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Abstract

Motivated by its relation to the length of cutting plane proofs for the Maximum Biclique
problem, we consider the following communication game on a given graph G with maximum
bipartite clique size K. Two parties separately receive disjoint subsets A,B of vertices such
that |A| + |B| > K. The goal is to identify a nonedge between A and B. We prove that
O(logn) bits of communication are enough for any n-vertex graph.
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1. Introduction

A clique in a graph is a set of pairwise adjacent vertices. A clique is maximal, if it cannot
be extended to a larger clique by adding a new vertex. A biclique is a pair of disjoint subsets of
vertices such that every vertex in one set is adjacent with all vertices in the other set. Thus,
the edges between these sets form a complete bipartite subgraph (which is not necessarily
an induced subgraph if the graph is not bipartite). A nonedge in a graph is a pair of its
nonadjacent vertices.

The size of a clique (or biclique) is the number of its vertices. The clique number of G,
denoted by ω(G), is the maximum size of a clique in G, and the biclique number of G, denoted
by ωb(G), is the maximum size of a biclique in G.

If A and B are disjoint subset of vertices of size |A| + |B| > ωb(G), then there must be
at least one nonedge lying between A and B. If both A and B are cliques, then the same
holds under a weaker condition |A|+ |B| > ω(G). How difficult is to find such a nonedge? In
particular, what is the communication complexity of this task?

To be more specific, consider the following communication game between two players, Alice
and Bob. To avoid trivialities, we will assume (without mentioning this) that our graphs have
no complete stars, that is, vertices adjacent to all remaining vertices—such vertices can be
ignored.

Clique Game on G = (V,E):
Alice gets a clique A ⊆ V , Bob gets a clique B ⊆ V such that A∩B = ∅ and |A|+ |B| >
ω(G). The goal is to find a nonedge of G lying between A and B.
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The communication complexity of this game is the minimum, over all (deterministic)
communication protocols, of the number of bits communicated on a worst-case input (A,B).
We stress that the graph G in this game is fixed and is known to both players. The players
are not adversaries—they help and trust each other. The difficulty, however, is that Alice
cannot see Bob’s set B, and Bob cannot see Alice’s set A.

The restriction that the players get cliques (not arbitrary sets of vertices) is not crucial.
Indeed, if one of the sets, say, A is not a clique, then it contains a nonedge. Alice can then
send both endpoints of this nonedge to Bob using at most 2⌈log2 n⌉ bits, and the game is
over. So, the only non-trivial inputs in the clique game are cliques.

Biclique Game on G = (V,E):
Alice gets a set A ⊆ V of vertices, Bob gets a set B ⊆ V of vertices such that A∩B = ∅
and |A|+ |B| > ωb(G). The goal is to find a nonedge of G lying between A and B.

The main difference from the clique game is that we have a stronger promise |A|+|B| > ωb(G).
If the underlying graph G is bipartite with a bipartition V = V1 ∪ V2, then we additionally
require that A ⊆ V1 and B ⊆ V2.

1.1. Motivation

Our motivation to consider clique and biclique games cames from their connection to the
length of so-called “tree like” cutting plane proofs for the Maximum Clique problem on a fixed
n-vertex graph G = (V,E). The goal in this problem is to find a clique in G of size ω(G). If
we assign a variable xv to each vertex v ∈ V , then cliques in G are exactly the 0-1 solutions
of the system consisting of linear inequalities xu + xv ≤ 1 for all nonedges {u, v} 6∈ E, and
xv ≥ 0 for all vertices v ∈ V . Cutting plane proofs are aiming to prove that, when augmented
by the inequality

∑

v∈V xv ≥ ω(G) + 1, this system has no 0-1 solutions. When doing this,
one applies so-called Gomory–Chvátal rules to derive new inequalities, until a contradiction
expressed as inequality 0 ≤ −1 is derived. The proof is tree-like, if every derived inequality
can be used at most once: if one needs it later again, then it must be re-derived. The length
of a proof is the number of produced inequalities. It is known [6] that nω(G) inequalities are
always sufficient, but no graph requiring super-polynomially many inequalities is known.

