
Chapter 1
Our Adversary: The Circuit

Boolean (or switching) functions map each sequence of bits to a single bit 0 or 1.
Bit 0 is usually interpreted as “false”, and bit 1 as “true”. The simplest of such
functions are the product x � y, sum x ˚ y mod 2, non-exclusive Or x _ y, negation
:x D 1�x. The central problem of boolean function complexity—the lower bounds
problem—is:

Given a boolean function, how many of these simplest operations do we need to
compute the function on all input vectors?

The difficulty in proving that a given boolean function has high complexity lies in
the nature of our adversary: the circuit. Small circuits may work in a counterintuitive
fashion, using deep, devious, and fiendishly clever ideas. How can one prove that
there is no clever way to quickly compute the function?

This is the main issue confronting complexity theorists. The problem lies
on the border between mathematics and computer science: lower bounds are of
great importance for computer science, but their proofs require techniques from
combinatorics, algebra, analysis, and other branches of mathematics.

1.1 Boolean Functions

We first recall some basic concepts concerning boolean functions. The name
“boolean function” comes from the boolean logic invented by George Boole (1815–
1864), an English mathematician and philosopher. As this logic is now the basis of
modern digital computers, Boole is regarded in hindsight as a forefather of the field
of computer science.

Boolean values (or bits) are numbers 0 and 1. A boolean function f .x/ D
f .x1; : : : ; xn/ of n variables is a mapping f W f0; 1gn ! f0; 1g. One says that
f accepts a vector a 2 f0; 1gn if f .a/ D 1, and rejects it if f .a/ D 0.

A boolean function f .x1; : : : ; xn/ need not to depend on all its variables.
One says that f depends on its i -th variable xi if there exist constants
a1; : : : ; ai�1; aiC1; : : : ; an in f0; 1g such that
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4 1 Our Adversary: The Circuit

f .a1; : : : ; ai�1; 0; aiC1; : : : ; an/ ¤ f .a1; : : : ; ai�1; 1; aiC1; : : : ; an/ :

Since we have 2n vectors in f0; 1gn, the total number of boolean functions
f W f0; 1gn ! f0; 1g is doubly-exponential in n, is 22n

. A boolean function f is
symmetric if it depends only on the number of ones in the input, and not on positions
in which these ones actually reside. We thus have only 2nC1 such functions of n

variables. Examples of symmetric boolean functions are:

• Threshold functions Thn
k.x/ D 1 iff x1 C � � � C xn � k.

• Majority function Majn.x/ D 1 iff x1 C � � � C xn � dn=2e.
• Parity function ˚n.x/ D 1 iff x1 C � � � C xn � 1 mod 2.
• Modular functions MODk D 1 iff x1 C � � � C xn � 0 mod k.

Besides these, there are many other interesting boolean functions. Actually, any
property (which may or may not hold) can be encoded as a boolean function. For
example, the property “to be a prime number” corresponds to a boolean function
PRIME such that PRIME.x/ D 1 iff

Pn
iD1 xi 2

i�1 is a prime number. It was a
long-standing problem whether this function can be uniformly computed using a
polynomial in n number of elementary boolean operations. This problem was finally
solved affirmatively by Agrawal et al. (2004). The existence of small circuits for
PRIME for every single n was known long ago.

To encode properties of graphs on the set of vertices Œn� D f1; : : : ; ng, we may
associate a boolean variable xij with each potential edge. Then any 0–1 vector x of
length

�
n
2

�
gives us a graph Gx , where two vertices i and j are adjacent iff xij D 1.

We can then define f .x/ D 1 iff Gx has a particular property. A prominent example
of a “hard-to-compute” graph property is the clique function CLIQUE.n; k/: it
accepts an input vector x iff the graph Gx has a k-clique, that is, a complete
subgraph on k vertices. The problem of whether this function can also be computed
using a polynomial number of operations remains wide open. A negative answer
would immediately imply that P ¤ NP. Informally, the P vs. NP problem asks
whether there exist mathematical theorems whose proofs are much harder to find
than verify.

Roughly speaking, one of the goals of circuit complexity is, for example, to
understand why the first of the following two problems is easy whereas the second
is (apparently) very hard to solve:

1. Does a given graph contain at least
�

k
2

�
edges?

2. Does a given graph contain a clique with
�

k
2

�
edges?

The first problem is a threshold function, whereas the second is the clique
function CLIQUE.n; k/. We stress that the goal of circuit complexity is not just
to give an “evidence” (via some indirect argument) that clique is much harder than
majority, but to understand why this is so.

A boolean matrix or a 0–1 matrix is a matrix whose entries are 0s and 1s. If
f .x; y/ is a boolean function of 2n variables, then it can be viewed as a boolean
2n � 2n matrix A whose rows and columns are labeled by vector in f0; 1gn, and
AŒx; y� D f .x; y/.
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x y x ^ y x _ y x ˚ y x ! y

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 1

x :x

1 0

0 1

Fig. 1.1 Truth tables of basic boolean operations

We can obtain new boolean functions (or matrices) by applying boolean opera-
tions to the “simplest” ones. Basic boolean operations are:

• NOT (negation) :x D 1 � x; also denoted as x.
• AND (conjunction) x ^ y D x � y.
• OR (disjunction) x _ y D 1 � .1 � x/.1 � y/.
• XOR (parity) x ˚ y D x.1 � y/ C y.1 � x/ D .x C y/ mod 2.
• Implication x ! y D :x _ y (Fig. 1.1).

If these operators are applied to boolean vectors or boolean matrices, then
they are usually performed componentwise. Negation acts on ANDs and ORs via
DeMorgan rules:

:.x _ y/ D :x ^ :y and :.x ^ y/ D :x _ :y.

The operations AND and OR themselves enjoy the distributivity rules:

x ^ .y _ z/ D .x ^ y/ _ .x ^ z/ and x _ .y ^ z/ D .x _ y/ ^ .x _ z/.

Binary cube The set f0; 1gn of all boolean (or binary) vectors is usually called the
binary n-cube. A subcube of dimension d is a set of the form A D A1�A2�� � ��An,
where each Ai is one of three sets f0g, f1g and f0; 1g, and where Ai D f0; 1g for
exactly d of the is. Note that each subcube of dimension d can be uniquely specified
by a vector a 2 f0; 1; �gn with d stars, by letting � to attain any of two values 0 and
1. For example, a subcube A D f0g � f0; 1g � f1g � f0; 1g of the binary 4-cube of
dimension d D 2 is specified by a D .0; �; 1; �/.

Usually, the binary n-cube is considered as a graph Qn whose vertices are vectors
in f0; 1gn, and two vectors are adjacent iff they differ in exactly one position (see
Fig. 1.2). This graph is sometimes called the n-dimensional binary hypercube. This
is a regular graph of degree n with 2n vertices and n2n�1 edges. Moreover, the graph
is bipartite: we can put all vectors with an odd number of ones on one side, and the
rest on the other; no edge of Qn can join two vectors on the same side.

Every boolean function f W f0; 1gn ! f0; 1g is just a coloring of vertices of Qn

in two colors. The bipartite subgraph Gf of Qn, obtained by removing all edges
joining the vertices in the same color class, accumulates useful information about
the circuit complexity of f . If, for example, da denotes the average degree in Gf
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Fig. 1.2 The 3-cube and its Hasse-type representation (each level contains binary strings with the
same number of 1s). There is an edge between two strings if and only if they differ in exactly one
position

of vertices in the color-class f �1.a/, a D 0; 1, then the product d0 � d1 is a lower
bound on the length of any formula expressing f using connectives ^; _ and : (see
Khrapchenko’s theorem in Sect. 6.8).

CNFs and DNFs A trivial way to represent a boolean function f .x1; : : : ; xn/ is to
give the entire truth table, that is, to list all 2n pairs .a; f .a// for a 2 f0; 1gn. More
compact representations are obtained by giving a covering of f �1.0/ or of f �1.1/

by not necessarily disjoint subsets, each of which has some “simple” structure. This
leads to the notions of CNFs and DNFs.

A literal is a boolean variable or its negation. For literals the following notation
is often used: x1

i stands for xi , and x0
i stands for :xi D 1 � xi . Thus, for every

binary string a D .a1; : : : ; an/ in f0; 1gn,

x1
i .a/ D

(
1 if ai D 1

0 if ai D 0
and x0

i .a/ D
(

0 if ai D 1

1 if ai D 0.

A monomial is an AND of literals, and a clause is an OR of literals. A monomial
(or clause) is consistent if it does not contain a contradicting pair of literals xi and xi

of the same variable. We will often view monomials and clauses as sets of literals.
It is not difficult to see that the set of all vectors accepted by a monomial consist-

ing of k (out of n) literals forms a binary n-cube of dimension n � k (so many bits
are not specified). For example, a monomial x1 ^ x3 defines the cube of dimension
n � 2 specified by a D .0; �; 1; �; : : : ; �/. Similarly, the set of all vectors rejected
by a clause consisting of k (out of n) literals also forms a binary n-cube of dimen-
sion n�k. For example, a clause x1 _ x3 rejects a vector a iff a1 D 1 and a3 D 0.

A DNF (disjunctive normal form) is an OR of monomials, and a CNF (conjunc-
tive normal form) is an AND of clauses. Every boolean function f .x/ of n variables
can be written both as a DNF D.x/ and as a CNF C.x/:

D.x/ D
_

aWf .a/D1

n̂

iD1

x
ai

i C.x/ D
^

bWf .b/D0

n_

iD1

x
1�bi

i :
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Indeed, D.x/ accepts a vector x iff x coincides with at least one vector a accepted
by f , and C.x/ rejects a vector x iff x coincides with at least one vector b rejected
by f .

A DNF is a k-DNF if each of its monomials has at most k literals; similarly, a
CNF is a k-CNF if each of its clauses has at most k literals.

DNFs (and CNFs) are the simplest models for computing boolean functions. The
size of a DNF is the total number of monomials in it. It is clear that every boolean
function of n variables can be represented by a DNF of size at most jf �1.1/j � 2n:
just take one monomial for each accepted vector. This can also be seen via the
following recurrence:

f .x1; : : : ; xnC1/ D xnC1 ^ f .x1; : : : ; xn; 1/ _ :xnC1 ^ f .x1; : : : ; xn; 0/ : (1.1)

It is not difficult to see that some functions require DNFs of exponential size. Take,
for example, the parity function f .x1; : : : ; xn/ D x1 ˚ x2 ˚ � � � ˚ xn. This function
accepts an input vector iff the number of 1s in it is odd. Every monomial in a DNF
for f must contain n literals, for otherwise the DNF would be forced to accept a
vector in f �1.0/. Since any such monomial can accept only one vector, jf �1.1/j D
2n�1 monomials are necessary. Thus the lower bounds problem for this model is
trivial.

Boolean functions as set systems By identifying subsets S of Œn� D f1; : : : ; ng
with their characteristic 0–1 vectors vS , where vS .i/ D 1 iff i 2 S , we can consider
boolean functions as set-theoretic predicates f W 2Œn� ! f0; 1g. We will often go
back and forth between these notations. One can identify a boolean function f W
2Œn� ! f0; 1g with the family Ff D fS W f .S/ D 1g of subsets of Œn�. That is, there
is a 1-to-1 correspondence between boolean functions and families of subsets of Œn�:

boolean functions of n variables = families of subsets of f1; : : : ; ng.

Minterms and maxterms A 1-term (resp., 0-term) of a boolean function is a
smallest subset of its variables such that the function can be made the constant 1

(resp., constant 0) function by fixing these variables to constants 0 and 1 in some
way. Thus after the setting, the obtained function does not depend on the remaining
variables. Minterms (maxterms) are 1-terms (0-terms) which are minimal under the
set-theoretic inclusion.

Note that one and the same set of variables may be a 1-term and a 0-term at the
same time. If, for example, f .x1; x2; x3/ D 1 iff x1 Cx2 Cx3 � 2, then fx1; x2g is a
1-term of f because f .1; 1; x3/ � 1, and is a 0-term of f because f .0; 0; x3/ � 0.

If all minterms of a boolean function f have length at most k then f can be
written as a k-DNF: just take the OR of all these minterms. But the converse does
not hold! Namely, there are boolean functions f such that f can be written as a
k-DNF even though some of its minterms are much longer than k (see Exercise 1.7).

Duality The dual of a boolean function f .x1; : : : ; xn/ is the boolean function f �
defined by:

f �.x1; : : : ; xn/ WD :f .:x1; : : : ; :xn/ :
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For example, if f D x _ y then f � D :.:x _ :y/ D x ^ y. The dual of every
threshold function Thn

k.x/ is the threshold function Thn
n�kC1.x/. A function f is

self-dual if f �.x/ D f .x/ holds for all x 2 f0; 1gn. For example, the threshold-k
function f .x/ D Th2k�1

k .x/ of 2k � 1 variables is self-dual. Hence, if the number n

of variables is odd, then the majority function Majn is also self-dual.
In set-theoretic terms, if S D Œn�nS denotes the complement of S , then the values

of the dual of f are obtained by: f �.S/ D 1 � f .S/. Thus a boolean function f is
self-dual if and only if f .S/ C f .S/ D 1 for all S 	 Œn�.

Monotone functions For two vectors x; y 2 f0; 1gn we write x � y if xi �yi for all
positions i . A boolean function f .x/ is monotone, if x � y implies f .x/ � f .y/.
If we view f as a set-theoretic predicate f W 2Œn� ! f0; 1g, then f is monotone iff
f .S/ D 1 and S 	 T implies f .T / D 1. Examples of monotone boolean functions
are AND, OR, threshold functions Thn

k.x/, clique functions CLIQUE.n; k/, etc. On
the other hand, such functions as the parity function ˚n.x/ or counting functions
Modn

k.x/ are not monotone.
Monotone functions have many nice properties not shared by other functions.

First of all, their minterms as well as maxterms are just subsets of variables (no
negated variable occurs in them). In set-theoretic terms, a subset S 	 Œn� is a
minterm of a monotone function f if

f .S/ D 1 but f .S n fig/ D 0 for all i 2 S ,

and is a maxterm of f if

f .S/ D 0 but f .S n fig/ D 1 for all i 2 S .

Let Min.f / and Max.f / denote the set of all minterms and the set of all maxterms
of f . Then we have the following cross-intersection property:

S \ T ¤ ; for all S 2 Min.f / and all T 2 Max.f /.

Indeed, if S and T were disjoint, then for the vectors x with xi D 1 for all i 2 S ,
and xi D 0 for all i 62 S , we would have f .x/ D 1 (because S is a minterm) and at
the same time f .x/ D 0 (because T 	 S is a maxterm of f ).

The next important property of monotone boolean functions is that every such
function f has a unique representation as a DNF as well as a CNF:

f .x/ D
_

S2Min.f /

^

i2S

xi D
^

T 2Max.f /

_

i2T

xi :

Moreover, for every monotone boolean function f we have the following three
equivalent conditions of their self-duality:

• Min.f / D Max.f /.
• Both families Min.f / and Max.f / are intersecting: S \ S 0 ¤ ; for all S; S 0 2

Min.f /, and T \ T 0 ¤ ; for all T; T 0 2 Max.f /.
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• The family Min.f / is intersecting and, for every partition of Œn� into two parts,
at least one minterm lies in one of these parts.

Equivalence of the first condition Min.f / D Max.f / with the definition of self-
duality (f .S/ D 1 � f .S/ for all S 	 Œn�) is not difficult to see. To show that also
the second and the third conditions are equivalent, needs a bit more work.

