Stasys Jukna

Boolean Function Complexity

Advances and Frontiers

== Draft ==

To Daiva and Indre

Preface

Go to the roots of calculations! Group the operations. Classify them
according to their complexities rather than their appearances! This,
I believe, is the mission of future mathematicians.

— Evariste Galois

Computational complexity theory is the study of the inherent hardness or easiness
of computational tasks. Research in this theory has two main strands.

One of these strands—structural complexity—deals with high-level complexity
questions: is space a more powerful resource than time? Does randomness enhance
the power of efficient computation? Is it easier to verify a proof than to construct
one? So far we do not know the answers to any of these questions; thus most results
in structural complexity are conditional results that rely on various unproven
assumptions, like P # NP.

The second strand—concrete complexity or circuit complexity—deals with estab-
lishing lower bounds on the computational complexity of specific problems, like
multiplication of matrices or detecting large cliques in graphs. This is essentially
a low-level study of computation; it typically centers around particular models of
computation such as decision trees, branching programs, boolean formulas, various
classes of boolean circuits, communication protocols, proof systems and the like.
This line of research aims to establish unconditional lower bounds, which rely on
no unproven assumptions.

This book is about the life on the second strand—circuit complexity—with a
special focus on lower bounds. It gives self-contained proofs of a wide range of
unconditional lower bounds for important models of computation, covering many
of the gems of the field that have been discovered over the past several decades, right
up to results from the last year or two. More than twenty years have passed since
the well-known books on circuit complexity by Savage (1976), Nigmatullin (1983),
Wegener (1987) and Dunne (1988) as well as a famous survey paper of Boppana and
Sipser (1990) were written. I feel it is time to summarize the new developments in
circuit complexity during these two decades.

The book is mainly devoted to mathematicians wishing to get an idea of what
is actually going on in this one of the hardest, but also mathematically cleanest
fields of computer science, to researchers in computer science wishing to refresh
their knowledge about the state of art in circuit complexity, as well as to students
wishing to try their luck in circuit complexity.

vii

viii Preface

I have highlighted some of the most important proof arguments for circuit
lower bounds, without trying to be encyclopedic. To keep the length of the book
within reasonable limits, I was forced to focus on classical circuit models—results
on their randomized or algebraic versions receive less attention here. Also, I often
compromise the numerical tightness of results in favor of clarity of argument. My
goal is to present the “big picture” of existing lower bound methods, in the hope
that the reader will be motivated to find new ones. More than 40 open problems,
marked as Research Problems, are mentioned along the way. Most of them are of a
combinatorial or combinatorial-algebraic flavor and can be attacked by students
with no background in computational complexity.

The book is meant to be approachable for graduate students in mathematics
and computer science, and is self-contained. The text assumes a certain mathe-
matical maturity but no special knowledge in the theory of computing. For non-
mathematicians, all necessary mathematical background is collected in the appendix
of the book. As in combinatorics or in number theory, the models and problems in
circuit complexity are usually quite easy to state and explain, even for the layperson.
Most often, their solution requires a clever insight, rather than fancy mathematical
tools.

I am grateful to Miklos Ajtai, Marius Damarackas, Andrew Drucker, Anna G4l,
Sergey Gashkov, Dmitry Gavinsky, Jonathan Katz, Michal Koucky, Matthias Krause,
Andreas Krebs, Alexander Kulikov, Meena Mahajan, Igor Sergeev, Hans Ulrich
Simon, Gy6rgy Turan, and Sundar Vishwanathan for comments and corrections on
the draft versions of the book. Sergey Gashkov and Igor Sergeev also informed me
about numerous results available only in Russian.

I am especially thankful to Andrew Drucker, William Gasarch, Jonathan Katz,
Massimo Lauria, Troy Lee, Matthew Smedberg, Ross Snider, Marcos Villagra, and
Ryan Williams for proofreading parts of the book and giving very useful suggestions
concerning the contents. Their help was crucial when putting the finishing touches
to the manuscript. The strong commitment of Andrew Drucker in organizing these
final touches and proofreading more than a half of the book by himself cannot
be acknowledged well enough. All remaining errors are entirely my fault. My
sincere thanks to Georg Schnitger for his support during my stay in Frankfurt.
Finally, I would like to acknowledge the German Research Foundation (Deutsche
Forschungsgemeinschaft) for giving an opportunity to finish the book while working
within the grant SCHN 503/5-1.

My deepest thanks to my wife, Daiva, and my daughter, Indre, for their patience.

Frankfurt am Main/Vilnius S.J.

Contents

ix

Part |

The Basics

1. Our Adversary: The Circuit

Boolean (or switching) functions map each sequence of bits to a single bit 0 or
1. Bit 0 is usually interpreted as “false”, and bit 1 as “true”. The simplest of such
functions are the product z - y, sum = & y mod 2, non-exclusive Or x V y, negation
-2 = 1 —x. The central problem of boolean function complexity—the lower bounds
problem—is:

Given a boolean function, how many of these simplest operations do we need
to compute the function on all input vectors?

The difficulty in proving that a given boolean function has high complexity lies in
the nature of our adversary: the circuit. Small circuits may work in a counterintuitive
fashion, using deep, devious, and fiendishly clever ideas. How can one prove that
there is no clever way to quickly compute the function?

This is the main issue confronting complexity theorists. The problem lies on
the border between mathematics and computer science: lower bounds are of great
importance for computer science, but their proofs require techniques from combi-
natorics, algebra, analysis, and other branches of mathematics.

1.1 Boolean functions

We first recall some basic concepts concerning boolean functions. The name
“boolean function” comes from the boolean logic invented by George Boole (1815-
1864), an English mathematician and philosopher. As this logic is now the basis of
modern digital computers, Boole is regarded in hindsight as a forefather of the field
of computer science.

Boolean values (or bits) are numbers 0 and 1. A boolean function f(z) =
f(x1,...,2,) of n variables is a mapping f : {0,1}" — {0,1}. One says that
f accepts a vector a € {0,1}™if f(a) = 1, and rejects it if f(a) = 0.

A boolean function f(x1, ..., z,) need not to depend on all its variables. One

says that f depends on its i-th variable z; if there exist constants ay, . .., a;-1, a;j+1,- . -

y Gn

4 1 Our Adversary: The Circuit
in {0, 1} such that

f(ah---aai71707ai+17"'7an) 7éf(a17"'>ai71a17ai+17~-~>an)-

Since we have 2™ vectors in {0, 1}", the total number of boolean functions
f:4{0,1}" — {0,1} is doubly-exponential in n, is 22". A boolean function f is
symmetric if it depends only on the number of ones in the input, and not on positions
in which these ones actually reside. We thus have only 2"*! such functions of n
variables. Examples of symmetric boolean functions are:

« Threshold functions Thy () = Lliff a1 + -+ - + x,, > k.

« Majority function Maj, (z) = 1iff x1 + -+ + z, > [n/2].

« Parity function ®,,(z) =1iff 21 +--- + z, = 1 mod 2.

« Modular functions MOD, = 1iffzy + -+ + z,, = 0 mod k.

Besides these, there are many other interesting boolean functions. Actually, any
property (which may or may not hold) can be encoded as a boolean function. For
example, the property “to be a prime number” corresponds to a boolean function
PRIME such that PRIME(z) = 1iff > ;2°"! is a prime number. It was a
long-standing problem whether this function can be uniformly computed using
a polynomial in 7 number of elementary boolean operations. This problem was
finally solved affirmatively by Agrawal, Kayal and Saxena (2004). The existence of
small circuits for PRIME for every single n was known long ago.

To encode properties of graphs on the set of vertices [n] = {1,...,n}, we may
associate a boolean variable x;; with each potential edge. Then any 0-1 vector
x of length (72’) gives us a graph G, where two vertices ¢ and j are adjacent
iff z;; = 1. We can then define f(xr) = 1 iff G, has a particular property. A
prominent example of a “hard-to-compute” graph property is the cligue function
CLIQUE(n, k): it accepts an input vector x iff the graph G, has a k-clique, that
is, a complete subgraph on k vertices. The problem of whether this function can
also be computed using a polynomial number of operations remains wide open. A
negative answer would immediately imply that P # NP. Informally, the P vs. NP
problem asks whether there exist mathematical theorems whose proofs are much
harder to find than verify.

Roughly speaking, one of the goals of circuit complexity is, for example, to
understand why the first of the following two problems is easy whereas the second
is (apparently) very hard to solve:

1. Does a given graph contain at least (’2“) edges?
2. Does a given graph contain a clique with (g) edges?

The first problem is a threshold function, whereas the second is the clique function
CLIQUE(n, k). We stress that the goal of circuit complexity is not just to give an
“evidence” (via some indirect argument) that clique is much harder than majority,
but to understand why this is so.

A boolean matrix or a 0-1 matrix is a matrix whose entries are Os and 1s. If
f(z,y) is a boolean function of 2n variables, then it can be viewed as a boolean

1.1 Boolean functions 5

}—lO»—l»—A\L
o =8
=)

Fig. 1.1 Truth tables of basic boolean operations.

2™ x 2™ matrix A whose rows and columns are labeled by vector in {0,1}", and
Alz,y] = f(z,y).

We can obtain new boolean functions (or matrices) by applying boolean opera-
tions to the “simplest” ones. Basic boolean operations are:

« NOT (negation) -z = 1 — x; also denoted as 7.

« AND (conjunction) t Ay = x - y.

« OR (disjunction) z Vy =1— (1 —2)(1 — y).

+ XOR (parity) e @y = 2(1 —y) + y(1 — z) = (z + y) mod 2.
« Implication x — y = -z V y.

If these operators are applied to boolean vectors or boolean matrices, then they are
usually performed componentwise. Negation acts on ANDs and ORs via DeMorgan
rules:

—(xVy)=-xA-yand ~(x Ay) = -z V.

The operations AND and OR themselves enjoy the distributivity rules:

zA(yVz)=(xAy)V(zAz)andzV (yAz)=(zVy A(zVz).

Binary cube The set {0,1}" of all boolean (or binary) vectors is usually called the
binaryn-cube. A subcube of dimension d is a set of the form A = A; X Ag X -+ - X Ay,
where each A; is one of three sets {0}, {1} and {0, 1}, and where A; = {0,1}
for exactly d of the ¢’s. Note that each subcube of dimension d can be uniquely
specified by a vector a € {0, 1, *}™ with d stars, by letting * to attain any of two
values 0 and 1. For example, a subcube A = {0} x {0,1} x {1} x {0,1} of the
binary 4-cube of dimension d = 2 is specified by a = (0, , 1, *).

Usually, the binary n-cube is considered as a graph (Q,, whose vertices are vectors
in {0, 1}", and two vectors are adjacent iff they differ in exactly one position (see
Fig. ??). This graph is sometimes called the n-dimensional binary hypercube. This is
a regular graph of degree n with 2" vertices and n2"~! edges. Moreover, the graph
is bipartite: we can put all vectors with an odd number of ones on one side, and the
rest on the other; no edge of @), can join two vectors on the same side.

Every boolean function f : {0,1}"™ — {0, 1} is just a coloring of vertices of Q),
in two colors. The bipartite subgraph Gy of), obtained by removing all edges
joining the vertices in the same color class, accumulates useful information about
the circuit complexity of f.If, for example, d, denotes the average degree in G¢
of vertices in the color-class f~!(a), a = 0, 1, then the product dy - d; is a lower

6 1 Our Adversary: The Circuit

Bilder/hasse-eps-converted-to.pdf

Bilder/cube-eps-converted-to.pdf

Fig. 1.2 The 3-cube and its Hasse-type representation (each level contains binary strings with the
same number of 1s). There is an edge between two strings if and only if they differ in exactly one
position.

bound on the length of any formula expressing f using connectives A, V and — (see
Khrapchenko’s theorem in Section ??).

CNFs and DNFs A trivial way to represent a boolean function f(z1,...,z,) is to
give the entire truth table, that is, to list all 2" pairs (a, f(a)) for a € {0,1}". More
compact representations are obtained by giving a covering of f~1(0) or of f~1(1)
by not necessarily disjoint subsets, each of which has some “simple” structure. This
leads to the notions of CNFs and DNFs.

A literal is a boolean variable or its negation. For literals the following notation
is often used: :rll stands for z;, and x? stands for —z; = 1 — x;. Thus, for every
binary string a = (aq,...,a,) in {0,1}",

sha)=<4 T and al@=4, ¢
0 ifa; =0 1 ifa; =0.

A monomial is an AND of literals, and a clause is an OR of literals. A monomial (or
clause) is consistent if it does not contain a contradicting pair of literals z; and 7;
of the same variable. We will often view monomials and clauses as sets of literals.

It is not difficult to see that the set of all vectors accepted by a monomial consisting
of k (out of n) literals forms a binary n-cube of dimension n — k (so many bits are
not specified). For example, a monomial T3 A z3 defines the cube of dimension n — 2
specifiedby a = (0, x, 1, %, .. .,). Similarly, the set of all vectors rejected by a clause
consisting of k (out of n) literals also forms a binary n-cube of dimension n — k.
For example, a clause T V z3 rejects a vector a iff a; = 1 and a3 = 0.

A DNF (disjunctive normal form) is an OR of monomials, and a CNF (conjunctive
normal form) is an AND of clauses. Every boolean function f(x) of n variables can
be written both as a DNF D(z) and as a CNF C(x):

n

D(z) = \/ /\ xy C(z) = /\ \/ wi b

a:f(a)=11i=1 b:f(b)=01i=1

1.1 Boolean functions 7

Indeed, D(x) accepts a vector z iff x coincides with at least one vector a accepted
by f,and C(z) rejects a vector x iff « coincides with at least one vector b rejected
by f.

A DNF is a k-DNF if each of its monomials has at most k literals; similarly, a
CNF is a k-CNF if each of its clauses has at most & literals.

DNFs (and CNFs) are the simplest models for computing boolean functions. The
size of a DNF is the total number of monomials in it. It is clear that every boolean
function of n variables can be represented by a DNF of size at most | f~1(1)| < 2™
just take one monomial for each accepted vector. This can also be seen via the
following recurrence:

flxr, . @ng1) = Tps1 A f(zr, .o 20, D)V mmpgr A f(z1, .00, 20,0) . (L1)

It is not difficult to see that some functions require DNFs of exponential size. Take,
for example, the parity function f(x1,...,2,) = 1 ®22 B - - - D x,,. This function
accepts an input vector iff the number of 1s in it is odd. Every monomial in a DNF for
f must contain n literals, for otherwise the DNF would be forced to accept a vector
in £~1(0). Since any such monomial can accept only one vector, | f~1(1)] = 27!
monomials are necessary. Thus the lower bounds problem for this model is trivial.

Boolean functions as set systems By identifying subsets S of [n] = {1,...,n}
with their characteristic 0-1 vectors vg, where vg(i) = 1 iff i € S, we can consider
boolean functions as set-theoretic predicates f : 2" — {0,1}. We will often
go back and forth between these notations. One can identify a boolean function
f 22" — {0, 1} with the family F; = {S | f(S) = 1} of subsets of [n]. That is,
there is a 1-to-1 correspondence between boolean functions and families of subsets

of [n]:

boolean functions of n variables = families of subsets of {1,...,n}.

Minterms and maxterms A 1-term (resp., 0-term) of a boolean function is a smallest
subset of its variables such that the function can be made the constant 1 (resp.,
constant 0) function by fixing these variables to constants 0 and 1 in some way.
Thus after the setting, the obtained function does not depend on the remaining
variables. Minterms (maxterms) are 1-terms (0-terms) which are minimal under the
set-theoretic inclusion.

Note that one and the same set of variables may be a 1-term and a O-term at the
same time. If, for example, f(x1,x2,x3) = 1iff 1 + 22 + 23 > 2, then {z1,x2} is
a 1-term of f because f(1,1,23) =1, and is a O-term of f because f(0,0,z3) = 0.

If all minterms of a boolean function f have length at most &k then f can be
written as a k-DNF: just take the OR of all these minterms. But the converse does
not hold! Namely, there are boolean functions f such that f can be written as a
k-DNF even though some of its minterms are much longer than % (see Exercise ??).

Duality The dual of a boolean function f(z1,...,x,) is the boolean function f*
defined by:

8 1 Our Adversary: The Circuit

.. xn) = f (e, xy) .

For example, if f = x V y then f* = —(—x V —y) = z A y. The dual of every
threshold function Thj(z) is the threshold function Thy, . (z). A function f is
self-dual if f*(x) = f(x) holds for all x € {0, 1}". For example, the threshold-k
function f(z) = Th;*~*(x) of 2k — 1 variables is self-dual. Hence, if the number
n of variables is odd, then the majority function Maj,, is also self-dual.

In set-theoretic terms, if S = [n] \ S denotes the complement of S, then the

values of the dual of f are obtained by: f*(S5) = 1 — f(5). Thus a boolean function
f is self-dual if and only if f(S) + f(S) = 1 forall S C [n].

Monotone functions For two vectors z,y € {0, 1}" we write z < y if z; < y; for
all positions i. A boolean function f(x) is monotone, if x < y implies f(x) < f(y).
If we view f as a set-theoretic predicate f : 2l {0, 1}, then f is monotone iff
f(S) =1and S C T implies f(T') = 1. Examples of monotone boolean functions
are AND, OR, threshold functions Th} (x), clique functions CLIQUE(n, k), etc. On
the other hand, such functions as the parity function @,,(x) or counting functions
Mod} (x) are not monotone.

Monotone functions have many nice properties not shared by other functions.
First of all, their minterms as well as maxterms are just subsets of variables (no
negated variable occurs in them). In set-theoretic terms, a subset S C [n] is a
minterm of a monotone function f if

F(S)=1but f(S\ {i}) = 0foralli € S,

and is a maxterm of f if

f(S)=0but f(S\ {i}) =1forallic S.

Let Min(f) and Max(f) denote the set of all minterms and the set of all maxterms
of f. Then we have the following cross-intersection property:

SNT # Qforall S € Min(f) and all T € Max(f).

Indeed, if S and T were disjoint, then for the vectors = with x; = 1 forall: € S,
and z; = O forall i € S, we would have f(x) = 1 (because S is a minterm) and at
the same time f(x) = 0 (because T' C S is a maxterm of f).

The next important property of monotone boolean functions is that every such
function f has a unique representation as a DNF as well as a CNF:

f@y =\ Aw= A Vo

SEMin(f) i€S TeMax(f) i€T

Moreover, for every monotone boolean function f we have the following three
equivalent conditions of their self-duality:

« Min(f) = Max(f).

1.1 Boolean functions 9

- Both families Min(f) and Max(f) are intersecting: S N S’ # () for all S, S’ €
Min(f),and TNT" # @ forall T, T" € Max(f).

« The family Min(f) is intersecting and, for every partition of [n] into two parts,
at least one minterm lies in one of these parts.

Equivalence of the first condition Min(f) = Max(f) with the definition of self-
duality (f(S) = 1 — f(S) for all S C [n]) is not difficult to see. To show that also
the second and the third conditions are equivalent, needs a bit more work.

In the rest of this section we recall some facts that turn out to be very useful
when analyzing circuits. We include them right here both because they have elegant
proofs and because we will use them later several times.

Functions with many subfunctions A subfunction of a boolean function f(x1, ..., 2,)
is obtained by fixing some of its variables to constants 0 and 1. Since each of the n
variables has three possibilities (to be set to 0 or to 1 or remain unassigned), one
function can have at most 3" subfunctions.

IfY is some subset of variables, then a subfunction of f on'Y is a boolean function
of variables Y obtained from f by setting all the variables outside Y to constants 0
and 1, in some way. Some settings may lead to the same subfunction. So let Ny (f)
denote the number distinct subfunctions of f on Y. It is not difficult to see that, if
|Y'| = m, then

Ny (f) < min{27—™ 22"},

Indeed, we have at most 2™ possibilities to assign constants to n — |Y'| variables,

and there are at most 22 distinct boolean functions on the same set Y of m variables.
But some functions f may have fewer distinct subfunctions. For example, the parity
function ®,,(z) = 1 T2 ® - - - ® x,, has only Ny (®,,) = 2 different subfunctions.
On the other hand, we will show later (in Section ??) that functions with many
subfunctions cannot be “too easy”. So what functions have many subfunctions?

The simplest known example of a function with almost maximal possible number
of distinct subfunctions is the element distinciness function ED,, (x) suggested by
Beame and Cook (unpublished). This is a boolean function o(é n = 2mlogm
variables divided into m consecutive blocks Y7, ..., Y,, with 2log m variables in
each of them; m is assumed to be a power of 2. Each of these blocks encode a
number in [m?] = {1,2,...,m?}. The function accepts an input x € {0,1}" if
and only if all these numbers are distinct.

1.1 Lemma On each block, ED,, has at least 2"/? /n subfunctions.

Proof. Tt suffices to prove this for the first block Y3. So let N = Ny, (ED,,), and
consider the function f of m variables, each taking its value in [m?]. The function

accepts a string (a1, . . ., @,) of numbers in [m?] iff all these numbers are distinct.
Thus ED,, () is just a boolean version of f.

For a string a = (ag,...,a,;) of numbers [m?], let f, : [m?] — {0,1} be
the function f,(z) := f(z,a2,...,a,) obtained from f by fixing its last m — 1

variables. Note that IV is exactly the number of distinct functions f,.

" If not said otherwise, all logarithms in this book are to the basis of 2.

10 1 Our Adversary: The Circuit

The number of ways to choose a string a = (as, . . ., a,,) with all the a; distinct
is (ni"jl) (m — 1)!: each such string is obtained by taking an (m — 1)-element
subset of [m?] and permuting its elements. If b = (bs,...,b,,) is another such
string, and if b is not a permutation of a, then there must be an a; such that
a; & {ba, ..., by} Butfor such an a;, we have that f,(a;) = 0 whereas f;(a;) = 1;
hence, f, # fp. Since there are only (m — 1)! permutations of a, we obtain that
N > (ﬂle) > mm—1 > 2n/2/n. 0

Matrix decomposition A matrix B is primitive if it is boolean (has only entries 0 and
1) and has rank 1 over the reals. Each such matrix consists of one all-1 submatrix
and zeros elsewhere. The weight, w(B), of such a matrix is r + ¢, where 7 is the
number of nonzero rows, and ¢ the number of nonzero columns in B. Here is a
primitive 4 x 5 matrix of weight 2 + 3 = 5:

10110
00000
10110
00000

Primitive matrices are important objects—we will use them quite often.

A decomposition of a boolean m x n matrix A is a set By, ..., B, of primitive
m X n matrices such that A can be written as the sum A = By + By + -+ + B; of
these matrices over the reals. That is, each 1-entry of A is a 1-entry in exactly one
of the matrices B;, and each O-entry is a O-entry in all matrices. The weight of such
a decomposition is the sum Zle w(B;) of weights of the B;. Let Dec(A) denote
the minimum weight of a decomposition of a boolean matrix A, and let | A| denote
the number of 1-entries in A.

Note that Dec(A) < mn: just decompose A into m primitive matrices corre-
sponding to the rows of A. In fact, we have a better upper bound.

1.2 Lemma (Lupanov 1956) For every boolean m X n matrix,

mn

Dee(d) < (1+o(1)) .

Proof. We first prove that for every boolean m x n matrix A and for every integer
1<k<m,
mn
Dec(A) < o + n2k=1, (1.2)

We first prove (??) for k = n, that is, we prove the upper bound
Dec(A) < m+n2" 1. (1.3)

Split the rows of A into groups, where the rows in one group all have the same
values. This gives us a decomposition of A into ¢ < 2™ primitive matrices. For the
i-th of these matrices, let r; be the number of its nonzero rows, and ¢; the number
of its nonzero columns. Hence, r; + ¢; is the weight of the ¢-th primitive matrix.

1.1 Boolean functions 11

Since each nonzero row of A lies in exactly one of the these matrices, the total
weight of the decomposition is

t t n n
Doty a<m4dy > J§m+2(?> j=mAn2t
i=1 i=1 J=0

J=014:c;=j

where the last equality is easy to prove: just count in two ways the number of pairs
(z,S)withz € S C{l,...,n}

To prove (??) for arbitrary integer 1 < k < n, split A into submatrices with k
columns in each (one submatrix may have fewer columns). For each of these n/k
submatrices, (??) gives a decomposition of weight at most m + k2¢~1. Thus, for
every 1 < k < n, every m X n matrix has a decomposition of weight at most

mn/k +n2k~1,
To finish the proof of the theorem, it is enough to apply (??) with k about
logm — 2loglogm. a

Using a counting argument, Lupanov (1956) also showed that the upper bound

given in Lemma ?? is almost optimal: m x n matrices A requiring weight

mn
Dec(4) > (1+o0(1))——
(4) = (1+ of1) 0

in any decomposition exist, even if the 1-entries in primitive matrices are allowed
to overlap (cf. Theorem ??). Apparently, this paper of Lupanov remained unknown
in the West, because this result was later proved by Tuza (1984) and Bublitz (1986).

Splitting a graph When trying to “balance” some computational models (decision
trees, formulas, communication protocols, logical derivations) the following two
structural facts are often useful.

Let G be a directed acyclic graph with one source node (the root) from which
all leaves (nodes of outdegree 0) are reachable. Suppose that each non-leaf node
has outdegree k. Suppose also that each vertex is assigned a non-negative weight
which is subadditive: the weight of a node does not exceed the sum of the weights
of its successors. Let 7 be the weight of the root, and suppose that each leaf has
weight at most [< .

1.3 Lemma For every real number ¢ between l/r and 1, there exists a node whose
weight lies between er /k and er. In particular, every binary tree with r leaves has a
subtree whose number of leaves lies between r /3 and 2r /3.

Proof. Start at the root and traverse the graph until a node u of weight > er is
found such that each of its successors has weight at most er. Such a node v exists
because each leaf has weight at most [< er. Due to subadditivity of the weight
function, the (up to k) successors of u cannot all have weight < er/k, since then
the weight of u would be < er as well. Hence, the weight of at least one successor
of u must lie between er/k and er, as desired.

12 1 Our Adversary: The Circuit

To prove the second claim, give each leaf of the tree weight 1, and define the
weight of an inner node as the number of leaves in the corresponding subtree. Then
apply the previous claim with k = 2 and € = 2/3. ad

The length of a path we will mean the number of nodes in it. The depth of a
graph is the length of a longest path in it. The following lemma generalizes and
simplifies an analogous result of Erdés, Graham and Szemerédi (1976). Let d = 2*
and 1 < r < k be integers.

1.4 Lemma (Valiant 1977) In any directed graph with S edges and depth d it is possible
to remove rS/k edges so that the depth of the resulting graph does not exceed d/2".

Proof. A labeling of a graph is a mapping of the nodes into the integers. Such a
labeling is legal if for each edge (u,v) the label of v is strictly greater than the label
of u. A canonical labeling is to assign each node the length of a longest directed path
that terminates at that node. If the graph has depth d then this gives us a labeling
using only d labels 1,. .., d. It is easy to verify that this is a legal labeling: if (u, v)
is an edge then any path terminating in u can be prolonged to a path terminating
in v. On the other hand, since in any legal labeling, all labels along a directed path
must be distinct, we have that the depth of a graph does not exceed the number of
labels used by any legal labeling.

After these preparations, consider now any directed graph with .S edges and
depth d, and consider the canonical labeling using labels 1,...,d. Fori =1,...,k
(where k = log d), let E; be the set of all edges, the binary representations of labels
of whose endpoints differ in the i-th position (from the left) for the first time.

If E; is removed from the graph, then we can relabel the nodes using integers
1,...,d/2 by simply deleting the i-th bit in the binary representations of labels. It
is not difficult to see that this is a legal labeling (of a new graph): if an edge (u, v)
survived, then the first difference between the binary representations of the old
labels of u and v were not in the i-th position; hence, the new label of © remains
strictly smaller than that of v. Consequently, if any r < k of the smallest sets F;
are removed, then at most rS/k edges are removed, and a graph of depth at most
d/2" remains. O

1.2 Circuits

In this section we recall the most fundamental models for computing boolean
functions.

General circuits Let @ be a set of some boolean functions. A circuit (or a straight line
program) of n variables over the basis @ is just a sequence g1, . . ., g; of t > nboolean
functions such that the first n functions are input variables g1 = z1,..., 9, = Ty,
and each subsequent g; is an application g; = ¢(gi, , - - - , gi,) of some basis function
@ € D (called the gate of ¢;) to some previous functions.

1.2 Circuits 13

z y x Yy z
A \Y, 52} 52
- D A
A z a S
A b
Y

Fig. 1.3 On the left is a circuit with six gates over the basis {A, V, =} computing the majority
function Majs(z,y, 2) = 1 iff © + y + z > 2. Its depth is five. On the right is a circuit with five
gates over the basis {®, A} computing the binary representation (a, b) of the (real) sum z +y + 2
of three 0-1 bits.

That is, the value g;(a) of the i-th gate g; on a given input a € {0,1}" is the
value of the boolean function ¢ applied to the values g;, (a), ..., g;,(a) computed
at the previous gates. A circuit computes a boolean function (or a set of boolean
functions) if it (or they) are among the g;.

Each circuit can be viewed as a directed acyclic graph whose fanin-0 nodes (those
of zero in-degree) correspond to variables, and each other node v corresponds to
a function ¢ in @. One (or more) nodes are distinguished as outputs. The value at
a node is computed by applying the corresponding function to the values of the
preceding nodes (see Fig. ??).

In the literature circuits are usually drawn in a “bottom-up” manner: the first (lowest) level
consists of inputs, and the last (highest) level consists of output gates. We will, however,
mostly draw circuits in a more natural “top-down” manner: inputs at the top, and outputs at

the bottom. Only where there already are established terms “top gate” and “bottom level” we
will use bottom-up drawings.

The size of the circuit is the total number ¢ — n of its gates (that is, we do
not count the input variables), and its depth is the length of a longest path from
an input to an output gate. More precisely, input variables have depth 0, and if
9i = ©(giys - - -, gi,) then the depth of the gate g; is 1 plus the maximum depth of
the gates g;,, ..., ¢;,- We will assume that every circuit can use constants 0 and 1
as inputs for free.

Formulas A formula is a circuit all whose gates have fanout at most 1. Hence, the
underlying graph of a formula is a tree. The size of a formula is also the number
of gates, and the leafsize of a is the number of input gates, that is, the number of
leaves in its tree, and the depth of a formula is the depth of its tree. Note that the
only (but crucial) difference of formulas from circuits is that in the circuit model a

14 1 Our Adversary: The Circuit

result computed at some gate can be used many times with no need to recompute
it again and again, as in the case of formulas.

DeMorgan circuits A DeMorgan circuit is a circuit over the basis {A, VV} but the
inputs are variables and their negations. That is, these are the circuits over the
basis {A, V, =}, where NOT gates are only applied to input variables; these gates
do not contribute to the circuit size. Such circuits are also called circuits with tight
negations. If there are no negated variables as inputs, then the circuit is monotone.
By using DeMorgan rules ~(z V y) = =z A =y and ~(x A y) = —x V -y, it can be
easily shown that any circuit over {A, VV, =} can be reduced to this form by at most
doubling the total number of gates; the depth of the circuit remains the same. In
the case of formulas, even the leafsize remains the same.

Probabilistic circuits Such circuits have, besides standard input variables x1, . . . , z,,
some specially designed inputs r1, .. ., 7, called random inputs. When these ran-
dom inputs are chosen from a uniform distribution on {0, 1}, the output C(z) of
the circuit is a random 0-1 variable. A probabilistic circuit C'(x) computes a boolean
function f(x) if

Prob[C(z) = f(x)] > 3/4 foreach z € {0,1}".

There is nothing special about using the constant 3/4 here—one can take any
constant > 1/2 instead. The complexity would not change by more than a constant
factor.

Can probabilistic circuits have much smaller size than usual (deterministic)
circuits? We will answer this question negatively using the following simple (but
often used) “majority trick”. It implies that if a random circuit errs on a fixed input
with probability < 1/2, then the majority of not too many independent copies of
such a circuit will err on this input with exponentially small probability. A Bernoulli
random variable with success probability p is a 0-1 random variable taking the
value 1 with probability p.

1.5 Lemma (Majority trick) If x1, ..., 2y, are independent Bernoulli random vari-
ables with success probability 1/2 + €, then

Prob[Maj(x1,...,zm) =0] < em2¢'m

Proof. Let F be the family of all subsets of [m] = {1, ..., m} of size > m/2, and
let ¢ := Prob[Maj(x1,...,2zmy) = 0]. Then

q= Y Problz; =0foralli€ S]-Problz; = 1foralli ¢ S]
SeF

=> (1/2-¢)¥l(1/24em 18

SeF

< 2(1/2 _ 6)m/2(1/2 + 6)77;/2

SeF

1.2 Circuits 15
< 2m(1/4 _ 62)m/2 — (1 _ 462)m/2 < e—252m_
The first inequality here follows by multiplying each term by

(1/2 — e)™/27151(1/2 4 ¢)181=m/2 > 1, O

1.6 Theorem (Adleman 1978) If a boolean function f of n variables can be computed
by a probabilistic circuit of size M, then f can be computed by a deterministic circuit
of size at most 8nM.

Proof. Let C be a probabilistic circuit that computes f. Take m independent copies
C1,...,Cy, of this circuit (each with its own random inputs), and consider the
probabilistic circuit C that computes the majority of the outputs of these m circuits.
Fix a vector a € {0,1}", and let z; be an indicator random variable for the event
“Ci(a) = f(a)”. For each of these random variables we have that Prob[z; = 1] >
1/2 + € with € = 1/4. By the majority trick, the circuit C’ will err on a with
probability at most e=2°m — g=m/8, By the union bound, the probability that the
new circuit C’ makes an error on at least one of all 2" possible inputs a is at most
21 . e=m/8 If we take m = 8n, then this probability is smaller than 1. Therefore,
there must be a setting of the random inputs which gives the correct answer for
all inputs. The obtained circuit is no longer probabilistic, and its size is at most 8n
times larger than the size of the probabilistic circuit. O

Average time of computations Let C = (g1, ..., gs) be a circuit computing some
boolean function f(x) of n variables; hence, gs(x) = f(z). The number s of gates
is the size of the circuit. One can also consider a notion of “computation time” on a
given input a € {0, 1}™. For this, let us introduce one special boolean variable z,
the output variable. Some of the gates may reset this variable, that is, set z = g;(a).
In particular, gates of the form z = 0 and z = 1 are allowed. The last gate ¢, always
does this, that is, sets z = gs(a). Our goal however is to interrupt the computation
sequence g1(a), ..., gs(a) as soon as the output variable already has the correct
value z = f(a).

To realize this goal, we declare some gates as “stop-gates”. Such a gate g stops
the computation on an input a if g(a) = 1. Now, given an input a € {0,1}", a
computation ¢;(a), g2(a), ..., g;(a) continues until the first gate g; is found such
that g; is a stop-gate and g;(a) = 1. The computation on a then stops, and the
output C'(a) of the circuit is the actual value of the output variable z at this moment
(see Fig ??). The computation time ¢¢(a) of the circuit C on a is the number i of
gates evaluated until the value was computed. The average time of the circuit C' is

He)=2" > te(a).

ac{0,1}"

If we have no stop-gates at all, then t-(a) = s for all inputs a, and hence, the
average time ¢(C) of the circuit C' is just the size s of C.

16 1 Our Adversary: The Circuit

z=1 z =x1 V 2 (stop) g1 =1x1V T2
g1 = z1 (stop) z=1x3V x4 g2 =x3V T4
g2 = 2 (stop) zZ=g1V g2
gs = z3 (stop)
g1 = x4 (stop)

z=0

Fig. 1.4 Three circuits computing the OR z1 V V2 V 23 V x4 of four variables. On input a =
(0,1,0,0) the first circuit takes time t¢(a) = 3, the second takes time ¢t¢(a) = 1, and the third
(standard) circuit takes time ¢t (a) = 3. The average time of the last circuit is ¢(C') = 3, whereas

that of the middle circuit is t(C) = $5(12-1+4-2) = 5/4.

This model of stop-circuits was introduced by Chashkin (1997, 2000, 2004); he
calls this model “non-branching programs with conditional stop”.

The average time, t(f), of a boolean function f is the minimum average time of
a circuit computing f. We always have that t(f) < C(f). Chashkin (1997) showed
that boolean functions f of n variables requiring t(f) = £2(2"/n) exist. But some
functions have much smaller average time than C(f).

1.7 Example Consider the threshold-2 function Thf (z). Since every boolean func-
tion f, which depends on n variables, requires at least n — 1 gates, we have that
C(Th3) > n — 1. On the other hand, it is not difficult to show that t(Th3) = O(1).
To see this, let us first compute z = Thj (1, x2, z3). This can be done using 6
gates (see Fig. ??), and hence, can be computed in time 6. After that we compute
2 = Th3(z4, x5, z), and so on. Declare each gate re-setting the variable z as a
stop-gate. This way the computations on 42”3 = 2"~1 inputs will be stopped
after 6 steps, the computations on 422" ~6 = 2"~2 remaining inputs will be stopped
after 6 - 2 = 12 steps and, in general, the computations on 4?27 =3¢ = 2"~ inputs
will be stopped after 6¢ steps. Thus, the average computation times is at most

m86t2-t = O(1).

An interesting aspect of stop-circuits is that one can compute non-monotone
boolean functions using monotone operations! For example, the following circuit
over {0, 1} computes the negation —x of a variable x:

z2=0; g1 =z (stop); z=1
and the following circuit over {A, V, 0,1} computes the parity function x @ y:

2=0; g1 =z Ay (stop); z=1; go =2 Vy (stop);z=0.

1.3 Branching programs 17

Let t,,(f) denote the minimum average time of a circuit over {A, V, 0,1} comput-
ing f. Chashkin (2004) showed that there exist boolean functions f of n variables

such that t(f) = O(1) but t,,,(f) = 2(1/2"/n).

Arithmetic circuits Such circuits constitute the most natural and standard model
for computing polynomials over a ring R. In this model the inputs are variables
Z1,-..,Tn, and the computation is performed using the arithmetic operations +, x
and may involve constants from R. The output of an arithmetic circuit is thus a
polynomial (or a set of polynomials) in the input variables. Arithmetic circuits are a
highly structured model of computation compared to boolean circuits. For example,
when studying arithmetic circuits we are interested in syntactic computation of
polynomials, whereas in the study of boolean circuits we are interested in the
semantics of the computation. In other words, in the boolean case we are not
interested in any specific polynomial representation of the function, but rather we
just want to compute some representation of it, while in the arithmetic world we
focus on a specific representation of the function. As such, one may hope that the
P vs. NP question will be easier to solve in the arithmetical model. However, in
spite of many efforts, we are still far from understanding this fundamental problem.
In this book we will not discuss arithmetic circuits: a comprehensive treatment can
be found in a recent survey by Shpilka and Yehudayoff (2010).

1.3 Branching programs

Circuits and formulas are “parallel” models: given an input vector z € {0,1}", we
process some pieces of z in parallel and join the results by AND or OR gates. The
oldest “sequential” model for computing boolean functions, introduced already in
pioneering work of Shannon (1949) and extensively studied in the Russian literature
since about 1950, is that of switching networks; a modern name for these networks
is “branching programs.”

Nondeterministic branching programs Perhaps the most general of “sequential”
models is that of nondeterministic branching programs (n.b.p.). Such a program is
a directed acyclic graph with two specified node{] s (source) and ¢ (target). Each
wire is either unlabeled or is labeled by a literal (a variable x; or its negation —z;).
A labeled wire is called a contact, and an unlabeled wire is a rectifier.

The graph may be a multigraph, that is, several wires may have the same end-
points. The size of a program is defined as the number of contacts (labeled wires).

Each input a = (aq,...,a,) € {0,1}" switches the labeled wires On or Off by
the following rule: the wire labeled by z; is switched On if a; = 1 and is switched
Off if a; = 0; the wire labeled by —z; is switched On if a; = 0 and is switched Off
if a; = 1. The rectifiers are always considered On.

" We prefer to use the word “node” instead of “vertex” as well as “wire” instead of “edge” while
talking about branching programs.

18 1 Our Adversary: The Circuit

T T2
x Y BED)
o Y o L] o []
To T3
-z
Y z T3 T4

o

Fig. 1.5 A nondeterministic branching program computing the majority function Majs(z, y, z) =
liff x + y 4+ 2z > 2, and a non-monotone switching network computing the threshold function
Th%(ml,mz,ng,:&;) =1iffzx1 + 22+ 23 + 24 > 2.

A nondeterministic branching program computes a boolean function in a natural
way: it accepts the input « if and only if there exists a path from s to ¢ which is
consistent with a, that is, along which all wires are switched On by a. That is, each
input switches the wires on or off, and we accept that input if and only if after that
there is a nonzero conductivity between the nodes s and ¢ (see Fig. ??). Note that
we can have many paths consistent with one input vector a; this is why a program
is nondeterministic.

An n.b.p. is monotone if it does not have negated contacts, that is, wires labeled by
negated variables. It is clear that every such program can only compute a monotone
boolean function. For a monotone boolean function f, let NBP_ (f) denote the
minimum size of a monotone n.b.p. computing f, and let NBP(f) be the non-
monotone counterpart of this measure. Let also [(f) denote the minimum length of
its minterm, and w(f) the minimum length of its maxterm.

1.8 Theorem (Markov 1962) For every monotone boolean function f,

NBP,(f) = I(f) - w(f).

Proof. Given a monotone n.b.p. program, for each node u define d(u) as the mini-
mum number of variables that need to be set to 1 to establish a directed path from
the source node s to u. In particular, d(t) = I(f) for the target node t.

For 0 < i <I(f),let.S; be the set of nodes u such that d(u) = i.If u is connected
to v by an unlabeled wire (i.e., not a contact) then d(u) > d(v), hence there are
no unlabeled wires from .S; to S for ¢ < j. Thus for each 0 <7 < I(f), the set F;
of contacts out of S; forms a cut of the branching program. That is, setting these
contacts to 0 disconnects the graph, and hence, forces the program output value 0
regardless on the values of the remaining variables. This implies that the set X (E;)
of labels of contacts in F; must contain a maxterm of f, hence | X (E;)| > w(f)
distinct variables. O

For the threshold function Th} we have [(Th}) = k and w(Th}) =n — k+ 1,
so every monotone n.b.p. has at least k(n — k + 1) contacts. Actually, this bound is
tight, as shown in Fig. ??. Thus we have the following surprisingly tight result.

1.9 Corollary (Markov 1962) NBP_(Th}) = k(n — k + 1).
In particular, NBP_ (Maj,,) = O(n?).

1.3 Branching programs 19

Bilder/markov-th-eps-converted-to.pdf

Fig. 1.6 The naive monotone n.b.p. for Th} has k(n — k + 1) contacts; heren = 9, k = 6.

Fig. 1.7 A graph which is not parallel-serial: it has a “bridge” {a, b} which is traversed in different
directions.

It is also worth noting that the famous result of Szelepsényi (1987) and Immerman
(1988) translates to the following very interesting simulation: there exists a constant
¢ such that for every sequence (f,,) of boolean functions,

NBP(_‘fn) < NBP(fn)C'

This is a “NP = co-NP” type result for branching programs.

A parity branching program is a nondeterministic branching program with the
“counting” mode of acceptance: an input vector a is accepted iff the number s-¢
paths consistent with a is odd.

Switching networks A switching network (also called a contact scheme) is defined in
the same way as an n.b.p. with the only difference that now the underlying graph
is undirected. Note that in this case unlabeled wires (rectifiers) are redundant since
we can always contract them.

A switching network is a parallel-serial network (or m-scheme) if its underlying
graph consists of parallel-serial components (see Fig. ??). Such networks can be
equivalently defined as switching networks satisfying the following condition: it is
possible to direct the wires in such a way that every s-¢ path will turn to a directed
path from s to ¢; see Fig ?? for an example of a switching network which is not
parallel-serial.

