
9.3 The Monotone Switching Lemma 257

9.3 The Monotone Switching Lemma

In Razborov’s method of approximations one only uses DNFs to approximate gates.
In this way, OR gates can be easily approximated: an OR of DNFs is a DNF, and
we only need to keep its small enough. The case of AND gates is, however, more
complicated. So, a natural idea to try to approximate by both DNFs and CNFs.
When appropriately realized, this idea leads to a general, and relatively simple
lower-bounds criterion for monotone circuits. Due to the symmetry between DNFs
and CNFs, this criterion is often much easier to apply and yields exponential lower
bounds for many functions, including the clique function.

Still, there are functions—like the perfect matching function—for which the criterion seems
to fail. This is why we will discuss Razborov’s method later in Sect. 9.10 in full detail: unlike
the general criterion, which we are going to present now, Razborov’s method is much more
subtle, tailor made for the specific function one deals with and can be applied in situations
where the general criterion fails to produce strong lower bounds. Yet another reason to include
Razborov’s proof for the perfect matching function is that this function belongs to P, and the
proof was never treated in a book.

Our goal is to show that, if a monotone boolean function can be computed by a
small monotone circuit, then it can be approximated by small monotone CNFs and
DNFs. Thus, in order to prove that a function requires large circuits it is enough to
show that it does not have a small CNF/DNF approximation. The proof of this will
be based on the “monotone switching lemma” allowing us to switch between CNFs
and DNFs, and vice versa.

By a monotone k-CNF (conjunctive normal form) we will mean an And of an
arbitrary number of monotone clauses, each being an Or of at most k variables.
Dually, a monotone k-DNF is an Or of an arbitrary number of monomials, each
being an And of at most k variables. In an exact k-CNF all clauses must have
exactly k distinct variables; exact k-DNFs are defined similarly. For two boolean
functions f and g of the same set of variables, we write f � g if f .x/ � g.x/

for all input vectors x. For a CNF/DNF C we will denote by jC j the number of
clauses/monomials in it.

The following lemma was first proved in Jukna (1999) in terms of so-called
“finite limits”, a notion suggested by Sipser (1985); we will also use this notion
later (in Sect. 11.3) to prove lower bounds for depth-3 circuits. In terms of DNFs
and CNFs the lemma was then proved by Berg and Ulfberg (1999). Later, a similar
lemma was used by Harnik and Raz (2000) to improve the numerically strongest
known lower bound 2˝.n

1=3= log n/ of Andreev (1987b) to 2˝..n= log n/1=3/. The idea of
the lemma itself was also implicit in the work of Haken (1995).

Lemma 9.15. (Monotone Switching Lemma) For every .s � 1/-CNF fcnf there is
an .r � 1/-DNF fdnf and an exact r-DNF D such that

fdnf � fcnf � fdnf _D and jDj � .s � 1/r : (9.2)



258 9 Monotone Circuits

Fig. 9.2 Two DNF-trees of the same 3-CNF fcnf D .x1 _ x2 _ x3/^ .x1 _ x2 _ x4/^ .x1 _ x4/.
The second tree is obtained by parsing the clauses of fcnf in the reverse order

Dually, for every .r �1/-DNF fdnf there is an .s�1/-CNF fcnf and an exact s-CNF
C such that

fcnf ^ C � fdnf � fcnf and jC j � .r � 1/s : (9.3)

Proof. We prove the first claim (the second is dual). Let fcnf D q1 ^ � � � ^ ql be an
.s � 1/-CNF; hence, each clause qi has jqi j � s � 1 variables. It will be convenient
to identify clauses and monomials with the sets of indices of their variables. We say
that a monomial p pierces a clause qi if p \ qi ¤ ;.

We associate with fcnf the following “transversal” tree T of fan-out at most s�1
(see Fig. 9.2).

