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Abstract Subtraction-free computational complexity is the version of arithmetic
circuit complexity that allows only three operations: addition, multiplication, and divi-
sion.We use cluster transformations to design efficient subtraction-free algorithms for
computing Schur functions and their skew, double, and supersymmetric analogues,
thereby generalizing earlier results by P. Koev. We develop such algorithms for com-
puting generating functions of spanning trees, both directed and undirected. A compar-
ison to the lower bound due to M. Jerrum and M. Snir shows that in subtraction-free
computations, “division can be exponentially powerful.” Finally, we give a simple
example where the gap between ordinary and subtraction-free complexity is exponen-
tial.

Communicated by Peter Bürgisser.

We thank the Max-Planck Institut für Mathematik for its hospitality during the writing of this paper.
Partially supported by NSF Grant DMS-1101152 (S. F.), RFBR/CNRS Grant 10-01-9311-CNRSL-a,
and MPIM (G. K.).

S. Fomin (B)
Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor,
MI 48109-1043, USA
e-mail: fomin@umich.edu
URL: http://www.math.lsa.umich.edu/∼fomin/

D. Grigoriev
CNRS, Mathématiques, Université de Lille, 59655 Villeneuve d’Ascq, France
e-mail: Dmitry.Grigoryev@math.univ-lille1.fr
URL: http://en.wikipedia.org/wiki/Dima_Grigoriev

G. Koshevoy
Central Institute of Economics and Mathematics, Nahimovskii pr. 47, 117418 Moscow, Russia
e-mail: koshevoy@cemi.rssi.ru
URL: http://mathecon.cemi.rssi.ru/en/koshevoy/

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10208-014-9231-y&domain=pdf


2 Found Comput Math (2016) 16:1–31

Keywords Subtraction-free · Arithmetic circuit · Schur function · Spanning tree ·
Cluster transformation · Star–mesh transformation

Mathematics Subject Classification Primary 68Q25 · Secondary 05E05 · 13F60

1 Introduction

This paper is motivated by the problem of dependence of algebraic complexity on
the set of allowed operations. Suppose that a rational function f can in principle be
computed using a restricted set of arithmetic operations M ⊂ {+,−, ∗, /}; how does
the complexity of f (i.e., the minimal number of steps in such a computation) depend
on the choice of M? For example, let f be a polynomial with nonnegative coefficients;
then it can be computed without using subtraction (we call this a subtraction-free
computation). Could this restriction dramatically alter the complexity of f ? What if
we also forbid using division?

One natural test is provided by the Schur functions and their various generalizations.
Combinatorial descriptions of these polynomials are quite complicated, and the (non-
negative) coefficients in their monomial expansions are known to be hard to compute.
On the other hand, well-known determinantal formulas for Schur functions yield fast
(but not subtraction-free) algorithms for computing them.

In fact, one can compute a Schur function in polynomial time without using sub-
traction. An outline of such an algorithm was first proposed by Koev [18] in 2007.
In this paper, we describe an alternative algorithm utilizing the machinery of cluster
transformations, a family of subtraction-free rational maps that play a key role in
the theory of cluster algebras [11]. We then further develop this approach to obtain
subtraction-free polynomial algorithms for computing skew, double, and supersym-
metric Schur functions.

We also look at another natural class of polynomials: the generating functions of
spanning trees (either directed or undirected) in a connected (di)graph with weighted
edges. We use star–mesh transformations to develop subtraction-free algorithms that
compute these generating functions in polynomial time. In the directed case, this
sharply contrasts with the exponential lower bound due to Jerrum and Snir [15] who
showed that if one only allows additions and multiplications (but no subtractions or
divisions), then the arithmetic circuit complexity of the generating function for directed
spanning trees in an n-vertex complete digraph grows exponentially in n. We thus
obtain an exponential gap between subtraction-free and semiring complexity, which
canbe informally expressedby saying that in the absence of subtraction; division canbe
“exponentially powerful” (cf. Valiant’s result [35] on the power of subtraction). Recall
that if subtraction is allowed, then division gates can be eliminated at polynomial cost,
as shown by Strassen [32]. One could say that forbidding subtraction can dramatically
increase the power of division.

Jerrum and Snir [15] have shown that their exponential lower bound also holds in
the tropical semiring (R,+,min) (see, e.g., [19, Section 8.5] and references therein).
Since our algorithms extend straightforwardly into the tropical setting, we conclude
that the circuit complexity of the minimum cost arborescence problem drops from
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exponential to polynomial as one passes from the tropical semiring to the tropical
semifield (R,+,−,min).

At the end of the paper, we present a simple example of a rational function fn whose
ordinary circuit complexity is linear in n, whereas its subtraction-free complexity,
while finite, grows at least exponentially in n.

The paper is organized as follows. Section 2 reviews basic prerequisites in algebraic
complexity, along with some relevant historical background. In Sect. 3 we present our
main results. Their proofs occupy the rest of the paper. Sections 4–6 are devoted to
subtraction-free algorithms for computing Schur functions and their variations, while
in Sects. 7–8, we develop such algorithms for computing generating functions for
spanning trees, either ordinary or directed. In Sect. 9, we demonstrate the existence
of exponential gaps between ordinary and subtraction-free complexities.

2 Computational Complexity

We start by reviewing the relevant basic notions of computational complexity, more
specifically complexity of arithmetic circuits (with restrictions). See [3,13,30] for
in-depth treatment and further references.

An arithmetic circuit is an oriented network each of whose nodes (called gates)
performa single arithmetic operation: addition, subtraction,multiplication, or division.
The circuit inputs a collection of variables (or indeterminates) as well as some scalars
and outputs a rational function in those variables. The arithmetic circuit complexity
of a rational function is the smallest size of an arithmetic circuit that computes this
function.

The following disclaimers further clarify the setup considered in this paper:

– we define complexity as the number of gates in a circuit rather than its depth;
– we do not concern ourselves with parallel computations;
– we allow arbitrary positive integer scalars as inputs.

Although we focus on arithmetic circuit complexity, we also provide bit complexity
estimates for our algorithms. For the latter purpose, the input variables should be
viewed as numbers rather than formal variables.

As is customary in complexity theory, we consider families of computational prob-
lems indexed by a positive integer parameter n and only care about the rough asymp-
totics of the arithmetic complexity as a function of n. The number of variables may
depend on n.

Of central importance is the dichotomy between polynomial and superpolynomial
(in particular exponential) complexity classes. We use the shorthand poly(n) to denote
the dependence of complexity on n that can be bounded from above by a polynomial
in n.

Perhaps, the most important (if simple) example of a sequence of functions whose
arithmetic circuit complexity is poly(n) is the determinant of an n by n matrix.
(The entries of a matrix are treated as indeterminates.) The simplest—though not
the fastest—polynomial algorithm for computing the determinant is Gaussian elimi-
nation.
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Table 1 Rational functions computable with restricted set of operations

No multiplicative
operations

Multiplication only Multiplication and division

No additive operations Scalars Monomials Laurent monomials

Addition only Nonnegative linear
combinations

Nonnegative polynomials Subtraction-free expressions

Addition and subtraction Linear
combinations

Polynomials Rational functions

Fig. 1 Notions of
M-complexity, with M ⊃ {+, ∗}

ordinary complexity

+ ∗

+ − ∗ring
complexity + ∗ /

subtraction-free
complexity

+ − ∗ /

semiring complexity

In this paper, we are motivated by the following fundamental question: How does
the complexity of an algebraic expression depend on the set of operations allowed?

Let us formulate the question more precisely. Let M be a subset of the set
{+,−, ∗, /} of arithmetic operations. Let Z{M} = Z{M}(x, y, . . .) denote the class of
rational functions in the variables x, y, . . .which can be defined using only operations
in M . For example, the class Z{+, ∗, /} consists of subtraction-free expressions, i.e.,
those rational functions which can be written without using subtraction (note that neg-
ative scalars are not allowed as inputs). To illustrate, x2 − xy + y2 ∈ Z{+, ∗, /}(x, y)

because x2 − xy + y2 = (x3 + y3)/(x + y).
While the class Z{M} can be defined for each of the 24 = 16 subsets M ⊂

{+,−, ∗, /}, there are only 9 distinct classes among these 16. This is because addition
can be emulated by subtraction: x + y = x − ((x − y) − x). Similarly, multiplication
can be emulated by division. This leaves 3 essentially distinct possibilities for the
additive (resp., multiplicative) operations. The corresponding 9 computational models
are shown in Table 1.

For each subset of arithmetic operations M ⊂ {+,−, ∗, /}, there is the corre-
sponding notion of (arithmetic circuit) M-complexity (of an element of Z{M}). The
interesting cases are those where both additive and multiplicative operations appear,
see Fig. 1.

Now, how does M-complexity depend on M , when there is a choice? Here is one
way to make this question precise:

Problem 2.1 Let f1, f2, . . . be a sequence of rational functions (depending on a
potentially changing set of variables) which can be computed using the gates in
M ′

� M ⊂ {+,−, ∗, /}. If the M-complexity of fn is poly(n), does it follow that its
M ′-complexity is also poly(n)?
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The nontrivial instances of Problem 2.1, discussed in Examples 2.2–2.5 below,
concern the four notions of M-complexity that involve both additive andmultiplicative
operations.

