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CHAPTER 1

INTRODUCTION

One of the more important goals of computer science
is the development of better algorithms and computiag
devices. To accomplish this requires an improved under-
standing of functions and the algorithms used to compute
them on various types of computers. Inherent in this
investigation 1s the study of a function's computational
complexity — intuitively a measure of the efficiency of
the best possible algorithm for the functicn. Ideally
one would like to know exactly what the complexity of a
function is for all possible types of computing schemes.
This would enable thg design of computers and algoricﬁms
which optimize the efficiency of computation of any parti-
cular function or set of functions. One would then have
the assurance that he was using the best possible algerithm
and the best ﬁcssible computer, within certain constraints
Such as the cost of the computer.

Although such an understanding of functicns and their
alzorithms is clearly desirable, it is certainly a lcng
way off. This thesis, however, attempts to show how
this type of_thinking caa be applied to a particular
problem, namely matrix uultiplication. Since matrix

multiplication appears to have a straightforward strueture
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and is very easy to define, one would expect that its
algorithms would have been carefully examined and that
the problem would by now be well understood. It came

as a great surprise, therefore, when Strassen recently
pointed out [1l] that the normal algorithm for matrix multi-
plication is by no meané optimal, and that improvéd al-
gorithms exist.

Strassen's method is based on a technique for multi-
Plying two 2 X 2 matrices in seven multiplications
rather than the eigﬁt that are normally used. This
technique is described in detail in Chapter 3. For-
tunately, the technique does not make use commutativity,
so that it 1s valid even if the matrix elements are
themselves matrices, Therefore, by letting the matrix
elements be 2 X 2 matrices one can obtain a program
for multiplying 4 x 4 matrices with just 72 = 49
multiplications. By repeating this one obtains progsrams

» 1og2n
for multiplying n X n matxices with just 7 or

log27
n multiplications.

Although Strassen's method substantially increases
the number c¢f additions required for multiplying 2 x 2

matrices, for n X n matrices the number of additions

log,7 2.81 .
is actually proportional to n (ot roughly a“° ).

For large n (n > 100) the total number of arithmet:ic



operations is therefore less than the number normally

used which grows as n3 + The question immediately arises

whether or not Strassen's method can itself be improved.
For example, if 2 X 2 matrices could be multiplied
by using only six multiplications without assuming com-
mutativity, then the bound for n X n matrices could

10326
be reduced to n . These questions cannot be

answered without a knowledge of the computational com-
plexity of matrix multiplication,

The complexity of matrix multipiications is highly
d;pendent upon the algebraic structure of the matrix
elements. Strassen's method is valid only because
+ , - and X possess certain properties — specifically,
all the properties of a ring., On the other hand for
ﬁatrix multiplication defined over two operations &)
and ® , where @ and @ satisfy no nontrivial pro-
perties (i.e. a.free algebra), then no program is pos-

sible except the one which mimics the definiticn of matrix
multiplication. 1In this case, therefore, n3 multipli~

cations and nz(n -‘l) additions are both necessary and
sufficient.

*Although one ordinarily thinks of matrix multipli-
cation in terms of natrices of numbers, many other

useful problems can be formulated as matrix aultiplications.



In many cases, the "addition" and "multiplication" opera-
"tions do not satisfy all the axioms which Strassen's
method requires, and one would 1like to know whether

other forms of improved algorithms are possible. For
example, the shortest path matrix of a graph can be cal-
culated using matrix multiplications, where the "addition"
operation is min and the "multiplication" operation is
+ . In this case all the ring axioms are satisfied

except that there is no additive inverse; hence Strassen's
method cannot be used for this particular algebra. 1In
.fact, it is shown later in the thesis that there do not

exist any improved algorithms fer min and + .

The model of ¢omputation used in this thesis is a

reasonably computer-like one called fixed programs.
Fixed programs, described more formally in Chapter 2,
are essentially computer programs with no conditional
transfer or looping instructions. Previous researchers
have obtained complexity results for some specific funec-
tions relative to fixed programs. Pan [2] proved that

n additions or subtractions and n multiplications cr
divisions arz necessary to evaluate aa nath degree
polynomial with arbitrary coefficients. His method of
proof is based on the cbservation that i# & preogram
evaluates a pclynewial in n-space, then it must also

evaluate it on a rational surface in n-spaca, This



rational surface is carefully chosen so that cne of the
multiplications of the program is identically equal to
Zero over the rational surface. The dimension or number
of degrees of freedom of this surface is n - 1 ., The
conclusion is reached that if k multiplications are
required to compute the‘matrix multiplication problem on
the surface, then k + 1 are required to compute it in
n-space. This process is repeated for surfaces with
fewer and fewer degrees of freedom, until finally the
surface 'is reduced to a2 point. Since n multiplications
were removed from the original program, at least n
multiplications must have beéen originally included. A
similar argument can be used to prove that at least n
additions or subtractions are required. Hence one can
conclude that Horner's method for evaluating polymnomials
minimizes the nuﬁber of arithmetic operations for fixed
programs, because it uses exactly n additions and n.
multiplications.

Winograd [3] used essentially the same method to
prove that the‘multiplication of an arbitrary m X n
matrix by an arbitrary n-vector requires at least mn
mul:iplicatioﬁs or divisions. This result and Pan's
result for polynomials actually drop out as special
cases of a more general theorem by Winograd which is

described later in Chapter 2.



Using Pan's method of eliminating multiplications by
reducing the dimension of the space can result in bounds
of at most p , where p is the total number of arguments
of the function. The highest bound to be expected for

the multiplication of two n X n matrices would therefore

be an » To get better results some new techniques
must be developed, and much of this thesis is devoted

to the development of these techniques. In particular,
matrix multiplication is very complex and difficult

to analfze until one takes advantage of the large degree
of symmetry inherent inm the problem. A scheme will be
described which systematicaliy takes into account the
symmetry and reduces the prablem to much simpler ones.

In the next chapter a precise definition of fixed
programs is described and then a type of complexity
measure is defined for classes of functions relative to
fixed programs. The succeeding chapters deal with various
algebraic structures and the establishment of bounds on
the complexity of the matrix multiplication preoblem for
each structure. In Chapter 3 a generalization of Stras-
sen's method is presented which is valid whenever the
matrix elements satisfy all the axioms of a noncommutative
ring. 1In Chapter 4 a lower bound on the complexity for
noncomnutative rings is obtained which shows some special
cases of this algorithm to be optimal with respect to

the number of multiplications used. In Chapter 5 the



complexity for commutative rings is studied, and it is
shown that in this case programs exist which require fewer
multiplications than Strassen's method. In Chapter 6

it 1s shown that if either the additive inverse or the
distributivity axioms are removed from the ring axioms,

then the complexity of matrix multiplication for the

resnlting structure is n3 » and hence nc improved al-
gorithms exist. Chapter 7 contains some concluding

remarks and suggestions for further research.
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CHAPTER 2

PRELIMINARIES

The model of computatifion used in this thesis is one
which we cail fixed programs — identical to the model
used by Pan [2] and Winograd [3]. Fixed programs, to
be defined movz precisely later in this chapter, are
essentially computer prograws with instruction repertoires
restricted to arithmetic operations, i,e. no conditional
transfer or looping instructions. One might argue that
in limiting ourselves to fixgd programs we are excessively
restricting the class of functions which can be computed.
In a sense this is true, since with fixed programs over
+ , - , X and + we can compute only rational fune-
tions, excluding even such simple functions as exponen-
tial and factorial.

To counter this argument, however, one cbserves
that in real computer programs the full potential of the
looping capability is rarely exploited. In fact, the
looping which is present in most programs is usually
no more tham is required to simulate 3 class of fixed
programs. A typical program for evaluating polynomials,
for example, whgn presented with a polynomial of degree
n would simply loop ‘n times in order to simul;te the

fixed program for evaluating nth degree polynomials.



Perhaps the best argument for fixed programs is the intui-
tive feeling that in the computation of rationmal fune-
tions, such ﬁs matrix multiplication, the use of condi-
tional transfer and looping instructions cannot reduce

the total number of operations required.

Fixed programs can be described more formally as
follows:

Definition: A fixed program, or simply a program, is

a finite sequence of instructions of the form

t, «a 0B 1<1<n

i

where o and B are either input variables of the

program, constants, or previous ¢t_,'s (i.e. 3J < i)

3

.and O 1s some operation in the instruction repertoire
available to the program, The program is executed by
assigning to each ty in turn the value of o 0 B .

A program is said to compute a function f(xl,...,xk)

if the value of one of the ti's is equal to

f(xl,...,xk) for all possible values of the arguments

xl,...,xk + A program is said to compute a set of

functions F = {fl”"’fm} 1f there is a set of t 's ,

T={t, ,...,t. } , such that the value of ¢t is
Jl Sn ji

equal to fi » 1 <1 <m ,
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An example of a fixed program is the following one

which computes the polynomial ax2 + bx + ¢ using

Horner's method.

This program computes ax2 + bx + ¢ because the value

of ¢t is ax2 + bx + ¢ .

4

Matrix multiplication is usually defined in terms
of ordinary addition a2nd multiplication, the elements
of the matrices being generally either integers or
real numbers. Since we wish to study the complexity
of matrix multiplication as a function of the alge-
braic structure of the matrix elements, we now present
a slightly more general definition of the matriz multi-
plication problem. Let (L =+<S,@® , ® > be an algebra
with two operations. Then the wmatrix multiplication
problem for (. can be defined as follows:

Definition: Let A = {aijll <£i<m, 1 <3< p} be

an m X p matrix and let X = {xij[l <1 <p.:1%53j < n}

A X X is

be a p X n matrix., Then the product M



defined to be an m X n matrix

M = {Mijll <1<m, 1<3 <n} where

Mij- -ail®xlj ® "'@aip®xpj .

