
1

1
Computational Complexity of Graphs
Stasys Jukna1

Computational complexity of graphs is the smallest number of union and in-

tersection operations required to generate them when starting from simplest

sets of edges: stars or cliques. An intriguing aspect of this measure is its con-

nection to circuit complexity of Boolean functions and, in particular, with the

P versus NP question. We survey this connection as well as known bounds on

the complexity of explicit graphs.

1) University of Frankfurt, Dept. of Mathematics and Comput.
Sci., Frankfurt a.M., Germany, and Vilnius University, Inst. of
Mathematics and Informatics, Vilnius, Lithuania. Research sup-
ported by the DFG grant SCHN 503/5-1.

Jukna
Cross-Out

Jukna
Replacement Text
503/6-1

3

Contents

1 Computational Complexity of Graphs 1
Stasys Jukna

1.1 Introduction 4

1.2 Star complexity 5

1.3 From graphs to boolean functions 13

1.4 Formula complexity of graphs 22

1.5 Lower bounds via graph entropy 27

1.6 Depth-2 complexity 33

1.7 Depth-3 complexity 45

1.8 Network complexity of graphs 52

1.9 Conclusion and open problems 57

Bibliography 59

Index 61

4 Contents

1.1
Introduction

Complexity is one of the crucial scientific phenomena of our times. In this chap-

ter we consider the complexity of graphs. Motivated by specific applications,

the complexity of a graph has been measured in several different ways.

For example, the complexity of a graph has been defined to be the number

of its spanning trees [6, 11, 16]. Motivated by applications in biology, chem-

istry, and sociology, different notions of graph entropy were used to measure

their complexity; see [12] for a survey. Motivated by the complexity of com-

puting eigenspace projections, the linear complexity of graphs was introduced

in [37]; this is the smallest number of arithmetic operations required to compute

Ax, where A is the adjacency matrix of the graph. Motivated by the circuit

complexity of boolean functions, the star complexity of graphs was introduced

in [41]; this is the smallest number of union and intersection operations re-

quired to generate the graph when starting from stars. In this chapter we will

consider this last measure.

In computational complexity, the measure of “complexity” of an object is

understood as the smallest number of “elementary operations” that is enough to

produce a given object starting from some “simplest” objects, called generators.

Such a sequence of operations is called a circuit.

That is, a circuit for an object a is just a sequence a1, . . . , at of objects such

that at = a and each ai is obtained by applying an elementary operation to

some previously obtained objects and generators. The size of the circuit is

the number t of objects in it. Every circuit for an object a can be viewed as

“code” of a. The larger the circuit must be (the more operations are required

to produce the object), the more “complex” the object a is.

In this chapter we are mainly interested in the computational complexity

of graphs and corresponding to them boolean functions. One can define the

computational complexity of an n-vertex graph by considering its adjacency

relation. Namely, one can encode the vertices by binary strings of length l =

log2 n, and view a graph as its adjacency function: this is a boolean function of

2l variables which, given the codes of two vertices, outputs 1 iff these vertices

are adjacent. One can then define the complexity of a given graph as the

smallest number of AND, OR and NOT operations required to compute its

adjacency function starting from variables and their negations. But in view of

difficulties with proving lower bounds for boolean functions, this is a “dead-end”

approach: so far, no explicit boolean function of 2l variables requiring more

than 10l operations is known.

A more promising approach, initiated by Pudlák, Rödl and Savický in [41], is

to view the graphs as sets of their edges, and define the complexity of a graph

as the smallest number of the union (∪) and intersection (∩) operations needed

to obtain the graph starting from some simplest graphs. In this chapter we

1.2 Star complexity 5

mainly consider the case when one takes stars as simplest graphs. A star is a

set of edges joining one vertex with all remaining vertices. This results in the

star complexity of graphs.

Of course, one may take other sets of “simplest” graphs as generators, like

cliques, paths or matchings. The reason why we stick on stars as generators is

that then the resulting measure for graphs is intimately related to the circuit

complexity of boolean functions, and our main motivation is to prove lower

bounds for boolean functions using graph complexity.

Counting arguments show that most of bipartite n × n graphs have star

complexity about n2/ log n. On the other hand, every specific graph of star

complexity at least 5n would give us an specific boolean function requiring

circuits of exponential size, and hence, resolve the fundamental problem of the

entire computer science. Having found such a graph in NP, this would imply

that P 6= NP. A graph belongs to NP if the adjacency in it can be decided

by a nondeterministic Turing machine in time polynomial in log n.

Actually, this is “bad news”: we will not understand the star complexity of

specific graphs until we resolve this widely open problem. Even worse, be-

ing “combinatorially complex” does not automatically imply that the graph is

“computationally complex”. In particular, there are combinatorially complex

graphs—like Ramsey graphs—whose star complexity is small.

Still, “good news” is that we are able to prove non-trivial lower bounds on

the star complexity of graphs in some restricted circuits models, like bounded-

depth circuits with unbounded fanin gates. This already yields some new lower

bounds for boolean functions, and opens alternative possibilities to approach

some old problems in circuit complexity.

All in all, the star complexity of graphs is an interesting measure related to

core problems of computer science. The goal of this survey is to motivate the

reader to try to find graphs of large complexity.

1.2
Star complexity

We view graphs as sets of their edges. In what follows, Kn =
(

V
2

)

denotes the

set of all
(

n
2

)

edges of a complete labeled graph on a fixed set V of |V | = n

vertices. By an n-vertex graph we will mean a subset G ⊆ Kn. Thus, |G| will

always denote the number of edges in G. A star around a vertex v ∈ V is the

set Sv ⊆ Kn of all n− 1 edges of Kn incident with v (Fig. 1.1).

Due to their direct connection with boolean functions, we will mainly con-

sider bipartite graphs. A complete bipartite n×m graph is the set Kn,m = L×R

of all nm edges, where |L| = n and |R| = m; the sets L (left part) and R (right

part) are sometimes called the color classes. A bipartite n × m graph is just

6 Contents

U

u v u v u u vv

U

vSuS Su Sv Su S v

Fig. 1.1 Two stars Su and Sv in K5. Their intersection Su ∩ Sv is just
a single edge {u, v}, whereas their union Su ∪Sv is the complement of
a complete subgraph K3.

a subset G ⊆ Kn,m of edges. A star around a vertex v ∈ V = L ∪ R is the

set of all edges of Kn,m incident with v. The bipartite complement of a bipar-

tite graph G ⊆ L × R is the bipartite graph G = (L × R) \ G with the same

color classes L and R. The adjacency matrix of G is the |L| × |R| 0-1 matrix

A = (au,v) such that au,v = 1 if and only if (u, v) ∈ G.

Definition 1.1 The star complexity , Star(G), of a graph G is the smallest num-

ber of fanin-2 union (∪) and intersection (∩) operations which is enough to

produce the graph G starting from stars.

That is, we consider circuits whose generators (inputs) are stars, and elemen-

tary operations (gates) are ∪ and ∩. If not stated otherwise, we will assume

that all gates have fanin 2.

Remark 1.2 Since there is a 1-1 correspondence between (labeled) bipartite

graphs and 0-1 matrices, we can define the star complexity of a 0-1 matrix A

as well. In this case, the AND and OR operations for matrices are performed

componentwise. A star matrix is a 0-1 matrix consisting of exactly one all-1

row or of exactly one all-1 column, and having zeros elsewhere. It is easy to

see that Star(G) is the smallest number of AND and OR operations that are

enough to produce the adjacency matrix of G starting from star matrices.

Instead of circuits with set-theoretic gates ∪ and ∩, it will be more convenient

to consider the standard model of monotone boolean circuits with boolean OR

(∨) and AND (∧) gates; such a circuit is monotone because it does not have

negation gates ¬f = 1−f . For this purpose, we associate a boolean variable xv

to each vertex v ∈ V , and consider circuits F (X) on the set X = {xv : v ∈ V }
of these variables. We say that a circuit F (X) represents a given graph G ⊆ Kn

if for every two vertices u 6= v,

F (eu + ev) = 1 if and only if u and v are adjacent in G; (1.1)

here and throughout, eu ∈ {0, 1}n is the unit vector of length n with exactly

one 1 in the u-th position. If the graph G ⊆
(

V
2

)

is bipartite with a given

bipartition V = L ∪R, then we only require that (1.1) holds for all u ∈ L and

v ∈ R.

1.2 Star complexity 7

It is easy to see that the smallest size of a monotone circuit representing a

given graph is exactly the star complexity of that graphs:

Star(G) = minimum size of a monotone circuit representing G.

This holds because: (i) stars are the only graphs represented by single variables

(inputs of the circuit), and (ii) if two functions g and h represent graphs G and

H, then G ∩ H is represented by g ∧ h, and G ∪ H is represented by g ∨ h.

Recall that all graphs are on the same set of vertices, that is, are subsets of

pairs of vertices (edges) of the same fixed set of vertices; also, in the case of

bipartite graphs, the bipartition is the same.

Remark 1.3 Note that the fact that a circuit represents a given graph only

means that the circuit must behave correctly only on input vectors in {0, 1}|V |

with exactly two 1s—on the remaining input vectors the circuit can output

arbitrary values!

F (0, . . . , 0,
u
1, 0, . . . , 0,

v
1, 0, . . . , 0) = 1 if and only if {u, v} ∈ G .

We will see that exactly this “freedom” makes the estimation of star complexity

so difficult.

It will be sometimes more intuitive to view boolean functions and circuits as

set-theoretic predicates f : 2[n] → {0, 1} accepting/rejecting sets: just identify

every binary vector with the set of its 1-positions. In this set-theoretic setting,

a circuit F represents a graph G ⊆ Kn if F behaves correctly on 2-element sets

S = {u, v} (edges and non-edges): accepts such set if and only if u and v are

adjacent in G. On sets S of size |S| 6= 2, the value F (S) may be arbitrary!

Example 1.4. As mentioned above, in the case of non-bipartite graphs G ⊆
(

V
2

)

,

a circuit F (x) = xu consisting of single variable xu represents the star Su =

{{u, v} : v ∈ V \ {u}}. A circuit F (x) = ¬xu consisting of a single negated

variable represents the graph Kn−1 obtained from Kn by removing all edges

incident to u. An OR F (x) = ∨u∈Uxu of variables represents a union ∪u∈USu

of stars, that is, the complement of the complete subgraph of Kn induced by

V \ U . The AND F (x) = xu ∧ xv represents the intersection Su ∩ Sv of stars,

that is, the graph consisting of just one edge {u, v}.
Example 1.5. Which of the following two graphs has large star complexity?

H

2

3

1

4 5

6

7

8 1

2

3

4 5

6

7

8G

8 Contents

The graph G (on the left) is a complete graph K8 with three edges of the

triangle {1, 2, 3} removed. One can verify that this graph is represented by the

formula

F (x) =
(

∨

v 6∈{1,2}
xv

)

∧
(

∨

v 6∈{1,3}
xv

)

∧
(

∨

v 6∈{2,3}
xv

)

.

To see this, take arbitrary two vertices u and v. First suppose that these

vertices are adjacent in G. Then {u, v} 6⊆ {1, 2, 3}. In this case the vector

eu + ev has at least one 1 in some position between 4 and 8. Thus, this vector

must be accepted by all three ORs, implying that F (eu+ev) = 1. Now suppose

that u and v are not adjacent in G. Then {u, v} ⊆ {1, 2, 3}, say, u = 1 and

v = 2. In this case the vector eu + ev has the form (1, 1, 0, . . . , 0), and must

be therefore rejected by the first OR. So, F (eu + ev) = 0 if u and v are not

adjacent, as desired. Thus, the graph G (on the left) can be represented using

just two fanin-2 AND gates and three large fanin OR gates. On the other hand,

the graph H (on the right) does not seem to be represented with such a small

number of gates.

Example 1.6. We give some examples in the case of bipartite graphs G ⊆ L×R.

Then a circuit F (x) = xw consisting of a single variable xw for w ∈ L ∪ R

represents the star {w} × R if w ∈ L, and the star L × {w} if w ∈ R (see

Fig. 1.2). An OR F (x) = ∨w∈A∪Bxw with A ⊆ L and B ⊆ R represents the

union (A×R)∪(L×B) of two bicliques (bipartite complete graphs), that is, the

bipartite complement of the biclique A× B. So, an AND of ORs represents a

graph G which is an intersection of complements of bicliques or, in other words,

the bipartite complement G of the graph G itself is just a union of bicliques.

An XOR F (x) = ⊕w∈A∪Bxw represents the union (A×B)∪ (A×B) of two

vertex-disjoint bicliques. What graphs are represented by ANDs of XORs? It

is not difficult to verify that these are exactly the so-called fat matchings, that

is, bipartite graphs consisting of vertex-disjoint bicliques (these bicliques need

not to cover all vertices). This holds because the graph represented by an XOR

gate is a fat matching (consisting of two bicliques), and intersection of two fat

matchings is a gain a fat matching. Thus,

• single variable xw = a star,

• OR of variables = union of stars = union of two blicliques,

• XOR of variables = union of two vertex-disjoint bicliques,

• AND of ORs = complement of a union of bicliques,

• AND of XORs = fat matching.

1.2 Star complexity 9

A

A

B

A

B

A

B

(a) (b) (d)(c)

B

v

Fig. 1.2 The adjacency matrices of bipartite graphs represented by:
(a) a single variable xv , (b) an OR gate

∨
v∈A∪B

xv , and (c) an XOR
gate g =

⊕
v∈A∪B

xv . The last matrix (d) is the adjacency matrix of a
fat matching.

Star complexity of almost all graphs

It is easy to see that every bipartite n×n graph G ⊆ L×R can be represented

by the monotone circuit

∨

(u,v)∈G

xu ∧ xv as well as by
∨

u∈L

xu ∧
(

∨

v∈N(u)

xv

)

,

where N(u) is the set of al neighbors of u in G. Since an OR of l variables

can be computed using l − 1 OR gates of fanin-2, the first circuit has 2|G| − 2

fanin-2 gates, and the second circuit has n − 1 +
∑

u∈L |N(u)| = |G| + n − 1

fanin-2 gates. Thus, Star(G) = O(n2) for every n× n graph. It turns out that

this trivial upper bound can be improved by a logarithmic factor.

Let Star(n) denote the maximum of Star(G) over all bipartite n×n graphs G.

Theorem 1.7 Star(n) = Θ(n2/ log n).

Proof. Lower bound. Let φ(n,M) denote the number of distinct boolean

functions of n variables x1, . . . , xn that are computable by using at most M

AND, OR and NOT gates. In particular, at most φ(n,M) distinct bipartite

n × n graphs G can have Star(G) ≤ M . On the other hand, it is well known

and easy to show (see, e.g., [22], Lemma 1.11) that φ(n,M) ≤ (cM)M+n for

a constant c. Since we have 2n
2

bipartite n × n graphs, and each of them

requires its own circuit to represent, the bound M on the star complexity of

all graphs must satisfy the inequality (cM)M+n ≥ 2n
2

, from which the desired

lower bound M = Ω(n2/ log n) follows.

To prove the upper bound Star(n) = O(n2/ log n), we need the following

result about biclique coverings of graphs. A biclique covering of a graph G is a

collection of bicliques (complete bipartite subgraphs) of G such that each edge

of G belongs to at least one of the bicliques. If each edge belongs to exactly

one of the bicliques, then we have a biclique decomposition of G. The weight

of a biclique is the number of vertices in it. The weight of a biclique covering

(decomposition) of G is the sum of weight of all bicliques in that covering

(decomposition).

10 Contents

Let Cov(G) denote the smallest weight of a biclique covering, and Dec(G)

the smallest weight of a biclique decomposition of G. It is clear that Cov(G) ≤
Dec(G).

Lemma 1.8 (Lupanov [32]) For every bipartite n×m graph G,

Dec(G) ≤ 2nm

log2 n
.

Proof. Our goal is to prove the following claim: every n × m graph has a

biclique decomposition of weight at most n+m2m−1. Then we can decompose a

given n×m graph G into m/k subgraphs of dimension n×k. By our claim, each

of these subgraphs has a biclique decomposition of weight at most n+ k2k−1,

implying that the total weight of the biclique decomposition of G is at most

nm/k+m2k−1. The lemma then follows by taking k = ⌊log2 n− 2 log2 log2 n⌋.
To prove our claim, take an n×m graph G, and let A = (aij) be the adjacency

matrix of G, that is, aij = 1 if and only if (i, j) ∈ G. Split the rows of A into

groups, where the rows in one group all have the same values. This gives us a

decomposition of G into t ≤ 2m bicliques. For the i-th of these matrices, let ri
be the number of its nonzero rows, and ci the number of its nonzero columns.

Hence, ri + ci is the weight of the i-th biclique in our decomposition. Since

each nonzero row of A lies in exactly one of the these matrices, the total weight

of the decomposition is

t
∑

i=1

ri +
t

∑

i=1

ci ≤ n+
n
∑

j=0

∑

i:ci=j

j ≤ n+
m
∑

j=0

(

m

j

)

· j = n+m2m−1 ,

where the last equality is easy to prove: just count in two ways the number of

pairs (x, S) with x ∈ S ⊆ {1, . . . ,m}.

By Lemma 1.8, it remains to show that Star(G) ≤ Cov(G). For this, recall

that a biclique S×T can be represented by a trivial circuit (∨u∈Sxu)∧(∨v∈Txv).

This implies that Star(Ks,t) ≤ s+ t− 1. Now let G = Ks1,t1 ∪ · · · ∪Ksr,tr be

a biclique covering of G of weight w =
∑r

i=1(si + ti). Then

Star(G) ≤
r

∑

i=1

Star(Ksi,ti) ≤ r +

r
∑

i=1

(si + ti − 1) =

r
∑

i=1

(si + ti) = w .

Actually, many “combinatorially interesting” graphs G have much smaller

star complexity.

Example 1.9. (Kneser graphs Dn) The Kneser graph KGl,k (l > 2k ≥ 4) has all

k-element subsets v of [l] = {1, . . . , l} as vertices, and two vertices are adjacent

iff the corresponding k-subsets are disjoint. These graphs were introduced by

Lovász [31] in his famous proof of Kneser’s conjecture [25] that whenever the

1.2 Star complexity 11

k-subsets of a (2k+s)-set are divided into s+1 classes, then two disjoint subsets

end up in the same class.

