SpringerBriefs in Mathematics

Series Editors
Nicola Bellomo, Torino, Italy
Michele Benzi, Pisa, Italy
Palle Jorgensen, Iowa, USA
Tatsien Li, Shanghai, China
Roderick Melnik, Waterloo, Canada
Otmar Scherzer, Linz, Austria
Benjamin Steinberg, New York, USA
Lothar Reichel, Kent, USA
Yuri Tschinkel, New York, USA
George Yin, Detroit, USA
Ping Zhang, Kalamazoo, USA
SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, standardized manuscript preparation and formatting guidelines, and expedited production schedules.

Typical topics might include:

- A timely report of state-of-the-art techniques
- A bridge between new research results, as published in journal articles, and a contextual literature review
- A snapshot of a hot or emerging topic
- An in-depth case study
- A presentation of core concepts that students must understand in order to make independent contributions

SpringerBriefs in Mathematics showcases expositions in all areas of mathematics and applied mathematics. Manuscripts presenting new results or a single new result in a classical field, new field, or an emerging topic, applications, or bridges between new results and already published works, are encouraged. The series is intended for mathematicians and applied mathematicians. All works are peer-reviewed to meet the highest standards of scientific literature.

Titles from this series are indexed by Scopus, Web of Science, Mathematical Reviews, and zbMATH.
Stasys Jukna

Tropical Circuit Complexity
Limits of Pure Dynamic Programming
Go to the roots of calculations! Group the operations. Classify them according to their complexities rather than their appearances! This, I believe, is the mission of future mathematicians.

–Evariste Galois

Understanding the power and weakness of algorithmic paradigms for solving decision or optimization problems in rigorous mathematical terms is an important long-term goal. Along with greedy and linear programming, dynamic programming (DP) is one of THE algorithmic paradigms for solving combinatorial optimization problems. Dynamic programming algorithms turned out to be quite powerful in many practical applications, so that we know what these algorithms can do. But what can DP algorithms not do (efficiently)? Answering this question is the subject of this book.

Roughly speaking, the idea of DP is to break up a given optimization problem into smaller subproblems in a divide-and-conquer manner and solve these subproblems recursively. Optimal solutions of smaller instances are found and retained for use in solving larger instances (smaller instances are never solved again). Many classical DP algorithms are pure in that they only apply the basic operations $(\min, +)$ or $(\max, +)$ in their recursion equations.

A rigorous mathematical model for pure DP algorithms is that of tropical circuits. These are conventional combinational circuits using $(\min, +)$ or $(\max, +)$ operations as gates. Pure DP algorithms are special (recursively constructed) tropical circuits. So, if one can prove that any tropical circuit solving a given optimization problem must use at least t gates, then we know that no pure DP algorithm can solve this problem by performing fewer than t $(\min, +)$ or $(\max, +)$ operations, be the designer of an algorithm even omnipotent. Thanks to the rigorous combinatorial nature of tropical circuits, ideas and arguments from the Boolean and arithmetic circuit complexity can be exploited to obtain lower bounds for tropical circuits and, hence, also for pure DP algorithms.

For example, the classical Bellman–Held–Karp DP algorithm gives a tropical $(\min, +)$ circuit with about $n^2 2^n$ gates solving the travelling salesman problem on n-vertex graphs, while a trivial brute force algorithm results in about $n! \approx (n/e)^n$
gates. On the other hand, Jerrum and Snir in 1982 have shown that at least about n^{22n} gates are also necessary in any $(\min, +)$ circuit solving this problem. This shows that the Bellman–Held–Karp DP algorithm is optimal among all pure DP algorithms for this problem. The tropical $(\min, +)$ circuit corresponding to the (also classical) Floyd–Warshall–Roy pure DP algorithm for the all-pairs shortest paths problem on n-vertex graphs uses about n^3 gates. On the other hand, already in 1970, Kerr has shown that at least about n^3 gates are also necessary for this problem. So, the Floyd–Warshall–Roy pure DP algorithm is also optimal in the class of all pure DP algorithms.