M will usually be denoted by M(m,p,n) to indicate

the dimensions of A and X .
The algebraic structures considered in this thesis
satisfz one or more of the following axioms:
Al) Addition is associative,
(a @b) @ c -.a® (b & ¢)
A2) Addition is commutative.
a@®b=0b @ a
A3) Additive identity.
(ZI0)(Va) a@ 0 = a
A4) Additive inverse.
A(Va)(Za') a®a' =0

a' 1s usually denoted by =-a ,

M1) Multiplication is associative.

(2 ®b)Cec=a2 (b&ec)
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M2) Multiplication is diséributive (over addition).
a@(b@Pc)=a®@b@PDa@ec
M3) Multiplication is commutative.
a®b=b0a
M4) Multiplicative identity.

- (@1)(Va) 1O a =a

These axioms are satisfied by the following alge-

brailc types:

Noncummutative ring: Al, A2, A3, A4, M1 and M2 .
Commutative ring: Al, A2, A3, A4, M1, M2 =a2nd M3 .
Ring with unity: Al, A2, A3, A4, M1, M2, M3 and M& .
"Ring without minus": Al, A2, A3, M1, M2, M3 and M4 .

Note that while this structure is not a ring, it satisfies
all the axioms of a ring except the additive inverse

axiom.,

"Nondistributive ring": Al, A2, A3, A4 and M1 .

While this structure is not a ring, it satisfies all

the axioms of a ring except the distributivity axiom.

It is possible to say that a program P computes

an expression E for am algebra (L = <§, @ , 2>,
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By this we mean that if theAaddition and multiplication
instructions in P are repiaced by the @ and @- opera-
tions of (and minus is replaced by @ if an additive
inverse exists for (L ) then the output of the program

is equal to the expression E for any set of arguments

in S . Thus the sample program given earlier in the
chapter computes a @ x O x®Pb ® xPDc for the real
numbers undef + and - , for sets under U and n,

in face for any algebra in which (© distributes over @ .

We now define precisely the measure of computational
complexity which is used in this thesis.
Definition: The complexity of a set of expressions E
for some algebra CZ, =<5, @, ®©®> 1is the least number
k such that there is some fixed program P which com-
putes E for @A and P has k instructions of the

type t, + a ©®B (L.e. P uses k multiplications).

Note that since all our programs are finite thers
do exist optimal programs. This does not contradict the
results of Blum (4] because fixed programs cannot compute
all the computable functions, and therefore Blum's axioms
are not satisfied.

This definition can be extended to classes of alge-
bras (e.g. the class of all noncommutative rings) as

follows:



Definition:

for a class of algebras A

that there i1s a fixed program

all algebras in A

instructions.

is the least number %k

and P has k

14

The complexity of a set of expressions E

such
P which computes E for

multiplication

It is clear from tﬁe'definition of the matrix multi-

plication problem that the complexity of

<S’@’®>

any algebra

since the definition itself is essentially a fixed

having just the

mpn mnmultiplications

M{m,p,n) for
can be no more than mpn ,
program
®™ .
aik (2 xkj It

is shown in later chapters, however, that the complexity

of M(m,p,n)

mutative rings, is substantially less than

for some algebfasJ stch as all the nonccm-

mpn . We

are now able to state a simple, but fundamental, theorenm

on the complexity of functions for classes of algebras.

Theorem 2.1: Let A and

1
algebras such that Al c Az
a set of expressions E for
to the complexity of E for

Proof: Let the complexity of

there must be some program P

each algebra in A and has

2

tions. Since each algebra in

AZ be two classes of

. Then the complexity of

Al is less than or equal
A2 .
E for A be k Then

2 .
which computes E

k multiplication instruc-

Al is also in A2 ,
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P computes E for Al + Therefore the complexity of

E for A can be no more than k . O

1

It is instructive at thils point to examine a theorem
due to Winograd [3]. This is one of the major results
obtained in an effort to prove programs optimal for ra-
tional functions, and will be referred to several times
throughout the thesis. The theorem is concerned with the
number qf multiplications or divisions required to compute

linear functions of the variables XysecesX . Let F

be any field and let G be a subfield of F . Let &
be a t X n matrix and ¢ a t-vector, the elements of

which are all in the field F . We will use Ql""’én

to denote the columns of ¢ . Let x dencte the n-vector

(xl,...,xn) , and Gt denote the Cartesian product

G XG X ,,. X G ., Thé theorem provides a lower bound
on the number of multiplications or divisions (abbreviated

m/d) required to compute the t ealements x + ¢

Theorem 2.2 (Winograd): Let P be a program computing

¢x + ¢ . If there are u vectors in {él,...,¢n} such
that no nontrivial linear combinatioa of them (over G )

is in Gt , Them P has at least u multiplications or

divisions.
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Proof: We will use the phrase "m/d which is counced"

to denote a multiplication t, v ac B such that neither

¢ nor B 1is in G , or a division ti < o + B8 such

that B 1s not in G .

By induction on q , it is easily verified that
if the first q 1instructions of P do not involve an
m/d which 1is counted, then for 1 <1< g the valua of

ti can be expressed as

Z gj j + £

where the gj's are in G and f is in F .

We will prove the theorem by induction orn u . If

u =1 there exists 1 and j such that ¢ is
o o i3

o~o
not in G . Assume that no m/d which is counted appears

in P . Since P computes ox + ¢ , for some k the

@io’j + ¢i° « But since P has

value of tk is

Il o~—p

i=1

no m/d which is counted there exist gj's in G and f£

n
in F such that the value of ¢t is ] g;xy + £,
j=1
and therefore g = & . contradicting the assumption
i, io’Jo
that ¢ . 1s not in G .

io’Jo
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Now assume that the theorem holds for u (and all ¢t
and n ), and let P be a program computing ¢éx + ¢

such that P minimizes the number of m/d which are counted,

and there are at least u + 1 vectors in {¢1,...,¢n}

such that no nontrivial linear combination of them (over

G ) is in Gt . Let tk be the first m/d in P which

is counted. Then either

n n
t, = () g.,x, + £) * ( ] h,x, + £')
kot L Ba%y b M

or

n n
t, = ()] g,x, + £) %+ ( ] h,x, + £')
e TGl BTy (L, ity

where the 's and h,'s are in G and f and f'

8y i

are in F . Furthermore, either one of the gi's or one

of the hi's is not 0 ; otherwise tk is in G and

no m/d would be required in a minimal program. Assume

without loss of generality that hn # 0 , and since

multiplication by hn or hn is not counted we can

further assume that hn = 1 ,

Let g be an element of G such that if we sub-

n-1

stitute g - f' - Z hix for x the resulting progran
. i=1 i n
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P' 1s such that t! 1is total. Substituting

k
n-1
g - f' - Z hixi for =x we obtain a program which-
1=1 o
[ o ' ! = - -
computgs 'x" + ¢ where ¢j Qj hi@n 1<j<n 1,

' = ¢ + (g - f')d>n , and x' = (xl""’xn-l) . The number

of m/d which are counted in P' 1is at least one fewer
than in P since step k 1s not an m/d which is counted
_ n-1
in P" , and the program computing g - f' - Z h,x,
1=1 i1

‘'has no m/d which is counted. But there egist at least

u vectors in {¢i”"’¢;-l}~ such that no nontrivial

linear combination of them (over G ) is in ct » there-
fore by the induction hypothesis P' has at least u
m/d which are counted. Hence P has at least u + 1

m/d which are counted. O

n
Corollary 1 (Pan): No prog: for evaluating Z xiyi
i=0

requires fewer than n m/d. .ud therefore Horner's rule
minimizes the number of m/¢ .. computing a polynomiai,

e {
Proof: Let F =G(y) . T .x ) x;¥° = 9x where

i=0

¢ 1is the 1 x (n+l) matrix [l y...y
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{y,...,yn} are linearly independent over G , by Theorem

2.2 at least n m/d are required. O

Corollary 2 (Winograd): Let X be a p X q matrix,
and let y be a gq-vector. No program for computing
Xy requires fewer than pq m/d, and therefore the
ordinary way for computing Xy minimizes the number of
m/d.

Proof: Let F = G(yl,...,yq) and let ¢ be the p x pgq

matrix where

. T if j§ = iq + k 1<k<gq

1] 0 otherwise

and let x 'be the column vector

(xll"'”xlq’x21"'"x2q”"’qu) . Clearly Xy = o¢x

and since no nontrivial linear combination (ocver G )

of the columns of ¢ is in GP the corollary is obtained

by applying Theorem 2.2 G



CHAPTER 3

NONCOMMUTATIVE RINGS — UPPER BOUND

In this chapter an upper bound is obtained oz the
complexity of the matrix multiplication problem for non-
commutative rings. Specifically, a program is described
which computes the matrix multiplication problem M(m,2,n)

using just [3mn + gax(m,n)] multiplications for all

algebras which satisfy the following axioms:

Addition: associative, commutative, identicty,

inverse;

Multiplication: associative, distributive.

