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ABSTRACT

The intersection dimension of a bipartite graph with respect to a type L is the smallest number t
for which it is possible to assign sets Ax ⊆ {1, . . . , t} of labels to vertices x so that any two
vertices x and y from different parts are adjacent if and only if |Ax ∩ Ay| ∈ L. The weight
of such a representation is the sum

∑
x
|Ax| over all vertices x. We exhibit explicit bipartite

n×n graphs whose intersection dimension is: (i) at least n1/|L| with respect to any type L, (ii)
at least

√
n with respect to any type of the form L = {k, k + 1, . . .}, and (iii) at least n1/|R|

with respect to any type of the form L = {k | k mod p ∈ R}, where p is a prime number. We
also show that any intersection representation of a Hadamard graph must have weight about
n ln n/ ln ln n, independent on the used type L. Finally, we formulate several problems about
intersection dimensions of graphs related to some basic open problems in the complexity of
boolean functions.

Keywords: intersection graphs, edge clique covering number, bicliques, Hadamard graphs, Sylvester

graphs, Ramsey graphs, boolean functions, depth-2 circuits

1. INTRODUCTION

We consider representations of graphs as intersection graphs of families of sets. The size
of the underlying set serves as a measure of complexity. Various conditions on when we
draw an edge between the sets give various measures. Our motivation is that, for bipartite
graphs, these measures capture the computational complexity of boolean functions (see
Section 4.).
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We are interested in representing a graph G = (V,E) by assigning to each vertex
x ∈ V a finite set Ax of labels so that we can then distinguish those pairs of vertices x, y
that are edges from those that are not simply by looking at the number |Ax∩Ay| of their
common labels. The parameter we are interested in is the total number

∣∣⋃
x∈V Ax

∣∣ of
used labels. A type of such a representation is a set L of nonnegative integers such that

|Ax ∩Ay| ∈ L iff xy ∈ E. (1)

Given a subset L ⊆ {0, 1, . . .}, the intersection dimension ΘL(G) of a graph G with
respect to L is the smallest number of labels used in an intersection representation of
G under the intersection rule (1). The absolute dimension is the minimum Θ(G) =
minL ΘL(G) over all types L.

As customary, the complement of a graph G = (V,E) is the graph G = (V, F ), where
xy ∈ F iff xy 6∈ E. Since every intersection representation of G with respect to a type
L is also an intersection representation of the complement graph G with respect to the
complementary type L = {0, 1, . . .} \ L, we have that ΘL(G) = ΘL(G). In particular,
Θ(G) = Θ(G). Also, if H is an induced subgraph of G, then ΘL(H) ≤ ΘL(G) for all
types L.

Different types L lead to different measures ΘL(G). The following types have recently
drawn considerable attention.

- The threshold-k dimension Θk(G) is the intersection dimension with respect to
the type L = {k, k + 1, . . .}. The threshold dimension is the minimum Θthr(G) =
mink Θk(G) over all threshold values k.

- The modular dimension of G is the minimum Θmod(G) = minL ΘL(G) over all
modular types of the form L = {` | ` mod p ∈ R}, where p ≥ 2 is an arbitrary
integer and R ⊆ {0, 1, . . . , p − 1} is an arbitrary set of residues. The simplest is
the parity dimension Θodd(G) corresponding to the case when p = 2 and R = {1}.

We will now briefly summarize what was known about these measures.

1.1. Known results

Among all intersection dimensions the most intensively studied was the threshold-1 di-
mension Θ1(G). In this case the intersection rule is: xy ∈ E iff Ax ∩ Ay 6= ∅. The
threshold-1 dimension is also known as the edge clique covering number, that is, the
smallest number t of complete subgraphs G1, . . . , Gt of a given graph G covering all its
edges. To see the connection, just associate with each vertex x ∈ V (G) the set of labels
Ax = {i | x ∈ V (Gi)}.

For the threshold-1 dimension the following bounds are known.

- A classical result of Erdős, Goodman and Pósa [16] states that Θ1(G) ≤ Θ1(Kn,n) =
n2 for every graph G on 2n vertices, where Kn,n is a complete bipartite n×n graph.
Moreover, a desired covering of G can be achieved by only using simplest complete
subgraphs: edges and triangles.



3

- Chung and West [9], and Eaton, Gould and Rödl [12] extended this to θk(Kn,n) ∼
n2/k.

- That random graphs have smaller threshold-1 dimension Θ1(G) about n2/(lnn)2

was proved by Frieze and Reed [17], by improving a similar estimate of Bollobás,
Erdős, Spencer and West in [7].

- Eaton and Grable [11] extended this result to threshold-k dimensions Θk(G), k
being any fixed number.

- Using a probabilistic construction, Alon [1] proved a general upper bound Θ1(G) =
O(∆2 lnn) for all n-vertex graphs G of maximum degree ∆.

- Eaton and Rödl [10] proved that this upper bound in not very far from the truth:
n-vertex graphs G of maximum degree ∆ with Θ1(G) = Ω(∆2 ln(n/∆)/ ln ∆) exist.

If an n-vertex graph G has maximal degree ∆, then we already know that Θ1(G) =
O(∆2 lnn) [1]. Note, however, that we cannot expect similar upper bound for the graph
G itself, just because Θ1(G) is equal to the number of edges if the graph is triangle-free.
Still, such upper bounds can be achieved if one allows larger threshold values k.

- Θk(G) = O(∆2(n/∆)1/k) for every fixed k (Eaton, Gould and Rödl [12]).
- Θthr(G) = O(∆2 lnn) (Eaton and Rödl [10]).
- Θthr(G) = O(∆(ln ∆)2 lnn) if the graph G is bipartite (Eaton and Rödl [10]).

A related result of Alon [2] states that about kn1/k complete bipartite subgraphs are
necessary and sufficient in order to cover the edges of a complete n-vertex graph Kn so
that each edge belongs to at most k of the subgraphs. This generalizes (from k = 1 to
an arbitrary k) the classical result of Graham and Pollak [18] that n − 1 edge-disjoint
complete bipartite subgraphs are necessary and sufficient in order to cover Kn.

For the maximum Θodd(n) of the parity dimension Θodd(G) over all n-vertex graphs,
the following bounds are known:

- n−
√

2n− dlog2 ne ≤ Θodd(n) ≤ n− 1 (Eaton and Grable [11]).

Some structural properties of modular dimensions with respect to the types of the form
L = {` | (` mod p) ≥ k} were considered by McMorris and Wang in [25].

