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ENTROPY OF CONTACT CIRCUITS AND LOWER BOUNDS
ON THEIR COMPLEXITY
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Institute of Mathematics, Lithuanian Academy of Sciences, 232600 Vilnius, Lithuanian SSR, U.S.S.R.

Abstract. A method for obtaining lower bounds on the contact circ.it complexity of explicitly
defined Boolean functions is given. It appears as one of possible concretizations of a more general
“convolutional” approach to the lower bounds problem worked out by the author in 1984 [12].
The method is based on an appropriate notion of “inner information™ or *“‘entropy” of finite
objects (circuits, Boolean functions, etc.). Lower bounds on the complexity are obtained by means
of entropy-preserving embeddings of circuits into the more restricted ones. This allows to prove
in a uniform and easy way that contact circuits, which are local in a sense that the function
computed by a subcircuit weakly depends on the whole circuit, require 2°™ or even 2%(*/1os )
contacts to compute some explicitly defined n-argument Boolean functions from NP.

1. Introduction

Although it has long been known that “almost all” n-argument Boolean functions
require exponential size to be computed by a contact circuit, the best lower bound
proved to date for explicitly defined functions remains an' Q(n’*(log,n)~2) bound
by Nechiporuk [16].

Thus, in order to gain more insight in the problem of proving nontrivial lower
bounds, one has investigated more restricted models of Boolean networks. Moreover,
the restrictions are usually chosen so as to achieve some “locality” in computations,
i.e., to achieve the situation where the function computed by a subnetwork weakly
depends (or does not depend at all) on the whole network.

Probably, the first nontrivial result in this direction was obtained by Tkachev
[24]. He has proved that the unbounded fan-in combinatorial circuits of depth <3
over the basis {&, v} require? exp(n'/*) gates to compute some concrete monoton=
Boolean function of n variables. Independently, and at about the same time, Furst,
Saxe and Sipser [10] have proved (via nice probabilistic arguments) that even such
simple Boolean functions as parity or majority require more than a polynomial
number of gates to be computed by unbounded fan-in circuits over {&, v, } of any
constant depth. Later, Hastad [11] improved these bounds for depth <k circuits to
exp(n'/*). Recently, Razborov [22] has shown that the majority function requires
superpolynomial size, constant-depth circuits even over the basis {&, parity}. Thus
depth restrictions are too strong to separate complex functions from simple ones.

! £=0(g) means that (3c>0)(Vn)(3m> n) c¢f(m)=g(m).
2 exp(n) stands for 2™,

0304-3975/88/$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)



114 S.P. Jukna

The second class of sufficiently “local” circuits is that of monotone ones. Until
recently, the best known lower bound for this class of Boolean networks was an
Q(n*/log n) bound by Wegener [26]. Recently, via a major development of the
standard approach of proving lower bounds—demonstrating that a certain amount
of progress must be made, and that no step makes more than & progress, for some
small 8—Andreev [4] and Razborov [21] have proved superpolynomial lower
bounds for monotone networks. These networks are interesting in a sense that for
some monotone Boolean functions—so called “slice™ functions—their monotone
and nonmonotone complexity is almost the same. (This has been observed by
Berkowitz (as cited in Valiant [25])). Unfortunately, for slice functions the Andreev-
Razborov technique does not work. On the other hand, the nonmonotone network
model is too “global” and there does not seem to be a way to define progress
appropriately.

The third class of Boolean networks for which nonpolynomial lower bounds were
obtained is that of contact circuits with bounds on various “resources™ (width,
multiplicity of reading). The first nearly-exponential lower bound for read-once-only
w-schemes was proved by Pulatov in [20]. Later, analogous bounds for read-once-
only branching programs (a special case of read-once-only contact circuits) were
obtained by Pudldk and Zik [17], Zik [29], Wegener [27], Dunne [9] and Ajtai et
al. [1]. Width-restricted branching programs have first been promoted by Borodin,
Dolev, Fich and Paul [6]. Their main result, completed by Yao [28], is a superpoly-
nomial lower bound for width-2 branching programs computing the majority func-
tion. For width =2 programs the only nontrivial lower bounds remain a barely
nonlinear bound by Chandra, Furst and Lipton [8] and an Q(n log,n/log,log,n)
bound by Pudlik [18] and Ajtai et al. [1] obtained by Ramsey-like arguments. The
lack of progress in this direction is explained by Barington’s recent result [5] that
already width-5 branching programs are almost as powerful as (unrestricted) -
schemes or formulas over {&, v, }.