The program which is presented is an extension of a

method due to Strassen [1] for computing M(n,n,n)

Log,7 ‘ 2.81
with just n or approximately a“° multipli-

cations. Let A be an m X 2 matrix with elements

a 1 <1 <m, 1< 3j<2 and let X bea 2 xnq

13 * -2+ =

matrix with elements xij » L <1 <2 ,1 <3 <n. We

shall make use of the following ﬁotation. If

= <yp + ! at . of
Q(ai,xk) aiz(xlk + ka) y where Q represents one o

the letters 4,B,...,G , then we write Q(a .3X, ) for
i+5°7k

20
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ai+j,2(xlk+x2k) ‘and Q(ai+aj,xk) for (312+aj2)(x1k+x2k)

Let
Alag,x) = a(my + xg)

Blag,xp) = (ag; - ag )=y,

C(aj,xz) = (ajl - ajz)xzz

D(aj,xz) = ajl(xlz + xzz)

+ x

E(ai+aj,xk+xz) = (a12 + a

522 %oy 22)

~F(ai+aj,xk+xz) (ail + ajl)(alk + xll)

G(ag,ayoxy,xg) = (ay; + ag,)(a;, = x50) .

Strassen's algorithm computes

Yik T 231%1x * 240%0k 0

Yig = 311%10 F 350%9

ik = 251%1c b 252% 2k
and

y = a..x + a,,x

j2 j1%14 j2%22
as

Vi = A(ai,xk) + B(ai,xk)
yiz = -B(ai,xk)—D(aj,x1)+F(ai+aj,xk+x2)—G(ai,aj,xk,xz)
yjk - -A(ai{xk)+c(aj,x£)+E(ai+aj,xk+x2)+G(ai,aj,xk,xz)

= —C(aj,xz) + D(aj,xz)
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Note that yik + yil ’ yjk + sz ’ yik + yjk ’

Yy t Ty and y. . + vy, + ik + Yy can be computed

with no additional multiplications., The formulae are

summarized below:

yik+yil = A(ai,xk)-D(aj,x£)+F(ai+aj,xk+x2)-G(ai,aj,xk,x£)
ij+Yj2 = -A(ai’xk)+D(aj’x2)+E(ai+aj’xk+x2)+G(ai’aj’xk’xZ)
~yik+yjk = B(ai,xk)+C(aj,x2)+E(ai+aj,xk+xz)+G(ai,aj,xk,x2)
y12+yj£ = -B(ai,xkﬁ-C(aj,x2)+F(ai+aj,xk+xz)-G(ai,aj,xk,xl)

-'E(ai+a , X, +x

X £)+F(ai+aj’xk+xl)

SEVSR AT AR TR Y i

The essence of the algor;thm to be given is to
compute groups of four elements using Strassen's method
and to share as many multiplications between groups as
possible. For example, the 3 X 2 by 2 X 3 case would

7

be computed as:

Y11 = Alap,xp) + B(ag,xy)
Yy, = —B(al,xl) - D(az,xz) + F(a1+a2,x1+x2) - G(al,az,xl,xz)
¥i3 = A(al,xl) - D(-a1+33,-x1+x3) + F(a3,x3)

- G(al,—al+a3,xl,-xl+xs)
Vo1 = -A(al,xl) + C(az,xz) + E(al+a2,xl+x2) + G(al,az,xl,xz)
Yoo = -C(az,xz) + D(az,xz)

= -A(—a2+a3

»=X +x,) + D(a,,x,) + E(ay,x,)

2
+ G(-a2+a3,a2,-x2+x3,x2)
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Y31 = B(al,xl) + D(-a1+a3,-xl+x3) + E(a3,x3)

+ G(al,-al+a3,xl,-x1+x3)
Y32 = -B(-az+a3,-x2+x3) - C(azsxz) + F(337x3)

- G(-a2+a3,a2,-x2+x3,x2)
Y33 = E(aj,x3) + F(ag,x,) .

Here we have conmputed Y11 0 Y12 o Y91 and Yoo

as a group. Similarly Vo9 » Y3 » Y3, and Y33 and

Y11 ,.yl3 » Y31 and Y33 ¢ Note that two multipli-

cations are common to the first and second groups and
two multiplications are common to the first and third

groups. In all 15 multiplications are used.

Before giving the general construction we proceed

. with several technical lemmas.

Lemma 3.1l: Let al,az,...,am be indeterminates. For

n > m there exist linear functionals ¢ ,12,...,2

1 n-m

such that for any k , ak’ak+l’°"’ak+m—1 are nonde-

oL
]

pendent where a ;" Zi(al,az,...,am) » 1 <1i < n-m .

1.

For notational convenience we interpret ak’ak+1""’ak+m

S S AR P L S R LKL A,
We shall adhere to this convention throughout the paper.

for k+m > n as

The indeterminates a,,a,,...,a are nondependent if for
1’72 n )
k
scalars Cy s 1 <1<k, 121 ciai = 0 dimplies c; = 0,

1<1i<k
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Proof: We can interpret the sequence al,az,..,,an as

an n X m matrix L where the ith row represents a

linear functional expressing a, in terms of

al,az,...,am . Thus we need only show how to comstruct

an n X m matrix in which

1) the first m rows form the identity matrix, and

2) each submatrix consisting of m consecutive rows
of L has a non-zero determinant. (Here rows
n and 1 are also considered to be consecutive.)
This 1s equivalent to constructing an n X m matrix

such that
1) the first m rows form the identity matrix

2) a

* : £0, 1<1i< n-m+l

3) an—i,m-i cee @ _,,m
. . £#0, 0 <1< m-1.
an,m-i anm

Clearly for n = m , the identity matrix satisfies the
above three conditions. Assume we have an n X m matrix
satisfying the above conditions. Then we can construct
an (n+l) x m matrix satisfying the above conditions

since for each 1 the determinants
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an+l-i,m—i e an+l-i,m

an+1,m-i v an+l,m

depend on the value of a Thus starting with

n+l,m-1i °

1 =0 for each 1, 0 < i < m-1 , select a so

n+l,m-1i

that D(i) # 0 . O

Lemma 3.2: 1If T4 and yjj are each computed by one

of the following three methods »

1) Yee = A(at.xt) + ?(at,xt)
2) Vepe = -C(at,xt) + D(at,xt)
3) Vee = E(at,xt) + F(at,xt/

but not the same method, then yij and yji can be

computed with three additional multiplications.

Proof: If vy is computed by (1) and y,. by (2),
—_— ii 33

then iy = -B(a ,x,) - D(aj.xj) + F(ai+aj,xi+x )

h
- G(ai,aj,xi,xj) and yji = -A(ai,xi) + C(aj,xj)-

+ E(ai+aj,xi+xj) + G(ai,aj,xi,x )

3

If yii is computed by (1) and yjj by (3), then

)

yij = A(ai,xi) - D(-ai+aj,-xi+xj) + F(a,,x

373

-G(ai,-ai+aj,xi,-xi+xj) and yji = B(ai,xi)
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+ C(—ai+aj,-xi+xj) + E(aj,xj) + G(ai,-ai+aj,xi,-xi+xj) .

If Yi4 is computed by (2) and yjj by (3), then

yij = -A(-ai+aj,-xi+xj) + D(ai,xi) + E(aj,x )

3

+G(—ai+aj,ai,-xi+xj,xi) and yji = -B(-ai+aj,—xi+xj)

- C(ai,xi) + F(aj,x ) - G(—ai+a -x +xj,x

j j’ai’ i i) .

The other three cases are obtained vy interchanging
the roles of i and j . O

To‘simplify the next lemma, we define two constants
', and m . Let n and k be positive integers where
2k+2 < n < 4k+4 . If 2k+2 <'n < 3k+3 , then £ = 2k+3

and m = - (2k+2) or =n - (2%k+3) , whichever is even.

=]

If 3k+3 < n < 4k+4 , then L = n - k and m = 4k+4 - n
or 4k+3 - n , whichever is even.

Lemma 3.3: A sequénce il,iz,...,in where 1, =1 , 2

k|
or 3 for 1< j < n  can be constructed satisfying

the properties:

(L) i, # 1

j41 123z

where 1 is interpreted to be 1

n+1l 1

(2) 1 # 1
i i-k 1= 2,042,...,04n-2

Lier * Ly
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(3) either ii #

ij+l # ij-k for j = 1,£+2,...,2.+m-2 .

41 * OF

Proof: If m < 2 , the lemma is trivial. Thus assume

m>2. Let L, =i, = .. =1, =1,
Lowr = lgeg = o0 = 1lgipny =2,
i = = 2 and

g-k = lpwoox = v = lginoox

2-k < L+m-2-k < 2 < R+m-1 < R+1+k < 2+m-1+k and
L+m-1+k-n < L-k . Thus, so far no conditions are violated.
The remaining entries in the. sequence are filled in so

as to satisfy condition 1. , ]

Theorem 3.1: Let A be an m X 2 matrix whose elements

are indeterminates aij » 1 <1 i.m » 1 <3 <2 and let

X be a 2 X n matrix whose elements are indeterminates

3mn + max(m,n)]

xjk » 1 £3J <2, 1< k<n, Then [ 2

multiplications are sufficient to compute AxX without
making use of commutativity,
Proof: Without loss of generality assume m <n

T

(Otherwise let A' = XT and X' = A and compute

-

A' x X' .) Without loss of generality assume n < 2m
(Otherwise write n = km + n' , k >1,m<n'" < 2m and

.

decomposa A 1into k n X 2 wmatrices and za n' x 2
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matrix. Computing the produce of X with each submatrix

requires
k[3m2+m] + [3mn'+n'] - [3mn+n] +
2 2 2 ¢
Let al,az,...,am be indeterminates. Let

21’22"'°’2n-m be linear functionals of S LR

such that the sequence al,az,...,am , am+l”"’an

. = - - -3
where a g li(al,az,...,am) ‘l <1 < n-m satisfies
Lemma 3;1. Augment the matrix A with n - m rows

where aii = 2i-m(alj’323"'f’amj) » m+l < i < n ,

1 <3 <2 . call the augmented matrix A . It suffices

to compute m conszcutive elements in each column of

AX . We consider tu . cases. Both cases will make use
of the following bs : cc.struction.