1.2. Intersection dimensions and complexity of boolean functions

In this paper we are interested in various intersection dimensions of bipartite graphs
G = (V,E) with a fixed partition V = V1 ∪ V2 of their vertices; the sets V1 and V2 are
sometimes referred to as color classes of the graph. In this case we relax the intersection
condition, and only require that the intersection rule (1) must be satisfied by pairs of
vertices from different color classes—the sets of labels of pairs of vertices from the same
color class may intersect arbitrarily! That is, the relaxed intersection rule for bipartite
graphs G = (V1 ∪ V2, E) is:

|Ax ∩Ay| ∈ L iff xy ∈ E, as long as x ∈ V1 and y ∈ V2.
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Hence, in the bipartite case, we do not care about what the value of |Ax ∩Ay| is, if both
vertices x and y belong to the same color class. The relaxed measures will be denoted by
lower case theta: θL(G), θthr(G), θmod(G), θ(G), etc. Most interesting of these measures
is the absolute dimension θ(G) = minL θL(G).

Note that the relaxed measures θL(G) are only defined for bipartite graphs G =
(V1 ∪ V2, E), and for such graphs we always have that θL(G) ≤ ΘL(G). But for some
bipartite graphs the gap between these two measures may be very large: for example,
Θ1(Kn,n) = n2 but θ1(Kn,n) = 1.

As in the case of general graphs, the threshold-1 dimension θ1(G) of a bipartite graph
G = (V1 ∪ V2, E) is equal to its edge biclique covering number, that is, the smallest
number t of complete bipartite subgraphs B1, . . . , Bt of G covering all its edges. To see
this connection, just associate with each vertex x ∈ V (G) the set of labels Ax = {i | x ∈
V (Bi)}.

Remark. [Motivation] The relaxation of intersection rules for bipartite graphs is mo-
tivated by an intimate relation between the resulting intersection dimensions of graphs
and the computational complexity of boolean functions. Given a bipartite graph G =
(V1 ∪ V2, E) with |V1| = |V2| = 2m, we can encode the vertices x in each color class by
vectors ~x ∈ {0, 1}m. After the encoding is fixed, the graph G defines a boolean function
fG : {0, 1}2m → {0, 1} in 2m variables by fG(~x, ~y) = 1 iff xy ∈ E. Let SYM(fG) be the
smallest number t such that the function fG(~x, ~y) can be computed by a depth-2 formula
of the form

fG(~x, ~y) = ϕ(g1(~x, ~y), . . . , gt(~x, ~y)),

where each gi is an AND of some variables and/or their negations, and ϕ : {0, 1}t → {0, 1}
is an arbitrary symmetric boolean function, that is, a boolean function whose output only
depends on the number of 1’s in the input vector. Since each set Bi = {xy | gi(~x, ~y) = 1}
forms a complete bipartite graph, this implies that θL(G) ≤ t, where L is the subset of
{0, 1, . . . , t} such that ϕ(a1, . . . , at) = 1 iff |{i | ai = 1}| ∈ L. Hence, SYM(fG) ≥ θ(G).

To find an explicit boolean function f in m variables with SYM(f) ≥ 2(logm)α for
some α → ∞ is an old problem whose solution would have important consequences in
computational complexity (see Section 4.). By what was said, this problem would be
solved by exhibiting an explicit bipartite n × n graph G of absolute dimension θ(G) ≥
2(ln lnn)α .

Another bridge between bipartite graphs and boolean functions is given by the fact
that log2 θ1(G) is precisely the nondeterministic communication complexity of fG [26].

Motivated by the connection with the computational complexity of boolean functions, in
this paper we are interested in finding explicit bipartite n× n graphs whose intersection
dimension is large. An ultimate goal is to construct graphs whose absolute dimension
θ(G) = minL θL(G) or at least the modular dimension θmod(G) is Ω(nε) for a constant ε >
0. As mentioned above, this would have important consequences in complexity theory
of boolean functions (see Section 4. for further discussion). Easy counting shows (see
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Proposition 2) that

bipartite n× n graphs of absolute dimension θ(G) = Ω(n) exist.

The problem, however, is to prove a similar explicit lower bound, that is, a lower bound
θ(G) = Ω(nε) for explicitly given graphs G. Unfortunately, no explicit graphs with
θ(G)� log2 n or even Θ(G)� log2 n are known so far.

Note that θ(G) ≥ log2 n is a trivial lower bound achieved by any bipartite twin-free
n×n graph, that is, by any bipartite graph where no two vertices in one color class have
the same set of neighbors: different vertices then require different sets of labels.

Larger explicit lower bounds were only known for several simplest intersection dimen-
sions. Let Mn be a bipartite n× n graph consisting of n vertex disjoint edges (a perfect
matching). Since θodd(G) is just the rank over GF (2) of the adjacency matrix of G (see
Proposition 3), we obtain θ1(Mn) = θodd(Mn) = n. In fact, it is shown in [21] that if a
bipartite graph G contains Mn, then θ1(G) ≥ n2/|E(G)|. Based on the observation of
Eaton and Rödl [10] that θk(G) ≥ θ1(G)1/k (see Section 2.3.), hight lower bounds can be
also obtained on the threshold-k dimension for any constant threshold value k. Except
of these, however, no explicit lower bounds θL(G) = Ω(nε) were known for other types L.

In this paper we prove lower bounds Ω(nε) for some modular types as well as for
arbitrary threshold types (Theorems 2 and 3). We also prove such a lower bound
for the absolute dimension θ(G) but only under a restriction on sets of labels used in
the representation of graphs (Theorem 4). An unconditional super-linear lower bound
Ω(n ln / ln lnn) with no restrictions on the used type L or on the form of used sets Ax
of labels, is proved for the “weight” of representations {Ax | x ∈ V (G)}, that is, for the
total sum

∑
x∈V (G) |Ax| of numbers of labels (Theorem 5). Finally, we give one result

(Theorem 6) related to the Log-Rank Conjecture in communication complexity. In the
last section we list several open problems whose solution would have great consequences
in the computational complexity of boolean functions.

2. OUR RESULTS

In this section we present our main results; their proof are given in the next section.
But before we begin, let us first show that the measures θL(G) are well-defined for all
graphs G and all types L, two trivial types L = ∅ and L = {0, 1, 2, . . .} being the only
exceptions.

Proposition 1. For every nontrivial type L and for every bipartite n×n graph G, we
have that θL(G) ≤ n+ k, where k is the smallest integer with |{k, k + 1} ∩ L| = 1.

Proof. Let G = (V1∪V2, E) be a bipartite n×n graph, and L be any nontrivial type.
Suppose that k 6∈ L and k + 1 ∈ L (the case when k ∈ L and k + 1 6∈ L is dual). Take
some set K with |K| = k elements, and let N(x) ⊆ V2 be the set of all neighbors of
x ∈ V1. Assign the set Ax = K ∪N(x) to each vertex x ∈ V1, and the set Ay = K ∪ {y}
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to each vertex y ∈ V2. We then have that |Ax ∩Ay| is equal to k + 1 ∈ L if xy ∈ E, and
is equal to k 6∈ L if xy 6∈ L.