Thus, to prove nontrivial lower bounds (even for restricted models of Boolean
networks), a new insight is needed. Our definition of “inner information™ or
“entropy” is motivated by the search for such a new technique. The basic idea
(given also in [12, 13]) is quite simple: we suggest to define the lower bound on
the complexity by means of “entropy-preserving” embeddings of networks into the
more restricted ones. To be more specific, let some class of finite objects (Boolean
networks, Boolean functions, etc.) be given. Then we choose an appropriate notion
of “subobject” and some (binary) relation ¢ of their “similarity”. Let A* denote
the set of all subobjects of an object A. A subset A <= A* such that for any two
distinct subobjects B and C from ¥ it holds that either B¢ C or C ¢ B (or both),
is called a ¢-interval over A*. Define the ¢-entropy of A, entropy(A: ¢), to be the
minimal number of ¢-intervals (over A¥*) covering A*. Thus, for reflexive ¢, we
have that 1 <entropy(A:¢)=<|A*, where |A*| denotes the cardinality of A*. We
will say that an object A is (¢, ¢)-epimorphic to an object B if there exists a (possibly
partial) surjection v: A* > B* such t+-, for all subobjects C and D from »~'(B*),
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C ¢ D implies v(C) ¢ v(D). The following simple fact expresses the main idea of
our approach.

Fact 1.1. Suppose that ¢ and  are both reflexive and that A is (@, ¥)-epimorpkic to
B. Then entropy(A: @)= entropy(B:y) (though it may be the case that size(A) <
size(B)).

Let us outline the way in which this fact will be used to derive lower bounds. Let
B denote the set of some initial representations of Boolean functions (truth-tables,
disjunctive normal forms, etc.), and let I be some class of Boolean networks. In
order to define the lower bound for

Ly(f) =min{size(S): SeIM and S computes f}, feB,

choose some intermediate classes of (more restricted) networks M=
DigoM, > - - oM, =B and appropriate relations ¢ = ¢y, @4, ..., ¢ = of their
similarity so as to ensure the following two constraints:

(i) for any S e, size(S)=entropy(S:¢), and

(ii) any network S from I; is (¢;, ¢;+1)-epimorphic to some equivalent (i.e.,
computing the same Boolean function) network S’ in IM,,,. Then Ly(f)=
entropy(f: ).

Note that the counting argument used by Nechiporuk in [16] is a special case of
our approach with ¢ = ¢ =identity relation.

In this paper we apply such an approach for contact circuits. (For other kinds
of Boolean networks this may be done in a similar manner.) This leads to a
nearly-exponential lower bound for local circuits. Informally, a contact circuit
computing a Boolean function of n variables x,, ..., x, is (¢ r)-local if for each of
its nodes u of distance <r (from the source) there is a subset Y, c{x,,...,x,},
with | Y, | =<1 such that, starting from the node u, the knowledge of all variables not
tested on any path from the circuit’s source to u and the knowledge of variables
from Y, is sufficient to determine the value of the function. A circuit is (k, ¢, r)-local
if it has some (i, r)-local subcircuit, the source of which is 2¢ distance <k from the
source of the circuit. Thus, e.g., read-once-only contact circuits are (0, 0, n)-local.
On the other hand, any circuit is (0, ¢, n)-local for some ¢ < n. In Section 6 a uniform
argument is given to generate concrete n-argument Boolean functions from NP (and
even from P) which require (Vn, t,vn)-local circuits of size exp(vn) or even of
size exp(n/log,n).

2. Preliminaries
A (directed) contact circuit (also called contact gating scheme) over the set of

Boolean variables X ={x,,..., x,} is a labelled acyclic graph G with
(i) a distinguished node of indegree =0 (the source of G),
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(ii) some edges labelled by contacts x°, where x€ X and a€{0,1}, ie., by
variables x' = x or their negations x°=x%.

A hranchine nroaram ic a directed contact circnit wit
e u'“'.v"'..s “"“'6"."' AW W AW AAWIR WY WaAR W e v Bwi

constraints:
(iii) every node has outdgree at most 2,
(iv) for every node v with outdegree 2, one of the edges leaving v is labelled by
a variable x € X and the other is labelled by its complement X.

A path starting in the source of the circuit is called initial. A chain is an initial
path ending in some sink, i.e., in a node of outdegree 0. Every path P of G defines
the monomial P=é, ... &, where {e,,..., &} is the set of all labelled edges in
P and é denotes the label of e. (In what follows we shall also identify P with the
set of contacts {&,,. .., &}). A path P is a wull-path iff P=0, i.e., if {x, £} P for
some x€X. A circuit G computes a Boolean function f:{0,1}" {0, 1} iff f=G,
where G denotes the disjunci:on of the monomials defined by its chains. For a
circuit G, let V(G) denote the set of its nodes. Given a node v, let G° denote
the minimal subgraph of G containing all the initial paths to v, and let G,
denote the minimal subgraph of G containing all the paths from v to sinks of G.
Thus v is a (unique) sink of G° as well as a source of G,. If G is a contact tree
(i.e., if the underlying graph of G is a directed tree), then |G®| =1 for any v e V(G).

A variable x€ X is called critical for a node v of G iff for some a€ {0, 1} the
following holds: there exist two non-null chains P, and P, of G° and a non-rull
chain P, of G, such that x®e B,, %° € P, and P,P,0. Put crit(v, G) ={xe X :x is
critical for v in G}. The height of v in G is the minimal number of different cor:ta.ts
in an initial non-null path to v. So, 0=<height(v)<n. For an integer r =3, ot
V.(C)={ve V(G): height(v) < r}.