Basic Construction ‘t k be an integer between 0
and (n-1)/2 . The - z=ments yij » 1 <3 <n,

Jj £k <1< j+k c . be computed in 3kn + 2n multipli-

cations as follows. For each i compute Yi4 according

to one of the following three methods.

(1) Yig = A(ai,xi) + B(ai,xi)

(2)yygy = -Clayoxy) + Dlay,xy)

+m

hasentene
w
a8
_i-
=

—— D
W
=]

Note
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(3) Y4 = E(ai,xi) + F(ai,xi)

subject to the restriction that if

Yi4 is computed
according to method j , then Vi1, 141 is not computed
by method j . Next, each needed yij and yji s such

that vy -and ¥y are computed by distinct methods,
i1 i3

are computed according to Lemma 3.2 at a cost of three
additional multiplications per pair of elements. Finally

those Iij and yji » such th;t Yi4 and yjj are
computed by the same method, are dbtained as follows.

Several tases exist. We treat only the case where Yi4

is computed as A(ai,xi) + B(ai,xi) s is computed

713

as A(a,,x. ) + B(aj,xj) and yi+1,i+l is computed as

3’73

-C(ai+L’xi+1) + D(ai+1’xi+l) . - In this case the multi-

4
plications E(ai+ai+l’xi+xi+l) and F(ai+ai+1,xi+xi+l)
are already used in the computation of Yy g441 2and
. e

yi+l,i . Thus we can compute
yij + yi+1,j =--B(aj,xj) + C(—aj+ai+ai+l,-xj+xi+xi+l)

+E(aytay gaxgtry )

+ G(a,,-a.+a - -

( 3272 i+ai+l’xj’ xj+Ai+xi+l)

yji + yj,i+l = A(aj,xj) - D(-aj+ai+ai+l,-xj+xi+xi+l;

* Flagtayoxgtxi)

- G(aj,-aj+ai+ai+l,xj,-xj+xi+xi+l)
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requiring only the three additional multiplications C ,

D and G. Now are already com-

Vi¢1,5 270 Yy 441

puted since Yig and yi+l,i+l are computed by distinct

methods and hence and Yi+1.1+1 2rTe computed by
: ?

Y13

distinct methods. (If and yj are not

Ti+1,3 ,i+1
computed because 1 1is not in the range j-k <1 < j+k ,
then reverse 1 and j .) Thus we obtain

Vi3 T Vi3 Y Yi41,5 7 Y141,y ond

yii = in + yj,i+1 - yj,i+l . The total cost is

2n + 3kn as was to be shown.

We now return to computing. m consecutive elements
in each column of AX . We consider two cases.
Case 1: m =2k + 1 , k =20,1,2... .

Let k = (m-1)/2 . For each 1 we compute

yi-k,i’yi-k+l,i""’yi+k,1 by the tasic constructicn

computing the diagonal elements by

A(ai,xi) + B(ai,xi) 1 odd i # n
Yig = -C(ai,xi) + D(ai,xi) i even
E(ai,xi) + F(ai,xi) i odd i = n

This requires (3mn+n)/2 multiplications which

is always an integer and hence equal to R3mn+n)/21
Case 2: m =2k + 2 , k =0,1,2,.,.

Let jl,jz,...,jn be a sequence satisfying Lemma 3.3.
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Step 1. For each 1 we compute

yi'ksi’yi-k+l,i’""yi+k,i by -the basic construction

computing the diagonal element Y4 by

A(ai,xi)‘+ B(ai,xi) if
‘-C(ai,xi) + D(ai,xi) 1f §; =2

E(ai,xi) + F(ai,xi) if‘ ji = 3

This requires (3mn-2n)/2 multiplications.

and

Step 2. ' Compute the pairs of elements Te+2.1
b4

T1,k+2 * Tie3,2 2389 Ty i3 seces Yopup 4y 2nd

Also, if 3k + 4 <-n , compute Y 3k+4, 2k+3
. H

Th+1,2k+2 °

3nd Yor+3, 3k+s V3k+5,2k+4 289 Topas 3pes v

Ya,n-k-1 and yn-k-l,n .. This computation is done by

the same method that was used for computing pairs of off-
diagonal elements in the basic construction (i.e. using
Lemma 3.2 if the corresponding diagonal elements are
computed by distinct methods, and computing the adjacent
elements otherwlse) at a cost of three multiplications
per pair.

Step 3. If 2k+2 < n < 3k+3 , let & = 2k+3 and

P' = n - (2k+2) . If 3k+3 < n < 4k+4 , then 2 =n -~k
and p' = 4k + 4 - n ., Now all columns have m conse-
cutive elements computed except for columns

2,241,...,%+p'-1 which have only m - 1 consecutive



32

'

elements computed. If p 1s odd compute

as A(az

To+p'+k,2+p -1 +p'+k’x2+p'—l) * B(a£+p'+k’x2+p’—l)

and let p =p' -1, If »p is even, let p = p' .

We now must compute one more independent element in

columns £,2+1,...,%+p-1 . We will compute the pairs of
elements ¥ iwv1+21,8+2:i 2% Yo pioi p4142¢ OT
0 <1< (p-2)/2 . Let i, = 2+k+1+42i , i, = 2+2i ,

1 2

1, = 2-k+21 and -1

3 4 = 2+1+21 . TFor 0 < i < (p-2)/2

we compute Yy 4 and Yy 4 by computing the four
’ 172 374

elements

Yy, YY1 g

Z(i +1.,1i. +1.) =
2 7377273 21, 213 3ty 333

z(12+i3,il+i4)

Z(il+14’12+13)

Z(il+i i +14) =

4’71

Note that for 0 < i < (p-2)/2, O

I

i3 <2, +p-1< 1

and il-n < 2 . Thus every element in columns i and

i3 is a linear combination of already computed elements
and since vy and vy were computed in step 1,
1.1 i, i
274 472
we can obtain yiliz from Z(11+14,12+13) and yi314
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from Z(12+i i +i (The case k = 0 1is vacuously

3’71 4) "
true.)

The elements Z(iz+13,12+i3) R Z(12+i3,il+14) ,

Z(i1+i4,i +i3) and Z(11+14’11+14) are computed using

2
seven multiplications by Lemma 3.2. The element

Z(iz+i3,i +i3) i1s computed using two multiplications

2
according to method 3§ (j = 1,2, or 3 ) of Lemma 3.2

where j 1is selected so that j # jz and j # j3 where
j2 and 33 are the methods of Lemma 3.2 used to compute

the diagonal elements and Yy 4 o respectively.

y
i1,. 313

Similarly z(il+i4’il+14) is computed by two multipli-

cations by method j' where j' 1is selected sc that

j' 4 i; and it 4 j4 where jl and i, are the methods

of Lemma 3.2 used to compute Yy 4 and Yy o4 ¢ By
o 171 474

(3) of Lemma 3.3 § # §' .
The claim is made that the two multiplications used

to compute Z(12+i3,i,+i3) are already present since

they are used to compute ¥y and vy in step 1.
1213 13,

Similarly, the two multiplications used to compute

Z(il+i4,il+i4) are already present. Thus only three

additional multiplications rather than seven are needed

to compute the Z's . This completes the construction.
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Two multiplications were used for each of the n
diagonal elements and three multiplications for each of
L(mn-n)/2] pairs of elements. For m even and n odd
two additional multiplications were required for the left
over element. Thus a total of [(3mn+n)/2] multiplica-

tions were used. ]



CHAPTER 4

NONCOMMUTATIVE RINGS — LOWER BOUND

We now turm our attention to the determination of
a lower bound on the complexity of matrix multiplication
for noncommutative rings. It will be shown that any pro-

gram which computes M(2,2,n) for all noncommutative

rings requires at least [%;] multiplications. This,

combined with the algorithm of the previous chapter,
is sufficent to prove that the complexity of M(2,2,r)

is exactly [%;] . A proof will then be zivan that

the algorithm is also optimal for M(3,2,3) .

Without loss of generality we can make some assump-
tions about the form of a program if it computes the matrix
multiplication problem for all noncommutative rings. In
particular, we can assume that each output is computed
as a linear sum of p sducts, where each product is the
product of two line: - sums of the input variables.

1" L1

(Here we take "sum 22an both addition and substrac-

tion.) We can make assumption because, since the
program is valid f- - noncommutative rings, it must

be valid for the zt: -f integers under addition and

1-
(0]

multiplication. I case we xnow that an output of

35
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the program, if it is to equal Mij which consists

only of second order terms, must also consist only of
second order terms. Furthermore, if cubic or higher
order terms appear in intermediate steps in the compu-
tation, the only possibility preventing them from ap-
pearing in the final result is their cancellation by
the addition or subtraction of identical terms. Now
assume that a previously compute& product appears in
another product. -fhen a cubic term will appear in the
product, Since no cubic term can appear in the final
result, if we delete all terms other than the quadratic
terms the result will not be.changed and no additionail
multiplications are required.

