

Figure 1: Application the distributivity axiom (1) from the left to the right means "moving" the + -gate upwards (to the inputs).

Boolean Function Complexity

ADDITIONAL TOPIC
An $\Omega\left(n^{3}\right)$ lower bound for matrix product over semiring (,$+ \min$)
S. Jukna

April 21, 2012

In the all pairs shortest path problem (APSP problem) we are given a weighting of a complete directed graph on n vertices, and want to compute the weights of a shortest paths between all pairs of vertices. It is known (see [1, pp. 204-206] that the complexity (number of arithmetic operations) of this problem is of the same order of magnitude as the complexity of computing the product of two matrices over the semiring $(+, \min)$.

In this latter problem, we have two $n \times n$ matrices $A=\left(a_{i j}\right)$ and $X=\left(x_{i j}\right)$. The goal is to compute their "product" $M=A X$ where $M=\left(m_{i j}\right)$ is an $n \times n$ matrix with

$$
m_{i j}=\min \left\{a_{i 1}+x_{1 j}, a_{i 2}+x_{2 j}, \ldots, a_{i n}+x_{n j}\right\}
$$

It is clear that n^{3} additions are always enough to compute M. On the other hand, Kerr (1970) showed that n^{3} additions are also necessary. Since this important lower bound is not well known, we reproduce its proof.

Theorem (Kerr [2]). At least $n^{3}+$-gates are necessary to compute M.
Proof. Take a minimal circuit computing M. This circuit has n^{2} output gates $y_{i j}$. Inputs are $2 n^{2}$ variables $a_{i j}$ and $x_{i j}$. It will be convenient to denote the min-operation by:

$$
x \perp y:=\min (x, y) .
$$

A formal polynomial is an expression of the form $S_{1} \perp S_{2} \perp \cdots \perp S_{t}$ where each S_{i} is a sum of variables. Let $E_{i j}$ be an expression computed at the output gate $y_{i j}$. Using the distributivity axiom

$$
\begin{equation*}
a+(b \perp c)=(a+b) \perp(a+c) \tag{1}
\end{equation*}
$$

(from the left to the right) this expression can be transformed to a formal polynomial $E_{i j}^{*}$. Note that, for all settings of input variables, the expressions $E_{i j}$ and $E_{i j}^{*}$ output the same value.

The argument is roughly the following. Having an expression $E_{i j}$ computed at the output gate $y_{i j}$, we transform it into an equivalent formal polynomial $E_{i j}^{*}$. Then we show that this formal polynomial must have some special form (using the fact that its values must be the same as those of $M_{i j}$ on all
inputs). Then we ask: how the original expression $E_{i j}$ must have had look to get $E_{i j}^{*}$ of this special form? We argue that $E_{i j}$ must have had been the minimum of expressions of the form

$$
\begin{equation*}
A_{i k j}=\left(a_{i k} \perp F\right)+\left(x_{k j} \perp G\right) \tag{2}
\end{equation*}
$$

where F and G are some expressions. Finally we argue that different triples (i, k, j) must have different expressions $A_{i k j}$. This means that the + -gates where the $A_{i k j}$ are computed must be different.
Claim 1. The formal polynomial $E_{i j}^{*}$ has a form

$$
\left(a_{i 1}+x_{1 j}\right) \perp \cdots \perp\left(a_{i n}+x_{n j}\right) \perp\left(a_{i 1}+x_{1 j}+F_{1}\right) \perp \cdots \perp\left(a_{i n}+x_{n j}+F_{p}\right)
$$

where each F_{i} is some expression. In other words, each of the terms in $E_{i j}^{*}$ must contain the sum of one of the pairs of variables $a_{i k}$ and $x_{k j}$, and each term $\left(a_{i k}+x_{k j}\right)$ must be present in $E_{i j}^{*}$.

Proof. Suppose that some term $(\alpha+\cdots+\gamma)$ which does not contain any subterm $a_{i k}+x_{k j}$ is present in $E_{i j}^{*}$. Then setting $\alpha=\ldots=\gamma=0$ and setting all the other variables to 1 leads to contradictory conclusion that $E_{i j}=0$ and $M_{i j} \geq 1$ (because then $a_{i k}=1$ or $x_{k j}=1$).

Now assume that some sum $a_{i k}+x_{k j}$ does not appear as a term in $E_{i j}^{*}$. Setting $a_{i k}=x_{k j}=0$ and all other variables to 1 leads to the conclusion that $M_{i j}=0$ while $E_{i j} \geq 1$.

Let us now examine how the terms $\left(a_{i k}+x_{k j}\right)$ in $E_{i j}^{*}$ could have been derived from the expression $E_{i j}$ by application of distributivity axiom (1) from the left to the right. When going from $E_{i j}^{*}$ to $E_{i j}$ we apply this axiom from the right to the left.

Any term which can be combined with $\left(a_{i k}+x_{k j}\right)$ must contain either $a_{i k}$ or $x_{k j}$ to provide the common factor, and the result after reducing them to a single term must be either $a_{i k}+\left(x_{k j} \perp F\right)$ or $\left(a_{i k} \perp G\right)+x_{k j}$, where F, G again represent any expressions. No matter how many times this reduction process is repeated, the resulting term must be of the form (2). We can therefore conclude that $E_{i j}$ must have the following form: $E_{i j}=A_{i 1 j} \perp A_{i 2 j} \perp \cdots \perp A_{i n j}$, where each $A_{i k j}$ is an addition $A_{i k j}=\left(a_{i k} \perp F\right)+\left(x_{k j} \perp G\right)$. Thus, we have n^{3} additions, and it remains to show that all they must be distinct.

Assume for the sake of contradiction that $A_{i k j} \equiv A_{u v w}$ (that is, coincide as functions). For this to happen $A_{i k j}$ must have a form like $\left(a_{i k} \perp \alpha \perp F\right)+\left(x_{k j} \perp G\right)$, where α is a single variable other than $a_{i k}$ or $x_{k j}$. Set $a_{i k}=x_{k j}=1, \alpha=0$, and set the rest of variables to 2 . Then $M_{i j}=1+1=2$ but $E_{i j}=1$, which is a contradiction.

References

[1] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms, AddisonWesley, Reading, MA, 1974.
[2] L. R. Kerr, The effect of algebraic structure on the computation complexity of matrix multiplications, PhD Thesis, Cornell Univ., Ithaca, N.Y., 1970.

