$$\mathrm{PM}_n(x) = \bigvee_{\sigma \in S_m} \bigwedge_{i=1}^m x_{i,\sigma(i)},$$

where S_m is the set of all m! permutations of 1, 2, ..., m.

The *exact perfect matching* function EPM_n accepts a graph *E* iff *E* is a perfect matching. That is, EPM_n takes a boolean $n \times n$ matrix as an input, and outputs 1 iff this is a permutation matrix, that is, each row and each column has exactly one 1.

In Sect. 9.11 we have shown that PM_n requires monotone circuits of superpolynomial size. Now we show that it also requires 1-NBP of exponential size.

Corollary 16.11. *Every* 1-NBP *computing* PM_n *as well as any null-path-free* NBP *computing* EPM_n *must have size* $2^{\Omega(n)}$.

Proof. Let *A* be the set of all |A| = n! permutation matrices; hence, *A* is *m*-uniform with m = n. Since only (n - k)! perfect matchings can share *k* edges in common, we have that $d_k(A) = (n - k)!$. In particular, taking k = n/2, we obtain that $d(A) \le (n/2)! \cdot (n/2)!$. Observe that every program computing PM_n majorities *A*, and every program computing EPM_n must isolate *A*. Thus, Theorem 16.9 yields the desired lower bound $n!/d(A) \ge {n \choose n/2}$.

To better understand the role of null-paths, we have to first solve the following problem. Say that a nondeterministic branching program is *weakly read-once* if along any *consistent s-t* path no variable is tested more than once. That is, we now put no restrictions on inconsistent paths: only consistent paths are required to be read-once.

The following problem is one of the "easiest" questions about branching programs, but it still remains open!

■ **Research Problem 16.12.** Prove an exponential lower bound for weakly readonce nondeterministic branching programs.

That such programs may be much more powerful than 1-NBPs shows the following observation made in Jukna (1995).

Proposition 16.13. The function EPM_n can be computed by a weakly read-once nondeterministic branching program of size $O(n^3)$.

Proof. To test that a given square 0-1 matrix is a permutation matrix, it is enough to test whether every row has at least one 1, and every column has at least n - 1 zeros. These two tests can be made by two nondeterministic branching programs P_1 and P_2 designed using the formulas

$$P_1(X) = \bigwedge_{i=1}^n \bigvee_{j=1}^n x_{i,j}$$
 and $P_2(X) = \bigwedge_{j=1}^n \bigvee_{k=1}^n \bigwedge_{\substack{i=1\\i \neq k}}^n \neg x_{i,j}$.