\( \def\<#1>{\left<#1\right>} \let\geq\geqslant \let\leq\leqslant % an undirected version of \rightarrow: \newcommand{\mathdash}{\relbar\mkern-9mu\relbar} \def\deg#1{\mathrm{deg}(#1)} \newcommand{\dg}[1]{d_{#1}} \newcommand{\Norm}{\mathrm{N}} \newcommand{\const}[1]{c_{#1}} \newcommand{\cconst}[1]{\alpha_{#1}} \newcommand{\Exp}[1]{E_{#1}} \newcommand*{\ppr}{\mathbin{\ensuremath{\otimes}}} \newcommand*{\su}{\mathbin{\ensuremath{\oplus}}} \newcommand{\nulis}{\mathtt{0}} %{\vmathbb{0}} % \newcommand{\vienas}{\mathtt{1}} %{\vmathbb{1}} \newcommand{\Up}[1]{#1^{\uparrow}} %{#1^{\vartriangle}} \newcommand{\Down}[1]{#1^{\downarrow}} %{#1^{\triangledown}} \newcommand{\lant}[1]{#1_{\mathrm{la}}} % lower antichain \newcommand{\uant}[1]{#1_{\mathrm{ua}}} % upper antichain \newcommand{\skal}[1]{\langle #1\rangle} \newcommand{\NN}{\mathbb{N}} % natural numbers \newcommand{\RR}{\mathbb{R}} \newcommand{\minTrop}{\mathbb{T}_{\mbox{\rm\footnotesize min}}} \newcommand{\maxTrop}{\mathbb{T}_{\mbox{\rm\footnotesize max}}} \newcommand{\FF}{\mathbb{F}} \newcommand{\pRR}{\mathbb{R}_{\mbox{\tiny $+$}}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\gf}[1]{GF(#1)} \newcommand{\conv}[1]{\mathrm{Conv}(#1)} \newcommand{\vvec}[2]{\vec{#1}_{#2}} \newcommand{\f}{{\mathcal F}} \newcommand{\h}{{\mathcal H}} \newcommand{\A}{{\mathcal A}} \newcommand{\B}{{\mathcal B}} \newcommand{\C}{{\mathcal C}} \newcommand{\R}{{\mathcal R}} \newcommand{\MPS}[1]{f_{#1}} % matrix multiplication \newcommand{\ddeg}[2]{\#_{#2}(#1)} \newcommand{\length}[1]{|#1|} \DeclareMathOperator{\support}{sup} \newcommand{\supp}[1]{\support(#1)} \DeclareMathOperator{\Support}{sup} \newcommand{\spp}{\Support} \newcommand{\Supp}[1]{\mathrm{Sup}(#1)} %{\mathcal{S}_{#1}} \newcommand{\lenv}[1]{\lfloor #1\rfloor} \newcommand{\henv}[1]{\lceil#1\rceil} \newcommand{\homm}[2]{{#1}^{\langle #2\rangle}} \let\daug\odot \let\suma\oplus \newcommand{\compl}[1]{Y_{#1}} \newcommand{\pr}[1]{X_{#1}} \newcommand{\xcompl}[1]{Y'_{#1}} \newcommand{\xpr}[1]{X'_{#1}} \newcommand{\cont}[1]{A_{#1}} % content \def\fontas#1{\mathsf{#1}} %{\mathrm{#1}} %{\mathtt{#1}} % \newcommand{\arithm}[1]{\fontas{Arith}(#1)} \newcommand{\Bool}[1]{\fontas{Bool}(#1)} \newcommand{\linBool}[1]{\fontas{Bool}_{\mathrm{lin}}(#1)} \newcommand{\rBool}[2]{\fontas{Bool}_{#2}(#1)} \newcommand{\BBool}[2]{\fontas{Bool}_{#2}(#1)} \newcommand{\MMin}[1]{\fontas{Min}(#1)} \newcommand{\MMax}[1]{\fontas{Max}(#1)} \newcommand{\infMax}[1]{\fontas{Max}_{-\infty}(#1)} \newcommand{\negMin}[1]{\fontas{Min}^{-}(#1)} \newcommand{\negMax}[1]{\fontas{Max}^{-}(#1)} \newcommand{\Min}[2]{\fontas{Min}_{#2}(#1)} \newcommand{\Max}[2]{\fontas{Max}_{#2}(#1)} \newcommand{\convUn}[1]{\fontas{L}_{\ast}(#1)} \newcommand{\Un}[1]{\fontas{L}(#1)} \newcommand{\kUn}[2]{\fontas{L}_{#2}(#1)} \newcommand{\Nor}{\mu} % norm