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19.10. Prove Lemma 19.40. 1116

Hint: Argue as in the proof of Lemma 19.39 to show that there must be an i for which
P

j2Ii
aj 1117

is odd. Consider the set of vectors V � P that average to x and that differ from x exactly on Ii 1118

where they take 0-1 values. Show that aT v � b for all v 2 V . 1119

19.11. The clique-coloring polytope described in Sect. 19.4 corresponds to the 1120

following maximization problem MPn;l for l D k � 1: Maximize the number of 1121

nodes in a clique of an n-vertex graph whose chromatic number does not exceed l . 1122

Although l is a trivial solution for this problem, Corollary 19.16 show that any 1123

cutting plane proof certifying that no such graph can have a clique on more than l 1124

vertices must generate an exponential number of inequalities. That is, quick cutting 1125

plane algorithms cannot solve this maximization problem optimally. Use a lower 1126

bound on the monotone circuit size of clique like functions (Theorem 9.26) to 1127

show that such algorithms cannot even approximate this problem: any cutting plane 1128

proof certifying that no l-colorable graph can have a clique on k > l vertices must 1129

generate an exponential in minfl; n=kg˝.1/ number of inequalities. 1130

19.12. Research Problem. Given a graph G D .V;E/, consider the following 1131

communication game. Alice gets a subset A 	 V , Bob gets a subset B 	 V such 1132

that jA [ Bj > ˛.G/. Hence, A [ B must contain at least one edge. The goal is to 1133

find such an edge. Does there exist n-vertex graphs G for which this game requires 1134

!.log2 n/ bits of communication? 1135

Comment: By Lemma 19.8, this would imply that every tree-like CP proof with bounded 1136

coefficients for the unsatisfiability of the system (19.2) augmented with the inequality
P

v2V xv � 1137

˛.G/C 1 must have super-polynomial size. This would be the first strong lower bound for a non- 1138

artificial system corresponding to an important optimization problem, the maximum independent 1139

set problem. 1140

19.13. (Split cuts) Given a polytope P D fx 2 R
nWAx � bg, a cut for P is any 1141

inequality cT x � d with integral coefficients such that cT x � d is valid in the 0-1 1142

restrictionP\f0; 1gn of P . In this case one also says thatAx � b implies cT x � d . 1143

In CP-proofs we used simplest cuts: if aT x � b is valid in P , and if all coordinates 1144

of a are dividable by an integer c, then .a=c/T x � bb=cc is valid in P \ f0; 1gn. 1145

There are also other types of cuts. An inequality cT x � d is a lift-and-project cut 1146

for P D fx 2 Œ0; 1�n W Ax � bg if for some index i , cT x � d is satisfied by 1147

points in P \ fxWxi D 0g and by points in P \ fxWxi D 1g. Even more powerful 1148

are so-called “split cuts”. An inequality cT x � d is a split cut for P if there exist 1149

a 2 Z
n and b 2 Z such that cT x � d is satisfied in P \ fxW aT x � bg as well as in 1150

P \fxW aT x � bC1g; the inequality aT x � b is a witness for this cut. In particular, 1151

any inequality valid in the whole polytope P is a (useless) split cut for P with the 1152

witness 0T x � 0. 1153

(a) Show that each Gomory–Chvátal cut is a special case of a split cut. 1154

(b) Consider the polytopes Pt D f.x1; x2/ 2 R
2Wx1 � 2tx2; x1 C 2tx2 � 2tg, 1155

t D 1; 2; : : :. It was observed by J. A. Bondy that every CP-proof of x1 � 0 from 1156

Atx � bt using Gomory–Chvátal cuts has size at least t , which is exponential 1157