The first node of T corresponds to the first clause q1, and the outgoing jq1j edges
are labeled by the variables from q1. Suppose we have reached a node v, and let p
be the monomial consisting of the labels of edges from the root to v. If p pierces
all the clauses of fcnf, then v is a leaf. Otherwise, let qi be the first clause such that
p \ qi D ;. Then the node v has jqi j outgoing edges labeled by the variables in qi .

Note that the resulting tree T depends on what ordering of clauses of fcnf we fix,
that is, in which order we parse the clauses (see Fig. 9.2). Still, for any such tree we
have that, for every assignment x 2 f0; 1gn, fcnf.x/ D 1 if and only if x is consistent
with at least one path from the root to a leaf of T . This holds because fcnf.x/ D 1

iff the set Sx D fi j xi D 1g intersects all clauses q1; : : : ; ql .
Some paths in T may be longer than r � 1. So, we now cut off these long paths.

Namely, let fdnf be the OR of all paths of length at most r � 1 ending in leafs, and
D be the OR of all paths of length exactly r . Observe that for every assignment
x 2 f0; 1gn:
• fdnf.x/ D 1 implies fcnf.x/ D 1, and
• fcnf.x/ D 1 implies fdnf.x/ D 1 orD.x/ D 1.

Thus, fdnf � fcnf � fdnf _ D. Finally, we also have that jDj � .s � 1/r , because
every node of T has fan-out at most s � 1. ut

Most important in the Switching Lemma is that the exact DNFs and CNFs
correcting possible errors contain only .s�1/r monomials instead of all

�
n
r

�
possible

monomials, and only .r � 1/s clauses instead of all
�
n
s

�
possible clauses.



9.4 The Lower-Bounds Criterion 259

9.4 The Lower-Bounds Criterion

We now give a general lower-bounds criterion for monotone circuits.

Definition 9.16. Let f be a monotone boolean function of n variables. We say that
f is t-simple if for every pair of integers 2 � r; s � n there exists an exact s-CNF
C , an exact r-DNF D, and a subset I � Œn� of size jI j � s � 1 such that

(a) jC j � t � .r � 1/s and jDj � t � .s � 1/r , and
(b) Either C � f or f � D _Wi2I xi (or both) hold.

Theorem 9.17. If a monotone boolean function can be computed by a monotone
circuit of size t , then f is t-simple.

Proof. Let F.x1; : : : ; xn/ be a monotone boolean function, and suppose that F can
be computed by a monotone circuit of size t . Our goal is to show that the function
F is t-simple. To do this, fix an arbitrary pair of integer parameters 2 � s; r � n.

Let f D g � h be a gate in our circuit. That is, f is a function computed at
some node of the circuit, and g and h are functions computed at its inputs. By an
approximator of this gate we will mean a pair .fcnf; fdnf/, where fcnf is an .s � 1/-
CNF (a left approximator of f ) and fdnf is an .r � 1/-DNF (a right approximator of
f ) such that fdnf � fcnf.

We say that such an approximator fcnf; fdnf of f introduces a new error on input
x 2 f0; 1gn if the approximators of g and of h did not make an error on x, but
the approximator of f does. That is, gcnf.x/ D gdnf.x/ D g.x/ and hcnf.x/ D
hdnf.x/ D h.x/, but either fcnf.x/ ¤ f .x/ or fdnf.x/ ¤ f .x/.

We define approximators inductively as follows.

Case 1: f is an input variable, say, f D xi . In this case we take fcnf D fdnf WD xi .
It is clear that this approximator introduces no errors.

Case 2: f is an And gate, f D g ^ h. In this case we take fcnf WD gcnf ^ hcnf as
the left approximator of f ; hence, fcnf introduces no new errors. To define the right
approximator of f we use Lemma 9.15 to convert fcnf into an .r � 1/-DNF fdnf;
hence, fdnf � fcnf. LetEf be the set of inputs on which fdnf introduces a new error,
that is,

Ef WD fx j f .x/ D fcnf.x/ D 1 but fdnf.x/ D 0g :
By Lemma 9.15, all these errors can be “corrected” by adding a relatively small
exact r-DNF: there is an exact r-DNF D such that jDj � .s � 1/r and D.x/ D 1

for all x 2 Ef .