2.1. General bounds

We start with some general bounds on the absolute dimension θ(G) = minL θL(G) of
bipartite n × n graphs G. Since every such graph can be covered by at most n stars,
we have a trivial upper bound θ(G) ≤ θ1(G) ≤ n. Moreover, this trivial upper bound
cannot be substantially improved.

Proposition 2. For every n, bipartite n× n graphs G with θ(G) ≥ (n− 1)/2 exist.
Proof. We have at most 22tn possible encodings of 2n vertices by subsets of {1, . . . , t},

and at most 2t+1 possibilities to choose the type L ⊆ {0, 1, . . . , t}. Hence, at most
22tn+t+1 bipartite n×n graphs can have absolute dimension at most t. On the other hand,
we have 2n

2
such graphs, implying that some of them need t ≥ (n2−1)/(2n+1) ≥ (n−1)/2

labels.
For n-vertex graphs of bounded maximal degree ∆, we have tighter upper bounds:

since Θ(G) = Θ(G), the above mentioned upper bound of Alon [1] implies that Θ(G) =
O(∆2 lnn).

Our first result gives an upper bound on θ(G) for bipartite graphs which is ∆ times
smaller than that for arbitrary graphs. By a bipartite complement of a bipartite graph
G = (V1 ∪ V2, E) we will mean the bipartite graph Gc = (V1 ∪ V2, E

c), where Ec =
(V1 × V2) \ E.

Theorem 1. For every bipartite n × n graph G of maximal degree ∆, θ1(Gc) =
O(∆ lnn). Moreover, graphs of maximal degree ∆ with θ(G) = Ω(∆ ln(n/∆)) exist.

2.2. Modular dimensions

The simplest among all modular dimensions is the parity dimension θodd(G) of G with
respect to the type L = {` | ` mod 2 = 1}. The adjacency matrix of a (labeled) bipartite
graph G = (V1 ∪ V2, E) is a 0/1 matrix M whose rows correspond to vertices x ∈ V1,
columns to vertices y ∈ V2, and M [x, y] = 1 iff xy ∈ E.

Proposition 3. For every bipartite graph G, θodd(G) is equal to the rank of the adja-
cency matrix of G over GF (2).

Proof. From linear algebra we know that the rank of any 0/1 matrix M over GF (2)
is the smallest number r such that it is possible to assign vectors ~x = (x1, . . . , xr) in
{0, 1}r to rows/columns x ∈ V1 ∪ V2 so that the entry M [x, y] in the x-th row and y-th
column is the scalar product 〈~x, ~y〉 of ~x and ~y over GF (2). To obtain an intersection
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representation of G with respect to the parity type L = {` | ` mod 2 = 1}, it is enough
to take Ax = {i | xi = 1} and observe that 〈~x, ~y〉 = |Ax ∩Ay| mod 2.

To capture more complicated modular measures, in Section 3.2. we introduce a less
direct algebraic argument, and use it to prove the following

Theorem 2. Let L = {k | k mod p ∈ R} for some prime number p and some subset R
of r = |R| residues. Then, for every bipartite n× n graph G of maximum degree ∆, we
have

θL(G) ≥ (n/r∆)1/(p−1) and θL(Gc) ≥ (n/∆)1/r.

Since for every natural number s there is a prime p with s < p ≤ 2s, Theorem 2
implies

Corollary 1. For any type L with |L| = s > 0, and for any bipartite n×n graph G of
maximum degree ∆, we have

θL(G) ≥ (n/s∆)1/(2s−1) and θL(Gc) ≥ (n/∆)1/s.

2.3. Threshold dimensions

Next, we consider threshold dimensions of graphs. For every positive integer k and every
bipartite graph G, we have

θ1(G)1/k ≤ θk(G) ≤ θk−1(G) + 1 ≤ θ1(G) + k − 1.

Nontrivial here is only the first inequality which was observed by Eaton and Rödl in [10]:
having a threshold-k representation {Ax} of G, we can look at k-element subsets of labels
as new labels, and assign to each vertex x the set A′x of all k-element subsets of Ax; this
gives a threshold-1 representation of G using

(
θk(G)
k

)
≤ θk(G)k labels.

If M is an n-matching, that is, a bipartite n× n graph consisting of n vertex-disjoint
edges, then clearly Θ1(M) = θ1(M) = n, because no two such edges can be contained in
a complete (even complete bipartite) graph. Hence, θk(M) ≥ n1/k for every threshold
value k. However, the general upper bound Θthr(G) = O(∆2 lnn) proved in [10] for
graphs of maximal degree ∆ implies that

θthr(M) ≤ Θthr(M) = O(lnn). (2)

This can also be shown directly: if
(
t
k

)
≥ n, then we can assign to both endpoints of each

edge of M its own k-element subset of {1, . . . , t}.
Hence, at least for some graphs, using larger threshold values k may drastically de-

crease their threshold dimension. So, a natural question is: What graphs have large
threshold dimension independent of the used threshold value k?



8

We show that Hadamard graphs are such graphs. Recall that an Hadamard matrix
of order n is an n× n matrix with entries ±1 and with row vectors mutually orthogonal
(over the reals). A graph associated with an Hadamard matrix (or just an Hadamard
graph) of order n is a bipartite n × n graph H where two vertices are adjacent if and
only if the corresponding entry of the Hadamard matrix is equal +1.

Theorem 3. For every bipartite n×n Hadamard graph H, both θthr(H) and θthr(Hc)
are at least Ω(

√
n).

The bounds above imply that the parity and threshold dimensions are incomparable,
and the gaps may be even exponential in both directions. For this it is enough to
compare the corresponding intersection dimensions of an n × n matching M and of a
bipartite Sylvester graph S: this last graph is a bipartite n×n graph with n = 2r, where
vertices in each color class are identified with subsets of {1, . . . , r}, and two vertices x
and y are adjacent iff |x ∩ y| is odd. Hence, θodd(S) ≤ r = log2 n. On the other hand,
Proposition 3 implies that θodd(M) = n. Since each Sylvester graph is also a Hadamard
graph, Theorem 3 together with the upper bound (2) yields the following trade-offs
between the parity and threshold dimensions.

Corollary 2. θodd(M)/θthr(M) = Ω(n/ lnn) and θthr(S)/θodd(S) = Ω(
√
n/ lnn).

