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On the Solution of the Equations Obtained from the 
Investigation of the -Linear Distribution of 

Galvanic Currents* . 
BY G. KIRCHHOFF 

TRANSLATED BY J. B. O’TOOLE~ 

ET there be given a system of n wires: 1, 2, . . . , n 
joined to one another in an arbitrary fashion. 
If an electromotive force is in series with each 

of them, the necessary number of linear equations for 
the determination of the currents I,, I,, . . . , I,, flowing 
through the wires is found by using the following two 
theorems:’ 

Theorem 1 

Let the wires /cl, k,, . . . , form a closed figure,’ let wk 
denote the resistance of wire k, E, the electromotive force 
in series with that wire, and let E, be considered positive 
in the same direction as I,. Then, in case I,,, I,,, . . . , 
are all considered positive in the same direction: 

Theorem 2 

If the wires X,, X,, . . . , meet at one point, and if Ixl, 
I . . . are all considered as positively directed toward 
tl% point, then I,, + IA, + . . . = 0. 

Under the assumption that the given system of wires 
does not decompose into several completely separated 
systems,3 I shall now prove that the solutions of the 
equations for I,, I,, . . . , I,, obtained by application of 
these theorems, may be found in the following way: 

Let m be the number of crossing points, i.e., the number 
of points at which two or more wires meet, and let 
p = n - m + 1. Then the common denominator of all 
quantities I is the sum of all wk, ’ w,,, . . . wkr for each M 
elements of w,, wz, . . . , w, having the property that no 
closed figure remains after removal of the wires 
h, k,, . ‘. , k,. The numerator of Ix is the sum of all 
W& ’ Wkt * * - wkpmx for each p T 1 elements of wl, wz, . . . , w, 
having the property that one closed figure remains after 
removal of wires k,, k,, . . . , k,-, and that this closed 
figure contains X. Each combination is multiplied by the 
sum of the electromotive forces located on the closed 
figure. The electromotive forces are considered as positive 
in the same direction as Ix is considered positive. 

* Manuscript received by the PGCT April 12, 1957. 
t National Cash Register Co., Hawthorne, Calif. This work was 

done while the author was at Hughes Res. Labs., Culver City, Calif. 
1 Poggendorfs Annals, vol. 64, p. 513. 
z Translator’s note: “closed figure” has the same meaning as the 

present day terms “loop.,” “mesh,” and “circuit.” 
JTranslator’s note: m modern terminology, the network does 

not consist of several separate parts. 

For the sake of an easier over-all view, I shall divide 
the proof I give of this theorem into separate sections. 

Proof 1: Let p be the least number of wires that must 
be removed from an arbitrary system so that all closed 
figures are destroyed. Then 1 is also the number of inde- 
pendent equations that can be derived by the use of 
Theorem 1. 

In the following way one can form ~1 independent 
equations from which can be derived each equation which 
is a consequence of Theorem 1: 

Let 1, 2, . . . , p - 1, /* be p wires after whose removal 
no closed figure is left. After removal of p - 1 of these 
one closed figure remains. Let Theorem 1 be applied to 
the remaining closed figure, if one removes in turn 

2,3, **. , P - 1, /J 

1, 3, ... ,P - l,P 

1,2,3, +.a ,/.L - 1. . 

None of the p equations formed in this manner can be 
a consequence of the others, because each one contains 
an unknown that does not occur in any other. Only the 
first equation contains I,, the second I,, and so forth. 
But every equation that is a consequence of Theorem 1 
can be formed from these equations. An equation for a 
closed figure which may be joined together from several 
closed figures must be formed (by addition or subtraction) 
from the equations for those closed figures. As we wish 
to show, each closed figure can be joined together from 
those’F figures. For all closed figures of the given system, 
which we shall designate by S, may be divided into those 
in which the wire p occurs, and into those which are aon. 
tained in the system S’ that is produced from S if the 
wire p is removed. If we assume that all figures that 
belong to the second class may be pieced together from 
the first P - 1 of those p figures, we then perceive it must 
be possible to join together each figure of the system S 
from these P figures. For an arbitrary figure in which the 
wire k occurs may be joined together from a definite 
figure in which p occurs and from such in which cc does 
not occur. The assumption made about the system S’ 
may be reduced to a similar one about S”, if S” is the 
system that is generated from S by removal of p and I.L - 1; 
that is, it may be reduced to the assumption that all 
closed figures occurring in S” may be put together from 
the first p - 2 of those P figures. By continuation of this 
method of reasoning we finally arrive at the system 
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SC”-“. Since this contains only one closed figure, the 
correctness of the assumption that we must make in order 
to see the truth of our assertion is clear. 

