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Abstract. L:t L denote the nonscalar complexity in ki(x,...,: x,). We prove
L(f, af/axy, .., df/ox,)=3L(f). Using this we determine the complexity of single power sums,
single elementary symmetric functions, the resultant and the discriminant as root functions, up
to order of magnitude. Also we linearly reduce matrix inversion to computing the determinant.

1. Introduction

Let k be an infinite field, x,, .. ., x,, be indeterminates over k. Given fy,...,f, €
k(x),let L(f1,...,f,) be the minimal number of nonscalar multiplications/divisions
sufficient to compute f4, . .., f, from x,, . . ., x, allowing additions/subtractions and
multiplications by arbitrary scalars from k for free. L(f,...,f;) is called the
complexity of fi, . .., f,. (For details see e.g. Berodin and Munro [1], Strassen [6]).

One way to obtain lower bounds for the complexity of a set fi,...,f, of
quolynomials (=rational functions) is by the degree method (Strassen [7]). Unfortu-
nately in the case of single quolynomials one gets only trivial results. An interesting
recent paper of Schnorr [4] deals with this problem and extends the method to
yield nontrivial lower bounds for certain single functions. In the present paper we
reduce the complexity of a single quolynomial to that of several quolynomials by
means of the following simple but surprising inequality

L( KU}

s e, | < 3L(f), (1
(")4\'1 ax,,) /) ( )

proved in a completely elementary way. Combining (1) with the degree bound in
its original form we obtain rather sharp complexity bounds. such as

L( Y x?") = n log m,

\i=1

L(o,) = n log min(q, n —q),
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318 W. Baur, V. Strassen

where o, is the gth elementary symmetric function in n variables,

L(n (x; ~x,)) < n log n.

i#j /
Here < means equality of order of magnitude.

Of course (1) is useful not only for proving lower bounds. It easily implies, e.g.
that computing the inverse of a matrix is not much harder than computing its
determinant. In this connection we remark that inequalities similar to (1) hold for
other cost measures (e.g. when counting all operations).

Throughout the paper log means log,. We apply Bezout’s theorem in the form
of Bezout's inequality for affine space (see Heintz [2], Schnorr [4]).

2. Main result

Theorem 1. Let fek(x). Then

af af)
L{f,—,...,—|<3L:f).
( axl ax,, 3ch)

For the proof we need the following

Lemma. Let K be a field, yie K nonzero (1=<i=<s), a;eK (1=<j<i=s) and
Z1, ..., 2y indeterminates over K. Define hy, . .., h, by

-1
h,‘ = )',‘( L

a,,h,-+z,-), [=s. (2)
i=1

Write

with d, € K. Then

d,. =y,
(3
d = ( y d.,a(,,)_v,- forj<s.
o 4l

Proof. Let ;=Y | di.z,. Then from (2)

t- 1

di; = ."i( Y ad, + 5.‘0-)~ (4)

Y
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We introduce (s X s)-matrices

‘di 0
D=dy)=| . 9 ,
doy - dy)
a(ll 0 0 n O
d o a0, 0y
Then (4) is equivalent to
D=Y(AD +1). (5)

Since d; =y; #0, D and Y are invertible. Multiplying (5) from the left by Y "' and
from the right by D' we get

Y '=A+D".

Multiylication from the left by D and from the right by Y yields
D=(DA+1)Y.

This means
@=(m§‘mﬁm+mﬁ%

Fori=s thisis (3). 1

Proof of Theorem 1. Let L(f)<r. Then there is a sequence g,,..., g € k(x) such
that for all i <r we have g, = u; * /v;, where

i1 i1
u = '21 Bigi +pi v; = _Zl Yii8i +qi (6)
i i=

for some B, vy, €k, p, g€k +¥ _, kx,, and such that

f= Z ag+m
=1
for some a;ek, mek+Y _, kx,. In addition we may assume that all u, v; are
nonzero.
The proof now proceeds as follows: It will first be shown that any partial derivative
of/dx, (v <n) is of the form
af

,_:lls({;'la---,g.-s) (7)
0x,
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where hy(z1,...,2s) is defined as in the lemma (relative to suitable parameters
s, a;j, y;) and the £,,, are elements from the ground field k. Since scalar multiplications
are free it will then be sufficient to show that the coefficients d, of h; can be
computed from gi,..., g, with at most 2r multiplications/divisions. This will be
done according to the recursion (3).

