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A method for obtaining lower bounds on the contact citchlt complexity of explicitly 
defined Boolean functions is given. It appears as one of possible.concretixations of a more general 
“‘convolutional” approach to the lower bounds problem worked out by the author in 1984 [123. 
The method is based on an appropriate notion of “inner information” or “entropy” of finite 
objects (circuits, Boolean functions, etc.). Lower bounds on the complexity are obtained by means 
of entropy-preserving embeddings of circuits into the more restricted ones. This allows to prove 
in a uniform and easy way that mntact circuits, which are local in a sense that the function 
computed by a subcircuit weakly depends on the whole circuit, require 2*(&j or even 2n(“/‘W “) 
contacts to compute some explicitly defined n-argument Boolean functions ftom NP. 

1. Introdnction 

Although it has long been known that “almost all” n-argument Boolean functions 
require exponential size to be computed by a contact circuit, the best lower bound 
proved to date for explicitly defined functions remains an’ a(n2(log2n)-2) bound 
by Nechiporuk [16]. 

Thus, in order to gain more insight in the problem of proving nontrivial lower 
bounds, one has investigated more restricted models of Boolean networks. 
the restrictions are usually chosen so as to achieve some “locality” in computations, 
i.e., to achieve the situation where the function computed by a subnetwork weakly 
depends (or does not depend at all) on the whole network. 

Probably, the first nontrivial result in this direction was obtained by ‘Ikachev 
[24]. He has proved that the unbounded fan-in combinatorial circuits of depth 
over the basis {&, v) require2 exp( n’14) gates to compute some concrete monot 
Boolean function of n variables. Independently, and at about the same time, Furst, 
Saxe and Sipser [IO] have proved (via nice probabilistic a ents) that even such 
simple Boolean functions as parity or majority require e than a polynomial 
number of gates to be computed by unbounded fan-in circuits over { 
constant d ad [ 11 l] improved these boun 
exp( P). orov 1223 has shown that the 
superpolynomial size, constant-depth circuits even ov 
depth restrictions are too strong to se 

’ f.=n(g) means that (3c>O)(Vn)(3m>n) cf(m)ag(m). 
* exp(n) stands for 2*(“! 
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The second class of sufficiently “local” circuits is that of monotone ones. Until 
recently, the best known lower bound for this class of Boolean netwo 
Q(n2/log n) bound by Wegener 2261. Recently, via a major develop 
standard approach of proving lower bounds-demonstrating that a certain amount 
of progress must be made, and that no step makes more than 6 progress, for some 
small 6-Andreev [4] and Raxborov [21] have proved superpolynomial lower 
bounds for monotone networks. These networks are interesting in a sense that for 
some monotone Boolean functions-so called “slice” functions-their monotone 
and nonmonotone complexity is almost the same. (This has been observed by 
Berkowitz (as cited in Valiant [ZS])). Unfortunately, for slice functions the Andreev- 
Raxborov technique does not work. On the other hand, the nonmonotone network 
model is too “global” and there does not seem to be a way to define progress 
appropriately. 

The third class of Boolean networks for which nonpolynomial lower bounds were 
obtained is that of contact circuits with bounds on various “resources” (width, 
multiplicity of reading). The first nearly-exponential lower bound for read-once-only 
=:schemes was proved by Pulatov in [ZO]. Later, analogous bounds for read-once- 
only branching programs (a special case of read-once-only contact circuits) were 
obtained by Pudl5k and %k 1171, %k 1291, Wegener 1271, Dunne [9] and Ajtai et 
al. [l]. Width-restricted branching programs have first been promoted by Borodin, 
Dolev, Fich and Paul [6]. Their main result, completed by Yao 1281, is a superpoly- 
nomial lower bound for width-2 branching programs computing the majority func- 
tion. For width 32 programs the only nontrivial lower bounds remain a barely 
nonlinear bound by Chandra, Furst and Lipton [8] and an fk(n log2n/log210g2n) 
bound by Pudlak [ 181 and Ajtai et al. [l] obtained by Ramsey-like arguments. The 
lack of progress in this direction is explained by Barington’s recent result [S] that 
already width-5 branching programs are almost as powerful as (unrestricted) tr- 
schemes or formulas over (&, v, -}. 