In the “find a hurt axiom” game, we (the adversary) first color the variables in red and
blue. Then, given a 0-1 assignment α to the variables such that

∑

v∈V αv ≥ ω(G) + 1, we
split the bits of α between Alice and Bob so that Alice can only see red bits, and Bob can see
only blue bits. Their goal is to find a red vertex u and a blue vertex v such that αu = αv = 1
and {u, v} is a nonedge in G. If the graph is bipartite with bipartition V = V1 ∪ V2, then we
only have inequalities xu + xv ≤ 1 for all nonedges {u, v} with u ∈ V1 and v ∈ V2. In this
case, the goal is to find such a nonedge under a stronger promise

∑

v∈V αv ≥ ωb(G) + 1.
Suppose now that for some coloring of variables, the “find a hurt axiom” game for a

graph G requires K bits of communication. Impagliazzo et al. [9] have proved that then
every tree-like cutting planes proof of the 0-1 unsatisfiability of the system for G must either
use super-polynomially large coefficients, or must produce at least 2Ω(K/ logn) inequalities; see
[10, Section 19.3] for details. It was therefore a hope that n-vertex graphs G requiring more
than log2 n bits of communication in the biclique or at least in the clique game exits.

1.2. Our results

Our main result destroys the first hope: in the biclique game a logarithmic number of bits
of communication is enough regardless of the given graph.
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Theorem 1. In the biclique game, 7.3 log2 n + O(1) bits of communication are enough for

every n-vertex graph.

Our second result destroys the second hope for many graphs. It shows that also in the
clique game, a logarithmic number of bits is enough for many graphs. Let κ(G) denote the
number of maximal cliques in G.

Theorem 2. In the clique game, log2 κ(G) + 7.3 log2 n + O(1) bits of communication are

enough for every n-vertex graph.

There are many n-vertex graphs G = (V,E) for which κ(G) is polynomial in n. In
particular, κ(G) ≤ n(d/2)p−2 holds for every Kp-free graph of maximal degree d ≥ 2 [14];
κ(G) ≤ np, where p is the chromatic number of G [12]; κ(G) ≤ (|E|/p + 1)p + |E|, where p
is the maximum number of edges in an induced matching in the complement of G [4, 2]. If
p = O(logn) then Theorem 2 implies that O(log2 n) bits of communication are enough in the
clique game on all such graphs. Consequently, the communication complexity arguments fails
for such graphs, even for the Maximum Clique problem (not just for the Maximum Biclique
problem).

The rest is devoted to the proofs of Theorems 1 and 2. But first we shortly recall two
powerful tools we will use in the proofs.

2. Results we use

Recall that a threshold -k function Thnk accepts a 0-1 vector of length n if and only if it
contains at least k ones. By a monotone circuit we will mean a circuit consisting of fanin-2
AND and OR gates; no negated variables are allowed as inputs. The depth of a circuit is the
length of a longest path from an input to the output gate.

Theorem 3 (Valiant [18]). Every threshold function Thnk can be computed by a monotone

circuit of depth at most 5.3 log2 n+O(1).

The second result we use is the tight relation between the depth of circuits computing a
given boolean function f and the communication complexity in the following communication
game for f . Alice gets a vector x ∈ f−1(1), Bob gets a vector y ∈ f−1(0), and their goal is
to find a position i such that xi 6= yi. In the monotone game, the goal is to find a position i
such that xi = 1 and yi = 0. In general, such a position may not exists, but it always exists,
if the function f is monotone. These games were introduced by Karchmer and Wigderson
in [11], where they prove that the communication complexity of the (monotone) game on a
(monotone) boolean function f is exactly the minimum depth of a (monotone) circuit for f .
We will only use the easier direction: small depth gives efficient communication protocols.

