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Abstract. L:t L denote the nonscalar complexity in k(.u,, . . . , x,, L We prove 

Uf, $vflr3x,, * * 9 df/&x,) s 3L( f 1. Using this we determine the complexity of single power sums, 
single elementary symmetric functions, the resultant and the discriminant as root functions, u!) 
to order of magnitude. Also we linearly reduce matrix inversion to computing the determinant. 

Let k be an infinite field, x 1, . . . , s,* be indeterminates over k. Given fl, . . . , f‘, E 

k(x), let WI, . . . , f,) be the minimal number of nonscalar multiplications/divisioAs 

sufficient to compute fl, . . . , fq from x 1, . . . , x, al!owing additions/subtractions and 

multiplications by arbitrary scalars from k for free. L(fl, . . . , f,) is called the 

complexity of fi, . . . , fq. (For details see e.g. Bprodin and Munro [l], Strassen [6]~. 

One way to obtain lower bounds for the complexity of a set f,, . . . , h, of 

quolynomials (-=rational functions) is by the degree method (Strassen [7]). Unfortu- 

nately in the case of single quolynomials one gets only trivial results. An interesting 

recent paper of Schnorr [4] deals with this problem and extends the method to 

yield nontrivial lower bounds for certain single functions. In the present paper we 

reduce the complexity of a single quolynomial to that of several quolynomials by 

means of the following simple but surprising inequality 

proved in a completely elementary way. Combining (1) with the degree bound in 

its original form we obtain rather sharp complexity bounds, such as 

L 
( j 

i ,~:)I xn logrn, 
i=l 

L(a,) X rz log min(q, n -q), 
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where ay is the qth elementary symmetric function in n variables, 

L ( n (Xi -.Xj)) X n log PZ. 
i+i / 

Here x means equality of order of magnitude. 

Of course (1) is useful not only for proving lower bounds, It easily implies, e.g. 

that computing the inverse of a matrix is not much harder than computing its 

determinant.’ In this connection we remark that inequalities similar to (1) hold for 

other cost measures (e.g. when counting all operations). 

Throughout the paper log means logz. We apply Bezout’s theorem in the form 
of Bezout’s inequality for afine space (see Heintz; [2], Schnorr 1143). 

2. Main result 

Theorem 1. Letf E k(x). Therl 

For the proof we need the following 

Lemma. Let K be a field, YiEK nonzero (IGcs), aijEK (lsj<iss) and 

Zl,..., z, indeterminates ooer K. Define 121,. . . , h, bq 

11, = i d,,z,, 
(I -- 1 

(3) 

(4) 
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We introduce (s x s)-matrices 

D = (dim) = 

Then (4) is equivalent to 

D= Y(AD+l). (5) 

Since dii = vi # 0, D and Y are invertible. Multiplying (5) from the left by Y ’ and 

from the right by D-r we get 

y-‘=A+& . 

Multiplication from the left by D and from the right by Y yields 

D=(DA+l)Y. 

This means 

For i = s this is (3). g 

Proof of Theorem 1. Let L(f) s r. Then there is a sequence gl, . . . , gr E k(x) such 
that for all i c r we have gi = lli * /ui, where 

i 1 

lli = C pi,gj +pi, i :z 1 

I- 1 

Ui = C yijgj + 4i (6) 
j-1 

for some pij, yi, E k, pl, qi E k + xz _ 1 ks,,, and such that 

for some aj E k, m E k +x,:l T1 k-u,. In addition we may assume that all zi,, I?, are 
nonzero. 

The proof now proceeds as follows: It will first be shown that any partial derivative 

aflijx, (V G FZ) is of the form 

(7) 
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where h&l, . . . , z,) is defined as in the lemma (relative to suitable parameters 
s, CQ, yi) and the JIV,-, are elements from the ground field k. Since scalar multiplications 
are free it will then be sufficient to show that the coefficients d, of h, can be 
computed from gl, . . . , g, with at most 2r multiplications/divisions. This will be 
done according to the recursion (3). 

Now fix v c n. Using (6) and Leibniz’s formula we obtain for all i G r 

$3 
-=l?i 
ax,, ( 

i-- 1 agi api 
i-l 

a& aqi 
C PiiT+- +Ui x Yijz+c 

%j=l v ax, 1 ( j= 1 V ) 

if gi = Ui * vi, and 

c3gi 1 i-l 
-=- . . - 
dXv Vi K CP 

agi i aPi\ + -5 ‘il y,, ag, i a4i 
.jsl ‘1 ax,, ax,, 1 ( )( Vi i=l I’ ax, ax, )I 

if g, = ui/via Moreover 

af r c dgj am 
-+-. 

z=j=l “‘ax, ax, 

(8) 

(9) 

W) 

In order to get into the situation of the lemma put s = 3r + 1, and define ar,/ for 
1 r-l<tq by 