Thus, to prove nontrivial lower bounds (even for restricted models of Boolean 
networks), a new insight is needed. Our definition of “inner information” or 
“entropy’” is motivated by the search for such a new technique. The basic idea 

iven also in [12, 131) is quite simple: we suggest to define the lower bound on 
e complexity by means of “entropy-preserving” embeddings of networks into the 

more restricted ones. To be more specific, let some class of finite objects (Boolean 
networks, Boolean functions, etc.) be given. Then we choose an appropriate notion 
of “subobject” and some (binary) relation Q of their “similarity”. Let A* denote 
the set of all subobjects of an object A. A subset % G A* such that for any two 
distinct subobjects B and C from ‘G!X it holds that either B Q C or C Q B (or both), 
is called a @nterval over A*. Define the p-entropy of A, entropy(A: p), to be the 
minimal number of 
have that 1 s entrop 
will say that an o 
partial) surjection v : 
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C Q D implies v(C) # V(D). The following simple fact expresses the main idea of 
our approach. 

Fact 1.1. Suppose that Q and 9 are both reflexive and that A is (q, #)-epimorphic to 
B. lhen entropy(A : (p) a entropy( B : #) (though it may be the case that size(A) 
size(B)). 

Let us outline the way in which this fact will be used to derive lower bounds. Let 
!8 denote the set of some initial representations of Boolean functions (truth-tables, 
disjunctive normal forms, etc.), and let 92 be some class of Boolean networks. In 
order to define the lower bound for 

L&‘) = min{size(S): SE RR and S computesf), f~ 8, 

choose some intermediate classes of (more restricted) networks 9X= 
%=%= . l l 3 !d& = %I3 and appropriate relations Q = po, pt, . . . , pk = # of their 
similarity so as to ensure the following two constraints: 

(i) for any SE !R, size(S) a entropy(S: v), and 
(ii) any network S from ni is (pi, pi+&epimorphic to some equivalent (i.e., 

computing the same Boolean function) network S’ in %,+I. Then L&)3 
entropy(f: #). 

Note that the counting argument used by Nechiporuk in [16] is a special case of 
our approach with (p = # = identity relation. 

In this paper we apply such an approach for contact circuits. (For other kinds 
of Boolean networks this may be done in a similar manner.) This leads to a 
nearly-exponential lower bound for local circuits. Informally, a contact circuit 
computing a Boolean function of n variables x1, . . . , x,, is (t, r)-local if for each of 
its nodes u of distance or (from the source) there is a subset Y, G {x1, . . . , xn}, 

with 1 Y,I s t such that, starting from the node u, the knowledge of all variables not 
tested on any path from the circuit’s source to u and the knowledge of variables 
from YU is sufficient to determine the value of the function. A circuit is (S t, t)-local 
if it has some (t, r)-local subcircuit, the source of which is st distance s k from the 
source of the circuit. Thus, e.g., read-once-only contact circuits are (0, 0, n)-local. 
On the other hand, any circuit is (0, t, n)-local for some t s n. In Section 6 a uniform 
argument is given to generate concrete n-argument Boolean functions from NP (and 
even from P) which require (fi, t, &)-local circuits of size exp(&) or even of 
size exp( n/log*n). 

liminaries 

A (directed) contact circuit (also called contact gating scheme) over the set of 
oolean variables is a labelled acyclic gra with 

istinguished node of 
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(ii) SOIPU edges labelled by contacts x4 where x E X and a E {O, I}, i.e., by 
variables x1 = x or their negations x0= 3. 

A branching program is a directed contact circuit with the foil 
constraints: 

(iii) every node has outdgree at most 2, 

addition 

(iv) for every node u with outdegree 2, one of the edges leaving t) is labelled by 
a variable x E X and the other is Iabelkd by its complement 3. 

A path starting in the source of the circuit is called initial A is an initial 
path ending in some si i.e., in a node of outdegree 0. Every of G defines 
the monomial #= & l . . . l gks where {e 1,. . . , ek} is the set of all labelled edges in 
P and e^ denotes the label of e. (In at follows we shall also identify fi with the 
set of contacts {&..., is a awibpatlr iff B = 0, i.e., if (s 3} s P for 
some x E X. A circuit G com~&s a Boolean function f: {O, 1)” + (0, 1) iff f= G, 
where G denotes the disjuncito mials defined by its chains. For a 
circuit G, let V(G) denote the es. Given a node v, Jet G’ denote 
the minimal subgraph of G containing all the initial paths to g and let GLI 
denote the minimal subgraph of G containing aB the paths from L) to sinks of G 
Thus v is a (unique) sink of G” as well as a source of GII. If G is a contact tree 
(i.e., if the underlying graph of G is a directed tree), then I&( = 1 for any u E V(G). 