The example of Sylvester graphs shows another interesting fact: some Ramsey graphs
have very small parity dimension. Namely, Pudlák and Rödl show in [30] that S contains
an induced

√
n ×
√
n subgraph which is Ramsey, meaning that neither the graph nor

its bipartite complement contains a copy of Ks,s, for s much larger than lnn. Since
θodd(S) ≤ log2 n and since the intersection dimension of induced subgraphs does not
exceed that of the original graph, this implies that some bipartite Ramsey graphs have
logarithmic parity dimension.

2.4. Arbitrary types

When trying to prove large lower bounds (larger than log2 n) on the absolute dimension
θ(G) = minL θL(G) of explicit bipartite graphs, we are faced with two problems: the
“adversary” (trying to represent the graph with as few labels as possible) is allowed

(i) to choose an arbitrary type L, and

(ii) to assign vertices x arbitrary sets Ax.

If both are allowed then, as mentioned in the Introduction, we are unable to say anything
more than that some explicit graphs—namely, all twin-free graphs—require at least log2 n
labels. The lower bounds above correspond to the case when we allow (ii) but restrict
(i). Now we look at what happens if we allow (i) but restrict (ii).
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Balanced representations A natural intersection representation of any (non necessar-
ily bipartite) graph is to assign each vertex x the set Ax of its incident edges. This gives
a threshold-1 representation of the graph. The representation itself has, however, an
additional property that |Au ∩Av ∩Ax| = 0 for any triple u, v, x of distinct vertices.

Motivated by this example, we say that a representation {Ax | x ∈ V1}∪{Bu | u ∈ V2}
of a bipartite graph G = (V1 ∪ V2, E) is balanced if there are two vertices x 6= y ∈ V1

such that

|Ax ∩Bu ∩Bv| = |Ay ∩Bu ∩Bv| for all vertices u 6= v ∈ V2.

It is easy to see that every bipartite n×n graph has a balanced threshold-1 representation
using at most n labels: assign to each vertex x ∈ V1 the set Ax ⊆ V2 of its neighbors,
and assign to each vertex u ∈ V2 a single-element set Bu = {u}. This is a balanced
intersection representation with respect to the type L = {1}. A natural question is: Can
the number of labels be substantially reduced by using another types L? Our next result
says that, at least for Hadamard graphs, this is not possible.

Theorem 4. Every balanced representation of a bipartite n×n Hadamard graph with
respect to any type L ⊆ {0, 1, . . .} must use at least n/4 labels.

The weight of representations So far we were interested in the size |
⋃
x∈V Ax| of

representations {Ax | x ∈ V }, that is, in the total number of used labels. Another
important measure of representations is their weight

∑
x∈V |Ax|. For a bipartite graph

G, let wL(G) denote the weight analog of θL(G), that is, the smallest weight of an
intersection representation of G with respect to the type L.

These measures were mainly considered with respect to the threshold-1 type L =
{1, 2, . . .}, and to the parity type consisting of all odd natural numbers. For the minimal
weight w1(G) of intersection representations with respect to the threshold-1 type the
following bounds were proved by Chung, Erdős and Spencer [8], and independently by
Tuza [34]:

- w1(G) = O(n2/ lnn) for every n-vertex graph G = (V,E), and
- w1(G) = Ω(|E(G)|/r) if G contains no complete bipartite r × r subgraph;
- hence, graphs G with w1(G) = Ω(n2/ lnn) exist.

Erdős and Pyber [15] improved the upper bound w1(G) = O(n2/ lnn) by showing that
every n-vertex graph has a threshold-1 intersection representation such that each label
is used by at most O(n/ lnn) vertices.

The interest in the minimal weight wodd(G) with respect to the parity type is moti-
vated by the fact that this is precisely the smallest number of wires in a depth-2 circuit
with unbounded fanin parity gates computing the linear transformation M~x = ~y over
GF (2), where M is the adjacency matrix of G (see [4]). A super-linear lower bound on
this measure was proved by Alon, Karchmer and Wigderson [4]:
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- For any bipartite n× n Hadamard graph H we have wodd(H) = Ω(n lnn).

For Hadamard graphs, this lower bound is optimal, because wodd(S) ≤ n log2 n for a
bipartite n× n Sylvester graph S.

We show that the argument, used in [4] for the parity type, can be extended to
arbitrary types.

Theorem 5. For every bipartite n × n Hadamard graph H and for every type L ⊆
{0, 1, . . .}, we have that wL(H) = Ω(n lnn/ ln lnn).

In fact, this lower bound, as well as a lower bound Ω(n) on the number of labels in a
balanced representation (Theorem 4), holds for any bipartite n×n graph G = (V1∪V2, E)
with the following property: For every two vertices x 6= y ∈ V1, there is a set S ⊆ V2 of
|S| = Ω(n) vertices such that every vertex u ∈ S is adjacent to x and non-adjacent to y.

2.5. Tight representations and the Log-Rank Conjecture

Finally, we prove one result related to the so-called “Log-Rank Conjecture” in commu-
nication complexity stating that the deterministic communication complexity of any 0/1
matrix is at most poly-logarithmic in its real rank (see, for example, [26]). Lovász and
Saks [24] noted that this conjecture is equivalent to the following Rank-Coloring Con-
jecture for graphs stating that χ(G) ≤ 2(ln r)O(1)

for any graph G, where χ(G) is the
chromatic number of G and r = rk(G) is the real rank of the adjacency matrix of G.

At some time it was thought that χ(G) ≤ rk(G). This was conjectured in 1976 by
C. van Nuffelen [27]. The first counterexample to van Nuffelen’s conjecture was obtained
by Alon and Seymour [3]. They constructed a graph with chromatic number 32 and with
an adjacency matrix of rank 29. Razborov [32] then showed that the gap between the
chromatic number and the rank of the adjacency matrix can be super-linear, and Raz
and Spieker [31] showed that the gap can even be super-polynomial. The best result
known so far is due to Nisan and Wigderson [26]. It gives an infinite family of graphs
with rank r and with chromatic number χ(G) = 2Ω(log2 r)

α

, where α = log3 6 > 1.
Nisan and Wigderson [26] have also found a yet another equivalent formulation of the

Log-Rank Conjecture in terms of the maximal number cliq(G) of edges of a complete
bipartite graph lying in G or in Gc. The conjecture then translates to: There is a constant
c > 0 such that cliq(G) ≥ nm/2(ln r)c for every bipartite n×m graph G with rk(G) = r.