Definition 2.1. Let k, £, r=0 be integers such that k+r=<n. A contact circuit G is
(¢, r)-local iff |crit(v, G)| <1 for all nodes v of height <r; G is (k, t, r)-local if G
contains some (¢, r)-local subcircuit G, with v € Vi.(G); Gis t-local if G is (¢, r)-local
with r=n.

Thus any contact circuit of n variables is t-local for some 0= ¢ < n. Read-once-only
circuits (i.e., contact circuits with no repeated occurrences of contacts in their
chains), monotone circuits (i.e., contact circuits with no negated variables) and
circuits with no null-chains are special cases of 0-local ones. (Note also that a 0-local
circuit is not necessarily a read-once-only one.)

The size of a circuit G, size(G), is the number of nodes in G. The circuit-size
complexity < a Boolean function f is defined by

C,(f) = min{size(G): G =fand G is (k, 1, r)-local}.

In the case of branching programs, the corresponding measure is denoted by BPY,(f).
If f is a function of n variables, we shall omit the indices k=0, t=n and r=n.
Thus, e.g., C,(f) =Cl.(f).
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Remark 2.2. In this paper we shall consider only directed contact circuits since this
model is a most suitable one to explain the main idea of our approach. On the other
hand, from the observations made by Pudlék in [17, 19] it follows that directed
contact circuits and branching programs are quite powerful. Let UC(f) denote the
undirected contact circuit complexity of £ Then

C(-)=UC(-)* and BP(:)=<C(:)°D,

The idea for the first inequality is to split given undirected contact circuit G into a
sequence of identical copies and replace each undirected edge ty two directed edges
which go from a given copy to the next one. We do not need more copies than the
number of nodes of G. The proof of the second inequality is based on a probabilistic
argument of Aleliunas et al. [2].

Remark 2.3. Local circuits are quite powerful. For example, one may easily verify
that BPy(f;) <O(n?) for every symmetric Boolean function J» of n variables. On
the other hand, Brustmanr: and Wegener in [7] have proved that any sequence of
symmetric functions f,, n =1, 2, . . ., such that the length of shortest prime implicants
or prime clauses of f, grows faster than (log,n)° for any constant ¢>0 require
super-polynomial constant-depth combinatorial circuits over {&, v, }.

Definition 2.4. Given an integer r=0 and a binary relation ¢ < V(G) x V(G), we
define an entropy H7(G) of a circuit G to be the ¢-entrop;, of V,(G), i.e., H*(G)
is the minimal number of ¢-intervals (over V(G)) covering V,(G). For a Boolean
function f, let HY(f) =min{H?(T): T= f and T is read-once-only contact tree}. In
the case of branching trees, the corresponding entropy is denoted by E?(f). Put
also H®°(f) =H3(f). (Observe that E(f) is actually the entropy of the truth-table
S1(1) of £, whereas H(f) is actually the entropy of its Disjunctive Normal Forms
(DNF in short)). Note that H?(f) =max{H?(f): 0<r=<n}.

For monomials K and W, put K W={x%: x’c K and x*c W} and KW=
(K~(Ke W).ForaDNF D=K,v- v K, and a monomial W, let D[ W] denote
the set of all DNFs K, W,v---vK,W, where W,c W, i=1, 2,...,p. For a node
v of a contact tree T, let ¥ denote the (unique) monomial in T".

Convention: To avoid unwieldy expressions we shall write v, P, G instead of o,
13, G if the meaning is clear from the context.

Let us now define some concrete relations of “similarity”. Given a contact tree
T and two of its nodes u and v, let
e u v v iff T, and T, are isomorphic (as labelled graphs);
® uYoiff (uGv)-T,=(vOu)-T,;
® ufviff T ,[u©v]n T, [vOul]#0.
Note that czhc ¢ < 0. Therefore, H = HY = H°.

To illustrate the definition, let us give a short example. Let § = x,x,%s, il = %,%;x,,
T =x,V X; and T =x,vXxs. Then v©Qu=x,xs and u© v = %;x,. The nodes v and
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u are not y-similar, since the DNFs (vQOu) - T, = x,X,xs v X, X3x5s and (uQOv) - T, =
%3X4Xs5 V X, X3x, realize different Boolean functions. But these are ¢-similar since the
sets T,[v©Ou] and T,[u©O v] both contain the DNF x,x;5v x,X;.

3. Entropy and complexity

A Boolkan function f is called critical if any two distinct vectors from f~'(1)
differ in ..+ least twvo coordinates.

Fact 3.1. Let G be a contact circuit computing a critical Boolean function of n variables.
Then for any non-null chain P of G it holds tkat | P| = n.

Proof. Straightforward. O

Theorem 3.2. For any Boolean function f and integers t, r =0, with t < r, the following
bound holds:

Ci(N=HH() 37

where ¢ = if f is critical, and ¢ = 8 otherwise. The bound holds also with C and H
replaced by BP and E.