A variable x:~ X is called cn’tical for a node t) of G i8 for some o E (0, 1) the 
following holds: the st two non-null chains PI and Pz of G” and a non-null 
chain P3 of G,, such “E~,,WOEP;~~~~~~~~O.PU~C~~~(~G)={~EX:~~S 
critical for t) in G}. The hefght of t) in G is the minimal number of daerent co~ti~& 
in an initial non-null path to U. So, 0~ height(u) s n. For an integer r -2 Cap ptlt 
V#‘?) ={VE V(G): height(v)s r}. 

2.1. Let k, t, r a 0 be integers such that k+ r s n. A contact circuit G is 
(t, r)-lad ifI Icrit(Q, G)I s t for all nodes u of height sr; G is (S t, r)-local if G 
contains some (t, r)-local subcircuit G,, with t) cz Vk( G); G is t-local if G is (4 r)-local 
with r=n. 

Thus any contact circuit of n variables is t-local for some 06 t s n Red-once-odj 
circuits with no repeated occurrences of contacts in their 

rcuits (i.e., contact circuits with no negated variables) and 
aim are special cases of O-local ones. (Note also that a O-local 
ly a read-once-only one.) 

The size of a circuit G, size(G), is the number of nodes in G. The circuit-size 
oolean function f is defined by 

C:,(f) = min{size( G): G = f and G is (4 t, +local}. 

s, the correspon measure is denoted by BP:,(f). 
es, we shall omit indices k=O, t=n and r=n. 



2.2. In this paper we shall consider only directed contact ckuits since this 
model is a most suitable one to explain the main idea of our approach. On the other 
hand, from the observations made by Pudhik in 117, 19) it follows that dire 
contact circuits and branching programs are quite powerful. Let U@(f) denot 
undirected contact circuit complexity off: Then 

C()cIJC(-)* and BP(+C(-)““‘. 

The idea for the first inequality is to split given undirected contact circuit C into a 
sequence of identical copies and replace each undirected edge by two directed edges 
which go from a given copy to the next one. We do not need more copies than 
number of nodes of G. The proof of the second inequality is based on a probabilistic 
argument of Aleliunas et al. [2]. 

Remark 2.3. Local circuits are quite powerful. For example, one may easily verify 
that BP&) s O(n*) for every symmetric Boolean function fn of n variables. On 
the other hand, Brustmann and Wegener in [7] have proved that any sequence o’i’ 
symmetric functionsf,, n = 1,2 , . . . , such that the length of shortest prime implicants 
or prime clauses of fn ws faster than (log2n)’ for any constant c> 0 require 
super-polynomial con epth combinatorial circuits over (a, v, 7. 

Definition 2.4. Given an integer ra0 and a binary relation 4p s V(G) x V(G), we 
define an entropy H:(G) of a circuit G to be the (p-entropy of V.(G), i.e., Ht( G) 
is the minimal number of p-intervals (over V(G)) covering V,(G). For a Boolean 
function J: let H:(j) = min{Hp( T): f = f and T is read-once-only contact tree}. In 
the case of branching trees, the corresponding entropy is denoted by E:(f). Put 
also HP(f) = Hz(f). (Observe that E(f) is actually the entropy of the truth-table 
f’(l) off; whereas H(f) is actually the entropy of its Disjunctive Normal Forms 
(DNF in short)). Note that H’(f)amax{Hf(f): 0~ r~ n}. 

For monomials K and W, put Kc> W=(xQ: xa E K and xa E W} and K 8 W= 
(K-(Kb W).ForaDNFD=K,v- v K,, and a monomial W, let D[ W] denote 
thesetofallDNFsK,W,v-•vK,W,where W,cW,i=l,2,...,p.Foranode 
v of a contact tree T, let 6 denote the (unique) monomial in T’. 

Convention: To avoid unwieldy expressions we shall write v, P, G instead of 6, 
fi, G if the meaning is clear from the context. 

Let us now define some concrete relations of “similarity”. Given a contact tree 
T and two of its nodes u and v, let 

u CA v iff T, and TD are isomorphic (as labelled graphs); 
u@v ifI (uev). T,,=(&u)* T,; 
uth iff T,[u8v]nT,[vh]#0. 