1 pij if P = 3j, 
Q3: 3,[ = 

0 if 3 $ I, 

I y!j if 1 = 3j, 
a ?r 1.1 = 

0 if 3kI, 

1 if I= 3i -2, 

1 if 1 = 3i - 1, gi = lli * Ui, 

a3i,l = 

I 

-I if 1 = 3i - 1, gi = ldi/t’i, 
0 otherwise, . . . 

for i s r, and 

Furthermore, pllt yS = 1 and for i c r put 

in case g, = II, * L’~, and 

(11) 

c 

(13) 

in case g, = ZI,/L-,. Note that all y1 f 0. 
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Finally put 

321 

531-2 =$, [3i_l=$, c3p() (i =z r), 
V V 

(14) 

and 

Let 111, . . . , h, be defined as in the lemma. 

Claim. For all i s r we have 

z= h3i(Jl, l - l 9 [s)=h3i(5) ad af= h,s((). 
1’ ax, 

The first assertion is proved by induction on i 5 r. We treat the case gI = Ul/L‘i, 

leaving the case gi = ui * t‘i and the second assertion to the reader. 

agi 1 i-l 

i)x, 
=- CP 

Vi ;=I “aX ax, 
ag’+*)+(-:)(:< yii?+z)] (by(g)) 

1 

[ ( 

31-3 
=C_ )13i--2 C a.3-2,lh1(&)+[3i-2 

‘I I=1 ) 

31-Z 

+y3i- 1 C a3im l,hlt() +53i--I’ 
I=1 ,I 

(by induction hypothesis, (1 1 ), ( 13 j, (14)) 

3i -1 

= y3i C a 31,hl(&) + Ji3i (by (ll), (13), (14N 
I-1 1 

= /lJiC&) (by (2)). 

It fol’ows from our claim that any partial derivative af/r3x,, (V c /I ) is of the desired 

form (\7 ). Therefore 

‘f L’$v.*-Y~ gi9--*9grj1 
t 

at : ----Ltdl,. . . , ds ia,. . . , gr) (15) 
1 - t1. 

where dl, . . . , d, are the coefficients of h,. By (3) each di (j <s) is obtained from 

d )+I, * * l 7 d, using just one (nonscalar) multiplicatior, one factor being yj. By ( 12) 

and (13) multiplication by yi means either multiplication or division by some element 

from k +x3= 1 k-u,. +cl_ 1 kgi. Furthermore, at lea,,t r of these multiplica:ions are 
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multiplications by 1, and also yS = 1. Hence 

U&, l ’ l , & ISI, . . ..g.)a(s-1)-r=2r. 

This and (15) imply the theorem. 0 

To :a reader who would like to improve the constant 3 in Theorem 1 we suggest 

to loolk at the example 

f= i %k(X,, . . . , y,,). 
i=l J?i 

3. Applications 

Corol%ary 1. Asslrrne char k $ m. Therz 

where l(m ) is the length of a shortest additiw chain for m (see Knuth [3]; l(nl) d 

2 log m always, I Em ) - log m ). 

Proof. It sufices to show that the left inequality. The theorem yields 

iilow we apply the degree bound (Strassen [7]). W.1.o.g. k algebraically closed. In 

case char k X m - 3 

deg graph(.u ;” ‘, . . . , s ii’ ’ ) 

~#{(~l,...,~,l)Ek”I~;n-‘~‘..=~;~-~=l} 

= (m -- 1)“. 

hence L (_u ‘:” ‘, . . . , s ::’ ’ ) a TV log(m - 1 L In case char k 1m - 1 

deggraph(x;” ’ +x1,. . . , .I-::’ ’ +A-,,) 
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Corollary 2. Let gl, . . . , 

q sin. Then 
CT, be the elementary symmetric functions in x 1, 

f(n-q+l)log(q-l)sL(a,)Sn logq+2n, 

and 

IL(G”-q) -L(a,)I s A‘. 

323 

(16) 

(171 

Proof. Left inequality of (16)* W.1.o.g. k algebraically closed and of infinite degree 

of transcendency over its prime field. Denote by c+r’ the qth elementary symmetric 

function in m variables. Obviously 

and 

The last recursion yields 

rr;:l”(xl, . . . , Xi-l, Xi+ 1, * l l 7 Xn) 

(11) (tl) 

=(Tq 1 -X&T, 2+X~fl~Y’3-“‘+(-1) q -- 1 q -1 Xi . 

This together with i 18) gives 

The theorem tells us 

09) 

Again we apply the degree bound to the right-hand side of this inequality, getting 

where W c k “’ is the graph of the polynomial map given by the equations 

au, 
-----b-l, * l l ,x,J !” - ox1 
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Choose Al,. . l ,Aq-l9Il_q9m*.9 pee, E k algebraically independent and intersect W with 

the hypersurfaces 

m(x1, a.. ,-&*)=A1 

%&Xl, l l - , xn) 'A,-1 

and w% the hyperplanes 

yq = I_cq, l - l f Yn = Pn- 

For the intersection W. we obtain by Bezout’s inequality 

deg Wo<deg W l (q-l)!. 

