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ABSTRACT 

An algorithm for  solving the Steiner problem on a f i n i t e  
undirected graph i s  presented. 
se t  of graph arcs of minimum to ta l  length needed t o  connect a 
specified se t  of k graph nodes. I f  the ent ire  graph contains 
n nodes, the algorithm requires time proportional t o  

ThiB algorithm computes the 

3 The t h e  requirement above includes the term n / 2 ,  which can 
be eliminated i f  the se t  of shortest paths connecting each 
pair of nodes in the graph i s  available. 

1. THE STEINER PROBLEM I N  A GRAPH 

Let a graph G be given as a pair (N,A) ,  where N is a set 
of nodes, and A is a set of undirected arcs connecting nodes 
of N .  With each arc a c A is associated a positive number 1.1 , 
called the length of a. 
The problem we consider is that of computing a subset S of A 
such that : 

Suppose a subset Y of N is also given. 

(1) all members of Y are connected by paths composed only 
of arcs in S; 
and 

(2) I s I  = c Is1 is a minimum. 

We call this problem the Steiner Problem on Y in graph G. 

SES 

G is assumed to be connected. S is called the Steiner path 
connecting Y i n  G I  or, where G is evident, just the SteineP 
path connecting Y .  If Y consists of just one node, the Steiner 
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Path consists of no arcs and has length zero. 
The original Steiner problem (rather than the problem on 

a graph which we are studying) is an old problem in geometry. 
In its usual formulation, the Steiner problem requires finding 
the set-of lines of minimum total length which connect a given 
set of points Y. For properties of its solution, see Reference 
[ l l .  Usually both lines and points are assumed to lie in the 
same Euclidean plane. Nothing in the formulation of the prob- 
lem requires that the lines drawn intersect only on points in 
Y; on the contrary, "interior" points of intersection, called 
Steiner points, can frequently reduce the total length of line. 
For example, given the three points y 

nected, the lines shown in Figure 1 
y2 and y to be con- 1' 3 

Fig. 1 

with constructed point S used as a point of intersection, pro- 
duces a total line-length smaller than that of say, Figure 2. 

y2 
Fig. 2 

The present investigation attempts to study this problem 
in a space where length-measurement is not Euclidean and where 
paths must consist of elements of a specified set A of arcs. 
Specifically, we allow lengths to be assigned to arcs (point- 
to-point distances) arbitrarily. Such lengths need not even 
satisfy the triangle inequality. For example, Figure 3 shows 
a perfectly valid assignment of lengths to arcs. 

Fig. 3 

In this graph, a shorter distance is traversed by going from 
a to c and thence to b, than by going directly from a to b. 
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One of the easily proven facts about a Steiner path S is 
that S must be a t r ee .  That is, S must contain no cycles. For 
if a cycle exists, then there are two different paths available 
for connecting some node of Y to the rest. One can eliminate 
some arc of one of these paths without destroying the connecting 
property of S. 
tion that I S 1  is minimal. 

But this reduces IS1  , contradicting the assump- 

NOW, consider Figure 4, showing a typical solution S to a 
Steiner problem on Y c N in G = ",A). 

q 

r 

s 

Fig. 4 

Here, Y = {q,r,s,t). 
is connected, in this solution, by a branch of the solution tree 
to a junction node p (which need not be an element of Y). 
Clearly the path connecting q and p is the shortest path, else 
S would not be the minimal solution. Also note that each of the 
other branches of S touching p represents the solution of a 
Steiner problem connecting fewer nodes than the number of the 
set Y. 
{p,r}. 

smaller parts the optimal decomposition property. It can be 
stated as follows. 

Let S be any Steiner tree connecting Y, where Y C  N is a 
subset of the nodes of graph G = (N,A) , and let q be any node 
of Y. If Y contains at least 3 members then there exists a 
node p E N and a subset D of Y such that: 

Note that any node belonging to Y, say q, 

(p,s,t) cannot be connected by a shorter path, nor can 
If they could, again S would not be the solution. 