Note that v, s # c_ 8. Therefore, H” a 
To illustrate the definition, let us give a short example. Let d = x~x~x~, 

fv=x4vZ3 and fU=xlvq. Then v@u=x1x5 and uQv=@c4. 



u are not $-similar, since the DNFs (6 u) - T, = x1x4x5 v x&xs 

Z~X~SC~ v xl23x4 realize different Boolean functi 
sets T,[uSu] and T,[uew] both contain the 

3. 

W&an function f is called ctitical if any two sties Wctot‘s fro 
diEer in f t least two coordinates. 

3.1. Let G be u cmtuct cimit co zeunfinction of n 

ny non-nuu chain P of G it 

f. Straightforward. CI 

* For my rs t, r Ml, with t s r, the fouowing 
. . 

wherecp=+iffiscri and e boutul holds also with C and H 

replaced by I3P and E. 

f. L& G be some mini ntact circuit computing f, i.e., 6 = f 
and size(G) = C&(f). ent”” of G, i.e., T is the contact tree 
obtained from G as the of the following procedure of “unfolding”: for a 
node tl of G with inde switch some edge leading to v to the root of some 
new circuit isomorphic to G,. thus, if N(o) denotes the set of all the nodes of T 

en all the subtrees of T, rooted in N(v), are pairwise 
): v E V,(G)}. Then, obviously, size(G) 2 IN,( T)la 

o (together with 
contains a contact cant 

computes f and 

rresponding pendant edges) 
to some contact from 6. Let 



the proof of Theorem 3.2. 

LetX={x,,..., enl is 8 function 6 from into X u {0,1) such 
that, for each x E X, S(x) E @,I, x). The set si (6) = 8”‘(O) w S-‘(l) is 
of 6; ISI = Isign(8)l is a rank of 6. Given a BooIean fu 
by f8 the function we obtain by composingf and S, i.e., 
Notice that f6 is a function of n - 

The following obvious fact points out the “determinishc nature” of branching 

Programs- 

3s. Let P be an initial non-null path to a node II in a branching ptogta~ G 
computing jI Tlien, for any assignment 6 such that ( #)” = 1, we haw f a = @,$f 

Hence we have the following useful fact. 

ct 3.6. For any Boolean function f it holds that 

BP&(f) 3 ;it %(fsb = 

3.7. For any Boolean jimlion f it h 

BP&(fi 2 ,yif Er( f ") l 3-‘, = 

where 4p = 4 iff is critical, an ise. 

us in order to bound 
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of m ble 

oolean function f(X) is (we&y) m-mixed iff, 
two distinct assignments 6, y of signature Y it 

or) f"#fY Let F, (respectively BF3 denote the class of all ( 
functions. The class of mixed functions is sufficiently rich. 

amatov [HI). For a 
(1 + c)log2q then 

(ii) Ifman - (1 - c)log*n, then 

small c > 0, #he following holds: 

every sulpiciently large n. 

For a Boolean function f and an integer m 2 1, let Q&) denote the minimal 
number p of monomials -&...J$ such that f~Klv~.-vK’ and IK1l--= 

IK I =nt. 
f;ne following lemma and Theorem 4.1 assert that the &entropy of almost all 

Boolean functions of n variables is aexp(n). 

rff & 2m-m&ed (m 2 l), then EL(j) a2m+’ - 1. Iff is weakly 2m-mixed 
EfR(f) 2 Qm(j’)- 

To prove the first bound, let T be some read-once-only branching tree 
computing a 2m-mixed Boolean function $ Put Um = {u E V(T) : height(u) = m}. It 
is sufficient to prove the following two claims. 

1 ouer & contains exactly one node. 

To prove Claim assume that 1 Uml s 2” - 1. Then there is a node u of height 
srn-1 and of ou =l such that the unique edge, (u, v) say, is labelled by 
some contact 9’. Let S be the assignment of rank 161 G m such that u^’ = 1 and 
S(x) = a + l(mod 2). Then, obviously, T’ = 0, and by Fact 3.5, f6 = 0, contradicting 
the assumption that f is m-mixed. 

me that u 8 v for some distinct nodes u, v from V,. For 
denote the set of variables in K. Consider assignments 

re var(u(veu)) such that i?=l and Gy=l. Since U&J and T 
has no nulkhains, T’ = Ty. y Fact3.5, f'=fy. ut $# yandISI=Iy]<2m.‘Ihis 
contradiction completes the of of Claim 4.4. 

e proof of the second bound is analogous to that of the previous one with 
.3 replaced by the following obvious Claim .3: I&,,laQ,,,(f). Cl 
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ment originally employed b gener [27], Dunne in [ 
ase of O-local branchin ram require exp(m) siz 

m-stable functions. Lemma 4.2 yields a more general bound. 