To approach this conjecture, Sgal [33] suggested to first solve it with the rank r of
G replaced by the intersection dimension of G under “tight” representations. A k-tight
representation of a bipartite graph G = (V1 ∪ V2, E) is an intersection representation of
type L = {k} with an additional condition that |Ax ∩ Ay| ∈ {k − 1, k} for all x ∈ V1

and y ∈ V2. Let θtight(G) be the minimum, over all integers k ≥ 1, of the smallest
number of labels in a k-tight representation of G. The intersection matrix of each k-tight
representation of G has entries k−1 and k only, and if we subtract k−1 from each entry,
we obtain a 0/1 adjacency matrix of G whose rank is at most 1 plus the number of used
labels. Hence, rk(G) ≤ θtight(G).
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A weakened version of Log-Rank Conjecture, suggested by Sgal [33], states that there
is a constant c > 0 such that cliq(G) ≥ nm/2(ln r)c for every bipartite n ×m graph G
with θtight(G) = r.

We show that Sgal’s conjecture is true for all k-tight representations, as long as k is
at most poly-logarithmic in the total number of used labels.

Theorem 6. If a bipartite n×m graph G has a k-tight representation using r labels,
then

cliq(G) ≥ nm/4r2k.

Now we turn to the proofs.

3. PROOFS

3.1. General bounds: Proof of Theorem 1

We have at most 22tn possible encodings of 2n vertices by subsets of {1, . . . , t}, and at
most 2t+1 possibilities to choose the type L ⊆ {0, 1, . . . , t}. Hence, at most 22tn+t+1

bipartite n× n graphs can have intersection dimension at most t. Since we have at least
(n/∆)n∆/2 bipartite n×n graphs of maximum degree at most ∆ (see, for example, Propo-
sition 2.1 in [10]), this implies that some of degree-∆ graphs require t = Ω(∆ ln(n/∆))
labels, independent on what type L we use. This proves the second claim of Theorem 1.

To prove the first claim, let G = (V1 ∪ V2, E) be a bipartite n × n graph of maximal
degree ∆, and let Gc = (V1∪V2, E

c) with Ec = (V1×V2)\E be its bipartite complement.
Our goal is to cover the set Ec of edges of Gc by O(∆ lnn) complete bipartite subgraphs
S × T ⊆ F of Gc.

To do this, we construct S × T via the following probabilistic procedure: pick every
vertex x ∈ V1 independently, with probability p = 1/∆ to get a random subset S ⊆ V1,
and let

T = {y ∈ V2 | xy ∈ Ec for all x ∈ S}
be the set of all those vertices y ∈ V2 that are adjacent in Gc to all vertices in S. It is
clear that each so constructed complete bipartite graph S × T is a subgraph of Gc. An
edge xy ∈ Ec of Gc is covered by such a subgraph if x was chosen in S and none of (at
most ∆) neighbors of y in G was chosen in S. Hence, this happens with probability at
least p(1− p)∆ ≥ pe−p∆ = p/e.

If we apply this procedure t times to get t complete bipartite subgraphs, then the
probability that xy is covered by none of these subgraphs does not exceed (1− p/e)t ≤
e−tp/e. Hence, the probability that some edge of Gc remains uncovered is smaller than

n2e−tp/e = exp(2 lnn− t/(e∆)),

which is smaller than 1 for t = 2e∆ lnn.
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3.2. Modular dimension: Proof of Theorem 2

In this section we first describe an algebraic approach to proving lower bounds on modular
dimensions, and then prove Theorem 2 itself.

An approach Let G = (V1 ∪ V2, E) be a labeled bipartite n × n graph with color
classes V1 = {x1, . . . , xn} and V2 = {y1, . . . , yn}. When trying to estimate the (relaxed)
intersection dimension θL(G) of G with respect to some type L, we are faced with the
following problem. We have two systems A = {A1, . . . , An} and B = {B1, . . . , Bn}
of (not necessarily distinct) subsets of {1, . . . , t} and the only knowledge about these
systems is that the intersection sizes |Ai ∩ Bj | must be consistent with the given graph
G: |Ai ∩Bj | ∈ L iff xiyj ∈ E. Hence, the whole information about the pair A,B we are
interested in is given by its intersection matrix

I(A,B) = {|Ai ∩Bj | : 1 ≤ i, j ≤ n} .

Since I(A,B) is a matrix of scalar products of the corresponding characteristic vectors
of length t, the total number t of labels used must be at least the rank of I(A,B) over
the reals.

In general, however, it is difficult to estimate the rank of the intersection matrix
because our knowledge about its entries |Ai ∩ Bj | is rather poor: we only know that
some of them lie within the set L and the other lie outside this set. In such a situation,
one can try to transform the original matrix into a matrix whose rank r is easier to
estimate and is still not much smaller than θL(G).

To be more precise, let F be some fixed field, and let f : {0, 1}t → F be a function.
Define the f -intersection matrix of A and B as

If (A,B) = {f(Ai ∩Bj) : 1 ≤ i, j ≤ n} ,

where here and in what follows, the value f(C) of f on a subset C ⊆ {1, . . . , t} stands
for the value f(~c) of the incidence 0/1 vector ~c = (c1, . . . , ct) of C given by ci = 1
iff i ∈ C. Note that the intersection matrix I(A,B) corresponds to the case when
f(x1, . . . , xt) = x1 + x2 + · · ·+ xt.

A multilinear polynomial over F of degree d and weight w is a sum of w monomials
aIXI , where aI ∈ F and XI =

∏
j∈I xj with |I| ≤ d. Given an arbitrary (multivariate)

polynomial f(x1, . . . , xt), we define its weight w(f) as the smallest number w such that,
when restricted to {0, 1}t ⊆ F t, f can be written as a multilinear polynomial of weight w.
Note that any polynomial f(x1, . . . , xt) of degree d has weight

w(f) ≤
(
t

0

)
+
(
t

1

)
+ · · ·+

(
t

d

)
,

which is at most td for growing t.



13

Having found a polynomial f of weight w(f) ≤ td such that the corresponding f -
intersection matrix has rank at least r, the following lemma implies a lower bound t ≥ r1/d

on the number t of used labels.

Lemma 1. For every polynomial f over a field F , every f -intersection matrix has rank
at most w(f) over F .

Proof. Let A and B be systems of subsets of {1, . . . , t}, and let f be a polynomial of
weight w = w(f). Then the restriction of f to the binary cube {0, 1}t can be written as
a linear combination f = a1X1 + · · · + awXw of monomials. Since for every monomial
Xi =

∏
j∈Ii xj , we have

Xi(A ∩B) = 1 iff Ii ⊆ A ∩B iff Ii ⊆ A and Ii ⊆ B iff Xi(A) ·Xi(B) = 1,

the value f(A ∩B) is just the scalar product of two vectors

(
a1X1(A), . . . , awXw(A)

)
and

(
X1(B), . . . , Xw(B)

)
of length w over F , implying that the rank of If (A,B) cannot exceed w = w(f).

Lemma 1 is particularly appealing when dealing with modular dimensions of graphs
since in this case the choice of the appropriate polynomial f is quite natural.