By (20) and (21) it suffices to show that W. is finite, and 

# W[, -= (4 - l)‘=‘+!(q - l)! , (22) 

For (5, V)E k2” we have (6, Q) E WC1 if and only if (23), (24) and (29, where 

(23) 

rrl(&)=Ai, 1 si<<, (24) 

the last group of equations coming from (19). Since A 1,. . . , h,, I, p,,, . . . , p,, are 

algebraican ,.y independent there are precisely (4 - 1 )‘I ‘v-’ vectors (5,, . .l , [,J satisfy- 

ing (25). Henc e it suffices to show that any such vector has precisely (4 - l)! 

extensions to a vector & . . . ,4;,) satisfying (24). 

Now fix (&,, . . . , [,,) satisfying (25). Since obviously 

(24) and (25) imply 

Since the components of (&,, . . . , [,,) are pairwise dif% rent, the system of linear 

equations 

has a unique solution Jr!, . . . , j,!. Therefore . using (23, an extension ((1. . . . . (Y,, ) of 

&* * . _ , & ) satisfies (24) if and only if 

(27) 
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f(r) = t” -A J-1 + l . l + (-l)q-*+fn-q+l 

+(-1)4[/-q + l * l +(-l)n&, 

(27) is equivalent to 

f(t) = fi (t--i)* (28) 
i=l 

Since by the definition of the &i and by (25), &, . . . , & are roots of f(t) there is at 

least one solution (51, . . . , &) (extending (&, . . . , &,)) of equation (28). Choosing 

any such solution we get all solutions by permuting the first 4 - 1 components 

5‘ 1,*.-r &-1. So it remains to show that 61,. . . ,5,-l are pairwise different. But in 

fact 51,. . . , & are algebraically independent since by (\24) and (25) 
Al,... 9 A,,-1, lu,, l ’ -9 p,, are rational functions of them. Thus we have shown 

&+$z -4+l)log(q-1). i 

Right inequality of (16). Let m = In&j and p = n - mq. For any i = 0, . . . , HZ - 1 

compute all the elementary symmetric functions Ui.1, . . . , ui,Lf in Xiq+l, . . . , x ci + ljcI, 

and all elementary symmetric functions (~,~,l, . . . , (T,,,~ in xmq+ 1, . . . , x,*. This can 

be done with cost 

(see e.g. 

mq logq +p logp G’12 logq 

Strassen [7, p. 2431). We introduce the polynomials 

0, = 1 -Ui,lt+* * * + (- 1)4ai,qt ‘9 

Q,,, = ~-u,,J+. 9 l +(-l)Pa,,1,ptP. 

Then 

n Qi=l--crlf+.a . + (-l)qcr~lt‘f (mod tcltl). 

i =0 

Since symbolic multiplication mod tqfl of two polynomials with constant term 1 

can be done with 2q nonscalar operations, we can compute (~1,. . . , c-r, from the 

CT,,, in time 2qm s 2n. Thus 

L (UC1 ) s L (a 1, . . . ,o,)an logq +2/z. 

t 17) follows from the equation 

validfor lsqsn. 0 
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An interesting consequence of Corollary 2 is the following: There is a polynomial 

2?1 
f(x*,..., X2n, 0 = c fib& ’ * l 9 XZ,*V 

1 =o 

such that 

L(f)=2n -1, L( j,r) 2 $n log(n - 1). 

(Takef=(t-x1)*... . (t -x2”). Compare this also with Valiant [9;$4] .) 

Corollary 3 (resultant). Let x1, . I . , xn, y1, . . . , y,, be indetermina~es ouer k. Theu 

in lugn =L 
( 
n (Xi - y0) < n (9 log n -I- I). 
i,i 

Proof. Left ir~equality : It suffices to show that 

whereql,..., q,, E k are a1getraicz.Z~ independent over the prime field. (Just adjoin 

the y, to the ground field k.) ht 

f=n k -q,Jr g=IIb-v,). 
I.1 I 

where I is a new indeterminate. Then 

‘The theorem and the degree bound +ld 
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Now g and therefore g -g’ have algebraically independent coefficients (except for 

the highest which is 1). Thus g -g’ has n distinct roots, i.e. 

Now (,29) implies that the above n” points satisfy f(e) # 0. This means that V 
contains n” isolated points, so deg V 2 n “. 

