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Abstract

By a probabilistic construction, we find a bipartite graph having average degree
d which can be expressed as a conjunctive normal form using C log d clauses. This
negatively resolves Research Problem 1.33 of Jukna.

1 Introduction

We say G = (V,W,E) is a bipartite graph over V and W if V and W are sets of vertices
and E ⊂ V ×W is the set of edges. Given two graphs G1 and G2 over V and W with
G1 = (V,W,E1) and G2 = (V,W,E2), we may define union and intersection edge-setwise,
where

G1 ∪G2 = (V,W,E1 ∪ E2),

and
G1 ∩G2 = (V,W,E1 ∩ E2).

We may define unions and intersections of families of bipartite graphs over V and W .

A special type of graph we consider is CL(A,B), the clause graph of A ⊂ V and B ⊂ W .
Then

CL(A,B) = (V,W, (A×W ) ∪ (V ×B)) .

(The graph CL(A,B) is called a clause graph because it is the union of all stars of vertices
in A and B.)

We say that sets A1, . . . , An ⊂ V and B1, . . . , Bn ⊂ W form a conjunctive normal form
using n clauses for a graph G over V and W if

G =
n⋂
i=1

CL(Ai, Bi).
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In Jukna’s recent book [Juk], he poses the following conjecture as Research Problem 1.33.
(In fact, the conjecture is a recurring theme in the book and reappears as Research problems
4.9 and 11.17.) A slightly stronger conjecture was made in [PRS] p. 523.

Conjecture 1.1. There is a universal ε > 0 so that any bipartite graph G having no
K2,2’s as subgraphs and having average degree d has no conjunctive normal form using
. dε clauses.

A positive result for Conjecture 1.1 would be important because it would allow one to
construct an explicit Boolean function so that any low depth circuit computing it would
require many gates. See ([Juk], Chapter 11).

Unfortunately, we prove

Theorem 1.2. For all ε > 0 given d sufficiently large, there is a bipartite graph G with
average degree & d1−ε so that G has a conjunctive normal form with at most O(log d)
clauses.

(Here we use the notation A & B to mean that there is a universal constant C, independent
of d so that CA ≥ B. We have stated theorem 1.2 in this way because d will be a parameter
at the beginning of our construction. Of course log d ∼ log(d1−ε).)

Clearly, theorem 1.2 contradicts conjecture 1.1. Indeed, we remark that aside from con-
stants, the theorem is sharp. Given a K2,2-free graph G = (V,W,E) with average degree
d, we may assume WLOG that there are at least d vertices v1, . . . vd of V adjacent to
more than two elements of W each. We let Wv be the set of elements of W adjacent to
v. Then the sets Wv1 , . . . ,Wvd are distinct since in particular each intersection of two of
them contains at most one element by the K2,2-free condition. However, if we have

G =
n⋂
i=1

CL(Ai, Bi),

then we have
Wv =

⋂
i:v/∈Ai

Bi.

Thus there are at most 2n distinct sets Wv. Hence n ≥ log2 d.

We now explain the idea behind theorem 1.2. We consider the simplest model of a random
bipartite graph between sets of vertices having N elements each. We choose i.i.d. Bernoulli
random variables Xv,w indexed by V ×W . We define the random graph

G = (V,W,E),

where
E = {(v, w) : Xv,w = 1}.
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To get average degree close to d, we set the probability that a given Xv,w = 1 to be d
N .

We should imagine that N is quite large compared to d, say N = d10. We calculate the
probability that there is a K2,2 involving vertices v1, v2, w1, w2. By the independence of
the random variables, clearly the probability is d4

N4 . Thus we expect the graph G to have
only d4 copies of K2,2. But this is quite small compared to the number of vertices of G.
By removing 2d4 vertices, we should be able to get a K2,2-free graph.