Now fix v < n. Using (6) and Leibniz’s formula we obtain for all i <r

ag; (iul 0g; ap,) (iil dg; . 9qi )
- =0 i +— i + 8
ax, U\ L Big o 2 Yige o ®)

if g; = u; * v;, and

(a2 (DG

ox, ox, ox,/ v/ \;<1 Mox, ox,

if g; = ur;/v.. Moreover

af i agl
=1

ax, E)x,, ax,,' (10)

In order to get into the situation of the lemma put s = 3r + 1, and define a, for
l==l<t=gs by

{B,-, if { = 3j,
[0 ¥ =

o i34,
. Yij lf 1 = 3], .
an ”“{o if 341, (1)
1 ifl{=3i-2,
1 ifl=3i-1,g =u; *v,
Q3= .
A l—1 if1=3i -1, g =uw/vs
0 otherwise,
fori<r, and
{a, if { =3y,
[C TS Wi .
0 341
Furthermore, put y, =1 and for / = r put
Yy 2= 0. Yy =U, o yu=1 (12)
I case g = u, * vy, and
u; 1
_\‘]I 221, _"31 1= ,"3{2_ (13)
(A8 U;

in case g = u,/v,. Note that all y, # 0.
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Finally put
__op; _0q; _ .
{3i-2 ox. {3i-1= ox. £3i=0 (i=r), (14)
and
om
Cs - ax .

Let h4, ..., h be defined as in the lemma.

Claim. For all i <r we have

%Bi_p. = ha, o _
ax"_hiil({l’---;gs)“h3[(§) and 3 —hs(f)

v

The first assertion is proved by induction on i <r. We treat the case g, = u;/v;,
leaving the case g; = u; * v; and the second assertion to the reader.

(5 ) ()5 )]

. - "
ox, U; ox. ox, vi/\j=1 ox, odx,

1 3i-3

= Z— [}‘3i ,2( 1—; aszia (&) + {3:’«2)

3i-2 \
+ Vi ( IZI Qi 1.1’11({)*'{31'—»1)]

(by induction hypothesis, (11), (13), (14))

l .
= a2+ ha )] (by (2))

3i-1
=y3,-[ ¥ a;.,,hz(f)mi] (by (11, (13), (14))

=1
:hji‘g) (by (2))

It fol'ows from our claim that any partial derivative df/dx, (v < n) is of the desired
form (7). Therefore

Ty e ey T
oX ox,

L(d—f o

\ . R
gi,...,g,/éi_L(dl,...,d\-lg“...,g,) (1-),

where dy, ..., d, are the coefficients of h,. By (3) each d; (j <s) is obtained from
d,.,....d, using just one (nonscalar) multiplicatior, one factor being y;. By (12)
and (13) multiplication by y; means either multiplicat.on or division by some element
from k +¥"_, kx.+Y,_, kg. Furthermore, at least r of these multiplications are
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multiplications by 1, and also y; = 1. Hence
Lidy,...,ds|g1,.-.,g)<(s—1)=r=2r.
This and (15) imply the theorem. U

To a reader who would like to improve the constant 3 in Theorem 1 we suggest
to look at the example

f= i ﬁEk(xl,""yn)-

i=1Yi

3. Applications

Coroliary 1. Assume char k ¥ m. Then
in log(m —l)sL( Y x}") <nl{m)
i=1

where [(m) is the length of a shortest addition chain for m (see Knuth [3]; I(m)<
2 log m always, [{mj~logm).

Proof. It suffices to show that the left inequality. The theorem yields

Now we appiy the degree bound (Strassen [7]). W.l.o.g. k algebraically closed. In
case char k ¥ m —1

deggraph(x} ', ... x0 )

= #{(&, ..., ENek"|er = =g =)

m 1 2

hence Lix? ', ... x2 "y=nlog(m - 1). In case char k|m — 1

om -

deg graphix] '+xp, ... x0 +x,)

= A& L EET e == g =0}
=(m - 1)",

m omo-l

mo 1 -1 m 1
hence Lixy ..o, xy ) =Lx] " +xy,...,xn  +xp=nlogm-1). O
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Corollary 2. Let a4, . ..,d, be the elementary symmetric functions in x,,...,x,,
q<in. Then

