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Abstract We consider so-called “incremental” dynamic programming algorithms, and are
interested in the number of subproblems produced by them. The classical dynamic pro-
gramming algorithm for the Knapsack problem is incremental, produces nK subproblems
and nK2 relations (wires) between the subproblems, where n is the number of items, and
K is the knapsack capacity. We show that any incremental algorithm for this problem
must produce about nK subproblems, and that about nK log K wires (relations between
subproblems) are necessary. This holds even for the Subset-Sum problem. We also give up-
per and lower bounds on the number of subproblems needed to approximate the Knapsack
problem. Finally, we show that the Maximum Bipartite Matching problem and the Travel-
ing Salesman problem require exponential number of subproblems. The goal of this paper
is to leverage ideas and results of boolean circuit complexity for proving lower bounds on
dynamic programming.

Keywords Dynamic programming · Knapsack · Matching · Branching programs · Lower
bounds

1 Introduction

Capturing the power and weakness of algorithmic paradigms is an important task pursuit
over several last decades. The problem is a mix of two somewhat contradicting goals. The
first of them is to find an appropriate mathematical model formalizing vague terms, as
greedy algorithms, dynamic programming, backtracking, branch-and-bound algorithms,
etc. The models must be expressive enough by being able to simulate at least known
algorithms. But they also should be not omnipotent, should avoid the power of arbitrary
algorithms, problems like P versus NP, as well as the power of general boolean circuits.
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Having found a formal model for an algorithmic paradigm, the ultimate goal is to
prove lower bounds in them. If one succeeds in doing this, we have a provable limitation of
a particular algorithmic paradigm. The lower-bound proofs themselves localize the weak
points of the paradigms, which can lead to better heuristics. On the other hand, if one
fails to prove a strong lower bound, matching an upper bound given by known algorithms,
this is a strong motivation to search for more efficient algorithms. Let us stress that we
are seeking for absolute lower bounds that are independent of any unproven assumptions,
like the assumption that P 6= NP.

In this paper we focus on the dynamic programming paradigm. There were many at-
tempts to formalize this paradigm, and various refinements were obtained [8,27,20,19,37],
just to mention some earlier important contributions in this direction. In these attempts,
the goal was to capture more and more algorithmic features to cover more and more exist-
ing DP algorithms. But, as a rule, the resulting models are too powerful to prove strong
lower bounds in them.

More tractable models of so-called “prioritized branching trees” (pBT) and “prior-
itized branching programs” (pBP) were recently introduced, respectively, by Alekhno-
vich et al. [3] and Buresh-Oppenheim et al. [13]. These models are based on the framework
of “priority algorithms” introduced by Borodin et al. [11], and subsequently studied and
generalized by many authors [4,3,12,14,34,33], just to mention some of them. This frame-
work aims to capture the power of greedy algorithms. The model of pBT extends the power
of greedy algorithms by adding some aspects of backtracking and dynamic programming.
The model of pBP adds to that of pBT an additional feature of “memoization” (or “cashing”
or “merging” subtrees), an important aspect of dynamic programming. In [3] it is shown
that the Knapsack problem requires pBTs of exponential size, whereas in [13] it is shown
that detecting the presence of a perfect matching in bipartite graphs requires (restricted)
pBPs of exponential size.

In this paper we pursue essentially the same goal as in [3] and [13], but with exclusive
focus on the dynamic programming paradigm. There is an old field—that of boolean circuit
complexity—where the same goal (what small circuits cannot do) was pursuit for now more
than 70 years. Along the way, many subtle lower-bounds arguments were invented there.
So, it makes sense to look at what could be useful from all this classical “tool-box” when
analyzing the limitations of DP algorithms. A possible approach here is to modify boolean
circuits so that they are able to simulate DP algorithms.

For example, the fact that every DP algorithm implicitly constructs a “subproblem
graph” describing the dependencies between subproblems, leads to the model of so-called
“dynamic branching programs.” The fact that most DP algorithms are given by their recur-
rence relations using Plus and Min/Max operations suggests that the so-called “tropical”
circuits constitute a natural model for DP algorithms. These two models are already ca-
pable to simulate most of fundamental DP algorithms for discrete optimization problems.

We will mainly consider 0/1 optimization problems. A problem instance (or an input)
here is a sequence of data items together with a vector x = (x1, . . . , xn) of their real-
valued weights. Solutions are subsets S ⊆ [n] := {1, . . . , n} of (indexes of) data items.
The value of a solution S is the sum

∑

i∈S xi of weights of its items. Some solutions are
declared as feasible solutions. The goal is then to find the maximal (or minimal) weight
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of a feasible solution and/or an optimal solution itself. Such problems are called “zero-
one” problems because one can identify solutions S with their characteristic 0/1 vectors
cS ∈ {0, 1}n, where cS(i) = 1 means that the i-th item is “accepted” (belongs to S), and
cS(i) = 0 means that the i-th item is “rejected” (does not belong to S). That is, in 0/1
optimization problems, solutions are 0/1 vectors c ∈ {0, 1}n maximizing (or minimizing)
the sum

∑n
i=1 cixi. Note that being a 0/1 optimization problem only means that decisions

are 0 and 1, the weights may be arbitrary numbers.
For example, in the n-dimensional Knapsack problem with knapsack capacity K, data

items are pairs of non-negative integers (size, profit). The weight of such an item is its
profit. Feasible solutions are subsets of data items whose total size does not exceed the
capacity K. The goal is to find a feasible solution whose total profit is maximized.

Remark 1 Note that in the Knapsack problem, the family Fx ⊆ 2[n] of feasible solutions
depends on the input x: S ∈ Fx if and only if the sum of sizes of items xi with i ∈ S does
not exceed K. In many other 0/1 optimization problems, the family F of feasible solutions
is input-independent. For example, in the Maximum Weight Bipartite Matching problem,
we have a fixed complete bipartite n×n graph Kn,n, inputs are assignments x : Kn,n → R

of weights to its edges, and F is the family of all matchings in Kn,n. In the s-t shortest path
problem, F consists of all subsets of edges of a complete n-vertex graph Kn containing an
s-t path, in the TSP, F consists of all Hamiltonian cycles in Kn, etc. In such problems,
the goal is to compute the function f(x) = maxS∈F

∑

i∈S xi or f(x) = minS∈F

∑

i∈S xi,

where F ⊆ 2[n] is a family of feasible solutions, one for all weights-vectors x.

Roughly speaking, dynamic programming is a method of solving optimization problems
in which one first identifies a collection of subproblems and tackles them one by one,
“easiest” first, using the answers to easy problems to help figure out more difficult ones,
until the master problem is solved. This paradigm is based on the induction principle:
describe a way to solve the problem, assuming solutions for all of its subproblems are
known. The recurrence relation usually uses Min and Plus (or Max and Plus) operations.

Actually, the use of Plus operations in most DP algorithms is restricted: one of the
inputs is an input variable (the weight or other numerical parameter of a treated data
item) and not the value of another subproblem. We call such algorithms incremental. Such
is, for example, the standard DP algorithm for the Knapsack problem (more examples are
given in Sect. 2.4). As subproblems this algorithm takes f(i, k) = the maximal total profit
for filling a capacity k knapsack with some subset of items 1, . . . , i. The DP algorithm is
then described by the recursion:

f(i, k) = maximum of f(i − 1, k) and f(i − 1, k − si) + pi, (1)

where si is the size, and pi the profit of the i-th item.

1.1 Our results

We first consider 0/1 optimization problems where feasibility of solutions does not depend
on actual weights (see Remark 1). In Theorem 1, we give a general lower bound on the
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number of subproblems produced by any incremental DP algorithm solving such a problem.
As easy corollaries, we then show that any incremental DP algorithm for the Maximum
Bipartite Matching problem as well as that for the Traveling Salesman problem must
produce an exponential number of subproblems (Theorems 2 and 3).

In the rest of the paper, we concentrate on the Knapsack problem. If we have n items,
and if K is the capacity of the knapsack, then the DP algorithm (1) produces nK subprob-
lems. A natural question is: can any incremental DP algorithm solve the Knapsack problem
using substantially smaller number of subproblems? Our general lower bound cannot be
applied for this problem, because the family of feasible solutions is now input-dependent.
Still, by establishing some properties of integer partitions, we are able to prove that any
incremental DP algorithm for Knapsack must produce Ω(nK) subproblems (Theorem 4).

Our next result deals with a more general model where “redundant” paths in the sub-
problem graph are allowed; a path is “redundant” or “inconsistent” if no input instance uses
it. It is known that in the case of boolean branching programs presence of such paths may
exponentially reduce program size [22]. Still, using a classical lower bound of Hansel [17]
for the threshold function, we can prove that at least1 Ω(nK log K) wires (relations be-
tween the subproblems) are necessary to solve the Knapsack problem (Theorem 5), even if
“redundant” paths are allowed. It remains open whether Ω(nK) subproblems are necessary
in this more general model. Finally, we show that the number of subproblems produced
by incremental DP algorithms approximating the Knapsack problem within a factor 1 + ǫ
lies between n/ǫ and n3/ǫ (Theorems 6 and 7).

We simulate incremental DP algorithms by so-called “dynamic branching programs”.
The main idea of this model is to reduce the original optimization problem to the shortest
(or longest) s-t path problem in a particular labeled acyclic digraph. The reduction itself
is based on an observation that for many DP algorithms, their subproblem graphs “work”
in a similar manner as classical branching programs for decision problems do—we only
need to replace the underlying boolean semiring by other semirings. For more information
about branching programs, the reader may consult, for example, one of the books [36,24].

2 Dynamic Branching Programs

Every dynamic programming algorithm implicitly constructs an acyclic “subproblem graph”
(a “table of partial solutions”). This graph has a directed edge A → B from the node
for subproblem A to the node for subproblem B if determining an optimal solution for
subproblem B involves considering an optimal solution for subproblem A. We are mainly
interested in the number of nodes (subproblems) in this graph.

Important aspect of incremental DP algorithms is that they actually reduce the original
problem to the shortest or longest s-t path problem on its subproblem graph: if an item xi

is treated when going from a subproblem A to a subproblem B, then let the “length” of the
edge A → B be the weight of xi, if the item is accepted, and let the edge have zero length,
otherwise. An optimal solution for a given input x is then a shortest (or longest) path
in the subproblem graph. This observation is not new: in many books, discrete dynamic

1 All logarithms in this paper are to the basis 2.
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programming is developed from the prototypical viewpoint of finding the shortest/longest
paths in the subproblem graph or in some related directed acyclic graph.