3. If f is 2m-stable for some m a 1, then E~(f)H”+‘- 1. 

f. By Lemma 4.2, it is sufficient to prove the followin 

.6. If f is m-stable, then f is (m + 1 )-mixed. 

To prove the claim, suppose that f(X) is not (m + I)-mi . This means that, for 
some Y G X with 1 Y( 6 m + 1, there are at least two dist 
signature Y such that f6 = f y. Choose a variable x E Y for which S(x) # y(x). Then, 
for any a E (0, 1) and any assignment p of signature X - Y, f “(x, Y - {x}) does 
equal xa. But 1 Y-(x}1 G m. Therefore, f is not m-stable. 0 

Theorem 4.7. Let m, kr, t, r be integers such thaa 2 s k+2r~ m and t 3 0. If f is 
m-stable or m-mixed Boolean function, then BP&(f) a 2’ l 3”. If f is weakly m-mixed, 
then 

BP&(f) a min{ Q( f “): 1 aI= k} l 3~‘. 

Proof. Let 6 be an assignment of rank k such that 

If f is m-stable (m-mixed or weakly m-mixed), th n f6 is 2r-stable (respectively 
2r-mixed or weakly 2r-mixed) since ISI + 2r s m. So it remains to apply Theorem 
3.7 and Lemmas 4.2 and 4.5. 0 

For monotone Boolean functions there is a quite simple criterion of their stability 
in terms of their (unique) shortest DNFs. For a Boolean function f(X), let Imp(f) 
denote the set of all its prime implicants. For a variable x E X, put Imp(f, x) = 
{K E Imp(f): x E K}. 

Fact 4.8. A monotone Boolean function f(X) is m-stable for some m > 1 if and only 
i$ for any x E X and Y C_ X -{x} with 1 Yl s m, the following holds: 

(i) KOn Y =0 for some KoE Imp(f; x), 
(ii) W-(&u Y)#fl for any WeImp(Imp(f,x). 

For a Boolean vector a’ = (a,, . . . , a,,), with ai E 10, l}, put lnd( a”) = {i: ai = 1) and 
={a”Ef ‘(l):f(Q=Ofora 

n, and put wh(j)=min{llzll: a’~ 
={& 
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.1. A Boolean function f is (S +disjoint iff wh(f) 2 2r and for any k 

pairwise distinct vectors a’1 , . . . , Zk from M/* it holds thsrt IInd( a”,) A l l l n Ind( &)I s 
r - 1; f is k-disjoint if f is (S t)- isjoint for some r 3 1. 

.2. (i) Iff is 2-disjoint, then 
is k-disjoint for some k 

Let f be (k r)-disjoint for some k 3 2 and r Z= 1, 
contact tree computingj: For a node t, of T, let A(u) denote the set of all the vectors 
a” from Iwf* such that a’ realizes some chain of T containing v. Put U = 
{v E V(T): ICI+ = r], where, for a monomial K IKI+ stands for the number of 
unnegated variables in K. Choose some subset VC, U which is minimal in a sense 
that A(V) = U {A(v): v E V} = MT but A+ *-A(V-{v})#(b for each VE K Put 

x = ma,{1 VOl: VO is a &interval over V}. 

laim 5.3. Wf(T)aIM~I/(k-I) 9~. 

To prove the claim, observe that Hr( T) a I VI . x-l. Moreover, I VI 2 
IA@ . (k - 1)‘. Indeed, otherwise there must be a node v E V such that IA( v)la k 
But 

In {Ind(o’): a’ E A( v)}l 3 ICI+ = r, 

a contradiction. So it remains to bound x. 
(i): Suppose that f is (S r)-disjoint with k = 2. Then x = 1. Assume that u # v for 

some nodes u # v from K Since k = 2, IA( u)l = IA( v)l = 1. Moreover A(u) f A(v) 
as V is minimal. Let A(u) = {a’), and let P be a chain of T such that u E P and 

denote the monomial such that P = u^ 9 K. Without loss of generality, 

lu~vl+qv~ul+. (I) 

Since u q v, there is a monomial W in T, such that 

(t4ev) l K = (veu) g w. (2) 

Let d be a Boolean vector with the minimal number of ones for which o^ l W( 6) = 1. 
y (1) and (2), 116ll=l& Wl+sI~I+=Ildll. Hence, &A47 and &I. But by (2), 