Proof 3: Since Theorems 1 and 2 must furnish the 
necessary number of equations for the determination of 
11, I,, *. . , I,, these equations will be the following 
according to what we have just proved: 

cu:w,I,+cY:wJ2+~ . . +(Y~w,J,=cY:E~+cY:E~+~ . . +a:E, 

a:w,I,+cY;w,I,+~~ . +a:wJ, = cu;EE, +$E,“,+ . . . +oc:EE, 

. . . . . . . . . . ..~.................................. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

$I, +cg2+ . . . +cr:z, = 0 

where the quantities 01 are sometimes + 1, sometimes 
- 1, sometimes 0, and where H has the same meaning 
as before. 

It follows from this that the common denominator of 
the quantities I, i.e., the determinant of these equations, 
is a homogeneous function of the &h degree of 
WI, w;, . . . , w,, which contains each w only linearly and 
aside from the w’s contains only numbers. We can also 
express this result in the following way: the common 
denominator of the r’s is the sum of each combination of ,J 
elements of wl, wz, . . : , ,w,,, where each combination is 
multiplied by a numerical coefficient. Likewise one notices 
that the numerator of each I is the sum of every combi- 
nation of I-( - 1 elements of wl, wa, . . . , w,,, where each 
combination is multiplied by a linear homogeneous 
function of the quantities E,, E,, . . . , E, whose co- 
efficients are numbers. 

Proof 3: The observation that it is immaterial whether 
we make the resistance w, = ~0, cut the wire K, or remove 
it leads to the determination of the numerical coefficients 
of the denominators and numerators of the quantities I. 
Therefore the expressions for the I’s must transform, 
by the substitution w, = 03, into the solutions of those 
equations that we obtain by applying Theorems 1 and 
2 to the system of wires produced from the given system 
if we remove wire K. 1, itself must vanish for w, = 03. 

We shall divide the numerators and denominators of 
the I’s by w1 ’ wp ’ . . w,-,, and then set w1 = 03, w2 = 
03, ... ) w,-1 = 03. Let Ix thereby transform into (1,). 
Let us designate by Ai, ,x., ,xI1--l the function of the E’s 
which is multiplied by w,, . w,, . . . w,,-, in the numerator 
of I,. Let us symbolize the coefficient of w,, . w,, . . . w,,, 
in the denominator by a,,.,,,,..,,,. Then we have: 

(Ix) = 0, 
andifhdoesnotoccuramong1,2, ... ,p - 1: 

(I,) := r:, 

where I{ denotes the current that flows through wire X 
if wires 1, 2, . . . , p - 1 are removed. 

We imagine the equations set up that are yielded by 
by applying Theorems 1 and 2 to the remaining system 
of wires for the determination of 1:, l,!+l, . . . , 1:. Let 
Theorem 1 furnish P’ independent equations. Then the 
common denominator of the quantities I’ is a function of 
the (p’)th degree of w,, w,,,~, . . . , w,~, and the numerators 
are functions of the (,A’ - 1)th degree in the same argu- 
ments. Because of the definition of p’, either ,A’ = 1 or 
P’ > 1. If P’ > 1, in order that the equation (Ix) = 1; 
can hold, either the numerator and .denominator of 1; 
have a common factor of the (p’ - 1)th degree in 
w,, w,+1, ..* , or (I,) = 1: = 0, or finally (Ix) must 
assume the form O/O. If one of the quantities (I) appears 
in the form O/O, then all of them must appear in the 
same form since they have a common denominator and 
none can become infinite. Should this case not occur, 
then numerator and denominator of each I’ must have 
a common factor of the (cc’ - 1)th degree; moreover 
these factors must be the same for all quantities I’. 
However this is impossible, as can be shown in the follow- 
ing way. 