It is important to note that switching networks include DeMorgan formulas as a
special case!

1.10 Proposition Every DeMorgan formula can be simulated by a m-scheme of the
same size, and vice versa.

Proof. This can be shown by induction on the leafsize of a DeMorgan formula
F.If F is a variable x; or its negation —x;, then F' is equivalent to a 7w-scheme

20 1 Our Adversary: The Circuit

Bilder/pi-scheme-eps-convertedrto.pdf

Fig. 1.8 A m-scheme corresponding to the formula z1(x2 V z3) (23 V Tazs(z1 V T2)).

y "
y=0 z=0
=0 =0 Y z 0
=1 z=0
€T Y z T
y=0 =
r=1 w=1 Y Z 1
Y 1 y=0 z=0
y=1

Fig. 1.9 A deterministic branching program computing the majority function Maj;(z,y, z) = 1
iff x + y + 2z > 2, and such a program computing the parity function Parity(z,y,2) = z +y +
z mod 2; wires left without a label in the latter program make tests y = 1 and z = 1, respectively.

consisting of just one contact. If F' = F; A F; then, having 7w-schemes S7 and S
for subformulas F and F», we can obtain a 7w-scheme for F' by just identifying the
target node of S; with the source node of S, (see Fig. ??). If F' = F} V F, then,
having 7-schemes S; and S, for subformulas F; and F», we can obtain a m-scheme
for F' by placing these two schemes in parallel and gluing their source nodes and
their target nodes. |

That the presence of unlabeled directed wires in a network makes a difference, can
be seen on the example of the threshold function Th7. Let S(f) denote the minimum
number of contacts in a switching network computing f, and let S, (f) denote
the monotone counterpart of this measure. By Markov’s theorem, NBP_ (Thj) =
2n — 3, but it can shown that S, (Th}) = 2(nlog, n) (see Exercise ??). In fact,
if n is a power of 2, then we also have S, (Th}) < nlog, n, even in the class of
m-schemes (see Exercise ??). It can also be easily shown that in the class of non-
monotone switching networks we have that S(Thy) < 3n — 4 (see Fig. ?? for a
hint).

Deterministic branching programs In a nondeterministic branching program as
well as in a switching network one input vector a € {0, 1}™ can be consistent with
many s-t paths. The deterministic version forbids this: every input vector must be
consistent with exactly one path.

Formally, a deterministic branching program for a given boolean function f of n
variables z1, . .., x, is a directed acyclic graph with one source node and two sinks,
that is, nodes of out-degree 0. The sinks are labeled by 1 (accept) and by 0 (reject).
Each non-sink node has out-degree 2, and the two outgoing wires are labeled by
the tests ; = 0 and z; = 1 for some ¢ € {1,...,n}; the node itself is labeled by
the variable x;.

1.4 Almost all functions are complex 21

Such a program computes a boolean function f : {0,1}" — {0, 1} in a natural
way: given an input vector a € {0, 1}", we start in the source node and follow the
unique path whose tests are consistent with the corresponding bits of a; this path
is the computation on a. In this way we reach a sink, and the input a is accepted iff
this is the 1-sink.

Thus, a deterministic branching program is a nondeterministic branching pro-
gram with the restriction that each non-sink node has fanout 2, and the two outgoing
wires from each such node are labeled by the tests ; = 0 and z; = 1 on the same
variable z;. The presence of the 0-sink is just to ensure that each input vector can
reach a sink.

A decision tree is a deterministic branching program whose underlying graph is
a binary tree. The depth of such a tree is the maximum number of wires in a path
from the source node to a leaf.

In the literature, branching programs are also called binary decision diagrams or shortly
BDDs. This term is especially often used in circuit design theory as well as in other fields
where branching programs are used to represent boolean functions. Be warned, however,
that the term “BDD” in such papers is often used to denote a much weaker model, namely
that of oblivious read-once branching programs (OBDD). These are deterministic branching
programs of a very restricted structure: along every computation path all variables are tested
in the same order, and no variable is tested more than once.

It is clear that NBP(f) < S(f) < BP(f), where BP(f) denotes the minimum
size of a deterministic branching program computing f. An important result of
Reingold (2008) translates to

BP(fn) < S(f2)°W.

This is a “P = NP” type result for branching programs.

1.4 Almost all functions are complex

We still cannot prove super-linear lower bounds for circuits with AND, OR and
NOT gates. This is in sharp contrast with the fact, proved more than 60 years ago
by Riordan and Shannon (1942) that most boolean functions require formulas of
leafsize about 2" /log n. Then Shannon (1949) showed a lower bound 2" /n for
circuits. Their arguments were the first applications of counting arguments in
boolean function complexity: count how many different boolean functions of n
variables can be computed using a given number of elementary operations, and
compare this number with the total number 22" of all boolean functions. After these
works of Riordan and Shannon there were many results concerning the behavior of
the so-called “Shannon function” in different circuit models.

1.11 Definition (Shannon function) Given a circuit model with a particular their
size-measure, the Shannon function for this model is (n) = max u(f), where the

22 1 Our Adversary: The Circuit

maximum is taken over all boolean functions f of n variables, and pu(f) is the
minimum size of a circuit computing f.

In other words, p1(n) is the smallest number ¢ such that every boolean function
of n variables can be computed by a circuit of size at most ¢.

Most bounds in circuit complexity ignore constant multiplicative factors. Moreover, boolean
functions f : {0,1}" — {0, 1} are parameterized by their number of variables n. Hence,
under a boolean function f we actually understand an infinite sequence {f» |n =1,2,...}
of boolean functions. So the claim “f requires £2(¢(n)) gates” means that there exists a
constant € > 0 such that, for infinitely many values of n, the function f, cannot be computed
using fewer than € - p(n) gates. We will also say that f requires a “super-polynomial” number
of gates, if p(n) > n® for some & — 0o as n — oo, and that f requires an “exponential”
number of gates, if p(n) > 2™ for a constant € > 0.

Through this section, by a circuit (formula) we will understand a circuit (formula)
over the basis {A, V, —}; similar results, however, also hold when all 16 boolean
functions of two variables are allowed as gates. By B,, we will denote the set of all
22" boolean functions of n variables z1, . . ., Zy,.

1.4.1 Circuits

Let C(f) denote the minimum size of a fanin-two circuit over {A, VV, =} computing f.
Let also

o(n,t) == {f € B | C(f) < t}|

denote the number of distinct boolean functions f € B,, computable by circuits
of size at most t. As before, we assume that the function computed by a circuit
91,92, - - -, gt is the function computed at its last gate g;. So we now assume that
every circuit computes only one boolean function. This implies that every class
F C B, of |F| > ¢(n,t) functions must contain a function requiring circuits of
size > t. This was the main idea of Riordan-Shannon’s argument.

1.12 Lemma ¢(n,t) < t'e® 4" In particular, ¢(n,t) < ot* fort > mn > 16.

Proof. Clearly, we may suppose n,t > 2. Let g1, ..., g: be names of the gates in
a circuit. To describe a concrete circuit, it is sufficient to attach to each gate one
of the connectives A, V, - and an unordered pair of names of two other gates or
literals. There are at most

(3(15712Jr2n)>t < 2t(t 4 2n)%

such descriptions. Clearly, some of these descriptions do not represent a circuit
satisfying all requirements, but every correct circuit may be described in this
way. Note that the output does not have a special name. In a correct circuit, it
is determined by the fact that it is the only gate not used in any other gate. It is
easy to see that every function representable by a circuit of size at most ¢ is also

1.4 Almost all functions are complex 23

representable by a circuit of size exactly ¢ satisfying the additional requirement that
no two of its gates compute the same function. It is also easy to see that in a circuit
satisfying the last mentioned property, each of the ¢! permutations of the names of
the gates leads to a different description of a circuit computing the same function.
So using estimates t! > (¢/3)! and 1 + x < e, we can upper bound ¢(n, t) by

2L(t + 2n)?t < 2t38(t + 2n)2t

I 2t
. g =6 (1+ Tn) < tt6lein 0

1.13 Lemma (Kannan 1981) For every integer k > 1, there is a boolean function of n
variables such that f can be written as a DNF with n? ™1 monomials, but C(f) > n*.

Proof. We view a circuit computing a boolean function f as accepting the set
of vectors f~1(1) C {0,1}", and rejecting the remaining vectors. Fix a subset
T C {0,1}" of size |[T| = nt?> = n?**! By Lemma ??, we know that at most
27*" < 2IT1 distinct subsets of T can be accepted by circuits of size at most n*.
Thus, some subset S C T' cannot be accepted by a circuit of size n*. But this subset
S can be accepted by a trivial DNF with |S| < |T| = n2**! monomials: just take

one monomial for each vector in S. O

Since we have 22" distinct boolean functions of n variables, setting ¢ := 2" /n in
Lemma ?? immediately implies the following lower bound on the Shannon function
C(n) in the class of circuits.

1.14 Theorem For every sufficiently large n, C(n) > 2" /n,.

On the other hand, it is easy to see that C(n) = O(n2"): just take the DNFs.
Muller (1956) proved that C(n) = ©(2" /n) for any finite complete basis. Lupanov
(1958a) used an ingenious construction to prove an asymptotically tight bound.

1.15 Theorem (Lupanov 1958a) For every boolean function f of n variables,

n

Cfy<(1 +an)% where «;, = (9(

logn)
)

(1.4)

Proof. We assume that the number n of variables is large enough. For a boolean
vectora = (ay,...,an),letbin(a) := Y i | a;-2" " be the unique natural number
between 0 and 2" — 1 associated with a; we call bin(a) the code of a.

Let H,, ,,, (¢) denote the set of all boolean functions h(z) of n variables such that
h(a) = 0if bin(a) < m(i — 1) or bin(a) > mi. That is, we arrange the vectors
of {0,1}" into a string of length 2" according to their codes, split this string into
consecutive intervals of length m, and let H,, ,,, (7) to contain all boolean functions
h that take value O outside the ¢-th interval:

.,0,0, x,...,x ,0,0,....
——

values on m vectors

24 1 Our Adversary: The Circuit

Thusﬂfor eachi =1,...,2"/m, each function in H,, ,, (i) can only accept a subset
of a fixed set of m vectors, implying that

| Hyp o (7)) < 27

for all 4. Since every input vector a has its unique weight, every boolean function
f(z) of n variables can be represented as a disjunction

2" /m

flz) = _\/ fi(z), (1.5)

where f; € H,, ,(4) is the functions such that f;(a) = f(a) for every a such that
m(i — 1) < bin(a) < mi. We can associate with every a € {0, 1}" the elementary
conjunction

K, = 2%282 ... g%
Recall that 7 = 1 if a; = o, and 27 = 0 otherwise. Hence, K, (b) = 1 if and only

if b = a, and we have 2" such elementary conjunctions of n variables.

1.16 Claim All elementary conjunctions of n variables can be simultaneously com-
puted by a circuit with at most 2" + 2n2"/? gates.

Proof. Assume for simplicity that n is even. We first compute all 2"/ elementary
conjunctions of the first n,/2 variables using a trivial circuit with at most (n,/2)2"/?
gates, and do the same for the conjunctions of the remaining n/2 variables. We
now can compute every elementary conjunction of n variables by taking an AND
of the corresponding outputs of these two circuits. This requires 2"/ . 27/2 = 2»
additional gates, and the entire circuit has size at most 2" + n2"/2 To include the
case when 7 is odd, we just multiply the last term by 2. a

We now turn to the actual construction of an efficient circuit for a given boolean
function f(z) of n variables. Let 1 < k,m < n be integer parameters (to be
specified latter). By (??), we can write f(z) as a disjunction

2" /m

f(l’) = \/Ka(zla"'axk) A \/ fa,i(xk+1;-"axn)v
a =1

where a ranges over {0,1}"*, and each f,; belongs to H,,_j ,(i). We will use
this representation to design the desired circuit for f. The circuit consists of five
subcircuits (see Fig. ??). The first subcircuit /' computes all elementary conjunctions
of the first k variables. By Claim??, this circuit has size

L(Fy) < 2% 4-2k2F/2

" An apology to purists: for simplicity of presentation, we will often ignore ceilings and floors.

1.4 Almost all functions are complex 25

Bilder/lupanov2-eps-converted-to.pdf

Fig. 1.10 The structure of Lupanov’s circuit.

The second subcircuit F, also computes all elementary conjunctions of the remain-
ing n — k variables. By Claim??, this circuit has size

L(Fy) < 2"7F 4 9(n — k)2n=R)/2

The third subcircuit F3 computes all functions f, ; from the sets H,,_j (%) using
elementary conjunctions computed by Fy. Since every function in H,,_, ., (¢) is an
OR of at most m elementary conjunctions, each of length n — k, and since we have
at most 2m*1 . 2"‘k/m such functions, the subcircuit F3 has size

L(Fg) S m2n7k+m+1/m _ 2nfk+m+1)

The fourth subcircuit F; computes all functions

2" /m

fa(xk—i-l;”-axn): \/ fa,i(xk+1a~~-axn)
1=1

using the functions f, ; computed by Fj. Since we have at most 2% such functions
fa, each of which is an OR of at most 27~ /m of the functions f, ;, the subcircuit
Fy has size

2’ﬂ
L(Fy) <2F.2n 7k /m < —— 42k,
m

The last subcircuit F5 multiplies functions computed by F3 by elementary con-
junctions computed by Fi, and computes the disjunction of these products. This

subcircuit has size
L(Fs) <2-2%.

Thus, the entire circuit F' computes f(z) and has size

21’L
L(F) < =— 44-2F 4 o2n=k 4 op2k/2 | gpon—F 4 gn—ktmtl,
m

26 1 Our Adversary: The Circuit

Now set Kk = n — 2logn and m = n — 4logn. Then all but the first terms are
at most O(2"/n?), and we obtain that L(F) < 2"/m + O(2"/n?). After simple
computations, this implies L(F) < (1 + «)2"/n where a < c¢(logn)/n for a
constant c. O

Lozhkin (1996) improved (??) to

_logn +4loglogn + O(1)
- .

n

Lupanov (1963) also proved a lower bound

O(n) > (14 5) 2 where 5, = (1~ o(1)) "5

(1.6)
n
The proof actually gives that the o(1) factor is equal to O(1/logn).

Redkin (2004) considered the behavior of the Shannon function when restricted
to boolean functions accepting a small number of input vectors. Let C(n, K') denote
the smallest number ¢ such that every boolean function f of n variables such that
|f~1(1)] = K can be computed by a circuit over {A, V, =} of size at most ¢. Redkin
(2004) proved that, if 2 < K < log, n — clog, log, n holds for some constant ¢ > 1,
then

Cn,K) ~2n.

For the Shannon function M(n) restricted to the class of all monotone boolean
functions of n variables, Ugol'nikov (1976) and Pippenger (1976b) independently

proved that
M~ 1 (ay)

This holds for circuits with AND, OR and NOT gates. An important improvement
by Andreev (1988b) shows that the upper bound is actually achieved by monotone
circuits with only AND and OR gates!

1.4.2 Approximation complexity

In a standard setting, a circuit F'(2:) must compute a given boolean function f(z)
correctly on all input vectors € {0,1}". We can relax this and only require
that F' computes f correctly on some given subset D C {0, 1}" of vectors; on
other input vectors the circuit may output arbitrary values, 0 or 1. That is, we are
asking for the smallest size C(f) of a circuit computing a partial boolean function
f:{0,1}" — {0, 1, *} defined on

D= (0)Uf ().

1.4 Almost all functions are complex 27

Let N = |D| be the size of the domain, and N; = |f~1(1)]. It is clear that C(f) =
O(nN). Actually, we have a much better upper bound:

C(f) < (1+o(1)) —— + On). 17)

logy N

For functions with log, N ~ n this was (implicitly) proved already by Nechiporuk
(1963, 1965, 1969a) in a series of papers devoted to rectifier networks; Pippenger
(1976) gave an independent proof. Then Sholomov (1969) proved this for all N >
nlog'*?®M pn, and finally Andreev (1988) proved this for arbitrary N. It is also
known that

log, (]I\\,[l)
log, log, (IJ\X)

For logy N1 ~ n this was (implicitly) proved by Nechiporuk in the above mentioned
papers, and by Pippenger (1976). Andreev et al. (1996) proved this in the case when
(1+¢€)logn < log N; = O(logn) and log N = §2(n). Finally, Chashkin (2006)
proved this for arbitrary N;.

Counting arguments (similar to those above) show that these upper bounds are
asymptotically tight. The proofs of the upper bounds are, however, non-trivial: it
took more than 40 years to find them!

Let us call a partial boolean function f : D — {0,1} of n variables dense
if the size N = |D| of its domain satisfies log, N ~ n. The proof of (??) for
dense functions uses arguments similar to that we used in the proof of Theorem ??.
Moreover, for dense functions, (??) holds without the additive factor O(n). The proof
of (??) for functions that are not necessarily dense used interesting ideas which we
will sketch right now. We will follow a simplified argument due to Chashkin (2006).

Let f(x) be a partial boolean function which is not dense, that is, for which
log, N < n holds. If f takes value 1 on fewer than N/n? input vectors, then we can
compute f by a DNF using at most n(N/n?) = N/n gates. Thus, the difficult case
is when f is not dense but is “dense enough”. The idea in this case is to express f as
f(z) = h(x) ® g(L(x)), where h accepts only few vectors, g : {0,1}™ — {0,1} is
a dense partial function, and L : {0,1}"™ — {0, 1}™ is an “almost” injective linear
operator. Being linear means that L(x) = Az over GF(2) for some boolean m x n
matrix A. Both h and L have small circuits, and for g we can use the upper bound
for dense functions.

Say that an operator L : {0,1}" — {0,1}™ is almost injective on a subset
D C {0,1}™if L(x) = L(y) for at most 2~ ™ (‘?l) pairs = # y of distinct vectors
in D.

C(f) < (1 +0(1)) +0(n).

1.17 Lemma Let D C {0, 1}" be a set of vectors, and m a positive integer. Then there
exists a linear operator L : {0,1}™ — {0,1}"™ which is almost injective on D.

Proof. We will use a simple (but useful) fact about random vectors in GF(2)". A
random vector a in GF(2)" is obtained by flipping n times a fair 0-1 coin. Hence,
Probla = z] = 27" for each vector z € GF(2)™. It is easy to show (see Ap-
pendix ??) that Prob[{a,z) = (a,y)] = 1/2 holds for every two vectors x # y

28 1 Our Adversary: The Circuit

in GF(2)", where (a,z) = > .-, a;x; mod 2 is the scalar product of a and
over GF(2).

Now consider a random operator L(z) = Ax where A is a random m X n matrix
whose rows are random vectors in GF(2)". By the previous fact, every pair (z, y)
of vectors x # y in D is not separated by L with probability 27" By the linearity
of expectation, at most a fraction 27" of such pairs will not be separated by L. O

Now let f be a partial boolean function of n variables defined on some domain
D C {0,1}™ of size N = | D).

1.18 Lemma Iflog N > n/3 then C(f) < (14 o(1))N/log N.

Proof. Let Dy = {x € D | f(z) = 0} and D; = {z € D | f(z) = 1}; hence,
D = Dy U Dj is the set on which our function f is defined, and N = |D]|. Set also
m = [log N 4+ 3logn].

Lemma ?? gives us a linear operator L : {0,1}" — {0,1}™ which is almost
injective on D. Consider a partial boolean function g : {0,1}"™ — {0, 1} defined
on L(D) by: g(z) = 0if z € L(Dy), and g(z) = 1 otherwise. If necessary, specify
arbitrary values of g on some vectors outside L(D) until the domain of g has exactly
N vectors.

And now comes the trick. We can write our function f(x) as

f(x) = h(z) @ g(L(z)),

where
h(z) := f(z) © g(L(z))

is a partial function defined on D. Thus, we only need to show that all three
functions h, g and L can be computed by small circuits.

The operator L(x) is just a set of m < n parity functions, and hence, can be
computed by a trivial circuit of size O(n?), which is o(N/n) because log N = 2(n),
by our assumption.

The function h can be computed by a small circuit just because it accepts at most
N/n3 vectors x € D.Indeed, h(z) = 0 for all # € Dy because then L(x) € L(Dy).
Hence, h can accept a vector z € D only if z € D; and g(L(z)) = 0, that is, if
x € Dy and L(x) = L(y) for some y € Dj. Since the operator L is almost injective,
and since 2™ > Nn3, there are at most 2~ (];[) < N/n? pairs (y,z) € Dy x Dy
such that L(z) = L(y). Thus, the function h can accept at most N/n? vectors. By
taking a DNF, this implies that i can be computed by a circuit of size n(N/n?) =
o(N/n).

It remains therefore to compute the function g. Recall that g is a partial function
of m variables defined on N vectors. Since log N ~ m, the function g is dense,

implying that C(g) < (14 o(1))N/log N. O

We can now easily prove (??) for any partial function f. If log N > n/3 then
Lemma ?? gives the desired upper bound (without any additive term). Now suppose
that log V < n/3. In this case we take m := [2log N].

1.4 Almost all functions are complex 29

Lemma ?? gives us a linear operator L : {0,1}" — {0, 1}™ which is almost
injective on D. But by our choice of m, the operator L is actually injective on
D, because 2™ (J;) < 1/2 < 1. Thus, in this case we do not need any “error
correction” function h because now we have that f(x) = g(L(x)) forallz € D,
where g is defined as above using our new operator L. The function g has m
variables and is defined on |L(D)| = |D| = N vectors.

Since m < [2log N| < 3log N, we can apply Lemma ?? to g and obtain
C(g) < (1 4+ 0(1))N/log N. Since C(L) = O(nlog N), we obtain (??) with an
additive factor O(n?). One can reduce this factor to O(n) by using the existence
of good linear codes computable by circuits of linear size; see Chashkin (2006) for
details.

1.4.3 The circuit hierarchy theorem

By using the estimates of Shannon and Lupanov, it is not difficult to show that one
can properly increase the number of computed functions by “slightly” increasing the
size of circuits. For a function ¢ : N — N, let Circuit[¢] denote the set of all sequences
fnsm=1,2,... of boolean functions of n variables such that C(f,,) < t(n).

1.19 Theorem (Circuit Hierarchy Theorem) Ifn < t(n) < 2"~2/n then
Circuit[t] & Circuit[4¢].

Proof. Fix the maximal m € {1,...,n} such that t(n) < 2™/m < 2. ¢(n). This is
possible: if m is the largest number with 2™ /m < 2 - t(n), then 2+ /(m + 1) >
2-t(n), which implies t(n) < 2™ /m. Consider the set B,, ,,, of all boolean functions
of n variables that depend only on m bits of their inputs. By the Shannon-Lupanov
lower bound, there exists f,, € By, ., such that C(f,) > 2™/m > t(n). On the
other hand, Lupanov’s upper bound yields C(f,) <2-2™/m <4 -t(n) O

1.20 Remark Theorem ?? implies that ¢(n,4t) > ¢(n,t) + 1; recall that ¢(n, t) is
the number of boolean functions of n variables computable by circuits of size at
most t. Recently, Chow (2011) gave the following tighter lower bound: there exist
constants ¢ and K > 1 such that for all #(n) < 2"~2/n and all sufficiently large n,

o(n,t+cn) > K - ¢(n,t). (1.8)

That is, when allowing an additional cn gates, the number of computable functions
is multiplied by at least some constant factor K > 1.In particular, if £(n) > nlogn,
then for any fixed d, ¢(n,t) > n? - ¢(n,t/2) for all sufficiently large n. To prove
(??), Chow sets N = 2" and lets A C {0, 1}V to be the set of all truth tables of
boolean functions f € B,, computable circuits of size at most t.

A truth table is a 0-1 vector ¢ = (ay,...,an), and it describes the unique
function f, € B, defined by f,(%) = apin(y) where bin(z) = > x; 27!
is the number whose binary code is vector € {0,1}". The boundary §(A) of

30 1 Our Adversary: The Circuit

A C {0,1}" is the set of all vectors b ¢ A that differ from at least one a € A
in exactly one position. The discrete isoperimetric inequality (see, for example,
Bezrukov (1994)) states that,

k k+1

Z < |A| < Z implies |6(A)] > (k+1)

=0

Using this and some simple properties of binomial coefficients, Chow shows that
the boundary 0(A) of the set A of truth tables contains at least €| A| vectors, for
a constant € > 0. Now, if b € §(A), then there exists a vector a € A such that f,
differs from f,, on only one input vector zy. One can thus take a circuit for f,, add
additional cn gates to test the equality x = x0, and obtain a circuit for f,. Thus,
using additional cn gates we can compute at least K - |A| = K - ¢(n, t) boolean
functions, where K = (1 +¢) > 1.

Chow (2011) uses this result to show that the so-called “natural proofs barrier” in
circuit lower bounds can be broken using properties of boolean functions of lower
density; we shortly discuss the phenomenon of natural proofs in the Epilogue.

1.4.4 Switching networks and formulas

Let us now consider the Shannon function S(n) in the class of switching networks.
The worst-case complexity of switching networks is similar to that of circuits, and
can be lower bounded using the following rough upper bound on the number of
directed graphs with a given number of wires. Recall that multiple wires joining
the same pair of nodes are here allowed.

1.21 Lemma There exist at most (9t)* graphs with t edges.

Proof. Every set of ¢ edges is incident with at most 2¢ nodes. Using these nodes, at
most r = (2t)? their pairs (potential edges) can be built. Since 1 + ...+ x, =t

has (T'H;_l) integer solutions x; > 0, and since t! > (¢/3)" (by Stirling’s formula),

the number of graphs with ¢ edges is at most

1\t t 1\t 2¢,42t
(THfl)S(Tth 1) S3(T'Jr7f 1) S3 t
t! tt tt

__ 92ttt
! = 324t O

1.22 Theorem For every constant € > 0 and sufficiently large n,

277.

S(n) > (1—¢e)—.

() > (-2

Proof. If is clear that if a boolean function can be computed by a network with at
most ¢ contacts then it can also be computed using exactly ¢ contacts. By Lemma ??
we know that there are (9¢)" graphs with ¢ edges. Since we only have 2n literals,
there are at most (2n)! ways to turn each such graph into a switching network

1.4 Almost all functions are complex 31

by assigning literals to edges. Since every switching network computes only one
boolean function, at most (18nt)" different boolean functions can be computed
by switching networks with at most ¢ contacts. Comparing this number when
t = (1 — €)2"/n with the total number 22" of all boolean functions, yields the
result. O

Shannon (1949) proved that (1 — €)2"/n < S(n) < 2"*3/n holds for an arbi-
trarily small constant € > 0. Lupanov (1958b) obtained much tighter bounds:

(1+ 222222 <5 < (14 ZD) 2

In the class of formulas over {A, V, —}, that is, fanout-1 circuits constituting
a subclass of switching networks (see Proposition ??), the behavior of Shannon’s
function is somewhat different: for some boolean functions, their formulas are at
least n/ log n times larger than circuits and switching networks.

When counting formulas, we have to count full binary tree, that is, binary trees
where every vertex has either two children or no children. It is well known that the
number of such trees with n + 1 leaves is exactly the n-th Catalan number:

o 1 [2n (2n)! 4n
" n4+1\n/) (m+Dn!l wd2yr

Let L(f) denote the smallest number of gates in a formula over {A, V, =} com-
puting f, and let L(n) be the corresponding Shannon function.

1.23 Theorem For every constant € > 0 and sufficiently large n,

2”
logon

L(n) > (1—¢)

Proof. We can assume that all negations are only applied to input gates (leaves).
There are at most 4% binary trees with ¢ leaves, and for each such tree, there are at
most (2n + 2)! possibilities to turn it into a DeMorgan formula: 2n input literals
and two types of gates, AND and OR. Hence, the number of different formulas of
leafsize at most ¢ is at most 4*(2n + 2)* < (9n)* for n > 8. Since, we have 22"
different boolean functions, the desired lower bound on ¢ follows. O

By using more precise computations, tighter estimates can be proved. Riordan
and Shannon (1942) proved that

n

Lin) > (1—6,)—

@ where 6n=(9(1)

logn
On the other hand, Lupanov (1960) showed that

2n 2logl +0(1
L(n) < (1 +7n)@ where v, = ceo8n (L) :

logn

32 1 Our Adversary: The Circuit

Bilder/lupanov3-eps-converted-to.pdf

Fig. 1.11 Construction of a nondeterministic branching program for an arbitrary boolean function
on n variables. The program is read-once (along every s-t path, each variable is tested only once),
and is oblivious (on each level, tests on the same variable are made).

Lozhkin (1996) improved this to

= O(loén) ’

Interestingly, Lupanov (1962) showed (among other things) that L(n) drops down
from 2"/ logn to

L(n) = O(2"/n),

if we allow just one of the basis functions AND, OR or NOT to have fanout 2. If we
allow all three basis functions to have fanout 2, then even the asymptotic

L(n) ~2"/n
holds. If only NOT gates are allowed to have fanout 2, then
L(n) ~ 2" /n.

Savicky and Woods (1998) gave tight estimates on the number of boolean functions
computable by formulas of a given size. In particular, they proved that, for every
constant k, almost all boolean functions of formula size n* require circuits of size
at least n* /k.

Nechiporuk (1962) considered the behavior of the Shannon function in cases
when some of the gates are given for free. He proved that the smallest number of
gates that is enough to compute any boolean function of n variables is asymptotically
equal to:

« 2" /n for formulas over {V, -} when V-gates are for free;

« V2741 for circuits over {V, -} when V-gates are for free;
« 2" /2n for formulas over {®, A} when @-gates are for free;
« /27 for circuits over {®, A} when @-gates are for free,

1.4 Almost all functions are complex 33

Concerning the Shannon functions ®BP(n) for parity branching programs and
NBP(n) for nondeterministic branching programs, Nechiporuk (1962) proved that

®BP(n) ~ v2ntl

and

V2r+1 < NBP(n) < 2v/27 . (1.9)

The upper bound NBP(n) < 41/2" for an even n is easy to prove. Take a boolean
function f(z1,...,x,), and assume that n = 2m is even. Let T} be a full decision
tree on the first m variables, and T a full decision tree on the remaining m variables.
Turn 75 “on its head”, and reverse the orientation of its wires. Draw a switch
(unlabeled wire) from the leaf of T reached by a vector = € {0,1}™ to the leaf
of Ty reached by a vector y € {0,1}™ if and only if f(z,y) = 1 (see Fig. ??). We
have | f~1(1)| switches, but they are for free. The number of contacts in the trees
T, and T, is smaller than 2 - 2+1 = 4,/27, Note that the constructed program is
“read-once”: along each s-t path, each variable is tested only once. If the number
of variables is odd, n = 2m + 1, then the above construction gives a program
with at most 2(2™ + 2™ +1) = 3. 2m*1 = 3y/27+1 contacts. To obtain a better
upper bound 2v/27, one can use more efficient contact schemes constructed by
Lupanov (1958b).

The best known asymptotic bounds on the Shannon function restricted to mono-
tone boolean functions can be found in a survey by Korshunov (2003).

1.4.5 Invariant classes

Let B be the class of all boolean functions. A class () C B is invariant if together
with every function f(z1,...,,) in Q it contains

« all subfunctions of f, and
« all function f(2r(1),. .., Tx(n)) Where 7 : [n] — [n] is a permutation.
For example, classes of all symmetric, all linear or all monotone functions are
invariant. The class B itself is a trivial invariant class.
Let @Q(n) denote the set of all boolean functions f € @ of n variables; the
functions need not depend on all their variables. Denote
Lim(Q) := lim |Q(n)|"/?".

n—oo
1.24 Theorem For every invariant class Q), Lim(Q) exists and lies between 1 and 2.

Proof. Let f(x1,...,Z,41) be an arbitrary boolean function in () depending on
n + 1 variables. Recurrence (??) yields |Q(n + 1)| < |Q(n)|?. Hence, the sequence
|Q(n)|'/?" is non-increasing. If Q # (), then

1= 11/2" < ‘Q(n)|1/2” < (22")1/2" —9.

34 1 Our Adversary: The Circuit

Thus Lim(Q) exists and is a number in the interval [1, 2]. O

By Theorem ??, every invariant class () of boolean functions defines the unique
real number 0 < o < 1 such that Lim(Q) = 2°. This number is an important
parameter of the invariant class characterizing its cardinality. It also characterizes
the maximum circuit complexity of functions in (). We will therefore denote this
parameter by writing @, if o is the parameter of).

For example, if P is the class of all linear boolean functions (parity functions),
then | P(n)| < 2"™1, implying that Lim(P) = 1, and hence, 0 = 0. The same holds
for the class .S of all symmetric boolean functions. If M is the class of all monotone
boolean functions, then

(,7,) < o M)l < 140},

The lower bound here is trivial: consider monotone boolean functions whose
minterms have length n/2. The upper bound was proved by Kleitman and Markowsky
(1975) with the o(1) factor being O(logn/n). The number | M (n)| is known as the
Dedekind number, and was considered by many authors. Korshunov (1977, 1981)
proved an asymptotically tight estimate

logy | M (n)| ~ (1+a)<) where a = 6(n?/2").

n
n/2
Since (732) = ©(2"/\/n), we again have that Lim(M) = 1, and ¢ = 0. On the
other hand, Lim(B) = (22")}/?" = 2,and o = 1.

Do there exist invariant classes () with o strictly between 0 and 1? Yablonskii

(1959) showed that, for every real number 0 < ¢ < 1 there exists an invariant class
Q@ with Lim(Q) = 2°.

1.25 Example As an example let us construct an invariant class with o = 3. For this,
let Q(n) consist of all boolean functions of the form f(z1,...,2,) = ls(x) A g(z)
where [g(z) is the parity function P, g 2; or its negation, and g is an arbi-
trary boolean function depending only on variables x; with ¢ € S. It is easy
to see that @ is an invariant class. If we take S = {1,...,n}, then lg(z) = 1
for 2"~! vectors z. Hence, |Q(n)| > 22"7' On the other hand, for a fixed
S C [n], there are at most 22¥7" < 92" functions f € Q(n). Since we have
only 2"*! different linear functions on n variables, |Q(n)| < 27+122""". Thus

Lim(Q) = v2 - lim,, o0 /2t =\ /2.

Let Lg(n) denote the maximum, over all functions f € Q(n), of the minimum
size of a DeMorgan circuit computing f. Yablonskii (1959) extended results of
Shannon and Lupanov to all invariant classes.

1.26 Theorem (Yablonskii 1959) Let () be an invariant class of boolean functions, and
let 0 < o < 1 be its parameter. Then, for every constant € > 0,

1.5 So where are the complex functions? 35

277, 277,
(1—€o— < Lgn) <(1+o(l)c—.
n n

The lower bound uses a Shannon-type counting argument and the fact that Q(n)
has about 272" boolean functions. The upper bound uses a construction similar to
that used by Lupanov (1958).

It is not difficult to verify that o < 1 for every invariant class () # B. Indeed,
for some fixed m, there exists a boolean function g(x1,...,2,,) € Q. Since the
sequence |Q(n)|'/?" is non-increasing, we have that

lim [Q(n)]"/*" < |Q(m)['/*" < (22" —)V/*" <2.
n—oo

Now suppose we have an algorithm constructing a sequence F' = (f,, | n =
1,2,...) of boolean functions. Call such an algorithm honest if, together with the
sequence F', it constructs some invariant class of boolean functions containing F'.
Specifying F' as an element of an invariant class means that the sequence I’ is
specified by its properties.

1.27 Theorem (Yablonskii 1959) Every honest algorithm constructing a sequence of
most complex boolean functions must construct all boolean functions.

Proof. Let us assume the opposite. That is, assume that some sequence F' = (f, |
n =1,2,...) of most complex boolean functions is a member of some invariant
class Q, # B. Then o < 1, and Theorem ?? implies that every boolean function
gn(Z1,...,Ty) € @ has a DeMorgan circuit of size at most (1 — A)2" /n for some
constant A > 0. But the lower bound (??) implies that C(f,,) > 2" /n. Comparing
these bounds, we can conclude that the sequence F' cannot be contained in any
invariant class QQ, with o < 1. O

This result was interpreted by Yablonskii as an indication that there (apparently)
is no other way to construct a most-complex sequence of boolean function other
than to do a “brute force search” (or “perebor” in Russian): just try all 22" boolean
functions.

1.5 So where are the complex functions?

Unfortunately, the results above are not quite satisfactory: we know that almost
all boolean functions are complex, but no specific (or explicit) complex function
is known. This is a strange situation: we know that almost all boolean functions
are complex, but we cannot exhibit any single example of a complex function!
We also face a similar situation in other branches of mathematics. For example, in
combinatorics it is known that a random graph on n vertices is a Ramsey-graph,
that is, has no cliques or independent sets on more than ¢ = 2log n vertices. But
where are such “mystical” graphs?

36 1 Our Adversary: The Circuit

The best known explicit construction of non-bipartite ¢-Ramsey graphs due to Frankl and

Wilson only achieves a much larger value ¢ about exp(y/log n log log n). In the bipartite case,
t-Ramsey graphs with ¢ = n/2 can be obtained from Hadamard matrices: Lindsey’s Lemma
(see Appendix ??) implies that such a matrix can have a monochromatic a x b submatrix only
if ab < n. But even going below ¢ = n'/? was only recently obtained by Pudlak and Rodl
(2004), Barak et al. (2010), and Ben-Sasson and Zewi (2010). The paper of Barak et al. (2010)
constructs bipartite t-Ramsey graphs with ¢ = n° for an arbitrarily small constant § > 0.

The main goal of boolean complexity theory is to prove lower bounds on the
complexity of computing explicitly given boolean functions in interesting com-
putational models. By “explicitly given” researchers usually mean “belonging to
the class NP”. This is a plausible interpretation since, on the one hand, this class
contains the overwhelming majority of interesting boolean functions, and on the
other hand, it is a sufficiently restricted class in which counting arguments seem
not to apply. The second point is illustrated by a result of Kannan (1981) showing
that already the class X5 N I15, next after NP in the complexity hierarchy, contains
boolean functions whose circuit size is £2(n*) for any fixed k > 0. The proof of
this fact essentially uses counting arguments; we will present it in the Epilogue
(see Theorem ?7?).

1.5.1 On explicitness

We are not going to introduce the classes of the complexity hierarchy. Instead, we
will use the following simple definitions of “explicitness”. Say that a sequence of
boolean functions g,, m, (z,y) of n + m variables is “simple” if there exists a Turing
machine (or any other algorithm) which, given n, m and a vector (x, y), outputs
the value g, (x, y) in time polynomial in n + m. Then we can treat a sequence
of boolean functions f,, () as “explicit” if there exists a sequence g, ,, of simple
functions with m = n®®) such that

fn(z) = 1ifand only if g, (2, y) = 1 for at least one y € {0,1}™.

In this case, simple functions correspond to the class P, and explicit functions form
the class NP. For example, the parity function 21 & - - - & x,, is “very explicit™: to
determine its value, it is enough just to sum up all bits and divide the result by 2. A
classical example of an explicit function (a function in NP) which is not known to
be in P is the Clique function. It has n = (g) variables x,, ,,, each for one possible
edge {u, v} on a given set V of n vertices. Each 0-1 vector x of length (3) defines a
graph G, = (V, E,) in a natural way: {u,v} € E, iff z,,, = 1. The function itself
is defined by:

CLIQUE(z) = 1 iff the graph G, contains a clique on /n vertices.

In this case, m = n and the graphs G, encoded by vectors y are k-cliques for
k = 4/n. Since one can test whether a given k-clique in present in G, in time

1.5 So where are the complex functions? 37

about (g) < n, the function is explicit (belongs to NP). Thus a proof that CLIQUE
requires circuits of super-polynomial size would immediately imply that P # NP.

Unfortunately, at the moment we are even not able to prove that CLIQUE
requires, say, 10n AND, OR and NOT gates! The problem here is with NOT gates—
we can already prove that the clique function requires n?(vV?) gates, if no NOT
gates are allowed; this is a celebrated result of Razborov (1985a) which we will
present in Chapter ??.

1.5.2 Explicit lower bounds

The strongest known lower bounds for non-monotone circuits (with NOT gates)
computing explicit boolean functions of n variables have the form:

« 4n — 4 for circuits over {A,V, =}, and Tn — 7 for circuits over {A, -} and
{V, =} computing &,,(z) = 1 ® x2 B - - - ® x,; Redkin (1973). These bounds
are tight.

« 5n — o(n) for circuits over the basis with all fanin-2 gates, except the parity
and its negation; Iwama and Morizumi (2002).

« 3n —o(n) for general circuits over the basis with all fanin-2 gates; Blum (1984).

« n37°W for formulas over {A, V, —}; Hastad (1998).

« 2(n?/logn) for general fanin-2 formulas, £2(n?/log?n) for deterministic
branching programs, and 2(n3/2/ log n) for nondeterministic branching pro-
grams; Nechiporuk (1966).

We have only listed the strongest bounds for unrestricted circuit models we currently
have. The bounds for circuits and formulas were obtained by gradually increasing
previous lower bounds.

A lower bound 2n for general circuits was first proved by Kloss and Maly-
shev (1965), and by Schnorr (1974). Then Paul (1977) proved a 2.5n lower bound,
Stockmayer (1977) gave the same 2.5n lower bound for a larger family of boolean
functions including symmetric functions, Blum (1984) proved the lower bound
3n — o(n). A simpler proof of this lower bound, but for much more complicated
functions, was recently found by Demenkov and Kulikov (2011). They prove such a
bound for any boolean function which is not constant on any affine subspace of
GF(2)™ of dimension o(n). A rather involved construction of such functions was
given earlier by Ben-Sasson and Kopparty (2009).

For circuits over the basis with all fanin-2 gates, except the parity and its negation,
alower bound of 4n was obtained earlier by Zwick (1991b) (for a symmetric boolean
function), then Lachish and Raz (2001) proved a 4.5n — o(n) lower bound, and
finally Iwama and Morizumi (2002) extended this bound to 5n — o(n).

For formulas, the first nontrivial lower bound n®/2 was proved by Subbotovskaya
(1961), then a lower bound §2(n?) was proved by Khrapchenko (1971), and a lower
bound of £2(n?%) by Andreev (1985). This was enlarged to £2(n?-°®) by Impagliazzo

38 1 Our Adversary: The Circuit

and Nisan (1993), and to §2(n?%3) by Paterson and Zwick (1993), and finally to
p3—o(1) by Hastad (1998).

The boolean functions for which these lower bounds are proved are quite “simple”.
For general circuits, a lower bound 3n — o(n) is achieved by particular symmetric
functions, that is, functions whose value only depends on the number of ones in
the input vector.

The lower bound 5n — o(n) holds for any k-mixed boolean function with k =
n—o(n); a function is k-mixed if for any two different restrictions fixing the same set
of k variables must induce different functions on the remaining n — k variables. We
will construct an explicit k-mixed boolean function for k = n—O(y/n) in Section ??.
Amano and Tarui (2008) showed that some highly mixed boolean functions can be
computed by circuits of size 5n + o(1); hence, the property of being mixed alone is
not enough to improve this lower bound.

Almost-quadratic lower bounds for general formulas and branching programs
are achieved by the element distinctness function (see Sections ?? and ?? for the
proofs).

The strongest known lower bounds, up to n3~°(1), for DeMorgan formulas are
achieved by the following somewhat artificial function A, (z,y) (see Section ??).
The function has n = 2 4 bm variables with b = log(n/2) and m = n/(2b). The
last b variables are divided into b blocks y = (y1,. .., ys) of length m, and the
value of A,, is defined by A, (z,y) = fo(®m(y1),- ., Bm(Ys))-

1.6 A 3n lower bound for circuits

Existing lower bounds for general circuits were proved using the so-called “gate-
elimination” argument. The proofs themselves consist of a rather involved case
analysis, and we will not present them here. Instead of that we will demonstrate
the main idea by proving weaker lower bounds.