Case 3: f is an Or gate, f D g _ h. This case is dual to Case 2. We take fdnf WD
gdnf _ hdnf as the right approximator of f ; hence, fdnf introduces no new errors. To
define the left approximator of f we use Lemma 9.15 to convert fdnf into an .s�1/-
CNF fcnf; hence, fdnf � fcnf. Let Ef be the set of inputs on which fcnf introduces a
new error, that is,

Ef WD fx j f .x/ D fdnf.x/ D 0 but fcnf.x/ D 1g :



260 9 Monotone Circuits

By Lemma 9.15, all these errors can be “corrected” by adding a relatively small
exact s-CNF: there is an exact s-CNF C such that jC j � .r � 1/s and C.x/ D 0 for
all x 2 Ef .

Proceeding in this way we will reach the last gate of our circuit computing the
given function F . Let .Fcnf; Fdnf/ be its approximator, and let E be the set of all
inputs x 2 f0; 1gn on which F differs from at least one of the functions Fcnf or Fdnf.
Since at input gates (= variables) no error was made, for every such input x 2 E ,
the corresponding error must be introduced at some intermediate gate. That is, for
every x 2 E there is a gate f such that x 2 Ef (approximator of f introduces an
error on x for the first time). But we have shown that, for each gate, all these errors
can be corrected by adding an exact s-CNF of size at most .r � 1/s or an exact r-
DNF of size at most .s � 1/r . Since we have only t gates, all such errors x 2 E can
be corrected by adding an exact s-CNF C of size at most t � .r � 1/s and an exact
r-DNF D of size at most t � .s � 1/r , that is, for all inputs x 2 f0; 1gn, we have

C.x/ ^ Fcnf.x/ � F.x/ � Fdnf.x/ _D.x/ ;

where Fdnf � Fcnf. This already implies that the function F is t-simple. Indeed, if
the CNFFcnf is empty (that is, ifFcnf 	 1) thenC � F , and we are done. Otherwise,
Fcnf must contain some clause q of length at most s � 1, say, q D W

i2I xi for some
I � Œn� of size jI j � s � 1. Since clearly Fcnf � q, the condition Fdnf � Fcnf

implies F � Fdnf _D � Fcnf _D � q _D, as desired. This completes the proof
of Theorem 9.17. ut

In applications, boolean functions f are usually defined as set-theoretic predi-
cates. In this case we say that f accepts a set S � f1; : : : ; ng and write f .S/ D 1

if and only if f accepts its incidence vector. Let S D f1; : : : ; ng n S denote the
complement of S . We say that a set S is a

• Positive input for f if f .S/ D 1;
• Negative input for f if f .S/ D 0.

Put differently, a positive (negative) input is a set of variables which, if assigned
the value 1 (0), forces the function to take the value 1 (0) regardless of the values
assigned to the remaining variables. The minimal (under set inclusion) positive
inputs for f are called minterms of f . Similarly, the maximal negative inputs for f
are called maxterms of f .

Note that one and the same set S can be both a positive and a negative input! For
example, if f .x1; x2; x3/ outputs 1 iff x1 C x2 C x3 � 2, then S D f1; 2g is both
positive and negative input for f , because f .1; 1; x3/ D 1 and f .0; 0; x3/ D 0.

To re-formulate the definition of t-simplicity (Definition 9.16) in terms of
positive/negative inputs, note that if C is a CNF, then C � f means that every
negative input of f must contain at least one clause of C (looked at as set of indices
of its variables). Similarly, f � D _Wi2I xi means that every positive input must
either intersect the set I or contain at least one monomial ofD. Thus, if F1 (F0) is a
family of positive (negative) inputs of f , and #k.F/ denotes the maximum number