Proof. Let G be some minimal (0, ¢, r)-local contact circuit computing f; i.e., G= f
and size(G) =C\,(f). Let T be an “unfoldment” of G, i.e., T is the contact tree
obtained from G as the result of the following procedure of “unfolding™: for a
node v of G with indegree =2, switch some edge leading to v to the root of some
new circuit isomorphic to G,. Thus, if N(v) denotes the set of all the nodes of T
corresponding to v € V(G), then all the subtrees of T, rooted in N(v), are pairwise
isomorphic. Put N,(T)={N(v): ve V,(G)}. Then, obviously, size(G)=|N(T)|=
H(T).

Remove from T all the nodes v (together with the corresponding pendant edges)
such that each chain of T, contains a contact contrary to some contact from 9. Let
T° denote the resulting tree. It computes f and has no null-chains.

Claim 33. HY(T) <|N,(T)| - 3%

To prove the claim, let v be some node of G of height <r, and put Y = crit(v, G).
Since G is.(0, t, r)-local, |Y|<t Set Y*={x": xe Y and ac {0, 1}} and let M(Y)
denote the set of all non-null monomials over Y*. Thus, |[M(Y)|=3"'<3" By
U denote the set of all nodes of T" corresponding to N(v). For a monomial K,
put U(K)={ue U: iin Y*=K]}. Itis clear that for any K € M(Y) all the subtrees
of T° rooted in U(K), are pairwise isomorphic. Therefore, entropy(U: )<
IM(Y)), and the assertion of Claim 3.3 follows.



Entropy of circuits and their complexity 141

Next, let T* denote the tree obtaineu from 7° aiter all the repeated occurrences
of contacts in its chains have been wiped out. Obviously, such a transformation
does not change the function. Since T is read-once-only, Hf(T*) = H?(f). So by
Fact 1.1, it remains to prove the following claim.

Claim 34. V.(T% is (v, @)-epimorphic to V,(T*).

The case ¢ = 0 is obvious. To prove the claim for ¢ = ¢, suppose that f is critical.
It is sufficient to show that, for any two nodes u and v of T°® with u » v, the
following holds: if x* € u© v, then either x“ € vS&u or x* ¢ K for any monomial K
from T?. Indeed, if x & v© u, then by Fact .1, any monomial from T must contain
some contact of x. Since T2 =T? and T° has no null-chains, it ‘ollows that any
monomial from T2 contains x° This completes the proof of Claim 3.4, and thus
the proof of Theorem 3.2. [

Let X ={x,,..., X,}. An assignment is a function & from X into X u {0, 1} such
that, for each x € X, 8(x) € {0, 1, x}. The set sign(8)=8""(0)u 67'(1) is a signature
of &; |8| =|sign(8)] is a rank of 8. Given a Boolean function f(X), we shall denote
by £2 the function we obtain by composing f and 8, i.e., f3(X)=f(8(x,), ..., 8(x,)).
Notice that f° is a function of n—|8| variables. :

The following obvious fact points out the ‘“‘deterministic nature” of branching

programs.

Fact 3.5. Let P be an initial non-null path to a node v in a branching program G
computing f. Then, for any assignment & such that (P)® =1, we have f° =(G,)".

Hence we have the following useful fact.
Fact 3.6. For any Boolean function f it holds that
BP!.(N)= min BPY,(f°).
Theorem 3.7. For any Boolean function f it holds that
BP,(f)=min E7(f%) - 37
where @ = if f is critical, and ¢ = 0 otherwise.

Thus in order to bound the complexity of a given Boolean function, it is enough
to bound the entropy of its read-once-only contact trees. In a number of cases this
is an easy exercise. Let us demonstrate this for some natural classes of Boolean
functions.
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4. Eatropy of mixed and stable Boolean functions

A Boolean function f(X) is (weakly) m-mixed iff, for any Y< X with |Y|<m,
and any two distinct assignments 8, y of signature Y it holds that (either f®=£7=0
or) f2#f7. Let BF, (respectively BFy') denote the class of all (m-mixed) Boolean
functions. The class of mixed functions is sufficiently rich.

Theorem 4.1 (Mamatov [15]). For arbitrary small ¢ >0, the following holds:
(i) If m=<n—(1+c)log,n, then |BF;|/|BF,|>1 as n->,
(ii) If m=n—(1-c)log,n, then BF;' =9 for every sufficiently large n.

For a Boolean function f and an integer m=1, let Q,,(f) denote the minimal
number p of monomials X,,..., K, such that f<K,v---vK, and |K)|=---=
leI =m.

The following lemma and Theorem 4.1 assert that the 8-entropy of almost all
Boolean functions of n variables is =exp(n).

Lemma 4.2. Iffis 2m-mixed (m=1), then E%(f)=2""" - 1. If fis weakly 2m-mixed
(m=1), then Eq.(f)= Qu(/f)-

Proof. To prove the first bound, let T be some read-once-only branching tree
computing a 2m-mixed Boolean function f. Put U, ={u € V(T):height(u)=m}. It
is sufficient to prove the following two claims.

Claim 4.3. |U,,|=2"
Claim 4.4. Any 6-interval over U, contains exactly one node.