After these and several other impressing lower bounds where obtained, a long break followed. Only in recent years, and mainly due to recognized connection with dynamic programming, tropical circuits have attracted growing attention again. The goal of this book is to survey the lower-bound ideas and methods that emerged during these last years.

We focus on presenting the lower-bound arguments themselves, rather than on quantitative bounds achieved using them. That is, the focus is on the proof arguments, on the ideas behind them. Because of a very pragmatic motivation of tropical circuits—their intimate relation to dynamic programming—the primary goal is to create as large as possible “toolbox” for proving lower bounds on the size of tropical circuits, not relying on unproven complexity assumptions like $P \neq NP$.

The difficulty in proving that a given optimization problem requires large tropical circuits lies in the nature of our adversary: the circuit. Small circuits may work in a counterintuitive fashion, using deep, devious, and fiendishly clever ideas. How can one prove that there is no clever way to quickly solve the problem? In this book, we will learn some tools to defeat this adversary.

Tropical algebra and geometry—where “adding” numbers means to take their minimum or maximum, and “multiplying” them means to add them—are now actively studied topics in mathematics. Tropical circuit complexity adds a computational complexity aspect to this topic.

The book is self-contained and is meant to be approachable already by graduate students in mathematics and computer science. The text assumes certain mathematical maturity (minor knowledge of basic concepts in graph theory, discrete probability, and linear algebra) but no special knowledge in the theory of computing or dynamic programming.

Supplementary material to the book can be found on my home page.

Vilnius, Lithuania/Frankfurt, Germany
Stasys Jukna
June 2023
Contents

1 Basics

1.1 What Is This Book About? ... 1
1.2 Circuits ... 3
1.3 Tropical Circuits ... 5
1.4 Examples of Tropical Circuits ... 8
1.5 Concentrate on Exponents: Minkowski Circuits 12
1.6 Arithmetic Circuits Produce What They Compute............. 16
1.7 What Do Boolean Circuits Produce? 17
1.8 What Do Tropical Circuits Produce? 18
1.8.1 Structure in 0/1 Optimization 21
1.9 Negative Weights .. 24
1.10 Eliminating Constant Inputs .. 26
1.11 From Tropical to Boolean and Arithmetic Circuits 27
1.12 Coefficients Can Matter: Arithmetic \neq Minkowski 32
1.13 Complexity Gaps: An Overview 35
References... 37

2 Combinatorial Bounds

2.1 Cover-Free Sets .. 39
2.2 Sidon Sets .. 42
2.3 Thin Sets .. 46
2.4 The Bottleneck Counting Argument 47
References... 51

3 Rectangle Bounds

3.1 Balanced Decompositions ... 53
3.2 Matchings, Paths, and Walks .. 56
3.3 Independent Sets ... 58
3.4 Arborescences .. 62
3.5 Spanning Trees ... 64
3.6 Coefficients Can Matter ... 70
References... 76
4 Bounds for Approximating Circuits .. 77
 4.1 Approximating (Min, +) Circuits .. 77
 4.1.1 Boolean Lower Bound ... 78
 4.1.2 Boolean Upper Bound ... 81
 4.2 Approximating (Max, +) Circuits .. 84
 4.2.1 Counting Fails ... 84
 4.2.2 Locally Balanced Decompositions 87
 4.2.3 Rectangle Bound for Approximating (Max, +) Circuits 89
 4.2.4 Application: Approximation on Designs 90
References .. 93

5 Tropical Branching Programs .. 95
 5.1 Branching Programs ... 95
 5.2 A Lower Bound for Thin Sets ... 97
 5.3 Tropical Markov’s Bound ... 98
 5.4 Balanced Decompositions .. 100
 5.5 Tropical BPs ≠ Tropical Circuits ... 102
 5.5.1 Proof of the Upper Bound for Circuits 103
 5.5.2 Proof of the Lower Bound for Branching Programs 103
References .. 107

