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In a note [1], for any Boolean function '(x1,… , xn) (in particular, for a partially de-
fined), the inequality

L�(') ⩾
|R'|

2

|M0
'| |M1

'|
(1)

was proved. Here,M1
' is some subset of vertices (in the n-dimensional Boolean cube) on

which ' takes the value 1,M0
' is a subset of vertices on which ' takes the value 0, andR'

is a set of all edges connecting vertices from M1
' with vertices from M0

' (as usual, |M|

stands for the cardinality of the setM). In [1], it was shown on a number of examples that
the inequality (1) allows one to obtain quadratic (with respect to n) lower bounds for the
complexity of Π-circuits, and hence of formulae over the basis {∨, &, ̄}, implementing
a function '. Here, one more such example is presented.

We consider an approximate computation of a real function y = f (x) on an interval
[a, b]. This reduces to the computation of n most significant binary digits of y from the
given n most significant binary digits of x. To simplify notations, let us assume [a, b] ⊂
[0, 1), and y ∈ [0, 1) for all x ∈ [a, b]. Then,

x =
∞
∑

i=1
xi2−i,

y = f (x) =
∞
∑

i=1
yi(x)2−i,

where any xi and yi(x) (1 ⩽ i < ∞) is either 0 or 1. Given that x takes any value x =
∑n

i=1 xi2
−i ∈ [a, b], the digits y1(x),… , yn(x) may be viewed as the partially defined

Boolean functions of variables x1,… , xn.
∗Originally published in Russian in “Problemy kibernetiki” (“Problems of cybernetics”), Vol. 26.
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T h e o r e m. If in some subinterval [a′, b′] ⊆ [a, b], a function f (x) has a continuous
second derivative f ′′(x) ≢ 0, then for m = m(n)→∞ (m(n) ⩽ n),

L�(ym) ⪰ m2.

In particular, for m ≍ n,
L�(ym) ⪰ n2.

The p r o o f goes by bounding the quantities involved in the inequality (1). Obviously,
|M1

ym
| ⩽ 2n, and |M0

ym
| ⩽ 2n. It remains to lower bound |Rym|.

Let us associate with every binary vector �̃ = (�1,… , �n) the number � =
∑n

i=1 �i2
−i.

Clearly, for �j = 0, the numbers � and �+2−j correspond to adjacent vertices. Therefore,
if � ∈ [a, b], �j = 0, and � + 2−j ∈ [a, b], then an edge outgoing from the vertex �̃ in
j-th direction belongs to Rym iff

ym(� + 2−j) ≠ ym(�). (2)

To verify (2) in an interval [a′, b′], we use the Taylor’s formula

f (� + 2−j) = f (�) + 2−jf ′(�) + 2−(2j+1)f ′′(�), (3)

where � = �(�) ∈ [a′, b′]. By the condition of the theorem, there exist such " > 0 and a
subinterval [a′′, b′′] ⊆ [a′, b′] that the inequality

|f ′′(x)| ⩾ " (4)

holds for all x ∈ [a′′, b′′]. Since the derivative f ′(x) is monotone on [a′′, b′′], there exist
a subinterval [c, d] ⊆ [a′′, b′′] where f ′(x) preserves its sign. On this subinterval, f ′′(x)
preserves the sign as well (see (4)). To simplify the analysis of the formula (3), we restrict
ourselves to considering of the subinterval [c, d].

There are 4 possibilities depending on the signs of f ′(x) and f ′′(x) on [c, d]. We
choose to consider in details the case when f ′(x) > 0 and f ′′(x) > 0. Let

f ′(x) =
∞
∑

i=−r
y′i(x)2

−i,

f ′′(x) =
∞
∑

i=−s
y′′i (x)2

−i,
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where r, s are nonnegative integers, and digits y′i(x), y
′′
i (x) take values 0 and 1. By applying

of the formula (3) with respect to the interval [c, d], it can be easily deduced that to satisfy
(2) it is sufficient for the sum

∞
∑

i=m+1
yi(�)2−i + 2−j

∞
∑

i=m−j
y′i(�)2

−i + 2−(2j+1)
∞
∑

i=m−(2j+1)
y′′i (�)2

−i (5)

to contain 1 in m-th position after comma. Note that when adding three numbers, a carry
to the most significant position does not exceed 2. Thus, as easy to observe, the m-th digit
of the sum (5) is 1, e.g. if “addition by columns” of the summands from (5) leads to a
configuration

digit positions: m m + 1 m + 2 ⋅ ⋅ ⋅
0 ⋅ ⋅ ⋅ ⋅

1 0 0 ⋅ ⋅ ⋅
0 0 0 ⋅ ⋅ ⋅

meaning that
1◦) ym+1(�) = 0,
2◦) y′m−j(�) = 1, y′m−j+1(�) = 0, y′m−j+2(�) = 0,
3◦) y′′m−(2j+1)(�) = y

′′
m−2j(�) = y

′′
m−(2j−1)(�) = 0,

or to a configuration

digit positions: m m + 1 m + 2 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅

0 1 0 ⋅ ⋅ ⋅
0 0 0 ⋅ ⋅ ⋅

meaning that
1◦◦) ym+1(�) = 1,
2◦◦) y′m−j(�) = 0, y′m−j+1(�) = 1, y′m−j+2(�) = 0,
3◦◦) y′′m−(2j+1)(�) = y

′′
m−2j(�) = y

′′
m−(2j−1)(�) = 0.