Lemma 1 (Karchmer–Wigderson [11]). If a monotone boolean function f can be computed

by a monotone circuit of depth d, then the monotone game for f can be solved using d bits of

communication.

To recall how do small-depth circuits actually lead to efficient communication protocols,
we include a simple proof of this lemma.
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Proof. We may assume that Alice and Bob have agreed on a monotone circuit g of smallest
depth computing f . Now suppose Alice gets an input x such that g(x) = 1, and Bob gets
an input y such that g(y) = 0. In order to find an i such that xi = 1 and yi = 0, the
players traverse the circuit g backwards starting at the output gate by keeping the invariant:
g′(x) = 1 and g′(y) = 0 for every reached subcircuit g′.

Namely, suppose the output gate of g is an AND gate, that is, we can write g = g0 ∧ g1.
Then Bob sends a bit i corresponding to a function gi such that gi(y) = 0; if both g0(y) and
g1(y) output 0, then Bob sends 0. Since g(x) = 1, we know that gi(x) = 1. If g = g0 ∨ g1,
then it is Alice who sends a bit i corresponding to a function gi such that gi(x) = 1; again, if
both g0(x) and g1(x) output 1, then Alice sends 0. Since g(y) = 0, we know that gi(y) = 0.

Alice and Bob repeat this process until they reach a leaf of the circuit. This leaf is labeled
by some variable (the circuit is monotone). If this is the i-th variable, then xi = 1 and yi = 0
implying that i is a correct answer.

3. The biclique game: proof of Theorem 1

The strategy of the proof is to recast the biclique game as a Karchmer–Wigderson game
on a small-depth monotone circuit.

Let G = (V,E) be a graph on n vertices, and let F :=
(

V
2

)

\ E be the set of all nonedges
of G. Say that a nonedge e is incident with a subset A ⊆ V , if e∩A 6= ∅. Associate with every
subset A ⊆ V two vectors pA and qA in {0, 1}|F | whose coordinates correspond to nonedges
e ∈ F :

• pA(e) = 1 if and only if e ∩A 6= ∅;

• qA(e) = 0 if and only if e ∩A 6= ∅.

Thus, pA is the characteristic vector of all nonedges incident with A, and qA is the complement
of pA. Given an input (A,B), the goal in the biclique game is to find a position (a nonedge) e
such that pA(e) = 1 (e is incident with A) and qB(e) = 0 (e is incident with B). By Lemma 1,
this task can be solved by providing a small-depth monotone circuit separating the vectors
pA and qB.

To construct such a circuit, take a set X = {xe : e ∈ F} of boolean variables, one for each
nonedge of G. Associate with each vertex v ∈ V the monomial mv(X), which is the AND of
all variables xe corresponding to the nonedges e incident with v:

mv(X) :=
∧

e∈F : v∈e

xe .

Thus, mv accepts a given set of nonedges if and only if this set contains all nonedges incident
with v. Let fk(X) be the threshold-k function applied to the outputs of these monomials:

fk(X) := Thnk(mv(X) : v ∈ V ) .

Since each monomial mv has a monotone fanin-2 circuit of depth at most log2 n + 1, Theo-
rem 3 implies that the function fk can be computed by a monotone circuit of depth at most
5.3 log2 n+O(1) + log2 n+ 1 = 6.3 log2 n+O(1).

Lemma 2. Let A be a set of |A| = k vertices, and B a set of |B| > ωb(G)− k vertices. Then

fk(pA) = 1 and fk(qB) = 0.
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Proof. The function fk accepts a given a set of nonedges of G if and only if this set contains
all nonedges incident with at least k distinct vertices. Thus, we can write fk as the OR of
monomials

mS(X) :=
∧

v∈S

mv =
∧

e : e∩S 6=∅

xe

over all k-elements subset S ⊆ V . Since vector pA sets to 1 all variables xe with e ∩ A 6= ∅,
this vector is accepted by the monomial mA, and hence, by the function fk.