Since the program must compute the matrix multi-
Plication proplem for algebras such as matrices under
matrix addition and multiplication in which the multi-
plication operation is not commutative, we can assume

an even more restricted general form. The general form

of the optimal program computes each M as a linear

i3
sum of products of the form af , where a 1is a linear

ij

!

s and B 1is a linear sum of xij

sum of a s .

Because xijakl is not in general equal to akzxij ,

any products not of the above form will produce extra-
neous terms not in the final result, Removing all

a,.'s from right-hand multiplicands and x s from

ij ij
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left-hand multiplicands will transform any program

for matrix multiplication for noncommutative rings.

- into the aboveAform without increasing the number of
multiplications and will leave the output of the program
unaltered.

Finally, for the remainder of the chapter, the
assumption is made that the algebra under consideration
is one in which each element is its own additive in-
verse. An examplé of such an algebra is the binary
' Boolean algebra. We can make this éssumption because,
since the program is valid for all rings, them it must

be valid for this particular'ring. For this type of

]

algebra we can replace any subtractions in a program
by additions. Therefore the general form of the opti-
mal program is as described above, where "linear sum”

can now be taken to mean additions o=nly.

Two results are now presented which will be needed

later. Let F be a field and {al,...,an} a sat of

indeterminates. Let :? be the field obtained by

extending F by rational expressions of the a.'s .

i
A set of vectors xl,xz,...,xp with elements from f;
are non-dependent if and only if E a;x, =0 and
i=1
each a, in F impiies each Lay; = 0 . Nondependence
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should not be confused with linear independence where

the ai's are not restricted to ¥ but can be arbi-

’ ~
trary elements of F .

Lemma 4.1: Let F = {fl,..,f .,fn} be a set of

k’ou

expressions, where fl,...,f are independent and each

k
can be expressed as a single product. If F can be
computed with p .multiplications, then there exists
- an algorithm for F with p multiplications in which

£

k of the multiplications are SERREFT I

Proof: Let m,,...,m be the multiplications of some
—_— 1 P .
algorithm for F . Since fl,...,fk are independent
we can solve for k of the mifs in terms of fl,...,fk
and the rest of the mi’s . ]
Lemma 4.2: Any program for

#21%21

1 <i<n

221711 * 322%)y
requires 3n multiplications.
Proof: We can sssume by the above lemma that n of
the multiplications are ay1X,4 1 <i<n. Ifwe

remove these multiplications from the algorithm, it will
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compute a,,%14 + a,,%5y + [a21x21] + ... + [821x2n]

1 <41i<n, where [a] means that a may or may not.
be present.

In matrix form this can be represented as

(2,0 0y, + lay,] (ayy] r"11
) .« - ) . xln
. _ . X5q
0 2y [2,,] 250%[ay,1 *20
b p .

AThe first maﬁrix ciearly has 2n nondependgnt
'cdlumns, therefore by Theorem 2.2 for this computation

2n multiplications are required. Since n multipli-
cations were removed from the original algorithm, it nmust

have had 3n multiplications O

In what follows we will make use of the fact that
after computing a set of expressions, we can with no
additional multiplications compute all linear sums of
the expressions.

Theorem 4.1: Let A and B be two sets of expressions

where each expression in B 1is some linear combinaticn
of the expressions in A . 1If the computation of B
requiresv p multiplications, then the computation of

A requires p multiplications.

Proof: Suppose there is an algorithm for A containing

fewer than p multiplications. Then this algorithm
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can be used to ccmpute B with fewer than P multi-
cations'simply by appending the necessary additions to

compute the linear combinatious.

We now develop the concepts necessary to take
advantage of the high degree of symmetry in the matrix

multiplication problem. We denote by ii{ai4} the set

N

of all linear functionals of aij's . A transformation

T 1is a mapping T : {a, .} U {x,,} + Z1{a..} U {x .
. ij k2 ij k2

A'x X 1s said to be invariant under a transformation T
1f T(Z{a x x}) = L{a x X} . An example of such a

transformation is

alj - alj + a2j 1 <3i<2
aij+aij 2i1in,1_<_3_<_2
*13 7 *ij o l=21<2,123<n

The set J of all transformations which leave
A X X invariant forms a group. Thus, we can use fj
to define an equivalence relation on multipiications

as follows: 1If T, o= a B and m, =Y ° § are two

multiplications and there exists some T in 7J such

that T(a) =y , then m;, ¥ m, . Since T is a group,

L)
&

as defined above is, 1in fact, an equivalence relation.

Under this equivalence relation, the multiplications
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used in the computation of A * X form n equivalence
classes where n 1s the dimension of the largest square

matrix conatined in A . Representative members of these

classes are alls’(ail+322)8’"”(all+a22+"'+aﬁn)8’ for

any B 1in Eﬁfxij} .

The next technique, similar to one used by Pan [2],

is to reduce the number of variables by selecting a

‘linear sum of variables x1+x2+...+xn which appears as

- da multiplicand and setting the sum equal to zero.

This can be done by solving the resulting linear equation

for one of the variables, say X and substituting
the solution xl = x2+._..+xn for that variable whenever

it occurs in the algorithm. The result is a new algo-
rithm P' which has at least one less multiplication

than the original algdrithm P . If P computed

[Z

fi(xl’xz""’?n) » 1 < < m , then P' computes

) - .
ti(xz,...,xn) fi(x2+., An,xz,...,xn) » 1 <1 <m

We conclude that the opti=mal algorithm for the f's
has a least one more muliltiplication than the optimal
algorithm for the f' 's.

Combining this technique with the symmetry argument
results in a powerful tocl. For example, in computing
A X X where A and X are both 2 X 2 matrices,

we can assume by symmetry that either a or

11
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a;; + a,, appears as a multiplicand. Thus, by substi-

tuting first a = 0 and then a = a

11 11 29 » We deduce

that the minimal number of multiplications for the above

computation is more than the minimal number for one of

a) 317%57 : 312%99
371%11 t 355%5; 3y1%12 * 235,%;,
or ) agp%11 *oB1p%a1 322%1p t 2p5%,
3y1%11 t 355%; 31%12 * 379%,,

These techniques can be used to show that multi-

plying a 2 X 2 matrix A by a 2 X n matrix X

requires exactly [%F] multiplications,

Lemma 4.3: If an algorithm for A X X had %k wultipli-

cations of forms a;1% (a12+321)3 and (all+a12+a21)7 ,

then‘the algorithm requires at least 3n + k multipli-
cations.

Proof: Set a = 0 and a = a This eliminates

11 12 21 °

k multiplications and the algorithm now computes

421%21 L
/ 1 < i <n
3y1%11 T 320%)4 ]

which requires 3n multiplications by Lemma 4.2,
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Corollary: By applying transformations in tj we also
have similar theorems for | '

a) (aj;+ayy)a, (ag,%ay +ay, 8 5 (ag +a),%a,,)y

b) (ajjta;yla, (a1y%ay)%a 508 5 (ag *ay tay,)y

c) (ajjtay,tay tazyla, (ajy*ay;)B8 , (a),+a,,)y

d) apya , (3y;%a,5)8 , (ay,%ay;%a,,)Y

e) (ayg*ayyla s (ap tag tay,)B . (3 tayha, )y

8) a1, (a35apy)B . (apptagptan,)Y

8) (ajgtajzyle ., (ag,+e;%a,,)8 (ali*312+a21)Y

h) a,,0 , (a5,%a,7)8 , (a),+a, +a,,)Y

Lemma 4.4: Any algorithm P for A X X which has k

multiplicatiorns of type 3112 > alZB and (all+312)y

has at least 3n + % multiplications. .
Proof: Let L be the vector space of linear combina-

tions of the k multiplications which are assumed
to be present, We first prove the theorem for the case
where the dimension of L is k .,

Consider the set of expressicns

s' = {a +alzx21[l <1 < n} , each of which is computed

11714
by P . Let S be the wvectcr space of linear ccmbina-

tions of expressions in S' . Clearly S has dimension
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n . The subspace S ML has dimension less than or

linearly independent expres-

equal to k » Since any %

2
mions in S N L can be represented as the product of
a matrix with 2 noﬁ-dependent columns and an arbi-
trary vector and thus requires & multiplications by

Theorem 2.2. Hence, the vector space spanned by S U L

has dimension of at least n + We can therefore

E .

sbive for n + % of the multiplications in the algo-

rithm P 1in terms of the expressions in S' and the

k multiplications. If we now set a = a = 0 , then

11 12

we lose n + multiplications £from P .

2

The new algorithm computes +

821%11 T 292%94

1 <1i < n which requires 2n multiplications by Theorem

2.2. Hence P must have had at least 3n + % multi-

plications.

In the case where the dimension of M 1is k' ,
k' < k , then solve for k - k' multiplications Jin
terms of the remaining multiplications and replace them

by their solution wherever they appear in the program.

1

This results in an algorithm with at least 3n + 57

multiplications as we have just proved. Thus P nmust

1
have had at least 3n + %r + k - k' > 3a +

o=
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multiplications. O
Corollary: By transformations we also have similar

theorems for 321a R a226 ’ (a21+a22)y and (all+a21)a ,

(a5,%3,,)8 » (a;;,+a,,%a,,%2,,)Y .

Theorem 4.2: The complexity of M(2,2,n) for noncom-

mutative rings is at least [Zf] .