We call the above "division" of the problem by p into three 

D 
S 

S 

S connects (p) U (Y - D - {q)) . 
S1, S and S are all Steiner paths connecting Furthermore, 

their respective sets. 

is a proper subset of Y - {q), and D is nonempty. 
consists of 3 disjoint subsets, S1, s2 ,and S 
connects {p,q), S2 connects {p) U D, while 

3 '  

1 

3 

2 3 
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Three "degenerate" situations are shown below (in all cases 
Y = {q,r,s,t}). Consider Figure 5. 

9 r S t 
O = = Q = = O - = O  

Fig. 5 
Here p is node r. Then D = {s,t), S is the Steiner path con- 

necting {r,s,t} and S 

or conversely. In Figure 6, 

2 
connects {r) and hence contains no arcs, 3 

r t 

Fig. 6 

p is node q, D = {r), S is the Steiner path connecting {q,r} 
and S is the Steiner path connecting {q,s,t], or conversely. 3 
In Figure 7, 

2 

r 

b 
t 

Fig. 7 

D can be {r), Is), {t), {r,s), {r,t) or {s,t). Ignoring switch- 
ing of D and Y - D - {q), there are 3 different decompositions 
which satisfy the principle above. 

tion of the type described above, covering all degenerate cases, 
appears in Appendix A.) 

(A general proof of the existence of an optimal decomposi- 

2. A SOLUTION ALGORITHM 

Our algorithm exploits the optimal decomposition property. 
A straightforward application of the property would entail 
choosing q E Y (any q will do), then searching for the optimal 
choice of p. In turn, an optimal choice of p requires that an 
optimal choice of the subset D C Y be made, and that the Steiner 
trees S and S connecting D U {p) and (Y - D - {q)) U (p) be 2 3 
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known. Thus, the original problem could be solved recursively. 
However, we could also build up the desired solution by means 
of the following llYll - 1 steps (where llY1 denotes the number of 
elements in the set Y). 

1. Remove one node, q, from Y. Call the set Y - Iq) 
set C. 

2. Solve Steiner problems connecting each set of 2 
nodes of C and 1 node n E N. (n can be a member 
of C, or it can even be node q itself). 

3 .  Use this result to solve Steher problems connect- 
ing each set of 3 nodes of C and 1 node n E. N. 

IlYll - 2. 

IIYII - 1. 

Solve Steiner problems connecting each set of 
#yll - 2 nodes of C and 1 node n E N. 
Solve the Steiner problem connecting q and set C. 

Given a subset D of C, and n E N, each step in the solution 
above involves two searches: Search 1 locates the intermediate 
node, p E N; Search 2 finds the optimal proper subset E of D so 
that the lengths of the Steiner paths connecting (p} (J E and 
(p)  
possible such total length. 

The efficiency of this procedure stems from the fact that 
only optimal solutions for the relevant subsets are ever con- 
sidered. Nonoptimal solutions to smaller subproblems are dis- 
posed of at the time that subproblem is solved. The optimal 
solution is retained, for use in solving later subproblems, and 
the smaller subproblem is never solved again. Straightforward 
enumeration of all possible solutions to the entire problem 
would unnecessarily consider nonoptimal subsolutions many times. 
This building up of larger optimal solutions from optimal solu- 
tions of all possible smaller problems is the fundamental tech- 
nique in the general methodology called dynamic programming. 

Let us discuss in some detail the procedure whereby the 
Steiner solution for a given subset D consisting of a certain 
j (2 2)  nodes of C and one node, m E N, is found. Here again 
we avoid some unnecessary calculation by first solving all 
possible smaller problems of a certain form. First we associate 
with each node k E N a number S (D) which is found by (1) k breaking D into two proper subsets E and F, and adding the 
Steiner distance for the set consisting of the members of E and 
node k to the Steiner distance for the set consisting of the 
nodes in F and node k, and ( 2 )  minimizing this sum over all 