For us of interest will be bipartite version of Kneser graphs. Let n = 2l. The

bipartite Kneser graph is a bipartite n× n graph Dn ⊆ L×R whose vertices u

in each color class are subsets of [l] = {1, . . . , l}, and two vertices u and v from

different color classes are adjacent if and only if u∩ v = ∅. Since log2 3 > 1.58,

the graph Dn has

|Dn| =
∑

u∈L

d(u) =
∑

u∈L

2l−|u| =
l

∑

i=0

(

m

i

)

2l−i = 3l ≥ n1.58

edges. On the other hand, the following monotone boolean function

f(x) =

l
∧

i=1

∨

v∈Si

xv (1.2)

where Si = {w ⊆ [l] : i 6∈ w}, represents Dn. Indeed, two vertices u ∈ L

and v ∈ R are non-adjacent in Dn iff u ∩ v 6= ∅ iff there is an i ∈ u ∩ v iff

{u, v} ∩ Si = ∅ for some i iff uv is rejected by some OR
∨

v∈Si
xv. Thus,

Star(Dn) ≤ ln = n log2 n.

In fact, one can show that Star(Dn) ≤ 2n − log2 n. This follows from the

fact (Lemma 1.16 below) that, for every integer 1 ≤ s ≤ l, every collection of l

boolean sums (that is, ORs) of n variables can be simultaneously computed by

a circuit consisting solely of at most sn+ s2l/s−2l− s fanin-2 OR gates. Since

in our case l = log2 n, we can take s = 1, implying that 2n− 2l− 1 fanin-2 OR

gates are enough to compute all l ORs in (1.2). By adding l − 1 fanin-2 AND

gates we obtain the desired circuit computing f(x).

Example 1.10. (Sylvester graphs Hn) An Hadamard matrix of order n is an

n × n matrix with entries ±1 and with row vectors mutually orthogonal. A

graph associated with an Hadamard matrix M (or just an Hadamard graph)

of order n is a bipartite n×n graph where two vertices u and v are adjacent if

and only if M(u, v) = +1.

A prominent example of an Hadamard graph is the Sylvester graph Hn.

This is a bipartite n × n graph with n = 2l vertices on each part identified

with subsets of {1, . . . , l}; two vertices u and v are adjacent iff |u ∩ v| is odd.

This graph Hn has about2 n2 edges, but it can be represented by the following

boolean function

h(x) =

l
⊕

i=1

∨

v∈Si

xv (1.3)

2) We will often use terms “f is about g” instead of f = Θ(g), “f is
at least about g” instead of f = Ω(g), and “f is at most about
g” instead of f = O(g).

12 Contents

where Si = {w ⊆ [l] : i 6∈ w}, and x⊕ y stands for XOR x+ y mod 2. In [18] it

is shown that the graph Hn contains a Ramsey
√
n×√

n graph G as its induced

subgraph; a graph is a Ramsey graph if neither the graph nor its complement

contains a copy of Kt,t for t = O(log n). By setting to 0 all variables in (1.3)

corresponding to vertices lying outside G, we obtain that some Ramsey graphs

can be represented as an XOR of l = log2 n complements of cliques. Thus,

even such “combinatorially complicated” graphs, as Ramsey graphs, have very

compact representations.

Star complexity and biclique coverings

We have shown in the proof of Theorem 1.7 that Star(G) ≤ Cov(G), where

Cov(G) is the smallest weight of a biclique covering of G. So, a natural question

is: how good Cov(G) approximates the star complexity? It turns out that for

some n×n graphs, the fraction Cov(G)/Star(G) may be large. This is not very

surprising because biclique coverings correspond to star complexity of graphs

in a very restricted circuit model where we want to represent a graph just as a

union of bicliques.

For a graph G, let ρ(G) denote the maximum of ab/(a + b) over all pairs

a, b ≥ 1 of integers such that G contains a copy of a complete bipartite a × b

subgraph.

Lemma 1.11 Cov(G) ≥ |G|/ρ(G).

Proof. Let G = ∪r
i=1Ei with Ei = Si×Ti be a bipartite clique covering of G

of minimal weight. We know that |Ei|/(|Si|+ |Ti|) ≤ ρ(G). Hence, the weight

of the covering is

r
∑

i=1

(|Ai|+ |Bi|) =
e

∑

i=1

∑

e∈Ei

|Si|+ |Ti|
|Ei|

≥
r

∑

i=1

∑

e∈Ei

1

ρ(G)
=

|G|
ρ(G)

.

Now consider the bipartite Kneser graph Dn defined in Example 1.9.

Theorem 1.12 Cov(Dn) ≥ n0.08 · Star(Dn).

Proof. Let n = 2l. We already know (see Example 1.9) that |Dn| ≥ n1.58. On

the other hand, the graph Dn can contain a complete bipartite a× b subgraph

∅ 6= S × T ⊆ Dn only if a ≤ 2k and b ≤ 2l−k for some 0 ≤ k ≤ l, because then

it must hold that (∪u∈Su) ∩ (∪v∈T v) = ∅. Since

min{2k, 2l−k : 1 ≤ k ≤ l} = 2l/2 ,

we have that ρ(Dn) ≤ 2l/2l/2 = 2l/2 =
√
n. By Lemma 1.11, every biclique

cover of Dn must have weight at least |Dn|/ρ(G) ≥ n1.08. Since Star(Dn) ≤ 2n

(see Example 1.9), we are done.

1.3 From graphs to boolean functions 13

1.3
From graphs to boolean functions

As we already mentioned, our main motivation to consider the star complexity

of graphs is the wish to prove new lower bounds for boolean functions. That

is, we use graphs as “auxiliary” objects—objects of primary interest remain

boolean functions.

One of the oldest fields dealing with the computational complexity—initiated

more than 60 years ago by pioneering works of Shannon—is that of boolean

circuit complexity. In this case, objects are boolean functions f(x1, . . . , xl),

that is mappings f : {0, 1}l → {0, 1}. The class of elementary operations

which can be used at the gates is called a basis. The circuit complexity of a

given boolean function f is the smallest number of these elementary operations

which is enough to compute f .

A circuit can also be viewed as a labeled directed graph without cycles (see

Fig. 1.3). The sources (fanin-0 nodes) are labeled by generators. Each of the

remaining nodes is called gate and performs some of the elementary operations

on nodes that have direct wires to that gate. The fanin of a gate is the number

of wires entering it. The boolean function computed by the circuit is defined

in the obvious way. The size of a circuit is the total number of gates in the

circuit. Another important measure is the depth of the circuit which is the

length of the longest directed path in the graph.

∧ top level

∧ ∧ bottom level

¬y y z ¬z input level

Fig. 1.3 A circuit F over the basis {∧,∨,¬} of size 3 and depth 2
computing the XOR function: F (y, z) = 1 iff y 6= z. We will always
assume that the NOT gates are only applied to the input variables, that
is, inputs are literals (variables and their negations).

Easy counting shows that most boolean functions of l variables require cir-

cuits of size 2l/l: we have 22
l

boolean function of l variables, but only about

tt circuits of size t. This was shown by Shannon more than 60 years ago. But

despite of intensive research during the decades no specific function requiring

“merely”, say, 10l gates was found. Even in restricted circuit classes the progress

is rather modest. Say, it remains open to prove a super-linear (in the number

of variables) lower bound in the class of circuits of logarithmic depth.

The difficulty in proving that a given boolean function has high complexity

lies in the nature of our adversary: the circuit. Small circuits may work in a

14 Contents

counterintuitive fashion, using deep, devious, and fiendishly clever ideas. How

can one prove that there is no clever way to quickly compute the function?

This is the main issue confronting complexity theorists.

One of the impediments in the lower bounds area is a shortage of problems

of intermediate difficulty which lend insight into the harder problems. Most of

known boolean functions are either “very simple” (parity, majority, etc.) or are

“very complex”: clique problem, satisfiability of CNFs, and all other NP-hard

problems.

On the other hand, there are fields—like graph theory or matrix theory—

with a much richer spectrum of known objects. It therefore makes sense to look

more carefully at the graph structure of boolean functions: that is, to move

from a “bit level” to a more global one and consider a given boolean function

as a matrix or as a graph.

And indeed, it turns out that strong lower bounds on the complexity of bipar-

tite graphs imply strong lower bound for circuit complexity boolean functions.

Let, for example Star3(G) be the smallest number s such that a bipartite n×n

graph G can be written in the form

G =

s
⋂

i=1

s
⋃

j=1

Aij ×Bij ,

That is, we want to represent the graph as an intersection of at most s graphs,

each of which is a union of at most s bipartite complete graphs. Since we have

only (22n)s
2

such representations, and since every of 2n
2

graphs requires its

own representation, we have that (22n)s
2 ≥ 2n

2

, from which s ≥
√

n/2 follows.

In particular, almost all graphs G have Star3(G) = Ω(n1/2).

On the other hand, we will see (Problem 1.59 below) that any explicit se-

quence of graphs (Gn : n = 1, 2, . . .) with Star3(Gn) = Ω(nǫ) for an arbitrarily

small constant ǫ > 0 would resolve a 30 years old problem in circuit complex-

ity: would give us a boolean function which cannot be computed by log-depth

circuits of linear size.

We now show how the complexity of graphs is related to the circuit complex-

ity of boolean functions. For simplicity of notation, we will consider bipartite

graphs G ⊆ Kn,m = L×R where n = |L| and m = |R| are powers of 2:

n = 2l and m = 2r

for some integers l, r ≥ 1. We can therefore identify vertices u ∈ L with binary

vectors ~u ∈ {0, 1}l, and vertices v ∈ R with binary vectors ~v ∈ {0, 1}r.
Definition 1.13 (Adjacency function) The adjacency function of a graph G ⊆
Kn,m is a boolean function fG of l+ r variables such that for every u ∈ L and

v ∈ R, fG(~u,~v) = 1 if and only if (u, v) ∈ G.

Thus, every bipartite 2l × 2r graph gives us a boolean function fG of l + r

variables, and every boolean function of l+r variables is the adjacency function

1.3 From graphs to boolean functions 15

L R
•

•

•

•

00

01

10

11

•

•

•

•

00

01

10

11

Fig. 1.4 A bipartite 4 × 4 graph G. Its adjacency function is the XOR
function f(y1, y2, z1, z2) = y1 ⊕ y2 ⊕ z1 ⊕ z2.

of some bipartite 2l × 2r graph (see Fig. 1.4). But this trivial observation is

not a big deal: we just used different terms for the same concept, the boolean

function. The deal becomes more interesting when we ask the following ques-

tion:

How does the circuit complexity of fG is related to the star complexity

of the graph G?

The main relation between circuit complexity of boolean functions and the

star complexity of graphs is given by the following lemma. In this lemma,

under a circuit we understand any circuit whose inputs are literals (boolean

variables and their negations); a circuit is positive if it has no negated variables

as inputs.

Magnification Lemma In any circuit computing fG it is possible to replace each

of its 2l + 2r input literals by an OR of new variables so that the resulting

positive circuit represents G.

Remark 1.14 Instead of replacing input literals by ORs one can also replace

them by any other boolean functions that compute 0 on the all-0 vector, and

compute 1 on any input vector with exactly one 1. In particular, one can take

XORs instead of ORs of variables.

Proof. Let G ⊆ L × R be a bipartite n × m graph with L = {0, 1}l, R =

{0, 1}r, and take a circuit F (y, z) circuit computing its adjacency function

fG : L×R → {0, 1}. That is, F (u, v) = 1 if and only if (u, v) ∈ G. The circuit

F takes 2l + 2r input literals as inputs; we have 2l y-literals3 yai for a = 0, 1

and i = 1, . . . ,m, and 2r z-literals.

Let X = {xu : u ∈ L ∪ R} be a set of new boolean variables, one for each

vertex of G. We will show that it is possible to replace each y-literal by an

3) As usually, y1i stands for the variable yi itself, and y0i stands for
its negation ¬yi.

16 Contents

OR of n new variables xu with u ∈ L, and each z-literal by an OR of m new

variables xv with v ∈ R such that the obtained positive circuit F ′(X) represents

the graph G. Recall that a circuit represents G if for every u ∈ L and v ∈ R,

the circuit accepts the vector eu + ev if and only if (u, v) ∈ G; here eu is the

vector in {0, 1}n+m with exactly one 1 in the u-th position.

An input literal yai with a ∈ {0, 1} in the circuit F (y, z) accepts an input

(u, v) ∈ {0, 1}l+r if and only if u(i) = a (the vector u has a in the i-th position).

Hence, if we let Y a
i (X) to be the OR of all variables xw such that w ∈ L and

w(i) = a, then

Y a
i (eu + ev) = 1 iff u(i) = a iff yai (u, v) = 1.

Similarly, if we let Za
j (X) to be the OR of all variables xw such that w ∈ R

and w(j) = a, then

Za
j (eu + ev) = 1 iff v(j) = a iff zaj (u, v) = 1.

Thus, the outputs of input literals yai and zaj of the original circuit on the input

(u, v) ∈ {0, 1}l+r are the same as the outputs of the ORs Y a
i and Za

j on the

input eu + ev ∈ {0, 1}n+m. Since the rest of the new circuit F ′ is the same, we

obtain that

F ′(eu + ev) = 1 iff F (u, v) = 1 iff (u, v) ∈ G

implying that the new circuit F ′ represents the graph G, as desired.

Remark 1.15 The Magnification Lemma is particularly appealing when dealing

with circuit models allowing unbounded fanin OR (or unbounded fanin XOR)

gates on the bottom, next to the input layer. In this case the total number of

gates in the monotone circuit representing a graph G is just the same as in a

non-monotone circuit computing fG! That is, in such circuit models we have

that

circuit complexity of fG ≥ star complexity of G. (1.4)

Thus, if we could prove that some explicit bipartite n × n graph with n = 2l

cannot be represented by such a circuit of size nǫ, then this would immediately

imply that the corresponding boolean function fG(x, y) in 2l variables cannot be

computed by a (non-monotone!) circuit of size 2ǫl, which is already exponential

in the number 2l of variables of f . This is where the term “magnification” comes

from:

Small (linear) lower bounds on the star complexity of graphs yield large

(exponential) lower bounds on the non-monotone circuit complexity of

boolean functions.

1.3 From graphs to boolean functions 17

Let us now consider the standard model of boolean circuits with fanin-2

AND and OR gates; inputs again are variables and their negations. This is

the classical circuit model for which no super-linear lower bounds are known.

For a boolean function f , let Circuit(f) denote the smallest number of gates

in such a circuit computing f . Recall that Star(G) is the smallest number of

fanin-2 AND and OR gates in a monotone circuit representing G; a circuit is

monotone if it does not have negated variables as inputs. The question is: how

Circuit(fG) is related with Star(G)?

Since now the gates have small fanin, the inequality (1.4) relating circuit

complexity of boolean functions and graphs does not hold. In order to have

at least some “approximate” inequality, we have to show how to compute the

set of all 2(l + r) = 2 log2 nm boolean sums (ORs) of variables using as few as

possible fanin-2 OR gates, as given in the Magnification Lemma. If we compute

all these sums separately, we will need 2l log2 n+ 2r log2 m = 4n log2 n fanin-2

OR gates, if m = n. Using the so-called Transposition Principle, this trivial

upper bound can be substantially improved to about 4n.

Strong Magnification Lemma For every bipartite n×m graph G,

Circuit(fG) ≥ Star(G)− 2(n+m)− 8(
√
n+

√
m) .

In particular, if m = o(n) then Circuit(fG) ≥ Star(G)− (2 + o(1))n. Recall

that almost all graphs G have Star(G) = Ω(n2/ log n) (see Theorem 1.7).

Proof of the Strong Magnification Lemma

To prove that lemma, we have first to show how to simultaneously compute

many boolean sums (ORs of variables) using relatively few fanin-2 OR gates.

That is, we a given a collection
∨

j∈S1

xi, . . . ,
∨

j∈Sm

xi (1.5)

of m boolean sums on the same set of n variables x1, . . . , xn. We want to

simultaneously compute these sums by a circuit consisting solely of fanin-2

OR gates. The smallest number of gates in such a circuit is the disjunctive

complexity of the collection of sums.

We can specify each collection of boolean sums (1.5) by its incidence matrix :

this is an m× n boolean matrix A = (aij), where aij = 1 if and only if j ∈ Si.

Then

∨

j∈Si

xi =
∨

j:aij=1

xj =
n
∨

j=1

aijxj .

Thus, computing the collection of boolean sums (1.5) means to compute a “lin-

ear transformation” x 7→ Ax over the boolean semiring. We are thus interested

18 Contents

in the smallest number D(A) of fanin-2 OR gates in a circuit computing the

collection of boolean sums specified by the matrix A; in this case we that the

circuit computes the matrix A.

We need the following useful fact relating the disjunctive complexity of a

matrix A with the disjunctive complexity of the transposed matrix AT ; recall

that the transpose of a matrix A = (aij) is the matrix AT = (bij) with bij = aji.

The following fact was independently pointed out by Bordewijk [7] and Lu-

panov [32] in the context of rectifier networks.

Transposition Principle If A is a boolean matrix with m rows and n columns,

then D(AT) = D(A) +m− n.

Proof. Take a minimal circuit F with fanin-2 OR gates computing y = Ax,

and let α(F) be the number of gates in it. We can view F as a rectifier n×m

network (a directed acyclic graph) with n input and m output nodes “realizing”

the matrix A in the following sense: there is a path from input node j to an

output node i of F if and only if aij = 1. (We will investigate these networks

further in Sect. 1.8.) If we reverse the direction of each wire in this network,

the obtained network FT will realize the transposed matrix AT . Both networks

F and FT have the same number e of wires and the same number v of nodes

(only the roles of input and output nodes is reversed). Moreover, since we had

fanin-2 gates in the original circuit F , the number of OR gates in that circuit

was α(F) = e− v+ n; this holds because e = 2 ·α(F) and α(F) = v− n = the

number of non-input nodes. In the new m× n circuit FT some OR gates may

have fanin d > 2. In this case, we replace each such node by a binary tree of

OR gates:

. . .

d

. . .

d−1

1

d

g
1

2

Fig. 1.5 We replace a node (an OR gate) g of fanin d by d − 1 nodes
each of fanin 2. In the former circuit we have e − v = d − 1, and in the
latter e′ − v′ = 2(d− 1)− (d− 1) = d− 1 = e− v.