The gate-elimination argument does the following. Given a circuit for the function
in question, we first argue that some variablel (or set of variables) must fan out
to several gates. Setting this variable to a constant will eliminate several gates. By
repeatedly applying this process, we conclude that the original circuit must have
had many gates.

To illustrate the basic idea, we apply the gate-elimination argument to threshold
functions

Thi(z1,...,2,) =lifandonlyifzy + 2o+ - -+, > k.

1.28 Theorem Even if all boolean functions in at most two variables are allowed as
gates, the function ThY requires at least 2n — 4 gates.

1.6 A 3n lower bound for circuits 39

Proof. The proof is by induction on n. For n = 2 and n = 3 the bound is trivial.
For the induction step, take an optimal circuit for Thf, and suppose that the
bottom-most gate g acts on variables x; and x; with ¢ # j. This gate has the form
g = ¢(z;,z;) for some ¢ : {0,1}% — {0, 1}. Notice that under the four possible
settings of these two variables, the function Th{ has three different subfunctions
Th{ ™%, Th}~? and Th} 2. It follows that either x; or x; fans out to another gate
h, for otherwise our circuit would have only two inequivalent sub-circuits under
the settings of x; and ;. Why? Just because the gate g = ¢(z;, z;) can only take
two values, 0 and 1.

Now suppose that it is x; that fans out to h. Setting x; to 0 eliminates the need
of both gates g and h. The resulting circuit computes Th !, and by induction, has
at least 2(n — 1) — 4 gates. Adding the two eliminated gates to this bound shows
that the original circuit has at least 2n — 4 gates, as desired. O

Theorem ?? holds for circuits whose gates are any boolean functions in at most
two variables. For circuits over the basis {A, V, =} one can prove a slightly stronger
lower bound. For this, we consider the parity function

On(@) =21 P2 D - Dy

1.29 Theorem (Schnorr 1974) The minimal number of AND and OR gates in a circuit
over {A\,V,} computing &, is 3(n — 1).

Proof. The upper bound follows since = @y is equal to (x A —y) V (—z A y). For the
lower bound we prove the existence of some z; whose replacement by a suitable
constant eliminates 3 gates. This implies the assertion for n = 1 directly and for
n > 3 by induction.

Let g be the first gate of an optimal circuit for @, (). Its inputs are different
variables x; and x; (see Fig. ??). If x; had fanout 1, that is, if g were the only gate
for which x; is acting as input, then we could replace x; by a constant so that
gate g would be replaced by a constant. This would imply that the output became
independent of the i-th variable x; in contradiction to the definition of parity. Hence,
x; must have fanout at least 2. Let ¢’ be the other gate to which z; is an input.

We now replace x; by such a constant that g becomes replaced by a constant.
Since under this setting of x; the parity is not replaced by a constant, the gate g
cannot be an output gate. Let h be a successor of g. We only have two possibilities:
either h coincides with ¢’ (that is, g has no other successors besides g’) or not.

Case (a): ¢’ = h. In this case g has fanout 1. We can set z; to a constant so that ¢’
will become set to a constant. This will eliminate the need for all three gates g, ¢’
and p.

Case (b): ¢’ # h. Then we can set x; to a constant so that g will become set to a
constant. This will eliminate the need for all three gates g, ¢’ and h.
In either case we eliminate at least 3 gates. ad

40 1 Our Adversary: The Circuit

Bilder/circuitl-eps-converted-to.pdf

Fig. 1.12 The two cases in the proof of Theorem ??.

Note that the same argument works if we allow as gates any boolean functions
¢(z,y) with the following property: there exist constants a, b € {0, 1} such that
both ¢(a,y) and ¢(z, b) are constants. The only two-variable functions that do not
have this property is the parity function z @ y and its negation x © y @ 1.

1.7 Graph complexity

As pointed out by Sipser (1992), one of the impediments in the lower bounds area is
a shortage of problems of intermediate difficulty which lend insight into the harder
problems. Most of known problems (boolean functions) are either “easy” (parity,
majority, etc.) or are “very hard” (clique problem, satisfiability of CNFs, and all other
NP-hard problems).

On the other hand, there are fields—like graph theory or matrix theory—with
a much richer spectrum of known objects. It therefore makes sense to look more
carefully at the graph structure of boolean functions: that is, to move from a “bit
level” to a more global one and consider a given boolean function as a matrix or as
a bipartite graph. The concept of graph complexity, as we will describe it below,
was introduced by Pudlak, Rédl and Savicky (1988), and was later considered by
Razborov (1988, 1990), Chashkin (1994), Lokam (2003), Jukna (2006, 2010b), Drucker
(2011), and other authors.

A circuit for a given boolean function f generates this function starting from
simplest “generators”—variables and their negations. It applies some boolean oper-
ations like AND and OR to these generators to produce new “more complicated”
functions, then does the same with these functions until f is generated. Note how-
ever that there was nothing special to restrict ourselves to boolean functions—one
can define, say, the complexity of graphs or matrices analogously.

A basic observation connecting graphs and boolean functions is that boolean

functions can be treated as graphs. Namely, every boolean function f(z1, ..., Zm, Y1, - . -

of 2m variables can be viewed as a bipartite n x n grap}ﬂ Gy C Vi x V5 with
n = 2", whose vertex-sets V; = V5 = {0, 1}"" are binary vectors, and (u,v) € Gy
iff f(u,v) = 1.In particular, literals { and y§ for a € {0, 1} then turn to bicliques
(bipartite complete graphs):

" Here and in what follows we will often consider graphs as sets of their edges.

\Ym)

1.7 Graph complexity 41

(i) Iff=afthenGy={ueVi|u =a}xVa.
(ii) If f =y then Gy = Vi x {v € Vo | v; = a}.

Boolean operations AND and OR turn to set-theoretic operations:
Ging =GrNGgand Gyyy = Gy UG,

Thus, every (non-monotone!) DeMorgan formula (or circuit) for the function f
turns to a formula (circuit) which can use any of 4m bicliques defined above, and
apply the union and intersection operations to produce the entire graph G ;.

We thus can take a “vacation” from boolean functions, and consider the com-
putational complexity of graphs: how many U and N operations do we need to
produce a given bipartite graph G starting from bicliques?

1.30 Remark In the context of arbitrary bipartite graphs, restriction to these special
bicliques (i) and (ii) as generators looks somewhat artificial. And indeed, if we use
only these 4m = 4logn generators, then the complexity of isomorphic graphs
may be exponentially different. In particular, there would exist a perfect matching
of formula size O(m) = O(logn), namely that corresponding to the equality
function defined by f(z,y) = 1 iff x = y), as well as a perfect matching requiring
2(n) formula size; the existence can be shown by comparing the number m®® of
formulas of size ¢ with the total number n! of perfect matchings.

1.7.1 Clique complexity of graphs

In view of the previous remark, let us allow all 22" bicliques P x V5 and V; x @Q
with P C Vj and @ C V; as generators. The bipartite formula complexity, Ly, (G),
of a bipartite n x n graph G C V; x V3, is then the minimum number of leaves in
a formula over {N, U} which produces the graph G starting from these generators.

By what was said above, we have that every boolean function f of 2m = 2logn
variables requires non-monotone DeMorgan formulas with at least Ly, (G f) leaves.
Thus any explicit bipartite n x n graph G with Ly, (G) = 2(log™ n) would
immediately give us a an explicit boolean function of 2m variables requiring non-
monotone formulas of size £2(m%). Recall that the best known lower bound for
formulas has the form 2(m?).

Note however that even if we have “only” to prove poly-logarithmic lower
bounds for graphs, such bounds may be extremely hard to obtain. For example, we
will prove later in Section ?? that, if f is the parity function of 2m variables, then
any non-monotone DeMorgan formula computing f must have at least 2(m?) =
2(log® n) leaves. But the graph G ¢ of f is just a union of two bicliques, implying
that Ly, (G) < 4.

Another way to view the concept of bipartite complexity of graphs G C V; x V3
is to associate with subsets P C V; and Q C V5 boolean variables (we call them
meta-variables) zp, zg : V1 x Vo — {0, 1} interpreted as

42 1 Our Adversary: The Circuit

Bilder/fatl-eps-converted-to.pdf

Fig. 1.13 The adjacency matrices of: (i) a complete bipartite graph A x B represented by g =
(\/uEA zu) A (\/'UGB zv), (ii) a bipartite graph represented by an OR function g = \/UEAUB Zv,

and (iii) a bipartite graph represented by a Parity function g = EBU cAUB Zv-

zp(u,v) =1iffu € P, and zg(u,v) = 1iffv € Q.

Then the set of edges accepted by zp is exactly the biclique P x V5, and similarly
for variables zg.

1.31 Remark Note that in this case we do not need negated variables: for every P C
V1, the variable zy,\ p accepts exactly the same set of edges as the negated variable
-z p. Thus Ly, (G) is exactly the minimum leafsize of a monotone DeMorgan
formula of these meta-variables which accepts all edges and rejects all nonedges
of G. Also, the depth of a decision tree for the graph G ¢, querying the meta-variables,
is exactly the communication complexity of the boolean function f(z, y), a measure
which we will introduce in Chapter ??.

1.7.2 Star complexity of graphs

Now we consider the complexity of graphs when only special bicliques—stars—are
used as generators. A star is a bipartite graph formed by one vertex connected
to all vertices on the other side of the bipartition. In this case the complexity of
a given graph turns into a monotone complexity of monotone boolean functions
“representing” this graph in the following sense.

Let G = (V, E) be an n-vertex graph, and let 2 = {2, | v € V'} be a set of
boolean variables, one for each vertex (not for each subset P C V/, as before). Say
that a boolean function (or a circuit) g(z) represents the graph G if, for every input
a € {0,1}™ with exactly two 1s in, say, positions u # v, g(a) = 1 iff u and v are
adjacent in G:

f(0,...,0,1,0,...,0,1,0,...,0) =1 ifandonlyif {u,v} € E.

If the graph is bipartite then we only require that this must hold for vertices v and
v from different color classes. Note that in both cases (bipartite or not), on input
vectors with fewer than two 1s as well as on vectors with more than two 1s the
function g can take arbitrary values!

1.7 Graph complexity 43

Another way to treat this concept is to view edges as 2-element sets of vertices,
and boolean functions (or circuits) as accepting/rejecting subsets S C V' of vertices.
Then a boolean function f : 2V — {0, 1} represents a graph if it accepts all edges
and rejects all non-edges. On subsets S with | S| # 2 the function can take arbitrary
values.

Thus a single variable z, represents a complete star around the vertex v, that
is, the graph consisting of all edges connecting v with the remaining vertices. If
we consider bipartite graphs with bipartition V; U V5, then each single variable z,,
with v € V; represents the star consisting of all edges connecting v with vertices in
Va_;. If A C V; and B C V5, then the boolean function

(V=)a(V =)

uceA veEB

represents the complete bipartite graph A x B (Fig. ??). Note also that every graph
G = (V, E) is represented by \/, . ;» zu A\ 2. But this representation of n-vertex
graphs is not quite compact: the number of gates in them may be as large as O(n?).
If we allow unbounded fanin OR gates then already 2n — 1 gates are enough: we
can use the representation

\/zu/\< \/ Zv)a

u€eS viuver

where S C V is an arbitrary vertex-cover of G, that is, a set of vertices such that
every edge of G has is endpoint in 5.

We have already seen how non-monotone circuit complexity of boolean functions
is related to biclique complexity of graphs. A similar relation is also in the case of
star complexity.

As before, we consider a boolean function f(x,y) of 2m variables as a bipartite
n x n graph Gy C U x V with color classes U = V = {0,1}™ of size n = 2™, in
which two vertices (vectors) x and y are adjacent iff f(z,y) = 1. In the following
lemma, by a “circuit” we mean an arbitrary boolean circuit with literals—variables
and their negations—as inputs.

1.32 Lemma (Magnification Lemma) In every circuit computing f(x,y) it is possible
to replace its input literals by ORs of new variables so that the resulting monotone
circuit represents the graph G'y.

Proof. Any input literal ¢ in a circuit for f(x,y) corresponds to the biclique
Uf x V withU? = {u € U | u; = a}. Every such biclique is represented by an
OR\/,cpe zu of 2"~1 = n/2 new variables. O

Instead of replacing input literals by ORs one can also replace them by any other
boolean functions that compute 0 on the all-0 vector, and compute 1 on any input
vector with exactly one 1. In particular, parity functions also have this property,
as well as any function g(Z) = ¢(>_,,cg 2w) With ¢ : N = {0,1}, ¢(0) = 0 and
(1) =1 does.

44 1 Our Adversary: The Circuit

Bilder/magnif2-eps-converted-to.pdf

Fig. 1.14 Having a circuit I’ computing a boolean function f of 2m variables, we obtain a (mono-
tone) circuit representing the graph Gy by replacing each input literal in F' by an appropriate OR
of new variables.

The Magnification Lemma is particularly appealing when dealing with circuits
containing unbounded fanin OR (or unbounded fanin Parity gates) on the next to the
input layer (Fig. ??). In this case the total number of gates in the circuit computing
[is exactly the number of gates in the obtained circuit representing the graph G !
Thus if we could prove that some explicit bipartite n x n graph with n = 2™ cannot
be represented by such a circuit of size n¢, then this would immediately imply that
the corresponding boolean function f(x,y) in 2m variables cannot be computed
by a (non-monotone!) circuit of size n® = 2", which is already exponential in
the number of variables of f. We will use Lemma ?? in Section ?? to prove truly
exponential lower bounds for unbounded-fanin depth-3 circuits with parity gates
on the bottom layer.

It is important to note that moderate lower bounds for graphs even in very
weak circuit models (where strong lower bounds for boolean functions are easy to
show) would yield impressive lower bounds for boolean circuits in rather nontrivial
models. To demonstrate this right now, let cnf(G) denote the smallest number of
clauses in a monotone CNF (AND of ORs of variables) representing the graph G.

A bipartite graph is K5 o-free if it does not have a cycle of length 4, that is, if its
adjacency matrix does not have a 2 x 2 all-1 submatrix.

1.33 @ Research Problem
Does there exist a constant € > 0 such that cnf(G) > D¢ for every bipartite
K o-free graph G of average degree D?

We will see later in Section ?? that a positive answer would give an explicit
boolean function f of n variables such that any DeMorgan circuit of depth O(log n)
computing f requires w(n) gates (cf. Research Problem ??). Thus graph complexity
is a promising tool to prove lower bounds for boolean functions. Note, however, that
even small lower bounds for graphs may be very difficult to prove. If, say, n = 2™
and if f(z,y) is the parity function of 2m variables, then any CNF for f must have
at least 22 =1 = n?/2 clauses. But the bipartite n x n graph G corresponding to
this function consists of just two complete bipartite subgraphs; hence, Gy can be
represented by an OR of two monotone CNF consisting of just 4 clauses.

1.8 A constant factor away from P # NP? 45

1.8 A constant factor away from P # NP?

Having warned about the difficulties when dealing with the graph complexity, in
this section we sketch a potential (albeit very hard to realize) approach to proving
strong lower bounds on circuit complexity of boolean functions using the graph
complexity.

Recall that a DeMorgan circuit consists of fanin-2 AND and OR gates, and has
all variables as well as their negations as inputs. A monotone circuit is a DeMorgan
circuit without negated variables as inputs.

1.34 Proposition Almost all bipartite n X n graphs require monotone circuits of size
2(n?/logn) to represent them.

Proof. Easy counting (as in the proof of Theorem ??) shows that there are at most
(nt)®® monotone circuits with at most ¢ gates. Since we have on’ graphs, and
different graphs require different circuits, the lower bound follows. O

Thus the overwhelming majority of graphs require an almost-quadratic number
of gates to represent. On the other hand, we are now going to show (Corollary ??
below) that any explicit bipartite n x n graph which cannot be represented by a
monotone circuit with fewer than 7n gates would give us an explicit boolean func-
tion f in 2m variables which cannot be computed by a non-monotone(!) DeMorgan
circuit with fewer than 2”* gates. That is, linear lower bounds on the monotone com-
plexity of graphs imply exponential lower bounds on the non-monotone complexity
of boolean functions.

When constructing the circuit for the graph G, as in the Magnification Lemma,
we replace 4m input literals in a circuit for fg by 4m = 4logn disjunctions of
2n = 2™m+1 (new) variables. If we compute these disjunctions separately then
we need about mn = nlogn fanin-2 OR gates. The disjunctions can, however, be
computed much more efficiently using only about n OR gates, if we compute all these
disjunctions simultaneously. This can be shown using the so-called “transposition
principle”.

Let A = (a;;) be aboolean p x ¢ matrix. Our goal is to compute the transforma-
tion y = Ax over the boolean semiring. Such a transformation computes p boolean
sums (disjunctions) of ¢ variables 1, ..., x4:

q
yi:\/aijsz \/ xz; for i=1,...,p.
j=1

Jraij=1

Thus, our question reduces to estimating the disjunctive complexity, or(A), of A
defined as the minimum number of fanin-2 OR gates required to simultaneously
compute all these p disjunctions.

By computing all p disjunctions separately, we see that or(A) < pq. However,
in some situations (as in the graph complexity) we have that the number p of
disjunctions (rows) is much smaller than the number ¢ of variables (columns). In

46 1 Our Adversary: The Circuit

Bilder/fuduccia-eps-converted-to.pdf

Fig. 1.15 We replace a node (an OR gate) g of fanin d by d — 1 nodes each of fanin 2. In the former
circuit we have e — v = d — 1, and in the latter¢’ —v' =2(d—1) - (d—1)=d—-1=c¢ —v.

the context of graph complexity, we have p = 2m and ¢ = 2™. In such situations,
it would be desirable to somehow “replace” the roles of rows and columns. That is,
it would be desirable to relate the disjunctive complexity of a matrix A with the
disjunctive complexity of the transposed matrix A”’; recall that the transpose of a
matrix A = (aij) is the matrix AT = (b”) with bij = Qjj-

Transposition Principle If A is a boolean matrix with p rows and q columns, then
or(AT) = or(A) +p —q.

This principle was independently pointed out by Bordewijk (1956) and Lu-
panov (1956) in the context of rectifier networks. Mitiagin and Sadovskii (1965)
proved the principle for boolean circuits, and Fiduccia (1973) proved it for bilinear
circuits over any commutative semiring.

Proof. Let A = (a;5) be ap x ¢ boolean matrix, and take a circuit /' with fanin-2
OR gates computing y = Az. This circuit has g input nodes =1, . . ., £4 and p output
nodes y1, - - ., Yp. At y; the disjunction V.o, ,=17; is computed.

Let a(F) be the number of gates in F. Since each non-input node in F" has fanin
2, we have that a(F') = e — v + g, where e is the total number of wires and v is the
total number of nodes (including the ¢ input nodes). Since the circuit ' computes
y = Az and has only OR gates, we have that a;; = 1 if and only if there exists a
directed path from the j-th input z; to the i-th output ;.

We now transform F to a circuit F’ for x = ATy such that the difference e/ — v’
between the numbers of wires and nodes in ¥’ does not exceed e — v. First, we
transform F’ so that no output gate is used as an input to another gate; this can
be achieved by adding nodes of fanin 1. After that we just reverse the orientation
of wires in F', contract all resulting fanin-1 edges, and replace each node of fanin
larger than 2 by a binary tree of OR gates (see Fig. ??). Finally, assign OR gates to
all n input gates of F' (now the output gates of F’).

It is easy to see that the new circuit F” computes A”'y: there is a path from y; to
x; in F” iff there is a path from z; to y; in F. Moreover, since ¢’ — v’ < e — v, the
new circuit F” has

a(FYy=¢ —v' +p<e—-v+p=alF)+p—q

gates. This shows that or(AT) < or(A) + p — ¢, and by symmetry, that or(A)

<
or(AT) +q —p. O

1.8 A constant factor away from P # NP? 47

1.35 Corollary Let A be a boolean p x q matrix. Then, for every positive integer s
dividing p,
OR(A) < sq+ s2P/° —2p — 5.

Proof. The proof is similar to that of Lemma ??. We want to compute a set Az of p
disjunctions on ¢ variables. Split the transposed ¢ x p matrix A7 into s submatrices,
each of dimension ¢ x (p/s). By taking a circuit computing all possible disjunction
of p/s variables, we can compute disjunctions in each of these submatrices using at
most 2P/% — p/s — 1 OR gates. By adding ¢(s — 1) gates to combine the results of
ORs computed on the rows of the submatrices, we obtain that or(A”) < s2P/* —
p — s+ q(s — 1) and, by the Transposition Principle,

orR(A) < or(AT) +q—p=sq+s2P/° —2p—5s. O

In particular, taking s = 1, we obtain an upper bound or(A) < g+ 2P —2p — 1
which, as shown by Chashkin (1994) is optimal for p < log ¢q. By using a different
argument (without applying the Transposition Principle), Pudlak, Rdl and Savicky
(1988) proved a slightly worse upper bound or(A4) < g + 2P+ —p — 2.

Now we are able to give one consequence of the Transposition Principle for non-
monotone circuits. Given a boolean function fa,,(x,y) in 2m variables, its graph
is a bipartite n x n graph Gy with n = 2™ whose vertices are vectors in {0, 1},
and two vertices and y from different parts are adjacent iff fo,,(z,y) = 1.

1.36 Corollary If a boolean function fa, can be computed by a non-monotone De-
Morgan circuit of size M, then its graph Gy can be represented by a monotone circuit
of size M + (6 + o(1))n.

Proof. Let Gy = (V1, V5, E) be the graph of f,(z,y). By the Magnification
Lemma, each of 2m = 2logn z-literals in a circuit computing fs,, is replaced
by a disjunction on the set {z, | © € Vi} of n variables. By Corollary ?? (with
p = 2logn, ¢ = nand s = 3), all these disjunctions can be simultaneously com-
puted using fewer than 3n + 3n?/? fanin-2 OR gates. Since the same also holds for
y-literals, we are done. O

1.37 B Research Problem
What is the smallest constant ¢ for which the conclusion of Corollary ?? holds with
M + (6 + o(1))n replaced by M + ¢n?

By Corollary ??, any bipartite n X n graph requiring, say, at least 7n AND and OR
gates to represent it gives a boolean function of 2m = 2log n variables requiring
at least £2(n) = £2(2™) AND, OR and NOT gates to compute it. It is therefore not
surprising that proving even linear lower bounds cn for explicit graphs may be a
very difficult task. Exercise ?? shows that at least for ¢ = 2 this task is still tractable.

1.38 @ Research Problem
Exhibit an explicit bipartite n x n graph requiring at least cn AND and OR gates to
represent it, for ¢ > 2.

48 1 Our Adversary: The Circuit

Readers interested in this problem might want to consult the paper of Chashkin
(1994) giving a somewhat tighter connection between lower bounds for graphs
and the resulting lower bounds for boolean functions. In particular, he shows that
the constant 6 in Corollary ?? can be replaced by 4, and even by 2 if the graph is
unbalanced.

Exercises

1.1 Let, as before, Dec(A) denote the minimum weight of a decomposition of a
boolean matrix A. Suppose that A does not contain an a x b all-1 submatrix with
a + b > k. Show that Dec(A) > |A|/k.

1.2 Let s, be the smallest number s such that every boolean function of n variables
can be computed by a DeMorgan formula of leafsize at most s. Show that s,, <
4 - 2™ — 2. Hint: Use the recurrence (??) to show that s, < 4 - 2™ — 2, and apply induction on n.

1.3 Let m = [log,(n + 1)], and consider the function Sum,, : {0,1}"™ — {0,1}™
which, given a vector z € {0, 1}" outputs the binary code of the sum 1 +z2+-- -+
Z,,. Consider circuits where all boolean functions of two variables are allowed as
gates, and let C(f) denote the minimum number of gates in such a circuit computing

f
(a) Show that C(Sum,,) < 5n. Hint: Fig. 2.

(b) Show that C(f,,) < 5n + o(n) for every symmetric function f,, of n variables.
Hint: Every boolean function g of m variables has C(g) < 2™ /m.

1.4 (Circuits as linear programs) Let F'(x) be a circuit over {A, V, =} with m gates.
Show that there is a system L(x, y) of O(m) linear constraints (linear inequalities
with coefficients +1) with m y-variables such that, for every z € {0,1}", F(z) =1
iff there is 0-1 vector y such that all constraints in L(z, y) are satisfied.

Hint: Introduce a variable for each gate. For an A-gate g = u/Awv use the constraints 0 < g <u <1,
0<g<v<1,g>u+v— 1 What constraints to take for —-gates and for V-gates? For the

output gate g add the constraint g = 1. Show that, if the z-variables have values 0 and 1, then all
other variables are forced to have value 0 or 1 equal to the output value of the corresponding gate.

1.5 Write ¢ < h for boolean functions of n variables, if g(z) < h(x) for all
x € {0,1}™. Call a boolean function % a neighbor of a boolean function g if either
gPa<h®adlforsomea € {0,1},orgdx; < g® hforsomei € {1,...,n}.
Show that:

(a) Constants 0 and 1 are neighbors of all non-constant functions.

(b) Neighbors of the OR gate V are all the two variable boolean functions, except
the parity @ and the function V itself.

1.8 A constant factor away from P # NP? 49

1.6 (Minimal circuits are very unstable) Let F' be a circuit over some basis comput-
ing a boolean function f, and assume that F' is minimal, that is, no circuit with a
smaller number of gates can compute f. In particular, minimal circuits are “unstable”
with respect to deletion of its gates: the resulting circuit must make an error. The
goal of this exercise is to prove that, in fact, minimal circuits are unstable in a much
stronger sense: we cannot even replace a gate by another one. That is, the size of
the resulting circuit remains the same but, nevertheless, the function computed by
a new circuit differs from that computed by the original one.

Let F' be a minimal circuit, v a gate in it of fanin m, and h be a boolean function
of m variables. Let F,,_,;, be the circuit obtained from F' as follows: replace the
boolean function g attached to the gate v by h and remove all the gates that become
redundant in the resulting circuit. Prove that, if h is a neighbor of g, then F,,_,, # F.

Hint: Since F' is minimal, we cannot replace the gate v by a constant a, that is, there must be at
least one vector z € {0,1}" such that Fy,4(2) # F(z).

1.7 Let n = 2" and consider two sequences of variables © = (z1,...,z,) and
y = (y1,.-.,¥r). Each assignment a € {0,1}" to the y-variables gives us a unique
natural number bin(a) = 2" ta; +--- + 2a,_1 + a, + 1 between 1 and n; we call
bin(a) the code of a. The storage access function f(z,y) is a boolean function of
n + 7 variables defined by: f(2,y) := Tpin(y).-

Show that the monomial K = x1x5 - - - x, is a minterm of f, but still f can be
written as an (r + 1)-DNF. Hint: For the second claim, observe that the value of f(x,y)
depends only on 7 + 1 bits 1, ..., yr and Tpin(y)-

1.8 Let G = ([n], E) be an n-vertex graph, and d; be the degree of vertex 7 in G.
Then G can be represented by a monotone formula F' = Fy V - - -V F),, where

F‘j, =T N (\/ Ij)
j{ijreE

A special property of this formula is that the i-th variable occurs at most d; + 1
times. Prove that, if G has no complete stars, then any minimal monotone formula
representing G must have this property.

Hint: Take a minimal formula F' for G, and suppose that some variable x; occurs m; > d; + 1
times in it. Consider the formula F’ = ;=0 V Fj, where Fy,—g is the formula obtained from F’

by setting to 0 all m; occurrences of the variable ;. Show that F’ represents G, and compute its
leafsize to get a contradiction with the minimality of F'.

1.9 Say that a graph is saturated, if its complement contains no triangles and no
isolated vertices. Show that for every saturated graph G = (V, E), its quadratic
function fo(x) =V ,,cp TuZv is the unique(!) monotone boolean function repre-

senting the graph G.

1.10 Let G,, = K,,_1 + E1 be a complete graph on n — 1 vertices 1,2...,n —1
plus one isolated vertex n. Let F'(z1,. .., 2,) be an arbitrary monotone circuit with
fanin-2 AND and OR gates representing GG,,. Show that GG,, cannot be represented

50 1 Our Adversary: The Circuit

by a monotone circuit using fewer than 2n — 6 gates. Hint: Show that if n > 3 then
every input gate x; fori = 1,...,n — 1 has fanout at least 2.

1.11 Let n = 2™ be a power of 2. Show that Thi can be computed by a monotone
DeMorgan formula with at most n log, n leaves. Hint: Associate with each index i € [n]
its binary code in {0,1}™. For k € [m] and a € {0,1}, let F} , be the OR of all variables
x; such that the binary code of ¢ has a in the k-th position. Show that the monotone formula
F= \/;::1 Fi 0 A Fj,1 computes Thy.

1.12 (Hansel 1964) The goal of this exercise is to show that

S, (Thy) > inlogyn.

Let F'(x) be a monotone switching network computing Thi with the start node s
and the target node ¢. Say that F is canonical if it has the following property: if a
node v is joined to s or to ¢ by a contact z;, then no other edge incident with v has

x; as its label.

(a) Suppose that F'(x) = 0 for all input vectors with at most one 1. Show that F'
can be made canonical without increasing the number of contacts.

Hint: Assume that some node w is joined to the source node s and to some other node v by
edges with the same label ;. Then v # t (why?). Remove the edge {u, v} and add the edge
{s,v} labeled by z;. Show that the obtained network computes the same function.

(b) Let F' be a minimal canonical monotone network computing the threshold-2
function Th. Show that every node u ¢ {s,t} is adjacent with both nodes s
and t. Hint: If we remove a label of any contact in a minimal network, then the new network
must make an error.

(c) Let m be the number of contacts in a network F’ from (b). Show that Th{ ()
can be written as an OR I V F5 V - - -V F}; of ANDs

Fk(l‘):(V xi)/\< \ wz)

1EAL 1€ By,

such that Ay N B, = 0 and w < 2m, where w := ZZ=1(|A1€\ + | Bg]) is the
total number of occurrences of variables in the formula.

(d) Show that any expression of ThY as in (c) must contain w > nlog, n occur-
rences of variables.

Hint: For a variable z;, let m; be the number of ANDs F}, containing this variable. Show
that w = E?:l m;. To lower bound this sum, throw a fair 0-1 coin for each of the ANDs
F}, and remove all occurrences of variables x; with ¢ € Aj from the entire formula if
the outcome is 0; if the outcome is 1, then remove all occurrences of variables x; with
1 € Bp.Let X = X3 + -+ + X,,, where X; is the indicator variable for the event “the
variable x; survives”. Since at most one variable can survive at the end (why?), we have
that E [X] < 1. On the other hand, each variable z; will survive with probability 27"
(why?). Now use the linearity of expectation together with the arithmetic-geometric mean
inequality (ijl a;)/n > (]__[:;:1 ai)*/™ with a; = 27" to obtain the desired lower
bound on Z?:l mi.

1.8 A constant factor away from P # NP? 51

Appendix: known bounds for symmetric functions

Here we summarize some (not all!') known results concerning bounds on the com-
plexity of symmetric functions in various circuit models. Recall that a boolean func-
tion f(x1,...,x,) is symmetric if its value only depends on the sum 21 + - - - + x,.
Examples of symmetric functions are the parity function

@n(x) =1ifand onlyif &1 + - - - + x,, is odd ,
all threshold functions
Thy(x) =1lifand only if 21 +--- + 2z, > k,
as well as the majority function
Maj, (z) = 1ifand only if 21 + - - - + 2, > [n/2].

Let C(f) and L(f) denote, respectively, the minimum number of gates in a
circuit and in a formula over {A,V, =} computing f. Let also S(f), BP(f) and
NBP(f) denote, respectively, the minimum number of contacts (labeled edges) in a
switching network, in a deterministic and in a nondeterministic branching program
computing f. Subscript “+” denotes the monotone versions of these measures, and
subscript “+” means that all boolean functions of two variables can be used as gates.

Some relations between these basic measures are summarized in the following
chain of inequalities (we will use f < g to denote f = O(g)):

C()Y? ZNBP(f) 2 S(f) < BP(f) < L(f) < NBP(f)(sNBF),
Proofs are easy and can be found, for example, in Pudlak (1987).

Table 1.1 Upper bounds for any symmetric boolean function f, of n variables:

BP(f,) < cn?/logyn where ¢ = 2 + 0(1); Lupanov (1965b)

NBP(f,) = n®/?2 Lupanov (1965b)

L(fn) < n*93 Khrapchenko (1972)

Ci(fn) <4.5n+ o(n) Demenkov et al. (2010); this improves a simple upper

bound C.(f,) < 5n + o(n) which follows from a
construction used by Lupanov (1965); see Exercise ??

52 1 Our Adversary: The Circuit

Table 1.2 Bounds for the parity function:

S(®n) =4n —4 Cardot (1952); apparently, this was the first nontrivial
lower bound at all!

C(®,) =4n—4 Redkin (1973)

L(®,) < %nQ Yablonskii (1954); see Theorem ?? below

L(®,) > n3/2 Subbotovskaya (1961); see Section ?? below

L(®,) > n? Khrapchenko (1971); n is power of 2; see Section ??
below

L(®,) > n2+c Rychkov (1994); ¢ = 3 for odd n > 5, and ¢ = 2 for

even n > 6 which are not powers of 2

Table 1.3 Bounds for threshold functions in non-monotone models:

L(Th%) > inlogyn Krichevskii (1964)

L(Th3) > n|logy n) Lozhkin (2005)

L, (Thy) <nlog,n if n is a power of 2; see Exercise ??
L(Th}) > k(n—k+1) Khrapchenko (1971); see Section ??

L.(Maj,,) = 2(nlnn) Fisher, Mayer and Paterson (1982)
L.(Thy) = 2(nlnlnn) Pudlak (1984)

L.(Th}) < n313 Paterson, Pippenger, and Zwick (1992)

L(Maj,) < n*7 Paterson and Zwick (1993b)

BP(Thj) < n3/2 Lupanov (1965b)

S(Th) =< %n In*n where p = (In1nn)?; Krasulina (1986, 1987)
BP(Thy) = %n In®n where p = (Inlnn)(Inlnlnn); Sinha and Thatha-

char (1997)

¢ Krichevskii (1964) actually proved an intriguing structural result: among minimal formulas
computing Th} there is a monotone formula of the form F(z) = Vi_; (Vies,z;) N (VieT, i),
where Sy, NTx, = @ forallk = 1,...,t; see also Section ??.

1.8 A constant factor away from P # NP? 53

BP(Maj,) = 2(np)
BP(Maj,) = 2(np)
S(Maj,,) = w(n

NBP(Maj,,) = w(n)

where p = Inlnn/Inln ln n; Pudlak (1984)
where p = Inn/ Inlnn; Babai et al. (1990)
Grinchuk (1987,1989)

Razborov (1990b)

Table 1.4 Bounds for threshold functions in monotone models:

NBP_(Th}) = k(n—k+1) Markov (1962); see Theorem ?? above

NBP, (Thy) =< pk(n — k)

NBP. (Th}) = £2(pkn)

S (Thy) = np+ 2(n —2P)

S(ThY) < 3n — 4

where p = In(n — k), if no unlabeled edges (recti-
fiers) are allowed; Halld6rsson, Radkhakrishnan and
Subrahmanyam (1993)

where p = In 7, if no unlabeled edges (rectifiers) are
allowed; Radhakrishnan (1997)

where p := |log, n]; Krichevskii (1965), Hansel
(1966)

easy exercise, see Fig. ??

Dubiner and Zwick (1992)

Valiant (1984). As observed by Lozhkin and Semenov

(1988), the proof actually gives O(k*3nlog? n) for
every k.

Friedman (1986)
Boppana (1986)
where p = O(n'~/*); Dunne (1984)

Kochol (1989); the proof is a simple application of
a rather non-trivial result of Ajtai, Komlés and Sze-
merédi (1983) stating that all threshold functions
Thy, k =1,...,n, can be simultaneously computed
by a monotone circuit of size O(nlogn) and depth

O(logn)

2. Analysis of Boolean Functions

We finish this introductory part with some algebraic properties of boolean functions:
their expression and approximation by polynomials. We will use these properties
later to prove lower bounds for several circuit models. It is, however, convenient to
have all these properties collected at one place. The impatient reader who wishes to
begin proving lower bounds immediately may safely skip this section, and return
later when the properties in question are used.

2.1 Boolean functions as polynomials

Fixafield F,andlet z1, ..., x, be variables taking values in this field. A (multilinear)
monomial is a product Xg = [],. g 2; of variables, where S C [n] = {1,...,n};
we assume that Xy = 1. The degree of this monomial is the cardinality of S. A
multilinear polynomial of n variables is a function p : F* — F that can be written
asp(x) = > gc(y) csXs for some coefficients cg € F. The degree of p is the degree
of its largest monomial: deg(p) = max{|S| : cs # 0}. Note that if we restrict
attention to the boolean domain {0, 1}", then ¥ = z; for all k > 1, so considering
only multilinear monomials is no restriction when dealing with boolean functions.

It is not difficult to see that each boolean function f of n variables can be written
as a polynomial over I of degree at most n. For this, associate with each vector
a = (ai,...,a,) in {0,1}" the following polynomial over IF of degree n:

pa(x):.H x; H (1—:,Cj).

Then p,(a) = 1 while p,(z) = 0for all z € {0,1}" \ {a}. Thus, we can write each
boolean function f of n variables as

>, J@)-p. Z II = IT -2

ac{0,1}n acf~1(1)d:a;=1 j:a;=0

54

2.2 Real degree of boolean functions 55

By multiplying out via the distributive law, we obtain that

- > oll-

SCln] i€S

for some coefficients cg € F. Moreover, this representation is unique (see Exer-
cise ??). For example, take n = 3 and f(x,y, 2) = 2 V y. Then

f =gz + oyl - 2) + 21 -)z + (1 - @)y
+z1—y) 1 —2)+ (1 —2)y(1—2)
=r+y—xy.

The coefficients cg can be computed by the Mobius inversion formula:

cs =y (=D)ISETp(T), (2.1)

TCS

where f(T) is the value of f on the input where exactly the variables in T are 1.
This can be shown using the fact that for any two sets ' C R,

ST~y = 1 T =R, (2.2)
wEtn 0 ifT#R

whose proof we leave as an exercise. Using (??), we can prove the correctness of
(??) as follows:

FR) =Y es[[zi=D s

SCln] €S SCR

=2 > ()T by Eq. 22
SCRTCS

= Z f(T) Z (—1)ISI=IT] double counting
TCR S:TCSCR

= f(R) by Eq. ??.

2.2 Real degree of boolean functions

We now consider representations of boolean functions by polynomials over the
field of real numbers. We already know that every function f : {0,1}"™ — R has
the unique representation as a multilinear polynomial over R.

The real degree, deg(f), of a boolean function f is the degree of the unique
multilinear real polynomial p that represents f in the sense that p(a) = f(a) for
all a € {0,1}". The approximate degree, adeg(f), of a boolean function f is the

56 2 Analysis of Boolean Functions

minimum degree of a multilinear real polynomial p that approximates f in the
sense that |[p(a) — f(a)] < 1/3 foralla € {0,1}".

The AND of n variables x1, . .., z, is represented by the polynomial consisting
of just one monomial [, z;, and the OR is represented by the polynomial 1 —
[T, (1 — ;). Hence, both of these functions have degree n.

There is a handy criterion for determining if we have deg(f) = n. Let even(f)
(resp., odd(f)) denote the number of vectors in f~!(1) with an even (resp., odd)
number of ones. The following result is due to Yaoyun Shi and Andrew Yao (unpub-
lished); see the survey of Buhrman and de Wolf (2002).

2.1 Lemma deg(f) = n if and only ifeven(f) # odd(f).

Proof. Applying the Mébius inversion formula (??) with S = [n], we get

Cln) = Z (-1 1Tl F(T)

TC[n]
MDD i
zef~1(1)

= (=1)"(even(f) — odd(f)).

Since deg(f) = n iff the monomial z; - - - x,, has nonzero coefficient, the lemma
follows. 0

When restricted to the domain {0, 1}", multilinear polynomials may be replaced
by univariate polynomials, that is, polynomials of just one variable.

Let S,, denote the set of all n! permutations 7 : [n] — [n]. Given a vector
r=(z1,...,70), let m(x) = (Tr(1), - Tr(n))- I p : R" — Ris a multivariate
polynomial, then the symmetrization of p is defined as follows:

¥ es, plr(a))

sym _

Note that p*¥™ is a polynomial of degree at most the degree of p. Symmetrization
can actually lower the degree: if p = 1 — z9, then p®¥™ = 0.

An important point is that if we are only interested in inputs 2 € {0, 1}", then
p°¥™ turns out to depend only upon x; + - - - + x,,. We can thus represent it as a
univariate polynomial of 1 + - - - 4+ x,.

2.2 Theorem (Minsky-Papert 1988) Ifp : R™ — R is a multilinear polynomial, then
there exists a univariate polynomial p : R — R of degree at most the degree of p such
that

psym(xl, cee 7xn) - ﬁ(fl +eeet JS‘n) fOT’ allx € {Oa 1}n

Proof. Let d be the degree of p*¥"™. Let P}, denote the sum of all (Z) products
[1;cg i of |S| = k different variables. Since the polynomial p*¥™ is symmetric, it
can be shown by induction that it can be written as

2.2 Real degree of boolean functions 57
" (x) =co+ a1 Pr(x) + caPa(x) + -+ - + cqPy(x)
with ¢; € R. Note that on « € {0,1}" with z := x1 + - - - + x,, ones, P}, assumes

value
z 2z=1)--(z—k+1)
k! ’

which is a polynomial of degree k of z. Therefore the univariate polynomial p(z)

defined by
Plz) ‘= Co C1 1 Co 9 Cq d

has the desired property. O

The next result from Approximation Theory gives a lower bound on the degree
of univariate polynomials. The result was shown by Ehlich and Zeller (1964), and
by Rivlin and Cheney (1966).

2.3 Theorem Letp : R — R be a polynomial such that by < p(k) < by for every
integer 0 < k < n, and its derivative has |p’ (§)| > c for some real 0 < & < n. Then

cn
d >y
eg(p) - c+by — by

Using these two tools, Nisan and Szegedy (1994) gave a lower bound on the
degree of boolean functions. Let e; € {0, 1}" denote the boolean vector with exactly
one 1 in the i-th position. Say that f is fully sensitive at 0 if f(0) = 0 and f(e;) =1
foralli=1,...,n.

2.4 Lemma (Nisan-Szegedy 1994) Let f be a boolean function of n variables. If f is
fully sensitive at 0, then deg(f) > \/n/2 and adeg(f) > 1/n/6.

Proof. Let p be the polynomial representing f, and let p be an univariate polynomial
guaranteed by Theorem ??. Since p represents f, for every z € {0,1}" we have
that

P) = 3 b)) = o S ().

TESy TESR

Thus, for any boolean z, the value p*¥™(x) lies between 0 and 1, implying that
0 < p(k) < 1 for every integer 0 < k < n, and p(0) = 0. Moreover, since
m(€;) = ex(s), our assumption implies that p*¥™(e;) = 1 for all unit vectors e;,
and hence, p(1) = 1. Finally, since 5(0) = 0 and p(1) = 1, there must exist a real
number £ € [0, 1] at which the derivative §’(§) > 1. Thus, applying Theorem ?? with
¢ = by = 1 and b; = 0 we obtain that deg(p) > deg(p*¥™) > deg(p) > \/n/2.
The proof of adeg(f) > 1/n/6 is the same. The only difference is that, in this
case we have that —1/3 < (k) < 4/3 instead of 0 < p(k) < 1 O

Nisan and Szegedy (1994) also give an example of a fully sensitive function with
degree significantly smaller than n.