We assume that there is a factor of the designated type 
which contains the quantity w,. K must then be a wire 
that lies in at least one closed figure because otherwise 
w, cou1.d certainly not occur in the equations for I,, 
I !A+*, ... . Since the numerators and the denominators 
of the quantities I’ are linear in each w, by removal of 
that factor we obtain expressions for the I’s which are 
free of w,. If we substitute them into one of the equations 
which contains w,I:, then this becomes an identity. By 
partial differentiation with respect to w,, we obtain: 

I: = 0. 

But this equation cannot possibly always hold. Should 
it always hold, then it would have to remain correct if 
one sets arbitrarily many of the quantities w = 00; that 
is, if one removes arbitrarily many of the wires. But if 
so many wires are removed that only one closed figure 
containing K is left, then it is not possible that 1: vanish 
for arbitrary values of the quantities E. 

We realize according to this that if P’ > 1, (I,), 
(I,+,), * * . , (I,) must appear in the form O/O; or since we 
have found (I,) = 0, (I,) = 0, . . . , (I,-,) = 0, if more 
than one closed figure remains after removal of the wires 
1, 2, . . . ) p - 1, the product w1 . wz . . . w,-~ can occur 

(I,) = __--- A:2,...+4 --_- 
a1,2,... .r-l,rr.w, + al.2,....,r-l,r+l.w,+l + . . : + aI,, ,..., r-l.nwn 

It is a consequence of the previous observation that if A neither in a numerator nor in the denominator of the 
occurs among 1, 2, . . . , p - 1: quantities I,, I,, . . . , I,. 
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Proof 4: Now we want to try to determine the factors 
by which the product w, . w2 . . . w,-, is multiplied in the 
numerators and the denominators of the I’s if the con- 
dition is fulfilled that only one closed figure remains after 
removal of 1, 2, . . . , p - 1. 

Let the figure that is left contain wires: X,, X,, . . ., X,. 
Then if X does not occur among these, I: = 0, and if X 
does occur among them: 

where Exx, Ex,, . * * , are considered as positive in the 
same direction in which Ix is considered as positive. 

The denominator of this value can differ from the 
denominator of the quantity (IX), i.e., from the expression: 

al,2,...,,-l,, + w 4 a,,, ,..., 8-1,p+1wg+l + . . . a1.2 ,..., p-l,nw, 

only by a numerical factor. Therefore of the quantities 

al,z,....,-l,,, a,,,,... ,p-1,;+1> . * . 

all must vanish except for: 

al,z ,..., Ir-l,h, a,,,,...,,-,,A., . . * a,,, ,..., p-l,X, 

and these must be equal to one another. We infer from 
this that the coefficient of the combination w,, . w,, . . . 
w,, in the denominator of the quantities I can be different 
from 0 only if all closed figures are destroyed by removal 
of the wires K~, K2; . * . , K,. We further conclude that all 
combinations which fulfill this condition and which 
contain P - 1 common factors w must have the same 
coeflicient. 

With the aid of this, it may be proved that any two 
combinations 

w,;w,, * * * we, and w:;w:, *. . wLP 

in the denominator of the I’s must have the same co- 
efficient, if all closed figures are destroyed by removal of 
the wires K~, K~, . - . , K, as well as by removal of the wires 
4, K;, * * * , K;. 

In order to carry out this proof, we make the following 
observations: 

If all closed figures can be destroyed by removal of 
the wires K1, K2, * * . , K,,, then each of these wires must 
occur in at least one closed figure. 