Thus, the difference e′ − v′ between the numbers of wires and nodes in FT

does not exceed e−v, implying that the number of gates in the new circuit FT

is at most e′ − v′ +m ≤ e− v+m = α(F)− n+m. This shows the inequality

D(AT) ≤ D(A) +m− n, and by symmetry, that D(A) ≤ D(AT) + n−m.

Using the Transposition Principle, we can prove the following upper bound

on the disjunctive complexity of any boolean matrix.

Lemma 1.16 (Lupanov [32]) For every integer 1 ≤ s ≤ m, every collection of

m boolean sums of n variables can be simultaneously computed by a circuit

consisting solely of at most sn+ s2m/s − 2m− s fanin-2 OR gates.

1.3 From graphs to boolean functions 19

In particular, any collection of m = s log2 n boolean sums in n variables can

be simultaneously computed by a circuit consisting of at most 2sn fanin-2 OR

gates.

Proof. Given a boolean m × n matrix A, we want to compute the set of m

disjunctions of n variables defined by A. For this consider the transposed n×m

matrix AT . We can split AT into into s submatrices, each of dimension n× k

where k ≤ m/s. By taking a circuit computing all possible disjunction of k

variables, we can compute disjunctions in each of these submatrices using at

most 2k − k − 1 OR gates. By adding n(s− 1) gates to combine the results of

ORs computed on the rows of the submatrices, we obtain that

D(AT) ≤ s2k −m− s+ n(s− 1) ≤ s2m/s −m− s+ n(s− 1)

and, by the Transposition Principle,

D(A) ≤ D(AT) + n−m ≤ sn+ s2m/s − 2m− s .

The complement of a boolean matrix A = (aij) is the matrix A = (aij) where

aij = 1 − aij . Let D(A,A) denote the minimum number of fanin-2 OR gates

required to simultaneously compute the matrix A and its complement A.

Lemma 1.17 Let A be a boolean p× q matrix. Then D(A,A) ≤ q + 2p+2.

Proof. The argument is similar to that in the proof of Lemma 1.8. Split the

matrix A into t ≤ 2p submatrices A1, . . . , At, each consisting of equal columns

of A. Form a p × t matrix B by taking one column from each Ai. By taking

s = 1 in Lemma 1.16, we obtain that D(B) ≤ t+2p − 2p− 1 ≤ 2p+1. Since the

same argument applies also to B, we obtain that both D(B) and D(B) are at

most 2p+1. Thus, there are circuits F1(z1, . . . , zt) and F2(z1, . . . , zt) computing

Bz and Bz such that both F1 and F2 have at most 2p+1 OR gates.

If Ij ⊆ [n] is the set of indices of columns in Aj , then associate with submatrix

Aj the sum Sj = ∨i∈Ijxi. Since the Ij are disjoint, all these t sums can be

computed using at most
∑t

j=1(|Ij | − 1) = q − t < q OR gates. By taking the

outputs of this circuit as inputs for F1 and F2, we obtain a circuit with at most

q + 2 · 2p+1 = q + 2p+2 gates which computes both A and A.

Proof of the Strong Magnification Lemma. In the Magnification Lemma we

replace each of l = log2 n y-variables by a boolean sum of n = |L| new vari-

ables. Let A be the boolean l × n matrix corresponding to this set of boolean

sums. The negations of y-variables are also replaced by boolean sums, and the

corresponding matrix for these sums is just the complement A of A. Split the

matrix A into two (l/2) × n submatrices A1 and A2. Applying Lemma 1.17

with p = l/2 = (log2 n)/2 and q = n, we obtain that

D(A,A) ≤ D(A1, A1) + D(A2, A2) ≤ 2(n+ 4
√
n)

20 Contents

fanin-2 OR gates are enough to compute all 2l boolean sums corresponding

to the y-literals. Since the same argument yields a circuit with 2(m + 4
√
m)

fanin-2 OR gates computing the sums corresponding to the z-literals, the Strong

Magnification Lemma is proved.

Remark 1.18 The Strong Magnification Lemma can also be used to show that

some graphs G ⊆ Kn,n with n = 2l have small star complexity: for this it is

enough to show that the adjacency function fG can be computed by a small

circuits over {∧,∨,¬}; recall that fG has only 2l = 2 log2 n variables. Since

Star(G) ≤ (4 + o(1))n + Circuit(fG), we have that Star(G) ≤ (4 + o(1))n for

all graphs G whose adjacency functions have circuits of polynomial in l size!

Towards the (2 + c)n lower bound

We already known (Theorem 1.7) that bipartite n×m graphs G of star com-

plexity Star(G) = Ω(nm/ log n) exist; in fact, such are almost all graphs. On

the other hand, the Strong Magnification Lemma implies that even a lower

bound of Star(G) ≥ (2+ c)n for an arbitrarily small constant c > 0 on the star

complexity of an explicit n×m graph G with m = o(n) would have great con-

sequences in circuit complexity: such a graph would give an explicit boolean

function fG requiring circuit of exponential (in the number log2 nm of vari-

ables) size! (Recall that, for boolean functions, even super-linear lower bounds

are not known so far.) In particular, if the graph G is such that the adjacency

of vertices in G can be determined by a nondeterministic Turing machine run-

ning in time polynomial in the binary length log2 n of the codes of vertices,

then a lower bound

Star(G) ≥ (2 + c)n

for an arbitrarily small constant c > 0 would imply that P 6= NP. Thus,

star complexity of graphs captures one of the most fundamental problems of

computer science.

On the other hand, the lower bound Star(G) ≥ 2n − O(1) is achieved on

relatively simple graphs. Say that a graph G ⊆ Kn,m = L × R has distinct

neighbors if no vertex in L has degree 0 or m, and no two vertices in L have

the same set of neighbors in R.

Theorem 1.19 (Chashkin [10]) If a bipartite n×m graph G has distinct neigh-

bors, then Star(G) ≥ 2n− 1.

The proof of this theorem goes deeply in the structure of circuits representing

the graphs, and is somewhat involved. We will therefore demonstrate the main

ideas by giving a simpler proof for non-bipartite graphs.

1.3 From graphs to boolean functions 21

Let Gn = Kn−1 + E1 be a complete graph on n − 1 vertices plus one iso-

lated vertex. We identify the vertices of Gn with boolean variables x1, . . . , xn.

Assume that the first n−1 variables form a cliques, and xn is an isolated vertex.

Theorem 1.20 Star(Gn) ≥ 2n− 6.

Proof. The main property of the graph Gn we will use is that functions

representing it are related to threshold functions. The threshold -k function of

n variables is a monotone boolean function Thnk defined by:

Thnk (x1, . . . , xn) = 1 if and only if x1 + x2 + · · ·+ xn ≥ k .

Claim 1.21 Let f(x1, . . . , xn) be a monotone boolean function representing Gn.

Then f(x1, . . . , xn−1, 0) = Thn−1
2 (x1, . . . , xn−1).

Proof. Let g(x1, . . . , xn−1) := f(x1, . . . , xn−1, 0). Let ei ∈ {0, 1}n denote the

i-th unit vector with exactly one 1 in the i-th position.

First, observe that g(ei + ej) = 1 for all 1 ≤ i < j < n because vertices xi

and xj are adjacent in Gn. Next, observe that g(ei) = 0 for all i < n. Indeed, if

g(ei) = 1 for some i < n, then f(ei + en) = 1 because f is monotone. But this

is a contradiction, because vertices xi and xn are not adjacent in Gn, implying

that f(ei + en) = 0. We have thus shown that g : {0, 1}n−1 → {0, 1} accepts

every input vector with at least two 1s, and rejects all vectors with fewer than

two 1s, that is, g = Thn−1
2 .

Claim 1.22 Even if all boolean functions in at most two variables are allowed

as gates, the function Thn2 requires at least 2n− 4 gates.

Proof. The proof is by induction on n. For n = 2 and n = 3 the bound is

trivial. For the induction step, take an optimal circuit for Thn2 , and suppose

that the bottom-most gate g acts on variables xi and xj with i 6= j. This gate

has the form g = ϕ(xi, xj) for some ϕ : {0, 1}2 → {0, 1}. Notice that under

the four possible settings of these two variables, the function Thn2 has three

different subfunctions Thn−2
0 , Thn−2

1 and Thn−2
2 . It follows that either xi or

xj fans out to another gate h, for otherwise our circuit would have only two

inequivalent sub-circuits under the settings of xi and xj . Why? Just because

the gate g = ϕ(xi, xj) can only take two values, 0 and 1.

Now suppose that it is xj that fans out to h. Setting xj to 0 eliminates the

need of both gates g and h. The resulting circuit computes Thn−1
2 , and by

induction, has at least 2(n − 1) − 4 gates. Adding the two eliminated gates

to this bound shows that the original circuit has at least 2n − 4 gates, as

desired.

To finish the proof of the theorem, let F (x1, . . . , xn) be a circuit (even non-

monotone) representing the graph Gn. If we fix the last variable xn to 0,

22 Contents

then Claim 1.21 implies that the resulting circuit F ′ computes Thn−1
2 . By

Claim 1.22, this circuit (and hence, also the original circuit F) must gave at

least 2(n− 1)− 4 = 2n− 6 gates, as desired.

1.4
Formula complexity of graphs

As before, we consider circuits with fanin-2 AND and OR gates; inputs are

literals (variables and their negation). A circuit is monotone if it has no negated

variables as inputs. Such a circuit is a formula if all its gates have fanout 1,

that is, if the underlying graph of the circuit is a binary tree. By a leafsize

of a formula we will mean the number of leaves in its underlying tree, that is,

the number of occurrences of input literals. Since each gate has fanin 2, this

number is equal two times the total number of gates.

There are some super-linear lower bounds on the leafsize computing explic-

itly defined boolean functions of l variables. A lower bound l3/2 for XOR

function was first proved by Subbotovskaya [44]. A quadratic lower bound

l2 for XOR was then proved by Khrapchenko [24]. Using more complicated

boolean functions, this lower bound was improved to l5/2 by Andreev [4], and

further improved to l3−o(1) by Håstad [17]. But no explicit sequence of boolean

functions is known which needs formulas larger than l3. This is in a big contrast

with monotone formulas: here even exponential in n lower bounds are known

(see, e.g., the book [22]), and even for circuits, not only for formulas!

On the other hand, the Magnification Lemma relates the formula size of

boolean functions to the star complexity of graphs as follows. For a boolean

function f , let L(f) denote the smallest leafsize of a formula computing f . For

a graph G, let L+(G) denote the smallest leafsize of a monotone formula repre-

senting G. That is, L+(G) is the star complexity of G in the class of formulas.

By Lemma 1.7, we know that L+(G) = O(n2/ log n) for every bipartite n× n

graph, and graphs G with L+(G) = Ω(n2/ log n) exist.

The Magnification Lemma immediately yields that for every bipartite n× n

graph G,

L(fG) ≥
2

n
· L+(G) . (1.6)

If n = 2l, then the adjacency function fG is a boolean function in 2l = 2 log2 n

variables. Thus, any explicit graph G with L+(G) ≥ n logK n gives us an

explicit boolean function f = fG of 2l variables such that L(f) = Ω(lK). Recall

that, so far, the strongest known lower bound has the form L(f) = Ω(l3).

The star complexity of graphs deals with monotone circuits and formulas,

and for such circuits even exponential lower bounds are known (see, e.g., the

book [22]). So, why we cannot apply these arguments to lower-bound Star(G)

1.4 Formula complexity of graphs 23

or L+(G)? By the definition of star complexity, we have that L+(G) is the min-

imum of L+(h) over all monotone boolean functions h(x1, . . . , xn) representing

G:

L+(G) = min{L+(h) : h is monotone and represents G} .

Thus, even though we only need to consider monotone formulas, the difficulty

is that we have to prove that none of boolean functions representing G has a

small formula.

A standard monotone boolean function representing a graph G = ([n], E) is

the quadratic function of G defined by:

hG(x1, . . . , xn) =
∨

{i,j}∈E

xi ∧ xj . (1.7)

As before, we can view boolean functions h(x1, . . . , xn) as set-theoretic func-

tions h : 2[n] → {0, 1}: such a function accepts a set S ⊆ [n] = {1, . . . , n} if and

only if it accepts the characteristic vector χS ∈ {0, 1}n with χS(i) = 1 if and

only if i ∈ S. Hence, the quadratic function of a graph G is the unique mono-

tone boolean function hG : 2[n] → {0, 1} such that, for every set of vertices

I ⊆ [n], we have that

hG(I) = 0 if and only if I is an independent set in G. (1.8)

Representation (1.7) shows that L+(hG) ≤ 2|E| holds for any graph G =

([n], E), but for some graphs this trivial upper bound may be very far from

the truth. Say, a complete bipartite n × n graph Kn,n = L × R has n2 edges,

but can be represented by a monotone formula (∨u∈Lxu) ∧ (∨v∈Rxv) with 2n

leaves.

Since, so far, we are unable to prove super-linear lower bounds for monotone

formulas representing an explicit graph, a natural question is: what quadratic

functions require monotone formulas of super-linear size to compute them? It

turns out that such are dense graphs of girth > 4, that is, dense graphs without

triangles and without 4-cycles. This can be proved using rank arguments.

The rank argument

Let h : 2[n] → {0, 1} be a boolean function. A matrix associated to h is

an arbitrary |h−1(1)| × |h−1(0)| matrix A whose rows are labeled by subsets

accepted by h, and columns by subsets rejected by h. Note that we do not put

any restrictions on what the actual entries of A should be—one can define the

entries in an arbitrary way. The goal is to choose A in such a way that the

rank of A over some field is large, but the rank of every “legal” submatrix of A

is small.

24 Contents

More precisely, say that a submatrix B of A is legal if there exists an i ∈ [n]

such that i ∈ a and i 6∈ b holds for all labels a of the rows of B, and all

labels b of the columns of B. Note that if h is a monotone function (a ⊆ b

and f(a) = 1 implies f(b) = 1), then every single entry (a, b) of A is a legal

submatrix, because h(a) = 1 and h(b) = 0 imply that i ∈ a and i 6∈ b must

hold for at least one position i, because a 6⊆ b. Let rk(A) denote the rank of A

over GF(2). Then, for every matrix A associated with h,

L+(h) ≥
rk(A)

max rk(B)
, (1.9)

where the maximum is over all legal submatrices B of A. The proof of this

lower bound is based on a result of Khrapchenko [24] and Rychkov [43] that, if

L+(h) = t then every matrix associated with h can be decomposed into t legal

submatrices B1, . . . , Bt; this can be shown by an easy induction on t. By the

subadditivity of rank, we then have

rk(A) ≤
t

∑

i=1

rk(Bi) ≤ t ·max
i

rk(Bi) .

A lower bound for quadratic function

We will now use the rank argument to prove that quadratic functions of some

graphs require monotone formulas of almost maximal leafsize. Recall that the

quadratic function hG (as defined in (1.7)) of every graph G with m edges

can be computed by a monotone formula with at most 2m leaves. For graphs

without 4-cycles, almost this number of leaves is also necessary.

Theorem 1.23 ([19]) If G = (V,E) is a triangle-free graph without 4-cycles,

then

L+(hG) ≥ |E| .

Proof. We consider vertices as one-element and edges as two-element sets.

Recall that hG : 2V → {0, 1} is a monotone boolean function accept-

ing/rejecting subsets I ⊆ V of vertices of G. Namely, hG(I) = 1 if I contains

a pair of two adjacent vertices (an edge), and hG(I) = 0 if I is an independent

set. We will concentrate on a special collection of independent sets defined by

vertices and by edges as follows.

For a vertex y ∈ V , let Iy be the set of its neighbors. For an edge y ∈ E, let

Iy be the set of all its proper neighbors; that is, v ∈ Iy precisely when v 6∈ y

and v is adjacent with an endpoint of y. Let I = {Iy : y ∈ V ∪ E}. Since G

has no triangles and no 4-cycles, the sets in I are independent sets, and must

be rejected by hG. We will concentrate on only these independent sets.

1.4 Formula complexity of graphs 25

yI

y

x

y

y

x

I

u= u

v v

Fig. 1.6 The cases when y ∈ V (left) and when y ∈ E (right).

Let A be a submatrix of the matrix associated with hG defined as follows.

The rows are labeled by edges and columns by edges and vertices of G; a column

labeled by y corresponds to the independent set Iy. The entries are defined by:

A[x, y] =

{

1 if x ∩ y 6= ∅,
0 if x ∩ y = ∅.

Claim 1.24 rk(A) = |E|.

Proof. The matrix A has |E| rows. We are going to show that A has full row-

rank |E| over GF(2). For this, take an arbitrary subset ∅ 6= F ⊆ E of edges.

We have to show that the columns of the submatrix M ′ of M corresponding to

the rows labeled by edges in F cannot sum up to the all-0 column over GF(2).

If F is not an even factor, that is, if the number of edges in F containing

some vertex v is odd, then the column of v in M ′ has an odd number of 1s,

and we are done.

So, we may assume that F is an even factor. Take an arbitrary edge y =

uv ∈ F , and let H ⊆ F be the set of edges in F incident to at least one endpoint

of y. Since both vertices u and v have even degree (in F), the edge y has a

nonempty intersection with an odd number of edges in F : one intersection with

itself and an even number of intersections with the edges in H \ {y}. Thus, the

y-th column of M ′ contains an odd number of 1s, as desired.

By (1.9), it remains to prove the following claim.

Claim 1.25 If B is a legal submatrix of A, then rk(B) ≤ 1.

To prove this, let S be the set of all labels of rows, and T the set of all labels

of columns of B. Since B is a legal submatrix of A, there must be a vertex

v ∈ V such that all edges x ∈ S and all edges or vertices y ∈ T ,

v ∈ x and v 6∈ Iy for all x ∈ S and y ∈ T . (1.10)

Thus, for each y ∈ T , we have two possible cases: either v is in y or not.

Case 1: v ∈ y. Since v ∈ x for all x ∈ S, in this case we have that x ∩ y ⊇
{v} 6= ∅, implying that MR[x, y] = 1 for all x ∈ S. That is, in this case the

y-th column of MR is the all-1 column.

26 Contents

Case 2: v 6∈ y. We claim that in this case the y-th column of MR must be the

all-0 column. To show this, assume that MR[x, y] = 1 for some edge x ∈ S.