To prove Claim 4.3, assume that |U,|<2™ —1. Then there is a node u of height
<m-1 and of outdegree =1 such that the unique edge, (u, v) say, is labelled by
some contact x°. Let & be the assignment of rank |6]<m such that #°=1 and
8(x) =a+1(mod 2). Then, obviously, 7= 0, and by Fact 3.5, f° =0, contradicting
the assumption that f is m-mixed.

To prove Claim 4.4, assume that u 8 v for some distinct nodes 4, v from U,. For
a monomial K, let var(K) denote the set of variables in K. Consider assignments
8 and vy of signature var(u(v©u)) such that #°=1 and " =1. Since u0vand T
has no null-chains, 7% = 7. By Fact 3.5, f°=f". But & # y and || =|y| <2m. This
contradiction completes the proof of Claim 4.4.

The proof of the second bound is analogous to that of the previous one with
Claim 4.3 replaced by the following obvious Claim 4.3: |U,,|= Q.(f). O

A Boolean function f(X) is m-stable iff, for any xe X and Y < X —{x} with
| Y| =< m, there exists an assignment & of signature X — Y —{x} such that f° depends
merely on x, i.e., either f3(x, Y)=x of f3(x, Y)=%

Note: If f is critical, then f is m-stable for no m=1.
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Using an argument originally employed by Wegener [27], Dunne in [9] has proved
that a special case of 0-local branching program require exp(m) size to compute
m-stable functions. Lemma 4.2 yields a more general bound.

Lemma 4.5. If f is 2m-stable for some m= 1, then E%(f)=2"*"-1.

Proof. By Lemma 4.2, it is sufficient to prove the following claim.
Claim 4.6. If f is m-stable, then fis (m+1)-mixed.

To prove the ciaim, suppose that f(X) is not (m + 1)-mixed. This means that, for
some Y < X with |Y|<m+1, there are at least two distinct assignments 8, y of
signature Y such that f° = f”. Choose a variable x € Y for which 8(x) # y(x). Then,
for any a € {0, 1} and any assignment p of signature X - Y, f°(x, Y —{x}) does not
equal x° But |Y ~{x}| < m. Therefore, f is not m-stable. O

Theorem 4.7. Let m, k, t, r be integers such thai 2<k+2r<m and t=0. If f is
m-stable or m-mixed Boolean function, then BP} (f)=2"-3™". Iffis weakly m-mixed,
then

BPY(f)=min{Q,(f°):|5|=k}-3™"

Proof. Let 6 be an assignment of rank k such that
E7(f®) =min{E}(f°): |8] = k}.

If f is m-stable (m-mixed or weakly m-mixed), then f° is 2r-stable (respectively
2r-mixed or weakly 2r-mixed) since |8|+2r=<m. So it remains to apply Theorem
3.7 and Lemmas 4.2 and 4.5. O

For monotone Boolean functions there is a quite simple criterion of their stability
in terms of their (unique) shortest DNFs. For a Boolean function f(X), let Imp(f)
denote the set of all its prime implicants. For a variable x € X, put Imp(f x) =
{K e Imp(f): xe K}.

Fact 4.8. A monotone Boolean function f(X) is m-stable for some m =1 if and only
if, for any x€ X and Y < X —{x} with |Y|< m, the following holds:

(i) Kon Y =0 for some K€ Imp(f, x),

(ii) W—(Kyu Y)#0 for any W € Imp(f) —Imp(f, x).

5. Entropy of disjoint Boolean functions

For a Boolean vector @ =(a,,..., a,), with a; € {0, 1}, put Indgc'i) ={i:a;= ll and
|l@|| = |Ind(4)|. For a Boolean function f, set My ={a@ef'(1): f(b)=0forany b=<g,
b# d}, where b<d iff a,;=b,, i=1,...,n, and put wh(f)=min{[|d[: d€ M}. Let
also M¥ denote the set of minimal elements of My, i.e., M} ={d € M;: ||d|| = wh(f)}.



122 S.P. Jukna

Definition 5.1. A Boolean function f is (k, r)-disjoint iff wh(f)=2r and for any k
pairwise distinct vectors d,, . . ., dx from M7 it holds that |[Ind(d,) N - - - " Ind(G, )| <
r—1; f is k-disjoint if f is (k, r)-disjoint for some r=1.

Theorem 5.2. (i) If f is 2-disjoint, then H*(f)=|M}|.
(i) Iffis k-disjoint for some k=3 and f~'(1) = M}, then

EY()=IMF]- (k-1) and H*(f)=IMF - (k-1)7

Proof. Let fbe (k, r)-disjnint for some k=2 and r=1, and let T be a read-once-only
contact tree computing f. For a node v of T, let A(v) denote the set of all the vectors
a from M7 such that a realizes some chain of T containing v. Put U=
{ve V(T):|b}+=r}, where, for a monomial K, |K|, stands for the number of
unnegated variables in K. Choose some subset V< U which is minimal in a sense
that A(V)=U {A(v): ve V}= M7} but M} —A(V—{v})#0 for each ve V. Put

x =ma.{|Vy|: Vo is a y-interval over V}.
Claim 5.3. H¥(T)=|M}/(k-1) - x.