(D - El, plus the distance from n to p add to the smallest 
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d i s t i n c t  choices of sets E and F. (The number S (D) is not 
necessar i ly  t h e  minimum S te ine r  d i s t ance  f o r  t h e  s e t  composed 
of t h e  elements of D and node k s ince  no saving due t o  
coalescing t h e  subsolutions a t  a node o the r  than k is  con- 
sidered.)  Having done t h i s  f o r  given D and a l l  k ,  t o  so lve  
the Ste ine r  problem f o r  m and D ,  w e  l e t  dmk denote t h e  length 

of t h e  s h o r t e s t  pa th  from m t o  k and we  minimize dmk + S k ( D )  

over a l l  nodes k B N. L e t  S ( m , D )  denote the  S te ine r  pa th  fo r  
nodes {m U D). Since S (D) does not depend on t h e  choice of 

node m, knowledge of S (D) f o r  a l l  k E N allows easy computa- 

t i o n  of S t e i n e r  s o l u t i o n s  f o r  any m E N ,  a l l ,  of course,  f o r  
given D.  The computation i s  repeated, then ,  f o r  a l l  choices 
of t h e  set D. 

Since s h o r t e s t  pa ths  between pairs of general  nodes are 
used repeatedly i n  t h e  above ca l cu la t ions ,  we begin t h e  whole 
procedure by f i r s t  computing t h e  length o f  t h e  s h o r t e s t  pa ths  
between a l l  p a i r s  of nodes i n  the  graph, Reference 121. 

k n g t h  of the S te ine r  t ree ,  bu t  not the a c t u a l  tree. 
termine t h e  tree, the re  are two "pure" s t r a t e g i e s  ava i l ab le  
(and severa l  hybr ids) .  
record t h e  value of k t h a t  minimized d + S (D) and t h e  sets 

E and F t h a t  generated S ( D ) .  

duces t h e  optimal decomposition, with m connected t o  k by 
s h o r t e s t  pa th ,  while E and F ,  r e spec t ive ly ,  are joined t o  k 
by S te ine r  trees. 

can be s tored  and t h e  minimizing value of k and associated set 
E and F can be recomputed as needed i n  t h e  recons t ruc t ion  of 
t he  S te iner  tree. I n  e i t h e r  case,  as is  t y p i c a l  i n  dynamic 
programming procedures, t he  S te ine r  tree i s  constructed ( a f t e r  
t h e  optimal length  has been determined) by processing sets i n  
t h e  reverse order of t h a t  of t h e  length-determination algorithm. 
The f i r s t  method of tree-construction involves less computation 
while t he  second uses  less computer storage.  Since tree- 
construction by method two requi res  a t  m o s t  l / n th  t h e  computa- 
t i o n  time of t h e  length-generation, w e  recommend, and use ,  it. 

k 

k 

k 

So far we have described a procedure f o r  generating t h e  
To de- 

For each choice of m and D one  can 

m k k  
Then k i s  t h e  node which pro- k 

O r ,  on t h e  o t h e r  hand, t h e  values of S k ( D )  

3 .  NUMERICAL ILLUSTRATION OF THE PROCEDURE! 

L e t  llNI[ = 7 ,  llYll = 4 ,  Y = {1,2,3,41, and the  matrix A of 
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d i r e c t  d i s t ances  (a = a is t h e  length  of the arc ( i , j )  be- 

tween nodes i and j )  be 
i j  j i  

1 2 3 4 5 6 7  

1 
2 
3 
4 A =  

5 
6 
7 

x 2 2 2 1 1 2  
2 x 2 2 2 1 2  
2 2 x 2 2 2 1  
2 2 2 x 1 2 1  
1 2 2 1 x 2 1  
1 1 2 2 2 x 1  
2 2 1 1 1 1 x  

- F i r s t  we compute the m a t r i x  D of s h o r t e s t  lengths (dij  = dj i  - 
l ength  of t h e  s h o r t e s t  pa th  between nodes i and j) by t h e  method 
of Reference [ 2 ] .  Clearly, by our choice of da t a ,  matr ix  D is 
i d e n t i c a l  with matrix A. W e  now remove one node, say node 1, 
from Y. L e t  C = {2,3 ,4) .  