Y(n—q+1)log(q—1)<L(o,)<n logq +2n, (16)
and

|IL(gn-q)—L(ay)|< it (17)

Proof. Left inequality of (16)- W.l.o.g. k algebraically closed and of infinite degree
(m)

of transcendency over its prime field. Denote by o,"’ the qth elementary symmetric
function in m variables. Obviously

oo

q (n—-1)

ax =0g-1 (xl,---,xi-l,xiﬂ,---,xn), (18)
i

and

(n-1)
0-; (xl’---axi—hxl'+ls---’xn)

— _m) tn—-1), .
=a; (xla---9xn)—xio’i~l (-‘ ,"-sxi—l,xﬂﬂl,--.-xn)-

The last recursion yields

tn-1h
(TQAI (xlv v Xicy Xisgy e v axn)

(n) 2 _(n)

tn) “1_q-1
=0q 0 mXOg Hxiog =+ (1) X

This together with (18) gives

d 1 og-
ﬂ=0'q.1“‘x,‘0'q_2+'"+(—‘1)‘; IX? 1. (19)

ax,~
The theorem tells us

oo do
L a‘-L(—‘*,...,—‘*). (20)
(74) =3 0x | 0Xp

Again we apply the degree bound to the right-hand side of this inequality, getting

dar, 0 )
L(?i',...,’i—(r")zmgdeg W, (21)
Xy 0x,

where W < k" is the graph of the polynomial map given by the equations

dog |

Y= (xl,---’xn)
aX]
day,

Yn :_._..(x], e -xn)'

0X,
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Choose A1, ..., Aq-1, i - - - » n € k algebraically independeni and intersect W with
the hypersurfaces

O1(X1, .. X)) = A

&qﬁl(xl, ey Xn) = Ag
and w'.4 the hyperplanes
Ya T Haqs+ oy Yrn = Mne
For the intersection W, we obtain by Bezout’s inequality
deg Wy<deg W - (g —1).
By (20) and (21) it suffices to show that W, is finite, and
#Wo=(qg-1)""""g-1). (22)
For (£, p)ek’™ we have (£ n)e W, if and only if (23), (24) and (25), where

da .
ni=—4§), l<si<n, (23)
0X;
gi€)=Ar, l1=i<q, (24)
L Mgl (DT A = (D) T g=isna, (25)

the last group of equations coming from (19). Since Ay, ..., Ay 1, s« - .5 Mn aTE
algebraical'y independent there are precisely (g —1)" "' vectors (&g -« - &) satisfy-
ing (25). Hence it suffices to show that any such vector has precisely (g —1)!
extensions to a vector (&4, ..., &,) satisfying (24).

Now fix (&, . .., &) satisfying (25). Since obviously

4]

Y (=Doj(&)¢! ' =0,

j=0

(24) and (25) imply
s Do = (=D gl T, q=isa, =
Y D@ = (=1 gl 26)
17q

Since the components of (£, ...,&,) are pairwise different, the system of linear
equations

Voo =DE == Y gsisa

i g

has a unique solution ¢, . . ., .. Therefore. using (26), an extension (£,, . ..., &) of
€y ..., &) satisfies (24) if and only if

al)=Ar 1=i<q,

al&r=¢, q=j=n.
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Introducing
fey=r" _Alt"—l 4o +(_1)q‘]Aq_1t"~q+l
+(‘1)qé’qt"“‘7+. . .+(_1)n{n‘

(27) is equivalent to
fe)= I=Il (t=&). | (28)

Since by the definition of the ¢; and by (25), &,,.. ., &, are roots of f(t) there is at
least one solution (£y,. .., &) (extending (&, ..., &) of equation (28). Choosing
any such solution we get all solutions by permuting the first ¢ —1 components
&1, ..., &4-1. So it remains to show that &, ..., &, are pairwise different. But in
fact £,,...,€&, are algebraically independent since by (24) and (25)
Aoy Ago1y Mg, -« - 5 1y are rational functions of them. Thus we have shown

Lio,)=3(n—q+1) log(q —1). f

Right inequality of (16). Let m = |n/q] and p=n —mq. For any i =0,...,m—1
compute all the elementary symmetric functions o1, ..., 0, N Xiget, -« oy Xiis 1190
and all elementary symmetric functions om1,. .., Omp iN Xpmge1, ..., X, This can
be done with cost

mqlogq+plogp<nloggq

(see e.g. Strassen [7, p. 243]). We introduce the polynomials
Qi=1-git+ - +(=1)0,,,
Qn=1-0onit++(=1)"a, 1"

Then

[10=1-0i+ - +(-1)0,s" (mod '™

=0

Since symbolic multiplication mod t**' of two polynomials with constant term 1

can be done with 2g nonscalar operations, we can compute oy,..., o, from the
o, in time 2qm < 2n. Thus

Lioy))<L(oy,...,04)<nlogq+2n.