To prove the claim, observe that HY(T)=|V|:-x~'. Moreover, |V|=
|M}| - (k—1)7". Indeed, otherwise there must be a node v e V such that |A(v)|= k.
But

IMN {Ind(d): de A(v)}|=|d]. =r,
a2 contradiction. So it remains to bound y.
(i): Suppose that f is (k, r)-disjoint with k =2. Then y = 1. Assure that u ¢ v for
some nodes u # v from V. Since k=2, |A(u)| =|A(v)|=1. Moreover A(u)# A(v)

as V is minimal. Let A(u)={a}, and let P be a chain of T such that ue P and
P(a)=1. Let K denote the monomial such that P =i - K. Without loss of generality,

lue v}, =|oul, . (1)
Since u ¢ v, there is a monomial W in T, such that
(uOv)- K =(vOu) - W. (2)

Let b be a Boolean vector with the minimal number of ones for which 4 - W(b) 1.
By (1) and (2), ||b]|=|3- W].<|B|.= |@|l. Hence, be M¥ and b # . But by (2),

|Ind(d) N Ind(b)| = |K|, = lall =&l =wh(f)—r=rs

a contradiction.

(ii): Suppose that f is (k, r)-disjoint with k=3. To prove the theorem in this
case, it is sufficient to prove that y < k — 1 if T is a branching tree, and y < (k—1)>+1
otherwise.

Let {v,..., v,} be some y-interval over V.

Case 1: T is a branching tree. Choose some d,c A(v,). Let P be a cham of T
such that P(a,) 1 and v, is in P. Let K, denote a monomial such that P= ,K,.
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Since any node v;, i=2,...,, is y-similar to v,, it follows that T, contains a
monomial K; such that

(1,00v) K,=(v,00v) - K. 3)

Since T has no null-chains, there exist vectors {d,, ..., d,} such that ;- K(4;) =1.
As f~1(1) = M¥, all these vectors are in M. Moreover, all these vectors are pairwise
distinct since T is a branching tree. But by (3),

IN {Ind(&): i<x}=|K\|.=wh(f)=r=r.

Therefore, y <k-1.

Case 2: T is not a branching tree. Since V is minimal for any i, 1 <i<y, there
is some a; in A(v;)—A(V—-{v;}). Let K; denote a monomial from f‘,,, such that
;- K(@;) = 1. Since any node v, 2<j<y, is y-similar to v,, it follows that f‘.,,
contains a monomial K} such that

(v,©v) - K;=(v,0v) - K|. 4)

Since |A(v,)|<k—1 and f~'(1) = M¥, by (4), there exists some set J<{2,..., x}
such that |J|=(x—1)/(k—1) and K|=K] for all i, je J. Let joe J. Then

IMN{Ind(q)): je J}| = |K}|.=wh(f)-r=r,

and from the k-disjointness of f it follows that [l<k-1. Thus, y<(k—-1)>+1.
This completes the proof of Case 2, and thus the proof of Theorem 5.2. O

6. Applicaticns

The results of the previous sections provide a uniform way to obtain nearly-
exponential lower bounds on the complexity of local contact circuits. In a number
of cases this leads to an improvement of lower bounds recently obtained by quite
strong (but special) techniques. Since it would be tedious to attempt to indicate all
such bounds, we restrict ourselves to some typical examples.

For an integer ¢=2, put §={1,..., q} and /i = § x §. Subsets of 77 will be called
points over i1 and subsets of points will be called point-sets over . For a (0, 1)-matrix
X ={x,: ae i}, let PS(X) denote the set of all points A over /i such that, for any
acin, ac A implies x,=1.

Definition 6.1. A point-set F over ii is m-dense if, for any ac il and Aci—{a}
with |A| =< m, there is a point B € F such that the following holds:
(i) ae B,
(ii) AnB=§,
(iii) C~(Au B)#¢ for any point C e F—{B} with a2 C.
Given a poinut-set F over i, we associate with F the following two Boolean
functions £/ F) and n{F} of n = q° variables:

EFYX)=1 iff |FnPS(X)|=1(mod 2)
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and
n{F}(X)=1 iff |[FAPS(X)|>0.

Note that 7 is monotone but £ is not, in general.

Lemma 6.2. If F is an m-dense point-set, then ¢{F} and n{F} are both m-stable (and
hence, m+1-mixed). Moreover, n{F} is m-stable only if F is m-dense.