Proof of Theorem 2 A bipartite n × n graph G = (V1 ∪ V2, E) is increasing if it
is possible to enumerate its vertices V1 = {x1, . . . , xn} and V2 = {y1, . . . , yn} so that
xiyi ∈ E and xiyj 6∈ E for all i > j. In this case, the adjacency matrix of G is a lower
triangular matrix with nonzero elements on the diagonal. In particular, every matching
is an increasing graph.

The following simple fact allows us to concentrate on increasing graphs.

Proposition 4. If G is a bipartite n×n graph of maximum degree ∆ and with no iso-
lated vertices, then G contains an induced bipartite (n/∆)× (n/∆) increasing subgraph.

Proof. We can construct an induced increasing subgraph of G = (V1 ∪ V2, E) induc-
tively as follows. Suppose we have already constructed an induced increasing m × m
subgraph G′ = (V ′1 ∪V ′2 , E′) of G with m < n/∆. Then we can enlarge G′ to an induced
increasing (m+ 1)× (m+ 1) subgraph as follows. Remove from V1 all vertices having at
least one neighbor in V ′2 . Since m∆ < n, at least one vertex xm+1 ∈ V1 \V ′1 must survive.
Since this vertex is not isolated and has no neighbors in V ′2 , some vertex ym+1 ∈ V2 \ V ′2
must be adjacent to xm+1. Since the subgraph G′ induced by V ′1 and V ′2 was increasing,
the subgraph induced by V ′1 ∪ {xm+1} and V ′2 ∪ {ym+1} must be increasing as well.

Since induced subgraphs can only have smaller dimension than the original graph,
Theorem 2 is a direct consequence of Proposition 4 and the following lemma.
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Lemma 2. Let G be an increasing bipartite n × n graph, p a prime number and
1 ≤ r < p an integer. Then for every type of the form L = {k | k mod p ∈ R} with
|R| = r we have θL(G) ≥ (n/r)1/(p−1) and θL(Gc) ≥ n1/r.

Proof. LetG be an arbitrary increasing bipartite n×n graph, and letA = {A1, . . . , An}
and B = {B1, . . . , Bn} be systems of subsets of {1, . . . , t} associated with its vertices.
Suppose that these two systems form an intersection representation of G with respect
to a type L = {k | k mod p ∈ R} with |R| = r. When taken modulo p, the diagonal
entries of the intersection matrix I(A,B) must belong to R, and none of the entries be-
low the diagonal can belong to R. We can therefore find a number a ∈ R and a subset
I ⊆ {1, . . . , n} of size |I| ≥ n/|R| = n/r such that |Ai ∩Bi| mod p = a for all i ∈ I, and
|Ai ∩Bj | mod p 6= a for i > j. Let A′ = {Ai | i ∈ I} and B′ = {Bi | i ∈ I}, and consider
a polynomial

ga(z1, . . . , zt) = z1 + · · ·+ zt − a.

By what was said, the corresponding ga-intersection submatrix {ga(Ai ∩ Bj) | i, j ∈
I} modulo p has zeroes on the diagonal, and has nonzero entries below the diagonal.
By Fermat’s Little Theorem, the corresponding f -intersection matrix If (A′,B′), with
f(z1, . . . , zt) defined by

f(z1, . . . , zt) = 1− ga(z1, . . . , zt)p−1,

is a lower triangular matrix with nonzero diagonal entries, and must therefore have
full rank |I| ≥ n/r over GF (p). Since f is a polynomial of degree p − 1, we have
that w(f) ≤ tp−1. Lemma 1 implies n/r ≤ |I| ≤ w(f) ≤ tp−1, and the lower bound
t ≥ (n/r)1/(p−1) follows.

If A,B is an intersection representation of the complement graph Gc with respect to
the type L = {k | k mod p ∈ R}, then this is an intersection representation of the graph
G itself with respect to the type {k | k mod p 6∈ R}. Since the graph G is increasing, this
means that |Ai ∩ Bi| mod p 6∈ R for all i, and |Ai ∩ Bj | mod p ∈ R for i > j. Hence, if
we take

h(z1, . . . , zt) =
∏
a∈R

ga(z1, . . . , zt)

then, modulo p, the h-intersection matrix Ih(A,B) itself is a lower triangular matrix with
nonzero diagonal entries, and must therefore have full rank n over GF (p). Since h is a
polynomial of degree |R| ≤ r, we have that w(h) ≤ tr. Lemma 1 implies in this case
n ≤ w(h) ≤ tr, and the desired lower bound t ≥ n1/r follows.

3.3. Threshold dimensions: Proof of Theorem 3

A standard tool when dealing with threshold-type coverings is to introduce a particu-
lar notion of discrepancy between the fractions of “correctly” and “wrongly” covered
elements.
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Let B be a family of subsets of a finite set X. For a subset A ⊆ X, let thrB(A) denote
the minimum number t for which there exist t members B1, . . . , Bt of B and a number
0 ≤ k ≤ t such that, for every x ∈ X, x ∈ A if and only if x belongs to at least k of Bi’s.
Define the relative discrepancy of the set A with respect to a family B by

discB(A) = max
B∈B

∣∣∣∣ |A ∩B||A|
− |A ∩B|

|A|

∣∣∣∣ .
Proposition 5. thrB(A) ≥ 1/discB(A).

Proof. Let B1, . . . , Bt ∈ B be a threshold-k covering of A, for some number k ≥ 1.
Then x ∈ A iff x belongs to at least k of Bi’s. Since every element of A belongs to at
least k of the sets A ∩ Bi, the average size of these sets must be at least k. Since no
element of A belongs to more than k− 1 of the sets A∩Bi, the average size of these sets
must be at most k − 1. Hence,

1 ≤ 1
|A|

t∑
i=1

|A ∩Bi| −
1
|A|

t∑
i=1

|A ∩Bi| ≤ t · max
1≤i≤t

∣∣∣∣ |A ∩Bi||A|
− |A ∩Bi|

|A|

∣∣∣∣ ≤ t · discB(A).

We can now prove Theorem 3 as follows. Let H = (V1∪V2, E) be a bipartite Hadamard
n × n graph, and let t = θthr(H). Then there exists an integer k ≥ 1, a set I of |I| = t
labels and a system of sets {Ax ⊆ I | x ∈ V1 ∪ V2} such that, for every pair xy of
vertices x ∈ V1 and y ∈ V2, xy ∈ E iff |Ax ∩ Ay| ≥ k. Associate with each label
i ∈ I a complete bipartite graph Bi = Si × Ti, where Si = {x ∈ V1 | i ∈ Ax} and
Ti = {y ∈ V2 | i ∈ Ay}. Then xy ∈ E iff |Ax ∩ Ay| ≥ k iff xy belongs to at least k of
Bi’s. Hence θthr(H) = t ≥ thrB(E) with B = {B1, . . . , Bt}. By Proposition 5, it remains
to show that discB(E) = O(n−1/2).