without argument \newcommand{\nor}[1]{\Nor(#1)} \newcommand{\bool}[1]{\hat{#1}} % Boolean version of f \newcommand{\bphi}{\phi} % boolean circuit \newcommand{\xf}{\boldsymbol{\mathcal{F}}} \newcommand{\euler}{\mathrm{e}} \newcommand{\ee}{f} % other element \newcommand{\exchange}[3]{{#1}-{#2}+{#3}} \newcommand{\dist}[2]{{#2}[#1]} \newcommand{\Dist}[1]{\mathrm{dist}(#1)} \newcommand{\mdist}[2]{\dist{#1}{#2}} % min-max dist. \newcommand{\matching}{\mathcal{M}} \renewcommand{\E}{A} \newcommand{\F}{\mathcal{F}} \newcommand{\set}{W} \newcommand{\Deg}[1]{\mathrm{deg}(#1)} \newcommand{\mtree}{MST} \newcommand{\stree}{{\cal T}} \newcommand{\dstree}{\vec{\cal T}} \newcommand{\Rich}{U_0} \newcommand{\Prob}[1]{\ensuremath{\mathrm{Pr}\left\{{#1}\right\}}} \newcommand{\xI}{\boldsymbol{I}} \newcommand{\plus}{\mbox{\tiny $+$}} \newcommand{\sgn}[1]{\left[#1\right]} \newcommand{\ccompl}[1]{{#1}^*} \newcommand{\contr}[1]{[#1]} \newcommand{\harm}[2]{{#1}\,\#\,{#2}} %{{#1}\,\oplus\,{#2}} \newcommand{\hharm}{\#} %{\oplus} \newcommand{\rec}[1]{1/#1} \newcommand{\rrec}[1]{{#1}^{-1}} \DeclareRobustCommand{\bigO}{% \text{\usefont{OMS}{cmsy}{m}{n}O}} \newcommand{\dalyba}{/}%{\oslash} \newcommand{\mmax}{\mbox{\tiny $\max$}} \newcommand{\thr}[2]{\mathrm{Th}^{#1}_{#2}} \newcommand{\rectbound}{h} \newcommand{\pol}[3]{\sum_{#1\in #2}{#3}_{#1}\prod_{i=1}^n x_i^{#1_i}} \newcommand{\tpol}[2]{\min_{#1\in #2}\left\{\skal{#1,x}+\const{#1}\right\}} \newcommand{\comp}{\circ} % composition \newcommand{\0}{\vec{0}} \newcommand{\drops}[1]{\tau(#1)} \newcommand{\HY}[2]{F^{#2}_{#1}} \newcommand{\hy}[1]{f_{#1}} \newcommand{\hh}{h} \newcommand{\hymin}[1]{f_{#1}^{\mathrm{min}}} \newcommand{\hymax}[1]{f_{#1}^{\mathrm{max}}} \newcommand{\ebound}[2]{\partial_{#2}(#1)} \newcommand{\Lpure}{L_{\mathrm{pure}}} \newcommand{\Vpure}{V_{\mathrm{pure}}} \newcommand{\Lred}{L_1} %L_{\mathrm{red}}} \newcommand{\Lblue}{L_0} %{L_{\mathrm{blue}}} \newcommand{\epr}[1]{z_{#1}} \newcommand{\wCut}[1]{w(#1)} \newcommand{\cut}[2]{w_{#2}(#1)} \newcommand{\Length}[1]{l(#1)} \newcommand{\Sup}[1]{\mathrm{Sup}(#1)} \newcommand{\ddist}[1]{d_{#1}} \newcommand{\sym}[2]{S_{#1,#2}} \newcommand{\minsum}[2]{\mathrm{MinS}^{#1}_{#2}} \newcommand{\maxsum}[2]{\mathrm{MaxS}^{#1}_{#2}} % top