)~=qKI+~ Il#q-lGl+=wh(f)-r3 ff 

a contradiction. 
(ii): Suppose that f is (k, r)-disjoint with k a 3. To prove the theorem in this 

case, it is sufficient to prove that x s k - 1 if T is a branching tree, and x s (k - 1)’ + 1 
otherwise. 

t 10, 9***9 vx} be some @interval over K 
Case 1: Tisabra ing tree. Choose SOme El E A( vl). Let P be a chain of T 

Let onomial such that 
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Since any node vi, i = 2,. . l , x, is #-similar to vl, it follows that T:, contains 
monomial such that 

(v,OvJ l K1 = (v&v,) l K- 1. 

Since T has no null-chains, there exist (52, . . . , 5’) such that pi l 

As j- l(l)= , all these vectors are in oreover, all these vectors a 
distinct since T is a branching tree. But by (3), 

In{Ind(i& i~~}l*IKII+~wh(f)-r~r. 

Therefore, x s k - 1. 
Case 2: T is not a branchi tree. Since V is minimal for any 4 1 s i ss x, there: 

is some c?i in A( Vi) - A( V - ). Let Ki denote a monomial from T”& such that 
& l I&(&) = 1. Since any node 9, 2 sj s x, is $-similar to vl , it follows that TQ 
contains a monomial K: such that 

(viQvl) 9 Ki=(v,etri) 9 K:. 

Since IA(v,)lsk-1 and f *(l)=M$, by ( ), there exists some set J s (2, . . . , x} 

such that IJIa(x-I)l(k-1) and K:=K; for all i+J. Letj0e.K Then 

In{Ind(q):jEJ)I~IK:bl+~wh(n-r~ r, 

and from the k-disjointness of f it follows that IJI s k - 1. Thus, x s (k - I)* + 1. 
This completes the proof of Case 2, and thus the proof of Theorem 5.2. Cl 

6. Applications 

The results of the previous sections provide a uniform way to obtain nearly 
exponential lower bounds on the complexity of local contact circuits. In a number 
of cases this leads to an improvement of lower bounds recently obtained by quite 
strong (but special) techniques. Since it would be tedious to attempt to indicate all 
such bounds, we restrict ourselves to some typical examples. 

For an integer q 2 2, put 4 = { 1, . . . , q} and fi = g x tj. Subsets of n’ will be called 
points over fi and subsets of points will be called point-sets over ii. For a (0, 1).matrix 
X = {x, : Q E 8}, let PS(X) denote the set of all points A over fi such that, for any 
aE fi, acA implies x, = 1. 

efinition 6.1. A point-set 6: over n’ is m-dense if, for any Q E n’ and c_ +{a} 

with IAl s m, there is a point B E F such that the following holds: 
(i) a E B, 

)#0 for any point CEF-{ 
Given a poi&set F over ii, we associate with F the followi 

functions EiF) and q(F) of n = q* variables: 

e(F)(X) = 11 iff IFn PS( 
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and 

rl(F}(X)=l iff fFnPS(X)I>O. 

Note that q is monotone but c is not, in general. 

ma 6.2. If F is an m-dense point-set9 then e(F) and q{ F} are th m-stable (and 
hence, m + I-mixed ). Moreover, q(F) is m-stable only if F is m-dense. 

f. The second claim follows directly from Fact .4.8. To prove the first claim, 
let F be an m-dense point-set and fix some x, E X and Y G X -{x=} with 1 YI s m. 
Let A E fi denote the set of indices of variables from Y, i.e., Y = {x~: b E A}. Let 6 

be an assignment such that a&)=1 if bcB-{a}, and G(x*)=Oif bEn’-(Au B), 
where B is from Definition 6.1. Since A n B = 8, S is well-defined and sign( 8) = 
X - Y - Ix*}. Since C - (A u B) # 0 for any point C E F - {B} (with a L C), it follows 
that for any assignment y of signature Y, PS(X6.y) = 0 if x, = 0, and IPS(Xhy)l = 1 
if x, = 1. Therefore, es{ F}(X) = q*(F) = x,. q 

Let us give some typical examples of dense point-sets. 
Convention: To avoid unwieldy expressions we shall identify any set F of q-valued 

functions o: q-, q with the corresponding point-set ( [ol: o E F} of their graphs 
[ol = {(& j): o(i) = j}. 

le 6.3. For q a 2, let Tw( q) denote the set of all total functions o : Q + tj such 
that, for each j E q9 either a-‘(j) = 0 or I#( j)la 2. 