58 2 Analysis of Boolean Functions

2.5 Lemma There exists an (explicitly given) boolean function f of n variables which
is fully sensitive at 0 and deg(f) = n® for o = log; 2 = 0.631 Furthermore, the
polynomial of f has at most 2°(™") monomials.

Proof. Consider the boolean function E3(x,y,z) = 1iff « + y + z € {1, 2}. This
function is represented by the following degree-2 multilinear polynomial:

Es(x,y,z) =x+y+z—ay—xz—yz.

Define a boolean function f,,, of n = 3" variables obtained by building a complete
ternary

is the F5 function of its three children. It is easy to see that flipping any variable
in the input 0 = (0, . .., 0) flips the function value from 0 to 1, hence, f,, is fully
sensitive at 0. On the other hand, for m > 1, the representing polynomial for f,, is
obtained by substituting independent copies of the f;,_1-polynomial in the above
polynomial for f; = E3. This shows that deg(f,,,) < 2™ = nl°8:s2 = n0:631 and
the total number of monomials does not exceed 6 = 2°(*"). a

2.3 The Fourier transform

Consider the 2™-dimensional vector space of all functions f : {0,1}" — R. We
define an inner product in this space by

1
(f.9) =57 D [@g(a) =Ex[f(2) g()] ,
ze{0,1}7
where the latter expectation is taken uniformly over all € {0, 1}". This defines

the Ly-norm
I£1l:= V/f £ = VE[F].
For each S C [n] = {1,...,n}, define a function xg : {0,1}" — {—1,+1} by
xs(@) 1= (—1)2ies ™ = [0 =T - 2z:);
i€s ics

for S = () we set xp = 1. Note that each x g is a multilinear polynomial of degree
|S], and is the +1 version of the parity function), ¢ z::

-1 if . T; = 1,
vs() = {4 Hies
+1 if@,cqzi =0.

It is easy to see that
1 ifS=T,

(X xT) = {0 ifS 4T,

2.3 The Fourier transform 59

Indeed,

<X57XT>:E1[H$2"H$;} ZEI[H xi:|7

i€s JET iesSeT

because 72 = 1;here S®T = (S\T)U (T \ S) is the symmetric difference of sets
S and T. Thus, if S and T are identical, then (xs, x7) = E; [xo] = Ez [1] = L. If,
however, S # T then S & T # (), and we obtain:

(xs,xT) = H E[z;] = H [%.(+1)+%.(_1)}:0_

i€SOT i€SOT

Hence the set of all g is an orthonormal basis (called the Fourier basis) for the space
of all real-valued functions on {0, 1}". In particular, every function f : {0,1}" —
R can be written as a linear combination of these basis functions: there exist
coefficients cg € R such that for every z € {0,1}",

fl@)="Y" csxs(x). (2.3)

SCln]

Of course, there are many different bases for the space of all functions f : {0,1}" —
R. For example, the 2" boolean functions e, : {0,1}" — {0, 1} with e, (z) = 1 iff
2 = a is also a basis. What makes the Fourier basis particularly useful is that the
basis functions themselves have a simple computational interpretation, namely as
parity functions: xs(z) = —1 if the number of S-variables having value 1 in the
input z is odd, and xs(z) = +1 if that number is even.

For any f : {0,1}" — R, viewed as a function f : 2[7] 3 R, we can define
another function f: 2lr] — R by

F(8) = (f.xs) = Ea [f(2) - x5(2)] -
Due to the orthonormality of our basis {xs | S C [n]}, we have that f(S) is exactly
the coefficient cg in the representation (??):

F(S)=(f.xs)= Y erlxr.xs) = cs(xs, xs) = cs.

TC[n]

Thus, for every function f : {0,1}"™ — R, we have that

f@)=>" F(S)xs(x).
SCn]

The linear map f — fis called the Fourier transform. The function f: 27 5 Ris

o~

the Fourier transform of f, and f(.5) is the Fourier coefficient of f at S. The order

A~

of a Fourier coefficient f(.59) is the cardinality |S| of the subset S. The degree of a
boolean function f is the maximum order of the nonzero Fourier coefficient, that

~

is, deg(f) = max{|S]| : f(S) # 0}. Note that this definition of degree coincides

60 2 Analysis of Boolean Functions

with our earlier definition in terms of the polynomial representation of boolean
functions over the reals.

Because the g form an orthonormal basis, we immediately get the following
equality known as Plancharel’s Identity:

(f.9) =D FS)GT) {xs, xr) = > F(9)3(S) = (£,3) .
S, T S

Taking f = ¢, we obtain an important identity, known as Parseval’s Identity:

1A =" F(9)? = (£,) = |fI? = B [f(2)?] . (2.4)
S

In particular, for f : {0,1}" — {—1, 1}, we have that

> 8?2 =1.

SCln]

The interpretation of Fourier coefficients of boolean functions f : {0,1}" — {0,1}
is that they measure the correlation under the uniform distribution between the
function and parities of certain subsets of variables.

o~

« The coefficient f(0) is simply the probability that f takes the value 1.

« If fg(x) = >,c g ©i mod 2 is a parity function with S # (), then Fs(0) =1/2
because xg(z) = 1 for all z, and fs(x) = 1 for the half of all 2" vectors z.
Moreover, };(S) = —1/2because xs(z) = —1 aslong as fs(x) # 0. All other
coefficients are 0. N

« The first order coefficient f({i}) measures the correlation of the function f
with its ¢-th variable. Let A denote the event f(z) = 1, and B the event z; = 1.
Since x i (x) = —1ifx; = 1, and x;y(x) = +1if 2; = 0, we can use the
equality Prob[A N B] + Prob[A N B] = Prob[B] = 1/2, to obtain that

~

f({i}) = Prob[A N B] — Prob[AN B]
= % — (Prob[A N B] + Prob[AN B))

- % — Prob[f(z) = ;] .

o~ -~

There is no correlation if f({i}) = 0 and maximum correlation if | f({i})| = 3.
The sign of the coefficient indicates if the correlation is actually with the variable

o~

z; (f({i}) = —3) or with its negation —z; (f({z}) =1).

« The coefficients f(.S) of higher orders (|S| > 2) measure the correlation of the
function f with the parity function P, g 2::

7(8) = 5 — Probl(z) = @il

€S

2.4 Boolean 0/1 versus Fourier £1 representation 61

~ ~

Again, there is no correlation if f(S) = 0 and maximum correlation if | f(S)| =
%. The sign of the coefficient indicates if the correlation is actually with the

parity (f(S) = —1) or with its negation (f(S) =1).
The motivation to consider Fourier transforms in the context of proving lower
bounds on the circuit size of f is that leading Fourier coefficients (those with | S|
large enough) contain useful information about the complexity of the function f
itself (cf. Sections ?? and ??).

2.4 Boolean 0/1 versus Fourier £1 representation

It is often useful to represent the values false = 0 and true = 1 by false = —1 and
true = +1. This representation of boolean values is called Fourier representation.
Note that -z = 1 — x in the standard representation, whereas - = —x in the
Fourier representation. To convert from the standard 0/1 representation to the
Fourier +1 representation map « — 1 — 2z = (—1)*. To convert from the Fourier
+1 representation to the standard 0/1 representation map = — (1 — x)/2; this is
possible only in rings where 2 has an inverse, e.g., the reals, the rationals, and Z,,, for
odd m. Thus, every boolean function f : {0,1}" — {0, 1} can be transformed into
an equivalent function f : {+1, —1}" — {41, —1} using the following conversion:

f(l‘l,...,l‘n)zl—2'f<

1—331 1—.737,,)
5 5 .

Hence if the value of z; in f is set to +1, it is set to 0 in f and if z;; is set to —1 it is
setto lin f.

The advantage of the 11 representation is that in this case the function xg is
simply the product of the S-variables, and the Fourier representation is simply
an n-variate multilinear polynomial over the reals, with]?(S) as the coefficient of
the monomial X, = Hie s ;. Thus, in the &1 representation, for every function

f:{0,1}" — R, we have that

f@) = 3 FS)Xs
SCln]

with 1
F&) = Xs) =0 D f@)Xs(@).
ze{-1,+1}"
Similarly, depending on what is more convenient, we can treat the value of a

boolean function as 0/1-valued or as +-1-valued. An advantage of the latter is that

s f(S)2 = E [f?] = 1 (by Parseval), which allows us to treat the squared Fourier
coefficients as probabilities.

62 2 Analysis of Boolean Functions

2.5 Approximating the values 0 and 1

The AND of n variables 1, . .., %, is represented by the polynomial consisting
of just one monomial []"_, z;, and the OR is represented by the polynomial 1 —
[T7_,(1 — x;). These polynomials correctly compute AND and OR on all input
vectors x, but the degree of these polynomials is n. Fortunately, the degree can be
substantially reduced if we settle for an “imperfect” approximation.

For a boolean function f of n variables, let Deg_(f) denote the minimum degree
of a multivariate polynomial p : R” — R such that |f(z) — p(z)| < e for all
z € {0,1}™.

Although the OR function or,,(z) = z1 V 22 V -+ V x,, requires degree-n
polynomial to represent it exactly, it can be approximated by a polynomial of much
smaller degree.

2.6 Lemma (Nisan—Szegedy 1994) For every constant k > 2,

Degy /4 (0r,) = O(v/nlnk).

Proof. Nisan and Szegedy (1994) proved the lemma for £ = 3. The extension to
arbitrary k is due to Hayes and Kutin. We construct a univariate real polynomial
q(z) of degree at most r := ¢y/n In(2k) (for a constant ¢) such that g(n) = 1 and
lg(2)] < 1/kfor 0 < z < n — 1. Then defining

p(x1,...,xn) =1—qn—21— ... —xp)

proves the theorem. The polynomial ¢ is essentially a normalized Chebyshev poly-
nomial. The degree-r Chebyshev polynomial 7. is given by

1 1 .
T.(z) = 5(:1: +Va22-1)"+ 5(:1: —vaz2-1".
Define
T,(z/(n-1)
T (n/(n 1))
Clearly, g(n) = 1. We want to select such that
(") =k

n—1

q(z) ==

Then, since |T;(z)| < 1for —1 < 2 < 1, we will have |¢(z)| < 1/k for every
z€{0,...,n—1}.Forx =n/(n— 1) we have

and we get

2.6 Approximation by low-degree polynomials 63

n 1 2\
> - .
Tr(n—l)_2<1+ n—l)

The right-hand side quantity is greater than or equal to k if

. In(2k)
T In(1++/2/(n-1))

This last inequality is satisfied if » > ¢y/n In(2k) for a suitable constant c. O

2.6 Approximation by low-degree polynomials

In the setting above, we were trying to approximate the values f(z) € {0,1} of
a given boolean function by the values p(z) of a polynomial on all input vectors
x € {0,1}". In some applications, however, it is desirable to have a low-degree
polynomial p(z) computing the function f correctly on most input vectors. For this
purpose, define the distance between f and p as the number

dist(p, f) = [{x € {0,1}" : p(x) # f(z)}]

of boolean inputs x on which the polynomial p outputs a wrong value. Let or,, (z) =
1V V---Vx,.

2.7 Lemma (Razborov 1987) For every integer r > 1, and every prime power q > 2,
there exists a multivariate polynomial p(x) of n variables and of degree at most
r(q — 1) over GF(q) such that dist(p, or,,) < 2"~ ".

Proof. Let ¢ = (cy,...,cpn) be a random vector in GF(¢)™ with uniform distri-
bution; hence, ¢ takes each value in GF(q)™ with the same probability ¢—™. Let
S C [n] and assume that S # (). We claim that

Prob{Zci :0] <

i€S

1
-. (2.5)
q

To show this, pick a position ¥ € S. Then), qc; = 0 implies that the
value ¢y is uniquely determined by the values of the remaining coordinates:
Ck = = Y ies\(k} Ci- Thus, Prob[} -, g ¢; = 0] < q" /g™ = 1/q, as claimed.

Now consider a random polynomial
g(x) = (121 + cawg + - -+ cpry)?t

of degree ¢ — 1 over GF(q). The only reason to rise the sum to the power of ¢ — 1 is
that we want this polynomial to only take values 0 and 1. This is guaranteed by Fer-
mat’s Little Theorem: a?~! = 1foralla € GF(g), a # 0.Since g(0) = 0 = or,,(0),
(??) implies that Prob[g(z) # or,(z)] < 1/q for every x € {0,1}". To decrease

64 2 Analysis of Boolean Functions

this error probability to ¢~", we just take r independent copies g1 (), . . ., g.(x) of
g(z) and consider the polynomial

T

pla) =1-JJ(1 - gx)).

i=1

Note that p(z) = 0 if and only if g;(z) = O forall j = 1,...,r. Since each g;(z)
has degree at most ¢ — 1, the degree of p(z) is at most (¢ — 1). For = 0 we have
that p(z) =1 — 1 = 0 = or, (). If z # 0, then

Prob[p(x) # or,(x)] = Prob[p(z) = 0] = H Prob[g;(x) =0] <¢™".
i=1

Thus, for every fixed vector « € {0, 1}" we have that Prob[p(z) # or,(z)] < ¢,
and the expected number of boolean inputs = on which p(z) # OR, () is at most
2" /q" < 2™~". Hence, there must be a choice of the coefficients ¢; such that the
resulting (non-random) polynomial p(x) differs from or,,(z) on at most a 27"
fraction of all inputs « € {0, 1}", as desired. O

Over the field R of real numbers we have the following result.

2.8 Lemma (Aspnes et al. 1994) For every integer r > 1 there exists a real multivari-
ate polynomial p(x) of n variables and of degree O(r logn) such that dist(p, or,,) <
2"=". In fact, Prob[p(z) # ory(z)] < 27" for any probability distribution on
inputs x.

Proof. Assume that n = 2™ is a power of two, and consider m + 1 random subsets
S0y51, .+, 8m of [n] = {1,...,n} where each j € [n] is included in Sj with
probability 27%; in particular, Sy = [n]. For each k = 0,1,...,m let gx(2) =
Yic s, Ti> and consider the random polynomial

m

g(z) =1~ J]0 —au(x))

k=0

of degree m + 1 = 1 + logn. Fix a vector € {0,1}". If z = 0, then clearly
q(x) = 0.If z # 0 then Prob[g(x) = 1] > 1/6. To see this, letw =21 + -+ - + z,
be the number of ones in z; hence, 1 < w < n. Take a k for which 28— 1 < w < 2.
Then

Prob|gr(z) = 1] = Prob{ Z x; = 1]

1€Sk
= Prob[z; = 1 for exactly one i € Si]
= w - 2—k(1 _ 2—k)w—1

1 k
> (1—-27F2 -1
> La-o

2.7 Sign-approximation 65

> >

=

1
2e
Hence, for each vector x, the random polynomial ¢(z) agrees with or,, (z) with
probability at least 1/6. To increase this probability to 1 — 27", we just apply the

same trick: take 4r independent copies p1, ..., p4, of the polynomial ¢(z), and
consider the polynomial

4r

p(z) :=1- (1 - pi(a))

=1

of degree 47(m + 1) < 5rlogn. If z = 0, then we again have that p(z) = 0 with
probability 1. If z # 0 then we have

Prob[p(z) = 1] > Prob[p;(x) = 1 for some]
=1 — Prob[p;(z) # 1 for all 4]

—1— Problg(z) # 1] >1— (2)4 >1-97",

We have therefore constructed a random polynomial p(z) of degree O(rlogn)
such that, for each vector x, p(x) # oRr,(z) with probability at most 27". By
averaging, there must be a realization of p(x) which differs from or, (z) on at
most a 27" fraction of all inputs z € {0,1}", as desired. It also follows that
Prob[p(x) # or,(z)] < 27" for any probability distribution on inputs z. O

2.7 Sign-approximation

We now consider boolean functions as functions from {—1,+1}" to {—1,+1},
where a 0/1 bit b is represented as a &1 bit (—1)°. In this representation, the
parity function Parity,, (z) on the set of variables = (21, ..., ;) is simply the
monomial Parity,, (z) = [\, ;.

As before, the set of all real-valued functions on {—1, +1}" can be thought as a
2"-dimensional vector space where (f+g¢)(z) = f(z)+g(x) and (af)(x) = af(x)
for any functions f and g and scalar a. We already know that the set of all monomials
Xs(z) = [;cg vi forms an orthonormal basis of this space. The set of all multilinear
polynomials of degree < k is a subspace of dimension Zf:o (TZ)

We are interested in the degree of polynomials p(x) that signum-represents a
given boolean function f in the sense that p(z) - f(z) > Oforallz € {—1,+1}".
The minimum degree of such a polynomial p is called the strong degree of f, and is
denoted by d(f).

The weak degree, d,,(f), is the minimum degree of a polynomial p such that
p # 0 and p(x) - f(z) 2 0 for all z € {—1,+1}". That is, in this case we only
require that sgn(p(z)) = sgn(f(x)) for inputs 2 where p(x) # 0. Recall that the

66 2 Analysis of Boolean Functions

function sgn(z), defined on the real numbers and called the signum function, is 1
for positive numbers z > 0, is —1 for negative numbers z < 0, and is 0 for z = 0.

The notion of weak degree is useful because for functions f whose weak degree
is large it is possible to give a lower bound on the distance to any low-degree
polynomial approximation. Let Error(f, g) denote the set of all € {—1, +1}" for

which sgn(f(z)) # sgn(g(x)).

2.9 Lemma Let p be a degree-k polynomial and f any boolean function of n variables.

Ifdy(f) > k then

A

|Error(p, f)| > Z (:L) where A:=|(d, —k—1)/2].

i=0
Proof. We need the following auxiliary fact.
2.10 Claim For every set S C {—1,+1}" of size |S5] < Zf:o () there exists a
nonzero polynomial g(x) of degree < 2k that is 0 for all z € .S, and is non-negative
elsewhere.

Proof. Any degree k polynomial has Zf:o (’Z) coefficients (some of which may

be zero), and its value on any particular input is a linear combination of those

coefficients. Thus, if r stands for a degree k polynomial, the constraints r(z) = 0

for all z € S form a homogeneous system of |S| linear equations in Zf:o @)
2

variables, and have a nontrivial solution r since |S| < Zf:o ("). Theng =r%isa

desired nonzero polynomial. O

Now let S := Error(p, f), and suppose that | S| < ZZ‘A:O (). Then, by Claim ??,
there exists a nonzero polynomial ¢ of degree < d,,(f) — k — 1 which is 0 on
S and non-negative elsewhere. Consider the polynomial pq. Since sgn(pg(x)) =
sgn(p(z)) = sgn(f(z)) for all x ¢ S, and since pg(z) = 0 for all z € S, the
polynomial pq weakly represents f. But this polynomial has degree at most d,, () —
1, contradicting the definition of d,, (f). O

2.11 Lemma d,,(Parity,,) = n.

Proof. Suppose p weakly represents f(z) := Parity,, () = [[;—, z;. Consider the
scalar product (p, f) = 27" > p(x)f(x). We have that (p, f) > 0, since each term
in) p(z)f(x) is non-negative and at least one term is nonzero. But the parity
function f is orthogonal to all other monomials. Thus, if p had degree < n — 1, we
would have that (p, f) = 0. O

2.12 Corollary Let p be a polynomial of n variables and of degree k < §\/n + 1 for
some constant 0 < § < 1/2. Then

|Error(p, Parity,,)| > (1/2 — §)2".

2.8 Sensitivity and influences 67

Proof. Since d,,(Parity,,) = n and (,f}z) ~ 2" /\/7n/2, Lemma ?? implies that

n/2—8yn n n/2 n n/2 n
|Error(f, Parity,,)| > Z (z) - Z (z) - Z (Z>
i=0 =0 i=n/2—06y/n+1

n/

Using a well known fact from linear algebra (Stiemke’s Transposition Theorem),
Aspnes et al. (1994) showed that the parity function is central to the connection
between strong and weak degrees.

>on—l &/ﬁ(2> > (1/2 - 46)2".0

2.13 Lemma (Aspnes et al. 1994) For any boolean function f of n variables, ds(f) +
dy(f - Parity,,) = n.

2.8 Sensitivity and influences

A boolean function f of n variables depends on its i-th variable if there exists at least
one vector x € {0,1}" such that f(x @ ¢e;) # f(x), where z @ e; is x with the i-th
bit flipped. The more such “witnessing” vectors = we have, the more “influential”
this variable is. The influence, Inf;(f), of the i-th variable of f is defined as the
fraction of vectors witnessing its importance. Thus, if we introduce the indicator
variable

S(foa) = {1 if f(z @ e;) # f()

0 otherwise,

then influence of the i-th variable of f is

Wi(f) = on 3 silfe) = Problf(e ®) # f(x)] = B [si(/,)]

ze{0,1}n

where the probability is over uniform = € {0, 1}"; hence, Prob[z] = 27". Thus,
large Inf;(f) means that the value of f depends on the i-th variable on many
input vectors. The notion of influence of a variable on a boolean function was
introduced by Ben-Or and Linial (1990). It has since found many applications in
discrete mathematics, theoretical computer science and social choice theory; we
refer the reader to the survey by Kalai and Safra (2006).

For example, if f(z) = 21 ® (x2 V@3 V -+ V xy,), then Inf; (f) = 1 because,
for every vector x € {0,1}", flipping its first bit flips the value of f. But the
influence of its second variable (as well as of each remaining variable) is very small:
Infs(f) < 4/2™ because f(x @ e3) # f(z) can only hold if z3 = ... = x,, = 0.

In the definition of the influence we fix a variable and look for how many inputs
x the value f(x) depends on this variable. Similarly, we can fix an input vector

68 2 Analysis of Boolean Functions

x € {0,1}™ and look at how many variables the value f(x) depends on. This leads
to the concept of “sensitivity”.
The sensitivity of f on input x is defined as the number

Zsz =i: flz®e) # f(2)}

of Hamming distance-1 neighbors y of = such that f(y) # f(z). For example, if
f(z) =21 Va2 V- -V a,, thens(f,0) = nbuts(f,z) = 0 for every vector =
with at least two 1s. The sensitivity (or maximum sensitivity) of f is defined as

S(f) = maxs(f).

In the literature, s(f) is also called the critical complexity of f. The average sensitivity,
as(f), of f is the expected sensitivity of f on a random assignment:

n

as(f) :=2""Y s(f.2) =E; [s(f,2)] = > E.[si(f,) Zlnf . (2.6)

T =1

For example, if f(z) = Parity(z) is the parity of n variables, then s(f, z) = n for
every assignment z, implying that as(f) = n. But for some boolean functions the
average sensitivity can be tiny, for example, as(f) = n/2" ! if f is an OR or an
AND of n variables.

Functions with large average sensitivity require large unbounded-fanin cir-
cuits of constant depth (see Boppana’s theorem in Section ??). By the theorem of
Khrapchenko (Theorem ?? in Section ??), the square as(f)? of the average sensi-
tivity is a lower bound on the minimum number of leaves in a DeMorgan formula
computing f. High average sensitivity also implies that the function cannot be
approximated by low-degree polynomials (see Lemma ?? below).

All these concepts (influence, sensitivity and average sensitivity) can be defined
in graph-theoretic terms as follows. Every boolean function f of n variables defines a
bipartite graph Gy with parts f~1(0) and f~!(1), where (z,y) € f~1(0) x f~(1)
is an edge of G iff y = = @ e; for some i € [n]. An edge (z,y) is an edge in the
i-th direction if y = x @ e;. It is easy to see that:

« s(f,x) = degree of vertex = in G.

+ s(f) = maximum degree of a vertex in G .

« as(f) = average degree of G .

« Inf;(f) = number of edges of G ¢ in the i-th direction divided by 2".

Hence, if |G| denotes the number of edges in G, then |G| < s(f)2" 1,
because one of the color classes must have at most 27! vertices. On the other
hand, we have the following somewhat counterintuitive lower bound: the smaller
the degree s(f) of the graph G is, the more edges we can force into it.

A boolean function f is nondegenerate if it depends on all its variables, that is, if
the graph G'# has at least one edge in each direction.

2.8 Sensitivity and influences 69

Bilder/simon-eps-converted-to.pdf

Fig. 2.1 The setY of |Y| > n— s neighbors y of 3 in X such that f(y) = 0.Since f(B®e;) = 1,
for at most s — 1 of them we can have f(y @ e;) = 0.

2.14 Theorem (Simon 1983) For every nondegenerate boolean function of n variables,
we have that |G y| > n2n—25())+1,

Proof. The graph G is a subgraph of the n-dimensional binary hypercube Q.
Recall that Q,, is the graph whose vertices are vectors in {0, 1}", and two vectors
are adjacent iff they differ in exactly one position. The ¢-th neighbor of a vertex
x € {0,1}" in @Q,, is the vertex y = = @ e;. Thus, each vertex has exactly n
neighbors in @),,. A neighbor y of x is a proper neighbor if y is a neighbor of z in
the graph Gy C Qy, that is, if f(y) # f(z). Call an edge {x,y} of Q,, colorful if x
and y are proper neighbors, that is, if f(x) # f(y). Our goal is to show that there
must be at least n2"~2(/)+1 such edges.

For this, fix an arbitrary position ¢ € [n], and split the set of vertices of the
hypercube Q,, into two subsets Xo = {z | ; = 0} and X; = {2z | x; = 1}. We
are going to show that at least 2"~ 25%! edges lying between these two set must be
colorful, where s := s(f). Consider the set

Vo={y€Xo|fly)=0and f(yDe;) =1} C Xop.

Note that Vj is non-empty, because f depends on all variables, and hence, also on
the i-th variable. The key of the whole argument is the following fact.

2.15 Claim Every vertex in Vj has at least n — 25 4+ 1 neighbors in Vj.

Proof. Fix an arbitrary 8 € Vp, and let Y be the set of all neighbors y of 5 such
that y € Xy and f(y) = 0. Since 3 belongs to Vi C X, its i-th neighbor 5 @ e;
belongs to X; and is a proper neighbor of 3, thatis, f(8 @ e;) =1 # 0 = f(B).
All remaining n — 1 neighbors § @ e; of 3 lie in X (because 3; = 0), and at most
s — 1 of them can be proper (see Fig. ??). Hence, |[Y| > (n—1) — (s — 1) =n —s.
Since vertices y € Y are neighbors of f3, all vertices in

Yde, ={yde|yeY}CX;

70 2 Analysis of Boolean Functions

are neighbors of 3 @ e;. Since (again) at most s — 1 of them can be proper (one
proper neighbor S of 5 @ e; does not belong to Y & ¢;), and since f(8 @ e;) = 1,
there must be a subset Y’ C Y such that |[Y'| > [Y|—(s—1) > n—2s+1
and f(y @ e;) = 1forally € Y'. Thus, every y € Y’ is a neighbor of 3 such
that f(y) = 0 and f(y @ e;) = 1. Since all these neighbors belong to Vj, we are
done. O

Claim ?? implies that every vertex of the subgraph G of @Q,, induced by Vj has
degree at least d = n — 2s + 1. Exercise ?? implies that [Vy| > 2¢ = 27~25+1 Thus,
at least 2" ~25%1 of the edges in the i-th direction are colorful. Since this analysis is
true for every fixed position ¢ € [n] (as f depends on all its variables), the theorem
follows. O

Together with a trivial upper bound |G| < s(f)2"~!, Theorem ?? immediately
yields the following general lower bound on the sensitivity. Wegener (1985a) showed
that this lower bound is optimal up to an additive factor O(loglogn).

2.16 Corollary If a boolean function f depends on all n variables, then

1 1
s(f) = 510g2”— 510g2 logy .

The following lemma relates the average sensitivity of a boolean function to its
Fourier coefficients.

2.17 Lemma (Kahn-Kalai-Linial 1988) For every boolean function f : {0,1}" —
{0,1},
as(f) =4) ISIf(S)*.
5C[n]
For boolean functions f : {0,1}" — {—1,41} taking values in {—1,+1}
instead of {0, 1} the same equality holds without the multiplicative factor 4 (see
Exercise ?7?).

Proof. Fix a position ¢ € [n], and consider the difference function g;(x) := f(z) —
f(x @ e;). This function takes its values in {—1, 0, +1}. The Fourier coefficients of
g are closely related to those of f:

4(S) = {2f(S) ifi € S,

; (2.7)
0 otherwise.

(Moreover, this holds for any function f : {0,1}" — R, not only for boolean
functions.) To show (??), we use the linearity of expectation to obtain

9i(5) = Eqg [g:(2) - xs(2)] = Ea [f(2) - xs(2)] = Ea [f(z @ €5) - x5(2)] -

Since = @ e; has the same distribution as x, and since xs(x @ ¢;) = —xs(z) for
i€ S,and xs(z @ e;) = xs(z) fori € S, (??) follows. Now, the Parseval Identity
(??) gives

2.8 Sensitivity and influences 71
lgal* =D Gi(S)* =4 [(9)*,
SCln] S:eS

On the other hand, Inf;(f) = |X;|/2™ where X; = {z | f(x) # f(x @ e;)}. Since
gi(z) = £1 for x € X;, and g;(x) = 0 otherwise, we obtain that

Inf,(f) = 27"|X;| = 27" gi@)? = |gill> =4 Y f(9)*.

S:es
Summing this over all¢ = 1,...,n we conclude that
as(f) =Y Infi(f) =4 > F(5)> =4) ISIf(S)*. 0
=1 i=1 S:es SCln]

Using Lemma ??, Kahn, Kalai and Linial (1988) derived the following general
lower bounds on average sensitivity of boolean functions in terms of their density.

2.18 Theorem Let f be a boolean function of n variables, and p be a fraction of input
vectors on which f takes value 1. Assume thatp < 1/2. Then

i 2p% log?

> Infi(f)2270 P08 n
n

=1

and

- 1
ZIHfi(f) >p-log—.
i=1 p

Consequently there always exists a variable whose influence is at least 0.2p log n/n.
Moreover, the second bound is tight, and the first is tight up to the constant fac-
tor 0.2.

Average sensitivity can also be used to lower-bound the degree of polynomials
approximation the value of a given boolean function. For a boolean function f of
n variables, let (as before) Deg, (f) denote the minimum degree of a multivariate
polynomial p : R — R such that |f(z) — p(z)| < eforall z € {0,1}".

2.19 Lemma (Shi 2000) For every boolean function f,

Deg, (f) > (1 — 2€)%as(f).

Proof. (Due to de Wolf 2008) The proof is similar to that of Lemma ??. Suppose a
degree-d n-variate real polynomial p : {0, 1} — [0, 1] approximates f : {0,1}" —
{0,1}, in the sense that there is an € € [0,1/2) such that |f(z) — p(z)| < € for
every x € {0,1}". Let g be the degree-d polynomial 1 — 2p. This has range [—1, 1],
hence, Parseval’s Identity (??) yields

DA =(g,9)=2") g’ <1.

S

72 2 Analysis of Boolean Functions

Note that q(x) € [-1,—1 + 2¢] if f(z) = 1, and g(x) € [1 — 2¢, 1] if f(z) = 0.
Fix a position ¢ € [n], and consider the function g(z) := ¢(z) — ¢(z @ e;). Let
X ={z| f(x®e;) # f(x)}. Then Inf;(f) = | X;|/2" and |g(x)] > 2 —4e > 0
for all z € X;. So,

E, [g(@)?] =27") g@)?=27") g@)?=27") (2-4¢)?

z€{0,1}" z€X; z€X;
= (2—46)% - |X;]/2" = (2 — 4¢)* - Infi(f) .

Using Parseval’s Identity (??) and Eq. (??), we have
(2 - 4e)’Infi(f) < B, [g(2)*] =D _G(5)* =4 Y q(5)°.
S S:es

Dividing by 4 and summing over all ¢ gives the desired lower bound on the degree:

(1—26)%as(f) = (1 - 2¢)* Zlnfqz(f) <> > aws)y?

i=1 S:1esS

=D IS1a(8)* <dY_q(s)* <d.0
S S

A polynomial p represents f exactly, if p(z) = f(z) forallz € {0,1}". Let d(f)
denote the minimum degree of a multivariate polynomial representing f exactly.
That is, d(f) = Deg,(f). Together with Eq. (??), Lemma ?? (with e = 0) implies
that

d(f) > as(f) =Y _Infy(f). (2.8)
i=1
Using this, we can show that every boolean function depending on n variables
must have degree at least about logn (cf. Corollary ??).

2.20 Theorem (Nisan-Szegedy 1994) If a boolean function f depends on all its n
variables, then d(f)2d(f) > n, and hence, d(f) > logyn — O(loglogn).

Proof. We need the following simple fact about Reed-Muller codes; in computer
science this fact is known as the Schwartz-Zippel Lemma.

2.21 Claim Let p(x) be a nonzero multilinear polynomial of degree at most d. If we
choose 1, ..., z, independently at random in {0, 1}, then

Prob[p(z1,...,x,) #0] > 277,

Proof. The proof is by induction on the number n of variables. For n = 1, we
just have a linear function of one variable which can have only one zero. For the
induction step, lety := (1, ..., %,—1) and write p(x) as

p(x) =0 - g(y) + h(y),

2.8 Sensitivity and influences 73

where ¢ has degree at most d — 1. We consider three possible cases.

Case 1: h = 0. In this case p(z) = z,, - g(y) # 0. Since Prob[z,, = 1] =1/2and g
has only n — 1 variables, the induction hypothesis yields

Problp(r) # 0] = 5 - Problg(y) # 0] > 5 -2~ =2,

Case 2: h # 0 but g + h = 0. In this case we have that p(z) = p(y,0) = h(y).
Since h has only n — 1 variables, the induction hypothesis yields Prob[p(z) # 0] =
Prob[h(z) # 0] > 274.

Case3: h # 0 and g + h # 0. Since both polynomials have only n — 1 variables and
both are nonzero, induction hypothesis together with the rule of total probability
yields

Prob[p(z) # 0] = Prob[z,, = 0] - Prob[p(x) # 0|z, = 0]
+ Probz,, = 1] - Prob[p(x) # 0|z, = 1]
= Prob[z,, = 0] - Prob[h(x) # 0|, = 0]
+ Prob[z,, = 1] - Prob[g(y) + h(y) # 0|x, = 1]

- Problh(y) # 0] + 5 - Problg(y) + h(y) # 0

N = N

1
> -2*d+5~2*d:2*d.m

We can now finish the proof of Theorem ?? as follows. Let p(z) be a multilinear
polynomial of degree d = d(f) exactly representing f. For eachi = 1,...,n
consider the polynomial of n — 1 variables:

pi(l‘l,...,l‘i_1,$i+1,.. .,l‘n) = p(xl,...,a:i_l,l,a:i+1,. ..,l‘n)

—p(z1,.. . 21,0, Ti41, ..., Tp) -
Using this notation, it is clear that
Inf;(f) = Prob[pi(z1,...,%i—1,Tit1,-- ., Zn) # 0].

Since, by our assumption, f depends on all of its variables, we have that p; # 0 for
every 4. Thus, Claim ?? implies that Inf;(f) > 279 foralli = 1,...,n. Together
with (??), this implies that

n n
i <D _Infi(f) <d.
=1

Thus d2¢ > n, and the theorem follows. O

As Nisan and Szegedy observed, the address function shows that this bound is
tight up to the O(log log n) term. This function f(z,y) has n = m + 2™ variables:

74 2 Analysis of Boolean Functions

m variables x1, . . ., T, and 2™ variables y,, indexed by binary strings & € {0, 1}™.
On input (z,y) with z € {0,1}" and y € {0,1}?", the function outputs the bit
yz- The function depends on all n variables. It is represented by the polynomial

py)= > v J[= J] Q-2

ae{0,1}™ jioij=1 = jia;=0

and hence has degree m < logn.

Finally, let us mention an interesting result of Friedgut (1998) stating that boolean
functions of small average sensitivity do not depend on many variables, and hence,
can be approximated by low-degree polynomials.

2.22 Theorem (Friedgut 1998) For every boolean function f and every € there exists
a boolean function g depending on at most 2°(5(1)/) variables such that g differs
from f on at most an € fraction of input vectors.

Exercises

2.1 Let p,q : F™ — T be multilinear polynomials of degree at most d. Show that, if
p(x) = q(z) forallz € {0,1}" withx; + - - + 2, < d, thenp = q.

Hint: Suppose that the polynomial 7(z) = p(z) — g(x) is not identically zero. Let cg HiES x; be

the minimal-degree monomial in r with ¢g # 0. Show that (z) # 0 for the characteristic vector
x € {0,1}" of S.

2.2 Let f : {—1,+1}" — {—1,+1} be a symmetric boolean function. Let k be
the number of times f changes sign when expressed as a univariate function in
x1 + -+ + x,. Show that dy(f) = d,,(f) = k. Hint: Lemma ??.

2.3 Let Q,, be the undirected graph whose vertices are vectors {0, 1}", and two
vectors are adjacent iff they differ in exactly one position. For a set of vertices
X C{0,1}", let d(X) denote the minimal number d such that every vertex z € X
has at least d neighbors in X. That is, d(X) is the minimum degree of the induced
subgraph Q,,[X] of Q,,. Show that for every non-empty X, | X| > 24(X),

Hint: Induction on m = |X|. Base cases m = 1,2 are trivial. For the induction step, choose a

coordinate ¢ such that both the two sub-cubes that correspond to z; = 0 and z; = 1 have nonempty
subsets X and X of X. Use the arithmetic-geometric mean inequality (a + b)/2 > v ab.

2.4 (Due to Shi 2002) For a set X C {0, 1}" of vertices of the graph Q,,, let e(X)
denote the number of edges of @,, that joint two vertices in X . Show that e(X) <
% | X | logs | X |. Hint: Argue by induction as in Exercise ??, and use the fact that e(X) < e(Xo)+
e(X1) + min{[Xo, [X1[}.

2.5 Foraset X C {0,1}" of vertices of the graph Q,, leza(X) denote the average
degree of the induced subgraph Q,,[X] of Q,, that is, d(X) = (3, .y dz)/|X],
where d, is the number of neighbors of z lying in X. Improve Exercise ?? to

2.8 Sensitivity and influences 75

|X ‘ > 24(X) | Hint: Combine Exercise ?? with Euler’s theorem stating that the sum of degrees
of all vertices in a graph with m edges is equal to 2m.

2.6 Show that as(f) = ‘Gf |/2n_1. Hint: By Euler’s theorem, the sum of degrees in every
graph is equal to 2 times the number of its edges.

2.7 We have defined the average sensitivity as(f) of a boolean function f of n
variables as 27" times the sum of s(f, z) over all vectors x € {0,1}". Show that

() =g o s =g O s(ha).

zef-1(1) z€f~1(0)

Hint: Exercise ??

2.8 Let f be a boolean function of n variables, and let p = |f~1(1)[/2" be its
density. Show that as(f) > 2p(1 — p).

2.9 Given a monotone boolean function f : {0,1}" — {0,1} and a vector z €
{0,1}", say that the é-th bit 2; of x is “correct” for f if x; = f(x). Let ¢(f) denote
the expected number of “correct” bits in a random string x. Show that ¢(f) =

(n+as(f))/2.

Hint: Observe that ¢(f) = Z:.L:l Prob[A;] where A; is the event “z; = f(z)”. When z is chosen
randomly, there is an Inf;(f) chance that z; is influential for f. Use the monotonicity of f to
show that in this case the expected number of correct bits is 1. With probability 1 — Inf; (f) the
bit z; is not influential for f; show that in this case the expected number of correct bits x; is 1/2.

Conclude that Prob[4;] = 1 - Inf;(f) + % - (1 — Inf; (f)).

2.10 Show that as(Maj,,) = ©(y/n). Hint: (,},) ~ 2" /\/7n/2.

2.11 Show that the Majority function has the highest average sensitivity among all
monotone boolean functions: for every monotone boolean function f : {0,1}" —
{0,1}, as(f) < as(Maj,,). Hint: Take a € f*(0) and define f,(x) by: fa(a) = 0 and
fa(z) = f(z) for all z # a. Show that as(f,) > as(f) as long as a has fewer than n/2 ones.

2.12 Let f be a monotone boolean function in n variables. Show that Inf;(f) =

~

2 f({i}) foralli = 1,..., n. Hint: Proof of Lemma ??.

2.13 Let f,g : {0,1}" — R be real-valued functions, S C [n] and a € {0,1}".
Show that:

a).

@ xs(z®a) = xs(x) - xs(

b) flz®a)=> g f(S)xs(z®a).

() Ex[f(z)g(z @ a)] =>g f(S)ﬁ(S)XS(a). This fact is also known as the cross
correlation lemma.

76 2 Analysis of Boolean Functions
2.14 Use Exercise ??(c) to prove the following version of Lemma ?? for a boolean
function f : {0,1}"™ — {—1, +1} taking 1 values (instead of 0/1 values): as(f) =
Yscin 117(5)*

Hint: Note that Inf;(f) = 3(1 — E[f(2) - f(z ® e,'A)]). Apply Exercise ??(c) with g = f and
a=eitoget BIf(a)- fla@e)] =12 4. o F(5)

Part Il

Communication Complexity

3. Games on Relations

The communication complexity of boolean functions is an information theoretic
measure of their complexity. Besides its own importance, this measure is closely
related to the computational complexity of functions: it corresponds to the smallest
depth of circuits computing them. Thus, this measure can be used to prove circuit
lower bounds. Communication complexity is appealing not only for its elegance
and relation to circuit complexity, but also because its study involves the application
of diverse tools from algebra, combinatorics and other fields of mathematics.
Communication complexity has a comprehensive treatment in an excellent book
by Kushilevitz and Nisan (1997). To avoid intersections, we will mainly concentrate
on results not included in that book (including results obtained after that book was

published).

3.1 Communication protocols and rectangles

The basic (deterministic) model of communication was introduced in the seminal
paper by Yao (1979). We have two players, traditionally called Alice and Bob, who
have to evaluate a given function f(z,y) for every given input (z, y). The function
f itself is known to both players. The complication that makes things interesting
is that Alice holds the first part = of their shared input, while Bob holds another
part y. They do have a two-sided communication channel, but it is something like a
transatlantic phone line or a beam communicator with a spacecraft orbiting Mars.
Communication is expensive, and Alice and Bob are trying to minimize the number
of bits exchanged while computing f(x,y).

A general scenario of a deterministic communication game is the following.
We are given some function f : X x Y — Z or, more generally, some relation
f € X xY x Z. There are two players, Alice and Bob, who wish to evaluate f(z,y)
for all inputs (z,y) € X x Y. In the case when f is an arbitrary relation, their goal
is to find some z € Z such that (x,y, z) € f, if there is one.

79

80 3 Games on Relations

ay ()
0 1
bv (y) Aw (33)
0 1 0 1
by (y)
0 1

Fig. 3.1 A communication tree (protocol). Alice’s functions a.,, a., do not depend on y, and Bob’s
functions by, by, do not depend on z. Besides this (independence) there are no other restriction on
these functions—they may be arbitrary!

Both players know the entire function (relation) f. Also, the players are not
adversaries—they help and trust each otherﬂ The difficulty, however, is that Alice
only knows = and Bob only knows y. Thus, to evaluate the function, they will need
to communicate with each other. The communication is carried according to some
fixed protocol (which depends only on f). Each player has unlimited computational
power. We are only concerned with the number of bits that have to be communicated
between them.

Before the game starts, the players agree on a protocol for exchanging messages.
After that, given an input pair (z,y), the protocol dictates to each player what
messages to send at each point, based on her/his input and the messages received
so far. It also dictates when to stop, and how to determine the answer from the
information received. There is no limit on the computational complexity of these
decisions, which are free of charge. The cost of the protocol is the number of bits
they have to exchange on the worst case choice of input pair (z, y). The goal is to
minimize this cost.

More formally, this measure can be defined as follows. A protocol (or a communi-
cation tree) for a communication game is a binary tree 7" where each internal node
v is labeled either by a function a,, : X — {0, 1} or by a function b, : ¥ — {0, 1},
and each leaf is labeled by an element z € Z (see Fig. ??). The value of the protocol
T on input (z,y) is the label of the leaf reached by starting from the root, and
walking on the tree. At each internal node v labeled by a,, we walk left if a,,(z) = 0
and right if a, (x) = 1. Similarly, at each internal node v labeled by b,, we walk left
if b, (y) = 0 and right if b, (y) = 1.