There is, however, one small “subtlety”: the actual graph (in which the shortest or
longest path is searched) may depend on the actual input sequence of data items. This
happens, for example, in the DP algorithm (1) for Knapsack. Here the node f(i, k) is
entered by two wires from f(i − 1, k) and from f(i − 1, k − si), and this latter node
depends on the actual size si of the i-th item. In order to locally simulate this dependence,
we just allow each wire to have its “survival test”. This leads us to the model of “dynamic
branching programs”.

2.1 The Model

A dynamic branching program (dynamic BP) is a directed acyclic graph P (x1, . . . , xn) with
two special nodes, the source node s and the target node t. Multiple wires2, joining the
same pair of nodes are allowed. Values of variables are data items. The size of a program
is the number of its nodes. There are two types of wires: unlabeled wires (rectifiers) and
labeled wires (contacts). Each contact e is labeled by one of the variables xi, meaning
that e is responsible for this variable. The contact e may also have a decision predicate δe :
D → {0, 1} about the item it is responsible for, as well as its survival test te : D → {0, 1},
where D is the set of all data items:

◦ ◦
survival test te(xi)

decision predicate δe(xi)
//

Both δe(xi) and te(xi) are arbitrary functions of one variable; they may arbitrarily depend
on the data item xi itself, not only on its weight. Contact e “accepts” the item xi if
δe(xi) = 1, and “rejects” it if δe(xi) = 0. The meaning of the survival test is that the
contact e “dies” (disappears from the program) on input x if te(xi) = 0, and “survives”
(remains intact) if te(xi) = 1. If the program has no survival tests, then we call it static.

Along one path, the same variable xi may be treated many times. We however, require
that a dynamic BP satisfies the following “consistency conditions” for survival tests and
decisions: if a contact e1 precedes a contact e2 on the same path, and if both contacts are
responsible for the same variable xi, then we require that

te1
(xi) = te2

(xi) , (2)

δe1
(xi) ≤ δe2

(xi) (3)

The first condition requires that along every path, survival tests on the same data item
must have the same outcome. The second condition requires that, once accepted, the same
item cannot be rejected later. Note, however, that once rejected, the same item can be
later accepted. We discuss the issue of “late rejections”—when accepted items can be later
rejected—in Sect. 8. The role of the first condition (2) is discussed in Sect. 2.3.

2 We prefer to use the term “node” instead of “vertex” as well as “wire” instead of “edge” while talking about
branching programs, because inputs to programs may also be edges and vertices of a customary graph.
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A dynamic BP is oblivious if along every path the variables are queried in the same
order, and is read-once if along every path, no variable is queried more than once. Note
that a read-once BP needs not be oblivious, and an oblivious BP needs not be read-once.
Every read-once BP automatically satisfies both conditions (2) and (3). Every static BP
automatically satisfies the condition (2) just because there are no survival tests at all;
condition (3) is also trivially satisfied, if all decision predicates are constant.

2.2 How Does a Dynamic BP Compute?

We first associate with wires their “lengths” as follows. Suppose that a contact e is respon-
sible for the i-th variable. Then the length of a contact e on input x ∈ Dn is the weight of
the i-th item xi, if this item is accepted at e, and is 0 if the item is rejected at e; rectifies
always have zero length.

Now, when an input x ∈ Dn arrives, we remove from P all contacts whose survival tests
output 0 on x (these contacts “die” on this input). Then the value P (x) computed by a
program P on input x is just the length of a longest (or shortest, if we have a minimization
problem) s-t path in the resulting subgraph Px. We set P (x) = 0, if there are no s-t paths
in Px.

Being “dynamic” means that the subgraph Px as well as the lengths of its edges (con-
tacts) may depend on the actual problem instance x. If the program is static, then we
have Px = P for all inputs x, and only lengths of edges may vary.

Remark 2 The shortest and longest s-t path problems on acyclic graphs with n vertices
and m edges can be easily solved in time O(n + m). Thus, the number of nodes in a
dynamic BP simulating a given incremental DP algorithm corresponds to the total number
of subproblems produced by the algorithm, whereas the number of wires corresponds to
the actual “computational effort” of the algorithm, that is, the number of Max and Plus
(or Min and Plus) operations performed. If the program has survival tests, then the actual
“computational effort” may be smaller: after input x arrives, some wires disappear, and
the subprogram Px may have much fewer wires.

How does a program produce optimal solutions? A path p is consistent with a given
input string x ∈ Dn, if this input passes all survival tests along p, that is, if all survival
tests output 1 on x. The solution produced by p on x is the set of items accepted (by
decision predicates) along p; the solution may be a multiset, if some items were accepted
several times. Thus, the value P (x) computed by a dynamic BP on an input x ∈ Dn is
the maximal (or minimal) value of a solution produced by an s-t path consistent with x.
A program P solves a given optimization problem if for every input x ∈ Dn the following
holds:

1. At least one s-t path is consistent with x and produces an optimal solution for x.
2. None of the consistent with x s-t paths produces an infeasible solution for x.

Note that we do not require that all feasible solutions for x must be produced: we only
require that no infeasible solution is produced.
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Remark 3 A similar in its “sole” model of so-called combinatorial dynamic programs was
recently introduced by Bompadre in [9]. This model is similar to our model of static
BPs with all decision predicates being “accept”. In combinatorial DPs, the correspondence
between s-t paths and feasible solutions is less restrictive than in static BPs, but there
is one restriction, not present in our model: each feasible solution must be produced by
at least one s-t path (see Definition 3, item 3 in [9]). Still, it is shown in [9] that many
DP algorithms can be simulated in this model. Using a reduction to monotone arithmetic
circuits, exponential lower bounds on the number of wires in combinatorial DPs are proved
in [9] for some “permanent-like” optimization problems, that is, problems whose feasible
solutions are (not necessarily all) permutations of some set. Examples of such problems are
Traveling Salesman Problem, and the Bipartite Matching Problem. First exponential lower
bounds for monotone arithmetic circuits were proved by Jerrum and Snir [21], and these
were also for “permanent-like” problems. The Knapsack problem is not “permanent-like”,
and for it, no lower bound was known in this model.

2.3 Relation to Boolean Branching Programs

Recall that an nondeterministic branching program (NBP) is a directed acyclic graph
where at some wires tests of the form “is xi = 0?” or “is xi = 1?” are made; unlabeled
wires (rectifiers) are allowed. We also have a source node s and a target node t. Such a
program accepts an input x ∈ {0, 1}n if and only if this input passes all tests along at
least one s-t path. A program is nondeterministic, because one input may follow many s-t
paths.

Dynamic BPs constitute a similar model of computation, where instead of the boolean
semiring ({0, 1},∨,∧) we are working over semiring (max,+) or (min,+). The length of a
path in this case is the sum of weights of accepted items, and the value of the program is
the maximum or minimum of the lengths of all consistent s-t paths. That is, here we have
Plus instead of AND, and Max/Min instead of OR.

It is not difficult to see that without the consistency condition (2) on survival tests,
dynamic BPs are at least as powerful as NBPs. To show this, suppose we have an NBP
P computing some non-constant boolean function f(x). At its contacts, survival tests “is
xi = 0?” and ‘is xi = 1?” are made. Since f is not the constant-1 function, along each
consistent path at least one variable must be tested. We let each bit xi to have weight 1.
We can transform P into a dynamic BP P ′(x) solving a 0/1 maximization problem by just
adding to each contact the decision “always accept". Now if P (x) = 1, then at least one
s-t path in P is consistent with x, implying that P ′(x) ≥ 1. If P (x) = 0, then no s-t path
in P is consistent with x, implying that P ′(x) = 0. Thus, the dynamic BP P ′(x) computes
the same boolean function f(x), and has the same size as the NBP P (x).

This fact is a strong word of caution: the best known lower bound for NBPs remains
the lower bound Ω(n3/2/ log n) proved by Nechiporuk [31] more than 45 years ago (see,
e.g., [24, Sect. 15.1]). Moreover, this bound is on the number of wires; concerning the
number of nodes, even super-linear lower bounds are not known; recall that neither fanin
nor fanout of nodes in NBPs as well as in dynamic BPs is bounded.
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Note, however, that it is the consistency condition (2) which makes the model of dy-
namic BPs more tractable than that of general NBPs. In the case of NBPs, this condition
implies that there cannot be any “null-paths”, that is, s-t paths along which two contra-
dictory tests xi = 0 and xi = 1 on the same variable xi are made. For such NBPs we can
already prove even exponential lower bounds (see, e.g., [24, Sect. 16.3]).

2.4 Examples

Many DP algorithms can be directly translated to dynamic (and even static) branching
programs just by using their recursion relations. We restrict ourselves to several illustrative
examples.

Example 1 (Single Source Shortest Paths, Bellman–Ford–Moore) A problem in-
stance is an assignment of real lengths xij to the edges of a directed complete graph Kn

on vertices [n] = {1, . . . , n}. The goal is to find shortest paths from vertex 1 to all remain-
ing vertices. The Bellman–Ford–Moore algorithm for this problem takes as subproblems
fk(j) = length of a shortest path from 1 to j using at most k edges. The terminal values
are f1(j) = x1j , j = 2, . . . , n. The DP recursion is: fk(j) = minimum of fk−1(j) and
fk−1(i) + xij for all i. The optimal value for a vertex j is fn−1(j). The algorithm can be
easily implemented as a static BP. A fragment of this BP is shown here:

fk−1(1) · · · fk−1(j)

fk(j)· · · · · ·

· · · fk−1(n)

accept x1j

''OOOOOOOOOOOOOOOOOOOOOO

��
accept xnj

{{wwwwwwwwwwwwww

The node (subproblem) fk(j) is entered by a rectifier (unlabeled wire) fk−1(j) → fk(j) as
well as by contacts fk−1(i) → fk(j) with i 6= j responsible for edges (i, j); the length of
each such contact is just the length xij of the edge (i, j). We also have a source node s with
contacts going to all nodes f1(j) for j = 2, . . . , n. Each contact s → f1(j) is responsible
for the edge (1, j), and the decision is here also “accept”. The number of nodes in the
constructed static BP is O(n2), and the number of wires is O(n3). The BP itself reduces
the shortest paths problem in Kn to the same problem in an acyclic graph on O(n2)
vertices.