Then x ∩ y 6= ∅, implying that x and y must share a common vertex u ∈ x ∩ y

(see Fig. 1.6). Moreover, u 6= v since v 6∈ y. Together with v ∈ x, this implies

that y = {u, v}. But then v ∈ Iy, a contradiction with (1.10).

Remark 1.26 Note that the lower bound L+(h) ≥ |E| in Theorem 1.23 remains

true for any monotone boolean function h such that (1.8) is only required to

hold for every subset I of |I| ≤ 2d− 1 vertices, where d is the maximum degree

of G. This is because then |Iy| ≤ 2d− 1 for every vertex or edge y.

Thus, to have a large lower bound on L+(hG), we need that the graph G

has many edges, and has no triangles and no copies of K2,2. If the graph is

bipartite, then the triangle-freeness condition is trivially fulfilled.

Construction 1.27 (Sum-product graph) Let p be a prime number and take a

bipartite n×n graph with vertices in both its parts being pairs (a, b) of elements

of a finite field Zp; hence, n = p2. We define a graph G on these vertices, where

(a, b) and (c, d) are joined by an edge if and only if ac = b + d (all operations

modulo p). For each vertex (a, b), its neighbors are all pairs (x, ax − b) with

x ∈ Zp. Thus, the graph is p-regular, and has n = np = p3 = n3/2 edges.

Finally, the graph is K2,2-free, because every system of two equations ax = b+y

and cx = d+ y has at most one solution (x, y). So, L+(hG) = Θ(n3/2).

Construction 1.28 (Point-line incidence graph) For a prime power q, a projec-

tive plane PG(2, q) has n = q2 + q + 1 points and n subsets of points (called

lines). Every point lies in q+1 lines, every line has q+1 points, any two points

lie on a unique line, and any two lines meet is the unique point. Now, if we put

points on the left side and lines on the right, and joint a point x with a line L

by an edge if and only if x ∈ L, then the resulting bipartite n×n graph G will

have (q + 1)n = Θ(n3/2) edges and is K2,2-free. So, we again have a matching

lower bound L+(hG) = Θ(n3/2).

Thus, we can exhibit explicit graphs G whose quadratic functions require

monotone formulas of leafsize Ω(n3/2). But the quadratic function hG is just

one of many possible boolean functions representing the graph G. Could we

show that L+(h) = Ω(n3/2) for all functions h representing G, then this would

give us a lower bound L+(G) = Ω(n3/2) on the star complexity of G, and

by (1.6), a lower bound of Ω(
√
n) = Ω(2l/2) on the non-monotone formula

complexity of an explicit boolean function of 2l variables! Recall that the

current “record” is a cubic lower bound Ω(l3).

As noted above, besides the quadratic function hG, there may be many other

monotone boolean functions representing G—these functions may “wrongly”

accept some independent sets of G of cardinality larger than two. On the other

hand, there is a large class of graphs G for which hG is the only monotone

boolean function representing G.

1.5 Lower bounds via graph entropy 27

Namely, call graph G saturated if it has no independent sets with more than

two vertices, that is, if the complement of G is a triangle-free graph.

Proposition 1.29 If G = (V,E) is a saturated star-free graph, then hG is the

only monotone boolean function representing G.

Proof. Let h : 2V → {0, 1} be an arbitrary monotone boolean function rep-

resenting G. We have to show that h(S) = hG(S) for all subsets S ⊆ V . If

hG(S) = 1 then S contains both endpoints of some edge. This edge must be

accepted by h and, since h is monotone, h(S) = 1. If hG(S) = 0 then S is

an independent set of G, and |S| ≤ 2 since G is saturated. Hence, S is either

a single vertex or a non-edge. In the latter case we have that h(S) = 0 be-

cause h must reject all non-edges of G. If S = {v}, then we also have that

h(S) = 0, because otherwise h would accept all edges of the star around the

vertex v, contradicting the star-freeness of G. Thus, h must coincide with hG,

as desired.

Unfortunately, so as it is, the argument in the proof of Theorem 1.23 does

not work for saturated graphs.

1.5
Lower bounds via graph entropy

We now present a general argument allowing us to prove super-linear lower

bounds on the leafsize of formulas representing graphs. Recall that a boolean

function (or formula) f(x) represents a graph G ⊆ Kn if it behaves correctly of

all inputs ei + ej with exactly two 1s: f(ei + ej) = 1 if and only if i and j are

adjacent in G. In particular, on inputs ei with exactly one 1, the function can

output arbitrary values. We say that f strongly represents G if we additionally

have that f(ei) = 0 for all i = 1, . . . , n. Let ℓ+(G) denote the smallest leafsize

of a monotone formula strongly representing G.

To see the difference between this measure and the star complexity L+(G) of

graphs in the class of formulas, let us consider the complete graph Kn. Since Kn

is the union of n stars, this graph can be represented by the OR x1∨x2∨· · ·∨xn,

implying that L+(Kn) ≤ n. In the case of strong representation, we have

ℓ+(Kn) ≤ n⌈log2 n⌉. For this, it is enough to write Kn as a union of t ≤ ⌈log2 n⌉
bipartite complete graphs Ai ×Bi with Ai ∩Bi = ∅ and |Ai| = |Bi| = n/2. So,

Kn can be strongly represented by a monotone formula

t
∨

i=1

(

∨

j∈Ai

xj

)

∧
(

∨

k∈Bi

xk

)

of leafsize at most tn. Below we will show that Kn has no better strong

representation: ℓ+(Kn) ≥ n log2 n. Although this lower bound is useless in

28 Contents

the framework of star complexity—after all we are looking for n · poly(log n)
lower bounds on L+(G)—we still present the argument because it uses yet

another interesting measure of graphs—their entropy—which can apparently

be adopted to handle also star complexity.

Let µ be a measure which assigns to each graph G ⊆ Kn a non-negative real

number µ(G). Say that such a measure µ is a good graph-measure if

• µ(∅) = 0;

• µ is subadditive: µ(G ∪H) ≤ µ(G) + µ(H);

• µ is monotone: G ⊆ H implies µ(G) ≤ µ(H);

• µ respects bicliques: if G forms a complete bipartite graph on m (out of

n) vertices, then µ(G) ≤ m/n.

Theorem 1.30 (Newman and Wigderson [36]) For every graph G and for every

good graph-measure µ,

ℓ+(G) ≥ n · µ(G) .

In fact, it is shown in [36] that a result of Krichevskii [28] implies the same

lower bound for non-monotone formulas.

Proof. Let f(x1, . . . , xn) be a monotone boolean function. Then f can be

written as an OR of monomials, where each monomial is an AND of variables.

We concentrate on monomials of length 1 and 2. Monomials of length 2 define

the graph Ef ⊆ Kn, where two vertices i and j are adjacent if and only if

xi ∧ xj is a monomial of f . We also let Vf ⊆ [n] denote the set of vertices

such that xi is a monomial of f . Our goal is to prove that for every monotone

boolean function f ,

L+(f) ≥ n · µ(Ef) + |Vf | . (1.11)

To see that this already implies the theorem, observe that f strongly represents

a graph G ⊆ Kn if and only if Ef = G and Vf = ∅. Thus, every monotone

formula strongly representing G must have ≥ n · µ(Ef) = n · µ(G) leaves, as

claimed.

To prove (1.11), associate with every monotone boolean function f of n

variables its cost

c(f) := µ(Ef) +
|Vf |
n

.

If f = xi is a variable (a leaf of a formula), then Ef = ∅, Vf = {i}, and we get

c(xi) = 1/n. Moreover, the monotonicity of µ implies that the cost function is

monotone with respect to inclusion: if Vg ⊆ Vh and Eg ⊆ Eh, then c(g) ≤ c(f).

1.5 Lower bounds via graph entropy 29

Claim 1.31 c(g ∨ h) ≤ c(g) + c(h) and c(g ∧ h) ≤ c(g) + c(h).

Note that this claim already implies (1.11) since the cost of every leaf in a

formula is 1/n and, by Claim 1.31, the cost of the output function does not

exceed the sum of the costs of all the leaves. Thus c(f) ≤ 1
n · L+(f), implying

that

L+(f) ≥ n · c(f) ≥ n · µ(Ef) + |Vf | .

So, it remains to prove the claim.

Case 1: f = g ∨ h. Then Vf = Vg ∪ Vh and Ef = Eg ∪ Eh. The subadditivity

of µ yields

c(f) = µ(Eg ∪ Eh) +
|Vg ∪ Vh|

n

≤ µ(Eg) + µ(Eh) +
|Vg|
n

+
|Vh|
n

= c(g) + c(h) .

Case 2: f = g ∧ h. Denote A = Vg and B = Vh. Since Vf = A ∩B and

Ef = (Eg ∩ Eh) ∪KA,B ⊆ Eg ∪ Eh ∪KA,B ,

where KA,B := (A \B)× (B \A), we get:

c(f) ≤ µ(Eg ∪ Eh ∪KA,B) +
|A ∩B|

n
(monotonicity of µ)

≤ µ(Eg) + µ(Eh) + µ(KA,B) +
|A ∩B|

n
(subadditivity of µ)

≤ µ(Eg) + µ(Eh) +
|A \B|+ |B \A|

n
+

|A ∩B|
n

(µ respects bicliques)

= µ(Eg) + µ(Eh) +
|A|
n

+
|B|
n

= c(g) + c(h) .

This completes the proof of the claim, and thus the proof of the lemma.

In order to use Theorem 1.30 we have to define some good measure of graphs.

For this purpose, Newman and Wigderson (1995) used the measure of graph

entropy introduced by Körner (1973).

Let G be a graph on |V | = n vertices. The graph entropy , E(G), of G is the

minimum

E(G) =
1

n
·min

Y

∑

v∈V

log2
1

Prob[v ∈ Y]
= − 1

n
·min

Y

∑

v∈V

log2 Prob[v ∈ Y]

taken over all (arbitrarily distributed) random variables Y ranging over inde-

pendent sets in G. If G = ∅, then we set E(G) = 0.

30 Contents

Lemma 1.32 Graph entropy is a good measure.

We have to show that the graph entropy is monotone, subadditive and re-

spects bicliques.

Claim 1.33 (Monotonicity) If G ⊆ H are graphs on the same set of vertices,

then E(G) ≤ E(H).

Proof. Let Y be the random variable taking values in independent sets of

H, which attains the minimum in the definition of the entropy E(H). Since an

independent set in H is also an independent set in G, we have

E(G) ≤ − 1

n

∑

v∈V

log2 Prob[v ∈ Y] = E(H) .

Claim 1.34 (Subadditivity) If G and H are graphs on the same set of vertices,

then E(G ∪H) ≤ E(G) + E(H).

Proof. Let Y1, Y2 be random variables taking values in independent sets of

G and H, respectively, which attain the minimum in the definition of entropy.

We can assume that Y1, Y2 are independent. Also note that Y1∩Y2 is a random

variable taking values in independent sets of G ∪H. We therefore have

E(G) + E(H) = − 1

n

∑

v∈V

log2 Prob[v ∈ Y1]−
1

n

∑

v∈V

log2 Prob[v ∈ Y2]

= − 1

n

∑

v∈V

log2(Prob[v ∈ Y1] · Prob[v ∈ Y2])

= − 1

n

∑

v∈V

log2 Prob[v ∈ Y1 ∩ Y2]

≥ E(G ∪H) .

Claim 1.35 (Respecting bicliques) If G is a bipartite graph with m (out of n)

vertices, then E(G) ≤ m/n.

Proof. Let A,B ⊆ V be the parts of G; hence, |A ∪ B| = m and |V | = n.

By the monotonicity, we can assume that G is a complete bipartite graph,

G = A × B. Define a random independent set Y by letting Prob[Y = A] =

Prob[Y = B] = 1/2 and Prob[Y = C] = 0 for all remaining independent sets.

1.5 Lower bounds via graph entropy 31

Then

E(G) ≤ − 1

n

∑

v∈V

log2 Prob[v ∈ Y]

= − 1

n

∑

v∈A∪B

log2 Prob[v ∈ Y]

= − 1

n

∑

v∈A∪B

−1

=
|A ∪B|

n
=

m

n
.

This completes the proof of Claim 1.35, and thus of Lemma 1.32.

Together with Theorem 1.30 we obtain the following general lower bound on

the size of formulas strongly representing graphs.

Corollary 1.36 For every graph G on n vertices, ℓ+(G) ≥ n · log2 E(G).

In general, graph entropy of explicit graphs is not easy to compute. On the

other hand, it can be lower-bounded in terms of the independence number α(G)

of a graph G, that is, the maximum number of vertices in G no two of which

are adjacent.

Theorem 1.37 For every graph G on n vertices,

ℓ+(G) ≥ n · log2
n

α(G)
.

Proof. By Corollary 1.36, it is enough to show that

E(G) ≥ log2
n

α(G)
.

Let Y be a random independent set in G which attains the minimum in the

definition of the entropy E(G). For a vertex v, let pv := Prob[v ∈ Y]. Then
∑n

v=1 pv is the expected value of |Y |, and hence, cannot exceed α(G). On the

other hand, since log2 x is a concave function, we can apply Jensen’s inequality

and obtain

E(G) = −
n
∑

v=1

1

n
log2 pv ≥ − log2

(

n
∑

v=1

1

n
pv

)

≥ − log2
α(G)

n
= log2

n

α(G)
.

In particular, for the complete graph Kn, we have that ℓ+(Kn) ≥ n log2 n.

As we have shown at the beginning of this section, this bound is almost tight.

This is actually the bad news: using good graph-measures µ one cannot expect

32 Contents

to prove lower bounds larger than Ω(n log n). The reason for this is the mono-

tonicity condition of good graph-measures: one of the “simplest” graphs—the

complete graph Kn—has the largest measure. It would be interesting to remove

this condition.

Star complexity and affine dimension of graphs

Let W be a vector space of dimension d over some field F. An affine repre-

sentation of a graph G associates an affine space Sv ⊆ W with every vertex

v in such a way that two vertices u and v are adjacent in G iff Su ∩ Sv 6= ∅.
The affine dimension, adimF(G), of G is the minimum d such that G has a

d-dimensional affine representation.

A partial matrix over F is a usual matrix with the exception that some entries

can be left empty (marked by ∗) without placing into them any elements of

the underlying field F. An extension of such a matrix is a fully defined matrix

obtained by filling the unspecified entries by some elements of F. The rank of

a partial matrix is the minimum rank of its extension.

Given a bipartite graph G ⊆ L × R, we can associate with it the following

partial edge-nonedge matrix AG whose rows correspond to edges x and columns

to nonedges y of G. Fix any two elements l 6= r of the field F, and define the

entries of AG by:

AG[x, y] =

l if x and y share a vertex in L;

r if x and y share a vertex in R;

∗ if x ∩ y = ∅.

Recall that if G is an n× n graph with n = 2l, then its adjacency function fG
is a boolean function of 2l = 2 log2 n variables.

Theorem 1.38 (Razborov [42]) For every bipartite graph G,

L(fG) ≥ rk(AG) ≥ adimF(G) .

Proof. The proof of the first inequality uses similar ideas as the proof of (1.9),

and we omit it. We only prove the last inequality rk(AG) ≥ adimF(G). Let A be

an extension of the partial edge-nonedge matrix AG such that rk(A) = rk(AG).

Let ax be the row of A corresponding to edge x of G. Assign to each vertex v

of G an affine space Sv spanned by all rows ax with v ∈ x, that is, Sv is the set

of all affine combinations of these rows. If two vertices u and v are adjacent,

then the spaces Su and Sv contain the vector auv, and hence Su ∩ Sv 6= ∅.
Now suppose that u and v are not adjacent, and consider the y-th column

of A, where y = uv. Since v ∈ R, all rows ax with v ∈ x must have r in

the y-th position (in the partial matrix AG, and hence also in its extension A),

implying that their affine combination (with coefficients summing up to 1) must

1.6 Depth-2 complexity 33

also have r in that position. Thus, all vectors in Sv have r in the y-th position.

But u ∈ L implies that all vectors in Su must have l in the y-th position. Thus,

Su ∩ Sv = ∅. We have therefore constructed an affine representation of G of

dimension rk(A).

If the underlying field F has a finite number q of elements, then there are

at most
∑d

i=0

(

qd

i

)

≤ qd
2

possibilities to assign an affine space Sv ⊆ F
d of di-

mension ≤ d to each of the 2n vertices. Thus, there are at most q2d
2n different

affine representation. On the other hand, we have 2n
2

graphs in total. By com-

paring these bounds, we obtain that graphs G with adimF(G) = Ω(
√
n) exist.

For every such graph we have that every non-monotone formula computing fG
must have Ω(

√
n) = Ω(2l/2) leaves, which is exponential in the total number 2l

of variables of fG. Unfortunately, so far, no explicit graph of affine dimension

larger than log2 n is known.

1.6
Depth- 2 complexity

The lower bounds problem for graphs (just as that for boolean functions) is to

exhibit specific graphs of high star complexity. Results we mentioned above

show that this is a very difficult problem: to prove P 6= NP, it is enough to

exhibit an explicit bipartite n × n graph G such that, say, Star(G) ≥ 4.0001n

and the adjacency between any two vertices can be determined by a nondeter-

ministic algorithm in time polynomial in log2 n.

Being unable to solve the lower bounds problem in its full generality, it is

natural to try to understand the star complexity of graphs in restricted circuit

models.

One of the “simplest” models is that of depth-2 formulas. Each such formula

takes ORs of variables and applies some boolean function f to them:

OR
.

. . .

. . .
OR OR

f

More precisely, given a set F of boolean functions, a depth-2 formula over

the basis F is a formula of the form

F (x) = f
(

∨

w∈I1

xu, . . . ,
∨

w∈Ir

xu

)

, (1.12)

where f(y1, . . . , yr) is some boolean function in F . The size of such a circuit is

the fanin r of the output gate f , and its leafsize if the total number |I1|+· · ·+|Ir|
of occurrences of variables in it.

34 Contents

As before, we can view a boolean function f of r variables as a function

f : 2[r] → {0, 1} accepting/rejecting subsets S ⊆ [r] = {1, . . . , r}. This set-

theoretic view at boolean functions gives us a bridge between depth-2 com-

plexity of graphs and the well-studied subject of intersection representations

of graphs.

Definition 1.39 (Intersection representation of graphs) Let F be some class of

boolean functions. An F-intersection representation of a bipartite graph G ⊆
L × R of dimension r is an assignment of (not necessarily distinct) subsets

Sw ⊆ [r] of positive integers (labels) to the vertices w for which there exists

a boolean function f ∈ F of r variables such that for all vertices u ∈ L and

v ∈ R,

(u, v) ∈ G if and only if f(Su ∩ Sv) = 1.

