Fig. 7.1 The cases when $y \in V$ (left) and when $y \in E$ (right)

By (7.1), it remains to show that the entire matrix M has full row-rank $|E|$ over 81 $\mathrm{GF}(2)$. For this, take an arbitrary subset $\emptyset \neq F \subseteq E$ of edges. We have to show 82 that the columns of the submatrix M^{\prime} of M corresponding to the rows labeled by 83 edges in F cannot sum up to the all- 0 column over GF(2).

If F is not an even factor, that is, if the number of edges in F containing some 85 vertex v is odd, then the column of v in M^{\prime} has an odd number of 1 s , and we are 86 done.

So, we may assume that F is an even factor. Take an arbitrary edge $y=u v \in F$, and let $H \subseteq F$ be the set of edges in F incident to at least one endpoint of y. Since both vertices u and v have even degree (in F), the edge y has a nonempty intersection with an odd number of edges in F : one intersection with itself and an even number of intersections with the edges in $H \backslash\{y\}$. Thus, the y-th column of M^{\prime} contains an odd number of 1 s , as desired.

Explicit constructions of dense triangle-free graphs without four-cycles are 88 known.

Example 7.4. (Point-line incidence graph) For a prime power q, a projective plane 90 $P G(2, q)$ has $n=q^{2}+q+1$ points and n subsets of points (called lines). Every 91 point lies in $q+1$ lines, every line has $q+1$ points, any two points lie on a unique 92 line, and any two lines meet is the unique point. Here is a $P G(2,2)$, known as the ${ }^{93}$ Fano plane (with 7 lines and 3 points on a line):

Now, if we put points on the left side and lines on the right, and joint a point x with 96 a line L by an edge if and only if $x \in L$, then the resulting bipartite $n \times n$ graph will 97 have $(q+1) n=\Theta\left(n^{3 / 2}\right)$ edges and contain no four-cycles. The graph clearly has 98 no triangles, since it is bipartite.

Example 7.5. (Sum-product graph) Let p be a prime number and take a bipartite 100 $n \times n$ graph with vertices in both its parts being pairs (a, b) of elements of a finite 101 field \mathbb{Z}_{p}; hence, $n=p^{2}$. We define a graph G on these vertices, where (a, b) and 102 (c, d) are joined by an edge if and only if $a c=b+d$ (all operations modulo p). ${ }^{103}$ For each vertex (a, b), its neighbors are all pairs $(x, a x-b)$ with $x \in \mathbb{Z}_{p}$. Thus, 104 the graph is p-regular, and has $n=n p=p^{3}=n^{3 / 2}$ edges. Finally, the graph 105 cannot have four-cycles, because every system of two equations $a x=b+y$ and 106 $c x=d+y$ has at most one solution.