To prove Theorem 1.2, we will replace this simple model of a random graph by a random
conjunctive normal form. We will show that it has roughly the same behavior as the
random graph so that after removing a small number of vertices, which we can do without
changing the number of clauses in the conjunctive normal form, we arrive at a K2,2-free
graph.

Finally, we make the remark that a simple argument using Cauchy-Schwarz shows that to
get a K2,2-free graph of average degree d on N vertices, we need N & d2. We let Iij be the
edge matrix of the graph of the graph, where here i and j run from 1 to N . Then

N∑
i=1

N∑
j=1

Iij = Nd.

On the other hand,
N∑
i=1

N∑
j=1

Iij ≤ N
1
2

 N∑
i=1

(
N∑
j=1

Iij)2

 1
2

.

Now, we just expand the inside square, interchange the order of the sum and observe
that ∑

i

IijIik ≤ 1,

when j 6= k by the condition that there are no K2,2’s.

We remark that this Cauchy-Schwarz argument in fact imposes a great deal of structure
on the graph G. This lends us the temerity to make the following conjecture:

Conjecture 1.3. There is a universal ε > 0 so that any bipartite graph G having no K2,2’s
as subgraphs and having average degree d and fewer than d2+ε vertices has no conjunctive
normal form using . dε clauses.

The Conjecture 1.3 can be viewed as a replacement for Conjecture 1.1. The implications
for circuit complexity would be the same, as is implicit in Jukna’s discussion after his
Research Problem 11.17.

Acknowledgements: The author is partially supported by NSF grant DMS-1001607 and
a fellowship from the Guggenheim foundation. He would like to thank Esfandiar Haghverdi
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for helpful discussions. He also wishes to thank Stasys Jukna and Sasha Razbarov for
comments on an early draft.

2 Main Argument

We now begin our proof of Theorem 1.2. We start by defining a random conjunctive normal
form, designed to have average degree around d with V and W being sets of size N = d10.
We pick p to be small but independent of d. (Choosing p = 1

100 would suffice.) Now we
define i.i.d. Bernoulli random variables Xj,v and Yj,w indexed respectively by {1, . . . , n}×V
and {1, . . . , n}×W . We set the probability for each of Xj,v and Yj,w to be 1 to be p. Now
we define

Ai = {v : Xi,v = 0},

and
Bi = {w : Yi,w = 0}.

We choose n so that
(1− p2)n ∼ d

N
. (2.1)

We achieve Equation 2.1 by picking n to be the nearest integer to ( 1
p2

) ln(Nd ). In particular,
this means that n is O(log d). We let

G =
n⋂
i=1

CL(Ai, Bi).

We will show that after a little pruning, we can modify G to have no K2,2’s and still have
average degree of at least d1−ε.

We now investigate the number of K2,2’s in the graph G.

Lemma 2.1. Let G be as above. Let v1, v2 ∈ V distinct and w1, w2 ∈ W distinct. The
probability that there is a K2,2 in G on the vertices v1, w1, v2, w2 is at most d4−δ

N4−δ , where δ
is small depending only on p.

Proof. We observe that v1, w1, v2, w2 fail to be a K2,2 only when there is some j for which
one of (v1, w1), (v1, w2), (v2, w1), (v2, w2) lies in the product Acj×Bc

j . These are independent
events for different j. Now using inclusion-exclusion, we easily see that the probability that
a K2,2 is not ruled out by the jth clause is 1−4p2 +O(p3). (This is because the event that
the jth clause forbids two or more edges of a given K2,2, requires at least three of the four
vertices to be in Aj or Bj . Thus these events have probability O(p3).) By independence
of the clauses, the probability that the given K2,2 is not ruled out at all, and thus is in the
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graph is (1− 4p2 + O(p3))n. Now in light of the definition of n, namely equation 2.1, the
lemma is proved.

The reader should note that it is here that we have seriously used the presence of more
than log d clauses. The lemma doesn’t work unless p is small.