Now let B be an arbitrary set of |B| > ωb(G) − k vertices. We have to show that the
vector qB is rejected by every monomial mS corresponding to a subset S of |S| = k vertices.
Since vector qB sets to 0 all variables xe with e ∩ B 6= ∅, this is equivalent to showing that
some nonedge must be incident with both sets S and B. Since we assumed that G contains
no complete stars, this holds if the sets S and B share a common vertex. So, we can assume
that S ∩ B = ∅. But then the condition |S| + |B| > ωb(G) implies that there must be a
nondege lying between S and B.

We can now describe a communication protocol for the biclique game on a given n-vertex
graph G. Recall that inputs to this game are pairs (A,B) of disjoint subsets of vertices such
that |A|+ |B| > ωb(G). The goal is to find a nonedge lying between A and B.

1. Alice first uses at most log2 n+1 bits to communicate to Bob the size k = |A| of her set
A.

2. Knowing k, the players take a monotone circuit of depth d = 6.3 log2 n+O(1) computing
the k-th function fk. By Lemma 2, the players know that this function separates the
associated vectors pA and qB: fk(pA) = 1 and fk(qB) = 0.

3. The players then use Lemma 1 to transform the circuit for fk to a protocol. The protocol
finds a position e such that pA(e) = 1 and qB(e) = 0.

4. By the definition of vectors pA and qB, the found nonedge e must be incident with both
sets A and B. Since A ∩ B = ∅, the nonedge e can lie neither within A (then we would
have qB(e) = 1) nor within B (then we would have pA(e) = 0). So, e must be a desired
nonedge lying between A and B.

5. The total number of communicated bits is d+ log2+1 = 7.3 log2 n+O(1).

This completes the proof of Theorem 1.

Remark 1. One could presume that the main reason, why the biclique game has small com-
munication complexity, is just the fact that the biclique problem is solvable in polynomial
time via, say, the maximum matching algorithm. In the biclique problem, we are given a
graph G and a positive integer r; the goal is to decide whether G contains a biclique A×B of
size |A|+ |B| ≥ r. However, it is known [13] that a similar maximum edge biclique problem is
already NP-complete, even for bipartite graphs. In this latter problem, the goal is to decide
whether G contains a biclique A × B with |A × B| ≥ r edges. If G is a graph, in which
every biclique has at most r edges, then the corresponding to this problem game is, given
two disjoint sets A,B of vertices such that |A×B| > r, to find a nonedge between A and B.
It is easy to see that O(logn) bits of communication are enough also in this game. For this,
it is enough just to replace the condition |A| + |B| > ωb(G) in Lemma 2 by the condition
|A × B| > r. The rest of the proof is the same, by using condition |B| > r/k instead of
|B| > ωb(G)− k in Lemma 2.
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4. The clique game: proof of Theorem 2

Consider the clique game for a given n-vertex graph G = (V,E). Inputs to this game are
pairs (A,B) of disjoint cliques such that |A|+ |B| > ω(G), and the goal is to find a nonedge
lying between A and B.

Let us first see why we cannot use the same separating functions fk as in the biclique
game. The reason if that vector qB sets to 1 all variables xe such that e ∩ B = ∅. Hence, if
S ∩ B = ∅ and if there are no nonedges between S and B, then qB(e) = 1 for all nonedges
incident with S, implying that the monomial mS wrongly accepts the vector qB. To get rid
of this problem, we use more complicated separating functions.

The induced k-clique function of an n-vertex graph G is a monotone boolean function of
n variables, one for each vertex. Given a subset of vertices, the function outputs 1 if and only
if some k of these vertices form a clique in G.

Define a modified version gk of the function fk by taking the induced k-clique function
Cliq of G instead of the threshold function Thnk :

gk(X) := Cliq(mv(X) : v ∈ V ) .

Lemma 3. Let A and B be two disjoint cliques in G such that |A|+ |B| > ω(G). If |A| = k,
then gk(pA) = 1 and gk(qB) = 0.