Right inequality : First compute the elementary symmetric functions in yl, . . . , y,, 
in time n log 12, next evaluate the polynomial tn - 01(y)f”-~ + l l l + (-l)‘*~,, (y ) at 

the points xl,. . . , xn in time 8rz log n and finally multiply the values. (Compare 

Borodin and Munro [l]). Cl 

We do not know whether our method allows to prove a nonlinear lower bound 

for the complexity of the resultant of two polynomials as a function of their 

coefficients. 

Corollary 4 (discrim;llant). Let x 1, . . . , x,, be indeternzinates ouer k. Therz 

&2 log i: -$n <L n (xi-xi) 
( 

<rz(910gn +11. 
i#i ) 

Proof. Upper bound (suggested by J. Stoss): First compute the coefficients of 

A(t) = l7:‘= 1 (t -XX,) with cost n log n, then the coefficients of dA/dt = 
S’ _.+ Z7i+j (t--xi) without additional cost. NOW evaluate dA/dt at ~1,. . . ,x,, and 

multiply the values. This can be done with cost 8n log n + n - 1 (actually 32 log /z + 

IZ - 1 is sufficient, using byproducts of step 1). 

Lott:er borrmi: Let f- !7i+i (xi -xi), p = [n/2], 4 = [tz/Z]. For clarity replace 

Xl,..., xI1 by sl, . . . , x,, yl, . . . , y4. Then 

.f=g(x) l n (Sj-yj)’ l h(y), 
i.i 

and therefore 

The theorem yields 

Adjoining the yj to the ground field and calling them qj we get 
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Dividingf(x, q) by the other 4 terms under the bracket we obtain 

lif 4 is the rational map defined by the above q (reduced) quolynomials, the degree 

bound yields 

3L(f)+qAogdeggraph& 

Now 

deg graph 4 2 # of components of 4 Q) 

= # of components of {g E k” 1 Vj3i& = qi} 

because: the q, are pairwise distinct. Therefore 

Corollary 4 implies tha? the complexity of the Vandermonde determinant 

1 I, , (s, -x,) is at least AH log II -II. (Its square is the discriminant.) 

Proof. By &u-ner’s rule 
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CO~O!! ?ry 6. Let f = Ci,i,/ riilxiyiZ/ be a trilinear form. Then 

L(f) 2 irank( 

Proof. Differentiate with respect to the xi and apply Korollar 3 and Lemma 6 of 
Strassen [8]. q 

4. An extension 

Theorem2. LetfEk(xl,.. . , xn ) be computable jiorn (x 1, . . . , xn) v k using A add - 
itionslsubtractions, S scalar multiplications (i.e. multiplications by elements from k ) 
and Mfurther multiplic&ons/divisions. Then ( f, aflax 1, . . . , aflax,, ) can be computed 
from {xl,..., x,, ) u k using 2A + h4 additions/s;Abtractions, 2s scalar multiplications 
and 3M further multiplications/divisions. 

In particular, let L1 denote the complexity when all operations have unit cost, Lz 
the complexity when additions/subtractions are free but all multiplications/divisl:nns 
(including scalar multiplications) count. Then 

af af L,‘f,~,...,~)r4Llcf), 
( 1 n 

L2 ( 
af af 

f, ar’ ’ l l , ax c 3L2( f 1. 
* 1 n ) 

Sketch of proof of Theorem 2. We may assume that the given computation sequence 

is of the form gl,...,grl+,n+r, where gi=xi for lsi<n, giEk for .u<i<n+m, 

and any gi with n +m <i s n + m + r is obtained by adding/subtracting or multiply- 

ing/dividing two previous g’s or by multiplying a previous g by some element fn-om 

k. 
Proceed as in the proof of Theorem 1 with the following provisions: 

(1) Each addition/subtraction or multiplication/division in the given computa- 

tion yields three rows of the matrix (&ii) as before. Each scalar multiplication as 

Rell as each of the n + m initial steps give rise to only one row of (aii). 

(2) All cvij E (0, 1, -l}. 

Since we may assume that in the original computation any intermediate result 

except the last one is being referred to, all columns of the matrix faii) except the 

last one are nonzero. 

Now the lemma can be applied and (7) holds with (vi = S,i. It is clear that the 

given computation together with the new one provided by the lemma use 25 scalar 

multiplications and 3M further multiplications/divisions. It remains to estimate 

the total number of additions/subtractions. If we content ourselves first with 

computing the di up to sign only, the number B of additions/subtractions used can 

be made equal to A plus the number of nonzero aii minus the number of nonzero 
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columns of the matrix (q), i.e. 

=2A+M-(n+m-1). 

Now we can adjust the signs of &, . . . , d,,, (we are interested only in &, . . . , d,) 

using at most n + ~‘pz - 1 additional subtractions, since not all of &, . . . , d,,. ,” have 

the wrong sign. (‘To see this observe that the first i such that our procedure yields 

d, with the correct sign cannot exceed n + m). q 
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