For this, take a complete bipartite graph B = S × T in B achieving the maximum
in the definition of discB(E). The well-known Lindsey’s Lemma (see, for example, [14],
p. 88) says that the sum of all entries in any s× t submatrix of an n× n Hadamard ±1
matrix lies between −

√
stn and

√
stn. In particular, this sum lies between −n3/2 and

n3/2 for any submatrix. In terms of graphs, we obtain that the absolute value of the
difference |E ∩B| − |Ec ∩B| does not exceed n3/2; here, as before, Ec = (V1 × V2) \E is
the set of non-edges of H. Since the number of edges as well as of non-edges of H is at
least cn2 for a constant c > 0, this implies that discB(E) = O(n3/2/n2) = O(n−1/2).

3.4. Balanced representations: Proof of Theorem 4

We will give a lower bound on the number of labels in balanced representations in terms
of the following characteristic of graphs, which we will also use in the next section.

A bipartite graph G = (V1 ∪ V2, E) is k-isolated if, for every two vertices x 6= y ∈ V1,
there is a set S ⊆ V2 of |S| = k vertices such that every vertex u ∈ S is adjacent to x and
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non-adjacent to y. For example, a bipartite Hadamard n × n graph is k-isolated with
k ≥ n/4. Hence, Theorem 4 is a special case of the following

Theorem 7. Every balanced representation of a k-isolated bipartite n×n graph must
use at least k labels.

Proof. Let A = {Ax | x ∈ V } be a balanced intersection representation of G using t
labels. Let V = V1 ∪ V2 be the bipartition of G. Since the representation is balanced,
there must exist two vertices x 6= y ∈ V1 such that their sets of labels X = Ax and
Y = Ay satisfy

|Au ∩Av ∩X| = |Au ∩Av ∩ Y | for all u 6= v ∈ V2. (3)

On the other hand, since the graph is k-isolated, there must be a subset S ⊆ V2 of |S| = k
vertices such that every vertex u ∈ S is adjacent to x and non-adjacent to y. Hence,
independent on what type L was used for the representation, we must have that

|Au ∩X| 6= |Au ∩ Y | for all u ∈ S. (4)

For every subset C ⊆ {1, . . . , t}, the value f(C) of a real polynomial

f(z1, . . . , zt) =
∑
i∈X

zi −
∑
i∈Y

zi

is the difference between |C ∩X| and |C ∩Y |. Hence, by taking C = Au∩Av, (3) implies
that f(Au∩Av) = 0 for all u 6= v ∈ S, and (4) implies that f(Au∩Au) 6= 0 for all u ∈ S.
That is, the f -intersection matrix If (A′,A′) of A′ = {Au | u ∈ S} is a real diagonal
matrix with nonzero diagonal entries. Lemma 1 implies t ≥ w(f) ≥ |S| = k.

3.5. Weight: Proof of Theorem 5

Theorem 5 is a direct consequence of the following

Theorem 8. If a bipartite n×n graph G is k-isolated, then wL(G) = Ω(k lnn/ ln lnn)
for every type L.

Proof. Let G = (V1 ∪ V2, E) be a bipartite k-isolated n × n graph. Fix an arbitrary
intersection representation A1, . . . , An, B1, . . . , Bn of G with respect to some type L. We
may assume that k > 0 (since for k = 0 there is nothing to prove). Hence, all sets
A1, . . . , An must be distinct. Let m = c lnn/ ln lnn for a sufficiently small absolute
constant c > 0. If

∑n
i=1 |Ai| > mn, then we are done. So, assume that

∑n
i=1 |Ai| ≤ mn.

Our goal is to show that then
∑n
j=1 |Bj | ≥ mk.

A classical result of Erdős and Rado [10] says that every family of r!sr sets, each of
which has cardinality less than r, contains a sunflower with s petals, that is, a family
F1, . . . , Fs of sets of the form Fi = Pi ∪C, where the Pi’s are pairwise disjoint; the set C
is the core of the sunflower, and the Pi’s are called the petals.
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Now, if
∑n
i=1 |Ai| ≤ mn, then at least n/2 of the sets Ai must be of size at most

r = 2m. By the sunflower theorem, these sets must contain a sunflower with s = 2m
petals. Having such a sunflower with a core C, we can pair its members arbitrarily,
(Au1 , Av1), . . . , (Aum , Avm). Important for us is that all m symmetric differences Di =
Aui ⊕Avi = (Aui ∪Avi) \ C are mutually disjoint.

Since the graph is k-isolated, each two vertices ui 6= vi have a set Si ⊆ V2 of |Si| = k
vertices, all of which are adjacent to ui and none of which is adjacent to vi. Hence,
independent on the type L, we have that |Aui ∩Bj | 6= |Avi ∩Bj | must hold for all j ∈ Si.
This implies that each set Bj with j ∈ Si must have at least one element in the symmetric
difference Di = Aui ⊕Avi . Hence,

n∑
j=1

|Di ∩Bj | ≥
∑
j∈Si

|Di ∩Bj | ≥ |Si| = k for each i = 1, . . . ,m.

Since the sets D1, . . . , Dm are disjoint, this implies

n∑
j=1

|Bj | ≥
n∑
j=1

m∑
i=1

|Di ∩Bj | =
m∑
i=1

n∑
j=1

|Di ∩Bj | ≥
m∑
i=1

k = mk.

3.6. Tight representations: Proof of Theorem 6

Since every k-tight representation is also a threshold-k representation, Theorem 6 is a
direct consequence of the following

Theorem 9. Let G be a bipartite n × m graph of threshold-k dimension r. Then
either the graph G contains a complete bipartite subgraph with nm/4

(
r
k

)2 edges, or the
bipartite complement Gc of G contains a complete bipartite subgraph with nm/4 edges.

Proof. Let {Ax | x ∈ V1 ∪ V2} be a threshold-k representation of G = (V1 ∪ V2, E)
using r labels. Hence, xy ∈ E iff |Ax ∩Ay| ≥ k. We say that a set S of labels appears in
a vertex x if S ⊆ Ax. Set α = 1/2

(
r
k

)
, and call a set S of labels left popular (resp., right

popular) if it appears in at least α-fraction of vertices of V1 (resp., of V2).

Case 1. At least one k-element set S of labels is left popular as well as right popular.
In this case, the set S appears in at least αn vertices in V1 as well as in at least αm
vertices in V2. The corresponding vertices all share the same k-element set S, and hence,
form a complete bipartite subgraph of G with at least (αn)(αm) = α2nm edges.