L e t  D = {2,3}. Then S1(D) = d + d13 = 4 ,  S2(D) = 2 ,  1 2  
S ( D )  = 2 ,  S (D)  = 4 ,  S (D) = 4,  S6(D) = 3 ,  S7(D) = 3. 

s ( m , D )  denote  the S te ine r  so lu t ion  f o r  nodes Cm U D ) ,  w e  have 

Le t t ing  
3 4 5 

S ( 1 , D )  = min (d + S ( D )  = 4 (with seve ra l  d i f f e r e n t  trees lk k k 
yie ld ing  the r e s u l t ) .  S(2,D) = 2 ,  S ( 3 , D )  = 2 ,  S(4 ,D)  = 4 ,  
S ( 5 , D )  = 4 ,  S(6 ,D)  = 3 ,  S(7 ,D)  =3. 

Now l e t  D = (2 ,4 ) .  Then S (D)  = 4 ,  S (D) = 2 ,  S3(D) = 4 ,  

S (D)  = 2 ,  S ( D )  = 3 ,  S (D) = 3 ,  S (D) = 3 .  Hence S ( 1 , D )  = 4 ,  

S(2 ,D)  = 2,  S(3 ,D)  = 4 ,  S(4,D) = 2 ,  S(5 ,D)  = 3,  S(6 ,D)  = 3 ,  
S(7 ,D)  = 3. 

1 2 

4 5 6 7 

F ina l ly ,  l e t  D = {3,4). Then S1(D) = 4 ,  S (D) = 4 ,  2 
S (D) = 2 ,  S4(D) = 2,  S (D) = 3 ,  S (D) = 4 ,  S (D)  = 2. 

S ( 1 , D )  = 4 ,  S(2 ,D)  = 4 ,  S(3 ,D)  = 2 ,  S(4 ,D)  = 2 ,  S(5,D) = 3, 
S ( 6 , D )  = 3, S (7 ,D)  = 2. 

We are now ready f o r  step lbll - 1, s ince  step 2 = s t e p  

L e t  E = ( 2 1  and F = (3 ,41 .  

Hence 
3 5 6 7 

I I Y ~ ~  - 2. 

S(1,F)  = 2 + 4 = 6. 
S (D 1 E,F)  = 2 + 4 = 6. 

Then S (D I E ,F)  = 2 + 4 = 6. 

choices of E and F of S (D I E,F) = 6. 

L e t  D = ( 2 , 3 , 4 ) .  
Then S1(D I E ,F)  = S ( 1 , E )  t 

Fina l ly ,  l e t  E = { 4 } ,  F = (2 ,3}.  

Hence S (D) = minimum over a l l  

Now l e t  E = ( 3 1 ,  F = ( 2 , 4 ) .  Then 

1 

1 1 

1 
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Let t ing  E = {2} and F = (3 ,4 ) ,  S2(D 1 E,F)  = 4. Le t t ing  

E = (3)  and F = (2 ,4) ,  S2(D I E,F) = 4. 

F = {2,3}, S (D 1 E,F) = 4. 

Le t t i ng  E = (4) and 

Hence S (D) = 4. 
2 2 

S imi la r ly ,  S ( D )  = min (4,4,4) = 4. S (D) = min (4,4,4) = 

S 7 ( D )  = 5 6 

3 4 
4. S (D) = m i n  (5 ,5 ,5)  = 5. 5 (D) = m i n  (4,5,5) = 4. 

min ( 4 , 4 , 4 )  = 4. 
Hence S( l ,D?  = min (dlk + S ( D ) )  = 5 ,  which i s  the  m i n i m a l  k k 

I S ! .  
yielded t h e  minimum i n  t he  a b v e  minimization, node 1 is t o  be 
connected t o  node 6 by s h o r t e s t  pa th ,  which i n  t h i s  case i s  t h e  
a r c  connecting nodes 1 and 6. Now S ( D )  r e s u l t e d  when E = ( 2 )  

and F = {3,4) .  Hence t h e  s h o r t e s t  pa th  from 6 t o  2 i s  part of 
t h e  so lu t ion  tree. This is  t h e  a r c  between 2 and 6. F i n a l l y ,  
node 6 must be connected t o  nodes 3 and 4 by S te ine r  path.  Re- 
f e r r i n g  t o  S(6,D) above f o r  D = {3,4) we see S ( 6 , D )  = 3 and t h e  
value 3 w a s  obtained when k = 7 yielded min (d 