Example 2 (Maximum Value Contiguous Subsequence) A problem instance is a
sequence x1, . . . , xn of real weights (positive and negative), and the goal is to find a con-
tiguous subsequence with maximal weight. Thus, feasible solutions are contiguous intervals
i, i + 1, . . . , j, and their values are the sums xi + xi+1 + · · · + xj . As subproblems we take
f(j) = maximum weight of an interval ending in j. The terminal value is f(0) = 0. The
DP recursion is f(j) = max{f(j − 1) + xj, xj}. This algorithm can be implemented as
a read-once static BP with n + 2 nodes s, 1, 2, . . . , n, t and O(n) wires. Each node i ∈ [n]
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is entered by two contacts: s → i and i − 1 → i, both responsible for xi. All decisions
are “accept”. This program is not oblivious, but is read-once and is static. There are also
rectifiers (unlabeled wires) from all nodes i ∈ [n] to the target node t.

Example 3 (Longest Increasing Subsequence) A problem instance is a sequence
x1, . . . , xn of numbers, and the goal is to find a largest subsequence i1 < i2 < . . . < ik of
indexes such that xi1 ≤ xi2 ≤ . . . ≤ xik . If f(j) denotes the length of the longest increasing
subsequence ending in xj, then the DP solution is f(j) = 1 + max{f(i) : i < j and xi ≤
xj}. This algorithm can be turned into a read-once dynamic BP. As items we take pairs
xij = (xi, xj) with i < j, each of weight 1. We have nodes 1, . . . , n, and contacts (i, j) for
all i < j. Each such contact is responsible for the item xij = (xi, xj), and makes a survival
test “is xi ≤ xj?”. All decisions are “accept”. It then remains to add rectifiers (unlabeled
wires) from a source node s to all nodes 1, . . . , n, and rectifiers from these nodes to a target
node t. Here is a dynamic BP for n = 5 numbers (without nodes s and t shown):

/.-,()*+1 /.-,()*+2 /.-,()*+3 /.-,()*+4 /.-,()*+5
x1≤x2? // x2≤x3? // x3≤x4? // x4≤x5?

//

x1≤x3?

))

x1≤x4?

&&

x1≤x5?

%%

x2≤x4?

88
x3≤x5?

88

x2≤x5?

88

The program has n + 2 nodes and O(n2) wires. After an input x1, . . . , xn arrives, all
contacts (i, j) with xi > xj will disappear, and the longest increasing subsequence is the
sequence of inner nodes of a longest s-t path in the resulting subgraph.

Example 4 (Weighted Interval Scheduling) We have n intervals x1, . . . , xn on the
real line, each with its value, and the goal is to find a subset of pairwise disjoint intervals
of maximal total value. Each interval xi is specified by its start-point si and end-point ei.
We assume that intervals are ordered so that e1 ≤ e2 ≤ . . . ≤ en. As items we again take
pairs xij = (xi, xj) of intervals with i < j; the weight of such an item is the value v(xj) of
the second interval xj . As subproblems we take f(j) = the value of an optimal solution
for the first j intervals. Then f(j) is the maximum of f(j − 1) and f(i) + v(xj) over all
i < j such that ei < sj. This DP algorithm can be turned into a dynamic read-once BP
with n nodes in an obvious manner: it is enough to take a BP from the previous example,
add rectifiers i → i + 1 for all i = 1, . . . , n− 1, and replace every survival test “is xi ≤ xj?”
by the test “is ei < sj?”, that is, by the test “is the end-point of the i-th interval smaller
than the start-point of the j-th interval?”.

Example 5 (Longest Common Subsequence) Given two strings a = (a1, . . . , an) and
b = (b1, . . . , bm) of elements, the goal is to find a longest common subsequence of them.
A common subsequence of a and b is a string c = (c1, . . . , ck) for which there exist two
sequences of positions 1 < i1 < · · · < ik < n and 1 < j1 < · · · < jk < n such that
cr = air = bjr for all r = 1, . . . , k. That is, a subsequence need not be consecutive, but
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must be in order. In this case, data items are pairs xij = (ai, bj), each of weight 1. As
subproblems we take f(i, j) = length of the longest common subsequence of (a1, . . . , ai)
and (b1, . . . , bj). The terminal values are f(0, j) = f(i, 0) = 0 for all i, j. The value f(i, j)
is computed as the maximum of f(i, j − 1), f(i − 1, j) and of f(i− 1, j − 1) + 1 if ai = bj .
The answer is f(n,m). This algorithm can be easily implemented as a dynamic read-once
BP with O(nm) wires:

· · · f(i − 1, j − 1) f(i − 1, j) · · ·

f(i, j − 1) f(i, j) · · ·· · ·

accept xij

Is ai = bj?
##GG

GG
GG

GG
GG

��

//

Wires f(i, j − 1) → f(i, j) and f(i − 1, j) → f(i, j) are rectifiers, and hence, have length
0. The survival test “is ai = bj?” ensures that the third term f(i − 1, j − 1) + 1 occurs in
the recursion relation only if ai = bj .

Example 6 (Pairwise Alignment) Here we are also given two strings a and b (say, two
DNA sequences), and the goal is to determine the minimum number of “point mutations”
required to change a into b, where a point mutation is one of: change a letter, insert a
letter or delete a letter. Items in this case are also pairs xij = (ai, bj), each of weight 1.
As subproblems we take f(i, j) = minimal number of point mutations required to change
(a1, . . . , ai) to (b1, . . . , bj). The terminal values are f(0, j) = j and f(i, 0) = i for all i, j;
these values correspond to the cases when one of the strings is empty. The value f(i, j) is
computed as the minimum of f(i, j − 1) + 1, f(i − 1, j) + 1 and of f(i − 1, j − 1) + wij,
where wij is 1 if ai 6= bi, and is 0 otherwise. The answer is f(n,m). This algorithm can be
easily turned into a static read-once BP with O(nm) wires:

· · · f(i − 1, j − 1) f(i − 1, j) · · ·

f(j, j − 1) f(i, j) · · ·· · ·

accept xij iff ai 6= bj
##GG

GG
GG

GG
GG

accept xij

��

accept xij

//

Here “accept” means “a point mutation happened”.
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Example 7 (Knapsack) Recall that in the Knapsack problem items are pairs xi =
(pi, si), where pi is the profit and si the size of the i-th item. The standard DP algorithm
(1) takes as subproblems f(i, k) = the maximal total profit for filling a capacity k knapsack
with some subset of items x1, . . . , xi. The recursion relation is then f(i, k) = the maximum
of f(i − 1, k) and f(i− 1, k − si) + pi. The output is f(n,K). This algorithm can be also
easily turned into an oblivious read-once dynamic BP with nK nodes as follows:

f(i − 1, 1) · · · f(i − 1, j) · · · f(i − 1, k) · · · f(i − 1,K)

f(i, k)· · · · · ·

accept xi

Is si = k − j?
##GGGGGGGGGGGG

��

As nodes we take the nK subproblems f(i, k). All contacts entering such a node are
responsible for the i-th item xi = (pi, si). The rectifier f(i − 1, k) → f(i, k) has length 0.
Every contact f(i − 1, j) → f(i, k) with j < k makes a decision “always accept”. At each
such contact, a survival test “is si = k − j?” is made. Thus, only one of these contacts,
namely f(i − 1, k − si) → f(i, k), will survive, and its length is the profit pi of the i-th
item.

There is also the start node s from which there is a contact responsible for the first
item x1 to each of the nodes f(1, 1), . . . , f(1,K). Each contact s → f(1, j) makes a trivial
decision “always accept”, and has a survival test “is s1 ≤ j?”. The target node is f(n,K).
It is easy to see that the resulting dynamic BP is read-once and oblivious. The program
has nK nodes (by ignoring the source node) and O(nK2) wires. Note, however, that on
each input, only O(nK) of the wires will survive.

Example 8 (TSP) We have to visit cities 1 to n. We start in city 1, run through the
remaining n− 1 cities in some order, and finally return to city 1. Inputs are non-negative
integer distances xij between cities i and j. In the Maximum Traveling Salesman problem,
know also as the Taxicab Ripoff problem, the goal is to maximize the total travel length.
The latter problem is usually motivated by the fact that good approximation algorithms
for it yield good approximation algorithms for the Shortest Common Superstring problem
(see, e.g.. [6]). A trivial algorithm for Maximum TSP checks all (n − 1)! = Ω((n/e)n)
permutations. The DP algorithm suggested by Held and Karp [18] solves the problem this
problem in exponential, but much shorter time O(n22n). It takes as subproblems f(S, i) =
length of a longest path that starts in city 1, then visits all cities in S \ {i} in an arbitrary
order, and finally stops in city i. Here S ⊆ {2, . . . , n} and i ∈ S. Clearly, f({i}, i) = x1i.
The DP recursion is:

f(S, i) = max
{

f(S \ {i}, j) + xj i : j ∈ S \ {i}
}

.

The optimal travel length is given as the maximal value of f({2, . . . , n}, j) + xj1 over
all 2 ≤ j ≤ n. By replacing max by min, we obtain a DP algorithm for the (usual)
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minimization TSP. Both algorithms are incremental, and can be directly simulated by
read-once static BPs with O(n2n) nodes f(S, i), and O(n22n) wires. Each such node is
entered by |S| − 1 contacts f(S \ {i}, j) → f(S, i), responsible for the variables xj i. All
decisions are “accept”. Hence, the length of every contact is the distance of the edge it is
responsible for.

Table 1 This table summarizes the form of obtained dynamic BPs; we ignore multiplicative
constants.

Problem Static BP Constant decisions Read-once Nodes Wires
Single Source Shortest Paths Yes Yes No n2 n3

Max Contiguous Subsequence Yes Yes Yes n n
Longest Increasing Subsequence No Yes Yes n n2

Interval Scheduling No Yes Yes n n2

Longest Common Subsequence No Yes Yes nm nm
Pairwise Alignment Yes No Yes nm nm
Knapsack with capacity K No Yes Yes nK nK2

TSP Yes Yes Yes n2n n22n

Let us stress that no effort was needed to turn the mentioned DP algorithms into
dynamic BPs: the resulting BPs are just “graphic” representations of their recurrence
relations.

3 A Structural Lemma

In this section, we establish some structural properties of dynamic BPs which will latter
allow us to combine computation paths. These properties are consequences of consistency
conditions (2) and (3).