Case 2. No k-element set S of labels is both left and right popular. If a set S is not
left popular, then it can appear in at most αn of vertices in V1. Hence, the number of
vertices in V1 containing at least one k-element subset, which is not left popular, cannot
exceed

(
r
k

)
· αn = n/2. We can therefore find a subset L ⊆ V1 of |L| ≥ n/2 vertices
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x ∈ V1, all whose k-element subsets S ⊆ Ax are left popular. By symmetry, we can find
a subset R ⊆ V2 of |R| ≥ m/2 vertices y ∈ V2, all whose k-element subsets S ⊆ Ay are
right popular. Since, by our assumption, no k-element subset of labels can be both left
and right popular, no k-element set can be contained in any intersection Ax ∩ Ay with
x ∈ L and y ∈ R. Hence, |Ax ∩ Ay| < k for all x ∈ L and y ∈ R. That is, in this case
the complement graph Gc contains a complete bipartite (n/2)× (m/2) subgraph L×R.

4. CONCLUSION AND OPEN PROBLEMS

As mentioned in the Introduction, high lower bounds on the intersection dimension of
explicit bipartite graphs would resolve some old problems in the computational complex-
ity of boolean functions. In this paper we obtained such lower bounds when either the
form of the type L or the form of used sets of labels is restricted. Our results, as well as
previous ones, are still too weak to have new consequences for boolean functions. Below
we shortly describe what we need to have such consequences. In all these problems we are
looking for an explicit sequence of bipartite n×n graphs of large intersection dimension.

Problem 1. Prove θmod(G) ≥ 2(ln lnn)α for some α→∞.
By results of Yao [37] and Beigel and Tarui [6], this would yield the first super-

polynomial lower bound for constant depth circuits with arbitrary modular gates (so-
called ACC-circuits), thus resolving a long-standing open problem in computational
complexity. Actually, as shown by Green et al. [19], it would be enough to prove such
a lower bound on θL(G) for a special kind of modular types L consisting of all natural
numbers whose binary representations have a 1 in the middle. Such types (called middle-
bit types) consist of disjoint intervals of consecutive numbers. According to this result,
it would be enough to prove an explicit lower bound 2(ln lnn)α on the minimum of θL(G)
over all modular types of the form L = {` | (` mod p) ≥ p/2}. Theorem 2 yields such
lower bounds, as long as p ≤ (lnn)/(ln lnn)α. The problem is to extend this for longer
intervals.

Each interval type L = {a, a + 1, . . . , b} is an intersection of two threshold types
{a, a+ 1, . . .} and {0, 1, . . . , b}. We already know (see Theorem 3) that, with respect to
both these types, Hadamard n × n graphs H must have dimension about

√
n. Can the

dimension of H with respect to {a, a+ 1, . . . , b} be much smaller than
√
n?

Problem 2. What is the intersection dimension of Hadamard graphs with respect to
interval types?

In the context of boolean functions, the next important measure is the following
generalization of the threshold-1 dimension θ1(G) of graphs, that is, of the edge clique
covering number of graphs. Namely, let ρs(G) be the smallest number r such that G
can be written as an intersection of at most s graphs G1, . . . , Gs with θ1(Gi) ≤ r for all
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i = 1, . . . , s. That is, in oder to reduce the number of complete subgraphs in the covering,
we now allow to replace up to a 1− 1/s fraction of non-edges of G by new edges.

Define the resistance ρ(G) of a graph G by ρ(G) = min{s | ρs(G) ≤ s}. It can be
shown (see [20]) that ρ(G) is the smallest number r for which it is possible to associate
with each vertex x an r × r matrix Mx with entries in {0, 1} so that xy ∈ E iff the
diagonal of the product matrix Mx ·M>y over the reals has no zero on the diagonal.

Problem 3. Prove ρ(G) = Ω(nε) for a constant ε > 0.
Together with the well-known reduction of log-depth circuits to depth-3 circuits, due

to Valiant [35], this would give the first super-linear lower bound for boolean circuits of
logarithmic depth (see [20] for more details). To prove such a lower bound is one of the
central open problems in the computational complexity of boolean functions.

Easy counting shows that bipartite n×n graphs of absolute dimension ρ(G) = Ω(
√
n)

exist: we have 2n
2

bipartite n× n graphs, but only 22nr2 possibilities to assign r× r 0/1
matrices Mx to the vertices x. The problem, however, is to prove a comparable lower
bound for an explicit sequence of graphs. The best we can do so far is a lower bound
ρ(G) = Ω(ln3/2 n) proved by Lokam [23] for Hadamard graphs. It is also known that
ρs(H) = Ω(n1/2−ε), as long as s ≤ ε log2 n [20]. Hence, it is important to understand
what happens, when s approaches the border of log2 n. That this may be indeed a critical
border can be seen on an example of an n × n matching M : then ρ1(M) = θ1(M) = n
but ρs(M) ≤ 2 for s = log2 n. To see this, encode each vertex x in one color class by
its own vector ~x ∈ {0, 1}s, and assign the matched vertex in the other color class the
same vector ~x. We can then write M as an intersection of s graphs G1, . . . , Gs, where
Gi, consists of all edges whose endpoints have the same bit in the i-th coordinate. Since
each Gi is a union of just two complete bipartite graphs, ρs(M) ≤ 2 follows.

Problem 4. What is ρs(H) for an n× n Hadamard graph H when s = log2 n?
Even a mere existence of bipartite graphs, whose resistance is much larger than the

resistance of their bipartite complements, is not known.

Problem 5. Does there exists a sequence Gn of bipartite n × n graphs such that
ln ρ(Gn) ≤ (ln lnn)c for a constant c, but ln ρ(Gn) ≥ (ln lnn)α for some α tending to
infinity as n→∞?

If not, then this would separate the second level of the communication complexity
hierarchy and resolve a more than 20 years old problem raised by Babai, Frankl and
Simon [5].

The last problem concerns the weight wodd(G) of intersection representations with
respect to the type consisting of all odd integers.

Problem 6. Prove wodd(G) = Ω(n1+ε) for a constant ε > 0.
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The highest known lower bound wodd(G) = Ω(n ln3/2 n) is due to Pudlák and Rödl
[29]. When dealing with this measure, the following equivalent reformulation could be
useful: wodd(G) is the smallest number w for which the adjacency matrix of G can
be written as a product AB of two 0-1 matrices A and B over GF (2) such that the
total number of nonzero entries in A and B does not exceed w. An indication that
Hadamard graphs may be not good for this purpose is given in [29]: Sylvester matrix can
be decomposed into the product of three matrices with only linear number of nonzero
elements.
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