Example 2.2 M = {+,−, ∗, /}, M ′ = {+,−, ∗}. In 1973, Strassen [32] (cf. [30,
Theorem 2.11]) proved that in this case, the answer to Problem 2.1 is essentially yes:
division gates can be eliminated (at polynomial cost) provided the total degree of the
polynomial fn is poly(n).

As a consequence, one for example obtains a division-free polynomial algorithm
for computing a determinant. More efficient algorithms of this kind can be constructed
directly (ditto for the Pfaffian), see [27] and references therein.

Example 2.3 M = {+,−, ∗}, M ′ = {+, ∗}. (In view of Strassen’s theorem, this set-
ting is essentially equivalent to taking M = {+,−, ∗, /}, M ′ = {+, ∗}). In 1980,
Valiant [35] has shown that in this case, the answer to Problem 2.1 is no: for a cer-
tain sequence of polynomials fn with nonnegative integer coefficients, the {+, ∗}-
complexity of fn is exponential in n whereas their {+,−, ∗}-complexity (equivalently,
ordinary arithmetic circuit complexity) is poly(n). The polynomial fn used by Valiant
is defined as a generating function for perfect matchings in a particular planar graph
(a triangular grid). By a classical result of Kasteleyn [16], such generating functions
can be computed as certain Pfaffians; hence, their ordinary complexity is polynomial.

It is unknown whether subtraction-free complexity of Valiant’s test function fn is
poly(n). If the answer is yes, then fn exhibits a (superpolynomial) complexity gap
between subtraction-free and {+, ∗}-complexity. If the answer is no, then we get a
complexity gap between ordinary and subtraction-free complexities. Thus, we have
known since Valiant’s work that one of these two gaps is present in his example—but
we still do not know which one!

Other examples of polynomials fn which exhibit an exponential gap between ordi-
nary and {+, ∗}-complexity were given by Jerrum and Snir [15], cf. Theorem 3.7.

The notion of {+, ∗}-complexity of a polynomial with nonnegative coefficients was
already considered in 1976 by Schnorr [28] (He used the terminology “monotone ratio-
nal computations” which we shun). Schnorr gave a lower bound for {+, ∗}-complexity
which only depends on the support of a polynomial, i.e., on the set of monomials that
contribute with a positive coefficient. Valiant’s argument uses a further refinement of
Schnorr’s lower bound, cf. [29].

Example 2.4 M = {+,−, ∗, /}, M ′ = {+, ∗, /}. In this case, Problem 2.1 asks
whether any subtraction-free rational expression that can be computed by an arith-
metic circuit of polynomial size can be computed by such a circuit without subtraction
gates. In Sect. 9, we show the answer to this question to be negative, by construct-
ing a sequence of polynomials fn whose ordinary arithmetic circuit complexity is
O(n) while their {+, ∗, /}-complexity is at least exponential in n. Unfortunately, this
example is somewhat artificial; it would be interesting to find an example of a natural
computational problemwith an exponential gap between ordinary and subtraction-free
complexities.

In the opposite direction, we demonstrate that for some important classes of func-
tions, the gap between these two complexitymeasures ismerely polynomial, in a some-
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what counter-intuitive way: these functions turn out to have polynomial subtraction-
free complexity even though their “naive” subtraction-free description has exponential
size.

Note that subtraction is the only arithmetic operation that does not allow for an
efficient control of round-up errors (for positive real inputs). Consequently, the task
of eliminating subtraction gates is relevant to the design of numerical algorithms
which are both efficient and precise. To rephrase, this instance of Problem 2.1 can
be viewed as addressing the trade-off between speed and accuracy. See [9] for an
excellent discussion of these issues.

Example 2.5 M = {+, ∗, /}, M ′ = {+, ∗}. This is the subtraction-free version of the
problem discussed in Example 2.2. That is, can division gates be eliminated in the
absence of subtraction? We will show that the answer is no, by demonstrating that
the generating function for directed spanning trees in a complete directed graph on n
vertices has poly(n) subtraction-free complexity. This contrasts with an exponential
lower bound for the {+, ∗}-complexity of the same generating function, given by
Jerrum and Snir [15].

3 Main Results

3.1 Schur Functions and Their Variations

Schur functions sλ(x1, . . . , xk) (here, λ = (λ1 ≥ λ2 ≥ · · · ≥ 0) is an integer partition)
are remarkable symmetric polynomials that play prominent roles in representation
theory, algebraic geometry, enumerative combinatorics, mathematical physics, and
other mathematical disciplines; see, e.g., [21, Chapter I] [31, Chapter 7]. Among
many equivalent ways to define Schur functions (also called Schur polynomials),
let us mention two classical determinantal formulas: the bialternant formula and the
Jacobi–Trudi formula. These formulas are recalled in Sects. 4 and 6, respectively.

Schur functions and their numerous variations (skew Schur functions, supersym-
metric Schur functions, Q- and P-Schur functions, etc., see loc. cit.) provide a natural
source of computational problems whose complexity might be sensitive to the set of
allowable arithmetic operations. On the one hand, these polynomials can be computed
efficiently in an unrestricted setting, via determinantal formulas; on the other hand,
their (nonnegative) expansions, as generating functions for appropriate tableaux, are in
general exponentially long, and coefficients of individualmonomials are provably hard
to compute, cf. Remark 3.3. (Admittedly, a low-complexity polynomial can have high-
complexity coefficients. For example, the coefficient of x1 · · · xn in

∏
i
∑

j (ai j x j ) is
the permanent of the matrix (ai j ).)

The interest in determining the subtraction-free complexity of Schur functions goes
back at least as far as mid-1990s, when the problem attracted the attention of Demmel
and the first author, cf. [8, pp. 66–67]. The following result is implicit in the work of
Koev [18, Section 6]; more details can be found in [5, Section 4]).

Theorem 3.1 (P. Koev) Subtraction-free complexity of a Schur polynomial sλ(x1, . . . ,
xk) is at most O(n3) where n = k + λ1.
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In this paper, we give an alternative Proof of Theorem 3.1 based on the tech-
nology of cluster transformations. The algorithm presented in Sect. 4 computes
sλ(x1, . . . , xk) via a subtraction-free arithmetic circuit of size O(n3). The bit com-
plexity is O(n3 log2 n).

All known fast subtraction-free algorithms for computing Schur functions use divi-
sion.

Problem 3.2 Is the {+, ∗}-complexity of a Schur function polynomial?

Remark 3.3 We suspect the answer to this question to be negative. In any case, Prob-
lem 3.2 is likely to be very hard. We note that Schnorr-type lower bounds are useless
in the case of Schur functions. Intuitively, computing a Schur function is difficult not
because of its support but because of the complexity of its coefficients (the Kostka
numbers). The problem of computing an individual Kostka number is known to be
#P-complete (Narayanan [23]), whereas the support of a Schur function is very easy
to determine.

Our approach leads to the following generalizations of Theorem 3.1. See Sects. 5
and 6 for precise definitions as well as proofs.

Theorem 3.4 A double Schur polynomial sλ(x1, . . . , xk | y) can be computed by a
subtraction-free arithmetic circuit of size O(n3) where n = k +λ1. The bit complexity
of the corresponding algorithm is O(n3 log2 n).

Theorem 3.4 can be used to obtain an efficient subtraction-free algorithm for super-
symmetric Schur functions, see Theorem 5.4.

Theorem 3.5 A skew Schur polynomial sλ/ν(x1, . . . , xk) can be computed by a
subtraction-free arithmetic circuit of size O(n5) where n = k + λ1. The bit com-
plexity of the corresponding algorithm is O(n5 log2 n).

Remark 3.6 The actual subtraction-free complexity (or even the {+, ∗}-complexity)
of a particular Schur polynomial can be significantly smaller than the upper bound of
Theorem 3.1. For example, consider the bivariate Schur polynomial s(λ1,λ2)(x1, x2)
given by

s(λ1,λ2)(x1, x2) = (x1x2)
λ2hλ1−λ2(x1, x2),

where hd(x1, x2) = ∑
1≤i≤d xi

1 · xd−i
2 (the complete homogeneous symmetric poly-

nomial). The polynomial s(λ1,λ2)(x1, x2) can be computed in O(log(λ1)) time using
addition and multiplication only, by iterating the formulas

h2d+1(x1, x2) =
(

xd+1
1 + xd+1

2

)
hd(x1, x2) (3.1)

h2d+2(x1, x2) =
(

xd+2
1 + xd+2

2

)
hd(x1, x2) + xd+1

1 xd+1
2 . (3.2)
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3.2 Spanning Trees

We also develop efficient subtraction-free algorithms for another class of polynomials:
the generating functions of spanning trees in weighted graphs, either ordinary (undi-
rected) or directed. In the directed case, the edges of a tree should be directed toward
the designated root vertex. The weight of a tree is defined as the product of the weights
of its edges. See Sects. 7–8 for precise definitions.