Proof: Divide the multiplicaticns in P into two dis-

joint sets S and S, , where the multiplications in
. A B

s begin with a

A a

a a a,.+a a,.,+a

11 * 12 > 21 * T22 * 11 712 ’* 11 “21 °

a12+a22 , a21+az2 or all+a12+321+a22 and the multipli-

cations in S begin with a..+a

B 117822 0 23p%35; » 317%315%3,

all+a12+a22 , all+a21+a22 or a12+azl+a22 . Note that

each multiplication in S belongs to one group cf

A
Lemma 4.3 and one group of Lemma 4,4, while each multi-

plication in S belongs to three groups of Lemma 4.3.

B
Suppose there are mA multiplications in SA and
mp multiplications in SB . Let therz be a, multipli-

cations in the first group of Lemma 4,4, a, multipli~
cations in the second group, and a, in the third.
Since each muitiplication in S beiongs to one of

A

these groups, then
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a, + a2 + a3 = mA .

Therefore one of a a, or a, must be greater than

1 ’

or equal to mA/3 » 1.e. there is some group of Lemma

4.4 with at least mA/3 multiplications.
Similarly, let bl""’b9 represent the number

of multiplications in each of the nine groups of Lemma

4.3. Since each multiplication in §, belongs to one

A

" of these.groups and each multiplication in SB belongs

to three of them, then

Hence there must be some group of Lemma 4,3 with at

least (mA + 3mB)/9 multiplications.

Suppose P has at least n multiplications.

Since m =m, + m , then either m

A B > 6m/7 or m, > m/7 .

A B -

If m, > 6m/7 , then there must be some group of Lemma
4.4 with at least mA/3 > 2m/7 multiplications, and
B

hence by Lemma 4,4 m > 3n + m/7 . If m > m/7 , then.

there must be some group of Lemma 4.3 with at least

(mA+3mB)/9 = ((m-mB)+3mB)/9 > m/7 multiplications and

hence by Lemma 4,3 m > 3n + % . In either case, therefore,
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m > 3n + % . Solving this inequality, we find that

We now proceed with a series of lemmas which will
provide the basis for proving that any algorithm for
M(3,2,3) requires at least 15 multiplications, and
hence the algorithm of Chapter 3 is optigal for this
case. | -

‘Lemma 4.5: Any algorithm for M(3,2,3) with a multi-

plication equivalent (by a transformation in J ) to

a318 has at least 15 multiplications.

Proof: Assume that the algorithm has only 14 multi-
plications. Assume without loss of generality that

3318 ‘is present. Set az, = 0 . Then

311713 * 212%0y
+

221%15 T 2322%y

232%23

must be computed in 13 muitiplications. By Lemma 4.1
we can a2ssume that the multiplications a32x2j ,
1 <3 <3, are present. Set az, = 0 and we have an

algorithm computing a,,x

11%13 T 339%p5 0 L2122,

1 <3j <3, in 10 multiplications contradicting Theorem

I~
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Lemma 4.6: If an algorithm for M(3,2,3) has two

multiplications of type (all+a22)a and (a12+a21)6 s

then the algorithm has at least 15 multiplications.

Proof: Set all = a,, and alZ = 321 » losing two

multiplications. Without loss of generality we can

assume that a328 is present, because any multipli-

cation involving ajz, is equivalent to aézs by scme

transfofmation ﬂltj. Set a32 = 0 , losing one multi-

plication. By Lemma 4,1 setting a5, = 0 costs three

multiplications. It can be shown that what remains
requires 9 multiplications, and therefore

9+3+1+2 = 15 multiplications were required originally. J

Corollary: By transformations we obtain similar theorems
£

for the groups all+a22 and all+a21+a22 » and

all+a22 and all+a12+a22 . | .
Lemma 4.7: If an algorithm for M(3,2,3) has twe multi-

plications of the type (allfazz)a , (all+a12+a21)8 and
(a12+a21+a22)y » then the algorithm has at least 15

multiplications.

Proof: Set -a = a

11 29 and a = a + a

12 21 T 233 » losing

two multiplications. In the algorithm so obtained some

multiplication must involve 259 3 let it bhe (372'
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where o 1is one of eight possible cases. For each

case it can be shown that after setting a,, = @, which

cogts one multiplication, the remainder requires 12
multiplications. Henée the original algorithm must have

had at least 12+1+2 = 15 multiplicationmns. |

Lemma 4.8: If an algorithm for M(3,2,3) has two

multiplications of type (all+a22)a s (all+a12+a22)6 s
(aggtagyragy)y s (agp+ay; )8, (aj *a; tay; e and
(all+a21+a22)c , then the algorithm has at least 15
multiplications.,

Proof: Without loss of generality assume the first of

the two multiplications is (all+32°)a . If the second
multiplication 1is (all+azz)8 s (a11+a12+321)6 or
(a12+321+322)8 , then the algorithm has at least 15

multiplications by Lemma 4.7. If the second multipli-

cation 1is (a12+321)8 , (all+a21+a22)8 or (all+a12+a22)8 s

then the algorithm has at least 15 multiplications by
Lemma 4.6 and its corollary. O
Corollary: The Lemma holds for seven groups of six
multiplications each, which covers all 42 types of

multiplications not equivalent to a316 .
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Lemma 4.9: If an algorithm for M(3,2,3) has eight or

more multiplications not equivalent teo a316 , then

the algorithm has at least 15 multiplications.
Proof: At least one grouﬁ of the corollary to Lemma 4.8
must h#ve two or more multiplications, and the proof

follows immediately from Lemma 4,8. (]

Theorem 4.3: Any program computing M(3,2,3) for

-

noncommutative rings requires 15 multiplications.

Proof: The program requires at least 11 multiplications
to compute the first two rows by Theorem 4,2, If one

of these is equivalent to 3318.’ then the theorem is

true by Lemma 4.5. If none of the multiplications is equivalent

to a316, then the theorem is true by Lemma 4.9. O



CHAPTER 5

" COMMUTATIVE RINGS

Strassen's method and the algorithm of Chapter 3
provide improved matrix multiplication prcgrams for
structures which satisfy all the axioms of a noncommuta-
tive ring. We now show that even more efficient progrars
_e;ist providing that the multiplication operation is
commutative. Specifically, we are now dealing with

structures which satisfy the following axioms:

Addition: associative, commutative, identity,

inverse;

Multiplication: associatibe, distributive, com~
mutative, identity.

Theorem 5.1: The complexity of the matrix multiplication

problem M(m,2,n) for commutative rings is no more than
mn +m + n .

Proof: The theorem can be preved by describing a2 method
due to Winograd [5] which computes the product A X X ,
where A 1is an m X 2 matrix and X 1is a 2 X n matrix,
using just mn + m + n mwmultiplications. The method

proceeds as follows:

51
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1) Compute the m products

ailai2 » 1 <i<m.
2) Compute the n products xleZj » 1 £33 <n.
3) Compute the mn products (ail + xzj)(ai2 + alj)

1<i<m,1<j<n.
4) If A X X =Y , then compute the yij's from the

above products by
Tig = (Bgp¥xy)(ay txy ) -2y 8, = xyyx,y

If can be readily be proved from the axioms of a
commutative ring that the program does compute M(m,2,n)
for all commutative rings, and it is clear that mn + m + n

multiplications are used. : a

If we set m = 2 and compare this bound with the

[ 7n7
[ 27|

minimal bound of 5 for noncommutative rings, we

find'that Winograd's method requires fewer multiplications
for all n > 5 . We noﬁ ask ourselves how good is Wino-
grad's method; in other words what is a lower bound on the
complexity of matrix multiplication for commutative rings?
A rough estimate can be obtained as follows:

Lemma 5.1: The complexity of M(m,p,n) is at least

(m + o0 - 1)p .

Proof: By an argument similar to the noncommutative case,
one can assume without loss of generality that the optimal

-4

program for M(m,p,n) computes expressions in the form
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of a sum of products of sums of a,,'s and X494

13 s .
Briefly this is true because only second degree terms
appear in M(m,p,n) .

Let P be the optimal program for M(m,p,n) .

Since P computes Mll = allxll+...+a X

1p P gust

pl ’

have some multiplication of the form (all+a)(xll+3)

in order to obtain the term a;1%y1 ¢ Setting a;;p = -¢

we obtain a new pibgram_ P' which has one multiplication
" fewer than P and which computes

! - -
M axll+a12321+...+a

11 X1 instead of Mll . Regard-

lp™p
less of what o 1is, P' must have a multiplication

involving a;, in order to obtain.the term in

212%21
Mil . Upon removing this multiplication by substituting

for a we obtain a new program P" which has two

12

multiplications fewer than P . We continue this for
each g 1 <k <p, obtaining a program P(p) which
has p multiplications fewer than P . Note that since

we have only substituted for the a., 's , P(P) still

1k

computes M » 2 <1 <m, 1< <n

ij

Similarly, by considering M we can remove D

21
more multiplications and the resulting program still

computes Mij y 3 <1i<m , 1< £ n . By repeating
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this for M31 sy e Mm-l 1 » we obtain a program which
?

has (m-1)p multiplications fewer than P and which

computes Mmj »1 £3'<n . By Theorem 2.2 this requires

at least np multiplications; therefore P must have

had at least (m + n - 1)p multiplications.

