

Figure 1: Application the distributivity axiom (1) from the left to the right means "moving" the +-gate upwards (to the inputs).

Boolean Function Complexity	ADDITIONAL TOPIC
An $\Omega(n^3)$ lower bound for matrix product over semiring $(+, \min)$	
S. Jukna	April 21, 2012

In the *all pairs shortest path* problem (APSP problem) we are given a weighting of a complete directed graph on *n* vertices, and want to compute the weights of a shortest paths between all pairs of vertices. It is known (see [1, pp. 204–206] that the complexity (number of arithmetic operations) of this problem is of the same order of magnitude as the complexity of computing the product of two matrices over the semiring $(+, \min)$.

In this latter problem, we have two $n \times n$ matrices $A = (a_{ij})$ and $X = (x_{ij})$. The goal is to compute their "product" M = AX where $M = (m_{ij})$ is an $n \times n$ matrix with

$$m_{ij} = \min\{a_{i1} + x_{1j}, a_{i2} + x_{2j}, \dots, a_{in} + x_{nj}\}.$$

It is clear that n^3 additions are always enough to compute *M*. On the other hand, Kerr (1970) showed that n^3 additions are also necessary. Since this important lower bound is not well known, we reproduce its proof.

Theorem (Kerr [2]). At least n^3 +-gates are necessary to compute M.

Proof. Take a minimal circuit computing M. This circuit has n^2 output gates y_{ij} . Inputs are $2n^2$ variables a_{ij} and x_{ij} . It will be convenient to denote the min-operation by:

$$x \perp y := \min(x, y)$$
.

A *formal polynomial* is an expression of the form $S_1 \perp S_2 \perp \cdots \perp S_t$ where each S_i is a sum of variables. Let E_{ij} be an expression computed at the output gate y_{ij} . Using the distributivity axiom

$$a + (b \perp c) = (a+b) \perp (a+c) \tag{1}$$

(from the left to the right) this expression can be transformed to a formal polynomial E_{ij}^* . Note that, for all settings of input variables, the expressions E_{ij} and E_{ij}^* output the same value.

The argument is roughly the following. Having an expression E_{ij} computed at the output gate y_{ij} , we transform it into an equivalent formal polynomial E_{ij}^* . Then we show that this formal polynomial must have some special form (using the fact that its values must be the same as those of M_{ij} on all

inputs). Then we ask: how the original expression E_{ij} must have had look to get E_{ij}^* of this special form? We argue that E_{ij} must have had been the minimum of expressions of the form

$$A_{ikj} = (a_{ik} \perp F) + (x_{kj} \perp G) \tag{2}$$

where *F* and *G* are some expressions. Finally we argue that different triples (i,k,j) must have different expressions A_{ikj} . This means that the +-gates where the A_{ikj} are computed must be different.

Claim 1. The formal polynomial E_{ii}^* has a form

$$(a_{i1}+x_{1j}) \perp \cdots \perp (a_{in}+x_{nj}) \perp (a_{i1}+x_{1j}+F_1) \perp \cdots \perp (a_{in}+x_{nj}+F_p)$$

where each F_i is some expression. In other words, each of the terms in E_{ij}^* must contain the sum of one of the pairs of variables a_{ik} and x_{kj} , and each term $(a_{ik} + x_{kj})$ must be present in E_{ij}^* .

Proof. Suppose that some term $(\alpha + \dots + \gamma)$ which does not contain any subterm $a_{ik} + x_{kj}$ is present in E_{ij}^* . Then setting $\alpha = \dots = \gamma = 0$ and setting all the other variables to 1 leads to contradictory conclusion that $E_{ij} = 0$ and $M_{ij} \ge 1$ (because then $a_{ik} = 1$ or $x_{kj} = 1$).

Now assume that some sum $a_{ik} + x_{kj}$ does not appear as a term in E_{ij}^* . Setting $a_{ik} = x_{kj} = 0$ and all other variables to 1 leads to the conclusion that $M_{ij} = 0$ while $E_{ij} \ge 1$.

Let us now examine how the terms $(a_{ik} + x_{kj})$ in E_{ij}^* could have been derived from the expression E_{ij} by application of distributivity axiom (1) from the left to the right. When going from E_{ij}^* to E_{ij} we apply this axiom from the right to the left.

Any term which can be combined with $(a_{ik} + x_{kj})$ must contain either a_{ik} or x_{kj} to provide the common factor, and the result after reducing them to a single term must be either $a_{ik} + (x_{kj} \perp F)$ or $(a_{ik} \perp G) + x_{kj}$, where F, G again represent any expressions. No matter how many times this reduction process is repeated, the resulting term must be of the form (2). We can therefore conclude that E_{ij} must have the following form: $E_{ij} = A_{i1j} \perp A_{i2j} \perp \cdots \perp A_{inj}$, where each A_{ikj} is an addition $A_{ikj} = (a_{ik} \perp F) + (x_{kj} \perp G)$. Thus, we have n^3 additions, and it remains to show that all they must be distinct.

Assume for the sake of contradiction that $A_{ikj} \equiv A_{uvw}$ (that is, coincide as functions). For this to happen A_{ikj} must have a form like $(a_{ik} \perp \alpha \perp F) + (x_{kj} \perp G)$, where α is a *single* variable other than a_{ik} or x_{kj} . Set $a_{ik} = x_{kj} = 1$, $\alpha = 0$, and set the rest of variables to 2. Then $M_{ij} = 1 + 1 = 2$ but $E_{ij} = 1$, which is a contradiction.

References

- [1] A. Aho, J. Hopcroft, and J. Ullman, *The Design and Analysis of Computer Algorithms*, Addison-Wesley, Reading, MA, 1974.
- [2] L. R. Kerr, The effect of algebraic structure on the computation complexity of matrix multiplications, PhD Thesis, Cornell Univ., Ithaca, N.Y., 1970.