Proof. The modified function gk accepts a subset of nonedges if and only if this set contains
all nonedges incident to some set S of |S| = k vertices forming a clique in G. Thus, gk is the
OR of monomials mS(X) over all k-cliques S ⊆ V (instead of all k-element subsets). Recall
that mS is the AND of all variables xe corresponding to nonedges e incident with S.

Since the monomial mA accepts pA, the vector pA is accepted by gk. To show that every
monomial mS rejects the vector qB, we now use the fact that both S and B are cliques. Since
we assumed that G contains no complete stars, this holds if the sets S and B share a common
vertex. So, we can assume that S ∩B = ∅. But then the condition |S|+ |B| > ω(G) ensures
that there must be a nonedge e lying between S and B. Since the vector qB sets the variable
xe to 0, mS(qB) = 0 follows.

The rest of the proof of Theorem 2 is the same as that of Theorem 1 by using Lemma 3
instead of Lemma 2. The only difference is that now we do not know how deep monotone
circuits computing the functions gk are. So, let d(G) denote the maximum, over all integers
1 ≤ k ≤ n, of the minimum depth of a monotone circuit computing the induced k-clique
function of G.

Since each monomial mv(X) has a monotone circuit of depth at most log2 n + 1, all
functions g1, . . . , gn can be computed by monotone circuits of depth at most d(G) + log2 n.
Thus, arguing as in the proof of Theorem 1, and using functions gk instead of fk, we will
obtain a protocol for the clique game on G which uses at most d(G) + 2 log2 n + O(1) bits
of communication (Alice spends additional log2 n + 1 bits to send the size |A| = k of here
clique). So, it remains to upper-bound d(G) is terms of the number κ(G) of maximal cliques
in G.

It is easy to see that the induced k-clique function of a complete graph Kn is the threshold-
k function Thnk . Thus, in terms of graphs, Theorem 3 states that d(Kn) ≤ 5.3 log2 n+O(1).
The complete graph Kn has only one maximal clique—the graph itself; hence, κ(Kn) = 1.
But Valiant’s theorem can be easily extended to n-vertex graphs G with a larger number of
maximal cliques.
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Lemma 4. d(G) ≤ log2 κ(G) + 5.3 log2 n+O(1).

Proof. Let G = (V,E) be a graph, and Cliq(x) be its induced k-clique function. The variables
xv here correspond to the vertices v ∈ V . Given an assignment x ∈ {0, 1}n to these variables,
the function accepts x if and only if the set Sx = {v : xv = 1} contains a k-clique of G.
Since every clique is contained in some maximal clique, we have that Cliq(x) = 1 if and
only if |Sx ∩ C| ≥ k holds for at least one maximal clique C of G. This latter condition
can be tested by threshold-k function Thnk(δC ∧ x), where δC ∈ {0, 1}n is the characteristic
vector of C, and δC ∧ x is a component-wise AND. By taking the OR, over all κ(G) maximal
cliques C, of monotone circuits computing the threshold functions Thnk(δC ∧ x), and using
Theorem 3, we obtain a monotone circuit of depth at most log2 κ(G) + 5.3 log2 n + O(1)
computing Cliq(x).

This completes the proof of Theorem 2.

5. Conclusion and open problems

Note that our communication protocols are not explicit because the construction of a
small-depth monotone circuits for the majority function in [18] is probabilistic. To get an
explicit protocol, one can use the construction of a circuit of depth K log2 n for the majority
function given in [1]. But the constant K resulting from this construction is huge, it is
about 5000.

The main message of Theorem 1 is that communication complexity arguments cannot yield
any non-trivial lower bounds on the length of cutting plane proofs for systems corresponding
to the Maximum Biclique problem, because O(logn) bits of communication are enough in the
biclique game on all n-vertex graphs G.