In the rest of this section we recall some facts that turn out to be very useful
when analyzing circuits. We include them right here both because they have elegant
proofs and because we will use them later several times.

Functions with many subfunctions A subfunction of a boolean function
f .x1; : : : ; xn/ is obtained by fixing some of its variables to constants 0 and 1.
Since each of the n variables has three possibilities (to be set to 0 or to 1 or remain
unassigned), one function can have at most 3n subfunctions.

If Y is some subset of variables, then a subfunction of f on Y is a boolean
function of variables Y obtained from f by setting all the variables outside Y to
constants 0 and 1, in some way. Some settings may lead to the same subfunction.
So let NY .f / denote the number distinct subfunctions of f on Y . It is not difficult
to see that, if jY j D m, then

NY .f / � minf2n�m; 22mg :

Indeed, we have at most 2n�m possibilities to assign constants to n � jY j variables,
and there are at most 22m

distinct boolean functions on the same set Y of m variables.
But some functions f may have fewer distinct subfunctions. For example, the
parity function ˚n.x/ D x1 ˚ x2 ˚ � � � ˚ xn has only NY .˚n/ D 2 different
subfunctions. On the other hand, we will show later (in Sect. 6.5) that functions
with many subfunctions cannot be “too easy”. So what functions have many
subfunctions?

The simplest known example of a function with almost maximal possible number
of distinct subfunctions is the element distinctness function EDn.x/ suggested by
Beame and Cook (unpublished). This is a boolean function of1 n D 2m log m

variables divided into m consecutive blocks Y1; : : : ; Ym with 2 log m variables in
each of them; m is assumed to be a power of 2. Each of these blocks encode a
number in Œm2� D f1; 2; : : : ; m2g. The function accepts an input x 2 f0; 1gn if and
only if all these numbers are distinct.

Lemma 1.1. On each block, EDn has at least 2n=2=n subfunctions.

Proof. It suffices to prove this for the first block Y1. So let N D NY1.EDn/, and
consider the function f of m variables, each taking its value in Œm2�. The function
accepts a string .a1; : : : ; am/ of numbers in Œm2� iff all these numbers are distinct.
Thus EDn.x/ is just a boolean version of f .

1If not said otherwise, all logarithms in this book are to the basis of 2.
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For a string a D .a2; : : : ; am/ of numbers Œm2�, let fa W Œm2� ! f0; 1g be
the function fa.x/ WD f .x; a2; : : : ; am/ obtained from f by fixing its last m � 1

variables. Note that N is exactly the number of distinct functions fa.
The number of ways to choose a string a D .a2; : : : ; am/ with all the ai distinct

is
�

m2

m�1

�
.m � 1/Š: each such string is obtained by taking an .m � 1/-element

subset of Œm2� and permuting its elements. If b D .b2; : : : ; bm/ is another such
string, and if b is not a permutation of a, then there must be an ai such that
ai 62 fb2; : : : ; bmg. But for such an ai , we have that fa.ai / D 0 whereas fb.ai / D 1;
hence, fa ¤ fb . Since there are only .m � 1/Š permutations of a, we obtain that

N � �
m2

m�1

� � mm�1 � 2n=2=n. ut

Matrix decomposition A matrix B is primitive if it is boolean (has only entries
0 and 1) and has rank 1 over the reals. Each such matrix consists of one all-1
submatrix and zeros elsewhere. The weight, w.B/, of such a matrix is r C c, where
r is the number of nonzero rows, and c the number of nonzero columns in B . Here
is a primitive 4 � 5 matrix of weight 2 C 3 D 5:

0

B
B
@

1 0 1 1 0

0 0 0 0 0

1 0 1 1 0

0 0 0 0 0

1

C
C
A

Primitive matrices are important objects—we will use them quite often.
A decomposition of a boolean m � n matrix A is a set B1; : : : ; Br of primitive

m � n matrices such that A can be written as the sum A D B1 C B2 C � � � C Bt of
these matrices over the reals. That is, each 1-entry of A is a 1-entry in exactly one
of the matrices Bi , and each 0-entry is a 0-entry in all matrices. The weight of such
a decomposition is the sum

Pt
iD1 w.Bi / of weights of the Bi . Let Dec.A/ denote

the minimum weight of a decomposition of a boolean matrix A, and let jAj denote
the number of 1-entries in A.

Note that Dec.A/ � mn: just decompose A into m primitive matrices corre-
sponding to the rows of A. In fact, we have a better upper bound.

Lemma 1.2. (Lupanov 1956) For every boolean m � n matrix,

Dec.A/ � .1 C o.1//
mn

log m
:

Proof. We first prove that for every boolean m � n matrix A and for every integer
1 � k � m,

Dec.A/ � mn

k
C n2k�1 : (1.2)

We first prove (1.2) for k D n, that is, we prove the upper bound

Dec.A/ � m C n2n�1 : (1.3)



1.1 Boolean Functions 11

Split the rows of A into groups, where the rows in one group all have the same
values. This gives us a decomposition of A into t � 2n primitive matrices. For the
i -th of these matrices, let ri be the number of its nonzero rows, and ci the number of
its nonzero columns. Hence, ri C ci is the weight of the i -th primitive matrix. Since
each nonzero row of A lies in exactly one of the these matrices, the total weight of
the decomposition is

tX

iD1

ri C
tX

iD1

ci � m C
nX

j D0

X

i Wci Dj

j � m C
nX

j D0

 
n

j

!

� j D m C n2n�1 ;

where the last equality is easy to prove: just count in two ways the number of pairs
.x; S/ with x 2 S 	 f1; : : : ; ng.

To prove (1.2) for arbitrary integer 1 � k � n, split A into submatrices with k

columns in each (one submatrix may have fewer columns). For each of these n=k

submatrices, (1.3) gives a decomposition of weight at most m C k2k�1. Thus, for
every 1 � k � n, every m � n matrix has a decomposition of weight at most
mn=k C n2k�1.

To finish the proof of the theorem, it is enough to apply (1.2) with k about log m�
2 log log m. ut

Using a counting argument, Lupanov (1956) also showed that the upper bound
given in Lemma 1.2 is almost optimal: m � n matrices A requiring weight

Dec.A/ � .1 C o.1//
mn

log.mn/

in any decomposition exist, even if the 1-entries in primitive matrices are allowed to
overlap (cf. Theorem 13.18). Apparently, this paper of Lupanov remained unknown
in the West, because this result was later proved by Tuza (1984) and Bublitz (1986).

Splitting a graph When trying to “balance” some computational models (decision
trees, formulas, communication protocols, logical derivations) the following two
structural facts are often useful.

Let G be a directed acyclic graph with one source node (the root) from which all
leaves (nodes of outdegree 0) are reachable. Suppose that each non-leaf node has
outdegree k. Suppose also that each vertex is assigned a non-negative weight which
is subadditive: the weight of a node does not exceed the sum of the weights of its
successors. Let r be the weight of the root, and suppose that each leaf has weight at
most l < r .

Lemma 1.3. For every real number � between l=r and 1, there exists a node whose
weight lies between �r=k and �r . In particular, every binary tree with r leaves has
a subtree whose number of leaves lies between r=3 and 2r=3.

Proof. Start at the root and traverse the graph until a node u of weight > �r is found
such that each of its successors has weight at most �r . Such a node u exists because
each leaf has weight at most l � �r . Due to subadditivity of the weight function,
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the (up to k) successors of u cannot all have weight � �r=k, since then the weight
of u would be � �r as well. Hence, the weight of at least one successor of u must
lie between �r=k and �r , as desired.

To prove the second claim, give each leaf of the tree weight 1, and define the
weight of an inner node as the number of leaves in the corresponding subtree. Then
apply the previous claim with k D 2 and � D 2=3. ut

The length of a path we will mean the number of nodes in it. The depth of a graph
is the length of a longest path in it. The following lemma generalizes and simplifies
an analogous result of Erdős et al. (1976). Let d D 2k and 1 � r � k be integers.

Lemma 1.4. (Valiant 1977) In any directed graph with S edges and depth d it is
possible to remove rS=k edges so that the depth of the resulting graph does not
exceed d=2r .

Proof. A labeling of a graph is a mapping of the nodes into the integers. Such a
labeling is legal if for each edge .u; v/ the label of v is strictly greater than the label
of u. A canonical labeling is to assign each node the length of a longest directed path
that terminates at that node. If the graph has depth d then this gives us a labeling
using only d labels 1; : : : ; d . It is easy to verify that this is a legal labeling: if .u; v/

is an edge then any path terminating in u can be prolonged to a path terminating
in v. On the other hand, since in any legal labeling, all labels along a directed path
must be distinct, we have that the depth of a graph does not exceed the number of
labels used by any legal labeling.

After these preparations, consider now any directed graph with S edges and
depth d , and consider the canonical labeling using labels 1; : : : ; d . For i D 1; : : : ; k

(where k D log d ), let Ei be the set of all edges, the binary representations of labels
of whose endpoints differ in the i -th position (from the left) for the first time.

If Ei is removed from the graph, then we can relabel the nodes using integers
1; : : : ; d=2 by simply deleting the i -th bit in the binary representations of labels.
It is not difficult to see that this is a legal labeling (of a new graph): if an edge
.u; v/ survived, then the first difference between the binary representations of the
old labels of u and v were not in the i -th position; hence, the new label of u remains
strictly smaller than that of v. Consequently, if any r � k of the smallest sets Ei are
removed, then at most rS=k edges are removed, and a graph of depth at most d=2r

remains. ut

1.2 Circuits

In this section we recall the most fundamental models for computing boolean
functions.

General circuits Let ˚ be a set of some boolean functions. A circuit (or a straight
line program) of n variables over the basis ˚ is just a sequence g1; : : : ; gt of
t � n boolean functions such that the first n functions are input variables g1 D
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x1; : : : ; gn D xn, and each subsequent gi is an application gi D '.gi1 ; : : : ; gid / of
some basis function ' 2 ˚ (called the gate of gi ) to some previous functions.

That is, the value gi .a/ of the i -th gate gi on a given input a 2 f0; 1gn is the
value of the boolean function ' applied to the values gi1.a/; : : : ; gid .a/ computed
at the previous gates. A circuit computes a boolean function (or a set of boolean
functions) if it (or they) are among the gi .

Each circuit can be viewed as a directed acyclic graph whose fanin-0 nodes (those
of zero in-degree) correspond to variables, and each other node v corresponds to a
function ' in ˚ . One (or more) nodes are distinguished as outputs. The value at
a node is computed by applying the corresponding function to the values of the
preceding nodes (see Fig. 1.3).

In the literature circuits are usually drawn in a “bottom-up” manner: the first (lowest) level
consists of inputs, and the last (highest) level consists of output gates. We will, however, mostly
draw circuits in a more natural “top-down” manner: inputs at the top, and outputs at the bottom.
Only where there already are established terms “top gate” and “bottom level” we will use
bottom-up drawings.

The size of the circuit is the total number t �n of its gates (that is, we do not count
the input variables), and its depth is the length of a longest path from an input to an
output gate. More precisely, input variables have depth 0, and if gi D '.gi1 ; : : : ; gid /

then the depth of the gate gi is 1 plus the maximum depth of the gates gi1 ; : : : ; gid .
We will assume that every circuit can use constants 0 and 1 as inputs for free.

Formulas A formula is a circuit all whose gates have fanout at most 1. Hence, the
underlying graph of a formula is a tree. The size of a formula is also the number
of gates, and the leafsize of a is the number of input gates, that is, the number of
leaves in its tree, and the depth of a formula is the depth of its tree. Note that the
only (but crucial) difference of formulas from circuits is that in the circuit model a
result computed at some gate can be used many times with no need to recompute it
again and again, as in the case of formulas.

DeMorgan circuits A DeMorgan circuit is a circuit over the basis f^; _g but the
inputs are variables and their negations. That is, these are the circuits over the basis

Fig. 1.3 On the left is a
circuit with six gates over the
basis f^; _; :g computing
the majority function
Maj3.x; y; z/ D 1 iff
x C y C z � 2. Its depth is
five. On the right is a circuit
with five gates over the basis
f˚; ^g computing the binary
representation .a; b/ of the
(real) sum x C y C z of three
0–1 bits
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f^; _; :g, where NOT gates are only applied to input variables; these gates do
not contribute to the circuit size. Such circuits are also called circuits with tight
negations. If there are no negated variables as inputs, then the circuit is monotone.
By using DeMorgan rules :.x _y/ D :x ^:y and :.x ^y/ D :x _:y, it can be
easily shown that any circuit over f^; _; :g can be reduced to this form by at most
doubling the total number of gates; the depth of the circuit remains the same. In the
case of formulas, even the leafsize remains the same.

Probabilistic circuits Such circuits have, besides standard input variables
x1; : : : ; xn, some specially designed inputs r1; : : : ; rm called random inputs. When
these random inputs are chosen from a uniform distribution on f0; 1g, the output
C.x/ of the circuit is a random 0–1 variable. A probabilistic circuit C.x/ computes
a boolean function f .x/ if

ProbŒC.x/ D f .x/� � 3=4 for each x 2 f0; 1gn :

There is nothing special about using the constant 3=4 here—one can take any
constant >1=2 instead. The complexity would not change by more than a constant
factor.

Can probabilistic circuits have much smaller size than usual (deterministic)
circuits? We will answer this question negatively using the following simple (but
often used) “majority trick”. It implies that if a random circuit errs on a fixed input
with probability <1=2, then the majority of not too many independent copies of
such a circuit will err on this input with exponentially small probability. A Bernoulli
random variable with success probability p is a 0–1 random variable taking the
value 1 with probability p.

Lemma 1.5. (Majority trick) If x1; : : : ; xm are independent Bernoulli random vari-
ables with success probability 1=2 C �, then

ProbŒMaj.x1; : : : ; xm/ D 0� � e�2�2m :

Proof. Let F be the family of all subsets of Œm� D f1; : : : ; mg of size > m=2, and
let q WD ProbŒMaj.x1; : : : ; xm/ D 0�. Then

q D
X

S2F
ProbŒxi D 0 for all i 2 S� � ProbŒxi D 1 for all i 62 S�

D
X

S2F
.1=2 � �/jS j.1=2 C �/m�jS j

�
X

S2F
.1=2 � �/m=2.1=2 C �/m=2

� 2m.1=4 � �2/m=2 D .1 � 4�2/m=2 � e�2�2m :
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The first inequality here follows by multiplying each term by

.1=2 � �/m=2�jS j.1=2 C �/jS j�m=2 � 1 : ut

Theorem 1.6. (Adleman 1978) If a boolean function f of n variables can be
computed by a probabilistic circuit of size M , then f can be computed by a
deterministic circuit of size at most 8nM .

Proof. Let C be a probabilistic circuit that computes f . Take m independent
copies C1; : : : ; Cm of this circuit (each with its own random inputs), and consider
the probabilistic circuit C 0 that computes the majority of the outputs of these m

circuits. Fix a vector a 2 f0; 1gn, and let xi be an indicator random variable
for the event “Ci.a/ D f .a/”. For each of these random variables we have that
ProbŒxi D 1� � 1=2 C � with � D 1=4. By the majority trick, the circuit C 0 will err
on a with probability at most e�2�2m D e�m=8. By the union bound, the probability
that the new circuit C 0 makes an error on at least one of all 2n possible inputs a is at
most 2n �e�m=8. If we take m D 8n, then this probability is smaller than 1. Therefore,
there must be a setting of the random inputs which gives the correct answer for all
inputs. The obtained circuit is no longer probabilistic, and its size is at most 8n times
larger than the size of the probabilistic circuit.

ut

Average time of computations Let C D .g1; : : : ; gs/ be a circuit computing some
boolean function f .x/ of n variables; hence, gs.x/ D f .x/. The number s of gates
is the size of the circuit. One can also consider a notion of “computation time” on a
given input a 2 f0; 1gn. For this, let us introduce one special boolean variable z, the
output variable. Some of the gates may reset this variable, that is, set z D gi .a/. In
particular, gates of the form z D 0 and z D 1 are allowed. The last gate gs always
does this, that is, sets z D gs.a/. Our goal however is to interrupt the computation
sequence g1.a/; : : : ; gs.a/ as soon as the output variable already has the correct
value z D f .a/.