Consider a dynamic BP P solving some 0/1 maximization problem with non-negative
weights. Take any two inputs a, b ∈ Dn, and fix any two s-t paths in P producing optimal
solutions for these inputs. Suppose that these paths meet in some inner node v. Let pa

denote the first segment of the path for a until the node v, and qa the rest of this path;
similarly for input b:

s • ◦
v

• t
pb

77

qa

((
pa

''

qb

66

We say that a variable is tested along a path, if some contact of the path is responsible for
this variable. Let Ia = {i ∈ [n] : xi is tested along pa} and Ja = {i ∈ [n] : xi is tested along qa}.
Let also Pa = {i ∈ Ia : ai is accepted along pa} and Qa = {i ∈ Ja : ai is accepted along qa}.
That is, Pa ⊆ Ia is the partial solution produced by the path pa on input a, and Qa ⊆ Ja is
the partial solution produced by the path qa on this input. Hence, Pa ∪Qa is the solution
for a produced by the entire s-t path (pa, qa). Note that Pa ∩Qa = ∅ because we consider
a 0/1 optimization problem, and Pa ∪ Qa is an optimal solution for a (not just feasible).
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By a combination of a pair (a, b) we will mean any input c ∈ Dn such that ci = ai for
all i ∈ Ia \ Jb, ci ∈ {ai, bi} for all i ∈ Ia ∩ Jb, and ci = bi for all remaining i. That is,
c coincides with a on all variables tested only along pa, coincides with b on all variables
tested only along qb, and coincides with either a or b on every re-tested variable xi.

Recall that a path is consistent with a given input, if this input passes all survival tests
made along the path. If a path p is consistent with an input a ∈ Dn, then its weight, wp(a)
on this input is the sum of weights of items of a accepted along p.

Lemma 1 (Cut-and-Paste Lemma)
1. Every combination c of (a, b) is consistent with the combined path (pa, qb).
2. For every combination c of (a, b), all items ci with i ∈ Ia ∩ Jb are rejected along pa.

3. There is a combination c of (a, b) such that wpa(c) = wpa(a) and wqb
(c) = wqb

(b).
4. Pa ∩ Qb = ∅.

Proof In the proof, we will essentially use the consistency conditions we posed on dynamic
BPs. Recall that the first condition is on survival tests: along every path, the survival tests
on the same variable xi must be identical. The second condition is on decision predicates:
if an item is accepted on a path, then it cannot be rejected latter on that path.

We first show (1), i.e., that input c is consistent with the combined (pa, qb). We know
that input a is consistent with the first segment pa, and input b is consistent with the
second segment qb. Thus, input c passes all survival tests te(xi) made on variables xi such
that i 6∈ Ia∩Jb. Take now an i ∈ Ia∩Jb. Then the variable xi is tested at some contact e1 of
pa, and is re-tested at some contact e2 of qb. We know that te1

(ai) = 1 and te2
(bi) = 1. So,

regardless of what the actual value of ci is (ci = ai or ci = bi), the consistency condition
te1

(xi) = te2
(xi) on survival tests implies that te1

(ci) = te2
(ci) = 1. Hence, input c passes

all tests on variables xi with i ∈ Ia ∩ Jb, as well.
To show (2), assume the opposite, i.e., that some item ci with i ∈ Ia ∩ Jb is accepted

along pa. Then there is a contact e1 on pa testing the i-th variable xi such that δe1
(ci) = 1.

Since i ∈ Jb, the variable xi is re-tested at some contact e2 along the path qb. The
consistency condition on decision predicates implies 1 = δe1

(ci) ≤ δe2
(ci). Thus, along

the combined s-t path, the i-th item ci of c is accepted at least two times (at contacts e1

and e2). But since the weights are non-negative, and since we consider a 0/1 maximization
problem, the solution produced by the path (pa, qb) on input c is not a feasible solution for
c, a contradiction. (This is why we stated the lemma only for BPs solving maximization

problems.)
To show (3), consider a combination c of (a, b) with ci = bi for all i ∈ Ia ∩ Jb. Then c

coincides with b on all variables tested along qb, implying that wqb
(c) = wqb

(b). By claim
(2), for all i ∈ Ia ∩ Jb, both items ci and ai are rejected along pa. But on the remaining
variables xi with i ∈ Ia \ Jb, the input c coincides with a, implying that wpa(c) = wpa(a).

Claim (4) follows from (2) by taking a combination c with ci = ai for all i ∈ Ia∩Jb. ⊓⊔

4 A General Lower Bound

In this section we consider 0/1 maximization problems f(x) = maxS∈F

∑

i∈S xi, where

F ⊆ 2[n] is a family of feasible solutions, and xi is a weight of the i-th item. Note that here
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being feasible is input-independent: the family F of feasible solutions is one and the same
for all inputs x (see Remark 1). We say that the problem has the unique optimum property,
if for every feasible solution S ∈ F, there is an input x such that S is a unique optimal
solution for x. Note that, if weights 0 and 1 are allowed, then every maximization problem
has this property: just set xi = 1 for i ∈ S, and xi = 0 for i 6∈ S. The unique optimum
property was also used in [3] and [13] to prove lower bounds for prioritized branching trees
and branching programs.

Under the r-th degree, dr(F), of a family of sets F ⊆ 2[n] we will mean the maximum
number of sets in F, all sharing some r elements in common. Thus, d0(F) = |F|, and s ≤ r
implies ds(F) ≥ dr(F).

Theorem 1 Let 1 < m ≤ n be an integer, and consider a 0/1 maximization problem with

the unique optimum property. Let F be the family of all feasible m-element solutions. Then

the number of nodes in every dynamic BP solving this problem must be at least

2 +
m−1
∑

r=1

|F|

dr(F) · dm−r(F)
.

Proof The proof idea is borrowed from [25]. Let P be a dynamic BP solving our maxi-
mization problem. Associate with every solution S ∈ F an input aS and an s-t path πS

such that S is a solution for aS produced by πS. Such an input aS and a path πS must
exist, because we have the unique optimum property, and because the program must pro-
duce at least one optimal solution for each input. We concentrate on the set of inputs
A = {a : a = aS for some S ∈ F}. Fix an integer 1 ≤ r < m, and stop the path πS after
exactly r items of aS are accepted. Let pa denote the initial part, and qa the second part
of this path; hence, πS = (pa, qa).

Let Vr be the set of nodes at which at least one of the s-t paths πS for S ∈ F was
stopped. For a node v ∈ Vr, let Av ⊆ A be the set of all items a ∈ A, whose initial paths
pa end in v. Finally, let Fv ⊆ F be the set of all feasible solutions of size m which are
produced on some inputs by s-t paths going through the node v.

By an r-rectangle we will mean a family R ⊆ 2[n] of subsets for which there exists two
sequences S1, . . . , Sp and T1, . . . , Tq of subsets of [n] such that |Si| = r for all i, Si∩Tj = ∅
for all i 6= j, and R = {Si ∪ Tj : 1 ≤ i ≤ p, 1 ≤ j ≤ q}; we call such two sequences of sets a
generator of R.

Claim 1 For every node v ∈ Vr, the family Fv is an r-rectangle.

Proof Fix a node v ∈ Vr. Let S1, . . . , Sp be the partial solutions produced on inputs a ∈ Av

by initial segments of paths until these paths were stopped at node v; hence, |Si| = r for all
i. Let also T1, . . . , Tq be the partial solutions produced by second segments of these paths
after the node vhence, |Tj | = m − r for all j. By Lemma 1(4), we have that Si ∩ Tj = ∅
for all i 6= j. So, it remains to show that every set Si ∪ Tj belongs to Fv, i.e., that Si ∪ Tj

is a solution of size m produced on some input by an s-t path going through the node v.
Using the notation of the previous section, we have that Si = Pa and Tj = Qb for some

inputs a, b ∈ Av. Take the combined input c such that ci = ai for all i ∈ Ia \Jb, and ci = bi

15



for all remaining i. By Lemma 1(1), this input is consistent with the combined path (pa, qb).
By Lemma 1(2), all items ai and ci with i ∈ Ia ∩ Jb are rejected along pa. In all remaining
positions i ∈ Ia \ Ib, input c coincides with a. Thus, Pc = Pa. Since c coincides with b
on all variables tested along qb, we also have that Qc = Qb. Thus, Si ∪ Tj = Pc ∪ Qc is a
feasible solution for input c produced by the combined path (pa, qb). Since |Pc| = |Pa| = r
and |Qc| = |Qb| = m − r, this solution has size m, and we are done. ⊓⊔

Claim 2 If R is an r-rectangle, and if each set in R has at least m ≥ r elements, then
|R| ≤ dr(R) · dm−r(R).

Proof Let S1, . . . , Sp and T1, . . . , Tq form a generator of R. Hence, |Si| = r, |Tj | ≥ m − r
and |R| ≤ p · q. On the other hand, for every fixed 1 ≤ i0 ≤ s, the number q of sets
Si0 ∪ T1, . . . , Si0 ∪ Tq cannot exceed dr(R), because all these sets contain a fixed set Si0 of
size |Si0| = r. Since r ≥ s implies dr(R) ≤ ds(R), the same argument yields p ≤ dm−r(R).

⊓⊔

Since every s-t path πS must go through some node in Vr, we have that F =
⋃

v∈Vr
Fv.

Claims 1 and 2 imply that |Fv| ≤ dr(F) · dm−r(F) holds for every node v ∈ Vr. Thus,

|Vr| ≥
|F|

dr(F) · dm−r(F)
.

Since this holds for every r = 1, . . . ,m − 1, and the sets Vr are disjoint, and since two
nodes (source and target) do not belong to any of the Vr, we are done. ⊓⊔

Remark 4 Theorem 1 also holds with dr(F) · dm−r(F) replaced by the maximum number
of sets in an r-rectangle contained in F.

To give some applications, let us consider the Maximum Bipartite Matching problem. In
this problem, items are edges (i, j) of the bipartite complete n×n graph Kn,n together with
their weights xij ∈ {0, 1}. Feasible solutions are sets of vertex-disjoint edges (matchings).
The goal is to compute the maximum weight of a matching. This problem can be solved
in polynomial time by a simple application of linear programming. But what about the
DP complexity of this problem? It is shown in [13] that this problem requires prioritized
branching programs of exponential size. Results of [9] also imply that this problem requires
combinatorial dynamic programs of exponential size. We now show that dynamic BPs for
this problem must be exponentially large as well.

Theorem 2 Every dynamic BP solving the Maximum Bipartite Matching problem on Kn,n

must have at least 2n nodes.

Proof It is clear that this problem has the unique optimum property: for every matching,
assign its edges weight 1, and assign 0 to remaining edges. The family F of feasible solutions
of size n consists of all n! perfect matchings. The r-th degree dr(F) of F is the number
(n − r)! of all perfect matchings sharing a fixed matching with r edges. By Theorem 1,
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the total number of nodes in every dynamic BP solving the Maximum Bipartite Matching
problem must be at least

2 +

n−1
∑

r=1

|F|

dr(F) · dn−r(F)
= 2 +

n−1
∑

r=1

n!

(n − r)!r!
=

n
∑

r=0

(

n

r

)

= 2n .

