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One of the problems in the theory of circuits is a synthesis of circuits
implementing some functions and including possibly less elements. In many
cases construction of different “devices” implies a synthesis of circuits of a
common type. Let us give some examples.

1. Electric circuits, built of rectifiers (i.e. bipolar elements of one-way
current conductivity) are considered. They have poles of two sorts: inputs
and outputs. So the problem is to synthesize a circuit implementing given
matrix of full conductivities (from inputs to outputs) via less possible number
of rectifiers.

2. Assume numbers A1, . . . , Ap are given. It is required to form a sums
of some of them Si =

∑qi
k=1Ajk (jk 6= jl if k 6= l) via less possible number of

additions (storage of intermediate results is permitted).
These cybernetics problems, as well as some others (see e.g. [1], [2, p. 104]),

lead to the notion of rectifier circuit.
1◦. R e c t i f i e r is a bipolar oriented element, i.e. an element with an

input pole a and output pole b (notation
−→
ab). We will consider circuits [3]

built of rectifiers (r e c t i f i e r c i r c u i t s). Term non-self-intersecting
path −−→c0c1,−−→c0c1, . . . ,−−−−→cn−1cn as o r i e n t e d c h a i n, c0 — the b e g i n n i n g,
cn — the e n d of the chain.

Correspond to each (ordered) pair of poles c, d of a rectifier circuit a
number (c, d), which is 1 if c = d or there exists an oriented chain with the
beginning c and the end d, and which is 0 if the opposite holds.

2◦. Consider one important type of rectifier circuits.
D e f i n i t i o n. R e c t i f i e r (p, q)-c i r c u i t (or, to be shorter, (p, q)-

circuit) is a rectifier circuit with p + q poles a1, . . . , ap, b1, . . . , bq satisfying
the following conditions:
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1) (ai1 , ai2) = 0; i1 6= i2, 1 ≤ i1, i2 ≤ p;
2) (bj1 , bj2) = 0; j1 6= j2, 1 ≤ j1, j2 ≤ q;
3) (bj, ai) = 0; 1 ≤ i ≤ p, 1 ≤ j ≤ q.
Poles a1, . . . , ap are considered as i n p u t s, poles b1, . . . , bq are considered

as o u t p u t s of the (p, q)-circuit. Define r a n k of a (p, q)-circuit as the
length of the longest oriented chain from input to output.

Assign to each (p, q)-circuit S a matrix A = ||αij||; 1 ≤ i ≤ p, 1 ≤
j ≤ q, αij = (ai, bj). Then we will define that (p, q)-circuit S implements
a matrix A. Evidently, any matrix with p rows and q columns (elements 0
and 1) can be implemented by some (p, q)-circuit.

Introduce the following functions: Br(A) — minimal number of recti-
fiers in a rectifier circuit of the rank not larger than r implementing ma-
trix A; Br(p, q) = maxBr(A) (maximum covers all matrices with p rows and
q columns); B(A) — minimal number of rectifiers in a rectifier circuit imple-
menting matrix A (rank is not constrained); B(p, q) is defined analogously1.

One can easily notice that Br(A) = Br(A
′) (A′ is a matrix transposed to

A), and consequently Br(p, q) = Br(q, p), B(p, q) = B(q, p). Furthermore,
B(p, q) ≤ Br(p, q). Yet, it is evident that B1(A) is a number of ones in matrix
A and B1(p, q) = pq.

L e m m a.
B2(p, q) ≤ p+ q · 2q−1.

P r o o f. Divide rows of a matrix (with p rows and q columns) into
groups of equal rows. Evidently, number t of such groups does not exceed 2q.
Assume k-th group contains pk rows with numbers i1, i2, . . . , ipk . If each of
these rows has qk ones (in positions j1, j2, . . . , jqk), then the group of rows can
be implemented by a (pk, qk)-circuit of rank 2 composed of pk + qk rectifiers
−−→airck (r = 1, . . . , pk),

−−→
ckbjs (s = 1, . . . , qk), where ck is a vertex different from

ai and bj (see fig. 1). Implementation of the whole matrix requires

t∑

k=1

pk +
t∑

k=1

qk ≤ p+

q∑

l=0

∑

qk=l

l ≤ p+

q∑

l=0

C l
q · l = p+ q · 2q−1

rectifiers. Fig. 1 represents a matrix and a circuit implementing it.

1An analogous function was introduced for the first time by Shannon [4] for estimation
the number of switches in switching circuits, implementing Boolean functions.
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Fig. 1

T h e o r e m 1. Assume sequence (p1, q1), . . . , (pn, qn), . . . satisfies
conditions pn → ∞, pn ≥ qn and lg2 pn

qn
→ ∞.

Then
B2(pn, qn) ∼

pnqn
lg2 pn

.