To realize this goal, we declare some gates as “stop-gates”. Such a gate g stops
the computation on an input a if g.a/ D 1. Now, given an input a 2 f0; 1gn, a
computation g1.a/; g2.a/; : : : ; gi .a/ continues until the first gate gi is found such
that gi is a stop-gate and gi .a/ D 1. The computation on a then stops, and the
output C.a/ of the circuit is the actual value of the output variable z at this moment
(see Fig. 1.4). The computation time tC .a/ of the circuit C on a is the number i

of gates evaluated until the value was computed. The average time of the circuit
C is

t.C / D 2�n
X

a2f0;1gn

tC .a/ :

If we have no stop-gates at all, then tC .a/ D s for all inputs a, and hence, the
average time t.C / of the circuit C is just the size s of C .

This model of stop-circuits was introduced by Chashkin (1997, 2000, 2004); he
calls this model “non-branching programs with conditional stop”.
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z D 1 z D x1 _ x2 .stop/ g1 D x1 _ x2

g1 D x1 .stop/ z D x3 _ x4 g2 D x3 _ x4

g2 D x2 .stop/ z D g1 _ g2

g3 D x3 .stop/

g4 D x4 .stop/

z D 0

Fig. 1.4 Three circuits computing the OR x1 _ _x2 _ x3 _ x4 of four variables. On input a D
.0; 1; 0; 0/ the first circuit takes time tC .a/ D 3, the second takes time tC .a/ D 1, and the third
(standard) circuit takes time tC .a/ D 3. The average time of the last circuit is t .C / D 3, whereas
that of the middle circuit is t .C / D 1

16
.12 � 1 C 4 � 2/ D 5=4

The average time, t.f /, of a boolean function f is the minimum average time of
a circuit computing f . We always have that t.f / � C.f /. Chashkin (1997) showed
that boolean functions f of n variables requiring t.f / D ˝.2n=n/ exist. But some
functions have much smaller average time than C.f /.

Example 1.7. Consider the threshold-2 function Thn
2.x/. Since every boolean func-

tion f , which depends on n variables, requires at least n � 1 gates, we have that
C.Thn

2/ � n � 1. On the other hand, it is not difficult to show that t.Thn
2/ D O.1/.

To see this, let us first compute z D Th3
2.x1; x2; x3/. This can be done using 6

gates (see Fig. 1.3), and hence, can be computed in time 6. After that we compute
z D Th3

2.x4; x5; x6/, and so on. Declare each gate re-setting the variable z as a stop-
gate. This way the computations on 42n�3 D 2n�1 inputs will be stopped after 6

steps, the computations on 422n�6 D 2n�2 remaining inputs will be stopped after
6 � 2 D 12 steps and, in general, the computations on 4t2n�3t D 2n�t inputs
will be stopped after 6t steps. Thus, the average computation times is at most
Pn=3

tD1 6t2�t D O.1/.

An interesting aspect of stop-circuits is that one can compute non-monotone boolean
functions using monotone operations! For example, the following circuit over f0; 1g
computes the negation :x of a variable x:

z D 0I g1 D x .stop/I z D 1

and the following circuit over f^; _; 0; 1g computes the parity function x ˚ y:

z D 0I g1 D x ^ y .stop/I z D 1I g2 D x _ y .stop/I z D 0 :

Let tm.f / denote the minimum average time of a circuit over f^; _; 0; 1g computing
f . Chashkin (2004) showed that there exist boolean functions f of n variables such
that t.f / D O.1/ but tm.f / D ˝.

p
2n=n/.
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Arithmetic circuits Such circuits constitute the most natural and standard model
for computing polynomials over a ring R. In this model the inputs are variables
x1; : : : ; xn, and the computation is performed using the arithmetic operations C; �
and may involve constants from R. The output of an arithmetic circuit is thus a
polynomial (or a set of polynomials) in the input variables. Arithmetic circuits are a
highly structured model of computation compared to boolean circuits. For example,
when studying arithmetic circuits we are interested in syntactic computation of
polynomials, whereas in the study of boolean circuits we are interested in the
semantics of the computation. In other words, in the boolean case we are not
interested in any specific polynomial representation of the function, but rather we
just want to compute some representation of it, while in the arithmetic world we
focus on a specific representation of the function. As such, one may hope that the P
vs. NP question will be easier to solve in the arithmetical model. However, in spite
of many efforts, we are still far from understanding this fundamental problem. In
this book we will not discuss arithmetic circuits: a comprehensive treatment can be
found in a recent survey by Shpilka and Yehudayoff (2010).

1.3 Branching Programs

Circuits and formulas are “parallel” models: given an input vector x 2 f0; 1gn, we
process some pieces of x in parallel and join the results by AND or OR gates. The
oldest “sequential” model for computing boolean functions, introduced already in
pioneering work of Shannon (1949) and extensively studied in the Russian literature
since about 1950, is that of switching networks; a modern name for these networks
is “branching programs.”

Nondeterministic branching programs The most general of “sequential” models
is that of nondeterministic branching programs (n.b.p.). Such a program is a directed
acyclic graph with two specified nodes2 s (source) and t (target). Each wire is either
unlabeled or is labeled by a literal (a variable xi or its negation :xi ). A labeled wire
is called a contact, and an unlabeled wire is a rectifier.

The graph may be a multigraph, that is, several wires may have the same
endpoints. The size of a program is defined as the number of contacts (labeled
wires).

Each input a D .a1; : : : ; an/ 2 f0; 1gn switches the labeled wires On or Off by
the following rule: the wire labeled by xi is switched On if ai D 1 and is switched
Off if ai D 0; the wire labeled by :xi is switched On if ai D 0 and is switched Off
if ai D 1. The rectifiers are always considered On.

A nondeterministic branching program computes a boolean function in a natural
way: it accepts the input a if and only if there exists a path from s to t which is

2We prefer to use the word “node” instead of “vertex” as well as “wire” instead of “edge” while
talking about branching programs.
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Fig. 1.5 A nondeterministic branching program computing the majority function Maj3.x; y; z/ D
1 iff x C y C z � 2, and a non-monotone switching network computing the threshold function
Th4

2.x1; x2; x3; x4/ D 1 iff x1 C x2 C x3 C x4 � 2

consistent with a, that is, along which all wires are switched On by a. That is, each
input switches the wires on or off, and we accept that input if and only if after that
there is a nonzero conductivity between the nodes s and t (see Fig. 1.5). Note that
we can have many paths consistent with one input vector a; this is why a program
is nondeterministic.

An n.b.p. is monotone if it does not have negated contacts, that is, wires labeled
by negated variables. It is clear that every such program can only compute a
monotone boolean function. For a monotone boolean function f , let NBPC.f /

denote the minimum size of a monotone n.b.p. computing f , and let NBP.f / be
the non-monotone counterpart of this measure. Let also l.f / denote the minimum
length of its minterm, and w.f / the minimum length of its maxterm.

Theorem 1.8. (Markov 1962) For every monotone boolean function f ,

NBPC.f / � l.f / � w.f / :

Proof. Given a monotone n.b.p. program, for each node u define d.u/ as the
minimum number of variables that need to be set to 1 to establish a directed path
from the source node s to u. In particular, d.t/ D l.f / for the target node t .

For 0 � i � l.f /, let Si be the set of nodes u such that d.u/ D i . If u is
connected to v by an unlabeled wire (i.e., not a contact) then d.u/ � d.v/, hence
there are no unlabeled wires from Si to Sj for i < j . Thus for each 0 � i < l.f /,
the set Ei of contacts out of Si forms a cut of the branching program. That is, setting
these contacts to 0 disconnects the graph, and hence, forces the program output value
0 regardless on the values of the remaining variables. This implies that the set X.Ei/

of labels of contacts in Ei must contain a maxterm of f , hence jX.Ei/j � w.f /

distinct variables. ut
For the threshold function Thn

k we have l.Thn
k/ D k and w.Thn

k/ D n � k C 1,
so every monotone n.b.p. has at least k.n � k C 1/ contacts. Actually, this bound is
tight, as shown in Fig. 1.6. Thus we have the following surprisingly tight result.

Corollary 1.9. (Markov 1962) NBPC.Thn
k/ D k.n � k C 1/.

In particular, NBPC.Majn/ D �.n2/.
It is also worth noting that the famous result of Szelepcsényi (1987) and

Immerman (1988) translates to the following very interesting simulation: there
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sFig. 1.6 The naive monotone
n.b.p. for Thn

k has
k.n � k C 1/ contacts; here
n D 9, k D 6

Fig. 1.7 A graph which is not parallel-serial: it has a “bridge” fa; bg which is traversed in different
directions

exists a constant c such that for every sequence .fn/ of boolean functions,

NBP.:fn/ � NBP.fn/c :

This is a “NP D co-NP” type result for branching programs.
A parity branching program is a nondeterministic branching program with the

“counting” mode of acceptance: an input vector a is accepted iff the number s-t
paths consistent with a is odd.

Switching networks A switching network (also called a contact scheme) is defined
in the same way as an n.b.p. with the only difference that now the underlying graph
is undirected. Note that in this case unlabeled wires (rectifiers) are redundant since
we can always contract them.

A switching network is a parallel-serial network (or �-scheme) if its underlying
graph consists of parallel-serial components (see Fig. 1.8). Such networks can be
equivalently defined as switching networks satisfying the following condition: it is
possible to direct the wires in such a way that every s-t path will turn to a directed
path from s to t ; see Fig. 1.7 for an example of a switching network which is not
parallel-serial.

It is important to note that switching networks include DeMorgan formulas as a
special case!

Proposition 1.10. Every DeMorgan formula can be simulated by a �-scheme of
the same size, and vice versa.

Proof. This can be shown by induction on the leafsize of a DeMorgan formula F .
If F is a variable xi or its negation :xi , then F is equivalent to a �-scheme
consisting of just one contact. If F D F1 ^ F2 then, having �-schemes S1 and
S2 for subformulas F1 and F2, we can obtain a �-scheme for F by just identifying
the target node of S1 with the source node of S2 (see Fig. 1.8). If F D F1 _ F2 then,
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x1

x2

x3 x5
x2x4

x1 ts

x3
Fig. 1.8 A �-scheme
corresponding to the formula
x1.x2 _ x3/.x3 _ x4x5

.x1_x2//

Fig. 1.9 A deterministic branching program computing the majority function Maj3.x; y; z/ D 1

iff x C y C z � 2, and such a program computing the parity function Parity.x; y; z/ D x C y C
z mod 2; wires left without a label in the latter program make tests y D 1 and z D 1, respectively

having �-schemes S1 and S2 for subformulas F1 and F2, we can obtain a �-scheme
for F by placing these two schemes in parallel and gluing their source nodes and
their target nodes. ut

That the presence of unlabeled directed wires in a network makes a difference,
can be seen on the example of the threshold function Thn

2 . Let S.f / denote
the minimum number of contacts in a switching network computing f , and let
SC.f / denote the monotone counterpart of this measure. By Markov’s theorem,
NBPC.Thn

2/ D 2n � 3, but it can shown that SC.Thn
2/ D ˝.n log2 n/ (see

Exercise 1.12). In fact, if n is a power of 2, then we also have SC.Thn
2/ � n log2 n,

even in the class of �-schemes (see Exercise 1.11). It can also be easily shown that
in the class of non-monotone switching networks we have that S.Thn

2/ � 3n�4 (see
Fig. 1.5 for a hint).

Deterministic branching programs In a nondeterministic branching program as
well as in a switching network one input vector a 2 f0; 1gn can be consistent with
many s-t paths. The deterministic version forbids this: every input vector must be
consistent with exactly one path.

Formally, a deterministic branching program for a given boolean function f of n

variables x1; : : : ; xn is a directed acyclic graph with one source node and two sinks,
that is, nodes of out-degree 0. The sinks are labeled by 1 (accept) and by 0 (reject).
Each non-sink node has out-degree 2, and the two outgoing wires are labeled by the
tests xi D 0 and xi D 1 for some i 2 f1; : : : ; ng; the node itself is labeled by the
variable xi (Fig. 1.9).

Such a program computes a boolean function f W f0; 1gn ! f0; 1g in a natural
way: given an input vector a 2 f0; 1gn, we start in the source node and follow the
unique path whose tests are consistent with the corresponding bits of a; this path is
the computation on a. In this way we reach a sink, and the input a is accepted iff
this is the 1-sink.
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Thus, a deterministic branching program is a nondeterministic branching pro-
gram with the restriction that each non-sink node has fanout 2, and the two outgoing
wires from each such node are labeled by the tests xi D 0 and xi D 1 on the same
variable xi . The presence of the 0-sink is just to ensure that each input vector can
reach a sink.

A decision tree is a deterministic branching program whose underlying graph is
a binary tree. The depth of such a tree is the maximum number of wires in a path
from the source node to a leaf.

In the literature, branching programs are also called binary decision diagrams or shortly BDDs.
This term is especially often used in circuit design theory as well as in other fields where
branching programs are used to represent boolean functions. Be warned, however, that the term
“BDD” in such papers is often used to denote a much weaker model, namely that of oblivious
read-once branching programs (OBDD). These are deterministic branching programs of a very
restricted structure: along every computation path all variables are tested in the same order, and
no variable is tested more than once.

It is clear that NBP.f / � S.f / � BP.f /, where BP.f / denotes the minimum
size of a deterministic branching program computing f . An important result of
Reingold (2008) translates to

BP.fn/ � S.fn/O.1/ :

This is a “P D NP” type result for branching programs.

1.4 Almost All Functions are Complex

We still cannot prove super-linear lower bounds for circuits with AND, OR and
NOT gates. This is in sharp contrast with the fact, proved more than 60 years
ago by Riordan and Shannon (1942) that most boolean functions require formulas
of leafsize about 2n= log n. Then Shannon (1949) showed a lower bound 2n=n

for circuits. Their arguments were the first applications of counting arguments in
boolean function complexity: count how many different boolean functions of n

variables can be computed using a given number of elementary operations, and
compare this number with the total number 22n

of all boolean functions. After these
works of Riordan and Shannon there were many results concerning the behavior of
the so-called “Shannon function” in different circuit models.

Definition 1.11. (Shannon function) Given a circuit model with a particular their
size-measure, the Shannon function for this model is �.n/ D max �.f /, where the
maximum is taken over all boolean functions f of n variables, and �.f / is the
minimum size of a circuit computing f .

In other words, �.n/ is the smallest number t such that every boolean function of n

variables can be computed by a circuit of size at most t .
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Most bounds in circuit complexity ignore constant multiplicative factors. Moreover, boolean
functions f W f0; 1gn ! f0; 1g are parameterized by their number of variables n. Hence, under
a boolean function f we actually understand an infinite sequence ffnW n D 1; 2; : : :g of boolean
functions. So the claim “f requires ˝.'.n// gates” means that there exists a constant � > 0

such that, for infinitely many values of n, the function fn cannot be computed using fewer
than � � '.n/ gates. We will also say that f requires a “super-polynomial” number of gates, if
'.n/ � n˛ for some ˛ ! 1 as n ! 1, and that f requires an “exponential” number of
gates, if '.n/ � 2n�

for a constant � > 0.