Hence node 6 must be connected t o  node 7 by s h o r t e s t  pa th  ( t h e  
a r c  connecting 6 and 7 i n  t h i s  case)  and node 7 must be con- 
nected t o  nodes 3 and 4 by s h o r t e s t  pa ths  ( the  a r c s  between 
7 and 3 and 7 and 4 i n  t h i s  case). Hence t h e  so lu t ion  tree 
cons i s t s  of t h e  a r c s  ( l , 6 ) ,  (2 ,6)  , ( 6 , 7 ) ,  (7 ,3)  and (7 ,4 ) .  The 
sum of these  arc- lengths  is indeed 5, checking with our computed 
value of S(1,D) f o r  D = {2,3,4) .  

t i o n  property,  i f  node 1 is taken a s  node q ,  then node 6 is  node 
p and node 2 can c o n s t i t u t e  set D. Then s e t  S c o n s i s t s  o f ' t h e  

a r c  (1 ,6)  , set S c o n s i s t s  of . (2 ,6)  and S c o n s i s t s  of ( 6 , 7 ) ,  

(7,3) and ( 7 , 4 ) .  

To r econs t ruc t  t he  so lu t ion ,  we no te  t h a t  s ince  k = 6 

6 

+ Sk(D) . 
k 6k 

With re ference  t o  t h e  statement of t h e  optimal decomposi- 

1 

2 3 

4. THE ALGORITHM 

The d e t a i l s  of t h e  algorithm descr ibed and i l l u s t r a t e d  
above are b e s t  understood when expressed i n  precedural  form. 
B e l o w  i s  t h e  algori thm, expressed i n  a modified form of Algol. 

i t o  j, i , j  E N .  Choose q E Y, and de f ine  C = Y - (9). Also, 
l e t  A[1] denote t h e  f i r s t  element of t h e  (ordered) set A and 
A S B  mean t h a t  A is  a subse t  of B bu t  no t  B i t s e l f .  

L e t  D ( i , j )  = l ength  of t h e  s h o r t e s t  path i n  G from 
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A Z g o r i t h  A :  (Computes t h e  length  of t h e  S te ine r  tree connect- 
ing Y ,  and assigns t h i s  length t o  variable "v") : 

COUNT 
(1) f o r  each t E C do 
(2) f o r  each J E N do 
(3)  S [ ( t f , J l  f D ( t , J ) ;  
(4)  

(5) 

(6) f o r  each I E N do 
( 7 )  S[D,I] 4 QJ ; 
(8) for  each J E N do begin 

f o r  m = 2 t o  IlCII - 1 do 

f o r  each D such t h a t  D C C  A IlDll = m do begin 

(9) u 4 m ;  

(10) f o r  each E such t h a t  D[1] E E .. E . D do 9 
(11) u 4 min (u,S[E,J] + S[D - E , J I ) ;  
(12)  f o r  each I E N do 
(13) S [ D , I ]  f min (S[D,Il , D ( I , J )  + u ) ;  
(14) end; end; 
(15) v f OJ ; 
(16) for each J E N do begin 
(17) u f m ; 

2'"'-' - 1 (18) f o r  each E such t h a t  C[11 E E A E $ C do 

(19) u f min (u,S[E,JI + S [ C  - E , J I ) ;  
1 (20) v f min (v,D(q,J) + u ) ;  end. 