The cost of the protocol on input (z, y) is the length of the path taken on this
input. Then cost of the protocol T itself is its depth, that is, the length of its longest
path. The communication complexity of the relation f, denoted by ¢(f), is the cost
of the best protocol for this game.

Intuitively, each internal node v labeled by a function a,, corresponds to a bit sent
by Alice (the bit being a,(z)) and each internal node v labeled by b, corresponds

These are not “games” in the common sense where each of the players wants to win a game.

3.1 Communication protocols and rectangles 81

to a bit sent by Bob. Note that the value of each function a, only depends on
the part 2 of input (x, y) seen by Alice and on the results of the tests made (bits
communicated) along the unique path to node v; the most important restriction is
that no a, depends on bits y seen by Bob. Similarly for the functions b,,.

Since the functions used by the players may be arbitrary, the model seems to be
too powerful to be interesting. But we have one important restriction on how the
players access a given input (x, y): Alice cannot see y and Bob cannot see x. This
gives the most important structural restriction: for every node v in a communication
tree, the set S, C X x Y of all inputs reaching this node must be “rectangular”.

3.1 Definition (Rectangles) A combinatorial rectangle or just a rectangle is a subset

R C X xY ofthe form R = Ry x Ry with Ry C X and R; CY.

That is, a subset R C X x Y is a rectangle iff it fulfills the following “cut-and-
paste” condition:

if (z,y), (2',y') € Rthen (z,y), (2',y) € R.

We stress that a rectangle need not to be contiguous! That is, even in the case where
X, Y are ordered sets, the sets Ry, R; defining a rectangle need not be intervals.

3.2 Definition (Monochromatic rectangles) Given a relation f C X X Y x Z, say
that a subset S C X X Y is monochromatic (relative to f) if there existsa z € Z
such that (z,y,2) € f forall (z,y) € S.

3.3 Proposition IfT is a communication tree for some relation, and v its node then
Sy ={(z,y) € X XY | input (x,y) reaches node v in T}

is a rectangle. Moreover, if v is a leaf, then the rectangle S,, is monochromatic.

Proof. We will prove by induction on the depth of v that S,, is a rectangle. If v is
the root, then S, = X x Y, which is a rectangle. Otherwise, let w be the parent of
v and assume, without loss of generality, that v is the left son of w and that in w
Alice speaks, that is, w is labeled by a function a,, : X — {0,1}. Then

Sy = Suw N{(z,y) | aw(z) = 0}.
By the induction hypothesis, S,, = A x B is a rectangle, and thus
Sy = (ANn{z | ay(x) =0}) x B

which is a rectangle. If v is a leaf, then no further communication is possible. That
is, there must be an answer z € Z which suites all inputs (x,y) € S,, meaning
that (x,y, z) € f for all (z,y) € S,. O

By Proposition ??, a communication protocol for a relation f C X xY X Zisa
binary tree whose inner nodes are rectangles R C X x Y:

82 3 Games on Relations

« The root is labeled by the whole rectangle X x Y.

« If a node u is labeled by a rectangle R, then the sons of u are labeled by the
corresponding subrectangles of R. Moreover, these subrectangles are obtained
from R by splitting the rows of R (if u is Alice’s node) or by splitting the
columns of R (if v is Bob’s node).

« Leafs are labeled by monochromatic rectangles.

Since at each node, the rows (or columns) of the corresponding submatrix are split
into disjoint parts, the protocol is deterministic: each edge (z,y) € S will reach
precisely one leaf. The depth of a tree is the maximum number of edges from the
root to a leaf. The minimum depth of a communication tree is the communication
complexity, ¢(f), of the game for the relation f.

Simple as it is, Proposition ?? gives us a handy tool to show that some functions
require many bits of communication.

3.4 Example Consider a boolean function f(x,y) in 2n variables defined by:
f(z,y) = 1iff x = y. The corresponding relation in this caseis F C X x Y x Z
with X =Y ={0,1}", Z = {0,1}, and (x,y,a) € Fiff f(z,y) = a. Now, every
inputin f~1(1) = {(z,z) | # € {0,1}"} must reach a 1-leaf. On the other hand, if
v is a 1-leaf, then Proposition ?? tells us that the set .S, of inputs (x, y) reaching this
leaf must form a rectangle. Since S, must lie in f~1(1), we obtain that |5, | = 1:
had the set S, contain two inputs (z,x) and (y,y) with = # y, then it would be
forced to contain (z, y), and the protocol would make an error because f(z,y) = 0.
Thus the protocol must have at least | f ~1(1)| = 2" leaves, and hence, must have
depth at least log(2") = n.

3.2 Protocols and tiling

Let f C X XY X Z be arelation. Recall that arectangle R C X XY is monochromatic
relative to f (or f-monochromatic) if there exists a z € Z such that (z,y,2) € f
for all (x,y) € R. Communication protocols for f lead to the following complexity
measures:

« Communication complexity ¢(f) = minimum depth of a communication proto-
col tree for f.

« Number of messages L(f) = minimum number of leaves in a communication
protocol tree for f.

« Tiling number x(f) = smallest ¢ such that X x Y can be decomposed into ¢
disjoint f-monochromatic rectangles.

Proposition ?? yields the following lower bounds on the communication complexity:

¢(f) > log L(f) > log x(f)-

3.2 Protocols and tiling 83

How tight are these bounds? We first show that the lower bound c(f) > log L(f)
is almost tight.

3.5 Lemma (Balancing Protocols) ¢(f) < 2log, /5 L(f).

Proof. It suffices to show that given any deterministic protocol tree 7" for f with
|T| = L leaves, we are able to create a new protocol tree for f of depth at most
2logy /3 L. We argue by induction on L. The basis case L = 1 is trivial. For the
induction step, apply Lemma ?? to obtain a node v in T" such that the number |T;,|
of leaves in the sub-tree rooted at v satisfies

L/3<|T,| <2L/3.

Both players know 7', and hence, they also know the sub-tree 7),. Let S, C X x Y
be a rectangle corresponding to the node v. Now, both players decide if (z,y) € S,
by sending one bit each of them. If yes, then they use the protocol sub-tree T;,. If no,
then they use the protocol tree 7", where T” is the same tree as T', except that the
sub-tree T, is replaced by a leaf labeled by an empty rectangle; hence, T also has

T < |T| - T, < L— L3 =2L/3

leaves. The new protocol is correct, since in this last case (z,y) € S, implies that
input (z, y) cannot reach node v in the original tree T".

To estimate the cost of the new protocol, let ¢(L) be the number of bits that
are communicated by the new protocol when the original tree has L leaves. By
construction, we have that ¢(L) < 2 + ¢(2L/3), where 2 is the number of bits that
are communicated at the current step and ¢(2L/3) the number of bits that will be
communicated in the next (recursive) step in the worse case. Also note that ¢(1) = 0
(at a leaf no communication is necessary). Applying this inequality repeatedly we
get (by setting ¢ = logg/, L) that

o(L) <242+ +24¢((2/3)'L) = 2logy), L. O
N—————

?

Thus, we always have that ¢(f) = ©@(logL(f)). That is, when estimating the
smallest depth of a communication protocol we are actually estimating the smallest
number of leaves in such a protocol.

The situation with the tiling number x(f) is worse: here we only know a
quadratic upper bound ¢(f) = O(log? x(f)). We will obtain this upper bound as a
direct consequence of the following more general result which we will apply several
times later. Its proof idea is essentially due to Aho, Ullman and Yannakakis (1983).

Suppose, we have a collection R of (not-necessarily disjoint) rectangles covering
the entire rectangle X x Y. Suppose also that each rectangle R € R has its label.
The only requirement is that the labeling must be legal in the following sense:

If two rectangles R and S have different labels, then RN .S = ().

84 3 Games on Relations

Bilder/intensect-eps-converted-to.pdf

Fig. 3.2 The rectangle R intersects S in rows, intersects 7" in columns, and intersects () in both
rows and columns. We draw rectangles as consecutive blocks of entries only for simplicity: they
need not be consecutive.

That is, overlapping is only allowed for rectangles with the same label.

In the find-a-rectangle game for R, Alice gets an z € X, Bob getsany € Y, and
their goal is to find a label of a rectangle containing (x, y). Note that the answer
(label) is unique for each point (x, y): if the point belongs to more than one rectangle,
then all these rectangles must have the same label.

Let ¢(R) denote the deterministic communication complexity of such a game
for R.

3.6 Lemma (Making Coverings Disjoint) ¢(R) < 2(log |R|)>.

Proof. Say that a rectangle S = Sy x 57 intersects a rectangle R = Ry x R; in
rows, if So N Ry # (), and intersects R in columns, if S1 N Ry # 0 (see Fig. ??).
Note that, S N R # (if and only if S intersects R in rows and in columns. Given
a rectangle R, we say that a rectangle R’ is differently labeled if the label of R’ is
different from that of R.

3.7 Claim No rectangle in R can intersect more than half of differently labeled
rectangles in rows and more than half of these rectangles in columns.

Proof. Had this happen for some rectangle R, then R would intersect some other
rectangle of different label, contradicting the legality of our labeling. a

Now set r := [log |R|]. The protocol consists of at most r rounds and in each
round at most 1 + r bits are communicated. After each round the current set of
rectangles is updated. Given an input (z, y), the players will be trying to decrease
the number of rectangles in each round by at least one half. Say that a rectangle
R = Ry x Ry in R is Alice’s rectangle if € Ry, and Bob’s rectangle if y € R;.
Thus, the goal of the players is to find a rectangle which is both Alice’s and Bob’s
rectangle.

1. Alice checks whether all here rectangles have the same label. If yes, then the
(unique) label of all these rectangles is a correct answer, and she announces it.
2. Otherwise, Alice tries to find among here rectangles a rectangle which intersects
in rows at most half of the differently labeled rectangles. If such a rectangle R
exists, then Alice sends its name (using r bits) to Bob and they both update R
so that it only contains the rectangles that intersect with R in rows; each of
the remaining rectangles is not an Alice’s rectangle, and hence, cannot contain

(z,9).

3.2 Protocols and tiling 85

3. If Alice is unable to find such a rectangle then she communicates this to Bob
(using one bit).

4. Now is Bob’s turn. Since Alice failed, Claim ?? ensures that among Bob’s rect-
angles there must be a rectangle which intersects in columns at most half of
the differently labeled rectangles (at least rectangles containing (x, y) must be
such). Bob takes any such rectangle R and sends its name (using " bits) to Alice
and they both update R so that it only contains the rectangles that intersect
with R in columns (other rectangles cannot contain (x, y)). At this point the
round is definitely over since they successfully eliminated at least half of the
rectangles in R labeled differently than R, and we can proceed by induction.

After at most r rounds the players will agree on a rectangle containing (z, y), and
the label of this rectangle is the correct answer. O

3.8 Lemma For every relation f C X x Y x Z, ¢(f) < 2(log x(f))>.

Proof. Let R be an optimal covering of X x Y by |R| = x(f) disjoint f-
monochromatic rectangles. Since each R € R is monochromatic, there must exist
az € Z such that (z,y, z) € f forall (z,y) € R.Fix one such z for each rectangle
R € R, and let z be the label of R. Since all rectangles in R are disjoint, this is
a legal labeling in the sense of Lemma ??. Hence, we can apply this lemma and
obtain that, for every input (z, y), the players can find out the (unique) rectangle
containing (, %) by communicating at most 2(log |R|)? = 2(log x(f))? bits. O

Lemma ?? has the following purely combinatorial consequence about covering
matrices by their submatrices. A submatrix of a matrix is monochromatic if all its
entries have the same value. Suppose we can cover all entries of a given matrix
by t its (possibly overlapping) monochromatic submatrices. How many disjoint
monochromatic submatrices do we need then to cover all entries? Using communi-
cation complexity arguments one can show that t©(°8%) disjoint submatrices are
always enough!

3.9 Lemma If a matrix A can be covered by t (not necessarily disjoint) monochro-
matic submatrices, then A can be decomposed into at most t>1°8* pairwise disjoint
monochromatic submatrices.

Proof. Let R be a set of t monochromatic submatrices covering A. Label each such
submatrix by its unique element. This labeling is clearly legal. By Lemma ??, there
is a communication protocol of depth at most ¢ = 2(log t)? which for every row x
and every column y outputs the entry A[z, y]. Each leaf of the protocol corresponds
to a monochromatic submatrix of A, and we obtain a decomposition of A into at
most 2¢ = ¢21°8 pairwise disjoint monochromatic submatrices. O

86 3 Games on Relations

3.3 Games and circuit depth

In this section we will see a surprisingly tight connection between communication
and circuits that has proved very useful in boolean function complexity

Let S = X XY be arectangle with X, Y C {0,1}" and X NY = (). For example,
S could be an “ambient” rectangle S = f~1(1) x f~1(0) of a boolean function f.
The find-a-difference game for a rectangle S = X x Y is the following game:

« Alice gets a vector x € X.
« Bob gets a vectory € Y.
« The goal is to find a position ¢ such that x; # y;.

Let ¢(S) denote the communication complexity of this game. Note that the find-a-
difference game for S = X XY is just a game for the relation F C X xY x [n] given
by: (z,y,i) € Fiff z; # y;. In particular, for this relation, a rectangle R C X x Y is
monochromatic if there exists a position ¢ € [n] such that z; # y; for all (x,y) € R.
Thus, every protocol for the find-a-difference game on a rectangle S = X x Y
gives a partition (or tiling) of S into monochromatic rectangles. This motivates the
following purely combinatorial measure of rectangles.

3.10 Definition (Tiling number of rectangles) The tiling number x(S) of a rect-
angle S is the smallest number ¢ such that S can be decomposed into ¢ disjoint
monochromatic rectangles.

Lemma ?? immediately yields the following connection of this measure with the
communication complexity.

3.11 Lemma For every rectangle S,
log x(5) < ¢(S5) < 2(log x(8))*.

This relation between the communication complexity and the tiling number is a
useful combinatorial tool to prove lower bounds on the communication complexity.
But it is also a handy tool to obtain efficient tiling of rectangles. To give an example,
let us show how one can obtain a decomposition of the rectangle of the parity
function ®,, = 1B x2B - - P, into a small number of monochromatic rectangles.

3.12 Proposition x(®,) < 4n? and ¢(®,,) < 2logn + 2.

Proof. We will only show that x(®,,) < n? if n is a power of two. The general
case then follows by adding redundant zeros to the strings so that their length is
a power of two. The resulting strings will have length at most 2n, and the upper
bound x(®,,) < 4n? follows.

Consider the communication game for @,,. That is, given a pair (x, y) of binary
strings of length n such that x has a odd and y and even number of 1s, the goal of
Alice and Bob is to find an i with x; # ;.

The basic idea is binary search. Bob begins by saying the parity of the left half
of y. Alice then says the parity of the left half of z. If these parities differ, then

3.3 Games and circuit depth 87

they continue playing on the left half, otherwise they continue playing on the right
half. With each round they halve the size of the playing field, and use two bits of
communication. Thus after log n rounds and 2 log n bits of communication they
determine an i on which 2 and y differ. This gives a decomposition into 22198 ™ = n?
disjoint monochromatic rectangles. O

Now we are going to prove one particularly important fact connecting commu-
nication with computation.

For a boolean function f, let D(f) be the minimum depth of a DeMorgan circuit
computing f. Let also ¢(f) denote the communication complexity of the find-a-
difference game on the rectangle f~1(1) x f~1(0).

3.13 Theorem (Karchmer-Wigderson 1990) For every boolean function f,

D(f) = ¢(f)-

We prove lower and upper bounds on D(f) separately. The first claim is just a
reformulation of Rychkov’s lemma in terms of games.

3.14 Claim (Circuit to protocol) ¢(f) < D(f).

Proof. We may assume that Alice and Bob have agreed on a circuit of smallest depth
computing f. Now suppose Alice gets an input « such that f(z) = 1, and Bob gets
an input y such that f(y) = 0. In order to find an 7 such that x; # y;, the players
use the information provided by the underlying circuit. At OR gates speaks Alice,
and at AND gates speaks Bob.

Suppose the output gate is an AND gate, that is, we can write f = fo A f1. Then
Bob sends a bit i corresponding to a function f; such that f;(y) = 0; if both fo(y)
and f1(y) output 0, then Bob sends 0. We know that we must have f;(z) = 1. We
can then repeat this step at the gate corresponding to the output gate of f;, where
Bob sends a bit if the gate is an AND gate and Alice sends a bit if the gate is an
OR gate (she sends a bit corresponding to a function which outputs 1). Alice and
Bob repeat this process until they reach a leaf of the circuit. This leaf is labeled by
some variable z; or its negation —z;. Hence, x; # y; implying that 7 is a correct
answer. O

The other direction is more interesting: having a protocol we can build a circuit.
3.15 Claim (Protocol to circuit) D(f) < ¢(f).

Proof. We will prove a more general claim: For every rectangle S = A x B there
is a boolean function f such that A C f=1(1), B C f~1(0) and D(f) < ¢(S). It
then remains to take S = f~1(1) x f~1(0).

We prove the claim by induction on ¢ = ¢(5). Suppose ¢ = 0. Then we must
have, for some index i, that ;; # y; for all pairs (z,y) € S. Thus we may choose
either f = x; or f = —x; according to which function satisfies f(A) = 1 and

F(B) =0,

88 3 Games on Relations

Next, we prove the claim is true for ¢ assuming it is true for ¢ — 1. Consider a
protocol for the communication game on S that uses at most ¢ bits. Let us assume
Alice sends the first bit. Then there is a partition A = Ay U Aj, Ag N A1 = 0,
such that for z € Ay, Alice sends the bit 0 and for x € A;, Alice sends the bit
1. After that we are left with two disjoint rectangles Ay x B and A; x B whose
communication complexity is at most ¢ — 1. Applying our induction hypothesis,
we find there exists a function fj such that

fo(Ao) =1, fo(B) =0 and D(fo) <c—1,
and there exists a function f, such that
FA) =1, fi(B)=0 and D(fi)<c—1.
We define f = fo V/ f1. Then f(A) = 1, f(B) = 0 and
D(f) <1+ max{D(fo), D(f1)} < ¢

as desired. Note that, if Bob had sent the first bit, we would have partitioned B and
defined f = fo A f1. This finishes the proof of the claim, and thus the proof of the
theorem. O

3.16 Remark In fact, ¢(f) is a lower bound for the parameter “depth times logarithm
of the maximal fanin” of any circuit with unbounded-fanin AND and OR gates. If,
say, f is computed by a circuit of depth d and fanin of every gate is at most .S, then
¢(f) = O(dlog.S). This holds because, at each step, one of the players can use
log S bits to tell what of at most .S gates feeding into the current gate to choose.

3.3.1 Monotone depth

For monotone circuits we can give a modified version of Theorem ?? that captures, in
a nice way, the restrictions of monotone computations. Recall that a minterm (resp.,
maxterm) of a monotone boolean function f is a minimal set of variables such that, if
we set all these variables to 1 (resp., to 0), f will be 1 (resp., 0) regardless of the other
variables. We will view minterms and maxterms as subsets of [n] = {1,...,n}. Let
Min(f) denote the set of all minterms, and Max(f) the set of all maxterms of f.
It is easy to see that every minterm intersects every maxterm. This suggests the
following communication game. Let P, Q C 2"l be two families of sets such that
pNg#Qforallp e Pandq € Q.

« Alice getsasetp € P.
+ Bob getsasetq € Q.
« The goal is to find an element i € pNg=p\ Q.

3.3 Games and circuit depth 89

Note that in a non-monotone game (corresponding to non-monotone circuits) the
goal of the players is to find an element i in a N b or in @ N b = a U b. This is that
“or” which makes the analysis of such protocols very difficult.

Let ¢, (P, Q) denote the communication complexity of this game. For a monotone
boolean function f, let ¢, (f) := ¢, (P, Q) with P = Min(f) and Q = Max(f).
Finally, let Depth_ (f) be the minimum depth of a monotone DeMorgan formula
computing f. The same argument as in the proof of Theorem ?? gives

3.17 Theorem For every monotone boolean function f,

Depth, (f) = ¢, (f).

Proof. Note that in the base case of Claim ?? (when players reach a leaf of the
circuit), the monotonicity of the circuit (no negated variables) they find an i € [n]
such that z; = 1 and y; = 0. On the other hand, if a protocol always finds an ¢
with this property, Claim ?? gives a monotone circuit.

Let z € f~1(1) be the characteristic vector of a subset p C [n]. Similarly, let
y € f71(0) be the characteristic vector of the complement of a subset ¢ C [n], that
is, i € q iff y; = 0. By the above argument, it is clear that the answer of the protocol
will be an element of p N g. The theorem follows by noticing that it is enough to
design a protocol for Min(f), Max(f) because the players can always behave as if
they got p’ C pand ¢’ C ¢q where p’ € Min(f) and ¢’ € Max(f). O

Exercises

3.1 Let f be a k-CNF formula with m clauses. Show that there exists a one-round
Karchmer-Wigderson protocol for f where Bob sends log m bits and Alice responds
with log & bits.

3.2 Show that for any boolean function f there exists a Karchmer-Wigderson
protocol where at each round Bob sends 2¢ bits while Alice responds with a bits
such that the number r of rounds satisfies 7 < D(f)/a.

Hint: Take the best circuit for f, divide it into stages of depth a each and look at the subcircuits of
each stage. Each one computes a function which depends on at most 2% wires, and thus can be
represented as a 2%-CNF formula with at most m = 22" clauses. Use the previous exercise.

3.3 (Razborov 1990) The game FORMULA is a game of two players Up (upper) and
Lo (lower), Up will try to prove an upper bound for the formula size of a boolean
function; Lo will try to interfere him. A position in this game is a triplet (U, V, t)
where U,V C {0,1}", U NV = Pand ¢ > 1 is an integer. Up begins the game.
He obtains a position (U, V, t), chooses one of the two sets U, V' (say, U), chooses
some representations of U, ¢ of the form

U=0'uU0" t=t+¢ ', t">1)

90 3 Games on Relations

and hands to Lo the two positions (U’, V,t') and (U"”, V,t"). If Up chooses the set
V, the description of his actions is given in the analogous way.

Lo chooses one of the two positions offered to him and returns it to Up (the
remaining position is thrown out). Then Up moves as above (in the new position)
and so on. The game is over when Up receives a position of the form (U*,V*,1).
Up wins if U* x V* forms a monochromatic rectangle, that is, if there is an i € [n]
such that z; # y; forallz € U* andy € V*.

Prove that Up has a winning strategy in a position (U, V,t) iff there exists a
boolean function f : {0,1}" — {0,1} such that: f(U) = 0, f(V) = 1 and f
has a DeMorgan formula of leafsize < t. Hint: Argue by induction on ¢ as in the proof of
Theorem ??.

3.4 (Brodal and Husfeld 1996) Prove that D(f) = O(logn) for every symmetric
boolean function f of n variables. For this, consider the following communication
game: given a pair A, B of subsets of [n] such that |A| # | B, find an element in
the symmetric difference (A \ B) U (B \ A). Design a communication protocol
with O(log n) bits of communication for this game.

Hint: We already know (Proposition ??) how to design such a protocol if we the parities of | A|
and | B| are different. In the general case, use that fact that the cardinality |A| of a set A can be
communicated using only log | A| bits. Look at restrictions A"* = AN {l,I+1,...,s — 1+ 1}
with A»™ = A and do an appropriate binary search, as in Proposition ??.

4. Games on 0-1 Matrices

We have already seen that communication complexity of relations captures the
depth of circuits. Protocols in this case are trying to solve search problems. In this
chapter we consider the communication complexity of decision problems. That is,
Alice gets a vector x, Bob gets a vector y, and their goal is to compute the value
f(z,y) of a given boolean function f.

In the fixed-partition communication game, the players are given a function f
as well as some partition (x,y) of its variables into two disjoint blocks of equal
size. The concept of the fixed-partition communication complexity was invented
by Yao (1979, 1981). In the best-partition model of communication the players are
allowed to choose a most suitable for this function balanced partition (z, y) of its
input variables. The best-partition communication complexity was introduced by
Lipton and Sedgewick (1981). Even trickier is the communication model where we
have more than two players, each seeing all but a small piece of the input vector.
We will consider this model later in Chapter ??.

4.1 Deterministic communication

It will be convenient to consider a boolean function f(x,y) of 2m variables as a
boolean n x n matrix A with n = 2™ such that Az, y] = f(x,y). Such a matrix
A is usually referred to as the communication matrix of f. Recall that a primitive
matrix is a 0-1 matrix of rank 1, that is, a boolean matrix consisting of one all-1
submatrix and zeros elsewhere. These are exactly the matrices of the form uv? for
two boolean vectors u and v. The complement of a boolean matrix A is the boolean
matrix A = J — A, where J is the all-1 matrix. A submatrix is monochromatic if all
its entries are the same. Two submatrices of the same matrix are disjoint if they do
not share a common entry.

The communication game for a given matrix A is as follows: Alice is given as
input a row index x, Bob is given a column index y, and Bob must determine the
value Az, y].

91

92 4 Games on (-1 Matrices

011
001 Alice splits by rows
o |111 1
011 .
{0 0 1] [1 1 1] Bob splits by columns
0 1
0 11 . .
{0] {0 1} Alice splits by rows
0 1
[1 1] [0 1] Bob splits by columns

[0] [1]

Fig. 4.1 An example of a communication tree for a boolean function f : X x Y — {0,1}
represented as a matrix. The communication complexity of this protocol is 4.

By sending bits 0 and 1, the players actually split the rows (if this bit is sent by
Alice) or columns (if this bit is sent by Bob) into two disjoint parts. A communication
protocol (or a communication tree) of a game is a binary tree, each inner node of
which corresponds to a decision made by one of the players at this node. Each node
of the tree is labeled by a submatrix of A so that the following holds (see Fig. ??).

« The root is labeled by the whole matrix A.

« If a node u is labeled by a matrix M, then the sons of u are labeled by the
corresponding submatrices M, and M; of M. Moreover, these submatrices are
obtained from M by splitting the rows of M (if u is Alice’s node) or by splitting
the columns of M (if u is Bob’s node).

« If wis aleaf and R is its label, then R is monochromatic, that is, is either all-0
matrix or all-1 matrix.

Since at each node, the rows (or columns) of the corresponding submatrix are
split into disjoint parts, the protocol is deterministic: each pair (z,y) will reach
precisely one leaf. The depth of a tree is the maximum number of edges from the
root to a leaf. The deterministic communication complexity ¢(A) of a matrix A is

defined as:
¢(A) = the minimum depth of a communication tree for A.

It is clear that for any boolean n x n matrix A (n being a power of two) we have
that ¢(A) < 1+ log n since using log n bits Alice can just tell Bob the binary code
of her row x, and Bob can announce the answer A[z, y]. Lower bounds on ¢(A) can
be shown using the rank as well as the “tiling number” of A.

4.1 Deterministic communication 93

Bilder/decomp-eps-converted-to.pdf

Fig. 4.2 A decomposition of a 3 X 3 matrix that does not correspond to any protocol.

4.1 Definition (Tiling number of matrices) The tiling number x(A) of a boolean
matrix A is the smallest number of pairwise disjoint monochromatic submatrices
of A covering all entries of A.

If we are only interested in decomposing s-entries of A for some s € {0, 1} into
disjoint all-s submatrices, then the corresponding measure is denoted by x;(A).

Note that x(A) = x0(A) + x1(4) and x0(A4) = x1(4).
Since the submatrices occurring on the leaves of any communication tree for A
must be disjoint, we immediately have a basic inequality

¢(A) = log x(4).

Note however, that unlike arbitrary decompositions of a given matrix A into mono-
chromatic submatrices, decompositions arising from communication protocols have
a special form: they are produced inductively by splitting the resulting submatrices
only row-wise or column-wise. And indeed, there are decompositions that cannot
be produced by any communication protocol, like one depicted in Fig. ??. Thus, ¢(A)
may be larger than log x(A). Kushilevitz, Linial and Ostrovsky (1999) exhibited
matrices A with ¢(A) > (2 — 0(1)) log x(4).

On the other hand, ¢(A) is the communication complexity of a relation F' C
X XY x Z where X is the set of rows of A, Y is the set of columns of A, and
Z = {0,1}. The relation itself is given by: (x,y,z) € F iff A[z,y] = z. Thus,
Lemma ?? gives the following upper bound:

¢(4) < 2(log x(4))?. (41)

Observe that x7(A) is just the least number ¢ such that A can be written as a sum
A= Zle R; of t primitive matrices R; = u;vl with u;,v; € {0,1}". This is
reminiscent of another matrix measure—their rank. Recall that a (real) rank of a
matrix A is the least number r such that A = Z:=1 «a; R; for some o; € R and
primitive 0-1 matrices R;. Thus, x1(A) corresponds to the case when all a;; = 1.
This immediately gives us another basic estimate:

¢(A) > logx1(A) > logrk(A). (4.2)

This bound was first observed by Mehlhorn and Schmidt (1982). Yet another char-
acterization of rank is in terms of scalar products. Namely, rk(A) is the least r such
that A can be written asa sum A = Z:Zl xlle for some vectors xz;, y; € R™. Since

94 4 Games on (-1 Matrices

the coefficients 0 and 1 of characteristic vectors are clearly non-negative, we thus
actually have slightly stronger lower bound

¢(A) > log x(A4) > logrk™ (4), (43)

where rk " (A) is the non-negative rank introduced by Yannakakis (1991): it is defined
as the least 7 such that A can be writtenasasum A = Y _._, z;y! for some vectors
z;,y; € R" with z;,y; > 0.1t can be shown (Exercise ??) that log rk™* (A) is also
an upper bound on the nondeterministic communication complexity. It remains,
however, open whether ¢(A) is upper bounded by a polynomial in log rk(A); see
Section ?? for a discussion.

The rank lower bound (??) implies that implies that even some of the “simplest”
matrices, like the identity matrix I,,, have maximal communication complexity
log n. The goal however is to understand what properties of a given matrix A
actually force its communication complexity to be large. Having 1s on the diagonal
and Os elsewhere is just one of these properties.

The identity matrix I, is very sparse: it has only n ones. Using the rank, one
can show that any symmetric matrix with at most n2~¢ ones requires an almost
maximal number (2(logn) bits of communication, as well.

For a matrix A, let |A| denote the number of its nonzero entries. The following
is a “folklore result” rediscovered by many authors.

4.2 Lemma If A is a symmetricn X n boolean matrix with 1s on the diagonal, then

n2

X(A) > m

Proof. Let A1, ..., A, be the eigenvalues of A. Then their sum t = 21;1 \; is the
trace of A (sum of diagonal entries of A), and at most » = rk(A) of them are
nonzero. Thus, the Cauchy-Schwarz inequality yields

tr(A%) = Z)\f >r(t/r)? =t*/r.

Since A is a 0-1 matrix, we also have that tr(A4?) = |A|: the i-th diagonal entry of
A? is the number of 1s in the i-th row of A. This implies rk(A4) = r > tr(A)2/|A|,
where tr(A) = n since A has 1s on the diagonal. O

Lower bounds on communication complexity obtained using rank and other
algebraic measures are discussed in a survey by Lee and Shraibman (2009).

4.2 Nondeterministic communication 95

4.2 Nondeterministic communication

For a two-party communication problem specified by a matrix A, one way to view
a nondeterministic communication protocol is as a scheme by which a third party,
Carole, who knows Alice’s input z and Bob’s input y, can convince Alice and Bob
of the value of the matrix entry A[z,y|. Of course, if Carole were trustworthy, she
could simply tell the two players this value.

A more interesting case is when Carole is untrusted and has the goal of convinc-
ing the players that this value equals 1, whether or not this is true. For this purpose,
she announces to both players some binary string, a witness for (or a proof of) the
fact that “A[z, y] = 1”. Having this witness, Alice and Bob verify it independently
and respond with either Yes or No. Alice and Bob agree that A[x, y] = 1 (and accept
the input (z, y)) if and only if they both replied with Yes. If A[z, 3] = 0 then Alice
and Bob must be able to detect that the witness is wrong no matter what Carole
says. The protocol is correct if, for every input (x, y), Alice and Bob accept it if and
only if Az, y] = 1. The communication complexity of this game is the length of
the witness in the worst case. That is, nc(A) < ¢ iff for every input (z,y) we have
that:

« If A[z,y] = 1 then there exists a witness w € {0, 1}* on which both Alice and
Bob answer with Yes.

« If A[z,y] = 0 then, for every witness w € {0, 1}, at least one player responds
with No.

In other words, if X is the set of rows and Y the set of columns of A, then a
nondeterministic protocol of cost ¢ is a pair of functions a : X x {0,1}* — {0, 1}
and b: {0,1}* x Y — {0,1} such that, for all (z,y) € X x Y,

Alz,y] = 1iff a(x,w) A b(w,y) = 1 for some w € {0,1}".

The nondeterministic communication complexity, nc(A), of a matrix A is the smallest
number ¢ for which such functions a and b exist. This measure has a very simple
combinatorial description.

The cover number, Cov(A), of a 0-1 matrix A is the smallest number of all-1
submatrices of A covering all its 1s; this time the matrices in a cover need not be
disjoint. That is, Cov(A) is the least positive integer ¢ such that A can be written
as componentwise OR A = \/lfz1 R; of ¢ primitive matrices Ry, ..., R;, that is,
boolean matrices of rank 1.

4.3 Proposition For every boolean matrix A, we have that
log Cov(A) < nc(A) < [log Cov(A)].

Proof. To show nc(A) < [log Cov(A)], suppose that all 1s of A can be covered by
C = Cov(A) all-1 submatrices R1,...,Rc. Let ¢ = [log C'], and let R,, be the
submatrix the binary code of whose index is w € {0, 1}*. Then define the functions

96 4 Games on (-1 Matrices

a(z,w) and b(w, y) by: a(z,w) = 1 iff z is arow of R, and b(w,y) = 1l iff yisa
column of R,,.

To show the converse direction log Cov(A) < nc(A), suppose that desired
functions a(z, w) and b(w, y) with witnesses of length ¢ = nc(A) are given. Then,
for every w € {0, 1}!, the set R,, = {(z,v) | a(z,w) A b(w,y) = 1} must be an
all-1 submatrix of A, and their union must cover all 1s of A. Since there are only 2¢
such rectangles, we can conclude that log Cov(A) < ¢t = nc(A). O

We don’t want to worry about ceilings and floorings, so we adopt the following
definition of the nondeterministic communication complexity:

nc(A) :=log, Cov(A). (4.9)

4.4 Example Carole can easily convince Alice and Bob that two binary strings «
and y of length n are not equal: using only [logn] + 1 bits she announces (the
binary code of) a position ¢ with x; # y; and the bit z;; Alice checks whether the
bit she received is the i-th bit of the string she can see, and Bob checks whether
y; # x;. If however Carole wants to convince that = = y, then she is forced to send
n bits, just because Cov(I,,) = 2" for a 2" x 2" identity matrix I,,.

One can show that only sparse matrices can have large nondeterministic com-
munication complexity. For a boolean matrix, let |A| denote the number of its
1-entries. The following lemma is a modification of a probabilistic argument used
by Alon (1986).

4.5 Lemma Let A be a boolean matrix. If every column or every row of A contains at

most d zeros, then Cov(A) = O(dIn |A]).

Proof. We only consider the column case, the row case is the same. To cover the
ones of A we construct an all-1 submatrix B with row set [and column set J
via the following probabilistic procedure: pick every row of A with probability
p=1/(d+ 1) to get a random subset I of rows, and let .J be the set of all columns
of A that have no zeros in the rows of B.

A l-entry (x,y) of A is covered by B if = was chosen in I and none of (at most
d) rows with a 0 in the y-th column was chosen in I. Hence,

Prob[(z, y) is covered by B] > p(1 — p)¢ > pe % > p/e.

If we apply this procedure ¢ times to get ¢ all-1 submatrices, then the probability that
(,y) is covered by none of these submatrices does not exceed (1 — p/e)t < e~ /¢,
Hence, the probability that some 1-entry of A remains uncovered is at most

Al - e/ = exp(In |A] — t/(e(d + 1)),

which is < 1fort > e(d + 1) In|A|. 0

4.2 Nondeterministic communication 97

4.2.1 Greedy bounds

We now turn to lower bounds on the covering number Cov(A), and hence, on
the nondeterministic communication complexity nc(A) = log Cov(A). Recall that
the covering number Cov(A) of A is the smallest number of its all-1 submatrices
covering all 1-entries of A.If A has |A| ones, then a trivial lower bound is Cov(A) >
| A| /7, where r is the largest number of entries in an all-1 submatrix of A. This bound,
however, may be very far from the truth. Let, for example, A = (a;;) be an upper
triangular n x n matrix, thatis a;; = 1iffi < j.Then |[A| =n+(n—1)+---+1 =
n(n + 1)/2, but also 7 > n?/4, and the resulting (trivial) lower bound on Cov(A)
is even smaller than 2.

A much better way to show that Cov(A) must be large is to choose a particular
subset S of “hard to cover” 1-entries in A, and to show that no all-1 submatrix of A
can cover many entries in S. To formalize this, let us define 7 4(.9) as the largest
number of the selected “hard” 1-entries (those in S) that can be covered by an all-1
submatrix of A. This immediately implies that we need Cov(A) > |S|/ra(S) all-1
submatrices of A to cover all entries in S. In the case of the triangular matrix A, we
can take S to be, say, the set all its n diagonal entries. Then 74 (S) = 1, and a much
more respectful lower bound Cov(A) > n follows. This motivates the following
measure:

#(A) = max i
S ra (S) ’
where the maximum is over all subsets S of 1-entries of A. By what was said above,
we have that Cov(A) > pu(A). Actually, this lower bound is already not very far
from the truth.

4.6 Lemma (Lovasz 1975) Cov(A) < pu(A) - In|A| + 1.

Proof. Let I be the set of all 1-entries of A. Consider a greedy covering of I by
all-1 submatrices Rq,...,R; of A. That is, in the i-th step we choose an all-1
submatrix R; covering the largest number of all yet uncovered entries in I. Let
B; =1\ (R1U---UR;_1) be the set of entries in I that are left uncovered after
the i-th step. Hence, By = I and B; = (). Let b; = |B;| and r; = r4(B;). That is,
r; is the maximum number of entries in B; contained in an all-1 submatrix of A.
Since, by the definition of i := p©(A), none of the fractions b; /r; can exceed p, we
have that b, 11 = b; — r; < b; — b; /. This yields

bi <bo(1—1/p)" < |A|-e/H.

Fori=1t—1,weobtainl < b1 <|A4]|- e~ (t=1/1 and the desired upper bound
Cov(A) <t < pln|A| + 1 follows. O

98 4 Games on (-1 Matrices

4.2.2 Fooling-set bounds

Since any two l-entries lying on one line (row or column) can be covered by one
all-1 submatrix, a natural choice for a “difficult-to-cover” subset S of 1-entries of A
is to take “independent” entries.

Namely, say that two 1-entries in a matrix are independent if they do not lie in
one row or in one column. The term-rank, trk(A), of A is the largest number of
its pairwise independent 1-entries. The clique number, w(A), of A is the largest
number 7 such that A contains an r X r all-1 submatrix. Finally, the line weight,
A(A), of A is the largest number of 1s in a line (row or column). If G is the bipartite
graph whose adjacency matrixljis A then:

« trk(A) = maximum number of edges in a matching in G.
« w(A) = maximum r such that G contains a complete r x r graph K., as a
subgraph.

« A(A) = maximum degree of a vertex in G.

Using these parameters we can lower bound the cover number as follows:

tk(4) |4

CovA = ") 2 3@ wA)

(4.5)
The first inequality follows since any r X r all-1 submatrix of A can have at most r
independent 1s. The second inequality is a direct consequence of a classical result
of Kénig-Egervary saying that the term-rank trk(A) of A is exactly the minimum
number of lines (rows and columns) covering all 1s in A; hence, trk(A) > |A|/A(A).

Although simple, the first lower bound in (??)—known as the fooling set bound—is
one of the main tools for proving lower bounds on the nondeterministic communi-
cation complexity of boolean functions.

For sparse matrices, we have a somewhat better bound. Lemma ?? implies that,
for any symmetric matrix A, the fraction trk(A4)?/|A| is a lower bound on the tiling
number x(A) of A. It can be shown that this fraction is also a lower bound on the
covering number Cov(A).

4.7 Lemma (Jukna-Kulikov 2009) For every nonzero boolean matrix A,

trk(A)?
> —.
Cov(4) > A
Proof. Take a largest set I of |I| = trk(A) independent 1-entries in A, and let
Ry, ..., R; be a covering of the 1-entries in A by ¢ = Cov(A) all-1 submatrices.
Define a mapping f : I — {1,...,¢} by f(z,y) = min{i | R;[z,y] = 1}, and let
I; ={(z,y) € I| f(z,y) =1i}. Thatis, I; consists of those independent 1-entries
in [that are covered by the i-th all-1 submatrix R; for the first time. Note that some

" A boolean m X n matrix A = (aij) is the adjacency matrix of a bipartite m X n graph G =
(LUR, E) with parts L = {u1,...,um}and R = {v1,...,vn},if a;; = 1 if and only if u; and
v; are adjacent in G.

4.3 P = NP N co-NP for fixed-partition games 99

of the I;’s may be empty, so let I, ..., I} be the nonempty ones. Say that an entry
(x,y) is spanned by I if (z,y") € I; for some column ' and (2, y) € I; for some
row z’.

Let S; be the submatrix of R; spanned by I;. Hence, S1, . .., Sk are disjoint all-1
submatrices of A covering all 1-entries in I. Moreover, each .S; is an r; X r; matrix
with r; = |I;|. Since the S,’s are disjoint, we have that

ri4 -4 = I =trk(A) and 77 4. 07 < |A].
By the Cauchy-Schwarz inequality,
trk(A)2 = (ri 4+ +r)? <k-(ri+---+73) < k- 4],
and the desired lower bound t > k > trk(A)?/|A| follows. O

4.8 Remark For all boolean matrices A with |A| < trk(A) - w(A) ones, Lemma ??
yields somewhat better lower bounds than those given by the fooling set bound
(??). If, for example, an n X n matrix A contains an identity matrix and some
constant number ¢ of r x r all-1 matrices with r = /n, then Lemma ?? yields
Cov(A) > n?/(cr? + n) = 2(n), whereas the fooling set bound (??) only yields
Cov(4) > n/r =/n.

4.3 P = NP M co-NP for fixed-partition games

Having two modes (deterministic and nondeterministic) and having the (far-fetched)
analogy with the P versus NP question, it is natural to consider the relations
between the corresponding complexity classes. Here for convenience (and added
thrill) we use the common names for the analogs of the complexity classes:

Let P (resp., NP) consist of all boolean functions in 2m variables whose deter-
ministic (resp., nondeterministic) communication complexity is polynomial in
log m.

The complement of a boolean matrix A is the matrix A = A — J, where .J is the
all-1 matrix (of the same dimension). Note that in the case of deterministic protocols,
there is no difference what of the two matrices A or A we consider: we always have
that ¢(A) = ¢(A), because each deterministic protocol must cover all Os as well as
all 1s of A. In the case of nondeterministic communication, the situation is different
in two respects:

1. we only need to cover the 1s of A, and
2. the submatrices need not be disjoint.

This is where an asymmetry between nondeterministic protocols for A and A comes
from. And indeed, we have already seen that the nondeterministic communication
complexities of the identity matrix and its complement are exponentially different.