k-of-n function \newcommand{\cirsel}[2]{\Phi^{#1}_{#2}} % its circuit \newcommand{\sel}[2]{\sym{#1}{#2}} % symmetric pol. \newcommand{\cf}[1]{{#1}^{o}} \newcommand{\Item}[1]{\item[\mbox{\rm (#1)}]} % item in roman \newcommand{\bbar}[1]{\underline{#1}} \newcommand{\Narrow}[1]{\mathrm{Narrow}(#1)} \newcommand{\Wide}[1]{\mathrm{Wide}(#1)} \newcommand{\eepsil}{\varepsilon} \newcommand{\amir}{\varphi} \newcommand{\mon}[1]{\mathrm{mon}(#1)} \newcommand{\mmon}{\alpha} \newcommand{\gmon}{\alpha} \newcommand{\hmon}{\beta} \newcommand{\nnor}[1]{\|#1\|} \newcommand{\inorm}[1]{\left\|#1\right\|_{\mbox{\tiny $\infty$}}} \newcommand{\mstbound}{\gamma} \newcommand{\coset}[1]{\textup{co-}{#1}} \newcommand{\spol}[1]{\mathrm{ST}_{#1}} \newcommand{\cayley}[1]{\mathrm{C}_{#1}} \newcommand{\SQUARE}[1]{\mathrm{SQ}_{#1}} \newcommand{\STCONN}[1]{\mathrm{STCON}_{#1}} \newcommand{\STPATH}[1]{\mathrm{PATH}_{#1}} \newcommand{\SSSP}[1]{\mathrm{SSSP}(#1)} \newcommand{\APSP}[1]{\mathrm{APSP}(#1)} \newcommand{\MP}[1]{\mathrm{MP}_{#1}} \newcommand{\CONN}[1]{\mathrm{CONN}_{#1}} \newcommand{\PERM}[1]{\mathrm{PER}_{#1}} \newcommand{\mst}[2]{\tau_{#1}(#2)} \newcommand{\MST}[1]{\mathrm{MST}_{#1}} \newcommand{\MIS}{\mathrm{MIS}} \newcommand{\dtree}{\mathrm{DST}} \newcommand{\DST}[1]{\dtree_{#1}} \newcommand{\CLIQUE}[2]{\mathrm{CL}_{#1,#2}} \newcommand{\ISOL}[1]{\mathrm{ISOL}_{#1}} \newcommand{\POL}[1]{\mathrm{POL}_{#1}} \newcommand{\ST}[1]{\ptree_{#1}} \newcommand{\Per}[1]{\mathrm{per}_{#1}} \newcommand{\PM}{\mathrm{PM}} \newcommand{\error}{\epsilon} \newcommand{\PI}[1]{A_{#1}} \newcommand{\Low}[1]{A_{#1}} \newcommand{\node}[1]{v_{#1}} \newcommand{\BF}[2]{W_{#2}[#1]} % Bellman-Ford \newcommand{\FW}[3]{W_{#1}[#2,#3]} % Floyd-Washall \newcommand{\HK}[1]{W[#1]} % Held-Karp \newcommand{\WW}[1]{W[#1]} \newcommand{\pWW}[1]{W^{+}[#1]} \newcommand{\nWW}[1]{W^-[#1]} \newcommand{\knap}[2]{W_{#2}[#1]} \newcommand{\Cut}[1]{w(#1)} \newcommand{\size}[1]{\mathrm{size}(#1)} \newcommand{\dual}[1]{{#1}^{\ast}} \def\gcd#1{\mathrm{gcd}(#1)} \newcommand{\econt}[1]{C_{#1}} \newcommand{\xecont}[1]{C_{#1}'} \newcommand{\rUn}[1]{\fontas{L}_{r}(#1)} \newcommand{\copath}{\mathrm{co}\text{-}\mathrm{Path}_n} \newcommand{\Path}{\mathrm{Path}_n} \newcommand{\uup}[1]{\overline{#1}} \newcommand{\up}[1]{\overline{#1}} \newcommand{\coset}[1]{\mathrm{1\hspace{-0.1em}-}{#1}} %{{#1}^*} \)