Through this section, by a circuit (formula) we will understand a circuit (formula)
over the basis f^; _; :g; similar results, however, also hold when all 16 boolean
functions of two variables are allowed as gates. By Bn we will denote the set of all
22n

boolean functions of n variables x1; : : : ; xn.

1.4.1 Circuits

Let C.f / denote the minimum size of a fanin-two circuit over f^; _; :g comput-
ing f . Let also

�.n; t/ WD jff 2 BnW C.f / � tgj
denote the number of distinct boolean functions f 2 Bn computable by circuits
of size at most t . As before, we assume that the function computed by a circuit
g1; g2; : : : ; gt is the function computed at its last gate gt . So we now assume that
every circuit computes only one boolean function. This implies that every class
F 	 Bn of jF j > �.n; t/ functions must contain a function requiring circuits
of size >t . This was the main idea of Riordan–Shannon’s argument.

Lemma 1.12. �.n; t/ � t t e2tC4n. In particular, �.n; t/ � 2t2
for t � n � 16.

Proof. Clearly, we may suppose n; t � 2. Let g1; : : : ; gt be names of the gates in a
circuit. To describe a concrete circuit, it is sufficient to attach to each gate one of the
connectives ^; _; : and an unordered pair of names of two other gates or literals.
There are at most �

3
�

t�1C2n
2

��t � 2t .t C 2n/2t

such descriptions. Clearly, some of these descriptions do not represent a circuit
satisfying all requirements, but every correct circuit may be described in this
way. Note that the output does not have a special name. In a correct circuit, it
is determined by the fact that it is the only gate not used in any other gate. It is
easy to see that every function representable by a circuit of size at most t is also
representable by a circuit of size exactly t satisfying the additional requirement that
no two of its gates compute the same function. It is also easy to see that in a circuit
satisfying the last mentioned property, each of the t Š permutations of the names of
the gates leads to a different description of a circuit computing the same function.
So using estimates t Š � .t=3/t and 1 C x � ex, we can upper bound �.n; t/ by
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2t .t C 2n/2t

t Š
� 2t 3t .t C 2n/2t

t t
D 6t t t

�
1 C 2n

t

�2t � t t 6t e4n: ut

Lemma 1.13. (Kannan 1981) For every integer k � 1, there is a boolean function
of n variables such that f can be written as a DNF with n2kC1 monomials, but
C.f / > nk .

Proof. We view a circuit computing a boolean function f as accepting the set
of vectors f �1.1/ 	 f0; 1gn, and rejecting the remaining vectors. Fix a subset
T 	 f0; 1gn of size jT j D nt2 D n2kC1. By Lemma 1.12, we know that at most
2n2k

< 2jT j distinct subsets of T can be accepted by circuits of size at most nk . Thus,
some subset S 	 T cannot be accepted by a circuit of size nk . But this subset S

can be accepted by a trivial DNF with jS j � jT j D n2kC1 monomials: just take one
monomial for each vector in S . ut

Since we have 22n
distinct boolean functions of n variables, setting t WD 2n=n

in Lemma 1.12 immediately implies the following lower bound on the Shannon
function C.n/ in the class of circuits.

Theorem 1.14. For every sufficiently large n, C.n/ > 2n=n.

On the other hand, it is easy to see that C.n/ D O.n2n/: just take the DNFs.
Muller (1956) proved that C.n/ D �.2n=n/ for any finite complete basis. Lupanov
(1958a) used an ingenious construction to prove an asymptotically tight bound.

Theorem 1.15. (Lupanov 1958a) For every boolean function f of n variables,

C.f / � .1 C ˛n/
2n

n
where ˛n D O

� log n

n

�
: (1.4)

Proof. We assume that the number n of variables is large enough. For a boolean
vector a D .a1; : : : ; an/, let bin.a/ WD Pn

iD1 ai � 2n�i be the unique natural number
between 0 and 2n � 1 associated with a; we call bin.a/ the code of a.

Let Hn;m.i/ denote the set of all boolean functions h.x/ of n variables such that
h.a/ D 0 if bin.a/ � m.i � 1/ or bin.a/ > mi . That is, we arrange the vectors
of f0; 1gn into a string of length 2n according to their codes, split this string into
consecutive intervals of length m, and let Hn;m.i/ to contain all boolean functions
h that take value 0 outside the i -th interval:

: : : ; 0; 0; �; : : : ; �
„ ƒ‚ …

values on m vectors

; 0; 0; : : : :

Thus,3 for each i D 1; : : : ; 2n=m, each function in Hn;m.i/ can only accept a subset
of a fixed set of m vectors, implying that

3An apology to purists: for simplicity of presentation, we will often ignore ceilings and floors.
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jHn;m.i/j � 2mC1

for all i . Since every input vector a has its unique weight, every boolean function
f .x/ of n variables can be represented as a disjunction

f .x/ D
2n=m_

iD1

fi .x/ ; (1.5)

where fi 2 Hn;m.i/ is the functions such that fi .a/ D f .a/ for every a such that
m.i � 1/ < bin.a/ � mi . We can associate with every a 2 f0; 1gn the elementary
conjunction

Ka D x
a1

1 x
a2

2 � � � xan
n :

Recall that x�
i D 1 if ai D � , and x�

i D 0 otherwise. Hence, Ka.b/ D 1 if and only
if b D a, and we have 2n such elementary conjunctions of n variables.

Claim 1.16. All elementary conjunctions of n variables can be simultaneously
computed by a circuit with at most 2n C 2n2n=2 gates.

Proof. Assume for simplicity that n is even. We first compute all 2n=2 elementary
conjunctions of the first n=2 variables using a trivial circuit with at most .n=2/2n=2

gates, and do the same for the conjunctions of the remaining n=2 variables. We now
can compute every elementary conjunction of n variables by taking an AND of the
corresponding outputs of these two circuits. This requires 2n=2 �2n=2 D 2n additional
gates, and the entire circuit has size at most 2n C n2n=2 To include the case when n

is odd, we just multiply the last term by 2. ut
We now turn to the actual construction of an efficient circuit for a given boolean

function f .x/ of n variables. Let 1 � k; m � n be integer parameters (to be
specified latter). By (1.5), we can write f .x/ as a disjunction

f .x/ D
_

a

Ka.x1; : : : ; xk/ ^
2n=m_

iD1

fa;i .xkC1; : : : ; xn/ ;

where a ranges over f0; 1gk, and each fa;i belongs to Hn�k;m.i/. We will use
this representation to design the desired circuit for f . The circuit consists of
five subcircuits (see Fig. 1.10). The first subcircuit F1 computes all elementary
conjunctions of the first k variables. By Claim 1.16, this circuit has size

L.F1/ � 2k C 2k2k=2 :

The second subcircuit F2 also computes all elementary conjunctions of the remain-
ing n � k variables. By Claim 1.16, this circuit has size

L.F2/ � 2n�k C 2.n � k/2.n�k/=2 :
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x1 xk xk+1 xn. . . . . .

F3

F5

F1 F2

F4

Fig. 1.10 The structure of
Lupanov’s circuit

The third subcircuit F3 computes all functions fa;i from the sets Hn�k;m.i/ using
elementary conjunctions computed by F2. Since every function in Hn�k;m.i/ is an
OR of at most m elementary conjunctions, each of length n � k, and since we have
at most 2mC1 � 2n�k=m such functions, the subcircuit F3 has size

L.F3/ � m2n�kCmC1=m D 2n�kCmC1 :

The fourth subcircuit F4 computes all functions

fa.xkC1; : : : ; xn/ D
2n=m_

iD1

fa;i .xkC1; : : : ; xn/

using the functions fa;i computed by F3. Since we have at most 2k such functions
fa, each of which is an OR of at most 2n�k=m of the functions fa;i , the subcircuit
F4 has size

L.F4/ � 2k � 2n�k=m � 2n

m
C 2k :

The last subcircuit F5 multiplies functions computed by F3 by elementary con-
junctions computed by F1, and computes the disjunction of these products. This
subcircuit has size

L.F5/ � 2 � 2k :

Thus, the entire circuit F computes f .x/ and has size

L.F / � 2n

m
C 4 � 2k C 2n�k C 2n2k=2 C 2n2n�k C 2n�kCmC1 :

Now set k D n � 2 log n and m D n � 4 log n. Then all but the first terms are
at most O.2n=n2/, and we obtain that L.F / � 2n=m C O.2n=n2/. After simple
computations, this implies L.F / � .1 C ˛/2n=n where ˛ � c.log n/=n for a
constant c. ut
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Lozhkin (1996) improved (1.4) to

˛n D log n C log log n C O.1/

n
:

Lupanov (1963) also proved a lower bound

C.n/ � .1 C ˇn/
2n

n
where ˇn D .1 � o.1//

log n

n
: (1.6)

The proof actually gives that the o.1/ factor is equal to O.1= log n/.
Redkin (2004) considered the behavior of the Shannon function when restricted

to boolean functions accepting a small number of input vectors. Let C.n; K/ denote
the smallest number t such that every boolean function f of n variables such that
jf �1.1/j D K can be computed by a circuit over f^; _; :g of size at most t . Redkin
(2004) proved that, if 2 � K � log2 n�c log2 log2 n holds for some constant c > 1,
then

C.n; K/ 
 2n :

For the Shannon function M.n/ restricted to the class of all monotone boolean
functions of n variables, Ugol’nikov (1976) and Pippenger (1976b) independently
proved that

M.n/ 
 1

n

 
n

bn=2c

!

:

This holds for circuits with AND, OR and NOT gates. An important improvement
by Andreev (1988b) shows that the upper bound is actually achieved by monotone
circuits with only AND and OR gates!

1.4.2 Approximation Complexity

In a standard setting, a circuit F.x/ must compute a given boolean function f .x/

correctly on all input vectors x 2 f0; 1gn. We can relax this and only require that F

computes f correctly on some given subset D 	 f0; 1gn of vectors; on other input
vectors the circuit may output arbitrary values, 0 or 1. That is, we are asking for the
smallest size C.f / of a circuit computing a partial boolean function f W f0; 1gn !
f0; 1; �g defined on

D D f �1.0/ [ f �1.1/ :

Let N D jDj be the size of the domain, and N1 D jf �1.1/j. It is clear that C.f / D
O.nN /. Actually, we have a much better upper bound:
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C.f / � .1 C o.1//
N

log2 N
C O.n/ : (1.7)

For functions with log2 N 
 n this was (implicitly) proved already by Nechiporuk
(1963, 1965, 1969a) in a series of papers devoted to rectifier networks; Pippenger
(1976) gave an independent proof. Then Sholomov (1969) proved this for all
N � n log1C˝.1/ n, and finally Andreev (1988) proved this for arbitrary N . It is
also known that

C.f / � .1 C o.1//
log2

�
N
N1

�

log2 log2

�
N
N1

� C O.n/ :

For log2 N1 
 n this was (implicitly) proved by Nechiporuk in the above mentioned
papers, and by Pippenger (1976). Andreev et al. (1996) proved this in the case when
.1 C �/ log n < log N1 D O.log n/ and log N D ˝.n/. Finally, Chashkin (2006)
proved this for arbitrary N1.

Counting arguments (similar to those above) show that these upper bounds are
asymptotically tight. The proofs of the upper bounds are, however, non-trivial: it
took more than 40 years to find them!

Let us call a partial boolean function f W D ! f0; 1g of n variables dense if
the size N D jDj of its domain satisfies log2 N 
 n. The proof of (1.7) for dense
functions uses arguments similar to that we used in the proof of Theorem 1.15.
Moreover, for dense functions, (1.7) holds without the additive factor O.n/. The
proof of (1.7) for functions that are not necessarily dense used interesting ideas
which we will sketch right now. We will follow a simplified argument due to
Chashkin (2006).

Let f .x/ be a partial boolean function which is not dense, that is, for which
log2 N � n holds. If f takes value 1 on fewer than N=n2 input vectors, then we can
compute f by a DNF using at most n.N=n2/ D N=n gates. Thus, the difficult case
is when f is not dense but is “dense enough”. The idea in this case is to express f

as f .x/ D h.x/ ˚ g.L.x//, where h accepts only few vectors, g W f0; 1gm ! f0; 1g
is a dense partial function, and L W f0; 1gn ! f0; 1gm is an “almost” injective linear
operator. Being linear means that L.x/ D Ax over GF.2/ for some boolean m � n

matrix A. Both h and L have small circuits, and for g we can use the upper bound
for dense functions.

Say that an operator L W f0; 1gn ! f0; 1gm is almost injective on a subset D 	
f0; 1gn if L.x/ D L.y/ for at most 2�m

�jDj
2

�
pairs x ¤ y of distinct vectors in D.

Lemma 1.17. Let D 	 f0; 1gn be a set of vectors, and m a positive integer. Then
there exists a linear operator L W f0; 1gn ! f0; 1gm which is almost injective on D.

Proof. We will use a simple (but useful) fact about random vectors in GF.2/n. A
random vector a in GF.2/n is obtained by flipping n times a fair 0–1 coin. Hence,
ProbŒa D x� D 2�n for each vector x 2 GF.2/n. It is easy to show (see Appendix A)
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that ProbŒha; xi D ha; yi� D 1=2 holds for every two vectors x ¤ y in GF.2/n,
where ha; xi D Pn

iD1 ai xi mod 2 is the scalar product of a and x over GF.2/.
Now consider a random operator L.x/ D Ax where A is a random m � n matrix

whose rows are random vectors in GF.2/n. By the previous fact, every pair .x; y/

of vectors x ¤ y in D is not separated by L with probability 2�m. By the linearity
of expectation, at most a fraction 2�m of such pairs will not be separated by L. ut

Now let f be a partial boolean function of n variables defined on some domain
D 	 f0; 1gn of size N D jDj.
Lemma 1.18. If log N � n=3 then C.f / � .1 C o.1//N= log N .

Proof. Let D0 D fx 2 DW f .x/ D 0g and D1 D fx 2 DW f .x/ D 1g; hence,
D D D0 [ D1 is the set on which our function f is defined, and N D jDj. Set also
m D dlog N C 3 log ne.

Lemma 1.17 gives us a linear operator L W f0; 1gn ! f0; 1gm which is almost
injective on D. Consider a partial boolean function g W f0; 1gm ! f0; 1g defined on
L.D/ by: g.z/ D 0 if z 2 L.D0/, and g.z/ D 1 otherwise. If necessary, specify
arbitrary values of g on some vectors outside L.D/ until the domain of g has exactly
N vectors.

And now comes the trick. We can write our function f .x/ as

f .x/ D h.x/ ˚ g.L.x// ;

where
h.x/ WD f .x/ ˚ g.L.x//

is a partial function defined on D. Thus, we only need to show that all three
functions h, g and L can be computed by small circuits.

The operator L.x/ is just a set of m � n parity functions, and hence, can be
computed by a trivial circuit of size O.n2/, which is o.N=n/ because log N D
˝.n/, by our assumption.