⊓⊔

As a next example, consider the Maximum Traveling Salesman problem (Max TSP).
Recall that in this problem we are given n2 non-negative integers xij, and the goal is to
find a permutation (i2, i3, . . . , in) of {2, 3, . . . , n} such that the sum x1i2 +xi2i3 + · · ·+xin1

is maximized. Each number xij corresponds to the distance between cities i and j. A TSP
is metric if the distances xij are symmetric (xij = xji) and satisfy the triangle inequality
xij ≤ xik + xkj. This special case of TSP is interesting because it allows much better
approximations. We already know (see Example 8) that the general Max TSP can be
solved by a static read-once BP of size O(n2n).

Theorem 3 Every dynamic BP solving the metric Max TSP on n vertices must have 2n−1

nodes, even if weights are 1 and 2.

Proof The triangle inequality holds because the sum of any two distances is at least 2, the
maximal possible distance of a single edge. The problem itself has the unique optimum
property: given a Hamiltonian cycle, assign distance 2 to its edges, and distance 1 to other
edges. The family F of feasible solutions consists of all (n−1)! permutations (i2, i3, . . . , in)
of {2, 3, . . . , n}: once i2 and in are known, the distances x1i2 and xin1 are predetermined.
The r-th degree dr(F) of F is the number (n − 1 − r)! of all permutations with some r
values fixed. The same computations as in the proof above (with n− 1 instead of n) yield
the desired lower bound 2n−1 on the number of nodes in any dynamic BP solving the
problem. ⊓⊔

5 Lower Bound for Knapsack

In Example 7 we have shown that the Knapsack problem can be solved by a dynamic BP
using nK nodes, where n is the number of items, and K is the capacity of the knapsack.
Moreover, the resulting BP is read-once and oblivious. We will now show that this trivial
upper bound is almost tight: Ω(nK) nodes are also necessary, even in the class of non-
oblivious and not read-once programs. Moreover, this number of nodes is necessary already
to solve the Subset-Sum problem, a special case of the Knapsack problem, where the profit
of each item is equal to its size.

In the (n,K)-knapsack problem, input instances are sequences a = (a1, . . . , an) of in-
tegers in [K] = {1, . . . ,K}, and the goal is to maximize

∑

i∈S ai over all subsets S ⊆ [n]
such that

∑

i∈S ai ≤ K.

Theorem 4 If K ≥ 3n then every dynamic branching program solving the (n,K)-knapsack

problem must have at least 1
2nK nodes.
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We cannot apply the general lower bound given by Theorem 1 because now the fam-
ilies Fa ⊆ 2[n] of feasible solutions depend on input instances a: Fa consists of subsets
S ⊆ [n] such that

∑

i∈S ai ≤ K. So, we need another arguments for Knapsack. To prove
Theorem 4, we first establish some properties of integer partitions, which may be of inde-
pendent interest. We then combine these properties with the structural lemma (Lemma 1)
to derive the desired lower bound for the (n,K)-knapsack problem.

5.1 Integer Partitions

Let k ≥ 2 be a fixed natural number. A partition of a natural number n into k blocks
is a vector x = (x1, . . . , xk) of natural numbers such that x1 + · · · + xk = n. By a test

we mean a pair (S, b), where S ⊆ [k], and 0 ≤ b ≤ n is an integer. Such a test is legal

if 0 6= |S| ≤ k − 1. Say that a test (S, b) covers a partition x if
∑

i∈S xi = b. Let us call
S the support, and b the threshold of the test (S, b). Note that the (illegal) test ([k], n)
alone covers all partitions. We are interested in how many legal tests we need to cover all
partitions. So, let τ(n) denote the minimum number of legal tests that cover all partitions
of n into k blocks.

Lemma 2 τ(n) = n + 1.

Proof The upper bound τ(n) ≤ n + 1 is easy: already tests ({1}, b) with b = 0, 1, . . . n do
the job. To prove the lower bound τ(n) ≥ n + 1, we argue by induction on n and on the
number m of supports in the collection.

If m = 1 then for every n, all the tests have the same support S, say, S = {1, . . . , r}.
If some threshold b ∈ {0, 1, . . . , n} is missing, then the vector x = (b, 0, . . . , 0, n − b) is
a partition of n, but it is covered by none of the tests, because the legality of the tests
implies r < k. Thus, in this case n + 1 tests are necessary.

For general m, let F be the family of supports in our collection of tests. Take a support
S′ ∈ F which is not a proper subset of another support in F. Let S be the complement
of S′, and replace every test (S′, b) in our collection by the complementary test (S, n− b);
we can do this because these two tests cover the same set of partitions. What we achieved
during this transformation is that now S 6⊆ T holds for all supports T in our collection.

Take now the smallest number c which does not appear as a threshold b in any of our
tests (S, b) with support S. Thus, we must already have at least c tests (S, 0), (S, 1), . . . , (S, c−
1) in our collection.

The remaining tests (T, b) with T 6= S in our collection can be modified in such a way
that they cover all partitions of n− c into k − |S| blocks. Namely, fix a string of numbers
(ai : i ∈ S) summing up to c, and concentrate on partitions of n containing this string,
as well as on the tests covering these partitions. By ignoring the positions i ∈ S, these
partitions give us all partitions of n − c into k − |S| blocks. Now replace each test (T, b)
with T 6⊆ S by (T \S, b′) where b′ = b−

∑

i∈S∩T ai. The new tests cover all these (shorter)

partitions. Moreover, S 6⊆ T implies that |T \ S| < k − |S|, that is, the new tests are legal.
By induction hypothesis, there must be at least n − c + 1 such (modified) tests, giving a
lower bound m ≥ c + (n − c + 1) = n + 1 on the total number of original tests. ⊓⊔
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Let τ+
k (n) denote the version of τ(n) in the case when only positive integers are allowed

to participate in a partition; we call such partitions positive partitions.

Lemma 3 τ+
k (n) ≥ n − k + 1.

Proof There is a 1-1 correspondence between positive partitions x of n and partitions x′ of
n−k given by x′ = (x1−1, . . . , xk −1). Now suppose we have a collection of tests covering
all positive partitions of n. Replace each test (S, b) by the test (S, b−|S|). Note that b ≥ |S|
if the test covers at least one positive partition x, because then

∑

i∈S xi = b and all xi ≥ 1.
Since

∑

i∈S xi = b implies
∑

i∈S(xi − 1) = b − |S|, a partition x′ of n − k passes the test
(S, b − |S|) if the positive partition x of n passes the test (S, b). Thus, the new collection
of test covers all partitions of n − k, and we obtain τ+

k (n) ≥ τ(n − k) = n − k + 1. ⊓⊔

5.2 Proof of Theorem 4

Take a dynamic branching program P = (V,E) solving the (n,K)-knapsack problem.
In particular, this program must solve the problem on the set A ⊆ [K]n of all positive
partitions of K, that is, on the set of all input strings a = (a1, . . . , an) such that a1 + · · ·+
an = K, and all ai belong to [K] = {1, . . . ,K}.

For every a ∈ A, there must be an s-t path which is consistent with a and has length K
on input a. Fix one such path, and call it the optimal path for a. Since none of the inputs
in A has a zero component (partitions are positive), along each optimal path exactly n
items must be accepted. Of course, S = [n] is the unique optimal solution for every input
a ∈ A. The point, however, is that the program cannot produce any infeasible solution for
the remaining inputs. We will use this fact to show that not too many of optimal paths
for inputs in A can meet in an inner node.

Fix an integer r ∈ {1, . . . , n− 1}, and stop the optimal path for a after exactly r items
of a were accepted. Let pa denote the first segment (until the “stop-node”) and qa the
second segment of the optimal path for a. Let also Vr ⊆ V denote the set of nodes v in
our program such that the optimal path of at least one input instance a ∈ A was stopped
at v. For a node v ∈ Vr, let Av ⊆ A be the set of all items a ∈ A, whose initial paths pa

end in v.

Claim 3 On all inputs a ∈ Av, the initial segments pa produce the same partial solution
S ⊆ [n], and the value b =

∑

i∈S ai of these solutions is the same for all a ∈ Av.

Proof Take arbitrary two inputs a, b ∈ Av. Let, as before, Pa ⊆ [n] be the partial solution
produced on input a by the first segment pa of the optimal path for a, and Qa the partial
solution produced on input a by the second segment qa of this path. By Lemma 1(4), the
sets Pa∪Pb and Qa∪Qb are disjoint. Together with |Pa| = |Pb| = r and |Qa| = |Qb| = n−r,
this implies that Pa = Pb and Qa = Qb. In particular, this means that the initial parts pa

and pb produce the same partial solution S on the corresponding inputs.
Let wp(a) denote the weight of a solution produced by a path p on input a. Thus

wpa(a) =
∑

i∈S ai and wpb
(b) =

∑

i∈S bi. Assume that wpa(a) 6= wpb
(b), say, wpa(a) >

wpb
(b). Let c be a combination of (a, b) guaranteed by Lemma 1(3); hence, wpa(c) = wpa(a)
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and wqb
(c) = wqb

(b). Then the combined path (pa, qb) produces an infeasible solution for
c of weight wpa(c) + wqb

(c) = wpa(a) + wqb
(b) > wpb

(b) + wqb
(b) = K, a contradiction. ⊓⊔

By Claim 3, every node v ∈ Vr gives a legal test (S, b) covering all partitions in Av .
Since the set A of all positive partitions of K into n blocks is the union of the sets Av with
v ∈ Vr, we can conclude that the set A can be covered by |Vr| legal tests. Together with
Lemma 3, this implies that |Vr| ≥ τ+

n (K) ≥ K − n + 1. Thus, the total number of nodes
must be |V | ≥ (n − 1)(K − n + 1) = Kn− K − (n − 1)2, which is ≥ 1

2nK for K ≥ 3n, as
desired. ⊓⊔

6 Lower Bound for General Dynamic Programs

We now consider dynamic branching programs where only survival tests of the form ”is
xi = d?” are allowed, but there are no other restrictions, in particular, there are no
consistency conditions. That is, along one path, two contradictory tests ”is xi = d1?” and
”is xi = d2?” for d1 6= d2 may be made. We, however, assume that there are no rectifiers,
that is, every wire has a survival test. Let us call such programs general dynamic BP. We
are going to prove a non-trivial lower bound on the number of wires in such a program.

We again consider the simplified version of the Knapsack problem, where the profit of
each item is equal to its weight. Namely, in the minimization (n,K)-Knapsack problem,
input is a sequence a = (a1, . . . , an) of natural numbers ai ≤ K, and the goal is to
minimize

∑

i∈S ai over all subsets S ⊆ [n] such that
∑

i∈S ai > K. Just as in the case of
maximization Knapsack problem, the DP algorithm for the minimization gives rise to a
read-once and oblivious dynamic BP with at most nK2 wires (see Example 7).