Determinantal formulas for these generating functions (theMatrix-Tree Theorems)
go back to Kirchhoff [17] (1847, undirected case) and Tutte [33, Theorem 6.27] (1948,
directed case). Consequently, their ordinary complexity is polynomial. Amazingly, the
{+, ∗}-complexity is exponential in the directed case:

Theorem 3.7 (Jerrum and Snir [15, 4.5]) Let ϕn denote the generating function for
directed spanning trees in a complete directed graph on n vertices. Then the {+, ∗}-
complexity of ϕn can be bounded from below by n−1(4/3)n−1.

In Sects. 7–8, we establish the following results.

Theorem 3.8 Let G be a weighted simple graph (respectively, simple directed graph)
on n vertices. Then the generating function for spanning trees in G (respectively,
directed spanning trees rooted at a given vertex) can be computed by a subtraction-
free arithmetic circuit of size O(n3).

In particular, the {+, ∗, /}-complexity of the polynomials ϕn from Theorem 3.7 is
O(n3), in sharp contrast with the Jerrum–Snir lower bound.

4 Subtraction-Free Computation of a Schur Function

This section presents our Proof of Theorem 3.1, i.e., an efficient subtraction-free
algorithm for computing a Schur function. The basic idea of our approach is rather
simple, provided the reader is already familiar with the basics of cluster algebras.
(Otherwise, (s)he can safely skip the next paragraph, as we shall keep our presentation
self-contained.)

A Schur function can be given by a determinantal formula, as a minor of a certain
matrix, and consequently can be viewed as a specialization of some cluster variable
in an appropriate cluster algebra. It can, therefore, be obtained by a sequence of
subtraction-free rational transformations (the “cluster transformations” corresponding
to exchanges of cluster variables under cluster mutations) from a wisely chosen initial
extended cluster. An upper bound on subtraction-free complexity is then obtained by
combining the number of mutation steps with the complexity of computing the initial
seed.

The most naive version of this approach starts with the classical Jacobi–Trudi for-
mula (reproduced in Sect. 6) that expresses a (more generally, skew) Schur function
as a minor of the Toeplitz matrix (hi− j (x1, . . . , xk)) where hd denotes the dth com-
plete homogeneous symmetric polynomial, i.e., the sum of all monomials of degree
d. Unfortunately, this approach (or its version employing elementary symmetric poly-
nomials) does not seem to yield a solution: Even though the number of mutation steps
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can be polynomially bounded, wewere unable to identify an initial cluster all of whose
elements are easier to compute (by a polynomial subtraction-free algorithm) than a
general Schur function.

The key idea is to employ a different cluster recurrence that iteratively computes
Schur polynomials in varying number of arguments. This leads us to an algorithm that
ultimately relies—as Koev’s original approach did [18]—on another classical deter-
minantal formula for a Schur function, which goes back to Cauchy and Jacobi. This
formula expresses sλ as a ratio of two “alternants,” i.e., Vandermonde-like determi-
nants. Let us recall this formula in the form that will be convenient for our purposes;
an uninitiated reader can view it as a definition of a Schur function.

Let n be a positive integer. Consider the n × n “rescaled Vandermonde” matrix

X = (Xi j ) =
⎛

⎝
xi−1

j
∏

a< j (x j − xa)

⎞

⎠

n

i, j=1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1

x2 − x1

1

(x3 − x1)(x3 − x2)
· · ·

x1
x2

x2 − x1

x3
(x3 − x1)(x3 − x2)

· · ·

x21
x22

x2 − x1

x23
(x3 − x1)(x3 − x2)

· · ·
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(4.1)
For a subset I ⊂ {1, . . . , n}, say of cardinality k, let sI denote the corresponding
“flag minor” of X , i.e., the determinant of the square submatrix of X formed by the
intersections of the rows in I and the first k columns:

sI = sI (x1, . . . , xk) = det(Xi j )i∈I, j≤k . (4.2)

(For example, s1,...,k = det(Xi j )
k
i, j=1 = 1.) It is easy to see that sI is a symmetric

polynomial in the variables x1, . . . , xk .
Now, let λ = (λ1, . . . , λk) be a partition with at most k parts satisfying λ1 + k ≤ n.

Define the k-element subset I (λ) ⊂ {1, . . . , n} by

I (λ) = {λk + 1, λk−1 + 2, . . . , λ1 + k} . (4.3)

The Schur function/polynomial sλ(x1, . . . , xk) is then given by

sλ(x1, . . . , xk) = sI (λ)(x1, . . . , xk) = det(Xi j )i∈I (λ), j≤k . (4.4)

If λ has more than k parts, then sλ(x1, . . . , xk) = 0.
We note that as I ranges over all subsets of {1, . . . , n}, the flag minors of X range

over the nonzero Schur polynomials sλ(x1, . . . , xk) with λ1 + k ≤ n.
Flag minors play a key role in one of the most important examples of cluster

algebras, the coordinate ring of the base affine space. Let us briefly recall (borrowing
heavily from [10] and glossing over technical details, which can be found in loc. cit.)
the basic features of the underlying combinatorial setup, which was first introduced
in [2]; cf. also [7].

123



10 Found Comput Math (2016) 16:1–31

1

2

3

4

s1 s2 s3 s4

s12

s23

s34

s123 s234

1

2

3

4

s1

s13

s3 s4

s12
s23

s34

s123 s234

Fig. 2 Two pseudoline arrangements and associated chamber minors

Fig. 3 A local move in a
pseudoline arrangement

a

b c

de

←→
a

b c

d

f

A pseudoline arrangement is a collection of n curves (“pseudolines”) each of which
is a graph of a continuous function on [−1, 1]; each pair of pseudolines must have
exactly one crossing point in common; no three pseudolines may intersect at a point.
See Fig. 2. The pseudolines are numbered 1 throughn from the bottom-up along the left
border. The resulting pseudoline arrangement is considered up to isotopy (performed
within the space of such arrangements).

To each region R of a pseudoline arrangement, except for the very top and the very
bottom, we associate the flag minor sI (R) indexed by the set I (R) of labels of the
pseudolines passing below R. These are called chamber minors.

Pseudoline arrangements are related to each other via sequences of local moves of
the form shown in Fig. 3. Each local move results in replacing exactly one chamber
minor sI (R) by a new one; these two minors are denoted by e and f in Fig. 3. To
illustrate, the two pseudoline arrangements in Fig. 2 are related by a local move that
replaces s2 by s13 (or vice versa).

The key observation made in [2] is that the chamber minors a, b, c, d, e, f associ-
ated with the regions surrounding the local move (cf. Fig. 3) satisfy the identity

e f = ac + bd. (4.5)

Thus, f can be written as a subtraction-free expression in a, b, c, d, e and similarly
e in terms of a, b, c, d, f . It is not hard to see that any flag minor sI appears as a
chamber minor in some pseudoline arrangement (we elaborate on this point later in
this section). Consequently, by iterating the birational transformations associated with
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local moves, one can get sI as a subtraction-free rational expression in the chamber
minors of any particular initial arrangement.

To complete the Proof of Theorem 3.1, i.e., to design a subtraction-free algorithm
computing a Schur polynomial sI in O(n3) steps, we need to identify an initial pseudo-
line arrangement (an “initial seed” in cluster algebras lingo) such that

the chamber minors for the initial seed can be computed by a subtraction-free

arithmetic circuit of size O
(

n3
)

, and (4.6)

for any subset I ⊂ {1, . . . , n}, the initial pseudoline arrangement can be trans-

formed into one containing sI among its chamber minors by O
(

n3
)
local moves.

(4.7)

Remark 4.1 At this point, some discussion of bit complexity is in order. Readers not
interested in this issue may skip this Remark.

Each local move “flips” a triangle formed by some triple of pseudolines with labels
i < j < k. (To illustrate, the arrangements in Fig. 2 are related by the local move
labeled by the triple (1, 2, 3)). A sequence of say N local moves (cf. (4.7)) can be
encoded by the corresponding sequence of triples

(i1, j1, k1), . . . , (iN , jN , kN ). (4.8)

The bit complexity of our algorithm will be obtained by adding the following contri-
butions:

• the bit complexity of computing the initial chamber minors;
• the bit complexity of generating the sequence of triples (4.8);
• the bit complexity of performing the corresponding local moves.

Concerning the last item, note that in order to execute eachof the N localmoves,wewill
need to determine which arithmetic operations to perform (there will be O(1) of them),
and how to transform the data structure that encodes the pseudoline arrangement at
hand, so as to reflect the changing combinatorics of the arrangement. The data structure
that we suggest to use is a graph G on

(n
2

) + 2n vertices which include the vertices
vi j representing pairwise intersections of pseudolines, together with the vertices vlefti

and v
right
i representing their left and right endpoints. At each vertex v in G, we store

the following information:

• for each pseudoline passing through v, the vertex (if any) that immediately precedes
v on that pseudoline, and also the vertex that immediately follows v;

• the set I labeling the chamber directly underneath v; and
• the corresponding chamber minor sI .

