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RFDUCIBILITY BY ALGEBRAIC PROJECTIONS*

by L. G. Valiant

Abstract

Substitution as a notion of réduction between two polynomials or

two Boolean functions is considérée. It is shown that in a strong sensé

linear programming is a universal technique for Computing discrète functions

in polynomial time. The robustness of the notion of for

polynomials is demonstrated by showing that alternative formulations,
whether based on formula or program size, are équivalent. Also it is closed

under most natural opérations including substitution, taking coefficients

and differentiation. Thèse results facilitate the récognition of particular
polynomials as j^-definable. The polynomial analogue of the Meyer-Stock
meyerhierarchy collapses.

1. Introduction

The programming concept of a subroutine is well represented in theor
eticalcomputer science in the notion of reducïbility. A function A (x)
is many-one reducible to function B (y) if there is an easily computed
transformation / such that A (x) = B(f(x)). A can be computed by

Computing / and then calling a subroutine for B. Traditionally this is the

strictest notion considered. It is relaxed sometimes to allow several sub
routinecalls, or further computation after the call. In this paper we proceed
in the opposite direction by considering réductions stricter still.

We say that A (x l9 ..., xn) is a projection of B (y l9 ..., ym) if after sub
stitutingforeach y t either an Xj or a constant, B equals A (x l9 ..., xn).

Mathematically this notion has the obvious advantages of simplicity and

of independence from any computational models. In programming terms
it corresponds naturally to the concept of a package rather than subroutine,

* This article has already been published in Logic and Algorithmic, an international
Symposium in honour of Ernst Specker, Zurich, February 1980. Monographie de L'En
seignementMathématique N° 30, Genève 1982.



since the value of A can be obtained by calling B with the same inputs
suitably reinterpreted. If a subroutine for B is available, A canbe computed
without further programming or precomputation on the input being re
quired.Thedistinction between subroutines and packages can be of con
sidérablepracticalimportance as far as the effort required of a human user.

The results in this paper extend and complément those in [13], but can
be read independently. There it was shown that the déterminant is a universal
function for ail polynomials that can be computed fast sequentially or in
parallel, and transitive closure is universal for Boolean functions computable
fast in parallel. Hère we complète this rough picture by showing that
linear programming has the same universal rôle for Boolean functions
that can be computed fast sequentially.

The concept of /?-definability introduced in [13] serves to explain the

difficulty of many intractable problems by providing an extensive class in
which they are provably of maximal difficulty. In the polynomial case this

suggests new techniques for identifying hard problems e.g. [6]. A short
comingof the original treatment in [13] was that recognizing particular
polynomials to be /?-defmable was sometimes possible only by indirect
contrived means. The current paper remédies this by providing some useful

équivalent définitions and various closure properties.
In the Boolean case ;?-definability provides an alternative approach

to formulating such notions as NP, the Meyer-Stockmeyer hierarchy and

polynomial space. It can be checked, for example, that the twenty-one
TVP-complete problems of Karp [7] are ail of each other, and

complète in our class. An important différence between our approach and
the established one is that ours does not contain any assumptions about

"Turing uniformity" (i.e. computational uniformity over infinité domains.)
Thus, while this latter ingrédient is a sine qua non in recursion theory and

high-level complexity, it may be no more than an optional extra at the

lower levels.

2. Definitions

Our notation is taken from [13] but is repeated hère for completeness.
We start with the case of polynomials.

Let Fbea field and F [x l9 ..., xn] the ring of polynomials over indeter
minatesx l9 ..., xn with coefficients from F. P and Q will dénote families of
polynomials where typically



where X is a set of positive integers. The arguments of P t are exhibited

sometimes as P t (x l9 ..., x t) or P t (x) for short.

X formula fovtx F is an expression that is of one of the following forms :

(i) "c" where ce F, or (ii) "x/ where Xj is an indeterminate, or (iii) "(/i °A)
where /x/x and /2/2 are themselves formulae over F and o is one of the two

ring operators { + , x ]. The size of a formula is the number of opérations

of type (iii) needed in its construction, and is denoted by |/|. The formula
size \Pi\ of polynomial P t is the size of the minimal size formula that
spécifies it.

