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Abstract 

Let Q be the basis consisting of a negation and logical “and” and “or” operations over any number of inputs. Every Boolean 

function of n variables can be realised by a Boolean circuit over R using at most 2.122.2”i2 + n + I gates (2 .2”!* + n -t I 

for even n). We also show that almost all Boolean functions have circuit complexity at least I .9 I4 2”” ~ 4n. 
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1. Introduction and preliminaries 

Shannon [ 51 and Lupanov [ 21 have shown that al- 
most all Boolean functions over the basis of all binary 

gates have circuit complexity 2”/n. This classical re- 

sults can be naturally extended to the case of more gen- 
eral bases [ 31. Let kn be the maximal fan-in of gates 

in a (fixed) basis 0, then almost all Boolean functions 
of II variables have circuit complexity 2”/( ku - 1 )n 

over basis R. Similar results for other bases and com- 

plexity measures can be found in the literature [ 1,4,6]. 

In this note we shall consider circuit complexity of 
Boolean functions over the basis with unbounded fan- 

in V- and A-gates. 

A Boolean function f of II variables is any function 

f: {O,l}“* (0, I}. Boolean functions can be com- 
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puted by Boolean circuits. For our purposes a Boolean 
circuit is defined as a directed graph satisfying the 

following conditions. Every vertex (gate) is labeled 

either with one of variable names xl, . . ,x,! or with 

one of the gate operations 7, V, A. The in-degree of 

gates marked with variable names is 0, the in-degree 
of l-gates is 1, and the in-degree of V- and A-gates 
is arbitrary, but at least 2. There is a special output 

gate with out-degree 0, all other gates have arbitrary 
out-degree. Without loss of generality we can suppose 

that all gates are ordered so that every arc points ac- 

cording to the order of gates and the output gate is the 
last one in the order. 

The size C(C) of a Boolean circuit C is the num- 

ber of 1, V, A gates in the circuit C. The (circuit size) 

complexity C(f) of Boolean function f is the mini- 

mal size of a circuit computing the function f. 
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2. Upper bounds 

Let f = pl V . . V pk be a disjunctive normal form 
of a Boolean function of n variables XI,. . . ,x,. We 
can separate variables into two halves, XI, . . , XL~I~J 

and xL,,/21tl,. . . , x,. Then every pi can be written as 
pi = q A r, where q = X; A . A x* 

/VI 
and r = 

q/2]+l 
A . A x,“. Here x* denotes a lteral that can 

be either x or lx. This allows us to rewrite f in the 
following form, 

f= (41 A (rl.1 V”.Vrl,k,)) v”’ 

v (qftt A (r,% I v . . . v rnI, k,,, ) > , 

where qi # qi for i # j. We denote the function 
ri.1 V... V ri.k, by fi and let _fi(Xjn/2J+Iy. . ,x,> = 
$;,I A. .l\si,j, be aconjunctive normal form of fi. THUS 

f=(qlA(s~,~A’..Asl,jl))V..’ 

V ( qm A ( em, I A ’ ’ A Jm,j,,, ) 1 . 

Now we can describe a circuit of depth three (ac- 
tually there is the fourth level of negations of in- 
put variables) for f induced by this decomposition. 
In the bottom level of the circuit we have 2r”i21 V- 
gates computing all 2[“121 maxterms over variables 

x[,I/zj+l~~ . ’ 3 xn. In the middle level we have at most 

2 Ln/2J A-gates, the ith of them computing the function 
qiAfi=x; A”.Ax* L,,,2J A Si, I A . . . A Si,j,. In the top 
level there is an V-gate computing f. 

Thus for every Boolean function f there is a circuit 
over n computing f and having 21n/‘l + 2r”j21 + 12 + 1 
gates.Forevenn wethenhaveC(f) < 2.2”/2+n+1, 

forodd n we have C(f) 6 2’“-“‘2+2’“““2+n+1 = 
(Jz-t l/Jz)2”‘2 + n + I < 2.122. 2”j2 + n + 1. 