With this in place, the localmove labeled by a triple (i, j, k) is performedby identifying
the (pairwise adjacent) vertices of G lying at the intersections of the pseudolines with
labels i, j, k, changing the local combinatorics of the graph G in the vicinity of this
triangle and performing the appropriate subtraction-free computation. For each of the
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Fig. 4 The special pseudoline
arrangement A◦

1

2

3

...

...

n−1

n

N local moves, the number of macroscopic operations involved is O(1), so the bit
complexity of each move is polynomial in the size of the numbers involved (which is
going to be logarithmic in n).

We proceedwith the design of an efficient subtraction-free algorithm for computing
a Schur polynomial sI , following the approach outlined in (4.6)–(4.7).

Our choice of the initial arrangement is the “special” pseudoline arrangement A◦
shown in Fig. 4 (cf. also Fig. 2 on the left).

The special arrangement A◦ works well for our purposes, for the following reason.
The n(n+1)

2 − 1 chamber minors sI for A◦ are indexed by the intervals

I = {�, � + 1, . . . , � + k − 1} � {1, . . . , n}. (4.9)

Moreover, such a flag minor sI is nothing but the monomial (x1 · · · xk)
�−1:

sI = det

(
xi−1

j
∏

a< j (x j − xa)

)

�≤i≤�+k−1
1≤ j≤k

= (x1 · · · xk)
�−1

det
(

xi−1
j

)k

i, j=1
∏

a< j≤k(x j − xa)
= (x1 · · · xk)

�−1. (4.10)

(This can also be easily seen using the combinatorial definition of a Schur function in
terms ofYoung tableaux). The collection ofmonomials (x1 · · · xk)

�−1 can be computed
using O(n2) multiplications, so condition (4.6) is satisfied.

To satisfy condition (4.7), at least two alternative strategies can be used, described
below under the headings Plan A and Plan B.
Plan A: Combinatorial deformation The pseudocode given below in (4.11) produces
a sequence of O(n3) local moves transforming the special arrangement A◦ into a
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1

2

3

4

5

6

7

s6
1

2

3

4

5

6

7

s46

Fig. 5 Executing Algorithm (4.11) for n = 7. Shown are the pseudoline arrangements AI for I = {6}
(on the left) and I = {4, 6} (on the right). Algorithm (4.11) deforms A◦ (cf. Fig. 4) into A{4} and then
into A{4,6}

particular pseudoline arrangement AI containing sI as a chamber minor:

for k := n downto 3do
if k ∈ I then for j := k − 1downto 2 do

for i := j − 1downto 1do flip(i, j, k)

(4.11)

Figure 5 illustrates the above algorithm. Its rather straightforward justification is omit-
ted.
Plan B: Geometric deformationHere, we present an alternative solution of amore geo-
metric flavor. The basic idea is rather simple. Fix a nonempty subset I � {1, . . . , n}.
Suppose that we are able to build an arrangement AI such that

• AI consists of straight line segments Li ;
• one of the chamber minors of AI is sI ;
• AI is a “sufficiently generic” arrangement with these properties.

The special arrangement A◦ can be easily realized using straight segments. We then
continuously deform A◦ into AI in the followingway. As the time parameter t changes
from0 to 1, each line segment Li (t) is going to change from Li (0) = L◦

i to Li (1) = Li

so that each endpoint of Li (t)moves at constant speed. It is possible to show that in the
process of such deformation, the triangle formed by each triple of lines gets “flipped”
at most once. We thus obtain a sequence of at most

(n
3

)
local moves transforming A◦

into AI , as desired.
The rest of this section is devoted to filling in the gaps left over in the above outline.

This can be done in many different ways; the specific implementation presented below
was chosen for purely technical reasons. We assume throughout that n ≥ 3.

First, we realize A◦ by the collection of straight line segments L◦
1, . . . , L◦

n where
L◦

i connects the points (−1, i2) and (1,−i). Calculations show that the segments L◦
i

and L◦
j intersect at a point (u◦

i j , v
◦
i j ) with u◦

i j = 1 − 2
i+ j+1 . Consequently, for any

i < j < k, we have u◦
i j < u◦

ik < u◦
jk , implying that the arrangement’s topology is as

shown in Fig. 4.
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We next construct the arrangement AI . It consists of the line segments L1, . . . , Ln

such that Li has the endpoints (1,−i) and (−1, i − 2σiε − 2i3ε2) where

ε = n−6,

σi =
{
0 if i ∈ I ;
−1 if i /∈ I.

Thus, Li is a segment of the straight line given by the equation

y = −i x +
(
σiε + i3ε2

)
(x − 1).

It is easy to see that the left (respectively right) endpoints of L1, . . . , Ln are ordered
bottom-up (respectively, top-down). Consequently, each pair (Li , L j ) intersects at a
point (x, y) with −1 ≤ x ≤ 1. Moreover, one can check that all these crossing points
are distinct. Most importantly, Li contains the point (0,−σiε − i3ε2), so the origin
(0, 0) lies above Li if and only if i ∈ I ; thus, the corresponding chamber minor is sI .

Let us now examine the deformation of A◦ into AI that we described above. As
t varies from 0 to 1, the right endpoint of the i th line segment Li (t) remains fixed
at (1,−i), while the left endpoint moves at constant speed from its initial location at
(−1, i2) to the corresponding location for AI . Specifically, the left endpoint of Li (t)
is (−1, bi (t)) where

bi (t) = i2 − t
(
2σiε + 2i3ε2 − i + i2

)
. (4.12)

The ordering of the endpoints remains intact: b1(t) < · · · < bn(t) for 0 ≤ t ≤ 1.
Thus, the intervals Li (t) form a (pseudo)line arrangement unless some three of them
are concurrent.

Lemma 4.2 At any time instant 0 ≤ t ≤ 1, no four intervals Li (t) have a common
point.

Proof Let t be such that distinct segments Li (t), L j (t), and Lk(t) have a common
point. Then, we have the identity

(bi (t) − b j (t))(i − j)−1 − (bi (t) − bk(t))(i − k)−1 = 0. (4.13)

Substituting (4.12) into (4.13) and dividing by j − k, we obtain

1 − t + 2εt
σi (k − j) + σ j (i − k) + σk( j − i)

(i − j)(i − k)( j − k)
− 2ε2t (i + j + k) = 0. (4.14)

The (unique) time instant t = ti jk at which Li (t), L j (t), and Lk(t) are concurrent can
be found from the linear equation (4.14). (If the solution does not satisfy ti jk ∈ [0, 1],
then such a time instant does not exist.)
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Now, suppose that j ′ /∈ {i, j, k} is such that Li (t), L j ′(t), and Lk(t) are concurrent
at the same moment t = ti jk . Then, (4.14) holds with j replaced by j ′. Subtracting
one equation from the other and dividing by 2εt , we obtain:

σi (k − j) + σ j (i − k) + σk( j − i)

(i − j)(i − k)( j − k)
− σi (k − j ′) + σ j ′(i − k) + σk( j ′ − i)

(i − j ′)(i − k)( j ′ − k)
= ε( j − j ′).

(4.15)

This yields the desired contradiction. Indeed, the right-hand side of (4.15) is nonzero,
and less than n−5 in absolute value, whereas the left-hand side, if nonzero, is a rational
number with denominator at most n5. ��

In view of Lemma 4.2, at each time instant t = ti jk ∈ [0, 1] satisfying equa-
tion (4.14) for some triple of distinct indices i, j, k ∈ {1, . . . , n}, our pseudo-
line arrangement undergoes (potentially several, commuting with each other) local
moves associated with the corresponding triple intersections of line segments
Li (t), L j (t), Lk(t).

Our algorithm computes the numbers ti jk via (4.14), selects those satisfying
0 ≤ ti jk ≤ 1, and orders them in a non-decreasing order. This yields a sequence of
O(n3) local moves transforming A◦ into AI . To estimate the bit complexity, we refer
to Remark 4.1 and note that the bit size of ti jk is bounded by O(log n). The algorithm
invokes a sorting algorithm [1] to order O(n3) numbers ti jk , so its bit complexity is
bounded by O(n3 · log2 n).

Remark 4.3 Our algorithm demonstrates that the positivity of the coefficients of a
Schur polynomial (as defined by the “bialternant formula” (4.4)) can be viewed as an
instance of positivity of Laurent expansions of cluster variables, a general property
that conjecturally holds in any cluster algebra, see [11, p. 499].

5 Double and Supersymmetric Schur Functions

In this section, we present efficient subtraction-free algorithms for computing double
and supersymmetric Schur polynomials. These polynomials play important role in
representation theory and other areas of mathematics, see, e.g., [12,20,22] and refer-
ences therein. Our notational conventions are close to those in [20, 6th Variation]; the
latter conventions differ from some other literature including [22].