Lemma 5.2: The complexity of M(m,p,n) is at least
(m +p - 1)n .
Proof: Let P be the optimal program for M . Since

the set § = {Mijll Xi<m-1, 1< n <n} contains

(m-1)n 1linearly independent expressions each of which
is computed by P , we can soive for (m-1)n of the
multiplications in P in terms of the other multiplica-
tions and the expressions in S . Therefore, by setting

ae - 0 and 1 L1 <m-1 and 1 £k < p , which has

the effect of setting each expression in § equal to

zero, we obtain a new program P' with (m-1)n fewer
multiplications thamn P and P computes
Mml""’an - By Theorem 2.2 P' must have at least

np multiplications, so P must have had at least

(m-1)n + np = (m + p - 1)n multiplications i}
Corollary: The complexity of M(m,p,n) for commutative

rings is at least (n + p - 1)m .
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By combining these results we obtain the following:

Theorem 5.2: The complexity of M(m,p,n) for commu-

tative rings is at least max{(m+n-1)p,(m+p-1)n,(n+p-1)m} ;

O



CBAPTER ¢

SOME OTHER ALGEBRAIC STRUCTURES

In Chapter 3 an algorithm was described which com-

0

putes the matrix multiplication problem for all ring
using fewver multiplications than‘ona would ordinarily
expect., It will now be shown that this improvement is

highly dependent upon the ring axioms. In partigular,
if wa remove either the additive inverse aziom or the
distributivity axiom, the complexity of the matrix multi-
plication problem M(m,p,n) beéomes mpn , or the same
as.for an algebra satisfying no axioms at all.

We first examine algebras satisfying the following

axionms:

-‘Addition: associative, commutative, identity;

Multiplication: associative, distributive, com-

mutative, idsntity,

In other words we have all the axioms of a ring with

unity except the existence of an additive inverse (minus).
We wish to show that the complexity of the matrix nmulti-
plication problem M(m,p,n) £for this type of structure

is mpn . To show this it suffices to exhibit some

algebra (L = <s, @& , & > which satisfies the albove



57

axioms and prove that the complexity of M(m,p,n) for
a 1is mpn . There are several algebras for which one
can prove this, such as the natural numbers under max
and + or the set of all subsets of {a}  under unicn
and concatenation, but the one which 1s presented here
is the set of natural numbers under + and =+ , or
<K +.> .

In order to prove that the complexity of M(m,p,n)
is mpn for < N;+,'> y We first assume that there is
some program P which computes M(m,p,n) . We then

define a normal form into which oae can transform any

expression computed By P ., Next we prove that 1f some
exprecssion E ccmputed by P is equal to Mij » then

the normal form of E must be precisely

- . -3 q
ailx1j+"‘+aipkpj . We then show that if the normal

form of E has this form then each product 3k ks 2
. 3

1 <k <p, is present in E . We can then conclude that

X, ’liiim,l<

k<p,1<3ic<mn

1s present in P , and therefore that P wuses at least

mpn multiplications.

Dzfinition: The ncruwzi form of some expression E , de-

noted by NF(E) , is obtained as follows:

1) remeve all pareuniheses according to the associa-

tivity axioms and the distributivity axiom;

4



a 6.2: I1f E =M

2) rearrange the factors in each term into lexico-
graphical. order (this can be done because -

is commutatiwve);

3) rearrange the terms into lexicographical order

( + 1is commutative);

4) cecmbine ¢ identical terms o into one term

c T a ., e.g. 3 ;X + a11%1 becomes zallxll

(this can be done according to the multipli-
cative identity axiom and the distributivity

axiom).

Lemuma 6.1: Tf E = M » then there are no terms in

ij

) ¢£f£ order threa or more.

£: Assume there is a term in NF{(E) of the fcrm

e, r > 3 , each o

U {x Se
5 . > g 1in {aij} {kij} . t

a and x equal to p + 1 . Then

ij ij

= p(p+1}~ , but E > (p+l)3 . Therefore E # M s

ij

L is a contradiction. ]

then there are no zeve or firs

e e i 4

order terms in NF(E) .

0f: Assume there is some term in NF(E) of the form

Set @ =1 and all other a,.'s and x

- 1
1] 13 8 equal

? . Thea E =c¢ and M,. = 0 ; hence E # M, ,

[z}

which is a contradiction. Similarly, if there is a zetrn



order term (constant) in NF(E)

and x,.'

t
a -] 1j

ij]

tradiction.

Lemma 6.3: If E = Mij , then

.oFa, x .

ailx1j+‘ 1p*pj

Proof:

59

, then setting all

s equal to zero leads to the same con-

O

NF(E) must be

By Lemmas 6.1 and 6.2 there must be only second

order terms in NF(E) . Consider the term ceB , a and
. B in {aij}'U {xij} . If we set a and B equal to
1, and all other 341'3 and xij's equal to 0 , then
E = ¢ and
y _ /l if g = ay and B8 = xkj » 1 <k <op
1] {O otherwise. '
Therefore ¢ = 1 for the terms ailxlj"°°’aipxpj and
0 for all others. g

Lemma 6.4: If P 1is a program which computes M(m,p,n)
for < MN,+,+> then P wuses at least mpn muitipli-
catiéus.

Proof: The output of P 1is a seé of expressions {Eij}
such that Eij = Mij By Lemma 6.3 we know that NF(Eij)
is a +...+a We can assume that for each k

1713 ip™pj
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there is some product in Eij 0f the form

(aik+a)(xkj+8)y s whera a , B and Y are expressions,

or a similar product with terms rearranged. If such a

product did not appear, then aikxkj would not appear
in NE(Eij) . We can immediately conclude that o and

B are both zero, because otherwisz extraneous terms

™

would appear in NF( By similar reasoning Y . must

be simply a constéhtt(in fact Yy =1 ). 1In other words,

. ) I
tbé product aikxkj must appear in Eij » 2and kence

it appears as a multiplicaticn in P . Since the sbove

argument is valid for each product aikxkj » L <i<m,

1 <k<p, 1< 3j<n, it follows that there must be at

O

least mpn mwmultiplications in P .

This result leads to the following theorem:

Theorem 6.1: Any program P which computes the matrizx

"

multiplication problem M(m,p,n) for 21l "rings without

uses at least mpn multiplicatioas.

mw

Proof: Since (L = <MN,+,*> satisfies all the axiom
of 2 "ring without minus", P amust compute M(m,p,n)
for K . Then by Lemma 6.4 P must have at least apn

mulctiplications. _ ]
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It 1s interesting to sa2e how this same result can
be proved for yet another example of a "ring withoﬁt
minus" — again the set of natural numbers N but this
time under the operations mim and + 1instead of -
and + . We will use a 1l b to denote the minimum of
2 and b , 1.e. a L b e min{a,b) . The algebra
(l‘s <N,t;+> 1s especially useful in the important .
case of determining the shortest path matrix of a graph
given its connectibn matrix. Improved matrix multiplica-
‘tion algorithms for (L would lead to better techniques
for determining the shortest path matrix than are preseatly
available, but is will now be shown that the complexity
of M(m,p,n) for Q. is mprn , and therefore the ordirary
method of matrix mﬁltiplication cannot be improved.

Assume that f is an optimal program for M(m,p.a) ,
i.e. P minimizes the number of + operations required
and P computes a set of expressions .

{Eijll <1 <m, 1<j<n} such that for all i and j

E = = (a,.+x..)...1{a, +x .
ij ij .1 L] = ip "pj
O0f course while Eij must equzal ﬁij , 1t need not
have identicslly the same form as M., . We can, however,

conclude certein facts aboui the possible form that

214 can have. We first convert E to an equivalent
3

o
[ 35N
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expression Eij which has the form Sr_ “St whe

Sl’o‘t,st

sion is accomplished by the use of the distributivity

axiom
a+ (blec)=2(a+5bd) | (a+c)

in conjunction with the associativity and commutativity
axioms,

We now show that Eij must have the following

form (with possibly a rearrangement of the terms):

Eyy ¥ (agptxgdle.ollay 4 0(a) 4 40 1)

J-"“L(aip+xpj+[ 1)

where inside the brackets [ ] can be any expression

at all, This means that each of the terms in E. must

ij

contain the sum of one of the pairs of variables 2ix

)

and x, . , and each of the terms (a,.+x,.) must be
k3 ik kJ

preseat in E,. . Assume that some term (at...+y)

which does nct contain any pair acx and xkj

in Eij . Then setting o = ... =y =0 and setting
all the other variables equal to 1 1leads tc the con-

tradictory conenlusion that Eij = 0 znd Mij >1 .

Now assumc that some term {a_,.,+x..) does not appear

are sums of the input variables. This conver-

is present
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in Eij . Setting aik = xkj = 0 and all other var1ab¥es

equal to 1 leads to the conclusion that Mij = 0

while Eij > 1 , which 1s also a contradiction. Hence

the above form of E s+ is the only one poésible.

i
Let us now examine how the terms (aik+xkj) " din
E could have been derived from E. by applications

ij ij
of the distributivity axiom. Any term which can be com-

bined with this one must contain either a or x

ik kj

to provide the common factor, and the result after reducing

them to a single term must be either 2k + (xijJ 1)
or (ai]!| 1) + xkj » where [ ] again represesnts any

arbitrary expression. No matter how many times this
reduction process 1s repeated, the resulting term must

be of the form (aikL[ 1) + (xk5¢i ]) . We can there-

fore‘conclude that E must have the following form:

14
® Qa0 DGy 0l DML LlCag 1 1)

+(xpj_L[ IDRAREE!

We now know that the optimal program P must contairn

each of the mwnpn additions

L B COPNE g DRSSPI 35 DI

A,
LI




64

There is still the possibility, however, that these addi-
tions are not all distinct. Perhaps for example,

= Au . For this to happen A must have a form

Asgx vw ijk

like (aiKLaLI 1) + (kaL[ ]) , where o is a variable

other than a or x Let a = x =1, let

ik ki ° ik kj
@ =0 , and let the rest of the variables equal 2 ., We
musi then conclude that M = 2 and E = 1 , which is

ij ij
a contradiction. Therefore P does contain mpn dis-

" tinet additions.

