$$
\operatorname{PM}_{n}(x)=\bigvee_{\sigma \in S_{m}} \bigwedge_{i=1}^{m} x_{i, \sigma(i)}
$$

where S_{m} is the set of all m ! permutations of $1,2, \ldots, m$.
The exact perfect matching function EPM_{n} accepts a graph E iff E is a perfect matching. That is, EPM_{n} takes a boolean $n \times n$ matrix as an input, and outputs 1 iff this is a permutation matrix, that is, each row and each column has exactly one 1.

In Sect. 9.11 we have shown that PM_{n} requires monotone circuits of superpolynomial size. Now we show that it also requires 1-NBP of exponential size.

Corollary 16.11. Every 1 -NBP computing PM_{n} as well as any null-path-free NBP computing EPM_{n} must have size $2^{\Omega(n)}$.

Proof. Let A be the set of all $|A|=n!$ permutation matrices; hence, A is m-uniform with $m=n$. Since only $(n-k)$! perfect matchings can share k edges in common, we have that $d_{k}(A)=(n-k)$!. In particular, taking $k=n / 2$, we obtain that $d(A) \leq(n / 2)!\cdot(n / 2)$!. Observe that every program computing PM_{n} majorities A, and every program computing EPM_{n} must isolate A. Thus, Theorem 16.9 yields the desired lower bound $n!/ d(A) \geq\binom{ n}{n / 2}$.

To better understand the role of null-paths, we have to first solve the following problem. Say that a nondeterministic branching program is weakly read-once if along any consistent $s-t$ path no variable is tested more than once. That is, we now put no restrictions on inconsistent paths: only consistent paths are required to be read-once.

The following problem is one of the "easiest" questions about branching programs, but it still remains open!

■ Research Problem 16.12. Prove an exponential lower bound for weakly readonce nondeterministic branching programs.

That such programs may be much more powerful than 1-NBPs shows the following observation made in Jukna (1995).

Proposition 16.13. The function EPM_{n} can be computed by a weakly read-once nondeterministic branching program of size $\mathcal{O}\left(n^{3}\right)$.

Proof. To test that a given square 0-1 matrix is a permutation matrix, it is enough to test whether every row has at least one 1 , and every column has at least $n-1$ zeros. These two tests can be made by two nondeterministic branching programs P_{1} and P_{2} designed using the formulas

$$
P_{1}(X)=\bigwedge_{i=1}^{n} \bigvee_{j=1}^{n} x_{i, j} \text { and } P_{2}(X)=\bigwedge_{j=1}^{n} \bigvee_{k=1}^{n} \bigwedge_{\substack{i=1 \\ i \neq k}}^{n} \neg x_{i, j}
$$