For a~ even integer q 2 2, the point-set Tw(q) is iq-dense. 

Put m = iq and fix some a = (io, jO) E n’ and A c fi -{a} with IAl s m. Without 
generality, A s rii2 and a E 18~. (The case a E fi2 is analogous). Define 6 : 4 + 4 

asfollows: a(i,)=S(i,+m)=joand,fori~~-{io,io+m},8(i)=m+iifidmand 
3(i)=i if ia + 2. Then, obviously, S E Tw(q), a E [Sl and An [Sl = 0. So it 
remains to show that rul - (A u [ISI) # 0 for any v E Tw( q) such that a( io) # S( Q. 
Assume that Co1 c Au [Sl. Since o( iO) f 6( i,,), it follows that g( i,,) = j, for some 
Jo #jo and j, s m. Since m is in Tw( q) and o(i) = S(i) for all i 2 m + 1, there must 
be some i 1 s m, il # iO, such that o( i,) = &J = jr. Hence, I#( j2)l = 1 forj2 = 6( il), 
a contradiction. 0 

. For q 3 2, let Per(q) denote the set of all bijections u : 4’ + q. 

s actually the collection of 
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For an even integer q 2 2, the point-set Per(q) is iq-dense. 

f. The proof of this fact is analogous to that of Fact 6.4. c3 

Example 6.7. For a prime number q a 5 and an integer d a 1, let Pol(q, d) denote 
the set of all polynomials of degree at most d over the Galois field GF(q) of order 
q. (Here we identify the set of elements of CT(q) with q.) Put Pol( q) = Pol( q, $q). 

Fact 6.8. For each d, with 1 s d s $q, the point-set Pol( q, d) is (d - 1).dense. 

Proof. Fix some a E n’ and A G fi -{a} with IAl s d - 1. For i E q, let Ii denote the 
ith column of ii, i.e., 4 = {(i, j): j E Q). Put 

J={iEq’: &nA#@andar$&}. 

Then, obviously, 1 JI s d - 1. Since IAl s d - 1 c q, it follows that Ii - A # 0 for each 
i E @ Hence, for each i E J we may choose some bi E Ii - A. Put 

D={bi: i~S’}u{a}. 

Since I Dl = I JI + 1 s d, there is a polynomial 6 in Pol( q, d) such that Ds [a 1. It is 
clear that a E [S 1 and A n [S 1= 0. So it remains to show that IS 1 - (A u [S 1) # 0 
for any other polynomial u from Pol(q, d). 

Assume that [al G (Au [ol) for some polynomial a # 8. This means that 

I{& @ u(i) # S(i)}1 s IAl G d - 1; 

andhence,Irolnr~ll~q-(d-l)~d+l.ButaandSarebothofdegreeatmost 
d. Therefore, a = S, a contradiction. 0 

Example 6.9. For integers q 2 2 and s 3 1, let BCl( q, s) denote the set of all points 
A over ii -A, where A = {(i, i): i E a}, such that A = I x J for some I, J c_ 4 with 
InJ=@ and III=IJI= s. Let also Cl(q, s) denote the set of all points A over n’ - A 
such that, for some I G 9’ with III = s, it holds that A c I x I and, for all i f j from 
I, either (i, j) E A or (j, i) E A (or both). 

Comment: BCl(q, s) is actually the collection of s-bicliques, i.e., of complete 
bipartite 2s-vertex digraphs, and Cl( q, s) is the collection of (directed) s-cliques. 

Fact 6.10. Let q 3 s 2 3. Then 
(i) BCl( q, s) is m-dense with m = min{s*, q - 2s) - 1, 

(ii) Cl( q, s) is r-dense with m = min((g), q - s} - 1 a 

roof. To prove the first claim, fix some a = ( iO, jO) E fi -A and G fi-{a} with 

(Al s m. Without loss of generality, A c fi* and a E fi*. Put 

I={m+l,...,m+s-1}, J={q-s+l,...,q}, 

I, = v { iO} amd J, = J v {j,}. 
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LetB=I,xJ,.ThenI,nJ1=0sincem<q-2sandio#j,.Nence,BisinBCl( 
aE B and AnB=@. So it remains show that C-(Au B)#@ for a 
from BCl(q, s) with a e C. Assume at C E A v B for some such poi 
Cn(lxJ)=@sinceIII=(JI=s-1 and er:~C 
contain some ZJ from ({ io) x J) v (I x cio)). Let, 
(&j) for some jE1 Since s 2 3, there must be an integer il G m su 
and ( i1, j) E B, which contradicts the definition of B. This completes the proof of 