On the other hand, at least one of those wires must 
occur in every closed figure. Therefore, if we know of the 
wire K’ that it lies in a closed figure, then it must lie in the 
same closed figure as at least one of the wires K~, K~, * - . , K,. 

Furthermore, each of the wires K~, K~, . . - , K,, InUSt 

occur in a closed figure in which the p - 1 other wires 
do not occur: K,, for example, in that which remains after 
removal of K~, K?, - - - , K,,-l and which we shall symbolize 
by fn,. If the wire K; also lies in fK,, then all closed figures 
are also destroyed by removal of K~, K~, . * . , K,,-~, K:. With 
the help of this observation it is easily seen that if we 
choose any closed figure f, p - 1 wires’ can always be 
found after whose removal f remains as the only closed 

figure. For’if of the wires K~, K?, - + - , KC, say Kl, K2, KS 

occur in f and if K; is a wire that occurs in f., but not in 
f, and K; a wire that appears in fKa but not in f then Kg, 

K:, h, *‘*, K, are wires of the desired kind. 
We shall carry out the proof in such a way that we 

assume the coefficients of two combinations of the desig- 
nated kind are equal to one another if they have v common 
factors w, and we shall show that the coefficients of two 
combinations which have only v - 1 common factors 
must also be equal to one another. If we are successful in 
this, then we shall have shown the truth of the contention. 

The method of proof remains the same no matter what 
value we determine for v; hence we shall go through the 
proof only for one value of v, for v = 3. We therefore want 
to demonstate that both the combinations: 

Wti, -w,;w;, * * * w,, and w,;w,;w,,~ . +. w,,, 

must have the same coefficients. 
In the system of wires that results from the given 

system if Kt and K2 are removed, all closed figures cannot 
be destroyed by the removal of fewer than p - 2 wires; 
they are destroyed by the removal of K~, Kq, . . * , Kp, and 
by the removal of ~4, K:, . . . , K:. Whence it follows K; 

lies in the same figure as at least one of the wires KS, 

b, ... , Kp, say KS. Let this be the only remaining one if 
4’1 KS’, * . . , K;’ are removed. Then this same one is the 
only one left of the original system, if K~, ,K2, K:‘, KLi, - - - , 

K:’ are removed. Whence it followsthat both combinations: 

w,;w,,‘w,;w,,~*~w,,~~ ’ *. w,,rt 

and . 

w,;w,,‘w,,~~w,,~~~w,,~~ ’ . . W,#” 

which have P - 1 common factors w, must have the 
same coefficient. As a consequence of our assumption, 
however, also the combinations: 

and 

WK, ‘W,,~W,.~W,, *. . wxp 

and 

w,,‘w,,*w,,~‘w,,~~ . . ’ W,,r, 

have pairwise the same coefficients. Therefore the co- 
efficients of 

w,;wx;w,, ‘. * WC, and w,;w,;w,,. . . . w,,~ 

are also equal to one another. 
We have proved herewith that the common denomi- 

nator of the I’s is the sum of those combinations of any 
cc elements w,,, w,,, . ’ . , w,, of wl, wa, * * . , w,, which 
have the property that after removal of the wires K,, 

Kz, *.* , K, no closed figure remains, where this sum is 
multiplied by a numerical. coefficient. We can set the 



O’Toole: Kirchho$‘s Linear~Distribution of Galvanic Currents 

Fig. 1. 

numerical coefficient equal to 1, if we adjust the numer- 
ators of the I’s accordingly. 

These numerators may now be found very easily. 
From the equations (1,) = 0, ‘if X 5 p - 1, and (1,) = 
1{, if X > p - 1, it follows that: 

A:,,, . . ..p--1 = EL + EL + . . . + EL 

in case x occurs among x,, x?, . . . , x,, and 

A:,, ,..., p--l = 0 

in the contrary case. 
The coefficient of the term w1 . wz . . . w,-~ equals 0 

if X does not occur in this figure. We have already shown 
that it can be different from 0 only if one closed figure is 
left after removing 1, 2, . . . , p - 1. If X appears in the 
figure, then the coefficient is equal to the sum of the 
electromotive forces that are on the same figure, where 
these are considered positive in the direction in which Ix 
is taken as positive. 