5.1 Double Schur Functions

Let y1, y2, . . . be a sequence of formal variables. Double Schur functions sλ(x1, . . . ,
xk |y) are generalizations of ordinary Schur functions sλ(x1, . . . , xk)which depend on
additional parameters yi . The definition given below is a direct generalization of the
definition of sλ(x1, . . . , xk) given in Sect. 4.
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Let Z = (Zi j )
n
i, j=1 be the n × n matrix defined by

Zi j =
∏

1≤b<i (x j + yb)
∏

1≤a< j (x j − xa)
, (5.1)

cf. (4.1). Thus

Z = (Zi j ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1

x2 − x1

1

(x3 − x1)(x3 − x2)
· · ·

x1 + y1
x2 + y1
x2 − x1

x3 + y1
(x3 − x1)(x3 − x2)

· · ·

(x1 + y1)(x1 + y2)
(x2 + y1)(x2 + y2)

x2 − x1

(x3 + y1)(x3 + y2)

(x3 − x1)(x3 − x2)
· · ·

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For I ⊂ {1, . . . , n} of cardinality k, we set (cf. (4.2))

sI (x1, . . . , xk |y) = det(Zi j )i∈I, j≤k . (5.2)

As before, sI (x1, . . . , xk |y) is a symmetric polynomial in x1, . . . , xk .
Now, let λ = (λ1, . . . , λk) be a partition with at most k parts satisfying λ1 + k ≤ n.

The double Schur polynomial sλ(x1, . . . , xk |y) is the polynomial in the variables
x1, . . . , xk and y1, . . . , yk+λ1−1 defined by

sλ(x1, . . . , xk |y) = sI (λ)(x1, . . . , xk |y) = det(Zi j )i∈I (λ), j≤k, (5.3)

where I (λ) is given by (4.3); cf. (4.4). To recover the ordinary Schur function, one
needs to specialize the y variables to 0.

Example 5.1 Consider λ = (2, 1)with k = 2. Then I (λ) = {2, 4}, and (5.3) becomes

s(2,1)(x1, x2|y) = (x1 + y1)(x2 + y1)

x2 − x1
det

(
1 1

(x1 + y2)(x1 + y3) (x2 + y2)(x2 + y3)

)

= (x1 + y1)(x2 + y1)(x1 + x2 + y2 + y3). (5.4)

In the special case, when I = {�, � + 1, . . . , � + k − 1} is an interval (cf. (4.9)), it
is straightforward to verify that

sI (x1, . . . , xk |y) = det
(
Zi j

)
�≤i≤�+k−1

1≤ j≤k
=

∏

1≤ j≤k

∏

1≤b<�

(x j + yb), (5.5)

generalizing (4.10).
The algorithm(s) presented in Sect. 4 can now be adapted almost verbatim to the

case of double Schur functions. Indeed, the latter are nothing but the flag minors of
the matrix Z ; as such, they can be computed in an efficient and subtraction-free way,
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using the same cluster transformations as before, from the chamber minors associated
with the special pseudoline arrangement A◦. The only difference is in the formulas
for those special minors: Here, we use (5.5) instead of (4.10).

5.2 Supersymmetric Schur Functions

Among many equivalent definitions of supersymmetric Schur functions (or super-
Schur functions for short), we choose the one most convenient for our purposes, due
to Goulden–Greene [12] andMacdonald [20].We assume the reader’s familiarity with
the concepts of a Young diagram and a semistandard Young tableau (of some shape λ);
see, e.g., [21,31] for precise definitions.

We start with a version with an infinite number of variables. Let x1, x2, . . .
and y1, y2, . . . be two sequences of indeterminates. The super-Schur function
sλ(x1, x2, . . . ; y1, y2, . . .) is a formal power series defined by

sλ(x1, x2, . . . ; y1, y2, . . .) =
∑

|T |=λ

∏

s∈λ

(xT (s) + yT (s)+C(s)) (5.6)

where

• the sum is over all semistandard tableaux T of shape λwith positive integer entries,
• the product is over all boxes s in the Young diagram of λ,
• T (s) denotes the entry of T appearing in the box s, and
• C(s) = j − i where i and j are the row and column that s is in, respectively.

We note that T (s)+C(s) is always a positive integer, so the notation yT (s)+C(s) makes
sense.

While this is not at all obvious from the above definition, sλ(x1, x2, . . . ; y1, y2, . . .)
is symmetric in the variables x1, x2, . . .; it is also symmetric in y1, y2, . . .; and is
furthermore supersymmetric as it satisfies the cancellation rule

sλ(x1, x2, . . . ;−x1, y2, y3, . . .) = sλ(x2, x3, . . . ; y2, y3, . . .).

We will not rely on any of these facts. We refer interested readers to aforementioned
sources for proofs and further details.

In order to define the super-Schur function in finitely many variables, one simply
specializes the unneeded variables to 0. That is, one sets

sλ(x1, . . . , xk; y1, . . . , ym) = sλ(x1, x2, . . . ; y1, y2, . . .)
∣
∣
xk+1=xk+2=···=ym+1=ym+2=···=0.

(5.7)

Note that the restriction of the set of x variables to x1, . . . , xk cannot be achieved
simply by requiring the tableaux T in (5.6) to have entries in {1, . . . , k}. A tableauwith
an entry T (s) > k may in fact contribute to the (specialized) super-Schur polynomial:
Even though xT (s) vanishes under the specialization, yT (s)+C(s) does not have to. See
Example 5.2 below.
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Example 5.2 (cf. Example 5.1) Let λ = (2, 1), k = m = 2. The relevant tableaux T
(i.e., the ones contributing to the specialization x3 = x4 = · · · = y3 = y4 = · · · = 0)
are as follows:

1 1
2

1 2
2

1 1
3

1 2
3

2 2
3

Then formulas (5.6) and (5.7) give

s(2,1)(x1, x2; y1, y2) = (x1 + y1)(x2 + y1)(x1 + y2) + (x1 + y1)(x2 + y1)x2
+ (x1 + y1)y2(x1 + y2) + (x1 + y1)y2x2 + (x2 + y2)y2x2

= x1x2(x1 + x2) + (x1 + x2)
2(y1 + y2)

+ (x1 + x2)(y1 + y2)
2 + y1y2(y1 + y2).

Specializing further at y2 = 0, we obtain

s(2,1)(x1, x2; y1) = (x1 + x2)(x1 + y1)(x2 + y1). (5.8)

The close relationship between super-Schur functions and double Schur functions
was already exhibited in [12,20]. For our purposes, we will need the following version
of those classical results.

We denote by �(λ) the length of a partition λ, i.e., the number of its nonzero parts λi .

Proposition 5.3 Assume that m + �(λ) ≤ k + 1. Then,

sλ(x1, . . . , xk; y1, . . . , ym) = sλ(x1, . . . , xk |y)
∣
∣
ym+1=ym+2=···=0. (5.9)

To illustrate, let λ = (2, 1), k = 2, m = 1. Then, the left-hand side of (5.9) is given
by (5.8), which matches (5.4) specialized at y2 = y3 = 0.

The conditionm+�(λ) ≤ k +1 in Proposition 5.3 cannot be dropped: For example,
(5.9) is false for λ = (2, 1) and k = m = 2 (the right-hand side is not even symmetric
in y1 and y2).

Proof of Proposition 5.3 First, it has been established in [20, (6.16)] that

sλ(x1, . . . , xk |y) =
∑

|T |=λ

∏

s∈λ

(xT (s) + yT (s)+C(s)),

the sum over all semistandard tableaux T with entries in {1, . . . , k}. Second, in the
formula (5.6), a tableau T with an entry T (s) > k does not contribute to the spe-
cialization (5.7) since T (s) + C(s) ≥ k + 1 + 1 − �(λ) ≥ m + 1 and consequently,
xT (s)+ yT (s)+C(s) = 0. Hence, both sides of (5.9) are given by the same combinatorial
formulae. ��
Theorem 5.4 The super-Schur polynomial sλ(x1, . . . , xk; y1, . . . , ym) can be com-
puted by a subtraction-free arithmetic circuit of size O((k + m)3), assuming that
k ≥ λ1 + �(λ) − 2.
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Proof Denote k∗ = m + �(λ) − 1. If k ≥ k∗, then (5.9) holds, and we can compute
sλ(x1, . . . , xk; y1, . . . , ym) using the subtraction-free algorithm for a double Schur
function, in time O((k + λ1)

3).
From now on, we assume that k ≤ k∗ − 1. We can still use (5.9) with k replaced

by k∗, and then specialize the extra variables to 0:

sλ(x1, . . . , xk; y1, . . . , ym) = sλ(x1, . . . , xk∗ |y)∣∣ym+1=ym+2=···=0
xk+1=···=xk∗=0

. (5.10)

The plan is to compute the right-hand side using the algorithm described above for
the double Schur functions, with some of the x and y variables specialized to 0:

ym+1 = ym+2 = · · · = 0, xk+1 = · · · = xk∗ = 0. (5.11)

In order for this version of the algorithm to work, we need to make sure that the initial
flagminors (5.5)—and consequently all chamberminors computed by the algorithm—
do not vanish under (5.11). Note that we do not have to worry about the vanishing
of denominators in (5.1) since the algorithm does not rely on the latter formula (The
specialization as such is always defined since sλ(x1, . . . , xk∗ |y) is a polynomial).