(17) follows from the equation

1 1
Ty q:Uq("—;-..,—) X1t X
\xl Xn

validfor 1sq<n. O



326 W. Baur, V. Strassen

An interesting consequence of Corollary 2 is the following: There is a polynomial

2n

flxy, ..o X2 )= Y filxy, ... ,in)ti
i=0
such that
L(fy=2n—-1, L(f,)=3nlogn—1).

(Take f=(t —x;) - ... (t—x2,). Compare this aiso with Valiant [9;§41.)
Corollary 3 (resultant). Letxi,...,Xu Y1,. .., Yu be indeterminates over k. Then

in logn<L(ﬂ(xi—yi))<n(9logn+1).

4y

Proof. Left inequality: 1t suffices to show that

/

L(ﬂ(xi —n,-)) =in logn,
nf °

where 1y, ..., . € k are algebraicaiivindependent over the prime field. (Just adjoin
the y; to the ground field k.) Put

f=Nxi-m), g=[t-n),
1 1
where 1 is a new indeterminate. Then
=11 gx), 129)
[

ax. oglx)’ T

The theorem and the degree bound yield

i .of of
L(f)'z‘";L([,,—-f— —(L)/;;E;)gdeggraphd).

’ s .
axy oxX,

where ¢ is the polynomial map defined by £, df/ax,, ..., df/dx,. We intersect graph

. . AT . . . .
&, which lives in k7" with coordinate variables x, ..., X, Zo...., 2, (say), with
the equations

AT
By 1291 and (30 the intersection 18
V=& dEnieither fiEi=0o0rVigé)—g'ié&) =0}

By Bezout's incquality,

dezgrephé =deg V.
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Now g and therefore g —g' have algebraically independent cdefﬁcients (except for
the highest which is 1). Thus g —g' has n distinct roots, i.e.

+{(& ¢ (£)|Vig(¢)—g'(&)=0t=n

Now (29) implies that the above n" points satisfy f(£€)#0. This means that V
contains n" isolated points, so deg V =n".

Right inequality : First compute the elementary symmetric functions in y4, ..., y,
in time n log n, next evaluate the polynomial t" —a-l(y)t"'1+ o+ (-1)"o,(y) at
the points x,...,x, in time 8n logn and finally multiply the values. (Compare
Borodin and Munro [1]). O

We do not know whether our method allows to prove a nonlinear lower bound
for the complexity of the resultant of two polynomials as a function of their
coeflicients.

Corollary 4 (discrimiuant). Let x1,. .., X, be indeterminates over k. Then

enlogn—j3n <L(H (x,~—-x,-)) <n(9logn +1).

i#j

Proof. Upper bound (suggested by J. Stoss): First compute the coefficients of

AW)=IT"_, (t—x;) with cost nlogn, then the coefficients of dA/dr=
Y"_ IT.; (t—x;) without additional cost. Now evaluate dA/dr at x;,..... v, and

multiply the values. This can be done with cost 8n log n +n —1 (actually 7x log n +
n —1 is sufficient, using byproducts of step 1).

Lower bound: Let f=1T,.; (x;—x;), p=[n/2], q=|n/2]. For clarity replace
Xiyeoos X DY X1yt us Xpy ¥1s-- .5 ¥q. Then ’

f=gx) [In,-y ~h(y),

and therefore

of o2 oh 1 )
— = f . — +
dy, / ( Z‘Mz*.v, 6»,(y) h(y)

The theorem yields
0 d
L( o Y ) L(F).
ay1 Ty

Adjoining the y; to the ground field and calling them n; we get

1 L 1 ,
(f(x, ), flx, ) 7 s fle,m) 2 ————)‘E3L(f).

‘] Xi—m i=1X1 7~ Tgq
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Dividing f(x, ) by the other g terms under the bracket we obtain

L( ?=1(xi—171) H:’-:l(xi' ng)
Z;’:I ni#l(xi~n1)’ o ’Zi:l H,-#z(xf’nq)

)s3L(f)+q.