6 Extended Tropical Circuits .. 109
 6.1 Arithmetic (+, x, /) and Tropical (min, +, −) Circuits 109
 6.2 Tropical (min, max, +) Circuits ... 115
 6.3 Reciprocal Inputs Cannot Help Much 118
 6.4 Notes on Tropical (min, +, −) Circuits 123
 6.5 Open Problems .. 125
References .. 129
Notation

We will use more or less standard concepts and notation. For ease of reference, let us collect some of most often used ones right now:

- **Nonnegative real numbers** $\mathbb{R}_+ = \{x \in \mathbb{R} : x \geq 0\}$
- **Nonnegative integers** $\mathbb{N} = \{0, 1, 2, \ldots\}$ and $[n] = \{1, \ldots, n\}$
- **K_n** The complete graph on $[n]$
- **$K_{n,n}$** A complete bipartite $n \times n$ graph
- **2^X** for a set X Family of all subsets of X
- **$|X|$** for a finite set X Number of elements in X
- **$\mathcal{F} \subseteq 2^X$** is uniform All sets in \mathcal{F} have the same cardinality
- **Characteristic vector of $S \subseteq [n]$** $\mathbf{1}_S \in \{0, 1\}^n$ with $\mathbf{1}_S(i) = 1$ iff $i \in S$
- **Unit vector** $-\mathbf{e}_i$ $(-\mathbf{e}_i) = (0, \ldots, 0, 1, 0, \ldots, 0)$ with 1 in the ith position
- **$a < b$ for $a, b \in \mathbb{R}^n$** $a_i < b_i$ for all $i = 1, \ldots, n$
- **$A \subseteq \mathbb{R}^n$ is an antichain** $a \not< b$ for all $a \neq b \in A$
- **Upward closure A^\uparrow of $A \subseteq \mathbb{N}^n$** $A^\uparrow = \{b \in \mathbb{N}^n : b \geq a \text{ for some } a \in A\}$
- **Downward closure A^\downarrow of $A \subseteq \mathbb{N}^n$** $A^\downarrow = \{b \in \mathbb{N}^n : b \leq a \text{ for some } a \in A\}$
- **$B \subseteq \mathbb{R}^n$ lies above $A \subseteq \mathbb{R}^n$** $B \supseteq A^\uparrow$, i.e., $\forall b \in B \exists a \in A : b \geq a$
- **$B \subseteq \mathbb{R}^n$ lies below $A \subseteq \mathbb{R}^n$** $B \subseteq A^\downarrow$, i.e., $\forall b \in B \exists a \in A : b \leq a$
- **Support of $a \in \mathbb{R}^n$** $\text{sup}(a) = \{i : a_i \neq 0\}$
- **Degree of $a \in \mathbb{N}^n$** $|a| = a_1 + \cdots + a_n$
- **Lower envelope of $A \subseteq \mathbb{N}^n$** $|A| = \{a \in A : |a| \text{ is minimal}\}$
- **Higher envelope of $A \subseteq \mathbb{N}^n$** $[A] = \{a \in A : |a| \text{ is maximal}\}$
- **$A \subseteq \mathbb{N}^n$ is homogeneous** $|A| = [A]$
- **Sum of $a, b \in \mathbb{R}^n$** $a + b = (a_1 + b_1, \ldots, a_n + b_n)$
- **Minkowski sum of $A, B \subseteq \mathbb{R}^n$** $A + B = \{a + b : a \in A, b \in B\}$
- **Scalar product of $a, b \in \mathbb{R}^n$** $\langle a, b \rangle = a_1b_1 + \cdots + a_nb_n$
- **Tropical (min, +) polynomial** $f(x) = \min_{a \in A} \{\langle a, x \rangle + c_a\}; A \subseteq \mathbb{N}^n, c_a \in \mathbb{R}_+$