100 4 Games on (-1 Matrices

But what if both A and A have small nondeterministic communication complexity—
what can be then said about the deterministic communication complexity of A?
This is a version of the famous P versus NP N co-NP question in communication
complexity. To answer questions of this type (in the communication complexity
frame), we now give a general upper bound on the deterministic communication
complexity of a matrix A in terms of the nondeterministic communication com-
plexity of A and A. This shows that P = NP N co-NP holds for the fixed-partition
communication complexity.

4.9 Theorem (Aho-Ullman-Yannakakis 1983) For every boolean matrix A,
¢(A) < 2max{nc(A),nc(A4)}?.

Proof. Let R = Ry U Ry where Ry is a set of |Rg| < 2"(4) all-0 submatrices
covering all zeros of A, and R is a set of |R;| < 2"(4) all-1 submatrices covering
all ones of A. Assign label “0” to all rectangles in Ry, and label “1” to all rectangles
in R;. It is clear that this is a legal labeling in the sense of Lemma ??, since every
rectangle in R must be disjoint from every rectangle in R ;. Hence, on a given input
(z,y), the players have only to find out the label of a rectangle containing (z, y).
By Lemma ??, this can be done using at most 2(log |R[)? < 2max{nc(A), nc(A)}?
bits of communication. O

Theorem ?7? itself cannot be substantially improved. To show this, consider the
k-disjointness matrix D, j. This is a 0-1 matrix whose rows as well as columns are
labeled by all Zf:o (") subsets a of [n] of size at most k; the entry in the a-th row
and b-th column is defined by:

0 ifand#0,

D, ;la,b] =

ot {1 ifanb=0.
4.10 Theorem (Razborov 1990) If A = Dy, with k = logn then both nc(A) and
ne(A) are O(logn), but ¢(A) = 2(log® n).

The theorem is a direct consequence of the following two lemmas. In the first
lemma, rk(A) stands for the rank of A over GF(2).

k

4.11 Lemma The k-disjointness matrix has full rank, tk(Dy, 1) = >, (7).
Proof. The matrix D = D,, j, has N = Zf:o (') rows and as many columns. We
must show that the rows of D are linearly independent over GF(2), i.e., that for
any nonzero vector A = (A\r,, Ar,, - - -, Ay) in GF(2), indexed by subsets of [n]
of size at most k, we have AT D # 0. For this, consider the following polynomial:

flx,. .. zy) = Z)\IH%‘-

I|<k €l

Since A # 0, at least one of the coefficients A; is nonzero, and we can find some I
such that A7, # 0 and Iy is maximal in that A\; = 0 for all I D I. Assume w.l.o.g.

4.3 P = NP N co-NP for fixed-partition games 101

that Iy = {1, ...,t}, and make in the polynomial f the substitution z; = 1 for all
i ¢ Iy. After this substitution has been made, a nonzero polynomial over the first ¢
variables x1, ..., x; remains such that the term x5 - - - ; is left untouched (here
we use the maximality of Ij). Hence, after the substitution we obtain a polynomial
which is 1 for some assignment (a1, . . ., a;) to its variables. But this means that the
polynomial f itself takes the value 1 on the assignment b = (ay,...,a¢,1,...,1).

Hence,
1=fb)= Y A]]b-
|I|1<k i€l

Let Jy := {i : a; = 0}. Then |Jy| < k and, moreover, [|
In Jy = 0, which is equivalent to Dy j, = 1. Thus,

Z ArDr g, =1,

1<k

iy bi = lif and only if

meaning that the Jy-th coordinate of the vector A - D is nonzero. O

The lemma implies that the deterministic communication complexity of disjoint-
ness matrices is large:

¢(Dui) > logrk(Dy) = Q(klog(n/k)).

We are now going to show that both the matrix D, j, and its complement have
small nondeterministic communication complexity.

4.12 Lemma Forall1 < k < n we have that
ne(Dy,) <logn and ne(D, 1) = O(k+ loglogn).

Proof. The first upper bound is trivial: just guess a point in the intersection of a
and b. To prove the second one, we use the probabilistic argument.

The rows as well as columns of D,, j, are labeled by subsets of [n] of size at most
k. Say that a subset Y C [n] separates pair (a,b) of two disjoint sets a and b if
a CYandbNY = (. Let Y be a random subset of [n] chosen uniformly with
probability 27", Then for a fixed pair (a, b),

Prob[Y does not separate (a,b)] =1 — Probla C Y andbNY = 0]
n—|a|—|b
e aem
27l

Let | := 2k4" Inn, and take [independent copies Y1, ...,Y; of Y. Then the proba-
bility that none of them separates a given pair (a, b) is at most

(1 _ 27‘a‘7‘b|)l S (1 _ 272k>l < e—l-2_2k .

102 4 Games on (-1 Matrices

Since there are no more than n?* pairs (a, b), the probability that at least one of
the pairs (a, b) is left unseparated by all the sets Y1, ..., Yy, is smaller than

n2k . o2 _ 2k —2klnn _
So, there must exists a sequence Y7, . .., Y] of subsets of [n] such that D,, x[a,b] =1
iff (a,b) is separated by at least one of these sets. Since the set {(a,b) | a C
Y;,bNY; = 0} of all pairs separated by the i-th set Y; corresponds to an all-1

submatrix of D,, j, this implies Cov(D,, ;) < [, and the desired upper bound
ne(Dy,) < logl = O(k + loglog n) follows. O

4.4 Clique vs. independent set game

Recall that the tiling number of a boolean matrix A is x(A) = xo0(4) + x1(4),
where x,(A) for o € {0,1} is the minimum number of pairwise disjoint all-o
submatrices of A covering all its o-entries.

By (??) we know that, if all entries of a boolean matrix A can be decomposed
into m disjoint monochromatic submatrices, then ¢(A) < 2(logm)?. This implies
that ¢(A) < 2(log x(A))?. But what if we only know that all 1-entries of A can
be decomposed in a small number of disjoint all-1 submatrices—does then c(A) is
small? It turns out that this is indeed the case: we can replace x(A) in the above
upper bound on ¢(A) by either x1(A) or xo(A).

4.13 Theorem Let o € {0, 1}. If the o-entries of a boolean matrix can be decomposed
into m pairwise disjoint all-o submatrices, then ¢(A) = O(log® m).

We will derive the theorem from a more general result about the communication
complexity of the following clique versus independent set game cisi on a given
graph G

« Alice gets a clique C C V of G.
« Bob gets an independent set I C V of G.
« Answer “17iff C NI = .

Note that we always have that |C N I| < 1.

4.14 Theorem (Yannakakis 1991) The clique versus independent set problem on every
n-vertex graph can be deterministically solved by communicating at most (’)(log2 n)
bits.

Proof. Given an n-vertex graph G = (V, E) we describe an appropriate communi-
cation protocol for the game cisg. The protocol works in log n rounds, and in each
round at most O(logn) bits are communicated. The idea is to do binary search for
an intersection.

First Alice checks whether her set C' contains a vertex of degree < n/2.If it
does then she sends the name of such a vertex v to Bob. Now they both know that

4.4 Clique vs. independent set game 103

Alice’s set is contained among v and vertices adjacent to v, and so the problem is
reduced to one for a graph on at most n/2 vertices.

If Alice does not find such a node, then Bob checks whether his set I contains a
vertex of degree > n /2. 1f it does then he sends the name of such a vertex w to Alice.
Then they both know that Bob’s set is contained among the vertices nonadjacent to
w (including w), and the problem is again reduced to one for a graph on at most
n/2 vertices.

If no one was successful, they know that every node of Alice’s set has degree at
least n/2 while every vertex of Bob’s set has degree smaller than n/2, and hence
they know that the two sets are disjoint. O

p@plus6p@

Proof of Theorem ??addpunct: Let Ry, ..., Ry, be a decomposition of 1-entries of
A into m pairwise disjoint all-1 submatrices. Consider the graph G4 on m vertices
1,...,m in which

i and j are adjacent iff R; and R; intersect in rows.
Now, given an input (2, y), Alice and Bob transform them to sets
Cy ={i| xzlabelsarow of R;} and I, = {i |y labels a column of R;} .

Note that C}, is a clique in G 4. Moreover, since the submatrices Ry, ..., R, are
disjoint, I, is an independent set in G 4. Further, C;, N I, # 0 iff (z,y) isina 1-
rectangle. Thus, the players can use the protocol for the clique versus independent
game on G 4. O

endpe false

The clique vs. independent sets game cIS¢ is important to understand the power
of linear programming for NP-hard problems. Namely, Yannakakis (1991) showed
that any n-vertex graph G, for which this game requires w(log n) bits of nondeter-
ministic communication, gives a super-polynomial lower bound for the size of linear
programs expressing Vertex Packing and Traveling Salesman Problem polytopes.

Note that nc(—cisg) < logn for any n-vertex graph: just guess a vertex in
the intersection. But for the problem cisg itself only graphs G with nc(cisg) =
2(logn) are known. Apparently, the highest so far remains the lower bound (2 —
0(1)) log, n proved by Kushilevitz, Linial and Ostrovsky (1999). The lower bound
log, m is a trivial one (see Exercise ??).

4.15 W Research Problem
Exhibit an n-vertex graph G such that nc(cisg) = w(logn).

Some partial result towards this problem were recently obtained by Kushilevitz
and Weinreb (2009, 2009a).

4.16 Remark The measure nc(cise) has an equivalent graph-theoretic formulation.
For a graph G, let ¢(G) be the smallest number ¢ with the following property: There

104 4 Games on (-1 Matrices

is a sequence 51, ...,S; of subsets of V' such that, for every clique C' C V and
every independent set I C V of G such that C N I = (), there is an 7 such that
C C S;and I N S; = (). It can be shown (see Exercise ??) that

ne(cisg) = log q(G) . (4.6)

4.17 Remark The clique versus independent set game is related to the so-called
Alon-Saks-Seymour Conjecture. The chromatic number of G, which we denote{j by
chr(G), is the smallest number of colors that are enough to color the vertices of G
in such a way that no adjacent vertices receive the same color. The conjecture states
that, if a graph G can be written as an union of m edge-disjoint complete bipartite
graphs, then chr(G) < m + 1. In this strong form, the conjecture was recently
disproved by Huang and Sudakov (2011) who showed that chr(G) = 2(m!-?) for an
infinite sequence of graphs. This yields a lower bound ne(cisg) > 1.2logn — O(1).

4.5 Communication and rank

There is yet another upper bound, similar in its form to that of Theorem ??. Instead
of Cov(A) it uses the following matrix parameter. Say that a boolean ¢ X ¢ matrix
is triangular if—after a suitable rearrangement of the rows and columns—there are
all 1s in the main diagonal and all Os everywhere above the main diagonal; entries
below the main diagonal may be arbitrary. For a boolean matrix A, define

A(A) = max{t | A contains at X ¢ triangular submatrix} .
4.18 Theorem (Lovasz-Saks 1993) For every boolean matrix A,

c(A) < (24 nc(A)) -log A(A) < (2+nc(A)) - min{logrk(A),nc(4)}. (4.7)

Proof. Letr = nc(A), and let Ay, ..., Aor be the all-0 submatrices of A covering
all Os of A. For every matrix A;, consider the matrix R; formed by the rows of A
intersecting A;, and C; be the matrix formed by the columns of A intersecting A;.
Since A; consists only of Os, we have that (see Fig. ?? for a proof):

A(R;) + A(C;) < A(4). (4.8)

The protocol consists of log A(A) rounds, in each of which at most 2+r = 2+nc(A)
bits are communicated.

In each round, the players do the following. First, Alice checks whether there
is an index i such that her row intersects 4; and A(R;) < 2 A(A). If yes, then
(using 1 + r bits) she sends “1” and the index i of this submatrix to Bob. If not, then
she sends “0”. Now Bob checks whether there is an index i such that his column

" In the graph-theoretic literature, the chromatic number of a graph is usually denoted by x(G),
but we already use this symbol for the tiling number.

4.6 The log-rank conjecture 105

Bilder/comm2-eps-converted-to.pdf

Fig. 4.3 Proof of (??): Since A; = R; x C; is an all-0 submatrix, no triangular submatrix of R;
can share a row or a column with a triangular submatrix of C;. Permute rows and columns of A
to “glue” these triangular submatrices into a triangular submatrix of A.

intersects A; and A(C;) < $A(A).If yes, then (using 1 + 7 bits) he sends “1” and
the index ¢ to Alice. If not, then he sends “0”.

If either Alice or Bob find a suitable index ¢ in this round then, by communicating
at most 2 + r bits, they have restricted the problem to a matrix A’ (= R; or C;) for
which A(A’) < $A(A). Hence, in this case, the theorem follows by induction.

If both players have sent “0” in this round, then they can finish the protocol: the
answer is “A[z,y] = 1”. Indeed, if there were a 0 in the intersection of Alice’s row
and Bob’s column, then this 0 would belong to some submatrix A;. However, for this
submatrix we have on the one hand A(R;) > 1 A(A) (since i did not suit Alice), on
the other hand A(C;) > $A(A) since i did not suit Bob. But this contradicts (??).

Thus, we have shown that ¢(M) < (2 +) - log A(A), as desired. To show the
second inequality in (??), it suffices to observe that A(A) < min{rk(A), Cov(A)}
and nc(A) = log Cov(A). O

Note that the proof of this theorem works not only for the matrix measure A(A)
but also for any matrix measure ;1(A) satisfying (??).

4.6 The log-rank conjecture

We already know that ¢(A) > log rk(A) holds for any matrix A. But how tight is
this lower bound? Lovasz and Saks (1988) made the following conjecture.

4.19 Conjecture (Log-Rank Conjecture) There is a constant ¢ > 0 such that for every
0-1 matrix A,
c(A) < (logrk(A))°.

Here rk(A) is the rank of A over the reals! If we consider rank over finite fields
(instead of the reals), the conjecture does not hold (see Exercise ??).

The area of a matrix is the number of its entries. If mono(A) denotes the maxi-
mum area of a monochromatic submatrix of A, then

106 4 Games on (-1 Matrices
2

¢(A) > log x(A) = log mono(4)

Hence, the Log-Rank Conjecture implies the following (seemingly “easier” to
tackle) conjecture stating that every 0-1 matrix of small rank must contain a large
monochromatic submatrix.

4.20 Conjecture (Nisan-Wigderson 1995) There is a constant ¢ > 0 such that for
every boolean n x n matrix A of rank r,

n2
> .
mono(A) > S0iog)"

In fact, Nisan and Wigderson (1995) showed that this last conjecture is also
equivalent to the Log-Rank Conjecture (see Exercise ??). Moreover, they gave a
support for Conjecture ??: every matrix of small rank must contain a submatrix of
large “discrepancy” (see Theorem ?? below).

Since A(A) < rk(A) and nc(A) < logrk™ (A) (see Exercise ??), Theorem ??
implies that

¢(A) < 2logrk™(A) - logrk(A).

Thus the Log-Rank Conjecture is equivalent to the following purely mathematical
question about the relation between the rank of boolean matrices and their non-
negative rank.

4.21 Conjecture (Positive Rank) There is a constant ¢ > O such that for every 0-1
matrix A,
logrk™(A) < (logrk(A))°.

It is also known that the Log-Rank Conjecture is equivalent to the a conjecture
stating that chr(G) < 2 MY for any graph G, where chr(G) is the chromatic
number of G and r = rk(G) is the real rank of the adjacency matrix of G (see
Theorem ?? below). Yet another algebraic analogue of the Log-Rank Conjecture
was found by Valiant (2004).

The existence of so many seemingly unrelated but in fact equivalent formulations
supports the importance of the Log-Rank Conjecture.

4.6.1 Known gaps

For some time it was thought that chr(G) < rk(G). This was conjectured by
van Nuffelen (1976). The first counterexample to van Nuffelen’s conjecture was
obtained by Alon and Seymour (1989). They constructed a graph with chromatic
number 32 and with an adjacency matrix of rank 29. Razborov (1992c) then showed
that the gap between the chromatic number and the rank of the adjacency matrix
can be super-linear, and Raz and Spieker (1995) showed that the gap can even be
super-polynomial. The best result known so far is due to Nisan and Wigderson

4.6 The log-rank conjecture 107

(1995). It gives an infinite family of graphs with rank r and with chromatic number
chr(G) = 2% (e ™" for a constant € > 0.

4.22 Theorem (Nisan-Wigderson 1995) There exist explicitly given 0-1 matrices A of
size 2 x 2" such that ¢(A) = 2(n), andlogrk(A) = O(n®*), where o = log; 2 =
0.63....

The same 2(n) lower bound applies also to the randomized and to the non-
deterministic communication complexities. The construction is based on boolean
functions with high sensitivity and low degree. Such a function was constructed
by Nisan and Szegedy (1994); see Lemma ??. The lower bound for the communica-
tion complexity relies on the known lower bounds for randomized communication
complexity of disjointness matrices.

Proof. With every boolean function f : {0,1}" — {0, 1} we associate 2" x 2"
matrix Ay as follows:

Af[z7y] = f(l'l 'y17$2'y2,-~-,$n'yn)-

We will need the following two properties of these matrices. Recall that a boolean
function f is fully sensitive at 0 if f(0) = 0 and f(x) = 1 for every vector with
exactly one 1.

4.23 Claim If f is fully sensitive at O then ¢(A;) = 2(n).

The same lower bound holds for the randomized and for the nondeterministic
complexity of Ay.

Proof. This is a corollary of a deep result, due to Kalyanasundaram and Schnitger
(1992) and Razborov (1992a), that the randomized (as well as deterministic and
nondeterministic) communication complexity unique disjointness matrix UDISJ,, is
£2(n); see Theorem ?? and Exercise ??. The matrix UDIsJ,, is a partial 2" X 2" matrix
whose rows and columns are labeled by distinct binary vectors of length n, and

1 ifz:b:l Ti-Yi =0
uDIsy, [z,y] =<0 if Y xiey; =1
* otherwise.

Now notice that if f is fully sensitive at O then any protocol for Ay is also a protocol
for upisy,,. a

4.24 Claim If the polynomial of f has m monomials then rk(Af) < m.

Proof. Let f(2) = > g As] [;cq #i be the representation of f as a real polynomial.
By the definition of Ay it follows that Ay =)" 4 AgBg where the matrix Bg is
defined by Bs[z,y] := [],cg 2i - yi- Since each Bg has rank 1, the rank of A is at

most the number m of all monomials As [[, ¢ 2; with Ag # 0. a

108 4 Games on (-1 Matrices

To finish the proof of Theorem ??, take a boolean function f : {0,1}" — {0,1}
constructed in Lemma ??. This function is fully sensitive at 0, and contains m <
20("") monomials, where o = logs 2 ~ 0.631. By Claim ??, we have that A has
maximal communication complexity, ¢(A¢) = {2(n). On the other hand, Claim ??
implies that logrk(Ay) = O(n®). O

4.6.2 Small rank implies large discrepancy

We now give a result supporting the Log-Rank Conjecture: every matrix of small
rank must contain a submatrix of large “discrepancy”.

The discrepancy of a 1 matrix is just the absolute value of the sum of its entries.
Hence, small discrepancy means that the matrix is balanced: it has almost the same
number of positive and negative entries. The maximum discrepancy, disc(A), of a
matrix A is the maximum discrepancy of its submatrices. That is,

disc(A) = max |zT Ay| = max’ Z a;;xiy;), (4.9)

ij=1

where the maximum is over all 0-1 vectors x and y: each pair of such vectors
corresponds to a submatrix of A determined by the 1-position of x and y. Note that
0 < disc(A) < n? for every n x n matrix A.

The discrepancy of an a x b matrix does not exceed its area ab, and is equal
to ab if the matrix is monochromatic. Hence, we always have that disc(4) >
mono(A). Interestingly, if we replace “maximal area of a monochromatic submatrix”
by “maximal discrepancy of a submatrix”, then the modified Conjecture ?? holds in
a very strong sense!

4.25 Theorem (Nisan-Wigderson 1995) For every n X n £1 matrix A of rankr,
2

disc(A) > —.
167

Proof. We are given a £1 matrix A = (a;;) of low rank r = rk(A) and wish to find
in it a submatrix of high discrepancy. By the definition (??) of the discrepancy, we
only need to find 0-1 vectors x and y for which x7 Ay is large. As an intermediate
step we shall consider the set

U={ueR":|u| <1lforalli}

of real vectors of small maximum norm and show that disc(A) can be lower bounded
by the maximum of u” Av over the vectors u,v € U.

4.26 Claim For any u,v € U we have that

4.6 The log-rank conjecture 109

uT Av

i >
disc(A) > 1

Proof. Letting z = Av, we have " Av = 3" | ;2. Hence, Y, uiz; >
uTAv/ 2, where K is either the set of coordinates i where both u; and z; are
positive or the set of coordinates in which both are negative. Assume the first case
(the second case is similar by using vector —v instead of v). Then letting z € {0,1}"
to be the characteristic vector of K and using the fact that |u;| < 1 for all 4, we
have

n
2T Av > lezl = Z w2 > uTAU/Q.
i=1 €K
Repeating this argument with z = 27 A, we can replace v with a 0-1 vector y
obtaining that 7" Ay > u” Av/4. Hence, disc(A) > a7 Ay > u’ Av/4, as claimed.
O

To finish the proof of the theorem, it is enough by Claim ??, to find two vectors
u,v € U for which uT Av > n? /4r. For this, we will use a relation between spectral
norm, Euclidean norm and the rank of a matrix.

The spectral norm || A|| of a matrix A is the maximum, over all unit vectors z,
of the Euclidean norm || Az|| of the matrix-vector product Az. It is well known
that || A|| = max |y” Az| over all real vectors z,y € R™ whose Euclidean norm
l|lz|| = |lyll = 1. The Frobenius norm ||Al|r of A = (a;;) is just the Euclidean
norm (Zl ; afj)l/ 2 of A viewed as a vector in R, For every real matrix A, we
have the following relation of this norm with the spectral norm (see Lemma ?? in
Appendix ?? for the proof):

A <y < page. (4.10)
rk(A)

We will now construct the desired vectors u,v € U with u” Av > n?/4r. We

start with two vectors z,y € R"™ of Euclidean norm ||z|| = ||y|| = 1 for which

2T Ay = || A||. Let p > 1 be a parameter (to be specified later), and consider the

sets of indices

I={i:|eil > 1/ypy and J={j: |y >1/Vp}.

Since 1 = ||z||? = Y., #7 > |I|/p, we have that |I| < p, and similarly, |J| < p.
Consider the vectors a and b defined by:
0 ifiel, 0 ifjed,
a; = . and b] = .
x; otherwise y; otherwise.
We claim that n
alAb> — —p. (4.11)

5

110 4 Games on (-1 Matrices

To show this, consider the matrix B which agrees with A on all entries (i, j) with
i € I and j € J, and has Os elsewhere. Then

alTAb = 2T Ay — 2T By .

Since || A||r = n,Eq. (2?)yields 27 Ay > n//r. The same claim also yields 7 By <
| Bl < W(B) < p, where the last inequality follows since B has at most p nonzero
rows and p nonzero columns. So,

n

g

Set now p := n/(2,/r), and consider the vectors u := /p-a and v := /p-b. Since
lai|, |b;] < 1/./p for all i, both vectors u, v belong to U, and we have

aTAb = 2T Ay — 2" By >

n2

T T n 2
Av=p-a" Ab>p - — —p° = —. a
u Av=p-a D 7 D "

4.6.3 Rank and chromatic number

As mentioned above, the Log-Rank Conjecture in communication complexity is
equivalent to the following conjecture for graphs. For a graph G, let rk(G) denote
the rank of the adjacency matrix Ag of G. Recall that the chromatic number chr(G)
of GG is the smallest number of colors that are enough to color the vertices of G in
such a way that no adjacent vertices receive the same color.

4.27 Conjecture (Chromatic Number Conjecture) There exists a constant ¢ > 0 such
that log chr(G) < (logrk(G))¢ holds for every graph G.

4.28 Theorem (Lovasz-Saks 1988) The log-rank conjecture and the chromatic number
conjecture are equivalent.

This result was only announced in (Lovasz and Saks 1988). The proof presented
below was communicated to us by Michael Saks.

Proof. Let, as before, rk(G) denote the real rank of the adjacency matrix A of G.
The two conjectures we are interested in state, respectively, that for every boolean
matrix A and every graph G-

(a) ¢(A) is at most poly-logarithmic in rk(A);
(b) logchr(G) is at most poly-logarithmic in rk(G).

To show that (a) = (b), recall that log x(Ag) < ¢(Ag). So, if ¢(Ag) is poly-
logarithmic in rk(Ag), then log x(Ag) is also poly-logarithmic in rk(Ag). It is
therefore enough to show that chr(G) < xo(Ag) < x(Ag). For this, let Ry, ..., R;
be a decomposition of all 0-entries of the adjacency matrix Ag of G = (V, E) into
t = x0(Ag) all-0 submatrices. Define the mapping ¢ : V' — {1,2,...,t} by letting

4.6 The log-rank conjecture 111

Bilder/matrix-eps-converted-to.pdf

Fig. 4.4 Original n x n matrix A and the n? x n? matrix 1 with E1[(4,4), (s,t)] = 1 iff
Ali,t] = 1. Up to a permutation of rows and columns, the all-1 blocks of E1 have the same
distribution in E as 1s in the original matrix A. Hence, rk(E1) = rk(A).

¢(v) be the unique ¢ such that the diagonal entry (v, v) of Ag is covered by R;. It
is easy to see that each color-class ¢~ () is an independent set in G, implying that
c is a legal coloring of G with ¢t = x(A¢) colors.

The proof of the other direction (b) = (a) is less trivial. But it is a direct conse-
quence of the following claim relating the chromatic number of graphs with the
tiling number of boolean matrices.

4.29 Claim For every boolean m x n matrix A there is a graph G4 = (V, E) on
|V| = mn vertices such that

chr(G4) = x(A) and rk(G 4) = O(1k(A)?).

Proof. For a graph G, let cl(G) denote its clique decomposition number, that is,
the minimum number of vertex-disjoint cliques covering all vertices of GG. Hence,
chr(G) = cl(G), where G is the complement of G, that is, two vertices are adjacent
in G iff they are not adjacent in G.

Given a boolean m x n matrix A, consider the graph H = (V, E') whose |V| =
mn vertices are entries (i,j) € [m] x [n] of A. Two entries (i,7) and (k,l) are

joined by an edge if and only if the {i, k} x {4, {} submatrix of A is monochromatic:
((i,4), (s,1)) € Eiff Ali, j] = Als, 1] = Ali, 1] = Als, j]. (4.12)

Note that S C V is a clique in H iff the submatrix of A spanned by S (that is, the
smallest submatrix covering all entries in \S) is monochromatic. Hence, if we take
the complement G 4 := H of H, then chr(G4) = cl(H) = x(A).

To prove 1k(G 4) = O(rk(A)?), observe that rk(G 4) < rk(H) + 1. Hence, it is
enough to upper-bound rk(H) in terms of rk (A). Recall that edges of H correspond
to monochromatic s X ¢ submatrices of A with 1 < s,¢t < 2. Let N = mn, and
consider the adjacency N x N matrix M of H with all diagonal entries set to 1.
We will write M as the Hadamard (entry-wise) product of few N x N matrices.
Fora € {0,1}, let

112 4 Games on (-1 Matrices

Cal(i,§), (s,)] = 1iff Ali,j] = a

and

D,[(i,7), (s,t)] = 1iff A[s,t] = a.

Observe that each row of C, is either an all-1 (if A[i,j] = a) or an all-0 row (if
Ali,j] = 1 — a). Similarly for columns of D,. Hence, C, and D, have rank at
most 1. Further, define

E,[(i,7), (s,8)] = 1iff Afi,t] = a

and
Fa[(ivj)7 (s7t)] =1 iﬂA[Saj] = a.

The matrices E, and F}, consist of blocks of all-1 matrices, and the block structures
are given by the matrix A (if @ = 1) or by its complement A (if @ = 0); see Fig. ??.
So, their rank is equal to tk(A) (if @ = 1) or to rk(A) < 1+ 1k(A).

Recall that a componentwise product (or Hadamard product) of two matrices
A = (a;j) and B = (b;;) is the matrix A o B = (a;; - b;;). For such a product we
have that k(A o B) < rk(A) - rk(B) (see Lemma ?? in Appendix ?? for the proof).
Now, by (??), we can write the matrix M as

M =CyoDgoEyoFy+CioDyoFE;ok,
implying that rk(M) < (1 + rk(A))? + rk(A)2. O

To finish the proof of the implication (b) = (a), assume (b) and take an arbitrary
boolean matrix A. Take a graph G 4 guaranteed by Claim ??. By (b), we have that
log x(A) = log chr(G 4) is polylogarithmic in rk(A). Inequality (??) implies that
¢(A) must also be polylogarithmic in rk(A). O

4.7 Communication with restricted advice

Recall that Cov(A) < ¢ iff all 1-entries of A can be covered by at most ¢ all-1
submatrices. When doing this, one 1-entry of A may be covered many times. Let
us now consider a version of this measure where the cover frequency is restricted.
This corresponds to nondeterministic communication in which Carole cannot use
one and the same witness for many inputs; this situation is usually referred to as a
nondeterministic communication with a restricted number of advice bits.

Let Covy (A) be the smallest number of all-1 submatrices of A covering all its
1-entries in such a way that no 1-entry of A is covered by more than k of these
submatrices. Let, as before, rk(A) denote the rank of A over the real numbers.

The following lemma is due to Grolmusz and Tardos (2003); a slightly weaker
bound was proved earlier by Karchmer et al. (1994).

4.7 Communication with restricted advice 113

4.30 Lemma For every boolean matrix A and any integer positive integer k, we have
Covi(A) > (k/3) - tk(A)V/*.

Proof. Let Ry,...,R; be t = Covi(A) boolean matrices of rank 1 such that
A = \/E=1 R; and Z:zl R; < kJ, where J is the all-1 matrix. For a subset
I C {1,...,t}, let Ry be a boolean matrix with R;[z,y] = 1 iff R;[z,y] = 1
for all i € I. By the inclusion-exclusion formula, we can write the matrix A as a
linear 1 combination

t
A=\/R; =) (-1)"'R;. (4.13)
i=1 I#0

The condition 22:1 R; < kJ implies that Ry = 0 for all I of size |I| > k. Hence,
the right hand of (??) has at most Zle (f) nonzero terms. The subadditivity of

rank yields
k
t et\k
k(A) < < (=
r()_Zl(z)_(k) ’
from which the desired lower bound on ¢ = Covy,(A) follows. O

4.31 Example We show that the lower bound in Lemma ?? is almost tight. Let I be
an identity n x n matrix with n = 2" for some m divisible by k, and let I = J — I
be its complement. Then rk(7) = n, but we have that Covy(T) < kn'/*. To see
this, encode the rows and the columns by vectors = € {0, 1}™; hence, I[x,y] = 1
iff x # y. Split the set [m] into k disjoint subsets St, . .., Sk, each of size m/k. For
every j € [k] and a € {0,1}"/F, define the rectangle R; o consisting of all pairs
(z,y) such that

the projection of x onto .S; coincides with a and that of y doesn’t.

These k2™/% = kn'/* rectangles cover all 1s of T, and each pair (x, y) with z # y
appears in at most k of them (since we take only k projections).

Together with Lemma ??, Lemma ?? implies that nondeterministic communica-
tion complexity with a small number k of witnesses cannot be much smaller than
the deterministic communication complexity. Define

neg(A) :=log Covy(A) .

4.32 Corollary For any boolean matrix A, nci(A) = 2(\/c(A)/k).

Proof. Since ¢(A) = ¢(A) and rk(A) > rk(A) — 1, Lemma ?? implies that ¢(A) is
at most about nc(A) - log A(A) < ne(A) - log A(A), and hence, at most about
nc,(A) - logrk(A). On the other hand, by Lemma ??, we have that nc (A) must be
at least about (logrk(A))/k. This implies logrk(A) = O(nci(A)/k), and hence,

the desired lower bound on nc(A) follows. O

114 4 Games on (-1 Matrices

4.8 P # NP N co-NP for best-partition games

If f: {0,1}*" — {0,1} is a boolean function, then any balanced partition (z, y) of
its variables into two blocks of equal size gives us a communication matrix My of
f: this is a boolean 2" x 2" matrix with M[z,y] = f(z, y). The communication
complexity of this matrix is then referred to as the communication complexity of f
under this (particular) partition. Note however, that different partitions may result
in different communication matrices of the same boolean function f.

The deterministic best-partition communication complexity ¢*(f) of f is the
minimum, over all balanced partitions (x, y), of the deterministic communication
complexity of M under partition (x, y). Let also nc*(f) denote the nondeterministic
best-partition communication complexity of f. The best-partition communication
complexity was introduced by Lipton and Sedgewick (1981).

Although historically the best-partition model of communication has received
less attention than the fixed-partition model, the former one has larger applicability.
This model naturally arises when dealing with time-space tradeoffs of VLSI chips;
see, for example, Lengauer (1990). It (also naturally) arises in the context of branching
programs. In fact, most of lower bounds for various restricted models of branching
programs were obtained by proving (more or less explicitly) the corresponding
lower bounds on the communication complexity of different types of best-partition
protocols; see Wegener (2000) for a comprehensive description of such applications.
Recently, Raz and Yehudayoff (2011) applied best-partition complexity to prove
lower bounds for arithmetic circuits.

For many functions, the possibility to choose a suitable partition can drastically reduce the
number of communicated bits. For example, the equality function, defined by f(z,y) = 1
iff x; = y; for all 4, has maximal possible communication complexity equal to n (even
nondeterministic), if the players are forced to use this “bad” partition (x,y). If, however,
Alice receives the first half of = and y, and Bob receives the remaining variables, then they
can locally test whether their pieces are equal and tell this the other player. Thus, under this
“good” partition, just two bits of communication are enough!

Theorem ?? implies that P = NP N co-NP in the case of fixed partition games:
if both the function f and its negation —f have nondeterministic communication
complexity at most ¢, then the deterministic communication complexity of f does
not exceed O(t2).

But what about best-partition complexity? The question is important because it
exposes something about the power of lower bound arguments. We can prove a
lower bound on the deterministic communication complexity of a function f by
arguing about either f or —f. But if both the function and its negation have low
nondeterministic complexity under some partitions of variables, other arguments
are needed to show that the deterministic communication complexity must be large
for any partition.

It turns out that no analogue of Theorem ?? holds in the best-partition case.
Recall that in the best-partition case the players can choose different (most suitable)
partitions for a function f and its negation —f. The following simple function,

4.8 P # NP N co-NP for best-partition games 115

separating P from NP N co-NP in the best-partition model of communication was
used in (Jukna, 2005).

To visualize the effect of the choice of a partition of input variables, we define
our function f as a boolean function of n?2 variables, arranged into an n X n matrix
X = (xi;). Hence, inputs for f are 0/1 matrices A : X — {0,1}. We define f(A)
in such a way that a partition of the variables according to columns is suitable for
computing f, and that according to rows is suitable for - f. Say that a row/column
of a 0-1 matrix is good if it contains exactly two 1s, and bad otherwise. Define the
function f by:

f(A) = 1iff at least one row of A is good and all columns of A are bad.

4.33 Theorem Both nc*(f) and ne*(—f) are O(logn), but ¢*(f) = 2(n).
Thus, for the best-partition games, we have P # NP N co-NP.

Proof. We first show that both nc*(f) and nc*(—f) are O(logn). In the protocol
for f Alice takes the first half of columns whereas in the protocol for —f she takes
the first half of rows. To compute f(A) for a given matrix A : X — {0, 1}, the
protocol first guesses a row 7 (a candidate for a good row). Then, using 3 bits, Alice
tells Bob whether all her columns are bad, and whether the first half of the row
r contains none, one, two or more 1s. After that Bob has the whole information
about the value f(A) and can announce the answer. The negation —f(A) can be
computed in the same manner by replacing the roles of rows and columns.

Now we show that ¢*(f) = £2(n) by a reduction to the disjointness function
pisj(x, y). Recall that this is a boolean function of 2n variables which outputs 1 iff
>, x;y; = 0. Since the general disjointness matrix has full rank (see Exercise ??),
the lower bound (??) implies that the deterministic communication complexity of
DIs], as well as of —D1s], under this partition is £2(n). (In fact, even nondeterministic
and randomized communication complexity of this function is £2(n), but we will
not use this fact.)

Take an arbitrary deterministic protocol for f. The protocol uses some balanced
partition of the set X of variables into two halves where the first half is seen by
Alice and the second by Bob. Recall that X is arranged into an n X n matrix.

Say that a column is seen by Alice (resp., by Bob) if Alice (resp., Bob) can see all
its entries. A column is mixed if it is seen by none of the two players, that is, if each
player can see at least one of its entries. Let m be the number of mixed columns.
We consider two cases depending on how large this number m is. In both cases we
describe a “hard” subset of inputs, that is, a subset of input matrices on which the
players need to communicate many bits.

Case 1: m < n /2. In this case each player can see at least one column: if, say, Alice
had seen all n — m non-mixed columns, then she would see more than half of all
entries. Take one column x seen by Alice and another column y seen by Bob, and let
Y be the (n — 3) x 2 submatrix of X formed by these two columns without the last
three rows. We restrict the protocol to input matrices A : X — {0, 1} defined as
follows. We first set all entries in the last three rows to 1. In this way we ensure that

116 4 Games on (-1 Matrices

all columns of A are already bad. Then we set all remaining entries of X outside YV’
to 0. The columns x and y of Y may take arbitrary values. Such a matrix looks like:

Z1 Y1
Tn—4 Yn—4
1 ... 1

In each such matrix all columns are bad and, for n > 3, the last three all-1 rows
are also bad. Thus, given such a matrix, the players must determine whether any
of the remaining rows is good. Since all these rows have 0Os outside the columns x
and y, this means that the players must determine whether x; = y; = 1 for some
1 <4 < n — 3. That is, they must compute —p1sj(z, y) which requires 2(n) bits of
communication.

Case2: m > n/2.Let Y be the n x m submatrix of Y formed by the mixed columns.
Select from the i-th column of Y one entry x; seen by Alice and one entry y; seen
by Bob. Since m < n and we select only 2m entries, there must be a row r with
t < 2 selected entries. Let Y be the n x (m —) submatrix consisting of the mixed
columns with no selected entries in the row r. We may assume that m — ¢ is odd
and that m — ¢t < n — 2 (if not, then just include fewer columns in Y).

Now restrict the protocol to input matrices A : X — {0, 1} defined as follows.
First we set to 1 some two entries of the row r lying outside Y, and set to 0 all the
remaining entries of 7. This ensures that the obtained matrices will already contain
a good row. After that we set all the remaining non-selected entries of X to 0. A
typical matrix looks like:

11
T1 Y2
Tn—t
T2
Y1
Ys
T3 Yn—t

where r is the first row and all remaining entries are zeros.

Since each obtained matrix A contains a good row (such is the row) and all
columns outside the submatrix Y are bad (each of them can have a 1 only in the
row 1), the players must determine whether all columns of A in Y are also bad.
Since all non-selected entries of Y are set to 0, the players must determine whether
x;+y; < 1lforalli = 1,...,m — t. Hence, the players must decide whether
E:’;t x;y; = 0, that is, to compute the set-disjointness function pisj(z, y), which
again requires {2(m — t) = 2(n) bits of communication. O

4.9 Randomized communication 117

4.9 Randomized communication

In a randomized communication protocol, Alice and Bob are allowed to flip a coin.
The coin can be public (seen by both players) or private. Alice and Bob are allowed
to get a wrong result with probability smaller than some (fixed in advance) constant
€ < 1/2. That is, a randomized communication protocol P using a string 7 of
random O-1 bits is an e-error protocol for a boolean matrix A if, for all entries (z, y),
the probability that P(z,y,r) # Az, y] does not exceed . We will assume that the
random string 7 is public (seen by both players); we will later show that this is not
a restrictive assumption. We will also assume that the coin is fair, that is, each time
0 and 1 come with the same probability 1/2. We assume this only for simplicity of
presentation — most of the results also hold for any probability distribution.

For a boolean matrix A, let ¢.(A) denote the cost of the best randomized protocol
for A that uses a public random string and errs with probability smaller than e.

4.34 Example A standard example of a matrix where randomization is much more
powerful than nondeterminism is the n x n identity matrix I,, with n = 2™. That
is, I [x,y] = 1 iff x = y. Since the 1-entries of this matrix cannot be covered by
fewer than 2" all-1 submatrices, the nondeterministic communication complexity
of I, is m. On the other hand, the randomized communication complexity of I, is
constant!

Indeed, the players can pick a random string 7 = (71, ..., 7.,) in {0, 1}™. Alice
sends the scalar product (r,), Bob checks whether (r,y) = (r,) and sends the
answer. Since every nonzero 0-1 vector v # 0 is orthogonal over GF(2) to exactly
half of all vectors, the error probability is € = 1/2: just take v = « @ y. To reduce
the error to € < 1/3, just repeat the protocol several times and output the most
frequent answer.

4.9.1 Distributional complexity

Let us now look at how to prove that some matrices are hard for randomized
protocols. Let A be a boolean matrix (a 0-1 matrix) with rows X and columns Y.
The result of a randomized communication protocol of each input (z,y) € X x Y
is a random variable. To lower bound ¢.(A) from below, it is often easier to give a
lower bound on a “dual” measure. Instead of requiring that, on each input (z,y),
the randomized protocol can err with probability at most €, we now consider
deterministic protocols and require that they output correct value everywhere
except an e-fraction of inputs (z, y).

Namely, define the e-error distributional complexity, distr.(A) of a matrix A as the
smallest communication complexity of a deterministic protocol P(z,y) computing
Alz, y] correctly on all but at most an e-fraction of all inputs (z, y).

4.35 Proposition ¢.(A) > distre(A).

118 4 Games on (-1 Matrices

Proof. Let P be a randomized protocol for A of cost ¢ = ¢.(A), and let [be the
number of random bits it uses. For every input (z, y), the protocol P must be correct
for at least a (1 — ¢) fraction of all 2! choices of these random bits. Hence, there
must be a choice r € {0, 1}! after which the (deterministic) protocol P, must be
correct on at least a (1 — €) fraction of all inputs. O

As before, a rectangle is a set of the form R = FF x Gwith F C X and G C Y.
Its area | R| is the total number of entries init. Let A : X XY — {0, 1} be a boolean
matrix, and let > 0 be its density, that is, the fraction of 1-entries in A.

We already know that,if nc(A) < ¢, then at least one 1-monochromatic submatrix
occupies at least a fraction /2! of the whole area of A. A similar result also holds
for the randomized communication complexity. We only have to allow submatrices
that are “nearly” 1-monochromatic in that almost all their entries are ones (see
Exercise ?? for a weaker statement).

Fix an arbitrary constant 0 < € < p/4, where p is the density of A. Say that a
rectangle R is nearly 1-monochromatic if Az, y] = 0 for at most a fraction 4e/ 1 of
the entries (z,y) in R.

4.36 Lemma (Yao 1983) Let A be a boolean m x n matrix of density p. If c.(A) <t
then at least one nearly 1-monochromatic rectangle occupies at least a fraction /22
of the whole area of A.

Proof. Since ¢.(A) < t, Proposition ?? implies that there exists a deterministic
protocol P of cost at most ¢ which is correct on all but a € fraction of inputs. The
protocol P decomposes our matrix A into at most p = 2¢ rectangles. On all entries
of each of these rectangles the protocol outputs the same answer “0” or “1”. We
concentrate on only those rectangles on which the protocol gives answer “1”. Let
@@ = X x Y be the set of all entries of A, and T' C () the subset of these entries
covered by the rectangles on which the protocol gives answer “1”.

Since A has at least (1|()| ones, and since € < /2, the set 7' must cover at least
half of ones of A. Indeed, otherwise more than half of the ones of A would be
covered by rectangles giving wrong answer “0”, which would result in more than
141|Q| > €|Q| errors. Thus, |T'| > 14(Q)|.