Proof. The second claim follows directly from Fact.4.8. To prove the first claim,
let F be an m-dense point-set and fix some x,€ X and Y< X —{x,} with |Y|=m.
Let Ac i denote the set of indices of variables from Y, i.e,, Y ={x,: be A}. Let §
be an assignment such that 8(x;) =1 if be B—{a}, and 6(x,)=0if be i—(Au B),
where B is from Definition 6.1. Since An B=¢, § is well-defined and sign(8) =
X - Y-{x,}. Since C —(Au B) #@forany point C € F—{B} (with a ¢ C), it follows
that for any assignment v of signature Y, PS(X%”) = if x, =0, and |[PS(X>7)|=1
if x, = 1. Therefore, £*{F}(X)=9°{F}=x,. O

Let us give some typical examples of dense point-sets.
Convention: To avoid unwieldy expressions we shall identify any set F of g-valued
functions o: - g with the corresponding point-set {[a]: o € F} of their graphs

[e]1={(i): o(i)=j}.

Example 6.3. For ¢ =2, let Tw(q) denote the set of all total functions o : §- § such
that, for each je g, either o~'(j) =0 or |o7'(j)|=2.

Fact 6.4. For an even integer q=2, the point-set Tw(q) is 3q-dense.

Proof. Put m =3q and fix some a = (iy, jo) € i and A < ii — {a} with |A] < m. Without
loss of generality, A < m” and a € m?. (The case a £ m” is analogous). Define 8: § > §
as follows: 8(iy) = 8(iy+m) = j, and, for i € §—{io, i+ m}, 8(i)=m+iif i<m and
8(i)=i if i=m+i. Then, obviously, € Tw(q), ac[8] and An[8]=0. So it
remains to show that [o]—(Au [8]) #0 for any o € Tw(q) such that o (i) # 8(io).
Assume that [c]<c Au [8]. Since o (iy) # 8(iy), it follows that o (i) =j, for some
J1# Jo and j, <m. Since o is in Tw(q) and a(i) = 8(i) for all i=m+1, there must
be some i, < m, i, # iy, such that o(i,) = 7 (i) =j,. Hence, |e(j,)| = 1 for j, = 8(i,),
a contradiction. O

Example 6.5. For g=2, let Per(q) denote the set of all bijections o: - §.

Comment: Per(q) is actually the collection of perfect matchings. Thus, for
example, ¢{Per(q)}(X) =1 iff the q-vertex digraph, specified by a (0, 1)-matrix X,
contains an odd number of perfect matchings.
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Fact 6.6. For an even integer q =2, the point-set Per(q) is 3q-dense.

Proof. The proof of this fact is analogous to that of Fact 64. [J

Example 6.7. For a prime number ¢=5 and an integer d =1, let Pol(q, d) denote
the set of all polynomials of degree at most d over the Galois field GF(q) of order
q. (Here we identify the set of elements of GF(q) with §.) Put Pol(q) = Pol(g, 1¢).

Fact 6.8. For each d, with 1=<d <1gq, the point-set Pol(q, d) is (d —1)-dense.

Proof. Fix some ae i and Ac ii—{a} with |Aj<d -1. For i€ g, let I, denote the
ith column of #, i.e., I; ={(i, j): j€ }. Put

J={ieg:;nA#@0andagI}.
Then, obviously, |J|<d —1. Since |A]<d ~1<gq, it follows that I, — A # @ for each
i€ q. Hence, for each i€ J we may choose some b; c I, — A. Put
D={b;:iel}u{a}.

Since |D|=|J|+1=<d, there is a polynomial & in Pol(q, d) such that D< [8]. It is
clear that a€ [6] and An [6]=40. So it remains to show that [6]—(Au [6])#0
for any other polynomial o from Pol(q, d).

Assume that [o]< (AU [o]) for some polynomial o # 8. This means that

Hie g: o(i) #8()}|<|Al<sd -1,

and hence, [[0]N [8]|=q—(d —1)=d +1. But o and 8 are both of degree at most
d. Therefore, o = 8, a contradiction. [

Example 6.9. For integers g=2 and s =1, let BCI(g, s) denote the set of all points
A over n—A, where A ={(i, i): i€ g}, such that A=1IXxJ for some I, J< § with
InJ=@ and |I|=|J|=s. Let also Cl(g, s) denote the set of all points A over ii— A4
such that, for some I < § with |I|=s, it holds that A< I x I and, for all i # j from
I, either (i, j) € A or (j, i) € A (or both).

Comment: BCl(q, s) is actually the collection of s-bicliques, i.e., of complete
bipartite 2s-vertex digraphs, and Cl(g, s) is the collection of (directed) s-cliques.

Fact 6.10. Let g=s=3. Then
(i) BCI(g, s5) is m-dense with m = min{s?, q—2s}—1,
(ii) Cl(q, s) is m-dense with m =min{(3), g —s}—1.

