95

Fig. 7.1 The cases when $y \in V$ (*left*) and when $y \in E$ (*right*)

By (7.1), it remains to show that the entire matrix M has full row-rank |E| over s1 GF(2). For this, take an arbitrary subset $\emptyset \neq F \subseteq E$ of edges. We have to show s2 that the columns of the submatrix M' of M corresponding to the rows labeled by s3 edges in F cannot sum up to the all-0 column over GF(2).

If *F* is not an even factor, that is, if the number of edges in *F* containing some 85 vertex *v* is odd, then the column of *v* in *M'* has an odd number of 1s, and we are 86 done. 87

So, we may assume that *F* is an even factor. Take an arbitrary edge $y = uv \in F$, and let $H \subseteq F$ be the set of edges in *F* incident to at least one endpoint of *y*. Since both vertices *u* and *v* have even degree (in *F*), the edge *y* has a nonempty intersection with an *odd* number of edges in *F*: one intersection with itself and an even number of intersections with the edges in $H \setminus \{y\}$. Thus, the *y*-th column of *M'* contains an odd number of 1s, as desired. \Box

Explicit constructions of dense triangle-free graphs without four-cycles are ⁸⁸ known. ⁸⁹

Example 7.4. (Point-line incidence graph) For a prime power q, a projective plane 90 PG(2,q) has $n = q^2 + q + 1$ points and n subsets of points (called lines). Every 91 point lies in q + 1 lines, every line has q + 1 points, any two points lie on a unique 92 line, and any two lines meet is the unique point. Here is a PG(2,2), known as the 93 Fano plane (with 7 lines and 3 points on a line): 94

Now, if we put points on the left side and lines on the right, and joint a point x with 96 a line L by an edge if and only if $x \in L$, then the resulting bipartite $n \times n$ graph will 97 have $(q + 1)n = \Theta(n^{3/2})$ edges and contain no four-cycles. The graph clearly has 98 no triangles, since it is bipartite. 99

Example 7.5. (Sum-product graph) Let p be a prime number and take a bipartite 100 $n \times n$ graph with vertices in both its parts being pairs (a, b) of elements of a finite 101 field \mathbb{Z}_p ; hence, $n = p^2$. We define a graph G on these vertices, where (a, b) and 102 (c, d) are joined by an edge if and only if ac = b + d (all operations modulo p). 103 For each vertex (a, b), its neighbors are all pairs (x, ax - b) with $x \in \mathbb{Z}_p$. Thus, 104 the graph is p-regular, and has $n = np = p^3 = n^{3/2}$ edges. Finally, the graph 105 cannot have four-cycles, because every system of two equations ax = b + y and 106 cx = d + y has at most one solution.