If ¢ is the rational map defined by the above ¢q (reduced) quolynomials, the degree
bound yields

3L(f)+q =log deg graph ¢.
Now
deg graph ¢ = # of components of ¢ "' (0)
= # of components of {& € k" |Vj3i¢; = n,}
=plp—-1-...-(p—qg+1)=p!,
because the n; are pairwise distinct. Thereforc

n n n
AL(N)=logp!'—qg==log ———
f)=logp'!—q 5logs-=3

)

n
>3 logn —2n.

Corollary 4 implies that the complexity of the Vandermonde determinant
I, , (x, —x,;) is at least o1 log n —n. (Its square is the discriminant.)

Corollary S. Letai; (1=4,j - n) be indet>rminates over k, (b)) =a;) ' as matrices.
Then

Lib, 1 i j=aly= 3Ldetta; ) +n".

Froof. By Cramer’s rule

2]
~=-detta) = b, det(a).
ad,

Thus

. (o o \ .
{4by, Vi nh- 1.({dcnt('}u,'\;j""“'d(."(a)i1' N n})fn

t l’)U” /

= 3 {dettan +n".

Corollary 5, in conjunction with ¢.g. Strassen [5, 8], shows that the determinant
has roughly the same complexity as matrix multiplication or inversion. It would be
mteresting to have a similar result for solving a system of linear equatioas.
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Coro¥ry 6. Let f =3, 1ixiyiz1 be a trilinear form. Then

L(f)=grank(z;).

Proo:. Differentiate with respect to the x; and apply Korollar 3 and Lemma 6 of
Strassen [8]. O

4. An extension

Theorem 2. Letfek(x,...,x,) be computable from {x,,...,x,} Uk using A add -
itions/subtractions, S scalar multiplications (i.e. multiplications by elements from k)
and M further multiplicetions/ divisions. Then {f, df/dx., . . ., 8f/9x, } can be computed
from {x,...,x,} Uk using 2A + M additions/subtractions, 2S scalar multiplications
and 3M further multiplications/divisions.

In particular, let L, denote the complexity when all operations have unit cost, L>
the complexity when additions/subtractions are free but all multiplications/divisions
(iniciuding scalar multiplications) count. Then

Ll( LA ..,-‘i)sm(f),

Yoxy T ax,
of of |
Lz( ,axl,...,ax")s3Lz(f).

Sketch of proof of Theorem 2. We may assume that the given computation sequence
is of the form g,,..., gu+m+,, Where g,=x; for 1<i=<n, giek for n<i=n-+m,
and any g; with n +m <i <n +m +r is obtained by adding/subtracting or multiply-
ing/dividing two previous g’s or by multiplying a previous g by some element from
k.

Proceed as in the proof of Theorem 1 with the following provisions:

(1) Each addition/subtraction or multiplication/division in the given computa-
tion yields three rows of the matrix (a;) as before. Each scalar multiplication as
well as each of the n +m initial steps give rise to only one row of («;;).

(2) Alla;€{0,1, —1}.

Since we may assume that in the original computation any intermediate result
except the last one is being referred to, all columns of the matrix {a;;) except the
last one are nonzero.

Now the lemma can be applied and (7) holds with ¢,; = 8... It is clear that the
given computation together with the new one provided by the lemma use 2S scalar
multiplications and 3M further multiplications/divisions. It remains to estimate
the total number of additions/subtractions. If we content ourselves first with
computing the d; up to sign only, the number B of additions/subtractions used can
be made equal to A plus the number of nonzero a;; minus the number of nonzero
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columns of the matrix (a;), i.e.
B=A+4A+S+4M)-(n+m+3A+S+3M-1)
=2A+M—-(n+m-—1).

Now we can adjust the signs of di, . .., d,.m (We are interested only ind,, ..., d,)
using at most n +m — 1 additional subtractions, since not all of dy, ..., d,..n have
the wrong sign. (To see this observe that the first i such that our procedure yields
d, with the correct sign cannot exceed n +m). [
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