The function h can be computed by a small circuit just because it accepts at most
N=n3 vectors x 2 D. Indeed, h.x/ D 0 for all x 2 D0 because then L.x/ 2 L.D0/.
Hence, h can accept a vector x 2 D only if x 2 D1 and g.L.x// D 0, that is, if x 2
D1 and L.x/ D L.y/ for some y 2 D0. Since the operator L is almost injective,
and since 2m � Nn3, there are at most 2�m

�
N
2

� � N=n3 pairs .y; x/ 2 D0�D1 such
that L.x/ D L.y/. Thus, the function h can accept at most N=n3 vectors. By taking
a DNF, this implies that h can be computed by a circuit of size n.N=n3/ D o.N=n/.

It remains therefore to compute the function g. Recall that g is a partial function
of m variables defined on N vectors. Since log N 
 m, the function g is dense,
implying that C.g/ � .1 C o.1//N= log N . ut

We can now easily prove (1.7) for any partial function f . If log N � n=3

then Lemma 1.18 gives the desired upper bound (without any additive term). Now
suppose that log N � n=3. In this case we take m WD d2 log N e.
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Lemma 1.17 gives us a linear operator L W f0; 1gn ! f0; 1gm which is almost
injective on D. But by our choice of m, the operator L is actually injective on D,
because 2�m

�
N
2

� � 1=2 < 1. Thus, in this case we do not need any “error correction”
function h because now we have that f .x/ D g.L.x// for all x 2 D, where g is
defined as above using our new operator L. The function g has m variables and is
defined on jL.D/j D jDj D N vectors.

Since m � d2 log N e � 3 log N , we can apply Lemma 1.18 to g and obtain
C.g/ � .1 C o.1//N= logN . Since C.L/ D O.n log N /, we obtain (1.7) with an
additive factor O.n2/. One can reduce this factor to O.n/ by using the existence
of good linear codes computable by circuits of linear size; see Chashkin (2006) for
details.

1.4.3 The Circuit Hierarchy Theorem

By using estimates of Shannon–Lupanov it is not difficult to show that one can
properly increase the number of computed functions by “slightly” increasing the
size of circuits. For a function t W N ! N, let CircuitŒt � denote the set of
all sequences fn, n D 1; 2; : : : of boolean functions of n variables such that
C.fn/ � t.n/.

Theorem 1.19. (Circuit Hierarchy Theorem) If n � t.n/ � 2n�2=n then

CircuitŒt � ¤ CircuitŒ4t � :

Proof. Fix the maximal m 2 f1; : : : ; ng such that t.n/ � 2m=m � 2 � t.n/. This is
possible: if m is the largest number with 2m=m � 2 � t.n/, then 2mC1=.m C 1/ >

2 � t.n/, which implies t.n/ � 2m=m. Consider the set Bn;m of all boolean functions
of n variables that depend only on m bits of their inputs. By the Shannon–Lupanov
lower bound, there exists fn 2 Bn;m such that C.fn/ > 2m=m � t.n/. On the other
hand, Lupanov’s upper bound yields C.fn/ � 2 � 2m=m � 4 � t.n/. ut
Remark 1.20. Theorem 1.19 implies that �.n; 4t/ � �.n; t/C1; recall that �.n; t/

is the number of boolean functions of n variables computable by circuits of size
at most t . Recently, Chow (2011) gave the following tighter lower bound: there
exist constants c and K > 1 such that for all t.n/ � 2n�2=n and all sufficiently
large n,

�.n; t C cn/ � K � �.n; t/ : (1.8)

That is, when allowing an additional cn gates, the number of computable functions
is multiplied by at least some constant factor K > 1. In particular, if t.n/ � n log n,
then for any fixed d , �.n; t/ � nd � �.n; t=2/ for all sufficiently large n. To prove
(1.8), Chow sets N D 2n and lets A 	 f0; 1gN to be the set of all truth tables of
boolean functions f 2 Bn computable circuits of size at most t .
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A truth table is a 0–1 vector a D .a1; : : : ; aN /, and it describes the unique
function fa 2 Bn defined by fa.x/ D abin.x/ where bin.x/ D Pn

iD1 xi 2
i�1 is the

number whose binary code is vector x 2 f0; 1gn. The boundary ı.A/ of A  f0; 1gN

is the set of all vectors b 62 A that differ from at least one a 2 A in exactly one
position. The discrete isoperimetric inequality (see, for example, Bezrukov (1994))
states that,

kX

iD0

�
N

i

� � jAj <

kC1X

iD0

�
N

i

�
implies jı.A/j � �

N

kC1

�
:

Using this and some simple properties of binomial coefficients, Chow shows that
the boundary ı.A/ of the set A of truth tables contains at least �jAj vectors, for a
constant � > 0. Now, if b 2 ı.A/, then there exists a vector a 2 A such that fb

differs from fa on only one input vector x0. One can thus take a circuit for fa, add
additional cn gates to test the equality x D x0, and obtain a circuit for fb . Thus,
using additional cn gates we can compute at least K � jAj D K � �.n; t/ boolean
functions, where K D .1 C �/ > 1.

Chow (2011) uses this result to show that the so-called “natural proofs barrier” in
circuit lower bounds can be broken using properties of boolean functions of lower
density; we shortly discuss the phenomenon of natural proofs in the Epilogue.

1.4.4 Switching Networks and Formulas

Let us now consider the Shannon function S.n/ in the class of switching networks.
The worst-case complexity of switching networks is similar to that of circuits, and
can be lower bounded using the following rough upper bound on the number of
directed graphs with a given number of wires. Recall that multiple wires joining the
same pair of nodes are here allowed.

Lemma 1.21. There exist at most .9t/t graphs with t edges.

Proof. Every set of t edges is incident with at most 2t nodes. Using these nodes, at
most r D .2t/2 their pairs (potential edges) can be built. Since x1 C : : : C xr D t

has
�

rCt�1
t

�
integer solutions xi � 0, and since t Š � .t=3/t (by Stirling’s formula),

the number of graphs with t edges is at most

�
rCt�1

t

� � .r C t � 1/t

t Š
� 3t .r C t � 1/t

t t
� 32t t2t

t t
D 32t t t : ut

Theorem 1.22. For every constant � > 0 and sufficiently large n,

S.n/ � .1 � �/
2n

n
:
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Proof. If is clear that if a boolean function can be computed by a network with
at most t contacts then it can also be computed using exactly t contacts. By
Lemma 1.21 we know that there are .9t/t graphs with t edges. Since we only have
2n literals, there are at most .2n/t ways to turn each such graph into a switching
network by assigning literals to edges. Since every switching network computes
only one boolean function, at most .18nt/t different boolean functions can be
computed by switching networks with at most t contacts. Comparing this number
when t D .1 � �/2n=n with the total number 22n

of all boolean functions, yields the
result. ut

Shannon (1949) proved that .1 � �/2n=n < S.n/ < 2nC3=n holds for an
arbitrarily small constant � > 0. Lupanov (1958b) obtained much tighter bounds:

�
1 C 2 log n � O.1/

n

�2n

n
� S.n/ �

�
1 C O.1/p

n

�2n

n
:

In the class of formulas over f^; _; :g, that is, fanout-1 circuits constituting a
subclass of switching networks (see Proposition 1.10), the behavior of Shannon’s
function is somewhat different: for some boolean functions, their formulas are at
least n= log n times larger than circuits and switching networks.

When counting formulas, we have to count full binary tree, that is, binary trees
where every vertex has either two children or no children. It is well known that the
number of such trees with n C 1 leaves is exactly the n-th Catalan number:

Cn WD 1

n C 1

 
2n

n

!

D .2n/Š

.n C 1/ŠnŠ

 4n

n3=2
p

�
:

Let L.f / denote the smallest number of gates in a formula over f^; _; :g
computing f , and let L.n/ be the corresponding Shannon function.

Theorem 1.23. For every constant � > 0 and sufficiently large n,

L.n/ � .1 � �/
2n

log2 n
:

Proof. We can assume that all negations are only applied to input gates (leaves).
There are at most 4t binary trees with t leaves, and for each such tree, there are at
most .2n C 2/t possibilities to turn it into a DeMorgan formula: 2n input literals
and two types of gates, AND and OR. Hence, the number of different formulas of
leafsize at most t is at most 4t .2n C 2/t � .9n/t for n � 8. Since, we have 22n

different boolean functions, the desired lower bound on t follows. ut
Using more precise computations, tighter estimates can be proved. Riordan and

Shannon (1942) proved that
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L.n/ > .1 � ın/
2n

log n
where ın D O

� 1

log n

�
:

On the other hand, Lupanov (1960) showed that

L.n/ � .1 C 	n/
2n

log n
where 	n D 2 log log n C O.1/

log n
:

Lozhkin (1996) improved this to

	n D O
� 1

log n

�
:

Interestingly, Lupanov (1962) showed (among other things) that L.n/ drops down
from 2n= log n to

L.n/ D O.2n=n/ ;

if we allow just one of the basis functions AND, OR or NOT to have fanout 2. If we
allow all three basis functions to have fanout 2, then even the asymptotic

L.n/ 
 2n=n

holds. If only NOT gates are allowed to have fanout 2, then

L.n/ 
 2nC1=n :

Savický and Woods (1998) gave tight estimates on the number of boolean functions
computable by formulas of a given size. In particular, they proved that, for every
constant k, almost all boolean functions of formula size nk require circuits of size
at least nk=k.

Nechiporuk (1962) considered the behavior of the Shannon function in cases
when some of the gates are given for free. He proved that the smallest number of
gates that is enough to compute any boolean function of n variables is asymptoti-
cally equal to:

• 2n=n for formulas over f_; :g when _-gates are for free;
•

p
2nC1 for circuits over f_; :g when _-gates are for free;

• 2n=2n for formulas over f˚; ^g when ˚-gates are for free;
•

p
2n for circuits over f˚; ^g when ˚-gates are for free,

Concerning the Shannon functions ˚BP.n/ for parity branching programs and
NBP.n/ for nondeterministic branching programs, Nechiporuk (1962) proved that

˚BP.n/ 

p

2nC1
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x

y

s

t

T1

T2

Fig. 1.11 Construction of a
nondeterministic branching
program for an arbitrary
boolean function on n

variables. The program is
read-once (along every s-t
path, each variable is tested
only once), and is oblivious
(on each level, tests on the
same variable are made)

and p
2nC1 � NBP.n/ � 2

p
2n : (1.9)

The upper bound NBP.n/ � 4
p

2n for an even n is easy to prove. Take a boolean
function f .x1; : : : ; xn/, and assume that n D 2m is even. Let T1 be a full decision
tree on the first m variables, and T2 a full decision tree on the remaining m variables.
Turn T2 “on its head”, and reverse the orientation of its wires. Draw a switch
(unlabeled wire) from the leaf of T1 reached by a vector x 2 f0; 1gm to the leaf
of T2 reached by a vector y 2 f0; 1gm if and only if f .x; y/ D 1 (see Fig. 1.11). We
have jf �1.1/j switches, but they are for free. The number of contacts in the trees
T1 and T2 is smaller than 2 � 2mC1 D 4

p
2n. Note that the constructed program is

“read-once”: along each s-t path, each variable is tested only once. If the number of
variables is odd, n D 2m C 1, then the above construction gives a program with at
most 2.2m C 2mC1/ D 3 � 2mC1 D 3

p
2nC1 contacts. To obtain a better upper bound

2
p

2n, one can use more efficient contact schemes constructed by Lupanov (1958b).
The best known asymptotic bounds on the Shannon function restricted to

monotone boolean functions can be found in a survey by Korshunov (2003).

1.4.5 Invariant Classes

Let B be the class of all boolean functions. A class Q 	 B is invariant if together
with every function f .x1; : : : ; xn/ in Q it contains

• all subfunctions of f , and
• all function f .x�.1/; : : : ; x�.n// where � W Œn� ! Œn� is a permutation.

For example, classes of all symmetric, all linear or all monotone functions are
invariant. The class B itself is a trivial invariant class.

Let Q.n/ denote the set of all boolean functions f 2 Q of n variables; the
functions need not depend on all their variables. Denote

Lim.Q/ WD lim
n!1 jQ.n/j1=2n

:
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Theorem 1.24. For every invariant class Q, Lim.Q/ exists and lies between
1 and 2.

Proof. Let f .x1; : : : ; xnC1/ be an arbitrary boolean function in Q depending on
nC1 variables. Recurrence (1.1) yields jQ.nC1/j � jQ.n/j2. Hence, the sequence
jQ.n/j1=2n

is non-increasing. If Q ¤ ;, then

1 D 11=2n � jQ.n/j1=2n � .22n

/1=2n D 2 :

Thus Lim.Q/ exists and is a number in the interval Œ1; 2�. ut
By Theorem 1.24, every invariant class Q of boolean functions defines the unique
real number 0 � � � 1 such that Lim.Q/ D 2� . This number is an important
parameter of the invariant class characterizing its cardinality. It also characterizes
the maximum circuit complexity of functions in Q. We will therefore denote this
parameter by writing Q� if � is the parameter of Q.

For example, if P is the class of all linear boolean functions (parity functions),
then jP.n/j � 2nC1, implying that Lim.P / D 1, and hence, � D 0. The same holds
for the class S of all symmetric boolean functions. If M is the class of all monotone
boolean functions, then

 
n

n=2

!

� log2 jM.n/j � .1 C o.1//

 
n

n=2

!

:

The lower bound here is trivial: consider monotone boolean functions whose
minterms have length n=2. The upper bound was proved by Kleitman and
Markowsky (1975) with the o.1/ factor being O.log n=n/. The number jM.n/j is
known as the Dedekind number, and was considered by many authors. Korshunov
(1977, 1981) proved an asymptotically tight estimate

log2 jM.n/j 
 .1 C ˛/

 
n

n=2

!

where ˛ D �.n2=2n/ :

Since
�

n
n=2

� D �.2n=
p

n/, we again have that Lim.M / D 1, and � D 0. On the

other hand, Lim.B/ D .22n
/1=2n D 2, and � D 1.

Do there exist invariant classes Q with � strictly between 0 and 1? Yablonskii
(1959) showed that, for every real number 0 � � � 1 there exists an invariant class
Q with Lim.Q/ D 2� .

Example 1.25. As an example let us construct an invariant class with � D 1
2
.

For this, let Q.n/ consist of all boolean functions of the form f .x1; : : : ; xn/ D
lS .x/ ^ g.x/ where lS .x/ is the parity function

L
i2S xi or its negation, and

g is an arbitrary boolean function depending only on variables xi with i 2 S .
It is easy to see that Q is an invariant class. If we take S D f1; : : : ; ng, then
lS .x/ D 1 for 2n�1 vectors x. Hence, jQ.n/j � 22n�1

. On the other hand, for a
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fixed S 	 Œn�, there are at most 22jS j�1 � 22n�1
functions f 2 Q.n/. Since we

have only 2nC1 different linear functions on n variables, jQ.n/j � 2nC122n�1
. Thus

Lim.Q/ D p
2 � limn!1 2n=2n D p

2.

Let LQ.n/ denote the maximum, over all functions f 2 Q.n/, of the minimum
size of a DeMorgan circuit computing f . Yablonskii (1959) extended results of
Shannon and Lupanov to all invariant classes.

Theorem 1.26. (Yablonskii 1959) Let Q be an invariant class of boolean func-
tions, and let 0 � � � 1 be its parameter. Then, for every constant � > 0,

.1 � �/�
2n

n
� LQ.n/ � .1 C o.1//�

2n

n
:

The lower bound uses Shannon’s counting argument and the fact that Q.n/ has
about 2�2n

boolean functions. The upper bound uses a construction similar to that
used by Lupanov (1958a).