Here, w e  have solved a l l  subproblems involving subse ts  
of c of s i z e  j ,  before  solving any subproblem involving a 
subset  of C of s i z e  j + 1. But it is unnecessary t o  consider 
t h e  subse ts  of C i n  p rec i se ly  t h i s  order .  For example, suppose 
C = ( d , e , f , g , h , i } ,  and w e  wish t o  f ind  t h e  S te ine r  path con- 
nect ing node m and {d , e , f , g ) .  W e  need so lu t ions  f o r  a l l  s e t s  
D U {p}, where D C  {d ,e , f , g )  and p E N ,  bu t  f o r  no subse ts  of 
C involving h o r  i. The program t h a t  w e  have wr i t t en  t o  imple- 
ment Algorithm A a c t u a l l y  processes subse ts  i n  an order  d i f -  
f e r e n t  from t h a t  given i n  Algorithm A ,  t o  use e f f i c i e n t  methods 
of enumerating subsets .  But t he  philosophy i s  the  same, a s  i s  
the  number of elementary comparison -and - addi t ion  opera- 
t i ons .  N o  v a s t  saving of t i m e  can be expected from t h i s  
reorder ing of subset  choice -- only a l i n e a r  improvement f a c t o r  
due t o  reduced bookkeeping e f f o r t .  
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5. ENUMERATION OF THE NUMBER OF 
OPERATIONS REQUIRED BY ALGORI"4 A 

Most of t h e  t i m e  required by Algorithm A is  spent  executing 
"elementary" s ta tements  of t h e  form 

a + min (a ,b  + c). 
(Although t h e  "bookkeeping" needed t o  compute successive sets, 
such as E i n  l i n e  10,  appears complicated, i n  a c t u a l i t y ,  its 
c o s t  can be reduced to  the execution of only 2 or 3 computer 
i n s t ruc t ions  per  loop i t e r a t i o n .  
i t e r a t i o n  is roughly t h e  same as t h a t  needed for execution of 
t h e  elementary s ta tement  above.) 

t he  number of r e p e t i t i o n s  t h a t  con t ro l  s ta tements  c a l l  f o r .  

Thus, f o r  each va lue  of m ,  s ta tement  5 c a l l s  f o r  

t i o n s  or r e p e t i t i o n s  of t he  s ta tements  (6 through 1 3 )  under i t s  
cont ro l .  

The the-cost of one such 

The formulae presented i n  the  column l abe l l ed  "courrt" g ive  

) itera- 

llcll -1 
Statement 11 i s  executed 1 (":ll) llNll (2m-l - 1) = s 11 times; 

m= 2 

Statement 20, 

Each is an elementary statement.  

I I N I I  = s~~ t i m e s .  

Since 

; ($2i = (1 + 2 ) n  = 3n 
i = O  

w e  ob ta in  S + S13 + S19 + S20 = S as: 
11 

Let t ing  k = IlCII + 1 = l lYII  = number of nodes t o  be connected, and 
n = IINI( = number of nodes i n  t h e  graph, 

S = n ( 2  k-l - k - 1) + n ( 3  k-l - 2k + 3)/2. 
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To this must be added T, the number of elementary statements 
needed to compute D(i,j) = the length of the shortest path be- 
tween each pair of nodes in N. By the method of Reference [2], 

exploiting symmetry, T = n /2. 
On a modern computer, each elementary statement should 

require about 10 seconds. For a problem of size n = 100, 

k = 10, we estimate that about 7 x 10 operations would be 
needed, requiring about 70 seconds. Our program was compiled 
by PL/I rather inefficiently and requires about 6 times this 
estimated time, tending to confirm the above estimate for an 
efficient machine language program. 

that if 2 is small relative to n (e.g., n = 200, k = 61, the 
solution of the all-pairs shortest path problem is much more 
time-consuming than the solution of the Steiner problem, given 
the all-pairs shortest path result. 

3 

-5 

6 

It is interesting to note 
k 

APPENDIX A PROOF OF THE OPTIMAL DECOMPOSITION PROPERTY 

The optimal decomposition property states, roughly, that 
any Steiner path connecting all nodes in the set Y can be de- 
composed into precisely 3 disjoint sets of arcs. 
pieces touch a particular node, p. One piece joins p with q, 
a previously chosen node of Y. The others join p with the re- 
maining members of Y, grouped into two disjoint nonempty sub- 
sets, D and Y - D - (9). Furthermore, all these pieces of the 
original Steiner path are themselves Steiner paths connecting, 
respectively: (p,q), {p) U D and {p) U (Y - D - cq)). 
paths at any node along that path produces Steiner subpaths, 
rather than some longer connecting path. The remaining problem 
is the existence of an appropriate node to decompose the Steiner 
path into the three pieces we have characterized above. 
this latter result, we add the additional hypothesis that Y 
contain at least 3 nodes. Note that the Steiner path connecting 
2 nodes is easily computable. It is just the shortest direct 
graph distance (minimal tree) between the two given nodes. 

