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Figure 1: Application the distributivity axiom (1) from the left to the right means“moving” the+-gate
upwards (to the inputs).
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In the all pairs shortest path problem (APSP problem) we are given a weighting of a complete
directed graph onn vertices, and want to compute the weights of a shortest paths between all pairs
of vertices. It is known (see [1, pp. 204–206] that the complexity (number of arithmetic operations)
of this problem is of the same order of magnitude as the complexity of computing theproduct of two
matrices over the semiring(+,min).

In this latter problem, we have twon×n matricesA = (ai j) andX = (xi j). The goal is to compute
their “product”M = AX whereM = (mi j) is ann×n matrix with

mi j = min{ai1+ x1 j,ai2+ x2 j, . . . ,ain + xn j} .

It is clear thatn3 additions are always enough to computeM. On the other hand, Kerr (1970) showed
thatn3 additions are also necessary. Since this important lower bound is not well known, we reproduce
its proof.

Theorem (Kerr [2]). At least n3 +-gates are necessary to compute M.

Proof. Take a minimal circuit computingM. This circuit hasn2 output gatesyi j. Inputs are 2n2

variablesai j andxi j. It will be convenient to denote the min-operation by:

x ⊥ y := min(x,y) .

A formal polynomial is an expression of the formS1 ⊥ S2 ⊥ ·· · ⊥ St where eachSi is a sum of
variables. LetEi j be an expression computed at the output gateyi j. Using the distributivity axiom

a+(b ⊥ c) = (a+b)⊥ (a+ c) (1)

(from the left to the right) this expression can be transformed to a formal polynomial E∗
i j. Note that,

for all settings of input variables, the expressionsEi j andE∗
i j output the same value.

The argument is roughly the following. Having an expressionEi j computed at the output gateyi j,
we transform it into an equivalent formal polynomialE∗

i j. Then we show that this formal polynomial
must have some special form (using the fact that its values must be the same as those ofMi j on all



inputs). Then we ask: how the original expressionEi j must have had look to getE∗
i j of this special

form? We argue thatEi j must have had been the minimum of expressions of the form

Aik j = (aik ⊥ F)+(xk j ⊥ G) (2)

whereF andG are some expressions. Finally we argue that different triples(i,k, j) must have different
expressionsAik j. This means that the+-gates where theAik j are computed must be different.

Claim 1. The formal polynomialE∗
i j has a form

(ai1+ x1 j)⊥ ·· · ⊥ (ain + xn j)⊥ (ai1+ x1 j +F1)⊥ ·· · ⊥ (ain + xn j +Fp)

where eachFi is some expression. In other words, each of the terms inE∗
i j must contain the sum of

one of the pairs of variablesaik andxk j, and each term(aik + xk j) must be present inE∗
i j.

Proof. Suppose that some term(α + · · ·+ γ) which does not contain any subtermaik + xk j is present
in E∗

i j. Then settingα = . . . = γ = 0 and setting all the other variables to 1 leads to contradictory
conclusion thatEi j = 0 andMi j ≥ 1 (because thenaik = 1 or xk j = 1).

Now assume that some sumaik + xk j does not appear as a term inE∗
i j. Settingaik = xk j = 0 and

all other variables to 1 leads to the conclusion thatMi j = 0 while Ei j ≥ 1.

Let us now examine how the terms(aik + xk j) in E∗
i j could have been derived from the expression

Ei j by application of distributivity axiom (1) from the left to the right. When going fromE∗
i j to Ei j we

apply this axiom from the right to the left.
Any term which can be combined with(aik + xk j) must contain eitheraik or xk j to provide the

common factor, and the result after reducing them to a single term must be either aik + (xk j ⊥ F)
or (aik ⊥ G) + xk j, whereF,G again represent any expressions. No matter how many times this
reduction process is repeated, the resulting term must be of the form (2).We can therefore conclude
thatEi j must have the following form:Ei j = Ai1 j ⊥ Ai2 j ⊥ ·· · ⊥ Ain j, where eachAik j is an addition
Aik j = (aik ⊥ F)+(xk j ⊥ G). Thus, we haven3 additions, and it remains to show that all they must be
distinct.

Assume for the sake of contradiction thatAik j ≡ Auvw (that is, coincide as functions). For this to
happenAik j must have a form like(aik ⊥ α ⊥ F)+(xk j ⊥ G), whereα is asingle variable other than
aik or xk j. Setaik = xk j = 1, α = 0, and set the rest of variables to 2. ThenMi j = 1+1= 2 butEi j = 1,
which is a contradiction.
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