A program f over i7i7 is a séquence of instructions v t <? Vj ovk
(/= 1, 2, ..., C) where (i) j, k < i, (ii) o is one of the two ring opérations
{ + , x } ? and (iii) ifj<o then Vj is either an indeterminate xm or a constant

ce F. The polynomial computed at v t in the program is denoted by val (v t)
and its degree by deg (v t). The size of a program is the number Cof instruc
tions.The program size \\P t || of a polynomial P t is the size of the minimal

program that computes it.
Since formulae are just programs of a spécial form, in which each

computed term can be used at most once, formula size is always at least

as great as program size. A non-trivial converse relationship is due to
Hyafil [5, 14].

A function from positive integers to positive integers we shall dénote

typically by t. Such a t is p-bounded if for some constant k, for ail n > \ t (n)

<ft fc
. A family P has p-bounded formula size if for some /7-bounded t for

each i | P t | < t (/). P is p-computable iff for some /?-bounded t for each
/ (a) ||P, || < t (i) and (b) deg (P t) < t (i).

Q t e F [y l9 ..., y t] is a. projection ofPj eF [x l9 ..., Xj] iffthere is a mapping

such that Q t =Pj (ex (Xl\ ..., g (xj)).
Family Q is a t-projection of P if for each / for some j < t (i) Q t is

the projection of P; . It is the p-projection of Pifitis the of P
for some /7-bounded t.

Among polynomial families that are generally regarded as intractable
both mathematically and computationally, perhaps the simplest is the
permanent [11] which is defined as follows.



where summation is over the n ! permutations on n éléments. This contrasts
with the similar looking déterminant which is tractable in both sensés.

Another one is Hamiltonian Circuits

where summation is now over ail (n?ï) ! permutations consisting of a

single cycle. Related to the latter are HG and #HG which are defined by

where summation is over those subsets t of { x tj |1 </,y<w} that
contain a Hamiltonian circuit when interpreted as graphs. In HG Nx = 1.

In ##G Nx equals the number of Hamiltonian circuits in t.
To treat Boolean computations we can use the same terminology as

for polynomials except that { +, x } are now interpreted as { or, and }.
For the above polynomials the graphical interprétation, where the value

of x^ dénotes the présence or absence of edge (i 9 j) 9
is natural. The per

manentbecomes the perfect matching function which is tractable [9].

HC, HG and #HG become identical and test for the présence of Hamil
toniancircuits in a graph.

The Boolean versions of formulae, programs and projections differ
only in the following ways : In formulae and programs an occurrence of an
indeterminate x t can now be either x t or its négation x i9 and constants
need not occur at ail. In a projection the mappings allowed are

The concept of degree is not defined and j^-computability means just p
boundedprogram size. Lemma 18 in [4] ensures that this measure does

correspond to the familiar notion of circuit size.

We shall be interested often in polynomials that hâve certain desired

behaviour on {o,l} inputs. In particular let Sym r
n e F[x t , ..., xn ] be

such that on any input from {0,1 } n it has value 1 or 0 according to whether

exactly r of the inputs hâve value 1. A candidate for SymJ is

where TT l
n is the sum of the (?) multilinear monomials of degree /, each

with coefficient 1, i.e. the fth elementary symmetric function.



3. p-DEFINABILITY

The concept of /?-definability was introduced in [13] to characterize

a large class of polynomials. Among naturally occurring polynomials of

;?-bounded degree it appears to contain a large majority. In this section we

shall start to explore the extent of the class by considering various équivalent
définitions of it. We start with the one given in [13] in its most simplified
form.

Définition 1. A family P is p-definable over F iff either (a) 3Q over

F of z?-bounded formula size such that for ail i

(t)

or (b) P is the of a /?-definable family.
If two polynomials Pu Q t are related as in part (a) of the définition

we say that Q t defines P t . This relationship is to be interpreted as foliows:
P t may or may not be a tractable polynomial but at least its coefficients

are, i.e. there is a tractable Q t whose values at the points { 0, 1 }' are just
the X coefficients of P t .