Theorem 5 Every general dynamic BP solving the minimization (n,K)-Knapsack prob-

lem must have Ω(nK log K) contacts.

The proof will use entirely different arguments than those above. Namely, we will use
a classical result of Hansel [17] stating that any monotone contact scheme computing the
threshold-2 function Thm

2 (x1, . . . , xm) must have at least Ω(m log m) contacts. Recall that
Thm

2 accepts a boolean vector if and only if it contains at least two 1s. A contact scheme
is a nondeterministic branching program (see Sect. 2.3) without rectifiers. Such a scheme
is monotone, if it does not have survival tests xi = 0. The idea to use Hansel’s result is
borrowed from Rychkov [35].

Proof Let P (x1, . . . , xn) be a general dynamic BP solving the minimization Knapsack
problem. We assume that the number n of items is even, and the capacity K is an odd

number. To prove that P must have at least Ω(nK log K) contacts, it is enough to show
that, for every i = 1, . . . , n/2, the program P must contain at least Ω(K log K) contacts
responsible for variables x2i−1 and x2i. By symmetry, it is enough to show this only for
i = 1. That is, it is enough to show that the number of contacts responsible for x1 and x2

must be at least Ω(K log K).
As before, a path is consistent with an input string if this string passes all survival

tests along that path. With some abuse of notation, we will say that a dynamic program
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Table 2 How tests x1 = d and x2 = d get transformed, when K = 5.

d x1 = d x2 = d
0 y5 = 1 remove
1 remove y4 = 1
2 y3 = 1 remove
3 remove y3 = 1
4 y4 = 1 remove
5 remove y5 = 1

“accepts” an input string a ∈ Dn if at least one s-t path is consistent with a, and “rejects”
a if no s-t path is consistent with a. Thus, our program P accepts an input a if an only if
∑n

i=1 ai > K.
Recall that our domain is D = {0, 1, . . . ,K}. Call a pair (u, v) ∈ D2 an even-odd pair,

if
u + v > K, u is even and v is odd.

Let S ⊆ D be the second half of our domain, that is, S = {⌈K/2⌉, ⌈K/2⌉+1, . . . ,K}. The
proof consists of the following two steps:

(i) Modify P (x1, . . . , xn) to obtain a program P ′(x1, x2) which accepts exactly even-odd
pairs.

(ii) Modify P ′(x1, x2) to obtain a monotone contact scheme Q(yu : u ∈ S) of m = |S| =
Ω(K) new boolean variables which computes the threshold-2 function Thm

2 (yu : u ∈ S).

The modifications will not increase the total number of contacts: we only contract/remove
some of contacts and/or replace their labels. By Hansel’s result the scheme Q must have
Ω(m log m) contacts. Thus, at least so many contacts should have been responsible for
variables x1 and x2 in program P , as desired.

We obtain the program P ′(x1, x2) of step (i) from the program P as follows. First,
contract all contacts making tests xi = 0 for i ≥ 3. Then remove all contacts making a
test:

xi = d for d 6= 0 and i ≥ 3,
x1 = d for d odd,
x2 = d for d even.

In this way, the program P ′(x1, x2) accepts a pair (u, v) ∈ D2 if and only if the following
holds: the program P accepts the input (u, v, 0, . . . , 0) (hence, u + v > K), u is even, and
v is odd. That is, P ′ accepts exactly even-odd pairs. Recall that in P ′, only tests x1 = d
for d ∈ D even, and tests x2 = d for d ∈ D odd are made. The monotone boolean contact
scheme Q(yu : u ∈ S) of step (ii) is obtained from P ′(x1, x2) as follows. First, remove from
P ′ all decision predicates. Then replace the tests

x1 = d and x2 = K − d for d ∈ D even

by the (boolean) tests
ymax{d,K−d} = 1 .
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Note that, for all d ∈ D, the number u = max{d,K − d} belongs to S, implying that
the obtained tests are indeed on the variables in our set {yu : u ∈ S}. Moreover, since K
is odd, a test yu = 1 with u ∈ S can only be obtained from

x1 = u or x2 = K − u if u is even,
x1 = K − u or x2 = u if u is odd.

(4)

Claim 4 The monotone boolean contact scheme Q(yu : u ∈ S) computes the threshold-2
function Thm

2 (yu : u ∈ S).

Proof Since the scheme Q is monotone, it is enough to show that it accepts all vectors with
exactly two 1s, and rejects all vectors with exactly one 1. To show this, take an arbitrary
vector b ∈ {0, 1}S with one or two 1s.

Assume first that b contains two 1s in positions u 6= v in S. We have to show that
Q(b) = 1, that is, there exist an s-t path in Q along which only tests yu = 1 and yv = 1
are made. For this, we use the fact that P ′(x1, x2) accepts the pair (u, v) if and only if
along at least one s-t path in P ′ only tests x1 = u and x2 = v are made; moreover, each of
these tests must be made at least once, because otherwise P ′ would wrongly accept (u, 0)
or (0, v).

Case 1a: u and v have different parities, say, u is even and v is odd. Since u + v > K, the
pair (u, v) is an even-odd pair, and program P ′ accepts it. That is, along at least one
s-t path in P ′ only tests x1 = u and x2 = v are made. By (4), along the corresponding
path in Q only tests yu = 1 and yv = 1 are made, implying that Q(b) = 1.

Case 1b: both u and v are even. Suppose u > v. Then u + (K − v) > K. Since K − v is
odd, the pair (u,K − v) is an even-odd pair, and program P ′ accepts it. That is, along
at least one s-t path in P ′ only tests x1 = u and x2 = K − v are made. By (4), along
the corresponding path in Q only tests yu = 1 and yv = 1 are made, implying that
Q(b) = 1.

Case 1c: both u and v are odd. Suppose u > v. Since K − v is even, the pair (K − v, u)
is an even-odd pair, and program P ′ accepts it. That is, along at least one s-t path in
P ′ only tests x1 = K − v and x2 = u are made. By (4), along the corresponding path
in Q only tests yv = 1 and yu = 1 are made, implying that Q(b) = 1.

Assume now that b contains exactly one 1 in some position u ∈ S. We have to show that
then Q(b) = 0.

Case 2a: u is even. Suppose that Q(b) = 1. Then there is an s-t path in Q where only tests
yu = 1 are made. Since u is even, (4) implies that each such test could only be obtained
from the test x1 = u or from the test x2 = K − u. Thus, along the corresponding path
in P ′(x1, x2), only these tests are made, implying that P ′ wrongly accepts the input
(u,K − u), a contradiction.

Case 2b: u is odd. Suppose that Q(b) = 1. Then there is an s-t path in Q where only tests
yu = 1 were made. Since u is odd, (4) implies that each such test could only be obtained
from the test x1 = K − u or from the test x2 = u. Thus, along the corresponding path
in P ′(x1, x2), only these tests are made, implying that P ′ wrongly accepts the input
(K − u, u), a contradiction.
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This completes the proof of Claim 4, and thus, the proof of Theorem 5. ⊓⊔

Remark 5 In our proof it was essential that no rectifiers (unlabeled wires) were allowed.
The reason is that using rectifiers, the threshold-2 function Thm

2 can be computed using
only 2m − 2 contacts:

s • ◦ ◦

◦ ◦ ◦

◦ ◦ ◦
...

...
...

◦ ◦ • t

x1=1 // x2=1 //

x2=1 // x3=1 //

x3=1 // x4=1 //

�� �� ��

�� �� ��

xm−1=1
// xm=1 //

It would be interesting to prove a non-trivial lower bound for the Knapsack problem
in the general model where rectifiers are allowed. It would be also interesting to prove
such a bound on the number of nodes, not only wires. The proof above cannot give larger
than Ω(n log K) lower bound on the number of nodes, because the edges of the complete
m-vertex graph can be covered by O(log m) complete bipartite graphs, and hence, Thm

2

can be computed by a monotone contact scheme with O(log m) nodes.

7 Bounds for Approximation

One says that an algorithm P (x) approximates a given minimization problem on a set
A ⊆ Dn of inputs with the factor α, if P (a) ≤ α · opt(a) holds for all a ∈ A. In the case
of maximization problems, the required inequality is P (a) ≥ α · opt(a). Clearly, the closer
is α to 1, the better approximation we have.

Approximation algorithms for the Knapsack problem use an additional “argmin” or
“argmax” feature. In order to implement such algorithms, we can also add these features
to dynamic branching programs. Namely, we now allow the program to have more than
one target node t1, . . . , tN . When input string x arrives, the value P (x) is now computed as
follows. As before, the value val(tk, x) computed at the node tk on input x is the maximum
length of an s-tk path consistent with x. After that, the program outputs the minimal k
for which val(tk, x) is at least some given in advance threshold K. That is,

P (x) = arg min
k

{val(tk, x) : val(tk, x) ≥ K} .

We also add yet another feature: we now allow that every survival text te(xi) can also de-
pend on the total sum of weights of all n items x1, . . . , xn. Let us call this extended model
an argmin dynamic BP. Note that an argmin BP first simultaneously solves N maxi-

mization problems, and then applies the Argmin operation to their results. The argmax

dynamic BP works dually: it first solves N minimization problems, and then applies the
Argmax operation to their results.

Let us consider the minimization Knapsack problem with profit-threshold K. That is,
given a sequence p1, . . . , pn of profits, and a sequence s1, . . . , sn of sizes of n items, the
goal is to minimize

∑

i∈S si over all S ⊆ [n] such that
∑

i∈S pi ≥ K.
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Proposition 1 If we have n items, and if the sum of sizes in every input does not exceed

t, then the minimization Knapsack problem an be solved by an argmin dynamic BP with

at most nt nodes.

By using argmax dynamic BPs, one can solve also the maximization Knapsack problem
by using at most nt nodes, where t is the maximum possible total profit p1 + · · · + pn.

Proof As subproblems we take f(i, k) = the maximal total profit for filling exactly a
capacity k knapsack with some subset of items 1, . . . , i. Each base value f(1, k) equals
p1 if s1 = k, and is zero otherwise. The remaining values f(i, k) can be computed using
the recursion (1). Since i runs from 1 to n, and k runs from 0 to at most t, we have at
most nt subproblems. The algorithm can be converted into a dynamic BP with nt nodes,
as shown in Example 7. The BP computes values f(n, 0), f(n, 1), . . . , f(n, k), . . . , f(n, t).
Now, apply the argmin operation to get the smallest k for which f(n, k) ≥ K. ⊓⊔

Theorem 6 For every ǫ > 0, the minimization (n,K)-Knapsack problem can be approxi-

mated with the factor 1 + ǫ by an argmin dynamic BP with O(n3/ǫ) nodes.