Now let 7/ C T be the set of entries covered by nearly 1-monochromatic
rectangles. If the protocol gives answer “1” on a rectangle R, and if this rectangle
is not nearly 1-monochromatic, then R wrongly covers more than %|R| Zeros
of A. Together with [T'| > 14|Q| and the disjointness of the rectangles, this
already implies that [7”| > }|T'|; otherwise, T would wrongly cover more than
3 %|T| > €|Q| zeros of A. Thus |T"| > 3|T| > 4|Q| entries of A are covered by
nearly 1-monochromatic rectangles. Since we have at most 2¢ such rectangles, at
least one of them must occupy at least a fraction of 4 /2" = /22 of the whole
area |Q|, as claimed. O

4.10 Lower bound for the disjointness function 119

4.10 Lower bound for the disjointness function

To give an explicit lower bound on the randomized communication complexity, let
us consider the disjointness matrix D,,. This is a boolean 2" x 2" matrix whose
rows and columns are labeled by subsets « C [n], and

Dylz,yl=1 iff zny=40.

Note that the matrix D,, contains huge identity submatrices. If we take all rows

labeled by subsets z of size || = n/2, and columns labeled by complements of

such sets, then we obtain an N x N identity submatrix I with N = (n72) Thus,
ne(Dy) > log N =n— O(logn) .

But this says nothing about the randomized communication complexity of D,,: we
have already seen (Example ??) that the randomized communication complexity of
the identity matrix is constant. This is why the following theorem is interesting.

4.37 Theorem For every sufficiently small constant € > 0, the e-error randomized
communication complexity of the disjointness matrix D,, is 2(n).

This result was first proved by Kalyanasundaram and Schnitger (1992); a simpler
proof was then found by Razborov (1992a). In fact, Razborov’s argument works
for the unique disjointness matrix whose (x,y)-entry is 1 if [x Ny| = 0, is 0 if
|z Ny| = 1, and is arbitrary otherwise (see Exercise ?? for a rough sketch of the
proof). Razborov’s proof is presented in the book by Kushilevitz and Nisan (1997).
Using some ideas from Chakrabarti et al. (2001), Bar-Yossef et al. (2004) gave an
information-theoretic proof.

We will present a simpler and intuitive proof of a weaker (but strong enough
for most applications) bound §2(y/n) obtained earlier by Babai, Frankl and Simon
(1986).

Proof. We concentrate on the submatrix A of D,, with row-set X as well as column-
set Y consist of all subsets of [n] of size s = /n. The probability that two random
s-element subsets and y of [n] are disjoint is

-2 -1
n\ (n—s\/n n—s\(n 5\
() =(90) =00
s s s s s n
Since the sets in X and in Y have size s = \/n, a random pair (z,y) inQ = X XY
has probability about 1/e > 1/3 to be disjoint. Thus, matrix A has density u > 1/3.

Recall that A[z,y] = 1 iff z Ny = (). Hence, if we set y := 4¢/p, then a rectangle
F' x G is nearly 1-monochromatic if

H(z,y) e F x G:xNy# 0} <~|G x F|. (4.14)

120 4 Games on (-1 Matrices

We will prove the lower bound by showing that there are no large nearly 1-
rectangles. Specifically we will prove that for any rectangle F' x G, where at
most a vy fraction of the pairs in F' x G are intersecting, either |F'| or |G| is small.
By Lemma ??, it is enough to show that there is a constant ¢ > 0 such that

|IFx G| <|X xY]|-27¢V" (4.15)

holds for every nearly 1-rectangle. The argument is roughly the following. If F' is
small, then we are done. Otherwise, if | F'| is large, then there must be a large subset
of F, where the union of these sets spans nearly all of [n]. Butif F' x G is nearly
1-monochromatic, this means that any subset y € G must avoid nearly all of [n],
and hence |G| must be small. Now we proceed to the details. It suffices to show that

if [F| > |X|-27¢V"H then |G| < |Y| - 27°V™,

We focus on the set F; C F of all rows x € F that intersect with at most a 2~
fraction of the y in G. Clearly |Fy| > |F|/2, for otherwise (??) would not hold.
Since |F| is still large, we claim that there exists k = /n/3 sets x1, ...,z in
Fy such that each), contains at least r = \/n/2 new points relative to the union
z =21 U---Ux,_; of the previous p — 1 sets. This can be proven by induction.
Since |z| = y/n for each x € X, we have that |z| < py/n < n/3. The number of
x € X satisfying |x N z| > r = y/n/2 is smaller than

o("PY P n) G (1) ety <o)
o(3)2 ()
(2

) () since 7 = /2

IN

=n
n —cvn ; —c 2v2
< < \/ﬁ)2 provided 27¢ > =¥
= |X|27V™,

Since F is large, this implies that |z, N z| < y/n/2 for some x, € F}, as desired.

Now we have k := \/n/3 sets 1, ..., 7} in F} whose union is of size at least
kv/n/2 = n/6, and such that each of them intersects with only a few sets in G,
namely each x; intersects with at most a 2+ fraction of the y in G. Let G; C G be
the set of all columns y € G that intersect at most [:= 4~k of the z;. It is easy to
verify that |G| < 2|G1|. Indeed, if more than a half of the y € G were to intersect
more than 4vk of the x;, then some x; would intersect more than 2v|G| of the
y € G, contradicting z; € Fj.

But this means that G; (and hence, also G) must be small. There are (1;) ways
to select the [of the z; which a set y € (G is allowed to intersect. Then the union
of the remaining z;’s has size at least

4.11 Unbounded error communication and sign-rank 121
n/6 —Ilv/n=n/6—4yn/3 >n/9,

as long as v < 1/24. Since this union must be avoided, we get

G < 2len| < 2(';) (” }g/g> = 2(4];6) (83/59>

where, using (}) < (en/k)" and (".") (Z)_l < e kr/n,

(o) = ()= ()7 o

provided yIn(e/4v) < 1/24, and

(52)-() =)

G|is at most [Y'| = (/) times e~ V7/18+1 < 9=V a5 desired. O

Hence, Jn

4.38 Remark Beame and Lawry (1992) exhibited a boolean function f such that
both f and —f have small nondeterministic communication complexity whereas
the randomized communication complexity of f is large:

¢e(f) = 2 (max{nc(f), ne(=£)}?) -

4.39 Remark In Theorem ?? we required the error probability € to be a sufficiently
small positive constant. Actually, the same lower bound (2(n) also holds for, say,
€ = 1/3. This can be shown using a general technique called amplification. Namely,
assume that Alice and Bob have at their disposal a protocol of cost ¢ that achieves
€ = 1/3. They can repeat it independently 1000 times and output at the end the
most frequent answer. Then, by Chernoff bounds, the error probability of this
repeated protocol of cost only 1000 - ¢ will not exceed 10710,

4.40 Remark Hastad and Wigderson (2007) observed that the lower bound of The-
orem ?? extends to submatrices of D,, as well: for every k < n/2, the random-
ized communication complexity of the submatrix D, ;, of D, corresponding to
k-element subsets of [n], is 2(k). They also proved that this lower bound is tight.

4.11 Unbounded error communication and sign-rank

So far we have considered randomized protocols where the error probability is
bounded by some fixed constant € < 1/2. In an unbounded-error model of commu-
nication the error probability is not bounded by some constant given in advance.
Instead of that it is only required that, for every input (2, y), the protocol outputs a

122 4 Games on (-1 Matrices

correct value with probability strictly larger than 1/2, for example, with probability
at least 1/2 4+ 27™. Let R(A) denote the smallest cost of such a protocol for a
matrix A.

An important restriction in unbounded-error communication model is that the
random sources for both players must be private. This requirement is important
because using public randomness we would have that R(A) < 1 for every(!)
matrix A. Here is a communication protocol.

« The two players agree on an n-bit segment 7 of the public random coins.

« Alice compares her input z with r. If x = 7, she sends Bob the bit 1, otherwise
she sends him the bit 0.

« If Bob receives 1, he outputs A[r,y]. Otherwise, he outputs the result of a
random unbiased coin flip.

Bob outputs the correct output with probability at least

1 1 1
| 1—9""). - = — 2—(71,+1) Z
+ () 5=35 7T >3

Therefore it is essential that the randomness source must be private.

Paturi and Simon (1986) established a surprisingly tight relation between R(A)
and the “sign rank” of A. In what follows, let A = (a;;) denote an m x n 1 matrix.
The function sgn(x), defined on the real numbers and called the signum function or
sign function, is 1 for positive numbers & > 0, is —1 for negative numbers x < 0,
and is 0 for z = 0. The signum rank, signrk(A), of A is the smallest possible rank
over the reals of a matrix B = (b;;) such that sgn(b;;) = a;; for all 4, j. Thus, the
signum rank of A measures the robustness of the rank of A under sign-preserving
changes; note that every entry is allowed to be changed!

4.41 Theorem (Paturi-Simon 1986) If signrk(A) = r > 1 then
logyr < R(A) <logyr+1.

Due to this surprisingly tight connection, there were many attempts to find
explicit matrices of high signum rank. In general, the signum rank of a matrix can
be vastly smaller than its rank (see Example ??). Thus, bounding the signum rank
from below is a considerable challenge.

That most of n X n 41 matrices have signum rank @(n) was first shown by
Alon, Frankl and Rédl (1985). Since then, finding an explicit matrix with signum
rank more than logarithmic remained a challenge. Then, Forster (2002) achieved
a breakthrough by proving that any n x n Hadamard matrix has signum rank at
least 2(y/n).

In this section we sketch this result. For this, we first recall that the (real) rank of
a given real matrix A is the smallest number r such that B can be written as a matrix
of scalar products of vectors in R”. More precisely, an r-dimensional realization of
amatrix A = (a;;) isapair of sets X = {x1,...,zn}and Y = {y1,...,yn} of
vectors in R such that

4.11 Unbounded error communication and sign-rank 123
ai; = (x;,y;) = xl'y; (scalar product).
If we relax this condition to

Q5 = sgn((z;, ya>)

then we arrive to the concept of r-dimensional arrangement of A. From Linear
Algebra we know that rk(A) < r iff A has an r-dimensional realization. Using this,
one can easily show that signrk(A) < r iff A has an r-dimensional arrangement.
Recall that the spectral norm || A|| of a matrix A is the maximum, over all unit
vectors z, of the Euclidean norm || Az|| of the vector Ax. A vector x is a unit vector

if its Euclidean norm ||z|| = \/z% + - - - + 22 equals 1.

4.42 Theorem (Forster 2002) For every m X n £1 matrix A we have

5

signrk(A4) > Tl
Proof. Let r = signrk(A), and let z;, y; € R" be the corresponding vectors in an
r-dimensional arrangement of A. We can assume that these vectors are unit vectors,
and both the x; and the y; are in general position, that is, any r of them are linearly
independent. The technical crux of Forster’s argument is the fact (which we will
not prove here) that the x; can be assumed to be “nicely balanced” in the sense that
they satisfy

lex;‘r = mlr (4.16)

where [, is the 7 X 7 identity matrix. (Recall the difference between the vector-
products 27 - y and x - y7': the first is a number whereas the second is a matrix M
with entries M [i, j] = x;y;.)

We will derive the theorem by giving upper and lower bounds on the quantity

n m

A= (X lwewl)

1=

For a fixed column j we have:

m
(i, y5)] > Z(wl, y;)? since x;,y; are unit vectors
i=1 i=1
m
T T ~ T T
= Zyj TiT; Yy since (74, Y;) = T; Y; = Y, Ti
i=1
m
T T
=y (2wl Jus
i=1
T m
=—vy; Lry; = — by (??)

124 4 Games on (-1 Matrices

It follows that A > n(m/r)?. We will next show that A < m||A|. Combining
these two bounds, we obtain that » > mn/|| A|| and the theorem is proved.

Since the vectors z; and y; form arrangement of A = (a;;), we have that
[(zi,y;)| = aij - (xi,y;). Hence, for any fixed column j,

m m m m
Z (i, yi)| = Zaij (@, y5) = <ijzaijxi> < H Zaijxi
i=1 i=1 i=1 i=1

by the Cauchy-Schwartz inequality |(x, y)| < ||z - ||y

)

, since y; is a unit vector.

Thus,
n m 2 n m m
A< ZHZG;‘;’QH = Z (Zaij;{)(z:aljxl)
j=1 =1 j=1 k=1 =1
= 3" @)Y agay = Y (e @) - AATIR, .
k=1 j=1 k=1

A symmetric m X m matrix P is positive semi-definite matrix if all its eigenvalues
are non-negative. Equivalent definitions are: (i) 27 Pz > 0 for all z € R™, (i) P is
a Gramian matrix of some set of vectors v1, . .., vy, that is, P[i, j| = (v;,v;), and
(iii) P = AAT for some matrix A. Of interest for us will be the following property
of positive semi-definite matrices, known as Fejer’s theorem:

A matrix P is positive semi-definite if and only if (P, Q) > 0 for all positive
semi-definite matrices Q.

Here (P, Q) is the scalar product of matrices P and () when looked as vectors of
length m?. Now, the matrices P[k,l] := (zj,2;) and Q = ||A||?L,, — AAT are
positive semi-definite. By Fejer’s Theorem, we have that

m m

> Pk Q1 =Y (ak,wr) - (|AIP L[k, 1] — AAT [, 1)) > 0.

k=1 k=1

Using this, the desired upper bound on A follows:

m

A<y an el AIPLalk, 0 = AP Y (an, ax) = [[AlPPm. O

k=1 k=1

A Hadamard matrix is an n X n £1 matrix H such that HT H = nl,,, where I,,
is the n x n identity matrix (with ones on the diagonal and zeros elsewhere).

4.43 Corollary For every n x n Hadamard matrix H, signtk(H) > \/n.

Proof. By theorem ??, it is enough to verify that H has spectral norm | H|| < v/n.
Recall that || H|| is the maximum, over all unit vectors x, of the Euclidean norm
||Hz|| of the matrix-vector product Hzx. On the other hand, for every unit vector =
we have that

4.12 Private vs. public randomness 125
|Hz|? = (Hz, Hz) = (z, (HTH)z) = (x, (nl,)z) = n{z,z) = n.0

The inner product function is a boolean function of 2m variables defined by
IP, (x,y) = >.", x;y; mod 2. Since the 2™ x 2™ +1 matrix M of this functions
with entries M|z, y] = (—1)"F(#¥) is a Hadamard matrix, Corollary ?? implies
that M has signum rank at least 2*/2. Together with Theorem ??, this implies that
the randomized unbounded error communication complexity of the inner product
function is £2(m).

Recently, Razborov and Sherstov (2010) proved an important extension of
Forster’s result. Namely, they have exhibited a boolean function f,,(x,y) of
n = 2m?3 variables which can be computed by depth-3 circuits of size O(n) and
such that its +1 matrix M with M|z, y] = (—1)/(*¥) has signum rank 202(n'/?),
The sets of variables x and y of this function are looked at as arranged into m x m?
matrices, and the function itself is defined by:

m 77L2

fm(xvy) = /\ \/ Lij /\Z/ij .

i=1j=1

One ingredient in their proof is the following generalization of Theorem ??. They
consider a more general notion of signum rank. For an m X n real matrix A = (a;;),
define its signum rank, signrk(A), as the minimum rank of a matrix B = (b;;) such
that a;;b;; > 0 for all 4, j with a;; # 0. That is, this time the matrix A may contain
zero entries, and these entries may be arbitrarily manipulated.

4.44 Theorem (Razborov—-Sherstov 2010) Let A be a real m x n matrix such that all
but h of its entries have absolute value at least vy. Then

. ymn
signrk(A4) > Tl T

Note that, if A is a +1 matrix, then vy = 1and h = 0.

Finally, note that if one takes an AND as a top gate, then the function f,,(z,y)
can be computed in depth three with O(n) gates. In Section ?? we will show that
the situation changes drastically if we require the top gate be an OR gate: then an
exponential number of gates is necessary.

4.12 Private vs. public randomness

In randomized protocols the players are allowed to use an additional information,
namely the result 7 of random coin flips. A subtle question arises: how do players
access this information? There are two possibilities:

« Public randomness: the coins are flipped by a third player, and the result is seen
by both players (with no additional communication).

126 4 Games on (-1 Matrices

« Private randomness: the players must flip their coins privately; hence, some
additional communication about the results of these flips may be necessary.

Example ?? shows that using public randomness the communication complexity
of the identity matrix I,, can be reduced to a constant. If the random strings r are
private (a much more realistic situation), the protocol is less trivial. Still, also in this
case it is enough to communicate O(log log n) bits.

Alice picks a random prime number p between 1 and m?2, and sends 4 log m bits
encoding p as well as mod p to Bob. He checks whether y mod p = x mod p,
and sends the answer to Alice. If x = y the result is always correct. If = # y the
protocol may err. The protocol errs when Alice picks a prime number p such that p
divides |z —y|. Since |x —y| < 2™, there are at most log 2™ = m such “bad” primes
numbers. On the other hand, the number of prime numbers in the interval 1,... &
is at least k/ In k. Hence, Alice is choosing her number p with equal probability
from a collection of at least £2(m?/ In m?) numbers. Therefore the error probability,
that is, the probability to pick one of at most m “bad” primes is ¢ < (Inm?)/m — 0.

We have completely ignored the subtle issue on how to choose a random prime number. But
in the communication complexity the players are considered to be “superior beings”, capable
of performing any computation on their own data—only communication between the players
is costly.

We have just seen that randomized protocols with private random bits have
harder to do. Still, Newman (1991) proved that any randomized communication
protocol with public random bits can be simulated by a protocol with private random
bits at the cost of relatively small increase of the number of communicated bits.
Let cP"V(A) denote the complexity of the best randomized protocol for A that uses
private random strings and errs with probability smaller than e.

4.45 Theorem (Newman 1991) For every boolean n x n matrix A and for every
constante < 1/2, _
SV (A) < ce(A) + O(loglogn) .

A similar argument to reduce the number of random bits was subsequently used
by several authors, including Canetti and Goldreich (1993), Fleischer, Jung, and
Mehlhorn (1995), and Sauerhoff (1999). Although the main trick is quite simple, it is
usually hidden behind the technical details of a particular model of computation.
Since the trick may be of independent interest, it makes sense to formulate it as
a purely combinatorial lemma about the average density of 0-1 matrices. By a
row-density of a boolean matrix H we will mean the maximum fraction of ones in
each of its rows.

4.46 Lemma Letlogm = o(y/n), m > 4, and let 0 < p < 1 and ¢ > 0 be constants.
Let H be a boolean m x n matrix of row-density at most p. Then there is an m X [
submatrix H' of H withl = O(logm/c?) columns and row-density at most p + c.

Proof. Select | = [logm/c?] columns uniformly at random. Since two of the
selected columns may coincide with probability at most 1/n, and since we have
only (é) = o(n) pairs of selected columns, with probability 1 — o(1) all the selected

4.12 Private vs. public randomness 127

columns are distinct. Next, fix a row = of H, and consider the 0-1 random variables
X1,...,X; where X is the value of the bit of in the j-th selected column; hence,
Prob[X; = 1] < pforall j = 1,...,l. By Chernoff’s inequality, the average
density (>~ X;)/l of ones in the selected columns can exceed p + § with probability
at most 22"t < 2 /m?. Since we have only m rows, with probability at least
1 —2/m > 1/2, all the rows of the selected submatrix will have density at most

p+ec m|
P@plus6p@
Proof of Theorem ??addpunct: Let P be an e-error communication protocol for A

using t public random bits. Let H be a boolean matrix whose m = n? rows cor-

respond to inputs (z,y), 2' columns corresponding to values 7 € {0,1}" of the
random string, and H[(z,y),r| = 1iff P(x,y,r) # Alz, y]. The matrix has row-
density p < e. Taking ¢ = ¢, Lemma ?? gives us | = O(logn/c?) strings r1, ...,
in {0, 1}" such that, for every input (x,y), the protocol P errs, that is, outputs
value P(x,y,r;) # Alx,y| for at most an € + ¢ = 2¢ fraction for the ;. Hence,
by choosing an index i € {1,...,[} uniformly at random, we obtain a 2¢-error
communication protocol P’ for A using only log! = O(loglog n) public random
bits. Now, in the private randomness model of communication Alice can just flip
that many random coins by herself, send the result of these flips to Bob, and then
the two payers can proceed as in P’. O

endpe false

Exercises

4.1 There is a tree T' with n nodes, known to both players. Alice has subtree T4
and Bob has subtree T'z. They wan to decide whether the subtrees have a common
point. Show that O(log n) bits of communication are enough. Hint: Alice chooses a
vertex z in her subtree and sends it to Bob. If is not in Bob’s subtree, he chooses the point y of
T's closest to x and sends it to Alice.

4.2 (Non-negative rank) A real matrix is non-negative if all its entries are non-
negative. Recall that the non-negative rank of a non-negative n x n matrix A is
the smallest number r such that A can be written as a product A = B - C of
a non-negative n X r matrix B and a non-negative r X n matrix C. Show that
nc(A) < logrk™ (A) holds for every boolean matrix A. Hint: Note that Cov(A) < ¢
holds if and only if there exist boolean matrices Bi, ..., B; of rank 1 such that the (z, y)-entry
of the matrix B = 22:1 B;is 0iff Alz,y] = 0.

4.3 (Threshold matrices) Let A be a boolean n X n matrix whose rows and columns
are subsets of [r] = {1,...,r}, and whose entries are defined by: A[x,y] = 1 iff
|zNy| > k. Show that either (i) A contains an all-1 submatrix with at least n? /4(}) ?
entries, or (ii) A contains an all-0 submatrix with at least n? /4 entries.

128 4 Games on (-1 Matrices

Hint: Let o = 1/2 (2) and call a subset S C [r] row-popular (resp., column-popular) if S is
contained in at least an subsets corresponding to rows (resp., to columns) of A. Look at what
happens if at least one k-element subset of [r] is both row-popular and column-popular, at what
happens when this is not the case.

4.4 (Clique vs. independent set game) Prove the equality (??).

Hint: To prove log ¢(G) < nc(cisg), take a matrix A whose rows correspond to cliques and
columns to independent sets of G. Take a covering Ry, ..., R of ones of A by all-1 submatrices of
A. Let S; be the union of all vertices appearing in at least one clique corresponding to the rows of
R;, and let T} be the union of all vertices appearing in at least one independent set corresponding
to the columns of R;. Show that S; N T; = 0.

4.5 Prove that nc(cisg) > logn for every graph G on n vertices. Hint: Consider each
single vertex as a clique as well as an independent set.

4.6 (Intersection dimension) For a boolean matrix A, define its intersection dimen-
sion, Int(A), as the smallest number d with the following property: the rows and
columns z of A can be labeled by subsets f(z) C {1,...,d} such that Az, y] =1
iff f(z) N f(y) # 0. Show that Cov(A) = Int(A).

Hint: Let A = \/j:1 B; be a covering of all 1-entries of A by boolean matrices of rank 1. Each B;
consists of an I; X J; submatrix of 1s, and Os outside this submatrix. Assign to each row x of A
the set f(z) = {i | « € I;} and to each column y the set f(y) = {i | y € Ji}.

4.7 (Generalized covering number) For a boolean matrix A, let Covg (A) be the
smallest number ¢ such that A can be written as a componentwise AND A =
AL_, A; of t boolean matrices such that Cov(A;) < t for all i. Show that boolean
n x n matrices A with Covg (A) = 2(y/n) exist. Hint: Exercise ??.

4.8 M Research Problem. Exhibit an explicit boolean n x n matrix A with
Covg (A) = n?M),

Comment: This would resolve at least two old problems in circuit complexity: give an explicit
boolean function fa,, in 2m = 2log n variables requiring: (i) depth-3 circuits of size 2 (m). and
(ii) a superlinear number of fanin-2 gates in any log-depth circuit. Why this is so will be sketched
later in Section ??.

4.9 M Research Problem. Say that a boolean matrix is square-free if it does not
contain any 2 X 2 zero submatrix. If B is a boolean square-free n x n matrix with
at least dn zeros, does then Cov(B) = d?()?

Comment: A positive answer would resolve Problem ?? because explicit square-free matrices A with
d = 02(y/n) zeros in each row and each column are known: such are, for example, complements
of adjacency matrices of dense graphs without 4-cycles (see Examples ?? and ??). Since adding
new 1s cannot destroy the square-freeness, this would imply that Covg, (A) = de.

4.10 Let L : N?> — N be a function such that L(z,0) = L(0,y) = 1 and L(x,y) <
L(z,y/2) + L(z — /K, y). Show that L(x,y) < K©U08Y) Hint. Use induction or
show that L(z, y) is at most the number of binary strings of length < K + log « with < K ones
and < log x zeros .

4.12 Private vs. public randomness 129

4.11 (Conjecture ?? implies Log-Rank Conjecture) Suppose that Conjecture ?? is
true. That is, assume that there exists a constant ¢ > 0 such that every boolean
matrix of area m and rank r contains a monochromatic submatrix of area at least
m/2(1°87)° Use this to show that ¢(M) = O((logr)°*!) for every boolean ma-
trix M, where r = rk(M).

Hint: Let A be a largest monochromatic submatrix of M. Up to permutation of rows and columns

the matrix M has the form M = é, ZB; . Assume that rk(B) < rk(C). Use rk(B) + rk(C) <

M + 1 to show that rk(A|B) < 2 4 rk(M)/2. In the communication protocol let Alice send a bit
saying if her input belongs to the rows of A or not. Then continue recursively with a protocol for
the submatrix [A|B], or for the submatrix [C'|D], according to the bit communicated. If L(m, r)
denotes the number of leaves of this protocol, starting from a matrix of area at most m and rank at
most r, then L(m,) < L(m,2 + r/2) + L(m — dm,) where § = 27 (1°8™)° Use Exercise ??
to show that L(m, r) is at most exponential in O((logr)*1).

4.12 (Quadratic forms) Let B be an m x m matrix over GF(2) of rank r, and let A
be a boolean n X n matrix with n = 2™ whose rows and columns correspond to
vectors in GF(2)™. The entries of A are defined by A[z,y] = y? Bx over GF(2).
Show that, if s + ¢ > 2m — r, then the matrix A has no monochromatic 2% x 2¢
submatrix.

Hint: Let X be a set of | X| > 2° rows and Y a set of |Y| > 2% columns of A, and suppose
that A is monochromatic on X X Y. We can assume that A[z,y] = 0 for all (z,y) € X x Y
(why?). Let H be the subspace generated by X, and G the subspace generated by Y. Argue that
the subspaces BH and G are orthogonal, hence, dim(BH) + dim(G) < m. Combine this with
dim(BH) > dim(H)— (m—r) to deduce that dim(H) +dim(G) < 2m—r.Use s+t > 2m—r
to get a contradiction.

4.13 (Lower bounds via discrepancy) The maximum discrepancy, disc(A), of a
boolean matrix A is the maximum discrepancy of its £1 version A’ defined by
A'[z,y] = (—1)A[¥] That is, disc(A) is the maximum, over all submatrices B of
A, of the absolute value of the difference between the number of 1s and the number
of Os in B. Prove that matrices of small discrepancy have large distributional, and
hence, also randomized communication complexity: for every boolean n x n matrix
A and for every constant 0 < € < 1/2,

distr.(A4) > log

Hint: Fix a deterministic protocol P(z,y) of cost ¢ = distr.(A) which correctly computes A on
all but an e-fraction of inputs. Let B be a =1 matrix of errors: B[z, y] = +1if P(z,y) = Alz,y),

and B[z, y] = —1 otherwise. Show that the discrepancy of this matrix (the absolute value of the
sum of all its entries) is at least (1 — €)n® — en? = (1 — 2¢)n?. The protocol P decomposes A
(and hence, also B) into t = 2¢ submatrices Ry, . .., R; such that the discrepancy of B is at most

the sum of the discrepancies of these matrices.

4.14 (Discrepancy and spectral norm) Let A be an n X n matrix with real entries,
and || A|| its spectral norm, that is, || A|| = max |u” Av| over all real vectors u,v €
R™ with ||u|| = |Jv]| = 1. Show that disc(A) < || 4] - n.

130 4 Games on (-1 Matrices

Hint: Consider an S x T submatrix of A of maximal discrepancy. Show that |x% Axr| <
IIAlA/|S||T|, where xs is the characteristic vector of the set S C [n].

4.15 (Discrepancy and eigenvalues) Let A be an n X n +1-matrix. Suppose that
A is symmetric (AT = A), and let \ be the largest eigenvalue of A. Show that
disc(B) < A ab for every a x b submatrix B of A.

Hint: If = and y are characteristic 0-1 vectors of the rows and columns of B, then disc(B) =
|7 Ay). Take an orthonormal basis 71, . . . , i, for R™ corresponding to the eigenvalues A1, . . . , An
of A, write x and ¥ as linear combinations x = ZZ o;T; andy = ZZ B;U; of these basis vectors,
and show that |27 Ay| = | El a;Bidi| < A ZZ «;3|. Observe that ZZ a? = ||z||* = aand
Ei B2 = ||y||* = b, and apply the Cauchy-Schwarz inequality to derive the desired upper bound
on disc(B).

4.16 (Inner product function) Let .S,, be a 2™ x 2™ Sylvester matrix. Its rows and
columns are labeled by vectors in GF(2)™, and the entries of .S, are the scalar
products of these vectors over GF(2). Hence, the function corresponding to this
matrix is the inner product function over GF(2). Show that disc(S,,) < 2/, and
hence, that ¢.(S,,) = £2(m) for any constant € > 0. Hint: Use Lindsey’s Lemma.

4.17 (Log-Rank Conjecture) Use the Sylvester matrix S,, to conclude that if we
consider rank over finite fields (instead of the reals) the gap between ¢(S,,) and
log rk(.S,,,) may be exponential.

4.18 (The greater-than function) Consider the following GT,,(z,y): Alice gets a
non-negative m-bit integer x, Bob gets a non-negative m-bit integer y, and their
goal is to decide whether 2 > y. Show that ¢, ,,, (GT},) = O(log® m).

Hint: Let the players recursively examine segments of their strings until they find the lexico-
graphically first bit in which they differ—this bit determines whether x > y. Alice can randomly
select a prime number p < m?, compute =’ mod p where ' is the first half of z, and send p
and 2’ mod p to Bob; this can be done using O (log m) bits. If ¥’ mod p # ¢’ mod p, then z’ is
different from 3/, and the players can continue on the first half of their strings. Otherwise the
players assume that ' = 3/, and they continue on the second half of their strings. The players err
in this later case when 2’ # 3y’ but 2’ mod p = ¥’ mod p. Estimate the probability of this error,
keeping in mind that there are ©(n/Inn) primes p < n.

4.19 (Almost monochromatic rectangles) Let A : X x Y — {0,1} be a boolean
matrix of area m = |X| - |Y|. Suppose that ¢.(A) < t. Show that there exists a
submatrix B of A of area at least m/2!*! and bit a € {0, 1} such that at least a
1 — 2¢ fraction of the entries in B are equal to a.

Hint: Call a submatrix large if its area is at least m/2'71, and small otherwise. Take a deterministic

protocol P of cost t = cc(A) which is correct on all but a € fraction of inputs. The protocol P
decomposes A into at most 2° rectangles. Argue that more than half of the entries of A must
belong to large rectangles. Recall that at most an € fraction of the entries (z, y) of A do not satisfy
P(z,y) = Alz,y]. Even if these entries are in large rectangles, their fraction in the set of all
entries of large rectangles is at most 2¢ (since more than half of the entries of A belong to large
submatrices).

4.12 Private vs. public randomness 131

4.20 (Disjointness matrix) Let D,, be the 2™ x 2" disjointness matrix. Its rows and
columns are labeled by subsets z C [n], and D, [z,y] = 1if z Ny = 0. Let T
(resp., T1) be the set of all pairs (x, y) of subsets of [n] such that |x N y| = 1 (resp.,
|z Ny| = 0). Note that D,,[z,y] = 0 for all (z,y) € To, and D, [z, y] = 1 for all
(x,y) € Ty. For a € {0,1} and a rectangle R, let u,(R) = |R N T,|/|T,| be the
fraction of elements of T, in R. Razborov (1992a) proved that 11 (R) is not much
smaller than pg(R), unless z4o(R) is negligible:

For every rectangle R in D,,, if yg(R) > 27/100 then p; (R) > po(R)/100.

This implies that 3 (R) > po(R)/100 — 277/190 Use this fact to show that
¢e(Dyp) = 2(n) for every constant ¢ < 1/200.

Hint: Let t = cc(Dy,), and take a deterministic protocol P of cost t = c¢(Dy,) which is correct on
all but an € fraction of inputs. Argue as in Exercise ?? to show that P outputs the right answer
for all but a 2¢ fraction of inputs in Tp and all but a 2¢ fraction of inputs in 7T%. The protocol P
decomposes A into at most 2° rectangles. Let Ry, . . ., Ry, be the rectangles where P(z,y) = 0.
Then Z:’;l no(R;) > 1 — 2¢ (why?). Use the fact above to show that Zzl wi(R;) > (1 —

2€)/100 — 287 "/190 What happens if (say) ¢ < n,/200?

4.21 (Rank versus sign-rank) Let A be an n x n £1 matrix of the greater-than
function, that is, Afi,j] = 1ifé < j, and A[i,j] = —1if ¢ > j. Show that
rk(A) > n — 1 but signrk(A) < 2. Hint: Consider the matrix B with B[i, j] = 2(j — i) + L.

4.22 (Randomization and seminorms) Let @ be a measure assigning every real ma-
trix a real number. Call such a measure seminorm if for any two non-negative
matrices A,B of the same dimension and any real number ¢ > 0 we have that
P(A+ B) < P(A) + &(B) and ¢(cA) < ¢P(A). A seminorm P is normalized if,
for every boolean matrix A, $(A) does not exceed the tiling number x(A) of A. An
e-approximator of A is a matrix B such that |A[x, y] — Bz, y]| < € for all entries
(z,y). Define

P (A) := min{P(B) | B is an e-approximator of A} .

Show that, for every normalized seminorm &, ¢.(A) > log $.(A).

Hint: Let P be a randomized e-error communication protocol for A of cost cc(A). If we fix the
random string r used by P to some r, then what we get is a deterministic protocol; let A, be
a boolean matrix of answers of this protocol, and let p,, = Prob[r = r]. Consider the convex
combination Ap := Er prAr. What are the entries of this matrix? Show that . (A4) < #(Ap) <

S o B(Ar) <30 pex(Ay) < 30 pr2cA) < 2%),

423 Let A: X x Y — {0,1} be a boolean n X n matrix, and suppose that all
entries of A can be covered by m not-necessarily disjoint monochromatic rectangles
Ri,...,R,,. Thus, both nc(A) and nc(A) are at most log m. For every row z € X
define the vector a, € {0,1}™ by a,(i) = 1 iff x € R;. Consider the monotone
boolean function f : {0,1}" — {0, 1} by: f(z) = 1 iff z > a, for some z € X.
Show that Depth, (f) > ¢(A).

Hint: Take a communication protocol for the Karchmer-Wigderson game on the function f. Given
x’ € f71(1) andy’ € £71(0), the goal is to find a position i such that x} # y.. Use this protocol

132 4 Games on (-1 Matrices

to design a deterministic communication protocol for the matrix A, where Alice gets arow x € X,
and Bob a column y € Y. Let Alice to construct 2’ € {0, 1}™ by assigning x; = 1 iff the row =
belongs to R;, and let Bob to construct y’ € {0, 1}" by assigning y/; = 0 iff the column y belongs
to R;.

5. Multi-Party Games

The rich mathematical theory of 2-party communication naturally invites us to con-
sider scenarios involving k > 2 players. In the simplest case, we have some function
f(z) whose input x is decomposed into k equally-sized parts x = (21, ..., Tg).
There are k players who wish to collaboratively evaluate a given function f on
every input x. Each player has unlimited computational power and full knowledge
of the function. As in the case of two players, the players are not adversaries—they
help and trust each other. Depending on what parts of the input = each player can
see, there are two main models of communication:

« Number-in-hand model: the i-th player can only see z;.
+ Number-on-forehead model: the i-th player can see all the x; except x;.

Players can communicate by writing bits 0 and 1 on a blackboard. The blackboard
is seen by all players. The game starts with the empty blackboard. For each string
on the blackboard, the protocol either gives the value of the output (in that case
the protocol is over), or specifies which player writes the next bit and what that
bit should be as a function of the inputs this player knows (and the string on the
board). During the computation on one input the blackboard is never erased, players
simply append their messages. The objective is to compute the function with as
small amount of communication as possible.

The communication complexity of a k-party game for f is the minimal number
¢ such that on every input x the players can decide whether f(z) = 1 or not,
by writing at most c bits on the blackboard. Put differently, the communication
complexity is the minimal number of bits written on the blackboard on the worst-
case input. For simplicity, we will only consider deterministic protocols.

Note that for k£ = 2 (two players) there is no difference between these two models.
The difference comes when we have k > 3 players. In this case the second model
seems to be (and actually is) more difficult to analyze because players share some
common information. For example, the first two players both can then see all inputs
x3,...,TL. Moreover, if the number k of players increases, the communication
complexity in the “number-in-hand” model can only increase (the pieces of input
each player can see are smaller and smaller), whereas it can only decrease in the

133

134 5 Multi-Party Games

“number-on-forehead” model (the pieces of seen input are larger and larger). This
is why the first model attracted much less attention. Still, the model becomes
interesting if instead of computing a given function f exactly, the players are only
required to approximate its values. In particular, this model has found applications
in so-called combinatorial auctions; see Nisan (2002).

5.1 The “number-in-hand” model

The disjointness problem is, given a sequence a = (ay, ..., ay) of subsets a; C [n], to
decide whether the a; are pairwise disjoint. In the approximate disjointness problem
Disj,, the k players are only required to distinguish between the following two

extreme cases:

« Answer “input is positive” if a; N a; = () for all ¢ # j.
« Answer “input is negative” if a; N -+ Nay, # 0.
« If neither of these two events happens, then any answer is legal.

5.1 Lemma In the “number-in-hand” model, the approximate disjointness problem
Disj,, requires £2(n/k) bits of communication.

Proof. (Due to Jaikumar Radhakrishnan and Venkatesh Srinivasan) Any c-bit com-
munication protocol for the approximate disjointness problem partitions the space of
inputs into at most 2° “boxes”, where a box is a Cartesian product S X S X - - - X Sg,
with S; C 2[7] for each i. Each box must be labeled with an answer, and thus the
boxes must be “monochromatic” in the following sense: no box can contain both a
positive instance and a negative instance. (There are no restrictions on instances
that are neither negative nor positive.)

We will show that there are exactly (k 4+ 1)™ positive instances, but any box that
does not contain a negative instance can contain at most k£” positive instances. It
then follows that there must be at least

(k+1)"/k" = (14 1/k)" ~ eV/*

boxes to cover all positive instances and thus the number of communicated bits
must be at least the logarithm (2(n/k) of this number, giving the desired lower
bound.

To count the number of positive instances, note that any partition of the n items
in [n] between k players, leaving some items “unlocated”, corresponds to a mapping
g : [n] = [k+1], implying that the number of positive instances is exactly (k—+1)".

Now consider a box S = 57 X Sy X - -+ x S that does not contain any negative
instance. Note that for each item x € [n] there must be a player ¢ = i, such that
x & a for all a € S;. This holds because otherwise there would be, in each S;, a set
a; € S; containing x, and we would have that a; N --- Nax D {z} # 0, a negative
instance in the box S.

5.2 The approximate set packing problem 135

We can now obtain an upper bound on the number of positive instances in S
by noting that any such instance corresponds to a partition of the n items among
k players and “unlocated”, but now with an additional restriction that each item
x € |n] can not be in the block given to the i,-th player. Thus each item has only &
(instead of k + 1) possible locations for it, and the number of such partitions is at
most n*. O

The same lower bound for randomized protocols was obtained by Chakrabarti
et al. (2003), and Gronemeier (2009).

5.2 The approximate set packing problem

The set packing problem is, given a collection A of subsets of [n] = {1,...,n}, to
find the largest packing—that is, the largest collection of pairwise disjoint sets in A.
The packing number of A, is the largest number of sets of A in a packing of [n].
The set packing communication problem is as follows: we have k players each
holding a collection A; of subsets of [n], and the players are looking for the largest
packing in the union A = A; U - -- U Ay, of their collections. The goal of players is
to approximate the packing number of A to within a given multiplicative factor A.

5.2 Proposition In the “number-in-hand” model, there is a k-player protocol approxi-
mating the packing number within a factor of \ = min{k, /n} and using O(kn?)
bits of communication.

Proof. Getting an approximation factor k is easy by just picking the single player
with the largest packing in her collection. If & > +/n, we can do better by using the
following simple greedy protocol: at each stage each player announces the smallest
set a; € A; which is disjoint from all previously chosen sets; this requires 7 bits of
communication from each of k players. The smallest such set is chosen to be in the
packing. This is repeated until no more disjoint sets exist; hence, the protocol ends
after at most n stages. It remains to verify that this packing is by at most a factor of
v/n smaller than the number of sets in an optimal packing.
Let aq, ..., a; be the sets in A chosen by our protocol. The collections

Bi={acAlana;#0andana;j =0foralli=1,...,5 -1}

form a partition of the whole collection A. Since all sets in B; contain an element
of a;, the maximum number of disjoint sets in B; is at most the cardinality |a;|
of a;. On the other hand, since a; is the smallest member of A which is disjoint
fromall aq,...,a;_1, every member of B; is of size at least |a;|, so the maximum
number of disjoint sets in B; is also at most |n/|a;|]. Thus, the optimal solution
can contain at most

min{|ai], [n/]ai|]} < maxmin{z, |n/z]} = Lvn)

136 5 Multi-Party Games

sets from each B;. O

On the other hand we have the following lower bound.

5.3 Theorem (Nisan 2002) Any k-player protocol for approximating the packing
number to within a factor smaller than k requires 22(n/k*) pits of communication.

In particular, as long as k < n'/27¢ for ¢ > 0, the communication complexity is
exponential in n.

Proof. We have k players, each holding a collection A; of subsets of [n]. It is enough
to prove a lower bound on the communication complexity needed in order to
distinguish between the case where the packing number is 1 and the case where it
is k. That is, to distinguish the case where there exist k disjoint sets a; € A;, and
the case where any two sets a; € A; and a; € A; intersect (packing number is 1).

Now suppose that ¢ bits of communication are enough to distinguish these two
cases. We will show that then the approximate disjointness problem Disj for
N = e?(/k*) can also be solved using at most ¢ bits of communication. Together
with Lemma ?? this will immediately yield the desired lower bound ¢ = 2(N/k)

The reduction uses a collection of partitions A = {a® | s = 1,..., N}, where
each a® is a partition a® = (a$, ..., a}) of [n] into k disjoint blocks. Say that such
a collection A of partitions is cross-intersecting if

a;Na; #0 forall 1<i#j<k and 1<s#r <N,
that is, if different blocks from different partitions have non-empty intersection.

5.4 Claim A cross-intersecting collection of N = e”/(2k2)//€ partitions exists.

Proof. Consider a random function f : [n] — [k] where Prob[f(x) = i] = 1/k for
every x € [n]and ¢ € [k]. Let f1,..., fiv be independent copies of f. Each function
s gives us a partition a® = (af, ..., a}) of [n] with

af = {z| fulx) = i}

Now fix 1 < i # j < k and two indices of partitions 1 < s # r < N. For every
fixed z € [n], the probability that f,(x) # i or f.(x) # jis 1 — 1/k?. Since

a; Naj = () holds if and only if this happens for all n elements z, we obtain that

Problaf Naj = 0] = (1 - 1/k%)" < o /K

Since there are at most k2 N2 such choices of indices, we get that the desired set of
2
partitions exist, as long as k2N2 < /K", O

We now describe the reduction of the approximate disjointness problem Disj 5 to
the problem of distinguishing whether the packing number is 1 of k. Fix a collection
A of partitions guaranteed by Claim ??. Player ¢, who gets as input a set b; C [N] in
the problem Disjy, constructs the collection 4; = {af | s € b;} of subsets of [n].