The permanent and déterminant are widely recognised as being among
the conceptually simplest polynomials. This is reflected hère by the fact
that part (a) of the above définition is sufficient to specify them. For example
PermnX7J { x tj Il<i,j<n}is defined by

Part (a) of the définition on its own, however, would be artificial and
restrictive. Certainly only multilinear polynomials would be allowed. Also
HC can be defined using (a) and (b) together (see Appendix 2) but apparently
not with (a) alone.

Définition 1 is somewhat opaque. For example, it does not make clear
even whether it covers ail /?-computable families. To résolve such questions
the following formulation is useful.

Définition 2. A family P is p-definable over F iff either (a) 3Q over F
that is /?-computable such that for ail / for some j (0 < / < /)



or (b) P is the of a /?-definable family.
Later we shall see that this is indeed équivalent to Définition 1.

Remark 1. Every P is j?-definable 5 for in Définition 2

we can take Q t = P t and j = i.

Consider now a mathematically still simpler formulation that will be

useful for proving closure properties.

Définition 3. A family P is p-definable over F if there is a /7-computable Q

and a polynomial / such that for ail m there is an / < t (m) such that

Proposition 1. Définitions 2 and 3 are équivalent.

Proof. Clearly Pm defined in Définition 3 can be translated into Défini
tion2by taking the same defining Q i9 choosing/ = m and taking the projec
tionxk = 1 for k =j + 1, ..., i.

In the converse direction consider P t as in Définition 2 (a). It clearly
equals

which is of the form required in Définition 3 (but with a différent Q t !) ?
For completeness and further simplicity we may also consider:

Définition 4. As Définition 3 but with Q restricted to j>-bounded formula
size.

Proposition 2. Définitions 1 and 4 are équivalent.

Proof. Clearly Définition 1 implies Définition 4 exactly as Définition 2

implies Définition 3 (see proof of Proposition 1 above.)
To see the converse we use the form used in [13]. This is conveniently

called Définition 1* as it is intermediate between Définitions 1 and 2. It is

identical to Définition 1 except that line (f) is replaced by:



Suppose now that a family P is /?-definable in the sensé of Définition 4.

Then the argument in Proposition 1 showing that Définition 3 implies

Définition 2 establishes that P is in the sensé of Définition I*.

But Theorem 3 in [13] shows that any P so definable is the /?-projection

of HC and our Appendix 2 shows that HC is in the sensé of

Définition 1. The resuit follows. ?
In Appendix 1 it will be shown that Définition 3 implies Définition 4.

Together with Propositions 1 and 2 this will establish:

Theorem 1. Définitions i, 2, 3 and 4 are ail équivalent.

4. Closure properties

A ;?-definable family P is complète over F if every family that is p
definableover F is the of P. It is known that several famous

polynomials such as the permanent, hamiltonian circuits, the monomer
dimerpolynomial and certain reliability problems are ail complète for
appropriate fields [6, 13]. In fact the projections required to establish thèse

facts are ail strict projections (i.e. no two indeterminates map to the same

indeterminate). Hence thèse superficially dissimilar polynomials are related
in the closest possible way: each one can be obtained from any other by
fixing some indeterminates and renaming the others.

In the light of the simplicity of its completeness class the robustness
of the notion of />-definability is perhaps remarkable. It can be explored
conveniently by listing the opérations under which it is closed.

First we consider the opération of substitution. The polynomials to
be substituted can be viewed conveniently as an array.

Définitions. Risa family array over Fifitisa set { Rm ' n In<m}of
polynomials over F where Rm ' n has m indeterminates. It has p-bounded
degree if for some /?-bounded t deg (Rm ' n) <t (m).