3, Lower bounds 

We try to answer the question how good with re- 
spect to the number of gates is the construction from 
the previous section. A trivial lower bound can be ob- 
tained using simple counting argument. Let N(m) be 
the number of different Boolean circuits over 0 with 
not more than 111 gates. For every gate we have three 
possibilities of choosing the type of a gate and 2” 
possibilities of selecting variables contributing to the 
gate. There are m( m - 1) /2 pairs of gates which gives 
2”‘(“‘-‘)/* possibilities of selecting wires. Therefore, 

N(M) < ~3”‘(2”)“‘2”““*-l’,2g, 
m= I 

For M < v’?.2”12 - 2n we have 

log N(M) 6 log( M3M( 2”) M2”‘M-’ )‘2) 

M(M-1) 
<logM+Mlog3+nM+ 2 

M* M2 
< 2 + 2nM < 2 + 2nM + 211~ - II 

M2 
< 2 + 2nM + 2n2 - n 

(M + 2n)2 = 
2 - 

n < 2’ - n. 

Since there are 2”’ different Boolean functions of n 

variables, then almost all of them (at least 22t’( I - 
l/2”) ) must have a circuit size complexity at least 
fi .2”/2 - 2n. 

There can be many different circuits computing the 
same Boolean function. To improve lower bound we 
shall try to count only as few of such circuits as pos- 
sible. To do so we define simple circuits, these are 
circuits satisfying the following four conditions: 

(1) 
(2) 

(3) 

(4) 

every edge connects gates of different type, 
for every gate there is at most one gate negating 
it, moreover this l-gate is next one according to 
the order of gates, 
no input of any gate is the negation of another 
input of that gate, 
first (at most n) gates are negations of variables. 

Lemma 1. For every circuit C computing a Boolean 

function f there is a simple circuit C’ computing f 
such thatC(C’) 6 C(C). 

Proof. Let C be any circuit computing function f. We 
show how to transform it into a simple circuit without 
increasing the size. 

First we check l-gates. If output of some gate is 
the input for more than one l-gate, all redundant l- 
gates are deleted. Also order can be changed so that 
l-gate follows immediately the negated gate. Also we 
can move all negations of input variables to the gates 
with the smallest numbers. Any l-gate negating an- 
other --gate is redundant and can be deleted. Simi- 
larly, if the output of a A-gate (V-gate) is the input of 
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Fig. I. Elimination of A-A connections 

another A-gate (V-gate respectively), the connection 
between the gates can be removed and the links from 
the sources of the first gate can lead straight to the in- 
puts of the second gate (see Fig. 1). If a gate has as 
an input the negation of its other input, is computes a 
constant function and is redundant. 0 

Let S( i, j, k, I) be the number of circuits having i 

T-gates negating A-gates, j l-gates negating V-gates, 
k negation-free A-gates, and 1 negation-free V-gates. 
We can treat negation gate together with the gate it 
negates as double “gate”. There are 

ways to choose the type of a gate. Each gate (except 
a T-gate) can be connected to variables XT,. . , x:, 
this gives at most 3”“’ possibilities. Now we specify 
the maximal number of possible connections among 
“gates” ~7, TV, A, V in simple circuits. For “gates” 
without the negation there are two possibilities of con- 
nection if the gates are different and only one possi- 
bility when the gates are the same. For “gates” with 
the negation there are at most three possibilities of 
connection if the gates are different and at most two 
possibilities when the gates are the same. The follow- 
ing table shows the number of possible connections 
among “gates” in simple circuits. 

S(i,j, k, 1) 6 4i+j+k+/3n(i+j+k+/) 

x 2i(i-I )/2+j( j- I )/2+ikt,j/+k/3ijtr/+.jk 

Let m = 2i + 2j + k + 1 be the total number of gates, 
then i2/2 +j2/2 + ik +jl+ kl+ (ij + il fjk) log3 has 
maximal value pm* when i = j = am and k = 1= pm, 

where 

-1 + log3 

C-Y= -2+6log3’ P= 
1 + log3 

-2+6log3’ 

and p = 
log3( 1 + log3) 

-4+ 121og3 . 

Thus 

S( i, j, k, 1) < 24nn’t~n’ 

Let S(M) be the number of different simple circuits 
over 0 with not more than M gates, then 

M 

S(M) < C(nt+ 1)42snn1+LLn1’, 

nF= I 

If h4 < ~_-‘/~2’/~ - 4n, then 

,< (@I + 4n)2 -n < 2” - n 

and therefore almost all Boolean function of II vari- 
ables have complexity at least ~-‘/~2”/~ - 4n = 1.914. 
2”/2 - 4n. 
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