The weight of such a representation is the sum
∑

w |Sw|.
For a boolean function f : 2[r] → {0, 1}, define its complement4 to be the

functionf∗ : 2[r] → {0, 1} defined by f∗(S) = f(S), where S = [r] \ S is the

complement of S. That is, the function f∗ is obtained from f by negating

all its variables. For example, the complement of AND function x ∧ y is the

negation of x∨ y: (x∧ y)∗ = x∧ y = ¬(x∨ y). For a class of boolean functions

F , let F∗ = {f∗ : f ∈ F}.
Proposition 1.40 (The bridge) Let F be some class of boolean functions. A

graph can be represented by a depth-2 circuit over F of size r and weight W

if and only if the graph has an F∗-intersection representation of dimension r

and weight W .

Proof. We only prove the “only if” direction (the “if” direction is similar).

Suppose that some circuit F (x) of the form (1.12) represents a graph G. As-

signing to each vertex w the set Sw = {i : w 6∈ Ii}. Since F (x) represents the

graph G, we have that (u, v) ∈ G if and only if F (eu + ev) = 1, which happens

if and only if the top gate f accepts the set Su ∪ Sv of indices i of those ORs
∨

e∈Ii
xw that are “on” on input eu + ev. Thus,

(u, v) ∈ G iff f(Su ∪ Sv) = 1 iff f(Su ∩ Sv) = 1 iff f∗(Su ∩ Sw) = 1.

Depth- 2 with AND on the top

We first consider representation of graphs by depth-2 formulas of the form

(1.12), where the top gate f is an AND gate. Such a formula has the form

F (x) =

r
∧

i=1

(

∨

v∈Ii

xv

)

. (1.13)

4) This should not be mixed with the negation ¬f which is defined
by ¬f(S) = 1− f(S).

1.6 Depth-2 complexity 35

Formulas of this form are usually called (monotone) CNFs (conjunctive normal

forms). The size of such a formula is the number r of ORs in it. Let cnf(G)

denote the smallest size a monotone CNF representing G. Note that for a

bipartite graph G ⊆ L × R, cnf(G) is just the smallest number r such that G

can be written as an intersection

G =

r
⋂

i=1

Ai ×Bi (1.14)

of bipartite complements Ai ×Bi = (L×R) \ (Ai ×Bi) of bicliques (bipartite

complete graphs) Ai × Bi, where Ai = L \ Ii and Bi = R \ Ii. Equivalently,

cnf(G) is just the smallest number r such that the bipartite complement of G

can be written as a union

G =

r
⋃

i=1

Ai ×Bi

of r bicliques. This implies that cnf(G) = bc(G), where bc(H) is the biclique

covering number of a graph H defined as the smallest number complete bipar-

tite subgraphs of H such that each edge of H belongs to at least one of these

subgraphs.

The measure cnf(G) is also tightly related to another combinatorial param-

eter of G–it’s disjointness dimension θ(G). This is defined as the smallest

number r for which it is possible to assign (not necessarily distinct) subsets of

[r] to vertices such that two vertices from different parts are adjacent in G if

and only if their sets are disjoint. Since the complement of an AND function is

the negation of an OR function, Proposition 1.40 implies that cnf(G) = θ(G).

Thus, we have the following equivalent definitions of cnf(G):

cnf(G) = θ(G) = bc(G) . (1.15)

These equivalences gives us a handy tool to prove bounds on the depth-2 com-

plexity of graphs, then the top gate is an AND gate.

Proposition 1.41 Every n×m graph has a CNF of size min{n,m}, and graphs

requiring CNFs of size at least nm/(n+m) exits.

Proof. Upper bound. Let G ⊆ L × R be a bipartite graph where |L| = n

and |R| = m. Associate with each vertex u ∈ L the set Su = R \N(u), where

N(u) ⊆ R is the set of all neighbors of u in G. Associate with each v ∈ R

the singleton set Sv = {v}. Then Su ∩ Sv = ∅ if and only if v ∈ N(u), which

happens if and only if (u, v) ∈ G. Thus, cnf(G) = θ(G) ≤ n. The inequality

cnf(G) ≤ m is proved in the same way by interchanging the roles of L and R.

The lower bound follows by easy counting. We have at most (2r)n+m =

2r(n+m) possible encodings of n +m vertices by subsets of {1, . . . , r}. Hence,

36 Contents

at most 2r(n+m) of all 2nm bipartite n×m graphs can have depth-2 complexity

≤ r. Thus, graphs requiring r ≥ nm/(n+m) exist.

One can also easily exhibit explicit graphs of maximal CNF-complexity.

Moreover, the complements of some graphs have exponentially larger com-

plexity than the graphs themselves. To demonstrate this, let us consider the

bipartite n-matching Mn. This is a bipartite n×n graph consisting of n vertex-

disjoint edges.

Proposition 1.42 cnf(Mn) ≤ ⌈log2 n⌉ but cnf(Mn) = n.

Proof. It is clear that bc(Mn) = n: no two edges of Mn lie in one biclique.

Thus, (1.15) immediately yields cnf(Mn) = bc(Mn) = n. On the other hand,

one can take the set of the first ⌈log2 n⌉ natural numbers as labels, and assign

to each vertex u on the left side its own subset Su of labels, and assign the

complement Sv = Su of Su to the unique vertex v on the right side matched by

Mn. Then the sets Su and Sv are disjoint if and only if (u, v) ∈ Mn, implying

that cnf(Mn) = θ(Mn) ≤ log2 n.

We have just seen that some graphs of small degree (like matchings) have

small CNFs. By slightly modifying the argument of Alon [1], it was shown

in [20] that all graphs of small degree have small CNFs.

Lemma 1.43 ([1, 20]) Every bipartite n × n graph of maximum degree d ≥ 1

can be represented by a CNF of size at most 6d lnn.

Proof. Let H = G be the bipartite complement of G. By (1.15), it is enough

to show that the edges of H can be covered by about d ln |G| bicliques (bipartite

complete subgraphs) of H.

To do this, we construct a biclique S×T ⊆ H via the following probabilistic

procedure: pick every vertex u ∈ U independently, with probability p = 1/d to

get a random subset S ⊆ U , and let be the set of all those vertices v ∈ V that are

adjacent in H to all vertices in S. It is clear that each so constructed complete

bipartite graph S×T is a subgraph of H. Note that (u, v) ∈ S×T if (i) u was

chosen in S, and (ii) none of (at most d) neighbors of u in G = H was chosen

in S. Hence, this happens with probability at least p(1− p)d ≥ pe−pd = p/e.

If we apply this procedure t times to get t complete bipartite subgraphs, then

the probability that an edge (u, v) of H is covered by none of these subgraphs

does not exceed (1− p/e)t ≤ e−tp/e. Hence, the probability that some edge of

H remains uncovered is smaller than n2e−tp/et = exp(2 lnn− t/(ed)), which is

smaller than 1 for t = 2ed lnn.

By Proposition 1.42, already such simple graphs as the complement of an

n-matching have maximal CNF complexity. By the Magnification Lemma,

this implies that the boolean function f(x, y) of 2l variables (with l = log2 n),

defined by f(x, y) = 1 iff x 6= y, requires CNFs with at least 2l clauses. Of

1.6 Depth-2 complexity 37

course, such a lower bound for CNFs is far from being interesting: it is easy

to show that, say, the XOR of 2l variables needs even 22l−1 clauses. Still,

strong lower bounds on the CNF complexity of graphs could imply impressive

lower bounds for boolean functions, if we could prove such bounds for graph

properties.

Of particular interest is the following question: what monotone properties

of graphs force their large CNFs? A property of graphs is monotone if it

is preserved under deletion of edges. For example, the property of avoiding

some fixed graph as a subgraph is a monotone property. It is conjectured that

already K2,2-freeness of graphs should force large depth-2 complexity. Namely,

Pudlák, Rödl and Savický [41] conjectured that every bipartite K2,2-free graph

of average degree D requires CNFs of size DΩ(1).

This conjecture was recently disproved by Katz [23] using probabilistic ar-

guments: there exist K2,2-free n × n graphs H of average degree D such that

cnf(H) = O(logD). However, the average degree in these this graph is only

about n0.1. On the other hand, we already know K2,2-free graphs whose mini-

mum degree is about n1/2; see Constrictions 1.27 and 1.28. So, let G stand for

any of these graphs.

Open Problem 1.44 Does there exist constants ǫ, δ > 0 such that cnf(H) ≥ Dǫ

holds for every subgraph H of G of average degree D ≥ n1/2−δ?

We will show in Section 1.7 that a positive solution to this problem would

have several impressing consequences in circuit complexity theory.

Depth- 2 with XOR on the top

We now consider the representation of graphs by depth-2 formula of the form

(1.12), where the top gate f is an XOR gate (a sum modulo 2 of its inputs).

Such a formula has the form

F (x) =

r
⊕

i=1

(

∨

v∈Ii

xv

)

. (1.16)

Let xor(G) denote the smallest size (smallest fanin r of the top XOR gate) in

such a formula representing G. Note that xor(G) is the smallest number r such

that G can be written as a symmetric difference of r unions of stars.

For a bipartite G, let rk(G) denote the rank of the adjacency matrix of G

over GF(2).

Proposition 1.45 For every bipartite graph G, |xor(G)− rk(G)| ≤ 1.

Proof. The complement z1⊕z2⊕· · ·⊕zr of an XOR function z1⊕z2⊕· · ·⊕zr
is either the XOR itself (if r is even), or the negation of that XOR. Thus, by

Proposition 1.40, xor(G) ≤ r if and only if the adjacency matrix of G or of

its complement G can be written as a matrix of scalar products over GF(2) of

38 Contents

vectors in {0, 1}r. Since the ranks of a boolean matrix and of its complement

differ by at most 1, we are done.

Thus, already such simple graphs as n-matching Mn (a bipartite n×n graph

consisting of n vertex-disjoint edges) require large top fanin: xor(Mn) ≥ n− 1.

Since stars are really simplest graphs, one could expect that “combinatorially

complicated” graphs should require large fanin as well. It turns, however,

out that being “combinatorially complicated” does not necessarily imply large

computationally complexity. To illustrate this, we now show that xor(G) =

O(log n) for some Ramsey graphs. A bipartite graph is t-Ramsey graph if

neither the graph nor its complement contains a complete bipartite t× t graph

Kt,t.

Theorem 1.46 Let n be a power of 2. There exist bipartite n×n graphs H such

that H is t-Ramsey for t = 2 log2 n but xor(G) ≤ t.

Proof. Let n = 2l, and take the Sylvester n2 × n2 graph Hn2 . Recall that

vertices of this graph are vectors x in GF(2)2l, and two vertices x and y are

adjacent in if and only if their scalar product over GF(2) is equal to 1. Thus,

xor(Hn2) ≤ 2l = 2 log2 n .

On the other hand, using probabilistic arguments, it can be shown that the

graph Hn2 contains a bipartite n × n t-Ramsey graph H for t = 2l = 2 log2 n

as an induced subgraph (see, e.g., Sect. 11.7 of [22]). Since H is an induced

subgraph, we can obtain a circuit representing H from any circuit representing

Hn2 by just setting to 0 all variables corresponding to vertices outside the graph

H. Thus, xor(H) ≤ xor(Hn2) ≤ 2 log2 n = t.

By Theorem 1.46, some strongly Ramsey n × n graphs can be represented

as an XOR of only 2 log2 n ORs. That is, some of such graphs are just a

symmetric differences of only 2 log2 n complements of bicliques. This is quite

interesting because Ramsey graphs are very difficult to construct: best known

constructions can only give t-Ramsey graphs for t = nǫ, where ǫ > 0 is arbitrary

small, but constant.

Depth- 2 with symmetric top gates

A symmetric formula of depth 2 is a formula of the form (1.12), where the

output gate f is a symmetric boolean function, that is, a function whose output

only depends on the number of 1s in the input vector. In set-theoretic terms, a

boolean function f : 2[r] → {0, 1} is symmetric if for every set S ⊆ [r], the value

f(S) only depends on the number |S| of elements in S. Let sym(G) denote the

smallest size, and Sym(G) the smallest weight of a symmetric depth-2 circuit

representing G.

1.6 Depth-2 complexity 39

By Proposition 1.40, sym(G) is the smallest number of labels for which it is

possible to assign each vertex w a subset Sw of labels so that

|Su ∩ Sv| 6= |Sx ∩ Sy| for all (u, v) ∈ G and (x, y) 6∈ G.

Open Problem 1.47 Exhibit an explicit bipartite n × n graph G such that

sym(G) ≥ 2(ln lnn)α for some α(n) → ∞.

By impressing results of Yao [48] and Beigel and Tarui [5], this would imply

that the adjacency function fG of G cannot be computed by an ACC circuit of

polynomial size; see [22] for how does this happen. These are constant-depth

circuits where, besides AND, OR and NOT gates, the counting gates can be

used; a counting gate outputs 1 if and only if the number of 1s in input is

divisible by some fixed number p. Exponential lower bounds for ACC circuits

are only known when counting modulo a prime power p are allowed as gates.

The case of composite moduli p remains open.

Actually, by the results of Green et al. (1995), it would be enough to prove

such a lower bound on sym(G) as in Problem 1.47 for special depth-2 circuits

where the top (output) gate f is the so-called “middle-bit” function: f(S) = 1

if and only if the middle bit of the binary representation of |S| is 1.

By Proposition 1.41, sym(G) ≤ cnf(G) ≤ n holds for all bipartite n × n

graphs G. Moreover, easy counting shows that graphs with sym(G) ≥ n/2

exist. To see this, argue as in the proof of Proposition 1.41: there are at

most 2r+1 · (2r)2n = 2r+1+2rn distinct symmetric intersection representations

of dimension r. Thus, to represent all 2n
2

graphs, we need that r ≥ n/2.

If all vertices in one color class have different sets of neighbors, then the

sets of labels assigned to these vertices must be distinct in any intersection

representation. Thus, sym(G) ≥ log2 n for any such graph. Unfortunately, no

stronger lower bounds for explicit graphs are known. Stronger lower bounds are

only known under some restrictions of the form of sets Sw of labels associated

with vertices.

Let us say that an intersection representation w 7→ Sw of a graph G ⊆ L×R

is balanced, if exist two vertices x, y ∈ L such that

|Sx ∩ Sv ∩ Sw| = |Sy ∩ Sv ∩ Sw| for all vertices v 6= w ∈ R.

It is easy to see that every bipartite n×n graph G has a balanced intersection

representation using n labels: assign to each vertex x ∈ L the set Sx := N(x) ⊆
R of its neighbors in G, and assign to each vertex v ∈ R the single-element set

Sv = {v}. This is clearly an intersection representation of G because (x, v) ∈ G

iff v ∈ N(x) = Sx iff |Sx ∩ Sv| = 1. Moreover, the representation is balanced

because Sv ∩ Sw = {v} ∩ {w} = ∅ for all v 6= w ∈ R.

We now show that many graphs, including explicit ones, have large intersec-

tion dimension under any balanced representation.

40 Contents

Definition 1.48 (Isolated graphs) A bipartite graph G ⊆ L × R is k-isolated if

for any two distinct vertices x 6= y ∈ L there exists a subset S ⊆ R of |S| = k

vertices such that every vertex v ∈ S is adjacent to exactly one of the vertices

x and y.

Recall that the Sylvester graph is a bipartite n×n graph H = Hn with n = 2l

whose vertices are vectors x in GF(2)l, and (x, y) ∈ H if and only if 〈x, y〉 = 1,

where 〈x, y〉 = x1y1 ⊕ x2y2 ⊕ · · · ⊕ xlyl is the scalar product over GF(2).

Proposition 1.49 Every non-zero vertex of the Sylvester n×n graph has exactly

n/2 neighbors, and the graph is k-isolated for k ≥ n/2.

Proof. Let H ⊆ L× R be the Sylvester n× n graph with L = R = GF(2)l.

We will use the following well-known property of the scalar product over GF(2).

Claim 1.50 Every non-zero vector in GF(2)l is orthogonal to exactly half of the

vectors in GF(2)l.

Proof. Take a vector z ∈ GF(2)l, z 6= ~0. Then zi = 1 for at least one

position i. Hence we can partition the set GF(2)l into 2l−1 = n/2 pairs x, x′

that differ only in their i-th position. For each of these pairs, we have that

〈z, x〉 6= 〈z, x′〉. Thus, 〈z, x〉 = 0 for exactly half of vectors in GF(2)l.

Claim 1.50 immediately implies the first claim of the lemma. To prove the

second claim, fix an arbitrary pair of vectors x 6= y ∈ L. Since the vector

z = x ⊕ y is a non-zero vector, Claim 1.50 gives us a set S ⊆ V of |S| = n/2

vectors such that 〈z, v〉 = 1 for all v ∈ S. Thus, every vector v ∈ S is adjacent

in H to exactly one of the vectors x and y.

Theorem 1.51 ([20]) If a bipartite graph G is k-isolated, then any balanced

intersection representation of G must use at least k labels.

In particular, bipartite n× n Sylvester graph H requires at least n/2 labels.

On the other hand, by its definition, the graph H has an intersection represen-

tation of dimension l = log2 n, even relative to the XOR function. This shows

that being balanced is a severe restriction on intersection representations.

Proof. Let w 7→ Sw be a balanced intersection representation of a graph G ⊆
L×R using r labels. Our goal is to show that r ≥ k. Since the representation

is balanced, there must exist two vertices x 6= y ∈ L such that their sets of

labels X = Sx and Y = Sy satisfy

|X ∩ Sv ∩ Sw| = |Y ∩ Sv ∩ Sw| for all v 6= w ∈ R. (1.17)

On the other hand, since the graph is k-isolated, there must be a subset V ⊆ R

of |V | = k vertices such that every vertex v ∈ V is adjacent to exactly one of

the vertices x and y. Hence, we must have that

|X ∩ Sv| 6= |Y ∩ Sv| for all v ∈ V . (1.18)

1.6 Depth-2 complexity 41

Consider now the intersection matrix M of the set-system {Sv : v ∈ V }. That

is, M is a k × k matrix with entries M [v, w] = |Sv ∩ Sw|. For a linear multi-

variate polynomial f : Rr → R, define the f -intersection version Mf of M by

Mf [v, w] = f(Sv ∩ Sw).