We now tﬁrn our attention to algebras whié¢h satisty
all the axioms of a noncommutative ring with the excep-
tion that multiplication no longer distributes over
additicn. Specifiéally, we are dealing with algatras

which satisfy the following axioms:

~

Addition: associative, commutative, identity, inverse;

Multiplication: associative,

An algebra satisfying these axioms will be referred to

informally as a nondistributive ring., It will be shown

that the complexity of M(p,p,n) for this algebraic
étructure is mpn .

We will actually prove this for a special.type of
.nondistributive ring, which will be called a mcdified

nondistributive ring, and the main result follows by
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Theorem 2.1. A modified nondistributive ring satisfies

all the above axioms with the added restriction that
each element isfits own additive inverse.

Theorem 6.2: The complexity of M(m,p,n) for modified
npndistr;bdtive rings ié at least mpn (and therefore
équal to mpn ).

gzgggz‘ Consider the set E qf all well-formed expres-

sions over the symbols O and x , with operations +

"and ¢ and parentheses "(" and ")" . An equivalence
relation can be defined over E as follows: Let e
and e, be two expressions in .E . Then e = e, iff

it can be proved from the modified nondistributive riag

axioms that e; = e, . It is easy to show that = 1is

an equivalence relation (i.e. reflexive, symmetric and
transitive). We &enOCe by E the set of equivalence
classes of E under the equivalence relation = , and
E(e) will be used to denote the equivalence class of
expressions in E which are equivalent to e .

We can now describe the particular algebra which
will be considered. The set of elements of the algzebra
is the set E of equivalence classes, while the addi-
tion and multiplication operations @ and & are

defined as follows:
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For any two elements E(él) and E(ez) R
E(el) ® E(ez) = E(el + ez)
and
E(el) C)E(ez) = E.(e:L . ez) .

It ‘is clear that the algebra Q. = <§, @, ®> satisfies
all the modified nondigtributive ring axioms. Further-
" more, as a result of the way in which E was defined,
tt;*o expressions over @ and @ are equal only if they
can be proved to be equal by';he modified nondistributive
ring axioms. |

Now suppose a program P computes M(m,p,n) for QO
Then for each 1 and j »,1<1<m,1<3j<n,?P

must compute an expression Fij which is equal to Mij »

where .

® x

= P
Mij ail@xlj@...@a

ip pj

M"j is equal tc Fij only if it can be proved to be
FY

equal from the axioms of a modified nondistributive
ring. Let us apply, therefore, all possible axioms

to M , thereby obtaining all expressioans which are

ij

~equal to Mij . The comnutativity of addition allows
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rearranging the terms of Mij , and the associativity of
addition and multiplication merely permit an arbitrary
order of evaluation Af additions or multiplications
which are mot otherwise parenthesized. The additive
identity and modified additive inverse axioms allow us
to add expressions which always cancel out, but we can
assume without loss of generality that such wasted terms
do not appear in P . AWe are left; then, with the con-

clusion that F contains each of the products

ij
a Q*lj""’aip ® X,y s and therefore each of these
products must be present in P . Since this is true

for each i and j , there must be at least mpn pro-

ducts in P .



CHAPTER 7

CONCLUSION

The major results of the preceeding chapters can
be summarized as focllows:

1. A program is described for computing the pro-
duct of an m x 2” matrix and a 2 X n matrix whenever
the addition and multiplication operations satisfy all
the axioms of a noncommutative ring, and the program

+ 7 .
uses no more than [3mn m;#(m,n)l multiplications.

2. The computation of the product of a 2 x 2

matrix and a 2 X n matrix for noncommutative rings

requires at least [%F] multiplications; therefore the

algorithm referred to above minimizes the number of
multiplications for at least these particular cases.

It was also shown that 15 multiplications are required
for the 3 x 2 by 2 x 3 case, and hence the algorithm
is optimal in this ianstance as well.

3. The product of an m X 2 matrix and a 2 X n
matrix can be computed for commutative rings with no
more than mn + m + n wmultiplications. 1In some cases
(e.g. 2 x 2 by 2Xn, n > 5 ) this is less than can

'possibly be achieved for noncommutative rings, according

68
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to the result above.
4. The product of an m X p matrix and a p x n

matrix for commutative rings requires at least
max{ (m+n-1)p, (m+p-1)n, (n+p-1)m}

multiplications.
5. The product of an m X p matrix and a p X n
matrix for "rings without minus" (i,e., all the ring

axioms except additive inverse) requires exactly mpn

- multiplications.

6. The product of amn m X p matrix and a p X n
matrix for "nondistributive rings" (i.e. all the ring
axioms except distributivity) requires exactly mpn

multiplications.

In view of these results, an interesting complexity
hierarchy is formed. At the top of the hierarchy is the
class of all "free algebras", i.e. all algebras for
which the addition and multiplication operations do not
satisfy any axioms at ali, Let this class be denotad

by Cg... ° The complexity of this class is the maximum

possible — mpn for the m X p by p X n case — and
all other classes must either have the sane complexity

or lie below this class.
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Let the class of all commutative and noncommutative

rings be denoted by C and the class of all com-
noncomm

mutative rings by C . Let the relation Ca < C

comm b

mean that the complexity of Ca is strictly less than

Cb » and the relation Ca = Cb mean that the complexities

are identical. By Theorem 2,1 we know that

c

< C : < C
comm —_, noncomm — free

" Results l, 2 and 3 above allow us to rewrite this with

strict'inequalities:

C < C < C
comm noncomn free

Results 5 and 6 emphasize the dependence of Strassen's
method on the ability to cancel unwanted terms in the
computation. Strassen's method, and its generalization
descfibed in Chapter 3, are valid whenever all the axicas
of a noncommutative ring are satisfied. If either the
additive inverse axiom or the distributivity axiom is
not satisfied, however, then there is no program which
computes the m X p by p X n case with fewer than
mpn multiplications for all such algebras.

It is possible, of course, that a particular algsbra

may not satisfy these axioms and yet have improvad pro-

‘grams. Consider the set of integers I under addition
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and subtraction. For this algebra the "multiplicatioa"
operation (i.e. subtraction) is neither associative, dis-
tributive nor commutative, Yet we can compute the pro-
ducf of an m X p matrix and a p X n matrix for
<I,+,-> with only mn "multiplications" (i.e. subtrac-
tions) because we can take advantage of the property

that
(a -b) + (¢ =-4d) = (a+c) - (b +c¢c).

It is because of cases such as this that we were forced
to define the complexity of a class of algebras to be the

maximum complexity of all the algebras in the class.

One of the more interesting questions left unan-
swered by this thésis is whether any improvement can be
obtained for matrix mﬁltiplication programs by allowing
divisions as well as multiplications. In other words,
what 1is the complexity of matrix multipiication for
fields, where the comple#ity measure would not be the
number of multiplications or divisions? This is pro-
bably a very difficult question to answer, but even
limited results of this nature would contribute greatly
to a more complete understanding of matrix multiplica-

tion.
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A discouraging observation which must be made con-
cerning.this thesis rgsearch is the amount of tedious,
combinatoric manipﬁlation that was required to obtain
such limited results — due mainly to the lack of powerful
tools for proving lower bounds on the complexity of arith-
metic functions. This is in contrast to problems.such
as sorting and searching which can be computed using
only conditional transfer instructions. These functions

can be analyzed tﬂbroughly and elegantly using the tools

" of information théory. Especially useful is the concept

of "entropy" as a measure of information, and a similar
concept providing a measure of "computational effort"
would probably represent the breakthrough which is
required for the realistic analysis of arithmetic funec~-

tions.



" THE EFFECT OF ALGEBRAIC STRUCTURE ON THE

COMPUTATIONAL COMPLEXITY OF MATRIX MULTIPLICATION

Leslie Robert Kerr, Ph.D.

Cornell University, 1970

Matrix multiplication is defined for two arbitrary
operations @ and (¢ as follows: The product of an
m X p matrix A and a p X n matrix X is an m X n

matrix Y such that
- f'\ o)

for 1 f1<m, 1 3= A . The computational complexity
of matrix multiplication is investigated with respecrt
to the number of multiplications ( ® operations)
required in programs which are allowed additions, sub-
tractions and multiplicati;hs, but nc conditional transfer
instructions.

it is shown that the complexity of matrix multipli-
cation is highly dependent upon the algebraic structure
of the two operations @& and D . If F and O satisfy

all the axioms of a ring (not necassarily commutative)

then a method due to Strassen caz be used to multiply



-«\
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n X n matrices using less than n3 multiplications.
For certain restricted cases, a lower bound is obtéined
on- the number of multiplications required in any program

(such as Strassen's method) which computes the product

of two matrices for all rings. An extension of Strassen's

method 1s described which meets this lower bound, and
hence minimizes the number of multiplications used for
at least these particular cases.

If @ and @ satisfy all the axioms of a com-

mutative ring, then a matrix multiplication algorithm

due to Winograd can be used which requires fewer multi-

plications than the lower bound obtained for general
rings. Hence the complexity of matrix multiplication,
with respect to thé number of multiplications required,
is strictly less for commutative rings than for riags
in general,

Finally, i1t 1s shown that if either the additive
inverse axiom or the distributivity axiom is removed
from the ring axioms, then in general the computation
of the product of an m X p matrix and a p X n matrix
requires mpn multiplications. For these cases, there-

fore, the ordinary method of computing matrix products

cannot be improved.
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