The same holds for argmax dynamic BPs approximating the maximization (n,K)-Knapsack
problem with the factor 1 − ǫ: just round-down instead of rounding-up.

Proof Associate with every sequence a = (a1, . . . , an) of natural numbers the scaling factor

r = r(a) := max
{

1,
ǫ(a1 + · · · + an)

n2

}

.

The scaled version of a is the sequence a′ = (a′1, . . . , a
′
n), where a′i := ⌈ai/r⌉, and r = r(a)

is the scaling factor of a. By the scaled Knapsack problem we will mean the minimization
Knapsack problem with scaled sizes: compute the minimum of

∑

i∈S a′i over all S ⊆ [n]
such that

∑

i∈S ai ≥ K. Note that the total size a′1+ · · ·+a′n of every scaled input does not
exceed t = (a1 + · · · + an)/r = ⌈n2/ǫ⌉. By Proposition 1, there is an argmin dynamic BP
P ′(x) of size at most nt = O(n3/ǫ) which solves the scaled problem (exactly). Important
here is that the sets of feasible solutions in both problems (original and scaled) are the
same—only their values may differ.

The survival tests in P ′(x) are of the form xi = d for a natural number d. We modify
the program P ′(x) to a program P (x) by replacing each survival test xi = d by the test
⌈xi/r⌉ = d, where r = r(x). These tests are legal since in an argmin BP we allow them
to depend also on the total weight x1 + · · · + xn of the entire input. Note that an item ai

passes the test ⌈xi/r⌉ = d in program P if and only if the scaled item a′i = ⌈ai/r⌉ passes
the test xi = d in program P ′. Thus, all feasible solutions produced by the program P ′ on
scaled inputs are feasible solutions for non-scaled inputs, and are produced by program P .
If r(a) = 1, then a′ = a, and an optimal solution produced by P ′ on a′ is also optimal for
a, that is, P (a) = opt(a). This may be no more the case, if r(a) > 1. Let us show that
also then P (a) ≤ (1 + ǫ)opt(a) holds.

Let S′ be an optimal solution produced by P ′(x) on the scaled input a′, and let S be
an optimal solution for input a; hence, opt(a) =

∑

i∈S ai. The solution S′ is also a feasible
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solution for a, and is produced by P (x) on input a. Since S′ is optimal and S is feasible
for a′, we have that

∑

i∈S′ a′i ≤
∑

i∈S a′i. Thus,

P (a) ≤
∑

i∈S′

ai ≤ r
∑

i∈S′

a′i ≤ r
∑

i∈S

a′i ≤
∑

i∈S

ai + r|S| ≤ opt(a) + rn .

Together with rn = ǫ(a1 + · · ·+ an)/n ≤ ǫ ·maxi ai ≤ ǫ ·K ≤ ǫ · opt(a), the desired upper
bound P (a) ≤ (1 + ǫ)opt(a) follows. ⊓⊔

For optimization problems whose weights are integers, the following simple fact is often
utilized to prove (absolute) inaproximabilty results (see, e.g., [16,3]).

Proposition 2 Suppose we have a minimization problem with integer weights, and let

K > 0 be the minimal optimal value. If an algorithm approximates the optimum within a

factor < 1 + 1/K, then it solves the problem exactly.

In the case of maximization problems, K is the maximal optimal value, and the factor is
> 1 − 1/K.

Proof Suppose that the algorithm does not solve the problem exactly. Then there must be
an input instance a on which the algorithm produces a value strictly larger than opt(a) ≥
K. The next best integer solution is opt(a) + 1. So the best possible approximation factor
the program can get is (opt(a) + 1)/opt(a) = 1 + 1/opt(a) ≥ 1 + 1/K. ⊓⊔

Theorem 7 Let K ≥ 3n and 0 < ǫ < 1/K. Then every argmin dynamic BP approximat-

ing the minimization (n,K)-Knapsack problem with a factor of 1 + ǫ must have at least

n/2ǫ nodes.

Proof In our case, K is the minimal optimal value, and the factor is 1 + ǫ < 1 + 1/K.
Thus, by Proposition 2, it is enough to show that every argmin dynamic BP P (x) solving
the problem exactly must have at least n/2ǫ nodes. The lower bound of nK/2 given in
Theorem 4 is proved for a very special set A of inputs a such that a1 + · · · + an = K: we
associated with every such input an optimal path, and argued that not too many of these
paths can meet in a node. Now, on every input a ∈ A, the program will output the answer
K = val(tK , a) computed at one and the same target node tK . The dependence of survival
tests on the total sum a1 + · · · + an of weights is irrelevant, because this sum is the same
for all a ∈ A. Thus, when restricted to inputs in A, the argmin dynamic BP works just as
a usual (maximization) dynamic BP with one source node s and one target node tK , and
the lower bound nK/2 ≥ n/2ǫ of Theorem 4 holds. ⊓⊔

Remark 6 Here is yet another application of Proposition 2. It is known that the Maximum
TSP with the triangle inequality can be approximated in polynomial time within the factor
of 1 − ǫ for ǫ ≥ 9/44 [29]. It is also known that there is a constant ǫ ≥ 0 such that factor
1−ǫ cannot be achieved in polynomial time, unless P = NP [5]. Proposition 2 can be used
to show a much weaker (but absolute) lower bound: no dynamic BP of polynomial size
can approximate this problem with a factor of > 1 − 1/2n, even if distances are 1 and 2.
Indeed, we already know (Theorem 3) that dynamic BPs of exponential size are necessary
to solve this problem exactly. Since the maximal optimal value in this case is K = 2n, the
result follows.
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8 Conclusion and Open Problems

In this paper we simulated incremental dynamic programming algorithms by dynamic
branching programs (dynamic BP), and proved a matching lower bound on the size (num-
ber of subproblems) for the Knapsack problem in the latter model. We also proved lower
and upper bounds on the size of dynamic BP approximating this problem, as well as a
nontrivial lower bound on the number of wires when there are no consistency conditions
on the paths in a BP. In the case when the family of feasible solutions does not depend on
the actual weights of data items in the input (see Remark 1), the situation is somewhat
easier: here we were able even to give a general lower-bounds criterion (Theorem 1). This
immediately implied that Maximum Bipartite Matching problem as well as the Traveling
Salesman problem require dynamic BPs of exponential size.

Still, many questions remain open. Say, an interesting numerical problem is to close the
gap between n/ǫ and n3/ǫ for the size of argmin dynamic BPs approximating the Knapsack
problem. We conjecture that the upper bound is nearer to the truth. Most of the questions,
however, concern proving lower bounds for dynamic BPs extended by various additional

features. Strong lower bounds for such generalized models would extend our knowledge
about the limitations of DP algorithms, even when they are equipped with features that
are not used in existing DP algorithms.

Late rejections Our consistency condition for decision predicates allows that rejected items
can be accepted later, that is, “reject” decisions are revocable. But we do not allowed
already accepted items be later rejected. That is, dynamic BPs do not have the “late
rejections” feature. In programs with this feature, it is natural to define the solution
produced by an s-t path as the set of items on which the last decision was “accept”.

Interestingly, this additional feature (of late rejections) may exponentially decrease the
size of dynamic BPs! Let us demonstrate this on the Assignment problem, known also as
Maximum Weight Bipartite Matching problem. An input in this problem is a sequence of
n2 non-negative weights of the edges of Kn,n, and the goal is to compute the maximum
weight of a matching. Since the weights are non-negative, optimal solutions are perfect
matchings.

We already know (Theorem 2) that this problem requires dynamic BPs of exponential
size, even if weights are 0 and 1. We also mentioned that this problem requires prioritized
BPs ([13]) and combinatorial dynamic programs ([9]) of exponential size. On the other
hand, we have the following.

Proposition 3 If late rejections are allowed, the Assignment problem on Kn,n can be

solved by a static BP with O(n3) nodes.

Proof The desired static BP consists of a sequence of n “acceptors” followed by n “rejectors”.
Each acceptor corresponds to one vertex of Kn,n on the left side, and consists of n parallel
wires between two nodes that are responsible for all n edges incident to this vertex. All
decisions here are “accept”. Each rejector corresponds to one vertex of Kn,n on the right
side, and consists of n node-disjoint paths of length n − 1. Wires of each of the paths are
responsible for all but one edges incident to v. Thus, the j-th of the paths for the i-th
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vertex vi is responsible for variables x1,i, . . . , xj−1,i, xj+1,i, . . . , xn,i. All decisions here are
“reject”.

· · · ◦ ◦ · · · ◦... ◦

rejector

· · ·x1,i x3,i x4,i · · · xn,i

xi,1

��
xi,2

))

xi,n

accept all edges incident to ui

CC
""**

reject all but one edges incident to vi

<<

Take now any s-t path is this BP. The acceptor part of this path accepts one incident
edge for each node on the left part. The rejector part rejects all but one incident edges for
each vertex on the right part of Kn,n. Thus, the solution produced by the entire path is
a (possibly empty) matching. On the other hand, each perfect matching will be produced
by at least one s-t path, namely by the path whose rejector part does not reject any of
the edges in this perfect matching. ⊓⊔

Can non-trivial lower bounds be proved for dynamic BPs with the late rejections fea-
ture?

Although the late rejections feature allows for the possibility of exponentially reducing
the number of nodes (subproblems), a BP P in this case does not give us an efficient
algorithm to actually compute the values P (x). Without this “late rejections” feature, one
can quickly compute the value P (x) by solving the longest (or shortest) s-t path problem in
the underlying acyclic graph. The situation, however, changes drastically if late rejections
are allowed: one may then be forced to consider all s-t paths in order to determine an
optimal value. Thus, the model of BPs with the late rejection feature is only interesting
as a compact encoding of optimal solutions.

Null-paths Our consistency condition for survival tests is that along every path, tests on
the same data item must have the same outcome. But what can be said about dynamic
BPs when “null-paths”, i.e., paths with contradicting survival tests on the same data item,
are allowed? Such paths contribute nothing to the solution, but it is known that in the
case of boolean branching programs, the presence of null-paths may exponentially reduce
the number of nodes, even if all consistent paths are required to be read-once [24, Sect. 13].
To understand the role of null-paths—even under the read-once restriction on consistent
paths—is a challenge in boolean circuit complexity: no strong lower bound is known in
this model, one of the weakest nondeterministic models of computation.

Still, in dynamic BPs the domain is much larger than D = {0, 1}, and there is a
hope that strong enough lower bounds can be proved; Theorem 5 partly confirms this. An
interesting problem also is to understand whether null-paths can substantially reduce the
size of dynamic BPs solving natural optimization problems.