The algorithm that computes sλ(x1, . . . , xk∗ |y)workswith (specialized) flagminors
of a square matrix of size

n∗ = k∗ + λ1 = m + �(λ) − 1 + λ1.

In the case of an initial flag minor, we have the formula

s[�,�+s−1](x1, . . . , xs |y) =
∏

1≤ j≤s

∏

1≤b<�−1

(x j + yb) (5.12)

(cf. (5.5)); here, � + s − 1 ≤ n∗, the size of the matrix. We see that such an initial
minor vanishes (identically) under the specialization (5.11) if and only if the factor
xs + y�−1 vanishes, or equivalently s ≥ k + 1 and � − 1 ≥ m + 1. This, however,
cannot happen since it would imply that

m + k + 2 ≤ � + s − 1 ≤ n∗ = m + �(λ) − 1 + λ1

which contradicts the condition k ≥ λ1 + �(λ) − 2 in the theorem. ��

We expect the condition k ≥ λ1 +�(λ)−2 in Theorem 5.4 to be unnecessary. Note
that one could artificially increase the number of x variables to satisfy this condition,
then specialize the extra variables to 0. Such a specialization, however, is not included
among the operations allowed in arithmetic circuits.
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6 Skew Schur Functions

In this section, we use the Jacobi–Trudi identity to reduce the problem of subtraction-
free computation of a skew Schur function to the analogous problem for the ordinary
Schur functions. This enables us to deduce Theorem 3.5 from Theorem 3.1.

In accordance with usual conventions [21,31], we denote by hm(x1, . . . , xk) the
complete homogeneous symmetric polynomial of degree m. For m < 0, one has
hm = 0 by definition.

Let λ = (λ1, . . . , λk) and ν = (ν1, . . . , νk) be partitions with at most k parts. The
skew Schur function sλ/ν(x1, . . . , xk) can be defined by the Jacobi–Trudi formula

sλ/ν(x1, . . . , xk) = det(hλi −ν j −i+ j (x1, . . . , xk)). (6.1)

The polynomial sλ/ν(x1, . . . , xk) is nonzero if and only if νi ≤ λi for all i ; the latter
condition is abbreviated by ν ⊂ λ.

Formula (6.1) can be rephrased as saying that sλ/ν is the k × k minor of the infinite
Toeplitz matrix (hi− j ) that has row set I (λ) (see (4.3)) and column set I (ν).

Let n > k. We fix the partition ν, and let λ vary over all partitions satisfying
I (λ) ⊂ {1, . . . , n}, or equivalently k + λ1 ≤ n. Let us denote by Hν the n × k matrix

Hν = (hi− j (x1, . . . , xk))1≤i≤n
j∈I (ν)

.

The maximal (i.e., k × k) minors of Hν are the (possibly vanishing) skew Schur
polynomials sλ/ν(x1, . . . , xk). More generally, a p × p flag minor of Hν is a skew
Schur polynomial of the form sλ/ν(p) where λ is a partition with at most p parts
satisfying p + λ1 ≤ n, and ν(p) = (νk−p+1, . . . , νk) denotes the partition formed by
p smallest (possibly zero) parts of ν. Such a flag minor does not vanish if and only if
ν(p) ⊂ λ.

Our algorithm computes a skew Schur polynomial sλ/ν(x1, . . . , xk) (equivalently,
a maximal minor of H(ν)) using the same approach as before: We first compute the
initial flag minors corresponding to intervals (4.9), then proceed via recursive cluster
transformations.

The problem of calculating the interval flag minors of Hν (in an efficient and
subtraction-free way) turns out to be equivalent to the (already solved) problem of
computing ordinary Schur polynomials. This is because I (λ) is an interval if and only
if λ has rectangular shape, i.e., all its nonzero parts are equal to each other. For such
a partition, the nonzero skew Schur polynomial sλ/ν is well known to coincide with
an ordinary Schur polynomial sθ where θ is the partition formed by the differences
λi − νi .

We then proceed, as before, with a recursive computation utilizing cluster transfor-
mations. However, substantial adjustments have to be made due to the fact that many
flag minors of Hν vanish. (Also, Hν is not a square matrix, but this issue is less impor-
tant.) Our recipe is as follows. Suppose that we need to perform a step of our algorithm
that involves, in the notation of Fig. 3, expressing f in terms of a, b, c, d, e (It is easy
to see that we never have to move in the opposite direction, i.e., from a, b, c, d, f to e,
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Fig. 6 A weighted graph G and the spanning tree generating function fG

while moving away from the special arrangement A◦ using the algorithms described
above). If e 
= 0 (and we shall know beforehand whether this is the case or not), then
set f = (ac + bd)/e as before. If, on the other hand, e = 0, then set f = 0.

In order to justify this algorithm, we need to show that the skew Schur polynomials
at hand have the property e = 0 ⇒ f = 0, in the above notation (Also, it is not
hard to check in the process of computing a flag minor of size k, we never need to
compute a flag minor of larger size which would not fit into Hν). This property is
a rather straightforward consequence of the criterion for vanishing/nonvanishing of
skew Schur functions. Let p < q < r denotes the labels of the lines shown in Fig. 3,
and let J denotes the set of lines passing below the shown fragment. Then, e = sJ∪{q}
and f = sJ∪{p.r}. Since p < q, the vanishing of e implies the vanishing of sJ∪{p},
which in turn implies the vanishing of f = sJ∪{p.r}. We omit the details.

The complexity of the algorithm is dominated by the initialization stage, which
involves computing O(n2) ordinary Schur polynomials; each of them takes O(n3)

operations to compute. The bit complexity is accordingly O(n5 log2 n).

7 Generating Functions for Spanning Trees

In this section, we present a polynomial subtraction-free algorithm for computing the
generating function for spanning trees in a graph with weighted edges (a network).
While this algorithm is going to be improved upon in Sect. 8, we decided to include it
because of its simplicity, in order to highlight the connection to the theory of electric
networks (equivalently, discrete potential theory). An impatient reader can go straight
to Sect. 8.

Let G be an undirected connected graph with vertex set V and edge set E . We
associate a variable xe to each edge e ∈ E and consider the generating function fG (a
polynomial in the variables xe) defined by

fG =
∑

T

xT

where the summation is over all spanning trees T for G, and xT denotes the product
of the variables xe over all edges e in T . An example is given in Fig. 6.

Remark 7.1 Without loss of generality, we may restrict ourselves to the case when the
graph G is simple, that is, G has neither loops (i.e., edges with coinciding endpoints)
nor multiple edges. Loops cannot contribute to a spanning tree, so we can throw them
awaywithout altering fG . Furthermore, if say vertices v andw are connected by several
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Fig. 7 The graph G(1, 2) for the graph G in Fig. 6

edges e1, . . . , e�, then we can replace them by a single edge of weight xe1 + · · · + xe�

without changing the generating function fG .

Recall that the number of spanning trees in a complete graph on n vertices is equal
to nn−2, so the monomial expansion of fG may have a superexponential number of
terms. On the other hand, there is a well-known determinantal formula for fG , due to
Kirchhoff [17] (see, e.g., [4, Theorem II.12]), known as the (weighted) Matrix-Tree
Theorem. This formula provides a way to compute fG in polynomial time—but the
calculation involves subtraction. Is there a way to efficiently compute fG using only
addition, multiplication, and division? Just like in the case of Schur functions, the
answer turns out to be yes.

Theorem 7.2 In a weighted simple graph G on n vertices, the spanning tree generat-
ing function fG can be computed by a subtraction-free arithmetic circuit of size O(n4).

This result is improved to O(n3) in Sect. 8.
The rest of this section is devoted to the Proof of Theorem 7.2, i.e., the description of

an algorithm that computes fG using O(n4) additions, multiplications, and divisions.
The algorithm utilizes well-known techniques from the theory of electric networks
(more precisely, circuits made of ideal resistors). In order to apply these techniques to
the problem at hand, we interpret each edge weight xe as the electrical conductance of
e, i.e., the inverse of the resistance of e. We note that the rule, discussed in Remark 7.1,
for combining parallel edges into a single edge is compatible with this interpretation.

Definition 7.3 (Gluing two vertices) Let v and v′ be distinct vertices in a weighted
simple graph G as above. We denote by G(v, v′) the weighted simple graph obtained
from G by

(i) gluing together the vertices v and v′ into a single vertex which we call vv′ , then
(ii) removing the loop at vv′ (if any), and then
(iii) for each vertex u connected in G to both v and v′, say by edges e and e′, replacing

e and e′ by a single edge of conductance xe + xe′ between u and vv′ .
In view of Remark 7.1, steps (ii) and (iii) do not change the spanning tree generating
function of the graph at hand. An example is shown in Fig. 7.

Lemma 7.4 (Kirchhoff’s effective conductance formula [17]; see, e.g., [36, Sec-
tion 2]) Let G be a weighted connected simple graph whose edge weights are inter-
preted as electrical conductances. The effective conductance between vertices v and
v′ of G is given by
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effcondG
(
v, v′) = fG

fG(v,v′)
.