Proof. To prove the first claim, fix some a = (i, jo)ei—A and Acii—{a} wiih
|A| < m. Without loss of generality, A< m® and a € >, Put

I={m+1,..., m+s-1}, J={g-s+1,...,q},

I|=Iu{io} and J|=Ju{jo}.
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Let B=I,xJ,. Then I, nJ, =@ since m < q—2s and iy # j,. Hence, B is in BCl(g, s),
a€ B and An B=4¢. So it remains to show that C —(Au B) #0 for any point C
from BCl(g, s) with ag C. Assume that C < Au B for some such point C. Then
Cn(IxJ)=@since |I|=|J|=s—1 and a & C. But |A|<m=s?-1. Hence, C must
contain some b from ({io} X J) U (I x{jo}). Let, for example, be {iy} xJ. Then b=
(io,j) for some je J. Since s=3, there must be an integer i, <m such that i, # i,
and (i, j) € B, which contradicts the definition of B. This completes the proof of
(i). The proof of the second claim is analogous. O

Corollary 6.11. For q=2, let F, stand for any of the following point-sets: Pol(q),
Per(q), Tw(q), BCI(q,1q) and Cl(q,3q). Let also f, stand for a Boolean function
&{F,} or n{F,} (of n<= q° variables). Then. for all integer-valued functions k(q), r(q)
and t(q) such that k+2r<3q and t<(1- &)r for some constant € >0, it holds that

BP;,(f.) =exp(Vn).

Proof. This immediately follows from Theorem 4.7 and Facts 6.4, 6.6, 6.8 and
6.10. O

Comment: An exp(vn) lower bound for the complexity of n{Per} and clique
functions in the class of once-time-only branching programs (a special case of 0-local
branching programs) have already been proved in [17, 27, 9]. For an important case
of 0-local contact circuits, namely the monotone ones, the results of [4, 21, 3] yield
an exp(n'/*~°") lower bound for n{Pol} and an exp((log,n)?) lower bound for
n{Per}. Though the contact circuit complexity and the (unrestricted} branching
program complexity are polynomially related (see Remark 2.2), it is not yet known
if this also holds for monotone contact circuits and local branching programs. So,
Corollary 6.11 does not directly imply the bounds for monotone circuits. Notice,
however, that Andreev-Razborov's argument [4, 21] essentially uses the monotonic-
ity of circuits, so it does not work for such close (to n{Per} and n{Pol}) Boolean
functions as &{Per} and ¢&{Pol}.

Example 6.12. For a Boolcan function f, let f* denote the characteristic function
of M}. (Note that f* is critical for any f). In most cases not only f itself but also
Sf* and f- g, where g is a critical Boolean function, are hard to compute by local

circuits. Consider, for example, the following three Boolean functions of n=gq>
variables:

gr=n*{Per(q)},  h}=n*{Pol(q)},
h, = n{Pol(q)} - parity,, where parity,(@)=1iff || a|| = 1(mod 2).

One may easily verify that g¥ is ((3¢)!, 3g)-disjoint, and that h, and h* are both
(2,29)-disjoint. Theorems 3.2 and 5.2 directly yield the following bounds.



Entropy of circuits and their complexity 127

Corollary 6.13. Let t = t(n) be such that t<(1—&)vVn for some integer € >0, and let
f,€{h,, h}}. Then

BP,(g¥)=exp(vn)
and

log.C.(f,)=4/n -log,n—1.6-t foranyt=0.
Note. log,Co(h¥)=<1Vn - log,n.

Comment: Concerning the circuits with no null-chains Pulatov [20] and Kuznet-
sov [14] have proved that for any Boolean function f it holds that Co(f) = | £~ (1)]%/",
where d stands for the Hamming distance between any two distinct vectors from
f7'(1). This allows to obtain nearly-exponential lower bounds for some critical
Boolean functions. However, if d is too small with respect to | f~'(1)], this argument
does not work. For example, if f=h¥*, then d <+vn, and so |f~'(1)|¥/" =O(n) (cf.
Corollary 6.13).

Example 6.14. Let n=1 be such that k=log,n and b=n/k are integers. For a
(0, 1)-matrix X ={x,;: i€ k, j e b}, put

num(X)=a,+a2+- - -+a 2",

where a,€{0,1} and a;=1 iff x,;+---+x;,,=3(b—1). Let f,, denote a Boolean
function, defined by f,,(X ) =x, j, where i, j are such that (i—1)b+j=num(X). A
similar function has been introduced by Meyer and Paterson (as cited in Savage [23]).

Since f,, is m-mixed with m =3(b—1) see, e.g., [23, p. 44]), we have the following
corollary.

Corollary 6.15. If t = o(n/log,n), then BP,( f,,) = exp(n/log,n).

Finally, notice that all the functions n{Per}, £{Per}, g*, h¥, and f,, are computable
by polynomial-size combinatorial circuits. Moreover, the (unrestricted) branching
program complexity of g, h¥, and f,, is also polynomial. Therefore, some n-variable
Boolean functions require nearly-exponential n'~*-local circuits (for an arbitrary
small constant £ > 0) whereas their n-local circuit complexity is actually polynomial.

Hence, such restrictions as the locality (as well as the monotonicity, the absence
of null-chain:, constant-depth, etc.) of circuits are too rough to separate complex
functions from the simple ones. To achieve this goal, a new insight into the circuit’s
structure is needed. One of the possible ways is to investigate more subtle notions
of “subcircuit” and “similarity” so as to express the specifics of synthesis. We
conjecture that (when suitably defined) the number of “highly unsimilar subfunc-
tions” is a lower bound on the standard Boolean circuit complexity.
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