Boolean bounds for (max,+) circuits

For a set $A\subseteq\{0,1\}^n$ of vectors, let (as in the book) $\Bool{A}$ denote the minimum size of a monotone Boolean $(\lor,\land)$ circuit computing the Boolean function $g(x)=\bigvee_{a\in A}\bigwedge_{i : a_i\neq 0}x_i$. That is, for every input $x\in\{0,1\}^n$, $f(x)=1$ iff $x\geq a$ for some $a\in A$. Also, $\MMax{A}$ denotes the minimum size of a tropical $(\max,+)$ circuit solving the maximization problem $f(x)=\max_{a\in A}\skal{a,x}$ on the set $A$ of feasible solutions.

As Lemma 4.1(1) in the book shows, $\MMin{A}\geq \Bool{A}$ holds for $(\min,+)$ circuits solving the minimization problem on any set $A\subseteq\NN^n$ of feasible solution. This Boolean lower bound holds even for approximating $(\min,+)$ circuits and even for $(\min,\max,+)$ circuits (when also $\max$ gates are allowed to be used).

But the argument used in the proof of Lemma 4.1 does not work for $(\min,\max,+)$ circuits, and even for $(\max,+)$ circuits, exactly solving or approximating maximization problems $f(x)=\max_{a\in A}\skal{a,x}$, because then the signum $\sgn{f(x)}$ of $f(x)$ (which is defined to be $0$ if $f(x)=0$, and $1$ if $f(x)\gt 0$) is just the OR of all variables, so that the resulting (dual) circuit does not compute the Boolean version $g(x)=\bigvee_{a\in A}\bigwedge_{i\in \supp{a}}x_i$ of $f$, unless $A=\{\vec{1}\}$: this holds because both $\sgn{\max(x,y)}$ and $\sgn{x+y}$ are equal to the OR $\sgn{x}\lor\sgn{y}$.

Still, we have the following lower bound in terms of "complementary" sets.

Theorem A: Let $A\subseteq\{0,1\}^n$ and $\coset{A}:=\{\vec{1}-a\colon a\in A\}$. There is an absolute constant $c\gt 0$ such that \begin{equation}\label{eq:bool1} \MMax{A} \geq \sqrt{\frac{1}{cn}\cdot \Bool{\coset{A}}}-n \,. \end{equation}
Proof: Let $s:=\MMax{A}$ and $t:=\MMin{\coset{A}}$. As shown in Corollary 6.14(2), $t$ is at most a constant times $n(n+s)^2$ from which $(n+s)^2\geq t/cn$ and, hence, $s\geq \sqrt{t/cn}-n$ follows. Since, by Lemma 4.1(1), $\Bool{\coset{A}}\leq t$ holds, the desired lower bound \eqref{eq:bool1} on $\MMax{A}=s$ follows, as well.

The Boolean bound on $\MMax{A}$ holds also in terms of $\Bool{A}$ (the same set $A$) if the $(\max,+)$ circuits must correctly solve the maximization problem on the set $A$ not only for all input weightings $x\in\RR_+^n$ but for all input weightings $x\in(\RR_+\cup\{-\infty\})^n$; that is, now $-\infty$ is also among possible input weights. Let $\infMax{A}$ denote the corresponding complexity measure. Note that we always have $\infMax{A}\geq \MMax{A}$. Our goal is to prove a lower bound $\infMax{A}\geq \Bool{A}$. This is a direct consequence of the following "folklore" relation (given by Lemma A below) between circuits over any semiring of zero characteristic and monotone Boolean circuits.

Consider circuits over (commutative) semirings $(R,\suma,\daug,\nulis,\vienas)$ that, besides a multiplicative identity element $\vienas$ (with $x\daug\vienas=x$) also contain an additive identity element $\nulis$ with $x\suma\nulis=x$ and $x\daug\nulis=\nulis$. Such a semiring is of zero characteristic if $\vienas\suma\vienas \suma \cdots \suma \vienas\neq \nulis$ holds for any finite sum of the multiplicative identity element $\vienas$.

Note that polynomials $ f(x)=\sum_{a\in A}\ \prod_{i=1}^n x_i^{a_i}$ over such semirings have the following property: on every input $x\in\{\nulis,\vienas\}^n$ (consisting of identity elements), we have $f(x)\neq \nulis$ if and only if there is a vector $a\in A$ such that $x$ has the multiplicative identity element $\vienas$ in all positions $i$ where $a_i\neq 0$. This happens precisely when the Boolean version $g(x)= \bigvee_{a\in A} \bigwedge_{i\in \supp{a}}x_i$ accepts the corresponding Boolean version of $x$ (with additive identity element $\nulis$ replaced with $0$, and the multiplicative identity element $\vienas$ replaced by $1$). That is, when restricted to only inputs in $\{\nulis,\vienas\}^n$ (vectors of identity elements), the decision version of a polynomial $f$ captures the behavior of $f$. This observation gives an idea behind the following "folklore" lower bound.

