19.10. Prove Lemma 19.40.

Hint: Argue as in the proof of Lemma 19.39 to show that there must be an *i* for which $\sum_{j \in I_i} a_j$ 1117 is odd. Consider the set of vectors $V \subset P$ that average to *x* and that differ from *x* exactly on I_i 1118 where they take 0-1 values. Show that $a^T v \leq b$ for all $v \in V$. 1119

19.11. The clique-coloring polytope described in Sect. 19.4 corresponds to the 1120 following maximization problem $MP_{n,l}$ for l = k - 1: Maximize the number of 1121 nodes in a clique of an *n*-vertex graph whose chromatic number does not exceed *l*. 1122 Although *l* is a trivial solution for this problem, Corollary 19.16 show that any 1123 cutting plane proof certifying that no such graph can have a clique on more than *l* 1124 vertices must generate an exponential number of inequalities. That is, quick cutting 1125 plane algorithms cannot solve this maximization problem optimally. Use a lower 1126 bound on the monotone circuit size of clique like functions (Theorem 9.26) to 1127 show that such algorithms cannot even *approximate* this problem: any cutting plane 1128 proof certifying that no *l*-colorable graph can have a clique on k > l vertices must 1129 generate an exponential in min $\{l, n/k\}^{\Omega(1)}$ number of inequalities. 1130

19.12. ■ Research Problem. Given a graph G = (V, E), consider the following 1131 communication game. Alice gets a subset $A \subseteq V$, Bob gets a subset $B \subseteq V$ such 1132 that $|A \cup B| > \alpha(G)$. Hence, $A \cup B$ must contain at least one edge. The goal is to 1133 find such an edge. Does there exist *n*-vertex graphs *G* for which this game requires 1134 $\omega(\log^2 n)$ bits of communication?

Comment: By Lemma 19.8, this would imply that every tree-like CP proof with bounded 1136 coefficients for the unsatisfiability of the system (19.2) augmented with the inequality $\sum_{\nu \in V} x_{\nu} \ge 1137$ $\alpha(G) + 1$ must have super-polynomial size. This would be the first strong lower bound for a nonartificial system corresponding to an important optimization problem, the maximum independent 1139 set problem. 1140

19.13. (Split cuts) Given a polytope $P = \{x \in \mathbb{R}^n : Ax \le b\}$, a *cut* for P is any 1141 inequality $c^T x \le d$ with integral coefficients such that $c^T x \le d$ is valid in the 0-1 1142 restriction $P \cap \{0, 1\}^n$ of P. In this case one also says that $Ax \le b$ implies $c^T x \le d$. 1143 In CP-proofs we used simplest cuts: if $a^T x \le b$ is valid in P, and if all coordinates 1144 of a are dividable by an integer c, then $(a/c)^T x \le \lfloor b/c \rfloor$ is valid in $P \cap \{0, 1\}^n$. 1145 There are also other types of cuts. An inequality $c^T x \le d$ is a *lift-and-project cut* 1146 for $P = \{x \in [0, 1]^n : Ax \le b\}$ if for some index $i, c^T x \le d$ is satisfied by 1147 points in $P \cap \{x: x_i = 0\}$ and by points in $P \cap \{x: x_i = 1\}$. Even more powerful 1148 are so-called "split cuts". An inequality $c^T x \le d$ is a *split cut* for P if there exist 1149 $a \in \mathbb{Z}^n$ and $b \in \mathbb{Z}$ such that $c^T x \le d$ is satisfied in $P \cap \{x: a^T x \le b\}$ as well as in 1150 $P \cap \{x: a^T x \ge b+1\}$; the inequality $a^T x \le b$ is a *witness* for this cut. In particular, 1151 any inequality valid in the whole polytope P is a (useless) split cut for P with the 1152 witness $0^T x \le 0$.

- (a) Show that each Gomory–Chvátal cut is a special case of a split cut.
- (b) Consider the polytopes $P_t = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 2tx_2, x_1 + 2tx_2 \le 2t\}$, 1155 $t = 1, 2, \dots$ It was observed by J. A. Bondy that every CP-proof of $x_1 \le 0$ from 1156 $A_t x \le b_t$ using Gomory–Chvátal cuts has size at least t, which is exponential 1157

1116