We still need to ensure that most vertices of the graph have a lot of degree.

Lemma 2.2. Let G be as above. Let ε > 0 and d sufficiently large. Let v ∈ V . Then the
probability that the degree dv of v is satisfies

d1−ε . dv . d1+ε

is at least 9
10 .

We delay the proof of Lemma 2.2 to point out why Lemmas 2.1 and 2.2 imply Theorem
1.2. In light of Lemma 2.2, the expected number of vertices of V having degree & d1−ε is at
least 9N

10 . Therefore, with probability at least 4
5 , the graph G has at least N

2 vertices in V
with degree & d1−ε. (If the probability is more than 1

5 that N
2 vertices have smaller degree,

then the expected number of vertices having smaller degree would be at least N
10 .) On the

other hand from lemma 2.1, the expected number of K2,2’s is at most N δd4−δ which by
picking p sufficiently small is bounded by d5. Thus with probability 1

2 there are at most
2d5 copies of K2,2 in G. Thus there exists an instance of G with N

2 vertices of V having
degree & d1−ε and having at most 2d5 copies of K2,2. Let V ′ be the set of vertices having
degree & d1−ε and not participating in any K2,2’s. Define

G′ = (V ′,W,E′),

where

E′ =
n⋂
i=1

(
(Ai ∩ V ′)×W ) ∪ (V ′ ×Bi)

)
.

Then G′ satisfies the conclusion of theorem 1.2.

It remains to prove lemma 2.2. This will be a relatively simple application of the Chernoff-
Hoeffding bounds. We shall use the following simple form of them.

Proposition 2.3. Given M i.i.d. Bernoulli variables X1, . . . XM , where the probability of
Xj = 1 being p, then if q is the probability that

|(
M∑
j=1

Xj)− pM | ≥ µM,

then
q ≤ 2e−2µ2M .
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Proposition 2.3 follows from the results in [Hoeff].

Now we investigate the degree of a vertex v in G. We let W (v) be the set of vertices in W
which are adjacent to v. By the definition of G, we have that

W (v) =
⋂

i:v/∈Ai

Bi.

In light of proposition 2.3 there is a universal constant C so that with probability 19
20 we

have that
pn− C

√
n ≤ |{i : v /∈ Ai}| ≤ pn+ C

√
n.

Here we have chosen 19
20 to be relatively close to 1. We could have made it even closer to

1 by changing C. We denote m = |{i : v /∈ Ai}| and denote by i1, . . . im the elements of
{i : v /∈ Ai}. From now on, we work in the case

pn− C
√
n ≤ m ≤ pn+ C

√
n.

We name the sizes of the partial intersections

dj = |
j⋂
l=1

Ail |.

then dm is the degree of v. Now, in light of proposition 2.3 we have for d sufficiently large
that with probability at least 1− 1

20n , as long as dj−1 ≥ d
1
2 , we have that

(1− p− d−
1
6 )dj−1 ≤ dj ≤ (1− p+ d−

1
6 )dj−1.

(We can choose the probability in this way since exponential decay in n is faster than
polynomial decay and since d is on the order of a power of n. Here the choice of d

−1
6

contributes to the smallness of the factor µ in Proposition 2.3) Thus by induction, we see
that as long as we are in the case where all these events hold, which has probabiliy at least
9
10 , we have the inequality

N(1− p− d−
1
6 )pn+C

√
n ≤ dm ≤ N(1− p+ d−

1
6 )pn−C

√
n,

which for d sufficiently large, we can rewrite as

Nd−ε(1− p)pn ≤ dm ≤ Ndε(1− p)pn,

which in light of equation 2.1 implies the desired result:

d1−ε . dm . d1+ε.

Here we are using that for p small, we have (1 − p)p = 1 − p2 + o(p2) which is readily
verified by taking the first two derivatives of the function f(x) = (1− x)x near x = 0 and
checking that it is indeed twice differentiable.
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