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19.10. Prove Lemma 19.40.

Hint: Argue as in the proof of Lemma 19.39 to show that there must be an i for which jer 4j
is odd. Consider the set of vectors IV C P that average to x and that differ from x exactly on /;
where they take 0-1 values. Show that a”v < b forallv € V.

19.11. The clique-coloring polytope described in Sect. 19.4 corresponds to the
following maximization problem M P, ; for [ = k — 1: Maximize the number of
nodes in a clique of an n-vertex graph whose chromatic number does not exceed /.
Although [/ is a trivial solution for this problem, Corollary 19.16 show that any
cutting plane proof certifying that no such graph can have a clique on more than /
vertices must generate an exponential number of inequalities. That is, quick cutting
plane algorithms cannot solve this maximization problem optimally. Use a lower
bound on the monotone circuit size of clique like functions (Theorem 9.26) to
show that such algorithms cannot even approximate this problem: any cutting plane
proof certifying that no /-colorable graph can have a clique onk > [ vertices must
generate an exponential in min{/, n/ k }**(V’ number of inequalities.

19.12. M Research Problem. Given a graph G = (V, E), consider the following
communication game. Alice gets a subset A € V, Bob gets a subset B C V' such
that |A U B| > «(G). Hence, A U B must contain at least one edge. The goal is to
find such an edge. Does there exist n-vertex graphs G for which this game requires
w(log? n) bits of communication?

Comment: By Lemma 19.8, this would imply that every tree-like CP proof with bounded
coefficients for the unsatisfiability of the system (19.2) augmented with the inequality Y, <} x, >
a(G) + 1 must have super-polynomial size. This would be the first strong lower bound for a non-

artificial system corresponding to an-important optimization problem, the maximum independent
set problem.

19.13. (Split cuts) Given a polytope P = {x € R": Ax < b}, a cut for P is any
inequality ¢’ x < d with integral coefficients such that ¢’ x < d is valid in the 0-1
restriction P N{0, 1}" of P. In this case one also says that Ax < b implies cTx <d.
In CP-proofs we used simplest cuts: if aTx < bisvalid in P, and if all coordinates
of a are dividable by an integer c, then (a/c)"x < [b/c] is valid in P N {0, 1}".
There are also other types of cuts. An inequality ¢’ x < d is a lift-and-project cut
for P = {x € [0,1]" : Ax < b} if for some index i, ¢’ x < d is satisfied by
points in. P N {x:x; = 0} and by points in P N {x:x; = 1}. Even more powerful
are so-called “split cuts”. An inequality ¢” x < d is a split cut for P if there exist
a € 7" and b € Z such that ¢"x < d is satisfied in P N {x:a”x < b} as well as in
P {x:a”x > b+1};the inequality a” x < b is a witness for this cut. In particular,
any inequality valid in the whole polytope P is a (useless) split cut for P with the
witness 07 x < 0.

(a) Show that each Gomory—Chvatal cut is a special case of a split cut.

(b) Consider the polytopes P, = {(x1.x3) € R?: x| — 2txp, x| + 2txy < 2t},
t =1,2,....Itwas observed by J. A. Bondy that every CP-proof of x; < 0 from
A;x < b, using Gomory—Chvatal cuts has size at least ¢, which is exponential
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