Min{A}{r}/\Max{A}{s}$ is exponential for already $s=1+o(1)$ and for arbitrary large factors $r\geq 1$.

But what about converse gaps, Max/Min gaps?

Problem A: Do there exist antichains $A\subseteq\{0,1\}^n$ for which the gap $\Max{A}{r}/\Min{A}{s}$ is super-polynomial for some $r\geq s>1$?

Remark 1 (Antichains): The requirement that the separating set $A$ must be an antichain is to exclude trivial separations. Indeed, otherwise the gap could be artificially made large. To see this, take an arbitrary $m$-homogeneous set $B\subseteq\{0,1\}^n$ (all vectors of $A$ have the same number $m\gt 1$ of ones) for which $\Max{B}{r}$ is large (as in Corollary 4.24(3), for example). The set $B$ is an antichain. Extend it to a non-antichain $A=B\cup\{\vec{e}_1,\cdots,\vec{e}_n\}$. Then $\Max{A}{r}$ still remains large (since input weightings $x\in\RR^n_+$ are nonnegative, the maximization problems of both sets $A$ and $B$ are equivalent) but $\Min{A}{1}\leq n$ holds (just output $\min\{x_1,\ldots,x_n\}$).   $\Box$

Remark 2 (Approximation factors): A vector $b\in\NN^n$ is contained in a vector $a\in\NN^n$ if $b\leq a$ holds. A set $A\subseteq\{0,1\}^n$ is $m$-bounded if no its vector has more than $m$ ones, and is $k$-dense if every vector $b\in \{0,1\}^n$ with $k$ ones is contained in at least one vector of $A$. In particular, every set $A\subseteq\{0,1\}^n$ is $m$-bounded for $m=n$, and is $k$-dense for $k=1$ (as long as there is no position in which all vectors of $A$ have $0$; then just take smaller dimension $n$). Proposition 4.11 in the book shows that for every such set $A$, we have $\Max{A}{r}=O(nk)$ already for the factor $r=m/k$. So, the gap $\Max{A}{r}/\Min{A}{s}$ can only be large (if at all) for approximation factors $r\lt m/k$.    $\Box$

Remark 3: Note that to have $\Min{A}{s}$ "small", it is necessary (albeit not sufficient) that the Boolean version $g(x)=\bigvee_{a\in A}\bigwedge_{i\in\supp{a}}x_i$ of the minimization problem $f(x)=\min_{a\in A}\skal{a,x}$ of the set $A$ has "small monotone Boolean $(\lor,\land)$ circuits: by Lemma 1.30 in the book, the lower bound $\Min{A}{s}\geq \Bool{A}$ holds for every antichain $A\subseteq\{0,1\}^n$ and arbitrary large (but finite) approximation factors $r\geq 1$.   $\Box$

Let us now look at the set $P_n$ of characteristic $0$-$1$ vectors of all $s$-$t$ paths in $K_m$, where $n=\binom{m}{2}$. The Bellman-Ford-Moore $(\min,+)$ circuit yields $\Min{P_n}{s}=O(n^{3/2})$ already for the factor $s=1$ (exact solving). On the other hand, the maximization problem on the set $P_n$ is the well-known longest $s$-$t$ path problem in $K_m$. This already is a hard problem (via reduction to Hamiltonian paths). But can we prove (without relying on the unproven as yet inequality $P\neq NP$) that this latter maximization problem is hard to approximate by poly-size $(\max,+)$ circuits within the factor, say, $r=2$?

Problem B: Prove that $\Max{P_n}{2}$ is super-polynomial.
A related question is: can the maximization problem on $P_n$ be approximated within any non-trivial factor $r$ by poly-size $(\max,+)$ circuits?
Problem C: Is $\Max{P_n}{r}$ polynomial for some factor $r\lt (m-1)/2$?
This "strange" condition $r\lt (m-1)/2$ on the approximation factor $r$ comes from Remark 2. The set $P_n$ is $(m-1)$-bounded (no $s$-$t$ path in $K_m$ has more than $m-1$ edges), and is $k$-dense for $k=2$ (every two edges of $K_m$ lie in at least one such path). Hence, factors $r\geq (m-1)/2$ are not interesting for the maximization problem on $P_n$.
Footnotes:

(1)   Jump back ☝


(2)   Jump back ☝
(3)   Jump back ☝

⇦   Back to the comments page