It is not difficult to verify that � < 1 for every invariant class Q ¤ B . Indeed,
for some fixed m, there exists a boolean function g.x1; : : : ; xm/ 62 Q. Since the
sequence jQ.n/j1=2n

is non-increasing, we have that

lim
n!1 jQ.n/j1=2n � jQ.m/j1=2m � .22m � 1/1=2m

< 2 :

Now suppose we have an algorithm constructing a sequence F D .fnW n D 1; 2; : : :/

of boolean functions. Call such an algorithm honest if, together with the sequence
F , it constructs some invariant class of boolean functions containing F . Specifying
F as an element of an invariant class means that the sequence F is specified by its
properties.

Theorem 1.27. (Yablonskii 1959) Every honest algorithm constructing a sequence
of most complex boolean functions must construct all boolean functions.

Proof. Let us assume the opposite. That is, assume that some sequence F D
.fnW n D 1; 2; : : :/ of most complex boolean functions is a member of some invariant
class Q� ¤ B . Then � < 1, and Theorem 1.26 implies that every boolean function
gn.x1; : : : ; xn/ 2 Q has a DeMorgan circuit of size at most .1 � 
/2n=n for some
constant 
 > 0. But the lower bound (1.6) implies that C.fn/ > 2n=n. Comparing
these bounds, we can conclude that the sequence F cannot be contained in any
invariant class Q� with � < 1. ut

This result serves as an indication that there (apparently) is no other way to
construct a most-complex sequence of boolean function other than to do a “brute
force search” (or “perebor” in Russian): just try all 22n

boolean functions.
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1.5 So Where are the Complex Functions?

Unfortunately, the results above are not quite satisfactory: we know that almost
all boolean functions are complex, but no specific (or explicit) complex function
is known. This is a strange situation: we know that almost all boolean functions
are complex, but we cannot exhibit any single example of a complex function!
We also face a similar situation in other branches of mathematics. For example,
in combinatorics it is known that a random graph on n vertices is a Ramsey-graph,
that is, has no cliques or independent sets on more than t D 2 log n vertices. But
where are these “mystical” graphs?

The best known explicit construction of non-bipartite t -Ramsey graphs due to Frankl and
Wilson only achieves a much larger value t about exp.

p
log n log log n/. In the bipartite case,

t -Ramsey graphs with t D n1=2 can be obtained from Hadamard matrices: Lindsey’s Lemma
(see Appendix A) implies that such a matrix can have a monochromatic a � b submatrix only
if ab � n. But even going below t D n1=2 was only recently obtained by Pudlák and Rödl
(2004), Barak et al. (2010), and Ben-Sasson and Zewi (2010). The paper of Barak et al. (2010)
constructs bipartite t -Ramsey graphs with t D nı for an arbitrarily small constant ı > 0.

The main goal of boolean complexity theory is to prove lower bounds on
the complexity of computing explicitly given boolean functions in interesting
computational models. By “explicitly given” researchers usually mean “belonging
to the class NP”. This is a plausible interpretation since, on the one hand, this class
contains the overwhelming majority of interesting boolean functions, and on the
other hand, it is a sufficiently restricted class in which counting arguments seem
not to apply. The second point is illustrated by a result of Kannan (1981) showing
that already the class ˙2 \ ˘2, next after NP in the complexity hierarchy, contains
boolean functions whose circuit size is ˝.nk/ for any fixed k > 0. The proof of
this fact essentially uses counting arguments; we will present it in the Epilogue (see
Theorem 20.13).

1.5.1 On Explicitness

We are not going to introduce the classes of the complexity hierarchy. Instead, we
will use the following simple definitions of “explicitness”. Say that a sequence of
boolean functions gn;m.x; y/ of n C m variables is “simple” if there exists a Turing
machine (or any other algorithm) which, given n; m and a vector .x; y/, outputs
the value gn;m.x; y/ in time polynomial in n C m. Then we can treat a sequence
of boolean functions fn.x/ as “explicit” if there exists a sequence gn;m of simple
functions with m D nO.1/ such that

fn.x/ D 1 if and only if gn;m.x; y/ D 1 for at least one y 2 f0; 1gm.

In this case, simple functions correspond to the class P, and explicit functions form
the class NP. For example, the parity function x1 ˚ � � � ˚ xn is “very explicit”: to
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determine its value, it is enough just to sum up all bits and divide the result by 2.
A classical example of an explicit function (a function in NP) which is not known
to be in P is the clique function. It has n D �v

2

�
variables xu;v, each for one possible

edge fu; vg on a given set V of n vertices. Each 0–1 vector x of length
�v

2

�
defines a

graph Gx D .V; Ex/ in a natural way: fu; vg 2 Ex iff xu;v D 1. The function itself
is defined by:

CLIQUE.x/ D 1 iff the graph Gx contains a clique on
p

n vertices.

In this case, m D n and the graphs Gy encoded by vectors y are k-cliques for
k D p

n. Since one can test whether a given k-clique in present in Gx in time about�
k
2

� � n, the function is explicit (belongs to NP). Thus a proof that CLIQUE requires
circuits of super-polynomial size would immediately imply that P ¤ NP.

Unfortunately, at the moment we are even not able to prove that CLIQUE
requires, say, 10n AND, OR and NOT gates! The problem here is with NOT
gates—we can already prove that the clique function requires n˝.

p
n/ gates, if no

NOT gates are allowed; this is a celebrated result of Razborov (1985a) which we
will present in Chap. 9.

1.5.2 Explicit Lower Bounds

The strongest known lower bounds for non-monotone circuits (with NOT gates)
computing explicit boolean functions of n variables have the form:

• 4n � 4 for circuits over f^; _; :g, and 7n � 7 for circuits over f^; :g and f_; :g
computing ˚n.x/ D x1 ˚ x2 ˚ � � � ˚ xn; Redkin (1973). These bounds are tight.

• 5n � o.n/ for circuits over the basis with all fanin-2 gates, except the parity and
its negation; Iwama and Morizumi (2002).

• 3n � o.n/ for general circuits over the basis with all fanin-2 gates; Blum and
Micali (1984).

• n3�o.1/ for formulas over f^; _; :g; Håstad (1998).
• ˝.n2= log n/ for general fanin-2 formulas, ˝.n2= log2 n/ for deterministic

branching programs, and ˝.n3=2= log n/ for nondeterministic branching pro-
grams; Nechiporuk (1966).

We have only listed the strongest bounds for unrestricted circuit models we currently
have (some other known bounds are summarized in Tables 1.1–1.4 at the end of
this chapter). The bounds for circuits and formulas were obtained by gradually
increasing previous lower bounds.

A lower bound 2n for general circuits was first proved by Kloss and Malyshev
(1965), and by Schnorr (1974). Then Paul (1977) proved a 2:5n lower bound,
Stockmeyer (1977) gave the same 2:5n lower bound for a larger family of boolean
functions including symmetric functions, Blum and Micali (1984) proved the lower
bound 3n � o.n/. A simpler proof of this lower bound, but for much more
complicated functions, was recently found by Demenkov and Kulikov (2011). They
prove such a bound for any boolean function which is not constant on any affine
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subspace of GF.2/n of dimension o.n/. A rather involved construction of such
functions was given earlier by Ben-Sasson and Kopparty (2009).

For circuits over the basis with all fanin-2 gates, except the parity and its
negation, a lower bound of 4n was obtained earlier by Zwick (1991b) (for a
symmetric boolean function), then Lachish and Raz (2001) proved a 4:5n � o.n/

lower bound, and finally Iwama and Morizumi (2002) extended this bound to
5n � o.n/.

For formulas, the first nontrivial lower bound n3=2 was proved by Subbotovskaya
(1961), then a lower bound ˝.n2/ was proved by Khrapchenko (1971), and a lower
bound of ˝.n2:5/ by Andreev (1985). This was enlarged to ˝.n2:55/ by Impagliazzo
and Nisan (1993), and to ˝.n2:63/ by Paterson and Zwick (1993), and finally to
n3�o.1/ by Håstad (1998).

The boolean functions for which these lower bounds are proved are quite
“simple”. For general circuits, a lower bound 3n � o.n/ is achieved by particular
symmetric functions, that is, functions whose value only depends on the number of
ones in the input vector.

The lower bound 5n�o.n/ holds for any k-mixed boolean function with k D n�
o.n/; a function is k-mixed if for any two different restrictions fixing the same set of
k variables must induce different functions on the remaining n�k variables. We will
construct an explicit k-mixed boolean function for k D n � O.

p
n/ in Sect. 16.1.

Amano and Tarui (2008) showed that some highly mixed boolean functions can be
computed by circuits of size 5n C o.1/; hence, the property of being mixed alone is
not enough to improve this lower bound.

Almost-quadratic lower bounds for general formulas and branching programs
are achieved by the element distinctness function (see Sects. 6.5 and 15.1 for the
proofs).

The strongest known lower bounds, up to n3�o.1/, for DeMorgan formulas are
achieved by the following somewhat artificial function An.x; y/ (see Sect. 6.4). The
function has n D 2b C bm variables with b D log.n=2/ and m D n=.2b/. The last
bm variables are divided into b blocks y D .y1; : : : ; yb/ of length m, and the value
of An is defined by An.x; y/ D fx.˚m.y1/; : : : ; ˚m.yb//.

1.6 A 3n Lower Bound for Circuits

Existing lower bounds for general circuits were proved using the so-called “gate-
elimination” argument. The proofs themselves consist of a rather involved case
analysis, and we will not present them here. Instead of that we will demonstrate
the main idea by proving weaker lower bounds.

The gate-elimination argument does the following. Given a circuit for the
function in question, we first argue that some variable 1 (or set of variables) must fan
out to several gates. Setting this variable to a constant will eliminate several gates.
By repeatedly applying this process, we conclude that the original circuit must have
had many gates.
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To illustrate the basic idea, we apply the gate-elimination argument to threshold
functions

Thn
k.x1; : : : ; xn/ D 1 if and only if x1 C x2 C � � � C xn � k :

Theorem 1.28. Even if all boolean functions in at most two variables are allowed
as gates, the function Thn

2 requires at least 2n � 4 gates.

Proof. The proof is by induction on n. For n D 2 and n D 3 the bound is trivial. For
the induction step, take an optimal circuit for Thn

2 , and suppose that the bottom-most
gate g acts on variables xi and xj with i ¤ j . This gate has the form g D '.xi ; xj /

for some ' W f0; 1g2 ! f0; 1g. Notice that under the four possible settings of these
two variables, the function Thn

2 has three different subfunctions Thn�2
0 , Thn�2

1 and
Thn�2

2 . It follows that either xi or xj fans out to another gate h, for otherwise our
circuit would have only two inequivalent sub-circuits under the settings of xi and
xj . Why? Just because the gate g D '.xi ; xj / can only take two values, 0 and 1.

Now suppose that it is xj that fans out to h. Setting xj to 0 eliminates the need
of both gates g and h. The resulting circuit computes Thn�1

2 , and by induction, has
at least 2.n�1/�4 gates. Adding the two eliminated gates to this bound shows that
the original circuit has at least 2n � 4 gates, as desired. ut

Theorem 1.28 holds for circuits whose gates are any boolean functions in at most
two variables. For circuits over the basis f^; _; :g one can prove a slightly stronger
lower bound. For this, we consider the parity function

˚n.x/ D x1 ˚ x2 ˚ � � � ˚ xn :

Theorem 1.29. (Schnorr 1974) The minimal number of AND and OR gates in a
circuit over f^; _; :g computing ˚n is 3.n � 1/.

Proof. The upper bound follows since x ˚ y is equal to .x ^ :y/ _ .:x ^ y/. For
the lower bound we prove the existence of some xi whose replacement by a suitable
constant eliminates 3 gates. This implies the assertion for n D 1 directly and for
n � 3 by induction.

Let g be the first gate of an optimal circuit for ˚n.x/. Its inputs are different
variables xi and xj (see Fig. 1.12). If xi had fanout 1, that is, if g were the only
gate for which xi is acting as input, then we could replace xj by a constant so that
gate g would be replaced by a constant. This would imply that the output became
independent of the i -th variable xi in contradiction to the definition of parity. Hence,
xi must have fanout at least 2. Let g0 be the other gate to which xi is an input.

We now replace xi by such a constant that g becomes replaced by a constant.
Since under this setting of xi the parity is not replaced by a constant, the gate g

cannot be an output gate. Let h be a successor of g. We only have two possibilities:
either h coincides with g0 (that is, g has no other successors besides g0) or not.
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a xi xj

g

xi xj

g

h

g’

p

g’

bFig. 1.12 The two cases in
the proof of Theorem 1.29

Case (a): g0 D h. In this case g has fanout 1. We can set xi to a constant so that g0
will become set to a constant. This will eliminate the need for all three gates g; g0
and p.

Case (b): g0 ¤ h. Then we can set xi to a constant so that g will become set to a
constant. This will eliminate the need for all three gates g; g0 and h.

In either case we eliminate at least 3 gates. ut
Note that the same argument works if we allow as gates any boolean functions
�.x; y/ with the following property: there exist constants a; b 2 f0; 1g such that
both �.a; y/ and �.x; b/ are constants. The only two-variable functions that do not
have this property is the parity function x ˚ y and its negation x ˚ y ˚ 1.

1.7 Graph Complexity

As pointed out by Sipser (1992), one of the impediments in the lower bounds area is
a shortage of problems of intermediate difficulty which lend insight into the harder
problems. Most of known problems (boolean functions) are either “easy” (parity,
majority, etc.) or are “very hard” (clique problem, satisfiability of CNFs, and all
other NP-hard problems).

On the other hand, there are fields—like graph theory or matrix theory—with
a much richer spectrum of known objects. It therefore makes sense to look more
carefully at the graph structure of boolean functions: that is, to move from a “bit
level” to a more global one and consider a given boolean function as a matrix or as a
bipartite graph. The concept of graph complexity, as we will describe it below, was
introduced by Pudlák et al. (1988), and was later considered by Razborov (1988,
1990), Chashkin (1994), Lokam (2003), Jukna (2006, 2010), Drucker (2011), and
other authors.

A circuit for a given boolean function f generates this function starting from
simplest “generators”—variables and their negations. It applies some boolean oper-
ations like AND and OR to these generators to produce new “more complicated”
functions, then does the same with these functions until f is generated. Note
however that there was nothing special to restrict ourselves to boolean functions—
one can define, say, the complexity of graphs or matrices analogously.

A basic observation connecting graphs and boolean functions is that
boolean functions can be treated as graphs. Namely, every boolean function
f .x1; : : : ; xm; y1; : : : ; ym/ of 2m variables can be viewed as a bipartite n � n
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graph4 Gf 	 V1 � V2 with n D 2m, whose vertex-sets V1 D V2 D f0; 1gm are
binary vectors, and .u; v/ 2 Gf iff f .u; v/ D 1. In particular, literals xa

i and ya
j for

a 2 f0; 1g then turn to bicliques (bipartite complete graphs):

1. If f D xa
i then Gf D fu 2 V1W ui D ag � V2.

2. If f D ya
j then Gf D V1 � fv 2 V2W vj D ag.

Boolean operations AND and OR turn to set-theoretic operations:

Gf ^g D Gf \ Gg and Gf _g D Gf [ Gg .

Thus, every (non-monotone!) DeMorgan formula (or circuit) for the function f

turns to a formula (circuit) which can use any of 4m bicliques defined above, and
apply the union and intersection operations to produce the entire graph Gf .

We thus can take a “vacation” from boolean functions, and consider the
computational complexity of graphs: how many [ and \ operations do we need
to produce a given bipartite graph G starting from bicliques?