The various définitions of hâve analogues that are équi
valentto each other for family arrays. For the current purpose it is best
to adapt the fourth one:

Définition. Family array R is p-definable iff there is a j?-bounded t
such that for ail m, n there is a T with formula size less than t (m) such that



Theorem 2. Iffamily P and array R are p-definable over F then so

is thefamily P (R) ={Pm (Rm>\ RRm > 2
, ..., RRm > m) }

Proof. Consider the two polynomials :

If k > r then their product is

and their sum

It follows by induction on the construction of formulae that if S is any
family with /?-bounded formula size then S (R) is /?-definable. Now choose
S to be the family defining P. A typical member of P (R) is

It follows by Theorem 5 that P (R) is also

Remark 2. Closure of />-definability under addition ensures that Perm
+ 1 is /?-definable. Since Perm is complète it follows that Perm + 1 is the

/?-projection of Perm. No direct proof of this is known and it is noteworthy
that the corresponding question as to whether Det + 1 is the /^-projection
of Det appears to be open.

Remark 3. Reliability polynomials such as those considered in [6]

can be recognised as by first considering distinct indeterminates

/?, q for each edge, and then substituting q = 1 ~ p.
The coefficient in Pn e F[xv ..., xn] of the monomial m= x* 1

... x\ n

is the unique polynomial Qn such that (i) Pn = mQn + Rm (ii) Qn and m

hâve no indeterminate in common, and (iii) each monomial in Rn differs

from m in the exponent of at least one indeterminate occurring in m.

The following closure property strengthens Proposition 9 in [13].

Theorem 3. If P is p-definable and R is a family such that for some

p-bounded t, for each i, R t is a coefficient in Pt^ then Ris p-definable
also.

Proof. Suppose that Pt(i) is the projection of



under o. If R t is the coefficient of m= Hy[' in Pf(oP

f(0 then it is the projec

tionunder a of the sum of the coefficients in U ofail products n xk such

that for each s with is > 1.

It therefore follows that jR, is a projection under <r' of

where Sym is the polynomial defined in §2, and <r' modifies o by mapping

each élément of

to unity.

Theorem 4. If P is p-definable then so are

(i) {ÔPjdxjlP^P, any ;},
(ii) {\P i dxj \P i eP, any j} 9

and

(iii) the resuit of any p-bounded number of applications to P of différent
iationor intégration.

Proof (i). Suppose that P t is the projection of

under g:{ yk } -> {xm }uF. For each power x) of Xj we will take its

coefficient, multiply it by qz 1 ... z CL _ 1 where z l9 ... 9 zq - t are new indeter
minates,and finally project the original Xj to one and the new z's to Xj.
Let S= S 1 +S2 + ... +Sd where d= deg (P t) and S (b, c) equals:

Then dPJdXj is the projection of

Parts (ii) and (iii) foliow by similar arguments.

Finally we note that while />-definable families are rich in closure proper
tiestheones are apparently not. Numerous natural math
ematicalopérationsseem not to préserve tractability. We can explore
this phenomenon formally by showing that some easy polynomials become



complète when so operated on. A most convenient starting point is the

following family T which is of /?-bounded formula size :

Clearly (i) the coefficient of y ± ... yn in Tn2+n

(ii)

(iii)

ail equal Perm {xK t}.
In contrast, it is easy to see that ail the other opérations that we hâve

considérée préserve /?-computability. This is immédiate in the case of
substitution. It can be shown to be true for dP/ôx t and \Pdx i by considering
a program for P, and decomposing it according to the powers of x t at each

instruction in the manner of [12].

5. A NON-EXISTENT HIERARCHY

By analogies with recursion theory we can attempt to define the following
hierarchy :

Définition. PD° = class of /7-computable polynomial families. For
/>OPe PD 1 iffPis defined by some Qe PD 11 ~ * in the sensé of Définition 3.

That this hierarchy collapses in this algebraic case is easy to see :

Theorem 5. For any F and any i > 0 PD { = PD i+l
.

Proof. It is clearly sufficient to prove PD 1 = PD2
. If Pe PD 2 then for

each m

where for some RePD° for each /

Hence

which shows that PePD 1
.



We can attempt to généralise the définition of the above vacuous hier
archyby allowing the number of "alternations" to increase with the number

of indeterminates.