Read-k dynamic BPs? Another possible relaxation of the consistency condition could be
to allow inconsistent paths in a dynamic BP, but to require that along every path (be
it consistent of not) each item xi is queried at most some given number k of times. In
the case of boolean functions, such programs are known as (syntactic) read-k branching
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programs, and several exponential lower bounds for them are known [32,10,22]. For branch-
ing programs computing functions f : Dn → {0, 1} on larger domains than D = {0, 1},
exponential lower bounds are known even for “semantic” read-k programs, where it is
only required that along every consistent path one item is queried at most k times, and
there are no restrictions on inconsistent paths [2,7,23]. Again, it would be interesting to
prove strong lower bounds for read-k dynamic branching programs solving some natural
optimization problems.

More general survival tests In our proofs of lower bounds it was essential that the survival
tests te(xi) made on contacts e can only depend on one single data item xi and, apparently,
on the total sum of weights of all n items. In some cases, it is desirable to have more
general survival tests, depending on more than one data item. For example, in the Interval
Scheduling problem a natural test is “Is the finish-time of the i-th job smaller than the
start-time of the j-th job?” Thus, in this case, it would be desirable to have tests of the
form te(xi, xj). In Example 4 we have shown that the Interval Scheduling problem can be
solved by a small dynamic BP, by viewing data items as pairs of jobs. With more general
survival tests, we could take items be just jobs. Can some non-trivial lower bounds be
proved for dynamic BPs with more general survival tests?

Relaxed responsibility In the model of dynamic BPs, each wire is responsible for one data
item xi of the input instance x = (x1, . . . , xn). This responsibility is input independent.
One can, however, try to relax this, and allow the variable xi, which a contact must be
responsible for, to depend on the actual input x.

Of course, we cannot allow arbitrary dependence, for otherwise any 0/1 optimization
problem would be solvable by a very small static BP consisting of just one path: for
each input x, fix one of its optimal solutions Sx, and let the i-th contact of the path be
responsible for the i-th item in Sx.

We already mentioned models where the responsibility depends on the actual input:
prioritized BTs [3] and prioritized BPs [13]. Even with this relaxed responsibility, strong
lower bounds were proved in these models. So, one could allow such a relaxed responsibility
also in dynamic BPs. Namely, we could allow that each contact e has a total ordering ≺e

of the set D of all data items. When an input (x1, . . . , xn) ∈ Dn arrives, the contact e
is responsible for that item xi which comes as the first in the ordering ≺e of D. Thus,
on another input (y1, . . . , yn), the same contact may be responsible for another data item
yj, j 6= i. Can non-trivial lower bounds be proved for dynamic BPs with such a relaxed
responsibility?

Relation to prioritized branching programs Unlike dynamic BPs, the model of prioritized
BPs (pBP) is more “algorithmic”. The model is specified by giving some set V of nodes
(states), one of which is a source-node, and some of which are sink-nodes. Each sink node
v is assigned a real number val(v). Each non-sink node has its associated total ordering ≺v

of the set D of all data items, and a transition function gv : D × {0, 1} → V × M , where
M is the set of all monotone real function in one argument. All these objects (values of
sinks, orderings, and transition functions) are input-independent.
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The actual “branching program” Px is constructed only when an input x arrives. We
start at the source node, and do the following. Each non-sink node v is responsible for
that item xi in input instance x, which comes as the first in the ordering ≺v. Then we
follow the two outgoing wires: 0 (reject xi) and 1 (accept xi). These wires go to vertices
determined by transition function gv . The transition function gv also associates monotone
functions f0 and f1 with the outgoing wires. We stop the construction of Px when no
new non-sink node can be reached. The size of a pBP algorithm is the maximum, over all
inputs x ∈ Dn, of the number of nodes in Px.

The value P (x) on input x is computed backwards, by inductively assigning values to
nodes of Px. The value of each sink node v is the value val(v) assigned by the algorithm
(it does not depend on x). Suppose now that the children v0 and v1 already have assigned
values val(v0) and val(v1). Let f0 and f1 be the monotone real functions assigned (by the
transition function gv) to the wires going to v0 and v1. Then the value of v is defined as the
maximum (or minimum, if we have a minimization problem) of f0(val(v0)) and f1(val(v1)).
The value output by the algorithm is the value of the source node.

A pBP is boolean if sinks can only have values 0 or 1. In this case, the value of each
node is just an OR of values of its two children. Using interesting probabilistic arguments,
it is proved in [13] that any boolean pBP deciding whether a given bipartite n × n graph

contains a perfect matching must have size 2Ω(n1/8).

The model of pBT (prioritized branching trees), introduced earlier in [3], has a restric-
tion that the underlying graph of P (x) must be a tree. But it has an additional feature
that the transition function gv as well as the ordering ≺v may depend on the items and
decisions about them made along the (unique) path to the node v. Thus, even though
every pBT can be viewed as a pBP, as soon as one exploits the merging aspect of pBPs,
one loses some of the power in the pBT model. In [3] it is, in particular, shown that the

(n,K)-knapsack problem with capacity K about n3n requires pBTs of size
(n/2
n/4

)

. It is also

shown that the Knapsack problem can be (1 − ǫ)-approximated by a pBT of size (1/ǫ)2,
and that any such pBT must have size (1/ǫ)1/3.17.

It would be interesting to understand whether one of the models—prioritized and dy-
namic BP—subsumes the power of the other. As mentioned above, boolean pBPs com-
pute boolean functions. It would be therefore also interesting to understand what class of
boolean branching programs such pBPs correspond to.

Non-incremental DP algorithms and tropical circuits The next interesting problem is to
eliminate the “incremental” restriction of BPs. Such a BP is just a (min,+) or (max,+)
circuit in which the use of +-gates is restricted: one of the two inputs must be a weight of
a single item.

A prominent example of a “non-incremental” DP algorithm, which does not directly
translate to a dynamic BP, is the Floyd–Warshall algorithm for the all-pairs shortest path
problem. As subproblems it takes fk(i, j) = the length of a shortest paths from i to j that
only uses vertices 1, . . . , k as inner nodes. We set f0(i, j) = the length of the edge (i, j).
The DP recursion is then fk(i, j) = min{fk−1(i, j), fk−1(i, k) + fk−1(k, j)}.
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This algorithm—as well as many other DP algorithms whose recurrence relation uses
Plus and Min/Max operations only—can, however, be simulated by tropical circuits3, i.e.,
by conventional circuits with fanin-2 Min and Plus (or Max and Plus) gates. Here is a
fragment of such a circuit when implementing the Floyd–Warshall algorithm:

fk−1(i, j) fk−1(i, k) fk−1(k, j)

ONMLHIJKmin

76540123+

fk(i, j)
##FF

FF
FF

FF
FF

FF

$$II
II

I

zzuuu
uu

zzuuuuu

Inputs are the n2 variables xij, one for each edge (i, j); their values are the real-valued
lengths of edges. The entire circuit for the Floyd–Warshall algorithm has depth 2n and
size (number of gates) O(n3). On the other hand, results of [28,15,30] imply that every
tropical circuit for the all pairs shortest path problem must have Ω(n3) Plus-gates (see also
[1, pp. 204–206]). Thus, when restricted to Min and Plus operations, the Floyd–Warshall
algorithm is optimal!

Much fewer is known about the tropical circuit complexity of the s-t shortest path
problem. In particular, it is not known whether this problem also requires tropical circuits
of size Ω(n3). Static BPs constitute a special case of tropical circuits, where one of the
two inputs to a Plus-gate must be a variable:
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We already know (see Example 1) that the Bellman–Ford–Moore algorithm for s-t shortest
path problem translates to a static BP with O(n2) nodes and O(n3) wires. Does this
number of nodes/wires is also necessary? In other words, is the Bellman–Ford–Moore
algorithm optimal at least in the class of incremental DP algorithms?

Lower bounds for tropical circuits can be obtained by proving corresponding lower
bounds for monotone boolean circuits. To see this, suppose we have a tropical circuit solving
a 0/1 optimization problem f(x) = minS∈F

∑

i∈S xi. In particular, the circuit must solve
the problem on all inputs x ∈ {0,∞}n. The mapping h : {0,∞} → {0, 1} given by h(0) = 1
and h(∞) = 0 is a homomorphism from the semiring ({0,∞},min,+,∞, 0) to the boolean
semiring ({0, 1},∨,∧, 0, 1): h(min{x, y}) = h(x) ∨ h(y) and h(x + y) = h(x) ∧ h(y). So, if
we replace each Min-gate by a logical OR, and each Plus-gate by a logical AND, then the
resulting monotone boolean circuit computes the boolean function fB(x) =

∨

S∈F

∧

i∈S xi.
Consider, for example, the Lightest Triangle problem: given non-negative weighting of

the edges of Kn, find the weight of a lightest triangle. This problem can be solved by

3 The Min-Plus semiring (R+,⊕,⊗,∞, 0) with operations x⊕y = min(x, y) and x⊗y = x+y, is called “tropical”
in honor of Imre Simon who lived in Sao Paulo (south tropic). Tropical algebra and tropical geometry are intensively
studied topics in mathematics.
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a tropical circuit of size O(n3), by just trying all triangles. On the other hand, a lower
bound on the monotone circuit complexity of detecting triangle-freeness ([24, Sect. 9.5.1])
immediately implies that every tropical circuit for this problem must have Ω(n3/ log4 n)
gates.

The boolean version of the s-t shortest path problem is the boolean function STCONN
which accepts a graph if and only if there is a path from s to t. It is known that this function
requires monotone circuits of depth Ω(log2 n) [26], but unfortunately, no non-trivial lower
bounds on the size are known.

It is not difficult to show that, when restricted to the boolean domain D = {0, 1},
tropical circuits are almost as powerful as monotone boolean circuits: just replace each
AND gate u ∧ v by a Min gate min(u, v), and each OR gate u ∨ v by min(1, u + v).
The point, however, is that tropical circuits must work correctly on much larger domains
D ⊃ {0, 1}. This is why lower bounds for tropical circuits do not translate to lower
bounds for monotone boolean circuits. And indeed, when proving that any tropical circuit
computing the “min-plus” product of two n × n matrices requires Ω(n3) gates, Kerr [28]
essentially uses the fact that D ⊇ {0, 1, 2}. In the context of understanding the limitations
of DP algorithms, this fact is a “good news”: it may be easier to fool small circuits when the
domain is large. Moreover, the Plus-operation is not idempotent, and the Min-operation
does not distribute over Plus.
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