proving both propositions: 

A l l  these 

We will establish, first that a decomposition of Steiner 

For 

First we insert some definitions useful in stating and 

Let x be any node on a Steiner tree S connecting the 
nodes in Y. 
Let B(x) be the set of arcs of S which touch x. 
If C CiB(x) ,  let Y (x) be that subset of Y which is 

reachable from x along paths in S whose first arc be- 
longs to C. 

C 
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Theorem I :  
be any node touching an arc of S. 
of S involved i n  connecting the nodes of Yc : Yc(x) u 4x1 form 

a Steiner tree connecting the nodes of Yc. 

PROOF: Node x decomposes the path S into two parts, joined at 
x. One portion of S, S 

the remaining arcs of S. 

Only if there were a set of arcs P # S which connected the 

nodes in Y 

necting Y 

in S by P, making IS I = IS,] + ]PI < I S 2 1  + lS1l = ISl. 

this would contradict the hypothesis that S was the shortest 
path connecting the nodes of Y. We have thus shown that Steiner 
trees can be viewed as collections of subtrees joined at their 
roots; we now want to show the existence of a particular kind of 
sub-Steiner-tree collection in any Steiner tree. 

Optimal Decomposition Theorem: 
necting Y, where Y C N i s  a subset of the nodes of graph G = ( N , A ) ,  
and l e t  q be any node of Y. 
then there ex i s t s  a node p E N and a subset D of Y such tha t :  

Let S be any Steiner tree connecting Y ,  and l e t  x 
Let C C B ( x ) .  Then the arcs 

connects the nodes in Y - let S2 be 

The length of S = I S 1  = IS I + ] S 2 1 .  
1' C' 

1 

1 
not be a Steiner tree con- and lPl < lSll, would S 

But if such a P existed, then S1 could be replaced 
C' 1 

1 C' 
But 

Let S be any Steiner tree con- 

If Y contains a t  least  three members 

D 
S 

SI  

Sg 
Furthermore, S I ,  S2, and S3 are a l l  Steiner paths connecting 
their  respective sets .  

Case I :  Suppose IIB(q)ll >- 2 .  Then q itself is a suitable choice 
of p; for q is connected to itself by a shortest path (of length 
zero), and D can be chosen as Y (9) , for a E B ( q ) .  a 

Case 2: Suppose IIB(q)ll  = 1. Then two subcases arise; either 
(a): the branch of S touching q divides before reaching another 
x E Y, or (b) : it does not. 

In Case a, there is a node k such that llB(k)ll > 2, and 
k is connected to q by a path r in S which doesn't pass through 
any nodes of Y. Suppose r leaves k along arc b, b E B(k). 

i s  a proper subset of Y - ( q ) ,  and D is nonempty. 
consists of 3 d is jo in t  subsets, S l ,  S2 ,  and S3. 

connects { p , q ) ,  S2 connects ( p )  U D ,  t )hi le  
connects ( p )  U (Y - D - ( 9 ) ) .  
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Since IIB(k)ll > 2 ,  1IB(k) - {b}II > 1, so  D = Y 

and Y - D - (q)  are nonempty and connected as required.  

c E B(k) - {b)  
C 1  

I n  Case b, t he re  is  some node k E Y such t h a t  k i s  
connected t o  q by a path r passing through no o the r  node of Y .  
Since IIYII >_ 3 ,  I IY - (k )  - {q}II >- 1. 
s ince  r f a i l s  t o  touch a t  least one y E Y. This node k is a 
s u i t a b l e  choice f o r  p: Choose D = {k) .  

Therefore,  l lB(k) I I  2 2 ,  

q 0- .. 
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