Let t be any polynomial. Define t-D° to be the class of r-computable

families. For i > 0 let t~D'1 be the class of families that are defined by

some family in t-D 1 ' 1 in the sensé of Définition 3. Finally PD* is the

class of ail families P such that for some t

Theorem 6. PD* = PD 1

Proof. Similar to previous theorem

The above two results should be contrasted with the Boolean case

where they still hold formally, but are no longer natural. The above défini
tionof the successive levels PD 1 is only natural if each level is a robust
closure class. In Boolean algebra, however, PD 1 is not known to be closed

under complémentation for any i > 1. Analogues of PD 1 and PD* where

complémentation is allowed at each level of alternation are not known to
collapse, and are merely finite versions of the Meyer-Stockmeyer hierarchy,
and PSPACE respectively [10].

A simple application of Theorem 5 is in recognising such polynomials
as # HG as being j^-definable. An intriguing open question is whether
HG itself is /?-definable for each F. If it is not then P # NP (see Proposi
tion4 in [13]). If it is then the Meyer-Stockmeyer hierarchy and PSPACE
can be simulated within /?-definable families of polynomials.

6. Universality of Linear Programming

Hère we consider a Boolean function family LP that corresponds to a

linear programming problem and show that every p-computable family is
the of it. Thus for Computing discrète functions in polynomial
time a package for LP for each input size is sufficient and no further pro
grammingis required. If we fix certain of the arguments of LP i according
to the particular function and input size being computed, the package
becomes a program for the required function. That LP is itselfp-computable
follows from the récent resuit of Khachian [B].

The reader should note that several tractable problems in combinatorial
optimisation are already known to hâve linear programming formula



tions[9].Our resuit shows that this is a universal phenomenon. It is related
to the resuit in [3].

We define LP2n{n +I)tobe the following Boolean function of arguments
{ a ip bip e i9 dt \l <i,j<n}:

if and only if the set of inequalities

has a solution in real numbers, where each number a ij9 b tj , e i9 dt is loro
according to whether the corresponding Boolean variable a ij9 b ij9 e i9 d i

is 1 or 0.

Theorem 7. Any p-computable family P of Boolean functions is the

p-projection of LP.

Proof Consider some Pm eP with indeterminates y l9 ... 9 ym9 and a

minimal program for it. The latter consists of a séquence of instructions
of the form i\ <- Vj avk and v t <- Vj v vk9 where I<z<C and each

vn with n <0 equals some yr or y r .

For any fixed assignment of truth values to y l9 ...,ym we can define

a set Eo of linear inequalities :

For each séquence v l9 v2 , ..., v t we define E { by induction from Eo:E
o :

Claiml. For any i, j (j < i) every solution of E t has xs < 0, or every
solution of Et has Xj > 1

.

Proof The claim is true for Eo by définition. Assume inductively that

it is true for (a) If Vj a vk then Xj < 0 implies that x t <0 since

Xj -x t >0. Similarly if xk <0. In the remaining case xj9 xk >1 inequality

Xi + 1 ? Xy - xk >0 ensures that x f > 1. (b) If v t <- ?;y v v fc then Xj > 1



implies that x t >1 since x t - xs >0. Similarly if xk >1. If xj9 xk <0
then Xj + xfc - x t >0 ensures that * £ <0. D

Ctew 2. If val (*;*) = 0 then Et u { jc f <0} has a solution. If val (v t)

= 1 then j?iu{xj>l} has a solution.

Proof. By induction on f it is easy to see that the point

for 1 <y < i is a solution of Et .
H

Claim 3. If for some i,j (j < i) Et u { Xj > 1 } has a solution in reals

then val (t)j) = 1.

Preo/. By Claim 1, if u{Xj>l} has a solution then E t u{ <0}
has no solution. Hence by Claim 2 val (vj) = 1. D

Finally we observe that the given program of size C for Pm
translates

to 3C +2m inequalities in Ec , of which the 2m of Eo dépend on the values

of yu ...,ym , while the remaining 3C are fixed. It remains to note that Pm

is the projection under g of LP2n(n+l) for n = 3C + 2m, where a maps 3C

of the inequalities to those of Ec - Eo , and the remaining 2m values of i
as follows. If v t equals yj or yj then: a (a ik) =(7 (6 /fc) =oifj#k,g (d^)

=o,g (a tj) =a 0;) =vh g (bij) = 5,.. D
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Appendix 1

We show hère that in the concept of it is immaterial
whether the defining polynomials allowed are the ones or
merely those of formula size. We shall suppose that the family P
is j9-definable in the sensé of Définition 3, i.e.