Recall that a circuit over a semiring $(R,\suma,\daug,\nulis,\vienas)$ is constant-free if no semiring elements $c\in R$ are used as inputs (hence, the variables $x_1,\ldots,x_n$ are the only inputs). The Boolean version of such a circuit is obtained by replacing each ``addition'' gate $u\suma v$ by an OR gate $u\lor v$, and each ``multiplication'' gate $u\daug v$ by an AND gate $u\land v$.

Lemma A (Folklore): If a constant-free circuit $\Phi$ over a semiring $(R,\suma,\daug,\nulis,\vienas)$ of zero characteristic computes a polynomial $f$, then the Boolean version of $\Phi$ computes the Boolean version of $f$.
Proof: Consider the set $S=\{\up{n}\colon n\in\NN\}\subseteq R$ of semiring elements, where $\uup{n}:=\nulis$ (the additive identity element) for $n=0$, and $\uup{n}:=\vienas\suma \cdots \suma \vienas$ is the $n$-fold sum of the multiplicative unity $\vienas$ for all $n\geq 1$. Since $\uup{n}\suma \uup{m}=\uup{n+m}$ and $\uup{n}\daug \uup{m}=\uup{n\cdot m}$, the set $S$ is closed under both semiring operations. So, $(S,\suma,\daug,\nulis,\vienas)$ is a subsemiring of $R$. This implies that when we restrict the circuit $\Phi$ to take inputs only from $\{\nulis,\vienas\}^n$, all intermediate results computed at the gates of $\Phi$ belong to $S$. Here, we use the fact that the original circuit $\Phi$ was constant-free, that is, has not used any semiring elements as (constant) inputs.

Consider the mapping $h:S\to\{0,1\}$ given by $h(\nulis):=0$ and $h(\uup{n}):=1$ for all $n\geq 1$. Since $R$ has zero-characteristic, $\uup{n}=\nulis$ holds if and only if $n=0$. Thus, $h(x\suma y)=h(x)\lor h(y)$ and $h(x\daug y)=h(x)\land h(y)$ hold for all $x,y\in S$, meaning that the mapping $h$ is a homomorphism from the semiring $(S,\suma,\daug,\nulis,\vienas)$ to the Boolean semiring $(\{0,1\},\lor,\land,0,1)$. So, since the circuit $\Phi$ computes the polynomial $f$ correctly on all inputs in $\{\nulis,\vienas\}^n$, the Boolean version of the circuit $\Phi$ correctly computes the decision version of $f$ on all (Boolean) inputs in $\{0,1\}^n$.

Theorem B: For every finite set $A\subseteq\NN^n$, we have $\infMax{A}\geq \Bool{A}$.
Proof: Let $\Phi$ be a $(\max,+)$ circuit solving the maximization problem $f(x)=\max_{a\in A}\ \skal{a,x}$ on $A$ for all input weightings $x\in(\RR_+\cup\{-\infty\})^n$. We can assume that the circuit $\Phi$ is constant-free: if $g(x)=\max_{b\in B}\ \skal{b,x}+\const{b}$ is the $(\max,+)$ polynomial produced by the circuit $\Phi$, then $\const{b}=0$ for all $b\in B$, because $\const{b}\in\RR_+$ and $g(\vec{0})=f(\vec{0})=0$.

In our case the underlying semiring is $(R,\suma,\daug,\nulis,\vienas)$ with $R=\RR_+\cup\{-\infty\}$, $x\suma y = \max(x,y)$, $x\daug y = x+y$, $\nulis=-\infty$ and $\vienas=0$. This semiring is of zero characteristic because $0+\cdots +0\neq -\infty$. Hence, it remains to apply Lemma A.


Footnotes:

(1)

Lemma 4.1: Let $A\subseteq\NN^n$ be any finite set of vectors. Every $(\min,\max,+)$ circuit approximating the minimization problem $f(x)=\min_{a\in A}\sum_{i=1}^na_ix_i$ on $A$ within a finite factor $r=r(n)\geq 1$ must have at least $\Bool{A}$ gates.
  Jump back ☝
(2)   Jump back ☝

⇦   Back to the comments page