To illustrate, the effective conductance between vertices 1 and 2 in the graph shown
in Fig. 6 is equal to fG

fG(1,2)
, where fG and fG(1,2) are given in Figs. 6 and 7, respectively.

This matches the formula

effcondG(1, 2) = x12 + 1
1

x14 + 1
x24 + 1

1
x23 + 1

x34

that can be obtained using the series-parallel property of this particular graph G.

Definition 7.5 Let G be a weighted connected simple graph on the vertex set
{1, . . . , n}. Define the graphs G1, . . . , Gn recursively by G1 = G and

Gi+1 = Gi

(
1 · · · i , i + 1

)

where 1 · · · i denotes the vertex obtained by gluing together the original vertices
1, . . . , i . In other words, Gi is obtained from G by collapsing the vertices 1, . . . , i
into a single vertex, removing the loops, and combining multiple edges into single
ones while adding their respective weights, cf. Remark 7.1.

For example, if G is the graph in Fig. 6, then G1 = G; G2 is the graph shown in
Fig. 7; G3 is a two-vertex graph with a single edge of weight x14 + x24 + x34; and G4
(and more generally Gn) is a single-vertex graph with no edges (so fGn = 1).

The following formula is immediate from Lemma 7.4, via telescoping.

Corollary 7.6 Let G be a weighted connected simple graph on the vertex set
{1, . . . , n}. Then

fG =
n−1∏

i=1

effcondGi (i, i + 1).

Corollary 7.6 reduces the computation of the generating function fG to the problem
of computing effective conductances. The latter can be done, both efficiently and in
a subtraction-free way, using the machinery of star–mesh transformations developed
by electrical engineers, see, e.g., [6, Corollary 4.21]. The technique goes back at least
100years, cf. the historical discussion in [26].

Lemma 7.7 (Star–mesh transformation) Let v be a vertex in a weighted simple
graph G (viewed as an electric network with the corresponding conductances). Let
e1, . . . , ek be the full list of edges incident to v; assume that they connect v to distinct
vertices v1, . . . , vk , respectively. Transform G into a new weighted graph G ′ defined
as follows:
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• remove vertex v and the edges e1, . . . , ek incident to it;
• for all 1 ≤ i < j ≤ k, introduce a new edge ei j connecting vi and v j , and assign

xei j

def= xei xe j

k∑

�=1

1

xe�

(7.1)

as its weight (=conductance);
• in the resulting graph, combine parallel edges into single ones, as in Remark 7.1.

Then the weighted graphs G and G ′ have the same effective conductances. More
precisely, for any pair of vertices a, b different from v, we have

effcondG(a, b) = effcondG ′(a, b).

Lemma 7.7 provides an efficiently way to compute an effective conductance
between two given vertices a and b in a graph G, by iterating the star–mesh trans-
formations (7.1) for all vertices v /∈ {a, b}, one by one. Since these transformations
are subtraction-free and require O(n2) arithmetic operations each, we arrive at the
following result.

Corollary 7.8 An effective conductance between two given vertices in an n-vertex
weighted simple graph G can be computed by a subtraction-free arithmetic circuit of
size O(n3).

CombiningCorollaries 7.6 and7.8,weobtain aProof ofTheorem7.2.The algorithm
computes the effective conductances effcondGi (i, i + 1) for i = 1, . . . , n − 1 using
star–mesh transformations, then multiplies them to get the generating function fG .

8 Directed Spanning Trees

In this section, we treat the directed version of the problem considered in Sect. 7,
designing a polynomial subtraction-free algorithm that computes the generating func-
tion for directed spanning trees in a directed graph with weighted edges.

Similarly, to the unoriented case, our approachmakes use of the appropriate version
of star–mesh transformations. As before, they are local modifications of the network
which transform the weights by means of certain subtraction-free formulas. There is
also a difference: Unlike in Sect. 7, we apply these transformations directly to the
computation of the generating functions of interest—rather than to “effective con-
ductances” from which those generating functions can be recovered via telescoping.
Adapting the latter technique to the directed case would require a thorough review of
W. Tutte’s theory of “unsymmetrical electricity” [33, Sections VI.4–VI.5] [34, Sec-
tion 4]. This elementary but somewhat obscure theory goes back to the 1940s, see
references in loc. cit., and is closely related to Tutte’s directed version of the Matrix-
Tree Theorem [33, Theorem 6.27].
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Fig. 8 The generating function ϕG for the directed spanning trees in G

Remark 8.1 The approach used in this section can be applied in the undirected case
as well, bypassing the use of electric networks (cf. Sect. 7). Also, one can reduce
the undirected case to the directed one by replacing each edge a e— b in an ordinary
weighted graph by two oriented edges a → b and b → a each having the weight xe

of the original edge.

In this section, G is a directed graph with vertex set V and edge set E and with a
fixed vertex r ∈ V called the root. A directed spanning tree T in G (sometimes called
an in-tree, an arborescence, or a branching) is a subgraph of G that spans all vertices
in V and includes a subset of edges such that for any v ∈ V , there is a unique path in
T that begins at v and ends at r . Equivalently, T is a spanning tree of G in which all
edges are oriented toward r .

We assume that G has at least one such tree, or equivalently that there is a path
from any vertex v ∈ V to the root r .

We associate a variable xe to each (directed) edge e ∈ E and define the generating
function ϕG by

ϕG =
∑

T

xT

where the summation is over all directed spanning trees T for G (rooted at r ). As
before, xT denotes the product of the variables xe over all edges e in T . Figure 8
shows the generating function ϕG for the complete directed graph on three vertices.

Without loss of generality, we may assume that G is a simple directed graph, i.e.,
it has no loops and no multiple edges, for the same reasons as in Remark 7.1. We
certainly do allow pairs of edges connecting the same pair of vertices but oriented in
opposite ways.

Theorem 8.2 In a weighted simple directed graph G on n vertices, the generating
function for directed spanning trees rooted at a given vertex r can be computed by a
subtraction-free arithmetic circuit of size O(n3).

In view of Remark 8.1, the analogue of Theorem 8.2 for undirected graphs follows,
improving upon Theorem 7.2 and implying Theorem 3.8.

The algorithm that establishes Theorem 8.2 relies on the following lemma.
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Lemma 8.3 (Star–mesh transformation in a directed network) Let v 
= r be a vertex in
a weighted directed graph G as above. Let v1, . . . , vk be the full list of vertices directly
connected to v by an edge (either incoming, or outgoing, or both). For i = 1, . . . , k,
let xi (resp., yi ) denote the weight of the edge vi → v (resp., v → vi ); in the absence
of such edge, set xi = 0 (resp., yi = 0). Transform G into a new weighted directed
graph G ′′ as follows:

• remove vertex v and all the edges incident to it;
• for each pair i, j ∈ {1, . . . , k}, i 
= j , xi y j 
= 0, introduce a new edge ei j directed

from vi to v j , and set its weight to be

xei j

def= xi y j (y1 + · · · + yk)
−1 ; (8.1)

• in the resulting graph G ′, combine multiple edges (if any), adding their respective
weights, to obtain G ′′. (Thus ϕG ′′ = ϕG ′ .)

Then
ϕG = (y1 + · · · + yk) ϕG ′′ . (8.2)

We note that y1 + · · ·+ yk 
= 0 since otherwise there is no path from v to r . (If that
happens, we have ϕG = 0.)

It is easy to see that Lemma 8.3 implies Theorem 8.2. The algorithm computes the
generating function ϕG by iterating the star–mesh transformations described in the
lemma.

Example 8.4 Consider the weighted graph in Fig. 8. Choose v = b. The recipe in
Lemma 8.3 asks us to remove the vertex b and the four edges incident to it, introducing
instead two edges connecting r and a. According to the formula (8.1), the new edge
in G ′ pointing from a to r has weight xab xbr (xba + xbr )

−1. Adding this to the weight
xar of the old edge a → r , we obtain the combined weight of the edge going from a
to r in the two-vertex graph G ′′. Thus,

ϕG ′′ = xar + xab xbr

xba + xbr
= xar xba + xar xbr + xab xbr

xba + xbr
.

Then (8.2) gives

ϕG = (xba + xbr ) ϕG ′′ = xar xba + xar xbr + xab xbr ,

matching the result of a direct calculation in Fig. 8.

It remains to prove Lemma 8.3. The proof uses a classical result (see, e.g., [31,
Theorem 5.3.4], with k = 1) sometimes called “the Cayley–Prüfer theorem”; it is
indeed immediate from Prüfer’s celebrated proof of Cayley’s formula for the number
of spanning trees. We state this result in a version best suited for our purposes.

Lemma 8.5 Let H be a complete directed graph on the vertex set W , with root r ∈ W .
For v ∈ W , let zv be a formal variable. Assign to every edge a → b in H the
weight zb (

∑
v zv)

−1. Then substituting these weights into ϕH gives zr (
∑

v zv)
−1.
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Example 8.6 The case when H has three vertices is shown in Fig. 8. Substituting
xi j = z j (za + zb + zr )

−1, we get

ϕH = xar xbr + xar xba + xbr xab =
(

z2r + zr za + zr zb

)
(za + zb + zr )

−2

= zr (za + zb + zr )
−1 .