Remark 1.30. In the context of arbitrary bipartite graphs, restriction to these special
bicliques (1) and (2) as generators looks somewhat artificial. And indeed, if we use
only these 4m D 4 log n generators, then the complexity of isomorphic graphs may
be exponentially different. In particular, there would exist a perfect matching of
formula size O.m/ D O.log n/, namely that corresponding to the equality function
defined by f .x; y/ D 1 iff (x D y), as well as a perfect matching requiring
˝.n/ formula size; the existence can be shown by comparing the number mO.t/

of formulas of size t with the total number nŠ of perfect matchings.

1.7.1 Clique Complexity of Graphs

In view of the previous remark, let us allow all 22n bicliques P � V2 and V1 � Q

with P 	 V1 and Q 	 V2 as generators. The bipartite formula complexity, Lbip.G/,
of a bipartite n � n graph G 	 V1 � V2, is then the minimum number of leaves in a
formula over f\; [g which produces the graph G starting from these generators.

By what was said above, we have that every boolean function f of 2m D 2 log n

variables requires non-monotone DeMorgan formulas with at least Lbip.Gf / leaves.
Thus any explicit bipartite n � n graph G with Lbip.G/ D ˝.logK n/ would
immediately give us a an explicit boolean function of 2m variables requiring non-
monotone formulas of size ˝.mK/. Recall that the best known lower bound for
formulas has the form ˝.m3/.

Note however that even if we have “only” to prove poly-logarithmic lower
bounds for graphs, such bounds may be extremely hard to obtain. For example,
we will prove later in Sect. 6.8 that, if f is the parity function of 2m variables, then

4Here and in what follows we will often consider graphs as sets of their edges.
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any non-monotone DeMorgan formula computing f must have at least ˝.m2/ D
˝.log2 n/ leaves. But the graph Gf of f is just a union of two bicliques, implying
that Lbip.G/ � 4.

Another way to view the concept of bipartite complexity of graphs G 	 V1 � V2

is to associate with subsets P 	 V1 and Q 	 V2 boolean variables (we call them
meta-variables) zP ; zQ W V1 � V2 ! f0; 1g interpreted as

zP .u; v/ D 1 iff u 2 P , and zQ.u; v/ D 1 iff v 2 Q.

Then the set of edges accepted by zP is exactly the biclique P � V2, and similarly
for variables zQ.

Remark 1.31. Note that in this case we do not need negated variables: for every
P 	 V1, the variable zV1nP accepts exactly the same set of edges as the negated vari-
able :xP . Thus Lbip.G/ is exactly the minimum leafsize of a monotone DeMorgan
formula of these meta-variables which accepts all edges and rejects all nonedges
of G. Also, the depth of a decision tree for the graph Gf , querying the meta-
variables, is exactly the communication complexity of the boolean function f .x; y/,
a measure which we will introduce in Chap. 3.

1.7.2 Star Complexity of Graphs

Now we consider the complexity of graphs when only special bicliques—stars—
are used as generators. A star is a bipartite graph formed by one vertex connected
to all vertices on the other side of the bipartition. In this case the complexity of
a given graph turns into a monotone complexity of monotone boolean functions
“representing” this graph in the following sense.

Let G D .V; E/ be an n-vertex graph, and let z D fzvW v 2 V g be a set of boolean
variables, one for each vertex (not for each subset P 	 V , as before). Say that
a boolean function (or a circuit) g.z/ represents the graph G if, for every input
a 2 f0; 1gn with exactly two 1s in, say, positions u ¤ v, g.a/ D 1 iff u and v are
adjacent in G:

f .0; : : : ; 0;
u
1; 0; : : : ; 0;

v
1; 0; : : : ; 0/ D 1 if and only if fu; vg 2 E :

A

B

A

BB

A

B

A

A

B

A

B

Fig. 1.13 The adjacency matrices of: (a) a complete bipartite graph A � B represented by g D�W
u2A zu

�^�Wv2B zv

�
, (b) a bipartite graph represented by an OR function g D W

v2A[B zv, and
(c) a bipartite graph represented by a Parity function g D L

v2A[B zv
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If the graph is bipartite then we only require that this must hold for vertices u and
v from different color classes. Note that in both cases (bipartite or not), on input
vectors with fewer than two 1s as well as on vectors with more than two 1s the
function g can take arbitrary values!

Another way to treat this concept is to view edges as 2-element sets of vertices,
and boolean functions (or circuits) as accepting/rejecting subsets S 	 V of vertices.
Then a boolean function f W 2V ! f0; 1g represents a graph if it accepts all edges
and rejects all non-edges. On subsets S with jS j ¤ 2 the function can take arbitrary
values.

Thus a single variable zv represents a complete star around the vertex v, that is,
the graph consisting of all edges connecting v with the remaining vertices. If we
consider bipartite graphs with bipartition V1 [ V2, then each single variable xv with
v 2 Vi represents the star consisting of all edges connecting v with vertices in V3�i .
If A 	 V1 and B 	 V2, then the boolean function

�_

u2A

zu

�
^
�_

v2B

zv

�

represents the complete bipartite graph A�B (Fig. 1.13). Note also that every graph
G D .V; E/ is represented by

W
uv2E zu ^ zv. But this representation of n-vertex

graphs is not quite compact: the number of gates in them may be as large as �.n2/.
If we allow unbounded fanin OR gates then already 2n � 1 gates are enough: we
can use the representation

_

u2S

zu ^
� _

vWuv2E

zv

�
;

where S 	 V is an arbitrary vertex-cover of G, that is, a set of vertices such that
every edge of G has is endpoint in S .

We have already seen how non-monotone circuit complexity of boolean functions
is related to biclique complexity of graphs. A similar relation is also in the case of
star complexity.

As before, we consider a boolean function f .x; y/ of 2m variables as a bipartite
n � n graph Gf 	 U � V with color classes U D V D f0; 1gm of size n D 2m, in
which two vertices (vectors) x and y are adjacent iff f .x; y/ D 1. In the following
lemma, by a “circuit” we mean an arbitrary boolean circuit with literals—variables
and their negations—as inputs.

Lemma 1.32. (Magnification Lemma) In every circuit computing f .x; y/ it is
possible to replace its input literals by ORs of new variables so that the resulting
monotone circuit represents the graph Gf .

Proof. Any input literal xa
i in a circuit for f .x; y/ corresponds to the biclique U a

i �
V with U a

i D fu 2 U W ui D ag. Every such biclique is represented by an ORW
u2U a

i
zu of 2m�1 D n=2 new variables. ut

Instead of replacing input literals by ORs one can also replace them by any other
boolean functions that compute 0 on the all-0 vector, and compute 1 on any input
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AND and OR gates

F

the same circuit!

4m  input literals 4m  ORs of new variables

AND and OR gates

F

new variablesm+1
2n = 2

Fig. 1.14 Having a circuit F computing a boolean function f of 2m variables, we obtain a
(monotone) circuit representing the graph Gf by replacing each input literal in F by an appropriate
OR of new variables

vector with exactly one 1. In particular, parity functions also have this property, as
well as any function g.Z/ D '.

P
w2S zw/ with ' W N ! f0; 1g, '.0/ D 0 and

'.1/ D 1 does.
The Magnification Lemma is particularly appealing when dealing with circuits

containing unbounded fanin OR (or unbounded fanin Parity gates) on the next to the
input layer (Fig. 1.14). In this case the total number of gates in the circuit computing
f is exactly the number of gates in the obtained circuit representing the graph Gf !
Thus if we could prove that some explicit bipartite n � n graph with n D 2m cannot
be represented by such a circuit of size n� , then this would immediately imply that
the corresponding boolean function f .x; y/ in 2m variables cannot be computed
by a (non-monotone!) circuit of size n� D 2�m, which is already exponential in
the number of variables of f . We will use Lemma 1.32 in Sect. 11.6 to prove truly
exponential lower bounds for unbounded-fanin depth-3 circuits with parity gates on
the bottom layer.

It is important to note that moderate lower bounds for graphs even in very
weak circuit models (where strong lower bounds for boolean functions are easy to
show) would yield impressive lower bounds for boolean circuits in rather nontrivial
models. To demonstrate this right now, let cnf.G/ denote the smallest number of
clauses in a monotone CNF (AND of ORs of variables) representing the graph G.

A bipartite graph is K2;2-free if it does not have a cycle of length 4, that is, if its
adjacency matrix does not have a 2 � 2 all-1 submatrix.

Research Problem 1.33. Does there exist a constant � > 0 such that cnf.G/ �
D� for every bipartite K2;2-free graph G of average degree D?

We will see later in Sect. 11.6 that a positive answer would give an explicit
boolean function f of n variables such that any DeMorgan circuit of depth
O.log n/ computing f requires !.n/ gates (cf. Research Problem 11.17). Thus
graph complexity is a promising tool to prove lower bounds for boolean functions.
Note, however, that even small lower bounds for graphs may be very difficult to
prove. If, say, n D 2m and if f .x; y/ is the parity function of 2m variables, then any
CNF for f must have at least 22m�1 D n2=2 clauses. But the bipartite n � n graph
Gf corresponding to this function consists of just two complete bipartite subgraphs;
hence, Gf can be represented by a monotone CNF consisting of just four clauses.
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1.8 A Constant Factor Away From P ¤ NP?

Having warned about the difficulties when dealing with the graph complexity, in
this section we sketch a potential (albeit very hard to realize) approach to proving
strong lower bounds on circuit complexity of boolean functions using the graph
complexity.

Recall that a DeMorgan circuit consists of fanin-2 AND and OR gates, and has
all variables as well as their negations as inputs. A monotone circuit is a DeMorgan
circuit without negated variables as inputs.

Proposition 1.34. Almost all bipartite n � n graphs require monotone circuits of
size ˝.n2= log n/ to represent them.

Proof. Easy counting (as in the proof of Theorem 1.14) shows that there are at
most .nt/O.t/ monotone circuits with at most t gates. Since we have 2n2

graphs, and
different graphs require different circuits, the lower bound follows. ut

Thus the overwhelming majority of graphs require an almost-quadratic number
of gates to represent. On the other hand, we are now going to show (Corollary 1.36
below) that any explicit bipartite n � n graph which cannot be represented by
a monotone circuit with fewer than 7n gates would give us an explicit boolean
function f in 2m variables which cannot be computed by a non-monotone(!)
DeMorgan circuit with fewer than 2m gates. That is, linear lower bounds on
the monotone complexity of graphs imply exponential lower bounds on the non-
monotone complexity of boolean functions.

When constructing the circuit for the graph G, as in the Magnification Lemma,
we replace 4m input literals in a circuit for fG by 4m D 4 log n disjunctions of 2n D
2mC1 (new) variables. If we compute these disjunctions separately then we need
about mn D n log n fanin-2 OR gates. The disjunctions can, however, be computed
much more efficiently using only about n OR gates, if we compute all these
disjunctions simultaneously. This can be shown using the so-called “transposition
principle”.

Let A D .aij / be a boolean p � q matrix. Our goal is to compute the
transformation y D Ax over the boolean semiring. Such a transformation computes
p boolean sums (disjunctions) of q variables x1; : : : ; xq :

yi D
q_

j D1

aij xj D
_

j Waij D1

xj for i D 1; : : : ; p :

Thus, our question reduces to estimating the disjunctive complexity, OR.A/, of A

defined as the minimum number of fanin-2 OR gates required to simultaneously
compute all these p disjunctions.

By computing all p disjunctions separately, we see that OR.A/ < pq. However,
in some situations (as in the graph complexity) we have that the number p of
disjunctions (rows) is much smaller than the number q of variables (columns). In the
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context of graph complexity, we have p D 4m and q D 2mC1; hence, p < 4 log2 q.
In such situations, it would be desirable to somehow “replace” the roles of rows
and columns. That is, it would be desirable to relate the disjunctive complexity of
a matrix A with the disjunctive complexity of the transposed matrix AT ; recall that
the transpose of a matrix A D .aij / is the matrix AT D .bij / with bij D aj i .

Transposition Principle. If A is a boolean matrix with p rows and q columns, then

OR.AT / D OR.A/ C p � q :

This principle was independently pointed out by Bordewijk (1956) and Lupanov
(1956) in the context of rectifier networks. Mitiagin and Sadovskii (1965) proved
the principle for boolean circuits, and Fiduccia (1973) proved it for bilinear circuits
over any commutative semiring.

Proof. Let A D .aij / be a p � q boolean matrix, and take a circuit F with fanin-
2 OR gates computing y D Ax. This circuit has q input nodes x1; : : : ; xq and p

output nodes y1; : : : ; yp . At yi the disjunction _j Waij D1xj is computed.
Let ˛.F / be the number of gates in F . Since each non-input node in F has

fanin 2, we have that ˛.F / D e � v C q, where e is the total number of wires and
v is the total number of nodes (including the q input nodes). Since the circuit F

computes y D Ax and has only OR gates, we have that aij D 1 if and only if there
exists a directed path from the j -th input xj to the i -th output yi .

We now transform F to a circuit F 0 for x D AT y such that the difference e0 � v0
between the numbers of wires and nodes in F 0 does not exceed e � v. First, we
transform F so that no output gate is used as an input to another gate; this can
be achieved by adding nodes of fanin 1. After that we just reverse the orientation
of wires in F , contract all resulting fanin-1 edges, and replace each node of fanin
larger than 2 by a binary tree of OR gates (see Fig. 1.15). Finally, assign OR gates
to all n input gates of F (now the output gates of F 0).

It is easy to see that the new circuit F 0 computes AT y: there is a path from yi to
xj in F 0 iff there is a path from xj to yi in F . Moreover, since e0 � v0 � e � v, the
new circuit F 0 has

˛.F 0/ D e0 � v0 C p � e � v C p D ˛.F / C p � q

gates. This shows that OR.AT / � OR.A/ C p � q, and by symmetry, that OR.A/ �
OR.AT / C q � p. ut

1

d−1d 2

1. . .. . .g

d

Fig. 1.15 We replace a node (an OR gate) g of fanin d by d � 1 nodes each of fanin 2. In the
former circuit we have e�v D d �1, and in the latter e0 �v0 D 2.d �1/�.d �1/ D d �1 D e�v
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Corollary 1.35. Let A be a boolean p � q matrix. Then, for every positive integer
s dividing p,

OR.A/ � sq C s2p=s � 2p � s :

Proof. The proof is similar to that of Lemma 1.2. We want to compute a set Ax of p

disjunctions on q variables. Split the transposed q �p matrix AT into s submatrices,
each of dimension q � .p=s/. By taking a circuit computing all possible disjunction
of p=s variables, we can compute disjunctions in each of these submatrices using at
most 2p=s � p=s � 1 OR gates. By adding q.s � 1/ gates to combine the results of
ORs computed on the rows of the submatrices, we obtain that OR.AT / � s2p=s �
p � s C q.s � 1/ and, by the Transposition Principle,

OR.A/ � OR.AT / C q � p D sq C s2p=s � 2p � s : ut

In particular, taking s D 1, we obtain an upper bound OR.A/ � q C 2p � 2p � 1

which, as shown by Chashkin (1994) is optimal for p � log q. Using a different
argument (without applying the Transposition Principle), Pudlák et al. (1988)
proved a slightly worse upper bound OR.A/ � q C 2pC1 � p � 2.

Now we are able to give one consequence of the Transposition Principle for non-
monotone circuits. Given a boolean function f2m.x; y/ in 2m variables, its graph is
a bipartite n � n graph Gf with n D 2m whose vertices are vectors in f0; 1gm, and
two vertices x and y from different parts are adjacent iff f2m.x; y/ D 1.