So, we are left for any � =
∑n

i=1 �i2
−i ∈ [c, d] to lower bound the number of val-

ues j satisfying �j = 0, � + 2−j ∈ [c, d], and either conditions 1◦, 2◦, 3◦, or conditions
1◦◦, 2◦◦, 3◦◦.

It is clear that for any � =
∑n

i=1 �i2
−i, either condition 1◦ or condition 1◦◦ holds (but

not both). Let
l =

[m
2
+ log2m

]

. (6)
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In what follows, we only consider values

j > l.

Then (for large enough n) conditions 3◦ and 3◦◦ are satisfied (here we exploit the fact that
f ′′(x) is bounded from above in [c, d]), and for almost all � =

∑n
i=1 �i2

−i ∈ [c, d], the
condition � + 2−j ∈ [c, d] is fulfilled. Therefore, it is desirable now to lower bound
the number of values j > l satisfying �j = 0 and 2◦, and the number of values j > l
satisfying �j = 0 and 2◦◦. It suffices to obtain such bounds not for all but just for almost
all � =

∑n
i=1 �i2

−i ∈ [c, d].
In any vector �̃ = (�1,… , �n), take a subvector �̃′ = (�1,… , �l). We are going to

show that for almost every �′ =
∑l

i=1 �i2
−i ∈ [c, d], the vector (y′0(�

′),… , y′m−l+1(�
′))

1) equals to (y′0(x),… , y′m−l+1(x)) for any x ∈ [�
′, �′ + 2−l),

2) contains at least m
48
− o(m) substrings (100),

3) contains at least m
48
− o(m) substrings (010).

Let k(�̃) denote the number of different values �′ =
∑l

i=1 �i2
−i ∈ [c, d] satisfying

(y′−r(�
′),… , y′0(�

′),… , y′m−l+1(�
′)) = �̃ (7)

(here �̃ is a fixed vector). Note that if �′ ∈ [c, d], then � ∈ (f ′(c) − 2−(m−l+1), f ′(d)]. Due
to the fact that f ′′(x) is bounded from below (see (4)) and from above in [c, d], and in the
view of (6), it can be easily deduced that

k(�̃) ≍ 2−(m−l+1)
2−l

≍ m2 (8)

holds for all � ∈ (f ′(c) − 2−(m−l+1), f ′(d)], except for the two boundary values of �, when
k(�̃) may be smaller. Since among all values �′ satisfying (7), at most one (the largest)
value does not satisfy 1), it follows from (8) that the property 1) holds for almost all �′ ∈
[c, d].

Consider splitting of a binary vector �̃ = (�−r,… , �0,… , �m−l+1) of length � = m −
l + r + 2 into three digit substrings. Applying the Bernoulli theorem (see e.g. [2]), it
is easy to obtain that almost all vectors �̃ contain at least �

24
− o(�) triples (100) and at

least �
24
− o(�) triples (010). Since (6) holds, and r is a finite constant, it follows that

for almost all �̃, vectors (�0,… , �m−l+1) satisfy properties 2) and 3). Due to the fact
that f ′(d) − f ′(c) is fixed (and is different from zero), the same holds for almost all
� ∈ [f ′(c), f ′(d)], and in the view of (8), also for almost all �′ ∈ [c, d], given that
(�0,… , �m−l+1) = (y′0(�

′),… , y′m−l+1(�
′)).
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Suppose that �̃ = (�1,… , �n) starts with a subvector �̃′ = (�1,… , �l), where �′ sat-
isfies properties 1), 2), and 3). Then, as easy to notice, each of the conditions 2◦ and 2◦◦
holds for at least m

48
− o(m) values of j satisfying l + 1 ⩽ j ⩽ m. By the Bernoulli theo-

rem, for almost all such �, both among the former group of values j, and among the latter
group, there will be at least m

96
− o(m) values providing �j = 0. Consequently, for almost

all � ∈ [c, d], there exist m
96
− o(m) values j > l ensuring �j = 0 and the condition 2◦, and

m
96
− o(m) values j > l ensuring �j = 0 and the condition 2◦◦. It follows that almost every

vertex �̃ satisfying � ∈ [c, d] has m
96
− o(m) outgoing edges belonging to Rym , hence

|Rym| ⪰ m2
n.

In the cases when f ′(x) and f ′′(x) have other signs on [c, d], in order to bound the
number of sums (5) containing 1 in m-th position, we consider other configurations (look
at the table).

f ′′(x) > 0 f ′′(x) < 0

f ′(x) > 0
0 . . . 1 . . .

100 . . . and 010 . . .
000 . . . 000 . . .

0 . . . 1 . . .
101 . . . and 011 . . .
000 . . . 000 . . .

f ′(x) < 0
0 . . . 1 . . .

011 . . . and 101 . . .
000 . . . 000 . . .

0 . . . 1 . . .
010 . . . and 100 . . .
000 . . . 000 . . .

Applying the inequality (1), we complete the proof of the theorem.
The conditions of the theorem (under an appropriate scaling of functions and argu-

ments) are satisfied by all nonlinear analytic functions, in particular, by y = x2 and y = 1
x
.

Thus, the obtained bounds hold for the formulae over the basis {∨, &, ̄} computing digits
of the product, and of the quotient.
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