Proof of Lemma 8.3 The proof uses standard techniques of elementary enumerative
combinatorics. As Eq. (8.2) is equivalent to

ϕG = (y1 + · · · + yk) ϕG ′ , (8.3)

we will be proving the latter identity.
The edge set E of G naturally splits into two disjoint subsets. The 2k edges vi → v

and v → vi form Starv (the star of v). The remaining edges form the set Outv =
E \ Starv . Similarly, the edge set E ′ of G ′ is a disjoint union of Meshv = {ei j } (the
mesh of v) and Outv .

We shall write ϕG (resp., ϕG ′ ) as a sum of terms of the form AB where A is a
polynomial expression in the weights of the edges in Starv (resp., Meshv) while B
only involves the weights of edges in Outv . Each factor B will be a generating function
for a certain class of directed forests in Outv . (Think of those forests as leftover chunks
of a directed tree after its edges in Starv (resp., Meshv) have been removed.) More
specifically, the factors B in our formulas will be of the following kind. Let P = {Pa}
be an (unordered) partition of the set

K = {v1, . . . , vk} ∪ {r}

into nonempty subsets Pa (called blocks) where in each block Pa , one vertex a has
been designated as the root of the block. If r ∈ Pa (i.e., if the block contains the
root of G), then we require that a = r ; moreover, Pr must contain at least one of
the elements v1, . . . , vk . We denote by B(P) the generating function for the directed
forests F which span the vertex set V \ {v} and have the property that the vertices
in K are distributed among the connected components of F as prescribed by P .
More precisely, each connected component C of F is a directed tree whose vertex set
includes all vertices from some block Pa of P (and no vertices from other blocks),
with a serving as the root of C . (In particular, C contains at least one of the vertices
v1, . . . , vk .) The weight of F is the product of the weights of its edges.

To complete the proof, we are going to write formulas of the form

ϕG =
∑

P
A(P)B(P) (8.4)

ϕG ′ =
∑

P
A′(P)B(P) (8.5)
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(sums over rooted set partitions P as above) and demonstrate that for any P , we have

A(P) = (y1 + · · · + yk) A′(P). (8.6)

Let P = {Pa} be a partition of K as above. For each block Pa , denote Ya =∑
vi ∈Pa

yi , the sum of the weights of the edges v → vi entering the block Pa . The
edges of each directed tree in G contributing to ϕG split into those contained in Starv
and those belonging to Outv . The latter edges form a directed spanning forest in V \{v}
whose connected components, with their roots identified, correspond to a partition P
as above. Direct inspection shows that combining the terms in ϕG corresponding to
each P yields the formula (8.4) with

A(P) = Yr

∏

a 
=r

xa .

An analogous—if less straightforward—calculation for the graph G ′, with Starv
replaced by Meshv , results in the formula (8.5) with

A′(P) =
∑

T

∏

Pa→Pb

xa Yb (y1 + · · · + yk)
−1,

where the sum is over all directed trees T on the vertex set {Pa}, with root Pr (i.e., the
vertices of T are the blocks of P), and the product is over all directed edges Pa → Pb

in T . We note that
∑

Pa
Ya = y1 + · · · + yk . Thus, Lemma 8.5 applies, and we get

A′(P) = Yr (y1 + · · · + yk)
−1

∏

a 
=r

xa,

implying (8.6). ��

9 Subtraction-Free Complexity Versus Ordinary Complexity

In this section, we exhibit a sequence of rational functions ( fn) whose ordinary arith-
metic circuit complexity is linear in n (or even O(1) if one allows arbitrary constants
as inputs), while their subtraction-free complexity grows exponentially in n.

Lemma 9.1 Let F be a rational function (in one or several variables) representable as
a ratio of polynomials with nonnegative coefficients. Assume that in any such represen-
tation F = P/Q, the (total) degree of P is greater than 2m. Then, the subtraction-free
complexity of F is greater than m.

Proof Let Dk denotes the class of rational functions f which can be written in the
form f = p/q where both p and q have nonnegative coefficients and have degrees
at most k. It is easy to see that if f1, f2 ∈ Dk , then each of the functions f1 + f2,
f1 f2, and f1/ f2 lie in D2k . It follows that if F has subtraction-free complexity l, then
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F ∈ D2l (x). On the other hand, the conditions in the lemma imply that F /∈ D2m .
Hence, l > m. ��
Lemma 9.2 For a positive integer N, the quadratic univariate polynomial

FN (x) = (x − 1)2 + 1

N 2

can be written as a subtraction-free expression. Furthermore, if FN (x)Q(x) = P(x)

where P(x) is a polynomial with nonnegative coefficients, then deg(P) > N.

Proof By a classical theorem of Pólya [24], the fact that FN (x) > 0 for any x ≥ 0
(actually, any x ∈ R) implies that we can write FN (x) = p(x)/(1 + x)r for r a
sufficiently large integer, and p(x) a polynomial with nonnegative coefficients. (It can
be shown that r > 9N 2 suffices, cf. [25, p. 222].)

Let us prove the second statement. Assume that on the contrary, deg(P) ≤ N , and
denote P(x) = ∑N

k=0 pk xk . Let u = 1 + √−1/N and v = 1 − √−1/N be the
roots of FN . Then,

uk + vk = 2

(

1 + 1

N 2

)k/2

cos

(

k · tan−1
(
1

N

))

.

If 0 ≤ k ≤ N , then 0 ≤ k tan−1
( 1

N

) ≤ k
N ≤ 1 < π

2 , implying that uk + vk > 0.
Consequently,

0 = FN (u)Q(u) + FN (v)Q(v) = P(u) + P(v) =
N∑

k=0

pk

(
uk + vk

)
> 0,

a contradiction. ��
Proposition 9.3 The subtraction-free complexity of the univariate polynomial

Gn(x) = F22n (x) = (x − 1)2 + 2−2n+1
,

while finite, is greater than 2n. The ordinary arithmetic circuit complexity of Gn(x)

is O(1) if arbitrary constants are allowed as inputs. If 1 is the only input constant
allowed, the ordinary complexity of Gn(x) is O(n).

Proof ByLemma9.2, the subtraction-free complexity ofGn is finite, and for any repre-
sentation Gn = P/Q where P and Q are polynomials with nonnegative coefficients,
we have deg(P) > 22

n
. Now, Lemma 9.1 implies that subtraction-free complexity

of Gn is greater than 2n . Finally, the last statement of the proposition follows from the
fact that 22

n
can be computed by iterated squaring. ��

The reader might feel uncomfortable about the fact that the polynomial Gn(x) in
Proposition 9.3 has a coefficient whose binary notation has exponential length. To
alleviate those concerns, we present a closely related example that does not have
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this drawback. In doing so, we use a modification of the well-known Lazard–Mora–
Philippon trick, cf., e.g., [14].

Proposition 9.4 Define the homogeneous polynomials Hn(t, x1, . . . , xn) by

Hn(t, x1, . . . , xn) = (x1 − t)4 + (x1 − 2x2)
4 +

(
x22 − t x3

)2 +
(

x23 − t x4
)2

+ · · · +
(

x2n−1 − t xn

)2 + 4(x1 − t)2x2n + 2x4n .

Then, the subtraction-free complexity of Hn, while finite, is greater than 2n−2. By
contrast, the ordinary arithmetic circuit complexity of Hn is linear in n.

Proof Since Hn(t, x1, . . . , xn) is positive for any nonnegative (in fact, any real) vector
(t, x1, . . . , xn) 
= (0, 0, . . . , 0), Pólya’s theorem [24] tells us that we can write

Hn(t, x1, . . . , xn) = p(t, x1, . . . , xn)/(t + x1 + · · · + xn)r ,

for some polynomial p with nonnegative coefficients, and some positive integer r . So
the subtraction-free complexity of Hn is finite.

Assume that Hn = P/Q where P and Q are polynomials with nonnegative coef-
ficients. Substituting t = 1, x2 = 2−1, x3 = 2−2, . . . , xn = 2−2n−2

, we get:

P
(
1, x1, 2−1, 2−2, . . . , 2−2n−2

)

Q
(
1, x1, 2−1, 2−2, . . . , 2−2n−2) = Hn

(
1, x1, 2

−1, 2−2, . . . , 2−2n−2
)

= (x1 − 1)4 + (x1 − 1)4

+ 4(x1 − 1) · 2−2n−1 + 2 · 2−2n

= 2
(

F22n−2 (x1)
)2

.

Since P(1, x1, 2−1, 2−2, . . . , 2−2n−2
) is a polynomial with nonnegative coefficients,

we can apply Lemma 9.2 to conclude that deg(P) ≥ degx1(P) > 22
n−2

. Now,
Lemma 9.1 implies that the subtraction-free complexity of Hn is greater than 2n−2. ��
Acknowledgments We thank Leslie Valiant for bringing the paper [15] to our attention.
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