0 i . e proof of the second claim is analogous. 0 

lary 411. For q 2 2, let Fq stand for any of the following _point-sets: PoI(q), 
Per(q), Tw(q), BCl(qs $9) and CI(q, $9). Let also fn stand for a Boolean function 
e{ F4} or v{ F4} (of n G q2 stiles). flheop, ,for aN integer-valuedfirnctions k(q), r(q) 
and t(q) such that k+2rsiq and t s (I- E)r for some constant G > 0, it hoids that 

f. This immediately follows from Theorem 4.7 and Facts 6.4, 6.6, 6.8 and 
6.10. El 

Comment: An exp(&) lower bound for the complexity of q{Per} and clique 
functions in the class of once-time-only branching programs (a special case of O-local 
branching programs) have already been proved in [ 17,27,9]. For an important case 
of O-local contact circuits, namely the monotone ones, the results of [4,21,3] yield 
an exp(n v4-ow) lo wer bound for q{Pol} and an exp((log2n)‘) lower bound for 
q{Per}. Though the contact circuit complexity and the (unrestricted) branching 
program complexity are polynomially related (see Remark 2.2), it is not yet known 
if this also holds for monotone contact circuits and local branching programs. So, 
Corollary 6.11 does not directly imply the bounds for monotone circuits. Notice, 
however, that Andreev-Razborov’s argument [4,213 essentially uses the monotonic- 
ity of circuits, so it does not work for such close (to g(Per} and g{Pol}) Boolean 
functions as s(Per} and e{Pol}. 

ote the characteristic function 
. (Note’ that f* is critical for any f). In most cases not only f itself but also 

f* and f l g, where g is a critical Boolean function, are hard to compute by local 
circuits. Consider, for example, the following three Boolean functions of n = q2 
variables: 

h, = rl(W9)) l parity,, where parity,(G) = 1 iff lIZI = l(mod 2). 

easily 
sjoint. 

isjoint, and that h, and hz are both 
yield the following bounds. 
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Cod .13. Let?=?(n) besuch thatt~(1-e)&j?wso e integer e > 0, 
_L E {hn, h3. 7hen 

and 

Comment: Concerning the circuits with no null-chains Pulatov 120) and Kuznet- 
sov [ 143 have proved that for any Boolean functionfit holds that C,(f) 2 If’( l)ld/“, 
where d stands for the Hamming distance between any two distinct vectors from 
f-‘(l). This allows to obtain nearly-exponential lower bounds for some critical 
Boolean functions. However, if d is too small with respect to If’(l)], this argument 
does not work. For example, if f= h$, then d s 6, and so If’(l)ld/” = O(n) (cf. 
Corollary 6.13). 

Example 6.14. Let n a 1 be such that k = login and b = n/k are integers. For a 
(0, 1).matrix X = {xii : i E E&E Q, put 

num(X) = aI + a,2 + l l l + uk2’-‘, 

where ai E (0, 1) and ai = 1 iff ~4~ + l l l +xkb 2 g( b - 1). Let 2 denote a Boolean 
function, defined by f”(X) = X&j, where 4 j are such that (i - 1)b +j = num( X). A 
similar function has been introduced by Meyer and Paterson (as cited in Savage [23]). 

Since f” is m-mixed with m = t( b - 1) see, e.g., [23, p. 44]), we have the following 
corollary. 

Corollary 6.15. If t = o(nllog&, then BP,&) 2 exp(n/logzn). 

Finally, notice that all the functions I)( Per}, e{ Per}, gz, hf, and & are computable 
by polynomial-size combinatorial circuits. Moreover, the (unrestricted) branching 
program complexity of gz, hz, and & is also polynomial. Therefore, some n-variable 
Boolean functions require nearly-exponential n 1--El local circuits (for an arbitrary 
small constant E > 0) whereas their n-local circuit complexity is actually polynomial. 

Hence, such restrictions as the locality (as well as the monotonicity, the absence 
of null-chains, constant-depth, etc.) of circuits are too rough to separate complex 
functions from the simple ones. To achieve this goal, a new insight into the circuit’s 
structure is needed. One of the possible ways is to investigate more subtle notions 
of “subcircuit” and “similarity” so as to exp 
conjecture that (when suitably defined) the nu 
tions” is a lower bound on the standard oolean circuit 
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