Proof 5: Now we must still show, in order to have 
proved our theorem as we have formulated it, that 
p = n - m + 1. This contention holds only if the given 
system of wires does not decompose into several systems 
completely separated from one another, while the obser- 
vations made up to now did not require such an hypo- 
thesis. 

As we have seen, P is the number of independent 
equations that can be derived by Theorem 1; the number 
of independent equations which Theorem 2 furnishes 
must therefore be n - p. But now it may be proved that, 
under that hypothesis, n - p = m + 1. It follows that 
p=n--m+l. 

More than m - 1 independent equations cannot be 
derived by Theorem 2. For if we apply Theorem 2 to all 
m crossing points, each I occurs two times in the squa- 
tions thereby formed, one time with coefficient + 1, the 
other time with the coefficient - 1. Therefore, the sum 
of all equations yields the identical equation 0 = 0. The 
equations obtained by application of that theorem to 
m - 1 arbitrary crossing points are, on the other hand, 
independent. For if we choose arbitrarily many of them, 
one or several of the unknowns occur only once. Let us 
call the crossing points 1, 2, . . . , m, and let (K, X) denote 
a wire through which t.wo of them, K and X, are joined 
with one another. Then the unknown IC,.x, occurs only 
once in the equations for the points K1, K2, . . . , K,, if one 
of, them, say K1, is joined with another point X, in addition 
to the points K2, * * * ) Kv. But if the wires joining the 
points Kl, K2) . . . ) K, with one another do not form a 

Fig. 2. 

closed system, one of the points K~, K2, . . . , K, must be 
connected with a point X not in that set. 

Allow me to make a few more remarks on the theorem 
just proved. If the terms of the numerator of Ix are 
arranged in the same order as the quantities E,, E,, . . . ,- 
E,,, then the coefficient of E, becomes the sum of sometimes 
positive, sometimes negative, combinations of any 
P - 1 elements of wl, w2, . . . , w, which occur in the 
denominator of the I’s multiplied by wA as well as by 
w,. These are exactly the combinations w,, . w,, . . . 
W lip- 1 which have the property that after removal of the 
mTeS K1, K2, . . . , KS--l, only one closed figure remains and 
this figure contains X as well as K. w,, . w,, . . . w,,-, is 

to be taken positive if in the figure that is left the positive 
direction of Ih coincides with the direction of E,, negative 
in the contrary case. 

It follows from this, among other things, that if we 
choose two wires from an arbitrary system, the current 
caused in one by an electromotive force in the second is 
exactly equal to the current produced in the second by 
an equal electromotive force in the first. 

The condition that we have found for the occurrence 
of a combination in the denominator of the I’s may also 
be expressed, as one easily sees, in the following way: 
the combination w,, . w,, . . . w,, occurs if the equations 
which Theorem 1 furnishes are independent of I,,, I,,, 
. . . 7 I,,. It may be shown that this condition coincides 
with the condition that there be no equation among 
I,,, In,, . . . I,,, or among several of these quantities, that 
can be derived from the equations formed by applying 
Theorem 2. This observation will often make it easier to 
represent the combinations which are missing in the 
denominator of the 1’s. If, for example, the wires 1, 2, 3 
meet at a point, 3, 4, 5 at a second point, 5, 6, 7 at a 
third point (as in Fig. l), all combinations are absent 
which contain: 

Wl’W2.%, W*W4*%, WS.WB.W7, 
W1*W2.W4.W5, W3’W4.W6’W7, W1-W‘J*W4.WS*W7. 

The denominator of the I’s with the combination of the 
wires exhibited in Fig. 2 is accordingly the sum of all 
combinations of any three elements of wl, w?, . . . , we 
with the exception of the following: 

Wl ‘WZ’W4, W.W3*%, w?*w3-w3, W4.WC.W6. 