Claim 1.52 If f has N monomials, then rk(Mf) ≤ N .

Proof. Let f(z1, . . . , zr) =
∑

I⊂[n] aI
∏

i∈I zi be a linear multivariate poly-

nomial with N = |{I : aI 6= 0}| monomials. Each monomial of f accepts a set

A∩B if and only if it accepts both A and B. Thus, the value f(A∩B) is just

the scalar product of two vectors of length N , implying that rk(Mf) ≤ N .

Consider now the following multilinear polynomial over the reals:

f(z1, . . . , zr) =
∑

i∈X

zi −
∑

i∈Y

zi .

Note that for every subset T ⊆ [r], the value f(T) is just the difference between

|X ∩ T | and |Y ∩ T |. Hence, by taking T = Sv ∩ Sw, (1.17) implies that

f(Sv ∩ Sw) = 0 for all v 6= w ∈ V , and (1.18) implies that f(Sv ∩ Sv) 6= 0

for all v ∈ V . That is, the f -intersection matrix Mf of M is a real diagonal

matrix with nonzero diagonal entries, implying that rk(Mf) = |V | = k. On

the other hand, polynomial f has |X ∪ Y | ≤ r monomials. Claim 1.52 implies

that rk(Mf) ≤ r, and the desired lower bound r ≥ k follows.

Weight of symmetric depth- 2 representations

We now consider the weight of symmetric depth-2 formulas representing graphs,

that is, the total number of occurrences of variables in them. Recall that the

weight of such a circuit

F (x) = f
(

∨

u∈I1

xu, . . . ,
∨

u∈Ir

xu

)

for G is the sum |I1| + · · · + |It|. A circuit is symmetric, if f is a symmetric

boolean function. Let Sym(G) denote the smallest weight of a symmetric depth-

2 formula representing G.

Since sym(G) ≤ n for all bipartite n × n graphs G (Proposition 1.41), we

immediately obtain a trivial upper bound Sym(G) ≤ 2n2. Using Lemma 1.8,

we can get a somewhat better upper bound.

Proposition 1.53 For every n× n graph G, Sym(G) ≤ 2n2/ log2 n.

Proof. Lemma 1.8 gives us a decomposition G = H1 ∪ · · · ∪ Hr of G into

bicliques such that
∑r

i=1 |Vi| ≤ t := 2n2/ log2 n, where Vi is the set of vertices

of Hi. By assigning each vertex w the set Sw = {i ∈ [r] : w ∈ Vi} ⊆ [r], we have

that (u, v) ∈ G if and only if |Su ∩ Sv| ≥ 1. We thus obtained an intersection

representation of G of weight
∑

w |Sw| =
∑r

i=1 |Vi| ≤ t, as desired.

42 Contents

Since Sym(G) ≤ n · sym(G) trivially holds for every bipartite explicit n× n

graph G, any explicit graph with Sym(G) ≥ n2(ln lnn)α , for some α(n) → ∞,

would resolve Problem 1.47. However, the best we can do so far is a lower

bound of about n2ln lnn.

Recall that a bipartite n ×m graph G ⊆ L × R is k-isolated if for any two

distinct vertices x 6= y ∈ L there exists a subset S ⊆ R of |S| = k vertices such

that every vertex v ∈ S is adjacent to exactly one of the vertices x and y. A

graph is strongly isolated if it is k-isolated for k = Ω(n), where n = |L| is the

number of vertices on the left side. In particular, the Sylvester n× n graph is

k-isolated for k ≥ n/2, and hence, is strongly isolated.

We have proved (Theorem 1.51) that every strongly isolated graph has almost

maximal intersection dimension Ω(n), if only balanced intersection representa-

tions are allowed. Now we show that such graphs have large intersection weight

regardless of what intersection representations are used. The main combinato-

rial tool we will use is the well-known Sunflower Lemma discovered by Erdős

and Rado [14].

A sunflower is a family F1, . . . , Fs of sets of the form Fi = Pi ∪ C, where

the Pi are pairwise disjoint; the set C is the core of the sunflower, and the Pi’s

are called the petals. In other words, each element belongs either to none, or

to exactly one, or to all of the Fi. Note that a family of pairwise disjoint sets

is a sunflower (with an empty core).

Sunflower Lemma Every family of more that l!(p− 1)l sets, each of which has

cardinality at most l, contains a sunflower with p petals.

Proof. Take a family F of |F| >!(p − 1)l sets, each of cardinality at most

l. We proceed by induction on l. For l = 1, we have more than p − 1 points

(disjoint 1-element sets), so any p of them form a sunflower with p petals (and

an empty core). Now let l ≥ 2, and take a maximal family S = {S1, . . . , St}
of pairwise disjoint members of F . If t ≥ p, these sets form a sunflower with

t ≥ p petals (and empty core), and we are done.

Now assume that t ≤ p−1, and let S = S1∪· · ·∪St. Then |S| ≤ l(p−1). By

the maximality of S, the set S intersects every member of F . By the pigeonhole

principle, some point x ∈ S must be contained in at least

|F|
|S| >

l!(p− 1)l

l(p− 1)
= (l − 1)!(p− 1)l−1

members of F . Let us delete x from these sets and consider the family

Fx = {F \ {x} : F ∈ F , x ∈ F} .
Each member of Fx has at most l − 1 elements and, by the choice of x, there

are |Fx| > (l−1)!(p−1)l−1 sets in the family. By the induction hypothesis, Fx

contains a sunflower with p petals. Adding x to the members of this sunflower,

we get the desired sunflower in the original family F .

1.6 Depth-2 complexity 43

Theorem 1.54 ([20]) Every k-isolated bipartite n × m graph G requires sym-

metric depth-2 formula of weight at least about k lnn/ ln lnn.

Proof. Let G ⊆ L×R with L = [n] and R = [m] be a bipartite k-isolated n×
m graph. Fix an arbitrary intersection representation A1, . . . , An, B1, . . . , Bm

of G. We may assume that k > 0 (since for k = 0 there is nothing to prove).

Hence, all sets A1, . . . , An must be distinct. Let

ℓ := c
lnn

ln lnn

for a sufficiently small absolute constant c > 0. If
∑n

i=1 |Ai| > nℓ, then we

are done. So, assume that
∑n

i=1 |Ai| ≤ nℓ. Our goal is to show that then
∑m

j=1 |Bj | ≥ kℓ.

Since
∑n

i=1 |Ai| ≤ nℓ, at least n/2 of the sets Ai must be of size at most

r = 2ℓ. By the Sunflower Lemma, these sets must contain a sunflower with

s = 2ℓ petals. Having such a sunflower with a core C, we can pair its members

arbitrarily, (Au1
, Av1

), . . . , (Auℓ
, Avℓ

). Important for us is that all ℓ symmetric

differences Di = Aui
⊕Avi

= (Aui
∪Avi

) \ C are mutually disjoint.

Since the graph is k-isolated, each two vertices ui 6= vi have a set Si ⊆ R of

|Si| = k vertices, all of which are adjacent to ui and none of which is adjacent

to vi. Hence, |Aui
∩ Bj | 6= |Avi

∩ Bj | must hold for all j ∈ Si. This implies

that each set Bj with j ∈ Si must have at least one element in the symmetric

difference Di = Aui
⊕Avi

. Hence,

m
∑

j=1

|Di ∩Bj | ≥
∑

j∈Si

|Di ∩Bj | ≥ |Si| = k for each i = 1, . . . , ℓ.

Since the sets D1, . . . , Dℓ are disjoint, this implies

m
∑

j=1

|Bj | ≥
m
∑

j=1

ℓ
∑

i=1

|Di ∩Bj | =
ℓ

∑

i=1

m
∑

j=1

|Di ∩Bj | ≥
ℓ

∑

i=1

k = kℓ.

Drucker [13] showed that the lower bound in Theorem 1.54 is essentially

optimal: there are strongly separated graphs for which this lower bound cannot

be improved. In fact, the graph in [13] is explicitly constructed, and the upper

bound holds already when one takes XOR function as the output gate. We

now describe this construction.

The lower bound in Theorem 1.54 works by finding a large sunflower within

the family of sets associated with the vertices on the left side L of the biparti-

tion. Thus it is natural to try to use a set family without large sunflowers to

show the tightness of Theorem 1.54.

Construction 1.55 (Drucker graphs) Let n = ps where p is a prime power and

1 ≤ s ≤ p and integer. Set m := n/p, and fix a boolean p × m matrix M

44 Contents

whose rows are labeled by elements a ∈ GF(p), columns by elements x ∈ [m],

and every two rows in M differ in at least 1/4 of their positions. (For example,

one can take the Sylvester n′ × n′ matrix H, where n′ is the smallest power

of 2 satisfying n′ ≥ ps, and form M by taking the first p rows of H. By

Proposition 1.49, we know that every two rows of H differ in exactly n′/2 ≥ n/4

positions.) For x ∈ [m], we identify the x-th column of our “ambient” matrix

M with the set Sx ⊆ GF(p) of its 1-positions.

The Drucker graph Dn,s ⊆ L × R is an n × n graph with n = ps for a

prime power p. Vertices in L are polynomials of degree at most s − 1 over

GF(p); hence |L| = ps = n. Vertices in R are pairs (a, x) where a ∈ GF(p),

x ∈ [m] = {1, . . . ,m}; hence, |R| = pm = n. Vertices f ∈ L and (a, x) ∈ R are

adjacent in Dn,s if and only if f(a) ∈ Sx.

Lemma 1.56 (Drucker [13]) The graph Dn,s has an intersection representation

of weight 2pn, and is k-isolated for k ≥ n(p− s)/4p.

Proof. To define the desired intersection representation of Dn,s, associate

with each vertex f ∈ L and each vertex (a, x) ∈ R the following subsets of

GF(p)2:

Af := {(a, b) ∈ GF(p)2 : f(a) = b} and B(a,x) := a× Sx .

Since f is a function (cannot take more than one value), the intersection

Af ∩Ba,x = Af ∩ (a× Sx)

can have at most one element: the element (a, f(a)) if f(a) ∈ Sx, and no

elements otherwise. Thus, |Af∩Ba,x| = 1 if vertices f and (a, x) are adjacent in

Dn,s, and |Af∩Ba,x| = 0 otherwise. This gives us an intersection representation

of Dn,s relative to any boolean function which rejects the all-0 vectors, and

accepts all vectors with exactly one 1.

Let us show that this representation has weight at most 2pn. Since |Af | = p

for every polynomial f , and |Sx| ≤ p for every x ∈ [m], the weight of the

representation is

∑

f∈L

|Af |+
∑

(a,x)∈R

|Sx| ≤ ps · p+ p ·m · p = 2pn ,

as desired. It remains to show that the symmetric difference N(f) ⊕ N(g) of

sets of neighbors N(f) ⊆ R and N(g) ⊆ R of any two distinct vertices f ∈ L

and g ∈ L is at least n(p− s)/4p. Recall that N(f) = {(a, x) : f(a) ∈ Sx}.
For a ∈ GF(p), let ∆a := {(a, x) : f(a) ∈ Sx iff g(a) 6∈ Sx} denote the set

of columns Sx of our “ambient” matrix M , whose entries in the f(a)-th and

g(a)-th rows of M are distinct. Since, by the choice of M , every two distinct

rows of M differ in at least 1/4 of their m = n/p positions, we have that

1.7 Depth-3 complexity 45

|∆a| ≥ m/4 = n/4p for every a ∈ D := {a ∈ GF(p) : f(a) 6= g(a)}. On the

other hand, since any polynomial of degree s can have at most s roots, the set

D has |D| ≥ p− s elements. Thus,

|N(f)⊕N(g)| =
∑

a∈GF(p)

|∆a| ≥
∑

a∈D

|∆a| ≥ (p− s)
n

4p
.

By taking n = ps with s = ⌊p/2⌋ in Lemma 1.56, we obtain an explicit

strongly isolated graph G = Dn,s which can be represented by a symmetric

depth-2 formula of weight at most about n lnn/ ln lnn. Thus, the lower bound

in Theorem 1.54 is actually tight.

1.7
Depth- 3 complexity

In Section 1.6 we considered representation of graphs by the simplest kind of

depth-2 formulas—CNFs, that is by ANDs of ORs. Now we increase the depth

by 1, and consider formulas that are ORs of CNFs. We call such formulas

depth-3 OR-formulas. The middle fanin in such a formula is the maximum

number of clauses in its CNFs, and the top fanin is the total number of CNFs

used. By the size of such a formula we will mean the maximum of its top and

middle fanins.

Explicit boolean functions of l variables requiring depth-3 formulas of size

2Ω(
√
l) are known. In particular, such is the XOR function x1 ⊕ x2 ⊕ · · · ⊕ xl,

as well as the majority function which outputs 1 if and only if the input vector

has more ones than zeros. Using counting arguments it is not difficult to show

that most boolean functions require depth-3 formulas of size about 2l/2. But

all attempts to improve the 2Ω(
√
l) lower bound for an explicit function failed

so far. To break this “square-root” barrier is one of the challenges in circuit

complexity.

An even bigger challenge is to prove a lower bound of the form 2αl/ ln ln l for a

growing α → ∞. By Valiant’s result [46], this would resolve at least two widely

open problems in circuit complexity (see, e.g., Chapter 11 in [22] on how does

this happen). On the other hand, these problems can be solved by exhibiting

bipartite graphs requiring large OR-circuits of depth 3.

For a graph G, let Star3(G) denote the minimum size of a monotone depth-3

OR-formula representing G, that is, the smallest number s such that G can be

represented by a formula of the form

F (x) =

s
∨

i=1

s
∧

j=1

∨

u∈Sij

xu .

For a boolean function f , let Circuit3(f) denote the smallest size of a (not

necessarily monotone) depth-3 formula computing f . Since we have unbounded

46 Contents

fanin OR gates at the bottom, the Magnification lemma immediately yields the

inequality

Circuit3(fG) ≥ Star3(G) .

Remark 1.57 This latter inequality has no converse. To see this, consider the

bipartite n× n graph G ⊆ L×R with n = 2l which is a union of two bicliques

(complete bipartite graphs) L0×R1 and L1×R0, where L0 (L1) is the set of all

2l−1 = n/2 vertices u ∈ L whose binary code has an even (resp., odd) number of

1s; sets R0 and R1 are defined similarly. Since every biclique can be represented

by the AND of two ORs (see Example 1.6), we have that Star3(G) ≤ 2. But the

adjacency function fG(y, z) of this graph is the parity function of 2l variables,

and it is well known (see, e.g., [22]) that Circuit3(fG) = 2Θ(
√
l) = 2Θ(

√
logn).

Eq. 1.15, together with an obvious observation that every bipartite clique

A × B can be represented by a CNF consisting of two clauses
∨

u∈A xu and
∨

v∈B xv, gives an upper bound:

Star3(G) ≤ min
{

bc(G), bc(G)
}

, (1.19)

where bc(G) is the smallest number of bipartite complete subgraphs of G cov-

ering all edges of G.

Let Star3(n) denote the maximum of Star3(G) over all bipartite n×n graphs.

Proposition 1.58
√

n/2 ≤ Star3(n) ≤
√
n.

Proof. Upper bound. Let G be a bipartite n×n graph. Split G into s =
√
n

bipartite (n/s) × n graphs, G = H1 ∪ · · ·Hs. By Proposition 1.41, cnf(Hi) ≤
min{s, n/s} =

√
n for all i = 1, . . . , s. Thus, the original graph G can be

written as a union of s graphs, each of which can be represented by a depth-2

circuit (a CNF) of size s. This shows that Star3(G) ≤ √
n.

Lower bound. Since every CNF (depth-2 circuit) represents an intersection

of bipartite complements of bicliques (see (1.14)), we have that Star3(G) ≤ s

if and only if the graph G can be written in the form

G =

s
⋃

i=1

s
⋂

j=1

Aij ×Bij .

Since we have only 22n possibilities to choose a biclique Aij ×Bij , the number

of graphs representable in such a form does not exceed (22n)s
2

= 22ns
2

. Since

we have 2n
2

graphs, at least one of them will require s ≥
√

n/2.

Open Problem 1.59 Exhibit an explicit sequence Gn of bipartite n × n graphs

with Star3(Gn) ≥ nǫ for a constant ǫ > 0.

By the result of Valiant mentioned above, even a lower bound of nα for

α = ω(1/ ln ln lnn) would resolve some old problems in circuit complexity. Un-

fortunately, the currently best lower bound remains that proved by Lokam [30].

1.7 Depth-3 complexity 47

Theorem 1.60 (Lokam [30]) Let H be an n × n Hadamard graph. Then every

monotone depth-3 formula representing H must have Ω(log3 n) AND gates on

the bottom level.

In view of the difficulties to prove strong lower bounds for depth-3 complex-

ity of graphs, even understanding the depth-2 complexity is a challenge. As

mentioned in Problem 1.44, dense K2,2-free graphs could be good candidates in

this latter model. We already know how to construct K2,2-free bipartite n× n

graphs G with |G| ≥ n3/2 edges (see Constructions 1.27 and 1.28). Since each

depth-3 circuit is an OR of CNFs, a positive solution of Problem 1.44 would

resolve Problem 1.59.

Two parameters of depth-3 circuits determining their size is the top fanin

s and the middle fain r; the size of a circuit is then max{s, r}. As we men-

tioned above, no explicit lower bounds on max{s, r} larger than Star3(G) =

Ω(log3/2 n) are known. On the other hand, we have the following trade-off

between these two parameters.

Lemma 1.61 ([19]) If a bipartite graph G can be represented by a monotone

depth-3 formula of middle fanin r and top fanin s, then s2r ≥ bc(G) and

rs ≥ bc(G).

Proof. Take a monotone depth-3 formula of middle fanin at most r and top

fanin s, and let G ⊆ L×R be the bipartite graph represented by this formula.

Each gate g =
∨

i∈A∪B xi on the bottom (next to the inputs) level, with A ⊆ L

and B ⊆ R, represents the union H = (A × R) ∪ (L × B) of two bipartite

cliques (see Fig. 1.2). Since each AND on the middle level has fanin at most

r, and since the intersection of any number of bipartite cliques is a (possibly

empty) bipartite clique, each AND gate on the middle level represents a union

of at most 2r bipartite cliques. Since G is a union of s such graphs, we have

bc(G) ≤ s2r.