P r o o f. 1) U p p e r b o u n d (and a method of synthesis). A matrix to
implement is divided into parts, each part contains sn = [lg2 pn − 2 lg2 lg2 pn]
columns (possibly one part contains less columns). Implementation of any
part requires (lemma) not larger than

pn + sn · 2sn−1 ≤ pn +
pn(lg2 pn − 2 lg2 lg2 pn)

2(lg2 pn)
2

= pn(1 + o(1))

rectifiers. The number of parts is not larger than

[
qn
sn

]
+ 1 ≤ qn

sn
+ 1 <

qn
lg2 pn − 2 lg2 lg2 pn − 1

+ 1 =
qn

lg2 pn
(1 + o(1)).

Totally not larger than pnqn
lg2 pn

(1 + o(1)) rectifiers are used.

2) L o w e r b o u n d, asymptotically equal to the upper one, follows
from the fact that the number of minimal (p, q)-circuits containing not larger
than k rectifiers does not exceed Ck

1C
p+q
2 (p+ q)k.

R e m a r k s. Under the conditions of the theorem 1:
1) pnqn

lg2 pn+lg2 qn
(1 + o(1)) < B(pn, qn) <

pnqn
lg2 pn

(1 + o(1)).

The first inequality follows from the theorem 2 [3], the second — from
the theorem 1 (this paper).

2) If, in addition lg2 qn
lg2 pn

→ 0 holds, then

B(pn, qn) ∼ B2(pn, qn) ∼
pnqn
lg2 pn

.
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3◦. Let us point to one application of rectifier circuits. We will con-
sider circuits constructed of contacts of entrance relays (switches) and recti-
fiers (i.e. bipolar devices with one-way current conductivity) implementing
Boolean functions as c o n d u c t i v i t y f u n c t i o n s2.

Let LSR(n) be the minimal total number of switches and rectifiers, allow-
ing circuit to implement any Boolean function of n variables.

T h e o r e m 2.

LSR(n) ∼
2n

n
.

P r o o f. 1) U p p e r b o u n d. Any Boolean function of n variables
can be represented via table T with two inputs [6] (see Table 1). A circuit is
constructed (according to the Table 1) of two switching trees [4] of variables
x1, . . . , xn−k and xn−k+1, . . . , xn and rectifier multipole. Number of inputs of
the multipole fits the number of outputs of the first tree, number of outputs
of the multipole fits the number of inputs of the second tree, matrix of the
full conductivities fits the table 1 (precisely, it fits the part of the table, which
contains values of the function). Poles of the multipole are to be connected
with the corresponding poles of the trees (fig. 2)3.

Table 1

xn

xn−k+1

0

0

0

1

σn

σn−k+1

1

1 x1 xn−k

0 0

0 1

σ1 σn−k

1 1

f (σ1 σn)

2Circuits constructed of switches and rectifiers (and also resistors) can implement
Boolean functions in another way — as voltage functions (see, e.g., [5]).

3This approach to the synthesis of switching-and-rectifier circuits was proposed by
G. N. Povarov and S. V. Yablonskiy.
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Fig. 2

Let k = [2 lg2 n]. Then the number of switches in the trees is less than

2

(
2n

2[2 lg2 n]
+ 2[2 lg2 n]

)
≤ 2

(
2 · 2n
n2

+ n2

)
=

4 · 2n
n2

(1 + o(1)).

The rectifier multipole has pn = 2n−[2 lg2 n] inputs and qn = 2[2 lg2 n] outputs.
It is easy to check that conditions of the theorem 1 are satisfied. Thus a
rectifier (pn, qn)-pole circuit can be constructed, which contains not larger
than pnqn

lg2 pn
(1 + o(1)) = 2n

n
(1 + o(1)) rectifiers. The total number of switches

and rectifiers in the circuit is also does not exceed 2n

n
(1 + o(1)).

2) L o w e r b o u n d — see [3, example 1◦].

4◦. Define L̃(n) as the minimal number such that any Boolean function
of n variables can be implemented as a conductivity function by a switching-
and-rectifier circuit, containing not larger than L̃(n) switches.

T h e o r e m 3. For any ǫ > 0 and n > n(ǫ)

1

2
· 2n/2(1− ǫ) < L̃(n) < 3

√
2 · 2n/2.

P r o o f. 1) U p p e r b o u n d. Set k = [n/2] in the construction from
the proof of the theorem 2.

2) L o w e r b o u n d. Evidently, if a function can be implemented by
a circuit with not larger than m switches it can be implemented by a circuit
with exactly m switches. Each such circuit can be produced from some
rectifier (2m+ 2)-pole circuit via connection of switches between (2i− 1)-th
and 2i-th poles (i = 1, . . . ,m); poles of the obtained circuit are (2m+ 1)-th
and (2m+ 2)-th poles of the rectifier multipole. It is easy to see that if two
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rectifier multipoles has the same matrices of full conductivities, then the sets
of functions, implemented by circuits obtained from any of the multipoles,
are the same. Thus the number of functions implemented by circuits with
not larger than m switches does not exceed

2(2m+2)(2m+1)(2n)m = nm · 24m2+7m+2 = Nm.

One can verify straightforwardly that if m ≤ 1
2
· 2n/2 − lg2 n+7

8
then Nm <

22
n

.
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