It will suffice to prove that any/?-computable family, such as Q, is/7-definable
in the sensé of Définition 4. By Theorem 5 it then follows that P itself is
also /?-definable in the sensé of Définition 4.



It is known that any j?-computable family of homogeneous polynomials
has homogeneous program size at most polynomially larger than its un
restrictedprogram size [12]. The inductive proof to follow assumes the

former measure throughout and supports homogeneity. We shall assume
that Qm

is itself homogeneous. If it were not then we would consider each

of its homogeneous components separately in the same way.
Suppose that Qm (xu ..., xm) has degree d and a minimal program pof

complexity C. Let Übe the subset of the computed terms {v t } such that
(i) deg (v t) > d/2 and (ii) vt<-Vj x v k with deg (vj) < d/2 and deg (vk)

< d/2. Let Wbe the subset {vj} such that v t <- Vj x vk or v f <- vk x
for some v t e U. For convenience rename the éléments of C7and fl^ by
{ wlsw l5 ..., ur } and { w l9 ..., ws } respectively.

C/a/m 7. There is a polynomial Sm+r+lS

m+r+1 (xv ..., xm ,
eO,e 0 , ..., r) of degree

L d/2 J + 1 and homogeneous program complexity at most 2C + d

such that

where compl^ = Sm+r+lS

m+r+1 (x, e) when e0 =e{=l and =0 for 0 /

Proof. In p replace each occurrence of u t on the right hand side of an
assignment by an occurrence of e t eo

deg (vi) ~ ul2A ~ 1
. (Actually this would

be simulated by a subprogram that raises e0 to every power and multiplies
by e t as appropriate.) D

Claim 2. There is a polynomial Tn + S+l (xv ..., xm ,
c0,...,c

0 , ..., cs) of degree
L d/2 J + 1 and homogeneous program complexity at most 3C + Jsuch

that for each i (1 < z < s)

when c0c

0 =ci =1 and c^ =0 for 0 j i=- i .

Proof. Delete from p every instruction with degree greater than d/2.
Add a subprogram équivalent to the set of instructions

for i= 1, ..., s. Add further instructions to sum z l9 ..., zs .

Now for each i val (w f) = val (wj) val (wfc) for some j, k specified by p.
Hence each of the r additive contributions to Qm is some product



where (c, c', e) is a fixed (0, l)- of 2s +r+3 éléments. But any such

vector can be specified by a conjunction of 2s +r+3 Boolean literals.

Consider the disjunction of the r such conjunctions and let R (c, c', e]

be the polynomial that simulâtes this Boolean formula at (0, 1) values.

Then clearly

where summation is over (c, c', e) g { 0, 1 } 2s+r+3
,

Let A (C, d) be the upper bound over every homogeneous polynomial

having degree d and homogeneous program complexity C, of the minimal

size of formula needed to define it in Définition 4. Then the above recursive

expression ensures that

Clearly also A (C, 1) < 2C. Hence if d is in m then so is the

solution to this récurrence. ?

Appendix 2

For completeness we describe hère a direct proof of the /7-definability
of HC in the sensé of Définition 1. HCnXn (x t

,?) will be the projection under

of the polynomial in { x ij9 uktJn } defined by

with the association yuj *-*xUj and zfc>m <^u%m . Hère QnXn is the poly
nomialthat defines the permanent in §3. ïts first occurrence with argument y
plays exactly the same rôle as in the permanent and ensures a cycle cover.
The intention of zk>m is to dénote whether the kth node in the circuit (starting
from node 1, say) is node m. QnXn (zkf J ensures that this intention is
realised. For each kRk captures the fact that if zk>m and zk+ltf are both
1 then ym>r must be also. In Boolean notation we require

As is well known such Boolean formulae can be simulated by polynomials
at {0, 1 } values (e.g. see Proposition 2 in [13]). To guarantee just one
monomial for each cycle we fix R 1 = z x « . p.
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