To prove bc(G) ≤ rs, observe that G is an intersection of s graphs, each of

which is a union of r bipartite cliques. Since the intersection of any number of

bipartite cliques is a bipartite clique, we have bc(G) ≤ rs.

Recall that a bipartite n-matching is an n × n graph Mn consisting of n

vertex-disjoint edges. Let n = 2l. We already know that cnf(Mn) ≤ l = log2 n

(see Proposition 1.42). Thus, Mn can be represented by a depth-3 circuit of

middle fanin r = log2 n and top fanin s = 1. On the other hand, Mn (as well as

every other graph) can be represented by a circuit with r = 2: let the middle

fanin-2 AND gates to represent bicliques. But Lemma 1.61 implies that every

depth-3 circuit for Mn with middle fanin r ≤ ǫ log2 n must have large top fanin:

s ≥ n/2r = n1−ǫ.

48 Contents

Depth- 3 complexity with XOR bottom gates

Being unable to prove strong lower bounds for depth-3 formulas, where bottom

(next to the input literals) gates are OR gates, we now consider the same

problem for depth-3 formulas where bottom gates are XOR gates, that is,

sums modulo 2 of their inputs.

By an XOR-formula of depth-3 we will mean a formula with unbounded fanin

XOR gates on the bottom (next to the inputs) level, followed by unbounded

fanin AND gates on the middle level feeding into the bottom OR gate. By the

size of such a circuit we will mean the fanin of the top (output) gate; that is,

we ignore the number of XOR gates used—it may be arbitrarily large. Such a

formula is positive if no negated variables are used as inputs.

For a graph G, let Star∗3(G) denote the size of a positive depth-3 XOR-

formula circuit representing G, that is, the smallest number s such that G can

be represented by a formula of the form

F (x) =
s
∨

i=1

ri
∧

j=1

⊕

u∈Sij

xu .

The Magnification Lemma implies that for every bipartite graph G,

the top fanin of any XOR-circuit for fG is at least Star∗3(G) . (1.20)

On the other hand, we have the following general lower bound on Star∗3(G). A

graph is Ka,b-free if it does not contain a complete a× b subgraph.

Theorem 1.62 ([19]) If an n× n graph G is Ka,b-free, then

Star∗3(G) ≥ |G|
(a+ b)n

.

Proof. To prove the theorem, we first give a combinatorial characteri-

zation of Star∗3(G) of the top fanin of Σ⊕
3 circuits representing bipartite

graphs (Claim 1.63), and then a general lower bound on this characteristics

(Claim 1.64).

Recall that a fat matching is a bipartite graph consisting of vertex-disjoint

bipartite cliques (these cliques need not to cover all vertices). Note that a

matching (a set of vertex-disjoint edges) is also a fat matching. A fat covering

of a graph G is a family of fat matchings such that each of these fat matchings

is a subgraph of G and every edge of G is an edge of at least one member of

the family. Let fat(G) denote the minimum number of fat matchings in a fat

covering of G.

Pudlák and Rödl [40] proved that fat(G) = O(n/ log n) for every n × n

graph G. We now show that fat(G) is exactly the depth-3 XOR-formula com-

plexity of G.

1.7 Depth-3 complexity 49

Claim 1.63 For every bipartite graph G, Star∗3(G) = fat(G).

Proof. The claim follows fairly easily from the observation that each XOR

gate
⊕

w∈S xw accepts an edge (u, v) if and only if the set S contains exactly

one of the endpoints u and v. Thus, each such gate represents the union of

two vertex disjoint bicliques, that is, a fat matching (see Fig. 1.2(c)). Since the

intersection of any number of fat matching is again a fat matching, the claim

follows. We leave the details to the reader.

Claim 1.64 For every Ka,b-free bipartite n× n graph, fat(G) ≥ |G|/(a+ b)n.

Proof. Let H =
⋃t

i=1 Ai × Bi be a fat matching, and suppose that H ⊆ G.

By the definition of a fat matching, the sets A1, . . . , At, as well as the sets

B1, . . . , Bt are mutually disjoint. Moreover, since G contains no copy of Ka,b,

we have that |Ai| < a or |Bi| < b for all i. Hence, if we set I = {i : |Ai| < a},
then

|H| =
t

∑

i=1

|Ai ×Bi| =
t

∑

i=1

|Ai| · |Bi| ≤
∑

i∈I

a · |Bi|+
∑

i6∈I

|Ai| · b ≤ (a+ b)n.

Thus, no fat matching H ⊆ G can cover more than (a+b)n edges of G, implying

that we need at least |G|/(a+ b)n fat matchings to cover all edges of G.

Theorem 1.62 is now a direct consequence of these two claims.

There are many explicit bipartite graphs which are dense enough and do not

have large complete bipartite subgraphs. By Theorem 1.62, each of these graphs

G gives us an explicit boolean function fG requiring large depth-3 formulas with

bottom XOR gates.

To give an example, consider the bipartite Kneser graph Dn. Recall that

this is a bipartite n× n graph with n = 2l whose vertices u in each color class

are subsets of [l] = {1, . . . , l}, and two vertices u and v are adjacent if and only

if u ∩ v = ∅. Thus, the graph Dn has disjointness dimension θ(G) ≤ l = log2 n

and, by (1.15), also Star3(Dn) ≤ cnf(Dn) ≤ log2 n. We now show that the

depth-3 complexity of this graph is much larger, if we require bottom gates be

XOR gates.

Theorem 1.65 Star∗3(Dn) ≥ n0.08/2.

Proof. As we argued in the proof of Theorem 1.12, the graph Dn is Ka,a-free

for a =
√
n. Since Dn has |Dn| ≥ n1.58 edges (see Example 1.9), Theorem 1.62

implies

Star∗3(Dn) ≥
|Dn|
2an

≥ n1.58

2n1.5
= n0.08/2 .

50 Contents

The adjacency function of the graph Dn is the well-known disjointness func-

tion of 2l = 2 log2 n variables:

DISJ 2l(y1, . . . , yl, z1, . . . , zl) = 1 if and only if

l
∨

i=1

yi ∧ zi = 0 .

This function can be computed by a depth-2 AND-OR formula ∧l
i=1(xi ∨ yi)

with l+1 gates. If, however, we replace bottom OR gates by XOR gates, then

exponential number of gates is necessary, even in depth-3. This immediately

follows from Theorem 1.65 and the lower bound (1.20).

Corollary 1.66 Any depth-3 formula for DISJ 2l with XOR gates on the bottom

must have top fanin at least about 20.08l.

We now consider a generalization of depth-3 XOR-circuits, where we allow

to use an arbitrary threshold gate (instead of an OR gate) on the top. Each

threshold function of n variables is defined by specifying its threshold value

0 ≤ t ≤ n; the gate accepts a boolean vector if and only if it has at least t

ones. Thus, XOR-formulas we considered above (with an OR gate on the top)

correspond to the case t = 1.

We are going to show that Hadamard graphs (see Example 1.10) require

large XOR-circuits of depth 3 even if an arbitrary threshold function is allowed

to be used as the top (output) gates. For this, we will use the well-known fact

that Hadamard matrices are “balanced’.

Lindsey’s Lemma The absolute value of the sum of all entries in any a × b

submatrix of an n× n Hadamard matrix M does not exceed
√
abn.

In particular, if ab > n then no a× b submatrix of M is monochromatic.

Proof. Let M be an n× n Hadamard matrix, and A one of its a× b subma-

trices. Assume for simplicity that A consists of its first a rows and b columns.

Let α be the sum of all entries of A. We want to prove that α ≤
√
abn.

Let v1, . . . , va be the first a rows of H, and y =
∑a

i=1 vi. If we take the

vector x = (1b0n−b), then α2 = 〈x, y〉2 ≤ ‖x‖2‖y‖2 = b · ‖y‖2. On the other

hand, the conditions 〈vi, vi〉 = n and 〈vi, vj〉 = 0 for all i 6= j imply that

‖y‖2 =
∑a

i,j=1〈vi, vj〉 =
∑a

i=1〈vi, vi〉 = an. Thus α2 ≤ b · ‖y‖2 = abn, as

desired.

We now will use Lindsey’s Lemma to show that Hadamard graphs require

large top fanin in depth-3 XOR-formulas even if arbitrary threshold function

is allowed to be used as the top (output) gates.

Theorem 1.67 ([19]) Any XOR-formula of depth 3, which has an arbitrary

threshold gate on the top and represents an n× n Hadamard graph, must have

top fanin Ω(
√
n).

1.7 Depth-3 complexity 51

Proof. Let H ⊆ L× R be an n× n Hadamard graph. Fix an XOR-formula

of depth 3 with an arbitrary threshold gate on the top, and assume that the

circuit represents H. Let s be the top fain of that circuit (the number of inputs

into the output (threshold) gate, and let t be the threshold of that gate. By

Claim 1.63, we know that graphs F1, . . . , Fs represented by the depth-2 XOR-

subcircuits feeding into the output threshold gate are fat matchings. Thus, a

pair (u, v) ∈ L × R of vertices is an edge of H if and only if (u, v) belongs to

at least t of the Fi. Define the discrepancy, p(Fi), of Fi relative to H by:

p(Fi) :=

∣

∣

∣

∣

|H ∩ Fi|
|H| − |H ∩ Fi|

|H|

∣

∣

∣

∣

Claim 1.68 For at least one i = 1, . . . , s, we have p(Fi) ≥ 1/s.

Proof. Since every edge of H belongs to at least t of the sets H ∩ Fi, the

average size of these sets must be at least t. Since no edge of H belongs to

more than t − 1 of the sets H ∩ Fi, the average size of these sets must be at

most t− 1. Hence,

1 ≤
s

∑

i=1

|H ∩ Fi|
|H| −

s
∑

i=1

|H ∩ Fi|
|H|

≤ s · max
1≤i≤s

p(Fi) .

Claim 1.69 For every fat matching F , p(F) ≤ 4/
√
n.

Proof. Take an arbitrary fat matching F =
⋃ℓ

i=1 Si × Ri. Let ∆ be the

absolute value of the difference between |H ∩ F | and |H ∩ F |. Since both

the graph H and its bipartite complement H have at least n2/4 edges, it is

enough to show that ∆ ≤ n3/2. By Lindsey’s Lemma, the absolute value of the

difference between |H ∩ (Si ×Ri)| and |H ∩ (Si ×Ri)| does not exceed
√
sirin,

where si = |Si| and ri = |Ri|. Since both sums
∑ℓ

i=1 si and
∑ℓ

i=1 ri are at

most n, we obtain

∆ ≤
ℓ

∑

i=1

√
sirin ≤ √

n

ℓ
∑

i=1

si + ri
2

≤ n3/2 .

The desired lower bound s = Ω(
√
n) on the top fanin of our circuit repre-

senting H follows directly by comparing bounds in Claims 1.68 and 1.69.

Theorem 1.67 has the following consequence for boolean functions. The inner

product function is a boolean function of 2l variables defined by

IP2l(y1, . . . , yl, z1, . . . , zl) =

l
∑

i=1

yizi mod 2 .

This function has a trivial depth-2 XOR-AND circuit with l + 1 gates. If,

however, we replace the roles of gates and consider AND-XOR circuits, then

52 Contents

32 4 5 6

1 4 52 3

1 4 52 3

1 32 4 5 6 1

Fig. 1.7 A bipartite 6×5 graph and a depth-2 rectifier network realizing
it.

even using an arbitrary threshold function of such circuits will not help: and

exponential number of AND gates is then necessary. This directly follows

from Theorem 1.67 and the lower bound (1.20), because IP2l is the adjacency

function of the Sylvester 2l × 2l graph.

Corollary 1.70 Any XOR-formula of depth 3 for IP2l, which has an arbitrary

threshold gate on the top and represents an n× n Hadamard graph, must have

top fanin at least about 2l/2.

1.8
Network complexity of graphs

Let G ⊆ L × R be a bipartite n × m graph. Suppose we want to keep all

connections between vertices in L and R, but would like to use as few edges as

possible. That is, the goal is to replace edges of G by paths so that the total

number of edges in a new graph is smaller than |G|. Such representations of

graphs are called “rectifier networks” or “diode networks”.

A rectifier network realizing a graph G ⊆ L × R is a directed acyclic graph

F whose input (fanin-0) nodes are vertices in L, output (fanout-0) nodes are

vertices in R, and (u, v) ∈ G if and only if there exists a path from u to v in

F . The size of a network is the number of wires in it. The depth of a network

is the maximum number of edges on a path from an input node to an output

node.

Note that the network size of a graph G can be much smaller than the

number |G| of edges in the graph itself. For example, a complete bipartite

graph Kn,m = L× R has nm edges, but can be realized by a depth-2 rectifier

network with n+m wires: just take one node w 6∈ L ∪R, and connect it with

all nodes in L and in R.

Theorem 1.71 (Lupanov [32]) Every bipartite n × n graph can be realized by

a depth-2 rectifier network using 2n2/ log2 n wires, and graphs requiring about

n2/ log2 n wires in any rectifier network exist.

1.8 Network complexity of graphs 53

Proof. To prove the upper bound, take an arbitrary bipartite n×n graph G.

Lemma 1.8 states that G can be decomposed into bicliques so that the total

weight (sum of the numbers of their vertices) of these bicliques does not exceed

2n2/ log n. Since (as we have seen) each biclique S × T can be realized by a

network of depth-2 using only |S|+ |T | wires, we are done.

To prove the lower bound, we first estimate the number of rectifier networks

of a given size, and then compare this number with the total number 2n
2

of

graphs that must be realized.

Claim 1.72 There exist at most (9t)t graphs with t edges.

Proof. Every set of t edges is incident with at most 2t nodes. Using these

nodes, at most r = (2t)2 their pairs (potential edges) can be built. Since

x1 + . . .+ xr = t has
(

r+t−1
t

)

integer solutions xi ≥ 0, and since t! ≥ (t/3)t (by

Stirling’s formula), the number of graphs with t edges is at most

(

r+t−1
t

)

≤ (r + t− 1)t

t!
≤ 3t(r + t− 1)t

tt
≤ 32tt2t

tt
= 32ttt .

By Claim 1.72, we cannot realize all graphs by networks of size t unless

(9t)t ≥ 2n
2

, from which t = Ω(n2/ log n) follows.

Several authors obtained even asymptotically tight bounds. Let Wires(n)

denote the maximum, over all n×n graphs G, of the smallest number of wires

in a rectifier network realizing G. Let also Wiresd(n) denote this measure when

restricted to rectifier networks of depth d.

Lupanov [32] proved that Wires2(n) ∼ n2/ log2 n. Nechiporuk [34] proved

that the asymptotic for unbounded-depth networks is achieved at depth 3,

namely Wires(n) ∼ Wires3(n) ∼ n2/2 log2 n. In the same paper, Nechiporuk

also obtained asymptotic bounds for graphs of a given density α. Let

Wiresd(n, α) denote the minimal number of wires which is enough to represent

any bipartite n× n matrix with |G| = αn2 edges. Then Wires2(n, α) ∼ H(α) ·
n2/ log2 n, and Wires3(n, α) ∼ H(α) · n2/2 log2 n as long as log2 n ≪ H(α)n

and − log2 min(α, 1−α) ≪ log2 n, where H(x) := −x log2 x−(1−x) log2(1−x)

be the binary entropy function.

Orlov [38] considered the realization of bipartite m× n graphs with m ≪ n

rows and proved that Wires2(k log2 n, n) ∼ (k + 1)n holds for every positive

integer k, and Wires(m,n) ∼ Wires2(m,n) ∼ 2m+1 + n holds as long as n ≥
2(2m −m− 1).

In all these estimates, the upper bounds were obtained by constructing net-

works with a special property that every input is connected with every output

by at most one path.

The bounds above only show that “hard-to-realize” graphs exist, and give

no clue on which (specific) graphs are such. We now will exhibit several such

“hard” graphs.

54 Contents

Say that a bipartite graph G is k-free if it does not contain any copy of a

complete bipartite k × k graph. The following lower bound for k-free graphs

was proved by several authors [33,39,47].

Theorem 1.73 If a bipartite graph G is (k+1)-free, then every rectifier network

realizing G must have at least |G|/k2 wires.

Proof. (Due to Pippenger [39]) Take a rectifier network F realizing G. For a

node x in F , let sx be the number of input nodes from which x is reachable, and

tx the number of output nodes reachable from x. Let us call a wire e = (x, y)

of F eligible if sx ≤ k and ty ≤ k. Say that an edge (u, v) ∈ G of the given

graph G is covered by a wire e = (x, y) of F , if there is a path in F from the

input node u to x, and there is a path from y to the output node v.

Since each eligible wire e = (x, y) can cover at most sx · ty ≤ k2 edges of G,

it remains to prove the following claim.

Claim 1.74 Every edge of G is covered by at least one eligible wire of F .

To prove the claim, take an edge (u, v) ∈ G. Then there must be a path

x0, x1, . . . , xr in the network F beginning in x0 = u and ending in xr = v.

Letting sl := sxl
to be the number of input nodes in L from which xl is

reachable, and tl := txl
be the number of output nodes in R reachable from xl,

we have that s1 ≤ s2 ≤ . . . ≤ sr and t1 ≥ t2 ≥ . . . ≥ tr.

Let p be the largest number for which sp ≤ k, and q the smallest number for

which tq ≤ k. If q ≤ p+ 1, then the wire e = (xp, xp+1) of F covering the edge

(u, v) of G is eligible, and we are done. So assume for the sake of contradiction

that q ≥ p + 2. By the definition of positions p and q, we have that sp+1 > k

and tp+1 > k. But then at least k+1 inputs of F are connected to at least k+1

outputs going through the node xp+1, contradicting the (k + 1)-freeness of G.

This completes the proof of the claim, and thus the proof of the theorem.

There are several constructions of dense bipartite n×n graphs that are k-free.

In Constructions 1.27 and 1.28 above give explicit graphs requiring Θ(n3/2)

wires in any rectifier network realizing them. These graphs have Ω(n3/2) edges

and are k-free for k = 1. Allowing larger values of k, one can construct k-free

graphs with more edges.