Corollary 1.36. If a boolean function f2m can be computed by a non-monotone
DeMorgan circuit of size M , then its graph Gf can be represented by a monotone
circuit of size M C .6 C o.1//n.

Proof. Let Gf D .V1; V2; E/ be the graph of f2m.x; y/. By Magnification Lemma,
each of 2m D 2 log n x-literals in a circuit computing f2m is replaced by a
disjunction on the set fzuW u 2 V1g of n variables. By Corollary 1.35 (with p D
2 log n, q D n and s D 3), all these disjunctions can be simultaneously computed
using fewer than 3n C 3n2=3 fanin-2 OR gates. Since the same also holds for y-
literals, we are done. ut

Research Problem 1.37. What is the smallest constant c for which the conclu-
sion of Corollary 1.36 holds with M C .6 C o.1//n replaced by M C cn?

By Corollary 1.36, any bipartite n � n graph requiring, say, at least 7n AND
and OR gates to represent it gives a boolean function of 2m D 2 log n variables
requiring at least ˝.n/ D ˝.2m/ AND, OR and NOT gates to compute it. It is
therefore not surprising that proving even linear lower bounds cn for explicit graphs
may be a very difficult task. Exercise 1.10 shows that at least for c D 2 this task is
still tractable.

Research Problem 1.38. Exhibit an explicit bipartite n � n graph requiring at
least cn AND and OR gates to represent it, for c > 2.
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Readers interested in this problem might want to consult the paper of Chashkin
(1994) giving a somewhat tighter connection between lower bounds for graphs and
the resulting lower bounds for boolean functions. In particular, he shows that the
constant 6 in Corollary 1.36 can be replaced by 4, and even by 2 if the graph is
unbalanced.

Exercises

1.1. Let, as before, Dec.A/ denote the minimum weight of a decomposition of a
boolean matrix A. Suppose that A does not contain an a � b all-1 submatrix with
a C b > k. Show that Dec.A/ � jAj=k.

1.2. Let sn be the smallest number s such that every boolean function of n variables
can be computed by a DeMorgan formula of leafsize at most s. Show that sn �
4 � 2n � 2. Hint: Use the recurrence (1.1) to show that sn � 4 � 2n � 2, and apply induction on n.

1.3. Let m D dlog2.n C 1/e, and consider the function Sumn W f0; 1gn !
f0; 1gm which, given a vector x 2 f0; 1gn outputs the binary code of the sum
x1 C x2 C � � � C xn. Consider circuits where all boolean functions of two variables
are allowed as gates, and let C.f / denote the minimum number of gates in such a
circuit computing f .

(a) Show that C.Sumn/ � 5n. Hint: Fig. 1.3.

(b) Show that C.fn/ � 5n C o.n/ for every symmetric function fn of n variables.
Hint: Every boolean function g of m variables has C.g/ � 2m=m.

1.4. (Circuits as linear programs) Let F.x/ be a circuit over f^; _; :g with m

gates. Show that there is a system L.x; y/ of O.m/ linear constraints (linear
inequalities with coefficients ˙1) with m y-variables such that, for every x 2
f0; 1gn, F.x/ D 1 iff there is 0–1 vector y such that all constraints in L.x; y/

are satisfied.

Hint: Introduce a variable for each gate. For an ^-gate g D u ^ v use the constraints 0 � g � u �
1, 0 � g � v � 1, g � u C v � 1. What constraints to take for :-gates and for _-gates? For the
output gate g add the constraint g D 1. Show that, if the x-variables have values 0 and 1, then all
other variables are forced to have value 0 or 1 equal to the output value of the corresponding gate.

1.5. Write g � h for boolean functions of n variables, if g.x/ � h.x/ for all
x 2 f0; 1gn. Call a boolean function h a neighbor of a boolean function g if either
g ˚ a � h ˚ a ˚ 1 for some a 2 f0; 1g, or g ˚ xi � g ˚ h for some i 2 f1; : : : ; ng.
Show that:

(a) Constants 0 and 1 are neighbors of all non-constant functions.
(b) Neighbors of the OR gate _ are all the two variable boolean functions, except

the parity ˚ and the function _ itself.

1.6. (Minimal circuits are very unstable) Let F be a circuit over some basis com-
puting a boolean function f , and assume that F is minimal, that is, no circuit
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with a smaller number of gates can compute f . In particular, minimal circuits are
“unstable” with respect to deletion of its gates: the resulting circuit must make
an error. The goal of this exercise is to prove that, in fact, minimal circuits are
unstable in a much stronger sense: we cannot even replace a gate by another
one. That is, the size of the resulting circuit remains the same but, nevertheless,
the function computed by a new circuit differs from that computed by the origi-
nal one.

Let F be a minimal circuit, v a gate in it of fanin m, and h be a boolean function
of m variables. Let Fv!h be the circuit obtained from F as follows: replace the
boolean function g attached to the gate v by h and remove all the gates that become
redundant in the resulting circuit. Prove that, if h is a neighbor of g, then Fv!h ¤ F .

Hint: Since F is minimal, we cannot replace the gate v by a constant a, that is, there must be at
least one vector x 2 f0; 1gn such that Fv!a.x/ ¤ F.x/.

1.7. Let n D 2r and consider two sequences of variables x D .x1; : : : ; xn/ and
y D .y1; : : : ; yr /. Each assignment a 2 f0; 1gr to the y-variables gives us a unique
natural number bin.a/ D 2r�1a1 C � � � C 2ar�1 C ar C 1 between 1 and n; we call
bin.a/ the code of a. The storage access function f .x; y/ is a boolean function of
n C r variables defined by: f .x; y/ WD xbin.y/.

Show that the monomial K D x1x2 � � � xn is a minterm of f , but still f can be
written as an .r C 1/-DNF. Hint: For the second claim, observe that the value of f .x; y/

depends only on r C 1 bits y1; : : : ; yr and xbin.y/.

1.8. Let G D .Œn�; E/ be an n-vertex graph, and di be the degree of vertex i in G.
Then G can be represented by a monotone formula F D F1 _ � � � _ Fn, where

Fi D xi ^
� _

j Wfi;j g2E

xj

�
:

A special property of this formula is that the i -th variable occurs at most di C 1

times. Prove that, if G has no complete stars, then any minimal monotone formula
representing G must have this property.

Hint: Take a minimal formula F for G, and suppose that some variable xi occurs mi > di C 1

times in it. Consider the formula F 0 D Fxi D0 _ Fi , where Fxi D0 is the formula obtained from F

by setting to 0 all mi occurrences of the variable xi . Show that F 0 represents G, and compute its
leafsize to get a contradiction with the minimality of F .

1.9. Say that a graph is saturated, if its complement contains no triangles and no
isolated vertices. Show that for every saturated graph G D .V; E/, its quadratic
function fG.x/ D W

uv2E xuxv is the unique(!) monotone boolean function repre-
senting the graph G.

1.10. Let Gn D Kn�1 C E1 be a complete graph on n � 1 vertices 1; 2 : : : ; n � 1

plus one isolated vertex n. Let F.x1; : : : ; xn/ be an arbitrary monotone circuit with
fanin-2 AND and OR gates representing Gn. Show that Gn cannot be represented
by a monotone circuit using fewer than 2n � 6 gates.
Hint: Show that if n � 3 then every input gate xi for i D 1; : : : ; n � 1 has fanout at least 2.
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1.11. Let n D 2m be a power of 2. Show that Thn
2 can be computed by a monotone

DeMorgan formula with at most n log2 n leaves.
Hint: Associate with each index i 2 Œn� its binary code in f0; 1gm. For k 2 Œm� and a 2 f0; 1g, let

Fk;a be the OR of all variables xi such that the binary code of i has a in the k-th position. Show

that the monotone formula F D Wm
kD1 Fk;0 ^ Fk;1 computes Thn

2 .

1.12. (Hansel 1964) The goal of this exercise is to show that

SC.Thn
2/ � 1

2
n log2 n :

Let F.x/ be a monotone switching network computing Thn
2 with the start node s

and the target node t . Say that F is canonical if it has the following property: if a
node v is joined to s or to t by a contact xi , then no other edge incident with v has
xi as its label.

(a) Suppose that F.x/ D 0 for all input vectors x with at most one 1. Show that F

can be made canonical without increasing the number of contacts.

Hint: Assume that some node u is joined to the source node s and to some other node v by
edges with the same label xi . Then v ¤ t (why?). Remove the edge fu; vg and add the edge
fs; vg labeled by xi . Show that the obtained network computes the same function.

(b) Let F be a minimal canonical monotone network computing the threshold-2
function Thn

2 . Show that every node u 62 fs; tg is adjacent with both nodes s

and t .
Hint: If we remove a label of any contact in a minimal network, then the new network must

make an error.

(c) Let m be the number of contacts in a network F from (b). Show that Thn
2.x/

can be written as an OR F1 _ F2 _ � � � _ Ft of ANDs

Fk.x/ D
� _

i2Ak

xi

�
^
� _

i2Bk

xi

�

such that Ak \ Bk D ; and w � 2m, where w WD Pt
kD1.jAkj C jBkj/ is the

total number of occurrences of variables in the formula.
(d) Show that any expression of Thn

2 as in (c) must contain w � n log2 n occurrences
of variables.

Hint: For a variable xi , let mi be the number of ANDs Fk containing this variable. Show
that w D Pn

iD1 mi . To lower bound this sum, throw a fair 0–1 coin for each of the ANDs
Fk and remove all occurrences of variables xi with i 2 Ak from the entire formula if
the outcome is 0; if the outcome is 1, then remove all occurrences of variables xi with
i 2 Bk . Let X D X1 C � � � C Xn, where Xi is the indicator variable for the event “the
variable xi survives”. Since at most one variable can survive at the end (why?), we have
that E ŒX� � 1. On the other hand, each variable xi will survive with probability 2�mi

(why?). Now use the linearity of expectation together with the arithmetic-geometric mean
inequality .

Pn
iD1 ai /=n � .

Qn
iD1 ai /

1=n with ai D 2�mi to obtain the desired lower bound
on
Pn

iD1 mi .
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Table 1.1 Upper bounds for any symmetric boolean function fn of n variables

BP.fn/ � cn2= log2 n where c D 2 C o.1/; Lupanov (1965b)

NBP.fn/ � n3=2 Lupanov (1965b)

L.fn/ � n4:93 Khrapchenko (1972)

C�.fn/ � 4:5n C o.n/ Demenkov et al. (2010); this improves a simple upper bound
C�.fn/ � 5n C o.n/ which follows from a construction used
by Lupanov (1965); see Exercise 1.3

Appendix: Known Bounds for Symmetric Functions

Here we summarize some (not all!) known results concerning bounds on the
complexity of symmetric functions in various circuit models. Recall that a boolean
function f .x1; : : : ; xn/ is symmetric if its value only depends on the sum x1 C � � � C
xn. Examples of symmetric functions are the parity function

˚n.x/ D 1 if and only if x1 C � � � C xn is odd ;

all threshold functions

Thn
k.x/ D 1 if and only if x1 C � � � C xn � k ;

as well as the majority function

Majn.x/ D 1 if and only if x1 C � � � C xn � dn=2e.

Let C.f / and L.f / denote, respectively, the minimum number of gates in a
circuit and in a formula over f^; _; :g computing f . Let also S.f /, BP.f / and
NBP.f / denote, respectively, the minimum number of contacts (labeled edges) in a
switching network, in a deterministic and in a nondeterministic branching program
computing f . Subscript “C” denotes the monotone versions of these measures, and
subscript “�” means that all boolean functions of two variables can be used as gates.

Some relations between these basic measures are summarized in the following
chain of inequalities (we will use f � g to denote f D O.g/):

C.f /1=3 � NBP.f / � S.f / � BP.f / � L.f / � NBP.f /O.log NBP.f // :

Proofs are easy and can be found, for example, in Pudlák (1987).
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Table 1.2 Bounds for the parity function

S.˚n/ D 4n � 4 Cardot (1952); apparently, this was the first nontrivial lower
bound at all!

C.˚n/ D 4n � 4 Redkin (1973)

L.˚n/ � 9
8
n2 Yablonskii (1954); see Theorem 6.29 below

L.˚n/ � n3=2 Subbotovskaya (1961); see Sect. 6.3 below

L.˚n/ � n2 Khrapchenko (1971); n is power of 2; see Sect. 6.8 below

L.˚n/ � n2 C c Rychkov (1994); c D 3 for odd n � 5, and c D 2 for even
n � 6 which are not powers of 2

Table 1.3 Bounds for threshold functions in non-monotone models

L.Thn
2/ � 1

4
n log2 n Krichevskii (1964)a

L.Thn
2/ � nblog2 nc Lozhkin (2005)

LC.Thn
2/ � n log2 n if n is a power of 2; see Exercise 1.11

L.Thn
k/ � k.n � k C 1/ Khrapchenko (1971); see Sect. 6.8

L�.Majn/ D ˝.n ln n/ Fischer et al. (1982)

L�.Thn
2/ D ˝.n ln ln n/ Pudlák (1984)

L�.Thn
k/ � n3:13 Paterson et al. (1992)

L.Majn/ � n4:57 Paterson and Zwick (1993b)

BP.Thn
k/ � n3=2 Lupanov (1965b)

S.Thn
k/ � 1

p
n ln4 n where p D .ln ln n/2; Krasulina (1987, 1988)

BP.Thn
k/ � 1

p
n ln3 n where p D .ln ln n/.ln ln ln n/; Sinha and Thathachar (1997)

BP.Majn/ D ˝.np/ where p D ln ln n= ln ln ln n; Pudlák (1984)

BP.Majn/ D ˝.np/ where p D ln n= ln ln n; Babai et al. (1990)

S.Majn/ D !.n/ Grinchuk (1987, 1989)

NBP.Majn/ D !.n/ Razborov (1990b)

aKrichevskii (1964) actually proved an intriguing structural result: among minimal for-
mulas computing Thn

2 there is a monotone formula of the form F.x/ D _t
kD1._i2Sk xi /^

._i2Tk xi /, where Sk \ Tk D ; for all k D 1; : : : ; t ; see also Sect. 6.12
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Table 1.4 Bounds for threshold functions in monotone models

NBPC.Thn
k/ D k.n � k C 1/ Markov (1962); see Theorem 1.8 above

NBPC.Thn
k/ � pk.n � k/ where p D ln.n � k/, if no unlabeled edges (rectifiers) are

allowed; Halldórsson et al. (1993)

NBPC.Thn
k/ D ˝.pkn/ where p D ln n

k
, if no unlabeled edges (rectifiers) are allowed;

Radhakrishnan (1997)

SC.Thn
2/ D np C 2.n � 2p/ where p WD blog2 nc; Krichevskii (1965), Hansel (1966)

S.Thn
2/ � 3n � 4 easy exercise, see Fig. 1.5

SC.Majn/ � n4:99 Dubiner and Zwick (1992)

LC.Majn/ � n5:3 Valiant (1984). As observed by Lozhkin and Semenov (1988),
the proof actually gives O.k4:3n log2 n/ for every k.

LC.Thn
k/ � k6:3n log n Friedman (1986)

LC.Thn
k/ � k4:27n log n Boppana (1986)

C.Thn
k/ � kn C p where p D O.n1�1=k/; Dunne (1984)

C.Thn
k/ � n log k Kochol (1989); the proof is a simple application of a rather non-

trivial result of Ajtai et al. (1983) stating that all threshold
functions Thn

k , k D 1; : : : ; n, can be simultaneously com-
puted by a monotone circuit of size O.n log n/ and depth
O.log n/
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