However, the case of the Maximum Clique problem remains unclear. Theorem 2, together
with known upper bounds on the number of maximal cliques, implies that O(logn) bits are
enough for a lot of graphs. Still, we could not exclude that graphs requiring more bits exist.
Do n-vertex graphs G requiring more than log2 n bits of communication in the clique game
exist?

The clique and biclique games on a given graph G are special cases of a monotone

Karchmer–Wigderson game: given a pair (A,B) of two intersecting subsets of a fixed n-
element set, find an element in their intersection A ∩ B. (In the biclique game, elements are
nonedges.) In the non-monotone game, inputs are pairs of distinct sets, and the goal is to
find an element in the symmetric difference A⊕B := (A \B) ∪ (B \A).

It is usually much easier to find an element in the symmetric difference than in the
intersection. Say, if the players know that |A| 6= |B|, then O(logn) bits are already enough
to find an element in A⊕B [7]. However, monotone games (with the goal to find an element
in the intersection) usually require much more bits of communication. For example, if A is a
set of m = n/3 vertex-disjoint edges in Kn, and B is the set of edges in the complement of a
clique on m−1 vertices in Kn, then A∩B 6= ∅. Since the sizes |A| = m and |B| =

(

n
2

)

−
(

m−1
2

)

are clearly different, [7] implies that O(log n) bits of communication are enough to find an
element (an edge) in A ⊕ B. But it is known [16] that even Ω(n) bits of communication
are necessary to find an element in A ∩ B. It is therefore interesting that, in the biclique
game, a logarithmic number of communicated bits is enough even to find an element in the
intersection A ∩B, not just in A⊕B.
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A next open problem is to understand the (monotone) complexity of the induced k-clique
functions. To our knowledge, these functions have not been investigated earlier. Recall that
such a function takes subsets of vertices of a given (fixed) graph G as inputs, and accepts such
a subset if and only if the induced subgraph of G on these vertices contains a k-clique. This
function reminds us the well-known NP-complete Clique function CLIQUE(n, k) restricted
to only spanning subgraphs of one fixed graph G. Recall that inputs for CLIQUE(n, k) are
graphs on the same (fixed) set of vertices; thus, variables in this case correspond to edges,
not vertices. The function accepts a graph if and only if it contains a k-clique.

It is known that, for particular choices of k = k(n), the function CLIQUE(n, k) requires
monotone circuits of depth Ω(

√
k log n) [17, 3], and even of depth Ω(n1/3) [8]. Can the argu-

ments of [17, 3, 8] be adapted induced k-clique functions (at least for random, not explicitly
given graphs)? Actually, it is even not clear whether there exist a sequence (Gn : n = 1, 2, . . .)
of n-vertex graphs Gn for which the induced k-clique functions form anNP-complete problem.

It also remains unclear how crucially the communication complexity of the clique game
depends on the monotone circuit depth of induced k-clique functions. We have only shown
that the latter is always an upper bound for the former (up to an additive logarithmic factor).
Does some reasonable converse (up to an additive log2 n factor) of this inequality hold?

Finally, let us mention that a different type of (adversarial) games, introduced in [15],
was recently used in [5] to derive strong lower bounds for tree like resolution proofs for the
Maximum Clique problem. Is there some analogue of these games in the case of cutting plane
proofs?
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[1] M. Ajtai, J. Komlós, and E. Szemerédi, Sorting in c log n parallel steps, Combinatorica 3(1) (1983) 1–19.
[2] V. E. Alekseev, An upper bound for the number of maximal independent sets in a graph, Discrete Math.

and Appl. 17(4) (2007) 355–359.
[3] N. Alon and R. Boppana, The monotone circuit complexity of boolean functions, Combinatorica 7(1)

(1987) 1–22.
[4] E. Balas and C. S. Yu, On graphs with polynomially solvable maximal-weight clique problem, Networks

19(2) (1989) 247–253.
[5] O. Beyersdorff, N. Galesi, and M. Lauria, Parameterized complexity of DPLL search procedures, Springer

Lect. Notes in Comput. Sci. 6695 (2011) 19–22.
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