Construction 1.75 (2-free graphs) The following construction of dense 2-free

graphs is due to Brown [8]. Let p be an odd prime and let d be a non-zero

element of Zp = {0, 1, . . . , p− 1} (the field of integers modulo p) such that d is

a quadratic non-residue modulo p if p ≡ 1 modulo 4, and a quadratic residue

modulo p if p ≡ 3 modulo 4. Let n = p3, and consider the bipartite n×n graph

G whose vertices correspond to all triples of elements in Zp. The vertices G

corresponding to triples (a1, a2, a3) and (b1, b2, b3) are adjacent in G if and only

if the sum (a1 − b1)
2 + (a2 − b2)

2 + (a3 − b3)
2 modulo p is equal to d. Brown

1.8 Network complexity of graphs 55

showed that this graph has |G| = p4(p − 1) = Ω(n5/3) edges, and is 2-free.

Thus, every rectifier network realizing G must have Ω(n5/3) wires.

Subsequent constructions of dense square-free matrices have lead to even

higher lower bounds.

Construction 1.76 (Norm graphs) Let q be a prime-power, t ≥ 2 an integer,

and consider the field GF(qt) with qt elements. The norm of an element a of

this field is defined as the element N(a) := a · aq · · · aqt−1

= a(q
t−1)/(q−1) of

this field. Now let n = qt, and construct a bipartite n× n graph with vertices

in each part being elements of GF(qt). Two vertices a and b are adjacent iff

N(a + b) = 1. It is known that the number of solutions in GF(qt) of the

equation N(x) = 1 is (qt − 1)/(q − 1); this and other basic facts about finite

fields can be found in the book by Lidl and Niederreiter [29]. Hence, each

vertex of this graph has degree d = (qt − 1)/(q − 1), implying that the total

number of edges is dqt ≥ q2t−1 = n2−1/t. Kollár, Rónyai and Szabó [26] proved

that, for any t distinct elements a1, . . . , at of GF(qt), the system of equations

N(a1 + x) = 1, N(a2 + x) = 1, . . . , N(at + x) = 1 has at most t! solutions

x ∈ GF(qt). This immediately implies that the constructed graph G has no

copy of a complete bipartite t× (t! + 1) graph, and hence, is k-free for k = t!.

Thus, every rectifier network realizing G must have Ω(n2−1/t/t!) wires. Explicit

graphs with slightly worse parameters were constructed earlier by Andreev [3].

Realizing graphs by circuits

Recall that a rectifier network F realized a graph G ⊆ L×R if for every u ∈ L

and v ∈ R, (u, v) ∈ G if and only if there exists a path in F from the input

node u to the output node v. Attach now to each non-input node of F an OR

gate of its inputs. Then the resulting circuit over {∨} computes an operator

F : {0, 1}L → {0, 1}R which realizes the graph G in the following sense: for

every u ∈ L and v ∈ R,

Fv(eu) = 1 if and only if (u, v) ∈ G;

here Fv is the v-th component of the operator F = (Fv : v ∈ L), and eu ∈
{0, 1}L is the binary vector with exactly one 1 in the u-th position. That is,

for every input eu, the circuit must compute the characteristic vector of the set

of neighbors of u in G.

Motivated by this observation, one can consider realizations of graphs by

circuits over bases where not only OR gates can be used. In particular, can the

number of wires can be substantially decreased if one allows also AND gates?

As shown by Nechiporuk [35], Pippenger [39], and Mehlhorn [33], at least for

k-free graphs this is not the case: the number of wires can only be decreased by

a factor at most 1/k. By Construction 1.76, for every constant t ≥ 2, there are

explicit n× n graphs requiring Ω(n2−1/t) AND and OR gates to realize them.

56 Contents

If we consider linear circuits, that is, circuits consisting of unbounded fanin

XOR gates, then such a circuit represents a graph G if and only if it computes

the linear transformation y = Ax over GF(2), where A is the adjacency matrix

of G. Using a similar argument as in the proof of Theorem 1.71, one can show

that n×n graphs requiring Ω(n2/ log n) wires exist, and that O(n2/ log n) wires

are always enough, even using depth-2 circuits. But so far, no explicit graph

requiring more than n log2 n wires is known; the problem remains open even

for depth-2 circuits.

An extreme case is to allow arbitrary boolean functions be used as gates.

How many wires do the graph need to be realized by such general circuit?

By Theorem 1.71, we know that some explicit n×n graphs (like norm graphs

for an arbitrary large integer t ≥ 1) require about n2−1/t wires to be realized

by circuits using only AND and OR gates, regardless of the depth of the cir-

cuit used. We now show that the situation changes drastically, if we allow

more general gates: then every graph can be realized even by depth-2 circuits

using about n log n wires. This can already achieved by allowing multilinear

polynomials of degree log n as gates.

Theorem 1.77 ([21]) Every bipartite n × n graph can be realized by a general

depth-2 circuit using at most 1.5n log2 n wires.

Proof. Let G ⊆ L×R be a bipartite n× n graph. We construct the desired

depth-2 circuit F realizing G as follows. Take r = log2 n middle nodes W =

{w1, . . . , wr}. Since
(

r
r/2

)

≥ n, we can assign to each input node u ∈ L its own

subset Su ⊆ W of |Su| = r/2 middle nodes; hence, Su1
⊆ Su2

if and only if

u1 = u2. Join u with all nodes in Su. Finally, connect each w ∈ W with all

output nodes in V . The total number of wires is then n(r/2)+nr = 1.5n log2 n.

Now we assign gates to the nodes. At each node w on the middle layer of

F we compute an OR gw of its inputs. (Instead of ORs one can take any

boolean functions that reject the all-0 vector, and accept every vector with

exactly one 1.) To each output node v ∈ V assign the gate

φv =
∨

{hx : x ∈ L, (x, v) ∈ G} where hx =
∧

w∈Sx

gw .

Then

hx(eu) = 1 iff gw(eu) = 1 for all w ∈ Sx

iff u is connected in F to all nodes in Sx

iff Sx ⊆ Su iff x = u.

Hence, for every u ∈ L, we have that hu(eu) = 1 and hx(eu) = 0 for all x 6= u.

But this means that the function Fv(x) computed at the v-th will output 1 on

vector eu if and only if (u, v) is an edge of G, as desired.

1.9 Conclusion and open problems 57

Remark 1.78 Drucker [13] used probabilistic arguments to show that the upper

bound given in Theorem 1.77 is almost optimal: there exist bipartite n ×
n graphs G that need Ω(n log n) wires to realize them by general circuits of

arbitrary depth.

As always, the most intriguing question is to exhibit explicit graphs requiring

many wires to realize them. It turns out that every graph, that is isolated “well

enough” (see Definition 1.48) requires almost the maximal number n log n wires.

Recall that a bipartite graph G ⊆ L×R is k-isolated if for any two distinct

vertices x 6= y ∈ L there exists a subset S ⊆ R of |S| = k vertices such that

every vertex v ∈ S is adjacent to exactly one of the vertices x and y. Say

that G is strongly isolated if it is k-isolated for k = Ω(n), where n = |L| is the

number of vertices on the left side. In particular, the Sylvester n× n graph is

k-isolated for k ≥ n/2, and hence, is strongly isolated.

Building on work of Alon, Karchmer and Wigderson [2], the following lower

bound for general circuit complexity of graphs was proved in [21].

Theorem 1.79 If a bipartite n × n graph G is k-isolated, then every general

depth-2 circuit realizing G must have Ω(k · lnn/ ln lnn) wires.

The proof is similar to that of Theorem 1.54 above. On the other hand,

the construction of Drucker [13] (see Lemma 1.56 above) shows that one needs

other properties of graphs to force more wires: some explicit strongly isolated

graphs can be realized by depth-2 circuits with O(n lnn/ ln lnn) wires, even if

only OR functions or only XOR functions are used as gates. In particular, this

upper bound holds also in the class of rectifier networks.

1.9
Conclusion and open problems

The star complexity of a graph is the smallest number of union and intersection

operations required to generate the graph when starting from stars. An intrigu-

ing aspect of this measure is its connection to circuit complexity of Boolean

functions and, in particular, to the P versus NP problem. In this chapter

we described this connection as well as known bounds on the star complexity

of explicit graphs. We have also shown that an improvement of any of these

bounds for explicit graphs would lead to a breakthrough in circuit complexity

of boolean functions.

Of particular interest is to prove strong lower bounds on the depth-3 com-

plexity of graphs. Recall that the depth-3 complexity of a graph is the smallest

number s such that the graph can be written as an intersection of ≤ s graphs,

each of which is a union of ≤ s bicliques (bipartite complete graphs). Any

explicit bipartite n × n graph requiring s ≥ nc for a constant c > 0 would

give us the first super-linear lower bound for non-monotone log-depth circuits,

58 Contents

and resolve a 30 years old open problem in circuit complexity. Even a lower

bound s ≥ 2α
√
lnn would break the about 20 years old “square-root barrier” for

depth-3 circuits.

A next frontier is to understand the depth-2 complexity of graphs with sym-

metric output gate. Recall that the symmetric depth-2 complexity of a graph

G is the smallest number r for which there exist r bicliques such that no edge

and nonedge of G are edges and nonedges of the same number of these bi-

cliques. Any explicit bipartite n×n graph requiring r ≥ 2(ln lnn)α bicliques for

α → ∞ would resolve yet another old problem in circuit complexity: it would

give the the first super-polynomial lower bound for constant-depth circuits with

modular gates.

An ultimate goal is to exhibit an explicit n × o(n) graph requiring (2 + c)n

union and intersection operations (of fanin 2) to generate it starting from stars,

where c > 0 is an arbitrary small constant: this would yield an even exponential

lower bound for unrestricted circuits. Having proved the existence of such a

graph in NP we would have proven the inequality P 6= NP. (Recall that a

graph belongs to NP if the adjacency in it can be decided by a nondeterministic

Turing machine in time polynomial in log n.) The strongest currently known

lower bounds for explicit graphs are only of the form 2n−1, even though almost

all graphs require about n2/ log n operations.

Bibliography 59

Bibliography

1 N. Alon (1986): Covering graphs by the
minimum number of equivalence relations.
Combinatorica 6, 201–206.

2 N. Alon, M. Karchmer, and A. Wigderson
(1990) Linear circuits over GF(2). SIAM J.
Comput. 19(6), 1064–1067.

3 A. E. Andreev (1986) On a family of
boolean matrices. Moscow Univ. Math. Bull.
41, 79–82.

4 A. E. Andreev (1987a) On a method for ob-
taining more than quadratic effective lower
bounds for the complexity of π-schemes.
Moscow Univ. Math. Bull. 42(1), 63–66.

5 R. Beigel and J. Tarui (1994) On ACC. Com-
put. Complexity 4, 350–366.

6 N. Biggs (1974) Algebraic graph theory, Cam-
bridge University Press, London, Cam-
bridge Tracts in Mathematics, No. 67.

7 J. L. Bordewijk (1956) Inter-reciprocity ap-
plied to electrical networks. Appl. Sci. Res.
B: Electrophysics, Acoustics, Optics, Mathe-
matical Methods, 1–74.

8 W. G. Brown (1966) On graphs that do not
contain a Thompson graph. Can. Math.
Bull. 9, 281–285.

9 S. Bublitz (1986) Decomposition of graphs
and monotone size of homogeneous func-
tions. Acta Inform. 23, 689–696.

10 A. V. Chashkin (1994) On the complexity of
Boolean matrices, graphs and their corre-
sponding Boolean functions. Discrete Math.
and Appl. 4(3), 229 -257.

11 G. Constantine (1990) Graph complexity
and the Laplacian matrix in blocked ex-
periments, Linear and Multilinear Algebra
28(1-2), 49–56.

12 M. Dehmer and A. Mowshowitz (2011) A
history of graph entropy measures, Infor-
mation Sciences 181, 57–78.

13 A. Drucker (2011) Limitations of lower-
bound methods for the wire complexity of
boolean operators. El. Colloquium on Com-
put. Complexity (ECCC), Report Nr. 125.

14 P. Erdős and R. Rado (1960) Intersection
theorems for systems of sets. J. London
Math. Soc. 35, 85–90.

15 F. Green, J. Köbler, K. W. Regan,
T. Schwentick, and J. Toran (1995) The

power of the middle bit of a # P function.
J. Comput. Syst. Sci. 50(3) 456–467.

16 R. Grone and R. Merris (1988), A bound for
the complexity of a simple graph. Discrete
Math. 69(1), 97–99.

17 J. Håstad (1998) The shrinkage exponent is
2. SIAM J. Comput. 27, 48–64.

18 S. Jukna (2006) Disproving the single level
conjecture. SIAM J. Comput. 36(1), 83–98.

19 S. Jukna (2006) On graph complexity. Com-
binatorics, Probability and Computing 15,
855–876.

20 S. Jukna (2009) On set intersection repre-
sentations of graphs. J. Graph Theory 61(1),
55–75.

21 S. Jukna (2010) Representing (0,1)-matrices
by depth-2 circuits with arbitrary gates.
Discrete Math. 310, 184–187.

22 S. Jukna (2012) Boolean Function Complex-
ity: Advances and Frontiers, Algorithms and
Combinatorics, Vol. 27, Springer-Verlag.

23 N. H. Katz (2012) On the CNF-complexity
of bipartite graphs containing no squares.
Lithuanian Math. J. 52(4), 385–389.

24 V. M. Khrapchenko (1971) A method of ob-
taining lower bounds for the complexity of
π-schemes. Math. Notes Acad. of Sci. USSR
10 (1972) 474–479.

25 M. Kneser (1955) Aufgabe 300. Jahresber.
Deutsch. Math.-Verein 8.

26 J. Kollár, L. Rónyai, and T. Szabó (1996)
Norm-graphs and bipartite Turán numbers.
Combinatorica 16(3), 399–406.

27 J. Körner (1973) Coding of an information
source having ambiguous alphabet and the
entropy of graphs. Trans. 6-th Prague Conf.
on Information Theory, Academia, 441-425.

28 R. E. Krichevski (1964) Complexity of con-
tact circuits realizing a function of logical
algebra. Soviet Physiscs Doklady 8, 770–772.

29 R. Lidl and H. Niederreiter (1986) Intro-
duction to Finite Fields and their Applications,
Cambridge University Press.

30 S. V. Lokam (2003) Graph complexity and
slice functions. Theory of Comput. Syst.
36(1), 71–88.

31 L. Lovász (1978) Kneser’s conjecture, chro-
matic numbers and homotopy. J. Combin.
Theory Ser. A 25, 319–324.

60 Bibliography

32 O. B. Lupanov (1956) On rectifier and
switching-and-rectifier schemes. Dokl.
Akad. Nauk SSSR 111, 1171–1174 (in Rus-
sian).

33 K. Mehlhorn (1979) Some remarks on
Boolean sums. Acta Inform. 12, 371–375.

34 E. I. Nechiporuk (1969) On topological
principles of self-correction. Problemy Kiber-
netiki 21, 5–102 (in Russian).

35 E. I. Nechiporuk (1969) On a Boolean ma-
trix, Problemy Kibernetiki 21, 237–240 (in
Russian). English transl. in Systems Theory
Res. 21 (1970), 236-239.

36 I. Newman and A. Wigderson (1995) Lower
bounds on formula size of boolean func-
tions using hypergraph-entropy. SIAM J.
Discrete Math. 8(4), 536–542.

37 D. L. Neel and M. E. Orrison (2006) The
linear complexity of a graph, El. J. of Combi-
natorics 13, #R9.

38 V. A. Orlov (1970) Realization of “narrow”
matrices by rectifier networks. Problemy
Kibernetiki 22, 45–52 (in Russian).

39 N. Pippenger (1980) On another boolean
matrix. Theor. Comput. Sci. 11, 49–56.

40 P. Pudlák and V. Rödl (1994) Some
combinatorial-algebraic problems from

complexity theory. Discrete Math. 136(1-3),
253–279.

41 P. Pudlák, V. Rödl, and P. Savický (1988)
Graph Complexity. Acta Inf. 25(5), 515-535.

42 A. A. Razborov (1990) Applications of ma-
trix methods to the theory of lower bounds
in computational complexity. Combinatorica
10(1), 81–93.

43 K. L. Rychkov (1985) A modification of
Khrapchenko’s method and its application
to lower bounds for π-schemes of code
functions. Metody Diskretnogo Analiza, 42
(Novosibirsk), 91–98 (in Russian).

44 B. A. Subbotovskaya (1961), Realizations of
linear functions by formulas using +, .,−.
Soviet Math. Dokl. 2, 110–112.

45 Z. Tuza (1984) Covering of graphs by com-
plete bipartite subgraphs, complexity of 0-1
matrices. Combinatorica 4, 111–116.

46 L. G. Valiant (1977) Graph-theoretic meth-
ods in low-level complexity. Springer
LNCS, vol. 53, 162–176.

47 I. Wegener (1980) A new lower bound
on the monotone network complexity of
Boolean sums. Acta Inform. 15 147–152.

48 A. C. Yao (1990) On ACC and threshold
circuits. Proc. of 31th Ann. IEEE Symp. on
Foundations of Comput. Sci., 619–627.

61

Index

ei = 0-1 vector with exactly one 1 in the
i-th position, 18

adjacency function, 12
adjacency matrix, 3
affine dimension, 29

biclique decomposition
– weight of, 7
biclique covering, 7
biclique covering number, 32
biclique decomposition, 7
bipartite complement, 3
boolean function
– complement of, 31

circuit, 1
– basis of, 10
– depth of, 10
– monotone, 14
– size of, 10
circuit complexity, 10

disjointness dimension, 32
disjointness function, 47
Drucker graph, 41

edge-nonedge matrix, 29

fat covering, 46
fat matching, 46
fat matchings, 6
formula, 19

gate, 10
– fanin of, 10
graph
– Ka,b-free, 46
– k-free, 51
– k-isolated, 37
– affine representation of, 29

– strongly isolated, 39
– triangle-free, 21
graph entropy, 26

Hadamard matrix, 9

inner product function, 49
inner product function, 49
intersection representation
– dimension of, 31
intersection representation, 31
– weight of, 31

Kneser graph
– bipartite, 8
Kneser graph, 8

leafsize, 19
Lindsey’s Lemma, 48

Magnification Lemma, 12
middle fanin, 42

norm graphs, 52

partial matrix, 29

quadratic function, 20

Ramsey graph, 9
rectifier network, 50

star, 3
star complexity, 3
star matrix, 4
Strong Magnification Lemma, 14
sunflower, 39
Sunflower Lemma, 39
Sylvester graph, 9, 37

threshold function, 18