5.3 Application: streaming algorithms 137

That is, the i-th player takes the i-th block af from each partition a® € A with
ERS b7

Now, if there exists s € ﬂle b;, then a k-packing exists: af € Ay,...a; € Aj.
On the other hand, if b; N b; = () for all i # j, then for any two sets a € A; and
a}' € Aj, we have that s # r, and thus af N a;f # (), meaning that the packing
number is 1. O

5.3 Application: streaming algorithms

Let x = (21,...,2Zm) € [n]™ be a string of length m with elements in the range
1 to n. Suppose we want to compute f(z) for some function f, but m is huge, so
that it is impractical to try to store all of . In a streaming algorithm we assume
that we see the input = one symbol at a time with no knowledge of what future
symbols will be. The question then is how many bits must be kept in memory in
order to successfully compute f(x). An ultimate goal is to compute f(z) using
only O(logn + logm) bits of memory. The field of streaming algorithms was first
formalized and popularized in a paper by Alon, Matias, and Szegedy (1999).

5.5 Example Let z € [n]"~! be a string of length n — 1, and assume that x contains
every element in [n] except for the number p € [n]. Let f(z) = p, that is, f outputs
the unique missing element p. A streaming algorithm to compute f(x) can maintain
asum T} = Zi?:l x;. At the end of the stream, it outputs f(z) = nnd) .

2
This algorithms uses O(logn) memory.

The replication number of an element ¢ € [n] in a string x is the number r; =
|{j € [m] | z; = i}| of occurrences of symbol 7 in the string. The d-th frequency
moment of the string S is defined as

fd(:z:):r‘errng-“Jrrfl.

In particular, fo(x) is the number of distinct symbols in the string, and f; () is the
length m of the string. For d > 2, f;(x) gives useful statistical information about
the string.

5.6 Theorem Ford > 3, any deterministic streaming algorithm computing fq requires
memory with 2(n*=2/%) bits.

Proof. Fix d > 3 and let k = n'/?. Suppose there exists a streaming algorithm
A to compute fg using C bits of memory. Our goal is to show that there exists a
k-party “number-in-hand” communication protocol which solves the approximate
disjointness problem Disj,, using at most Ck = Cn'/? bits of communication.
Together with Lemma ??, this will imply that Cn'/? = 2(n/k), and hence, C' =
Q(n172/d)_

Let z = (a1,...,ax) be an input to Disj,, with a; C [n]. We can assume that
| Ui a;| > 2, for otherwise O(log n) bits of communication are enough. The players

138 5 Multi-Party Games

look at z as a stream and run A on it. Whenever player i finishes running A on
the portion of S corresponding to a;, he writes the state of the algorithm on the
blackboard using C bits. At the end of the algorithm the players have computed
fa(z) using Ck = Cn'/* bits of communication. This is sufficient to approximate
Disj,:ifa;Na; = () for all i # 4, then r; < 1 for all 4, and hence, f4(z) < n.On the
other hand, if there is an element p € [n] contained in all sets a;, then 7¢ > k¢ = n,
and we have that f;(z) > n + 1 (because | U; a;| > 2). O

5.4 The “number-on-forehead” model

The number-on-forehead model of multi-party communication games was intro-
duced by Chandra, Furst and Lipton (1983). The model is related to many other
important problems in circuit complexity, and is much more difficult to deal with
than the previous one. Recall that in this model the information seen by players
on a given input x = (x1, ..., xx) can overlap: the i-th player has access to all the
x; except x;. Recall also that each x; is an element from some (fixed in advance)
n-element set X;. Thus, we have two parameters: the size n = | X;| of a domain for
each players, and the number £ of players.

We can imagine the situation as k players sitting around the table, where each one
is holding a number to his/her forehead for the others to see. Thus, all players know
the function f, but their access to the input string (21, z2, . . ., ¥y is restricted: the
first player sees the string (, xa, . ..,z), the second sees (1, *, 3, ..., Zg), . . .,
the k-th player sees (x1,...,2xk—1,*) (Fig. ??).

Let ¢ (f) denote the minimum communication complexity of f in this “number-
on-forehead” model. That is, ¢ (f) is the minimal number ¢ such that on every
input

re X =X; XXX

the players can determine the value f(x) by writing at most ¢ bits on the blackboard.
It is clear that
c(f) <logn + 1 for any f.

Namely, the first player can write the binary code of x5, and the second player
can announce the result. But what about the lower bounds? The twist is that (for
k > 3) the players share some inputs, and (at least potentially) can use this overlap
to encode the information in some wicked and nontrivial way (see Exercises ?? and
7).

Still, we know that the access of each player is restricted: the i-th player cannot
distinguish inputs differing only in the ¢-th coordinate. This leads to the following
concept.

A combinatorial star, or just a star in X around a vector z = (z1,...,x) is a
set S of k vectors of the form:

1

ot = (2, 20, ..., 2p), 22

= (z1,2h, .. xk), ooy 2F = (21, 20,...,2}),

5.4 The “number-on-forehead” model 139

p1(z2, x3)

0 1
p2(z1,x3) p3(z1,x2)
0 1 0 1

p2(z1,x3)
0 1

Fig. 5.1 A communication tree (protocol) for a function f(x1,x2,x3). Each function p; attached
to a node may depend on the sequence of bits until this node, but cannot depend on z;. Different
nodes can be labeled by different functions of the same i-th player. Their independence on the
i-th position is the only restriction.

where for each i, 2} # x; and z;, z, € X;. The vector z is a center of this star.
Hence, each star contains exactly k vectors, and there are exactly (n — 1)”C stars
around each vector z.

Say that a subset 7' C X of X = X3 x --- X Xy, is closed if, for every star
S; C X around a vector x € X, S, C T implies z € T

We have the following analogue of Proposition ??.

5.7 Proposition Every set T C X of vectors reaching a leaf of a k-party communica-
tion protocol is closed.

Proof. Take a k-party protocol of the communication game for f. Color each vector
x € X by the string, which is written on the blackboard at the end of communication
between the players on the input x. It is enough to show that each color class T is
a closed set.

To show this, let S = {xl, - ,xk} be a star around some vector z, and assume
that S C T'. We have to show that then « € T as well. At each step, the player that
needs to send the next message, say the i-th player, cannot distinguish between
the input # = (21,...,4,...,7) and 2* = (x1,...,2},...,71), because he does
not see the ¢-th part of the input. Thus, the player will send the same message in
both cases. Hence the whole communication on the center x is the same as on all
elements of the star, as desired. O

Unlike the definition of a rectangle, the definition of a closed set 7" C X is only
implicit: if T' contains a star then it must also contain its center. It is clear that all
sets A C X of the form A = Ay x -+ x Ay with A; C X are closed. Actually, for
k = 2 all closed sets have this form. (Show this!) But for £ > 3 not every closed set
has this form. A simple counterexample is a set I’ consisting of one star together
with its center. Still, we can give a more explicit definition of closed sets in terms of
so-called “cylinders”.

A subset T; C X is a cylinder in the i-th dimension if membership in 7; does
not depend on the i-th coordinate. That is,

140 5 Multi-Party Games
(1, s Tiy ..., xx) € T; implies (z1, ..., 2%, ..., 25) € T; forall) € X;.
A subset T C X is a cylinder intersection if it is an intersection
T=T1NnTNn---NTg,

where T; is a cylinder in the i-th dimension.

Note that in the case of two players (k = 2), cylinder intersections are exactly
rectangles, that is, subsets 7' C X; x X5 of the form 7' = A; x Ay with A; C X.
In this case, a cylinder in dimensions ¢ = 1,2 are sets of the form 77 = A; X X3
and To = Xy X As; hence, Ty N Ty = Ay X A,. But this nice structure is lost
when we go to games with £ > 3 players. In this case the structure of cylinder
intersections is more complicated; still, we have the following useful result:

5.8 Proposition A set T’ C X is closed iff it is a cylinder intersection.

Proof. The “only if” direction (=) is simple. Let 7' = N*_, T} where T; is a cylinder
in the 4-th dimension. If S = {z!, ..., ¥} is a star around some vector z € X, and
if S C T,then 2’ € T C T; and hence z € T} foralli = 1,...,k, implying that
x € T, as desired.

For the “if” direction (<), take an arbitrary subset 7' C X and assume that
T contains the center of every star it contains. For every i = 1,...,k, let T; be
the set of all strings * € X such that z coincides with at least one string 2' € T
in all but perhaps the i-th coordinate. By its definition, the set 7; is a cylinder
in the i-th dimension. Hence, the set 7" = N*_, T} is a cylinder intersection. If a
vector x belongs to 7', then it also belongs to all the T}, by their definition. This
shows T' C T". To show that 7/ C T, take a vector x € T”. Then = € T; for all
i=1,...,k Butx € T; implies that there must be a vector 2* € T from which z
differs in exactly the i-th coordinate. The vectors 2, ..., z* form a star around 2
and are contained in 7. Hence, vector x must belong to 7" as well. O

Define the k-tiling number x(f) of f : X — R as the smallest number ¢ such
that the set X can be decomposed into ¢ f-monochromatic cylinder intersections.
Propositions ?? and ?? immediately yield the following general lower bound.

5.9 Lemma cx(f) > log xx(f).

Since in the “number-on-forehead” model players share common information
(for k£ > 3 players), proving lower bounds in this model is a difficult task. Actually,
it was even not immediately clear whether the number ¢ (f) of communicated bits
must grow with growing size n = | X;| of the domain for each player. That it must
grow was first shown by Chandra, Furst and Lipton (1983). They considered the
following hyperplane problem. The players get a sequence (21, ..., %) of numbers
in[n] = {1,...,n} and must decide whether 21 +- - - +,, = n. Using some results
from Ramsey theory, they proved that, for any fixed number k£ > 2 of players, the
number of communicated bits in the hyperplane problem must go to infinity as n
goes to infinity. Using one of the basic results of Ramsey theory—the Hales—Jewett
theorem—Tesson (2003) obtained a similar result for the partition problem: players

5.5 The discrepancy bound 141

obtain a sequence (1, . .., xy) of subsets x; C [n], and the goal is to decide whether
the x; form a partition of [n]. Much stronger, almost optimal lower bounds of the
form {2(logn) for any fixed number k of players were, however, obtained using

discrepancy arguments.

5.5 The discrepancy bound

The (relative) discrepancy of a function f : X — {—1,1} onasetT C X is the
absolute value of the sum of the values of f on points in 7', divided by the total
number | X | of points:

discr(f

> f@)

xeT

1
)= 1]

Thus, large discrepancy means that one value is taken significantly more often
than the other one. We have that 0 < discp(f) < 1 with discp(f) = |T|/|X]|
iff f is constant on 7T'. The discrepancy of the function f itself is the maximum
disc(f) = maxy discr(f) over all cylinder intersections T C X.

Intuitively, a function f has small discrepancy if it is “balanced enough” on all
cylinder intersections. It turns out that such functions must have large multi-party
communication complexity.

5.10 Proposition Forevery f : X — {—1,1},

1
cr(f) > log Toc()
Proof. By Lemma ??, it is enough to show that x(f) > 1/disc(f). To do this, let
T C X be a cylinder intersection. Then T is f-monochromatic iff discr(f) =
|T|/|X|, implying that |T'| < |X| - disc(f). Thus, at least | X|/(|X| - disc(f)) =
1/disc(f) f-monochromatic cylinder intersections 7" are necessary even to cover
(not only to decompose) the whole set X. a

In fact, the logarithm of €/disc(f) is also a lower bound on the randomized
k-party communication complexity with error-probability e, if the random string is
public.

However, this fact alone does not give immediate lower bounds for the multi-
party communication complexity, because disc(f) is very difficult to estimate.
Fortunately, the discrepancy can be bounded from above using the following more
tractable measure.

A k-dimensional cube is defined to be a multi-set D = {a1,b1} x - -+ x {ag, bx },
where a;,b; € X; (not necessarily distinct) for all ¢. Being a multi-set means that
one element can occur several times. Thus, for example, the cube D = {a1,a;} X
-+ x {ay, ai.} has 2% elements.

142 5 Multi-Party Games

Given a function f : X — {—1,1} and a cube D C X, define the sign of f on

D to be the value
#0) = I[£
x€D

Hence, f(D) = 1 if and only if f(z) = —1 for an even number of vectors x € D.
We choose a cube D at random according to the uniform distribution. This can be
done by choosing a;, b; € X; for each ¢ according to the uniform distribution. Let

E(f) =Elf(D) =E| [] f@)]

zeD

be the expected value of the sign of a random cube D. To stress the fact that the
expectation is taken over a particular random object (this time, over D) we will
also write Ep [f(D)] instead of E [f(D)].

5.11 Example The difference between the measures disc(f) and £(f) can best
be seen in the case when k = 2. In this case X = X; x X3 is just a grid, and
each function f : X — {—1,1} is just a £1 matrix M. Cylinder intersections
T C X in this case correspond to submatrices of M, and discy(f) is the sum of
all entries in T divided by | X|. Thus, to determine disc(f) we must consider all
submatrices of M. In contrast, to determine £(f) it is enough to only consider all
s X t submatrices with 1 < s,t < 2.

The following result was first proved in Chung (1990) and generalizes a similar
result from Babai, Nisan and Szegedy (1992). An elegant and relatively simple proof
presented below was found by Raz (2000).

5.12 Theorem Forevery f : X — {-1,1}, E(f) > disc(f)2k. Hence,

The theorem is very useful because £(f) is a much simpler object than disc(f).
For many functions f, it is relatively easy to compute £(f) exactly; we will demon-
strate this in the next sections.

Proof. (Due to Raz 2000) We will only prove the theorem for k& = 2; the general
case is similar. So let X = X; x Xy and f : X — {—1, 1} be a given function. Our
goal is to show that £(f) > disc(f)*. To do this, pick at random (uniformly and
independently) an element x € X.

5.13 Claim For all functions h : X — {—1,1}, E(h) > (E; [h(x)])*%
Proof. We will use two well-known facts about the mean value of random variables:
E[¢ 2] >E [5]2 for any random variable £ (5.1)

and

5.5 The discrepancy bound 143

E[¢-¢]=E[¢-E[¢] if€and¢ are independent. (5.2)

The first one is a consequence of the Cauchy-Schwarz inequality, and the second is
a basic property of expectation.
Now take a random 2-dimensional cube D = {a,a’} x {b,0’}. Then

E(h) = Ep [h(D)] = Ep| [] h(a)]

zeD
= E,.oEpp [h(a,b) - h(a,b') - h(d',b) - h(d’, V)]
= Ea |(By [h(a,b) - h(a,b)))"] by (22
> (B0 B [h(a,) - h(a’, b)) by (?2)
— (EoEy [h(a,b)?]) Probla] = Probla]
= (. (B (h(a.0))?)’ by (22
> (B [h(a,b)])" by (22).0

5.14 Claim There exists h such that |Ex [h(zx)] | > disc(f) and E(h) = E(f).

Proof. LetT = A x B be a cylinder intersection (a submatrix of X, since k = 2) for
which disc(f) is attained. We prove the existence of h by the probabilistic method.
The idea is to define a random function g : X; x X5 — {—1, 1} such that the
expected value E [¢g(z)] = E, [g(x)] is the characteristic function of T'. For this,
define g to be the product g(z) = g1(x) - g2(x) of two random functions, whose
values are defined on the points z = (a,b) € X; x X3 by:

1 ifa € A;
gl(a’b){ .

set randomly to £1 otherwise

and

1 ifb € B;
g2 (a7 b) = .
set randomly to £1 otherwise.

These function have the property that g; depends only on the rows and g only
on the columns of the grid X; x X5. That is, ¢1(a,b) = ¢1(a,b’) and g2(a,b) =
g2(a’,b) for all a,a’ € X; and b,b’ € X5. Hence, for z € T, g(x) = 1 with
probability 1, while for ¢ T, g(x) = 1 with probability 1/2 and g(z) = —1 with
probability 1/2; this holds because the functions g;, go are independent of each
other,and x € T iff x ¢ A X X5 or x ¢ X; X B. Thus, the expectation E [g(x)]
takes the value 1 on all z € T, and takes the value % + (—%) =0onall x € T, that
is, E [g(z)] is the characteristic function of the set T™:

1 ifxeT;

Ew@”:{o ifrdT.

144 5 Multi-Party Games

Now let x be a random vector uniformly distributed in X = X; x X5. Then

discr(f) = |Eq [f(2) - By [9(2)] | = [E2Eq [f(z) - g(2)] |
= |E4E, [f(z) - g(2)] |-

So there exists some choice of ¢ = g; - g2 such that

Es [f(z) - g(2)]| = discr(f)

and we can take h(z) = f(x) - g(x). Then |E, [h(2)]| > disc(f). Moreover,
E(h) = E(f) because g; is constant on the rows and g5 is constant on the columns
so the product g(D) = [],cp g(z) cancels to 1. O

Claims ?? and ?? imply that £(f) = £(h) > (E, [h(z)])* > disc(f)*. This
completes the proof of Theorem ?? in case k = 2. To extend it for arbitrary k, just
repeat the argument k times. O

5.6 Generalized inner product

Say that a 0-1 matrix A is odd if the number of its all-1 rows is odd. Note that, if
the matrix has only two columns, then it is odd iff the scalar (or inner) product
of these columns over GF(2) is 1. For this reason, the boolean function which
decides whether a given input matrix is odd is called the “generalized inner product”
function. We will assume that input matrices have n rows and k columns.

That is, the generalized inner product function Gip(x) is a boolean function of kn
variables, arranged in an n X k matrix z = (x;;), and is defined by:

n

k
GIP,, () = @ /\ Tij .

i=1 j=1

We consider k-party communication games for Gip(x), where the j-th player can
see all but the j-th column of the input matrix z. The following lower bound was
first proved by Babai, Nisan, and Szegedy (1992). Similar lower bounds for other
explicit functions were obtained by Chung (1990). Note that in this case the size
of the domain for each player is | X;| = 2", not n. Hence, n + 1 is a trivial upper
bound on the number of communicated bits for any number k of players.

5.15 Theorem The k-party communication complexity of GIp,, i, is £2(n4=*).

It can be shown (see Exercise ??) that this lower bound is almost optimal:
cr(crp) = O(kn/2%).

Proof. Since we want our function to have range {—1, 1}, we will consider the
function

5.6 Generalized inner product 145

n

fl@) = () = [[(pymamese. (53)

i=1

By Theorem ??, it is enough to prove that £(f) < 27 (n27%) In fact we will prove
that

£(f) = (1 — 2%)” (5.4)

In our case, the function f is a mapping f : X7 X Xo x -+ X, — {—1,1}, where
the elements of each set X; are column vectors of length . Hence, a cube D in our
case is specified by two boolean n x k matrices A = (a;;) and B = (b;;). The cube
D consists of all 2¥ n-by-k matrices, the j-th column in each of which is either the
j-th column of A or the j-th column of B. By (??), we have (with z;; € {a;;, b;;})

that

= H f(x) = H ﬁ(_l)wuwz-..xik — ﬁ H (_1):c,i1x12~~xik
€D zeD i=1 i=1 2D

= - _ 1\ (@i +bi1)(aiz+bi2) - (aik+bir)
11 .

Note that the exponent (a;1 + b;1)(ai2 + bi2) - - - (@i + bix) is even if a;; = b;; for
at least one 1 < j < k, and is equal to 1 in the unique case when a;; # b;; for all
j=1,...,k, that is, when the i-th row of B is complementary to the i-th row of
A. Thus,

f(D) = —1 iff the number of complementary rows in A and B is odd.

Now, £(f) is the average of the above quantity over all choices of matrices A and B.
We fix the matrix A and show that the expectation over all matrices B is precisely
the right-hand side of (??). Let @1, ..., d, be the rows of A and by, ..., b, be the

-

rows of B. Then f(D) =[]\ g(b;), where

b)) = (—1)(@i1tbir)(aiztbio)+(ain+bir) — +1ifb #a; o1,
g9(b;) := (=1) o7 =
-1 lfbl = a; ® 1.

Thus, for every fixed matrix A, we obtain
B | [To60] = [T Erlo)] by (?)
1 - n 1 1\n
Il 0@ =I5 (2 -1)=(1-5) - o
i=1 i, i=1

5.16 Remark Similar in form to GIp,, ;; is the (generalized) disjointness function
p1sy(x). This function also has kn variables arranged into an n x k matrix x = (z;;),

146 5 Multi-Party Games

and is defined by:

n k
pisj(z) = \/ /\ Tij -

i=1j=1

That is, given a boolean n X k matrix x, pisj(xz) = 1 iff it has an all-1 row. If
we interpret columns as characteristic vectors of subsets of [n], then the function
accepts a sequence of k subsets if and only if their intersection is non-empty. The
discrepancy argument fails for this function because DI1sj is constant on huge cylin-
der intersections. Using different arguments, Tesson (2002) and Beame et al. (2006)
were able to prove a lower bound £2((logn)/k) for pisj(z), even for randomized
protocols. Lee and Shraibman (2009) and Chattopadhyay and Ada (2008) proved that
pIsj(x) requires Q(nl/(k+1)/22k) bits of communication in randomized k-party
protocols. More applications of algebraic methods in communication complexity
can be found in a survey by Lee and Shraibman (2007).

5.7 Matrix multiplication

Let X = X7 x --- X}, where each X; is the set of all n x n matrices over the
field GF(2); hence, the domain X; for each player has size | X;| = 2"°. For z; €
Xi,...,x5 € X, denote by x; - - - x, the product of x4, ...,z as matrices over
GF(2). Let F(x1,...,2)) be a boolean function whose value is the element in the
first row and the first column of the product z; - - - xk.

5.17 Theorem (Raz 2000) ¢ (F) = £2(n/2%).

The theorem is a direct consequence of Theorem ?? and the following lemma.
Define the function f : X — {—1,1} by

floy,m) = (1)) =1 2F (.. ay,).
5.18 Lemma &(f) < (k—1)27™.
Proof. For every cube D = {ay,b1} X -+ x {ag,bx},
70) = I £@) = [0 = (-)Becn 0,
zeD zeD
Since F is linear in each variable,

f(D) _ (_1)F(a1€Bb1 ap®by) _ 1— 2F(a1 P bl’ ca P bk)7

where a; @ b; denotes the sum of matrices a,; and b; over GF(2). If we choose D
at random according to the uniform distribution, then (ay @ b1, ..., ar ® by) isa
random vector x = (x1, ..., xy) uniformly distributed over X. Therefore,

5.8 Best-partition k-party communication 147

E(f)=Ep[f(D)] =E[l—2F(a; ®by,...,ar ® by)]
=E, [l - 2F(z)] = E, [f(z)] .

To estimate the expectation E,, [f(z)], where © = (z1, ..., 2) is uniformly dis-
tributed over X sequence of n x n matrices, let F; denote the event that the first row
of the matrix z; - - - 24 contains only Os. Define p; = Prob[Ey]. Since p; is deter-
mined by 1 and since x; is uniformly distributed, we have p; = Prob[E;] =27".
Clearly we also have Prob[FE,1|E4] = 1. On the other hand, since x4 is uni-
formly distributed, Prob[Ey11|—E4] = 27™. Therefore, for all 1 < d < k,

Pd+1 = PI"Ob[Ed+1|Ed] . PI‘Ob[Ed} + PrOb[Ed+1|—\Ed] . Prob[ﬁEd]
=pa+(1—pa) 27" <pa+27",

implying that p; < d-27"foralld =1,... k.

If E;_1 occurs then F(zy,...,xk) is always 0, and hence, f(x1,...,2) is
always 1. If E,_1 does not occur then, since the first column of xj, is uniformly
distributed, the value F'(z1, . .., x)) is uniformly distributed over {0, 1}, and hence,
f(z1,...,xp) is uniformly distributed over {—1, 1}. Therefore,

E(f) =Ez [f(z)] = Prob[Ey_1] = pp—1 < (k—1)-27". O

5.19 Remark We have seen that some “simple” functions (like GIp or p1sy) have
large multi-party communication complexity. On the other hand, Chattopadhyay et
al. (2007) showed that there exist boolean functions of arbitrarily large circuit
complexity which can be computed with constant(!) communication by k players
for k > 3.

5.20 Remark Note that lower bounds on the multi-party communication complexity
given above are only non-trivial if the number & of players is much smaller than
log n. To prove good lower bounds for k£ > log n players is a long-standing problems
whose solution would have great consequences in circuit complexity; see Section ??
for some of these consequences.

5.8 Best-partition k-party communication

Let f : {0,1}™ — {0, 1} be a boolean function on n = km variables. The “number-
on-forehead” communication protocols work with a fixed partition x = (x1, ...,)
of the input vector « € {0, 1}" into k blocks z; € {0,1}™.

We now consider the situation where, given a function f, the players are allowed
to choose the balanced partition of input variables that is best-suited for computing
f- (We say that a partition of a finite set into k disjoint blocks is balanced if the
sizes of blocks differ by at most one.) Let ¢} (f) denote the smallest possible k-party
communication complexity of f over all balanced partitions of its input vector.

148 5 Multi-Party Games

Bilder/matchingl-eps-converted-to.pdf

Fig. 5.2 A 4-matching on n = 16 vertices. The matching is an induced matching if no other
hyperedge lies in the set of these 16 vertices.

Recall that the generalized inner product function Gip,, ;, is a boolean function
of n = km variables which takes a boolean m X k matrix z as its input, and outputs
1 iff the number of all-1 rows in it is odd:

n k
GIPm7k(£E) = @ /\ Tij -

i=1 j=1

We have already shown in Section ?? that, if we split the input matrix in such a way
that the i-th player can see all its columns but the i-th one, then

k(61 1) = 2(n/k4F) . (5.5)

On the other hand, the best-partition communication complexity of this function is
very small: for every k > 2 we have that ¢} (GIP,, ;) < 2. To see this, split the rows
of the input m X k matrix = into m/k blocks and give to the i-th player all but the
i-th block of these rows. Then the first player can write the parity of the number of
all-1 rows she can see, and the second player can announce the answer.

So, what boolean functions have large k-party communication complexity under
the best-partition of their inputs? To answer this question we use a graph-theoretic
approach.

Let H be a hypergraph on an n-vertex set V. = V(H), that is, a family of
subsets e C V; the members of H are called hyperedges. Thus, graphs are special
hypergraphs with each hyperedge containing just two vertices. Associate with each
vertex v € V a boolean variable x, and consider the following boolean function of

these variables:
Grey(x) = @ /\ Ty .

ecH vee

A k-matching is a hypergraph consisting of pairwise disjoint hyperedges, each of
size k. Note that, if M is a k-matching, then (up to renaming of variables),

GIP () = GIPy, 1 (T) . (5.6)

We have however just shown that for such hypergraphs, ¢ (c1pas) < 2. But what
if for some hypergraph H we could show that H contains an induced k-matching
on sufficiently many vertices, for any balanced partition of vertices into k parts? It
turns out that this is enough to force ¢} (cIPx) to be large.

5.8 Best-partition k-party communication 149

Let us formalize our terms. First, a k-partition of a set V of n vertices is its
partition V; U - - - U V}, into k disjoint blocks V;, each of size n/k. Given such a
partition, say that a k-matching M is consistent with it if every edge e of M has
exactly one vertex in each of the blocks, that is, if e V;| = 1 foralli =1,... k.
Let V(M) = Ueese be the set of vertices incident to at least one hyperedge of M.

We say that M is an induced matching in a hypergraph H on V if for every
hyperedge e € H,e C V(H) implies e € M. That is, no hyperedge e € H \ M
can be covered by hyperedges of M. It is easy to see that then the function cIpy,
is a subfunction of GIpy, and hence, the communication complexity of Gipy is
lower bounded by the communication complexity of Gip,;: just set ,, = 0 for all
v & V(M). We fix this observation as

5.21 Proposition Let H be a hypergraph. Suppose that for every k-partition of its
vertex-set, there exists an induced k-matching with m hyperedges which is consistent
with that partition. Then
x o (ﬂ) .
¢;.(crpy) 1k

We will construct the desired hypergraphs H starting from (ordinary) “well-
mixed” graphs G = (V, E). Namely, call a graph s-mixed if, for any pair of disjoint
s-element subsets of vertices, there is at least one edge between these sets. A k-star
of a graph G is a set of its k vertices such that at least one of them is adjacent to all
of the remaining k£ — 1 of these vertices.

5.22 Theorem (Hayes 2001) Let G be an s-mixed regular graph of degreed > 2 onn
vertices. Let 2 < k < min{d, n/s} and let H be the hypergraph whose hyperedges
are all k-stars of G. Then

n — sk
o) = (25K
;. (cpy) ¥TEIT:
Proof. Say that an n-vertex graph G = (V, E) is s-starry if for any 2 < k < n/s
and for any pairwise disjoint sets S, ..., Sk, each of size |\S;| > s, there exist
vertices v1 € S1,...,v; € Sk such that {vy,..., v} forms a k-star of G. Note

that every s-starry graph is also s-mixed, since we can let k = 2. Interestingly, the
converse is also true:

5.23 Claim Every s-mixed graph is s-starry.

Proof. Let G be an s-mixed graph, and let Sy, . .., Si be pairwise disjoint subsets of
its vertices each of size |S;| > s. Fori € {1,...,k}, let T; be the set of all vertices
v € V'\ S, that are not adjacent to any vertex in S;. Since |.S;| > s and since G is
s-mixed, we have that |T;| < s — 1. Hence, the set T' = Ule T; can have at most

k k
IT| < (s—l)k<sk§Z|Si|:‘USi
=1 =1

150 5 Multi-Party Games

vertices. Thus, there must exist a vertex v € (U¥_,S;) \ T That is, v belongs to
some S; and does not belong to 7T". By the definition of 7', v € S; and v ¢ T means
that v must be connected by an edge with at least one vertex in each of the sets .S,
j # 1. But then v is a center of the desired star. a

Now let G be a graph satistying the conditions of Theorem ??, and let H be the
hypergraph of its k-stars. To finish the proof of Theorem ??, it is enough to prove that
this hypergraph satisfies the conditions of Proposition ?? with m > (n — sk)/dk.

To prove this, let V.= V; U .- - UV}, be an arbitrary balanced partition of the
set V into k blocks. Hence, |V;| > n/k > s for all j. We construct the desired
k-matching M C H recursively. Initially, let M be empty. In each stage, apply
Claim ?? to find a k-star e = {vy, ..., v} } with vertices in each set of the partition.
Add this set to M. Delete the k vertices vy, . . ., vy and all their neighbors from G.
Repeat the procedure restricting the given partition to the remaining vertices of G.

After 7 stages, at most id vertices have been removed from each block V;, which
means that each block in the partition (of the remaining vertices) has size at least
n/k — id. Since G is s-mixed, Claim ?? will apply as long as n/k — id > s. Thus,
the algorithm will run for at least i > (n — sk)/(dk) stages. Let M = {e,...,em}
be the constructed k-matching. Since m > (n — sk)/(dk), it is enough to show
that M is an induced matching of H.

To show this, observe that, by the construction, no two verticesu € e; and v € ¢;
for ¢ < j can be adjacent in G: when a hyperedge is added to M, all its neighbors
in G are removed from the further consideration. Assume now that M is not an
induced matching. Then there exists a k-star e of G such thate C V(M) = ., e;,
but e ¢ M. Let u € e be its vertex adjacent (in G) to all the remaining k — 1
vertices of e. Since e C V' (M), the vertex u must lie in some hyperedge e; of our
matching. Moreover, e ¢ M implies that some other vertex v € e must lie in some
other hyperedge e; of the matching. Since u and v are adjacent in G, we obtain a
contradiction with the observation we just made. O

Thus, what we need are explicit graphs satisfying the following two conditions:

« the graph must have small degree, but
« any two moderately large subsets of vertices must be joined by an edge.

Graphs with these properties are known as expander graphs. By the Expander Mixing
Lemma (see Appendix ?? for its proof), if G is a d-regular graph on n vertices and
if s > An/d, where) is the second largest eigenvalue of the adjacency matrix of G,
then G is s-mixed. Important examples of such graphs are the Ramanujan graphs
RG(n, q) (see Appendix ??). These are (q + 1)-regular graphs with the property
that A < 2,/q. Since 2n/,/q > 2,/qn/(q + 1), we have that the Ramanujan graphs
are well-mixed.

5.24 Corollary Ramanujan graphs RG(n, q) are s-mixed for s = 2n/./q.

Explicit constructions of Ramanujan graphs on n vertices for every prime ¢ =
1 mod 4 and infinitely many values of n were given in Margulis (1973), Lubotzky,

5.8 Best-partition k-party communication 151

Phillips and Sarnak (1988); these were later extended to the case where ¢ is an
arbitrary prime power in Morgenstern (1994) and Jordan and Livné (1997).

Let ¢ be a prime number lying between 16k? and 32k2. Then the Ramanujan
graph RG(n, q) has degree d = ¢ + 1 and (by Corollary ??) is s-mixed for s =
2n/,/q < n/2k. Using such graphs, Theorem ?? yields the following

5.25 Corollary If H is the hypergraph of k-stars in the Ramanujan graph RG(n, q),
then ¢; (crpy) = 2(n/k*4").

It can be shown that, this bound is tight with respect to the number k£ of players:
for any balanced partition of n vertices into k 4 1 parts, we have that ¢ (c1pg) <
k + 1 (Exercise ??). Thus, for every constant k£ > 2 there is an explicit boolean
function f = crpy such that ¢, (f) = £2(n) but ¢, (f) = O(1).

Exercises

5.1 The set cover communication problem is as follows: we have k players each
holding a collection A; of subsets of [n] = {1,...,n}, and the players are looking
for the smallest covering of [n] using the sets in their collections. That is, the goal is
to find the smallest number 7 of subsets a1, . . ., a, of [n] such that each a; belongs
to at least one A;,and a; U- - -Ua,. = [n]. Show that O(kn?) bits of communication
are enough to construct a covering using at most Inn + 1 times larger number of
sets than an optimal covering algorithm would do. Hint: Use a greedy protocol, as in the
proof of Lemma ??.

5.2 Three players want to compute the following boolean function f(z,y, z) in
3m variables. Inputs z, y, z are vectors in {0, 1}, and the function is defined by:
f(z,y,2) = @, Maj(z;, yi, z;). Prove that ¢3(f) < 3.

Hint: Show that the following protocol is correct. Each player counts the number of i’s such that
she can determine that Maj(x;, s, 2z;) = 1 by examining the bits available to her. She writes the

parity of this number on the blackboard, and the final answer is the parity of the three written
bits.

5.3 M Research Problem. Three players want to compute the following boolean
function f(z,y, z) in 3m variables. Inputs , y, z are vectors in {0,1}"™, and the
function is defined by: f(z,y, z) = 1 iff there exists an index 7 € [m] such that
x; =y; = z; = 1. Does ¢3(f) = w(10g3 m)? Comment: As shown by Beame, Pitassi and
Segerlind (2007), this would imply super-polynomial lower bounds for some cutting plane proof
systems.

5.4 Given an operator f : {0,1}?" — {0,1}", consider the boolean function
g¢(z,y, j) whose value is the value f;(z,y) of the j-th component of f. Consider
the 3-party communication game for g, where Alice gets (z, j), Bob gets (y, j) and
Charlie gets (z,y). Prove the following: if f can be computed by a circuit of depth

152 5 Multi-Party Games

O(Inn) using O(n) fanin-2 gates, then O(n/ loglog n) bits of communication are
enough.

Hint: Use Valiant’s lemma (Lemma ??). Take an input (x, y, j) for gs. Seeing the entire input (x, y)
of f, Charlie can compute the values of removed wires. Alice and Bob both know j. The value
fi(x,y) can be computed from the values of the removed wires and from the values of at most n*
input variables. Alice and Bob can just write down these n€ values.

5.5 Consider the following k-party communication game. Input is a boolean n x k
matrix A, and the i-th player can see all A except its i-th column. Suppose that the
players a priori know that some string v = (0,...,0,1,...,1) with the first 1 in
position ¢ + 1, does not appear among the rows of A. Show that the players can
decide if the number of all-1 rows is even or odd by communicating only ¢ bits.

Hint: Let y; denote the number of rows of A of the form (0,...,0,1,...,1), where the first 1
occurs in position ¢. For every ¢ = 1, ..., , the i-th player announces the parity of the number
of rows of the form (0,...,0,%,1,...,1), where the * is at place i. Observe that this number is
Yi + yi+1. Subsequently, each player privately computes the mod 2 sum of all numbers announced.
The result is (y1 + y¢41) mod 2, where yr+1 = 0.

5.6 (Grolmusz 1994) Prove that ¢, (c1p) = O(kn/2%).

Hint: Use the previous protocol to show that (without any assumption) k-players can decide if
the number of all-1 rows in a given boolean n X k matrix is even or odd by communicating only
O(kn/2") bits. To do this, divide the matrix A into blocks with at most 2° =% — 1 rows in each.
For each block there will be a string v’ of length k& — 1 such that neither (0, v") nor (1,v") occurs
among the rows in that block. Using k bits the first player can make the string (0, v") known to
all players, and we are in the situation of the previous exercise.

Comment: Using similar arguments, Grolmusz (1999) proved the following general upper bound.
The Li-norm of a function f : {—1,1}" — {—1, 1} is the sum

L= Y s =2 3 | S r@ =
]

SCln] SCln T i€S

o~

of the absolute values of its Fourier coefficients f(5). If L1(f) = M then cx(f) is at most about
k27 nM log(nM). In particular, for k about log M, ¢4, (f) is at most about (log(nM))>.

5.7 Consider the following multiparty game with a referee. As before, we have
an n X k 0-1 matrix A, and the i-th player can see all A except its i-th column.
The restriction is that now the players do not communicate with each other but
simultaneously write their messages on the blackboard. Using only this information
(and without seeing the matrix A), an additional player (the referee) must compute
the string P(A) = (21, ..., 2,), where z; is the sum modulo 2 of the number of
1’s in the i-th row of A. Let N be the maximal number of bits which any player is
allowed to write on any input matrix. Prove that N > n/k.

Hint: For a matrix A, let f(A) be the string (p1, ..., px), where p; € {0,1}" is the string written
by the i-th player on input A. For each possible answer © = (z1,...,z,) of the referee, fix a
matrix A, for which P(A,) = z. Argue that f(Az) # f(Ay) forall z # y.

5.8 Best-partition k-party communication 153

5.8 Let H be a hypergraph on n vertices, and 2 < k < n be a divisor of n Suppose
that |e|] < k — 1 for all e € H. Show that for any balanced partition of the input
into k parts, there is a k-party communication protocol evaluating GIpy using at
most & bits of communication.

Hint: Given a partition of n vertices into k blocks, each e € H must lie outside at least one of
these blocks.

5.9 Let us consider simultaneous messages n-party protocols for the parity function
f(z) =21 ®22® - P x, in which an additional player (the referee) just outputs
the majority of the answers of players. Consider the following strategy for players:

Each player looks around at everybody else. If a player sees as many 0’s as 1’s,
she sends a value 0. Otherwise, she assumes that the bit on her forehead is the
same as the majority of the bits she sees; she then she sends a value consistent
with this assumption.

Show that this strategy has a success probability 1 — ﬁ, that is, will correctly
compute the parity for all 2" but a fraction 1/6(1/n) of input vectors.

5.10 (The card-flipping game, due to J. Edmonds and R. Impagliazzo) Suppose that
we have two 0-1 vectors u = (uq,...,u,) and v = (v1,...,v,) of length n. We
want to decide whether u = v, but our access to the bits is very limited: at any
moment we can see at most one bit of each pair of the bits u; and v;. We can imagine
the corresponding bits to be written on two sides of a card, so that we can see all
the cards, but only one side of each card. A probe consists in flipping of one or
more of the cards. After every probe we can write down some information but the
memory is not reusable: after the next probe we have to use new memory (that
is, we cannot wipe it out). Moreover, this is the only memory for us: seeing the
information written here (but not the cards themselves), we ask to flip some of
the cards; seeing the actual values of the cards and using the current information
from the memory, we either give an answer or we write some additional bits of
information in the memory; after that the cards are closed for us, and we make the
next probe. Suppose we are charged for every bit of memory that we use as well
as for the number of probes. The goal is to decide if both sides of all cards are the
same using as little of memory and as few probes as possible.

Of course, n bits of memory are always enough: simply write u in the memory,
and flip all the cards to see v.

(a) Let n = 72 for some r > 1. Show that it is possible to test the equality of two
vectors in {0, 1}" using only r + 1 probes and writing down only r bits in the

memory.
Hint: Split the given vectors u and v into r pieces of length 7: u = (u',...,u") and
v=(v'...,0"). During the i-th probe flip the cards of the i-th piece; compute the vector

wi=u® o e et e ®u and just test if the obtained vector w;
coincides with the vector wg := u' @ - - - @ u” (written in the memory).

(b) Improve this to O(logn) probes at each of which only O(logn) bits written
in the memory. Hint: (Due to Pudlék and Sgall 1997) Think of u and v as 0-1 vectors in

154

5 Multi-Party Games

real vector space R™. Compute (a square of) the Euclidean distance ||u — v||* = (u,u) +

(v,v) — 2(u, v) of u and v, and check if it is 0.

Part 111

Circuit Complexity

6. Formulas

Although for general non-monotone circuits no super-linear lower bounds are
known, the situation for formulas is somewhat better: here we are able to prove
quadratic and even super-quadratic lower bounds. These bounds are achieved using
remarkably diverse arguments: counting, random restrictions, set covering and
graph entropy.

6.1 Size versus depth

If not stated otherwise, by a formula we will mean a DeMorgan formula, that is,
a formula with fanin-2 AND and OR gates whose inputs are variables and their
negations. By L(f) we denote the minimal leafsize and by D(f) the minimal depth
of a DeMorgan formula computing a given boolean function f.

Since the underlying graph of a DeMorgan formula is a binary tree, any formula
of depth d can have at most 2¢ leaves. This implies that, for every boolean function f,

D(f) > logy L(f)-

A natural question is: can formulas be balanced? More precisely: does there exist
a constant ¢ such that every formula of leafsize L can be transformed into an
equivalent formula of depth at most clog, L?

The question was first affirmatively answered by Khrapchenko: boolean formulas
over any finite complete basis can be balanced; see Yablonskii and Kozyrev (1968,
p. 5). For the formulas over the basis {A,V, =}, this result was independently
proved by Spira (1971) with ¢ < 3.42, and by Brent, Kuck and Maruyama (1973)
with ¢ < 2.47. The constant ¢ was then improve(ﬂ to ¢ < 2.16 by Preparata and

" The results of Brent, Kuck and Maruyama (1973) and Preparata and Muller (1975) actually hold
for formulas over any commutative ring with the multiplicative identity, not only for boolean
formulas.

157

158 6 Formulas

Muller (1975), to ¢ < 2 by Barak and Shamir (1976), then to ¢ < 1.82 by Preparata
and Muller (1976), and finally to ¢ < 1.73 by Khrapchenko (1978).

All these improvements of the constant ¢ were obtained by going deeper and
deeper in the actual structure of a given formula. But the main idea is the same:
choose a particular subformula Y, balance it, then balance the rest of the formula,
and finally combine these balanced formulas to obtain a balanced version of the
original formula. We will demonstrate this idea with a proof for ¢ = 1.82.

6.1 Lemma (Formula Balancing Lemma) For every boolean function f,
D(f) < 1.82l0g, L(f)

Proof. First, observe that it is enough to consider monotone formulas, that is, formu-
las over the basis { A, V}. Indeed, if we replace all leaves labeled by a negated variable
—z; (i = 1,...,n) in a DeMorgan formula F'(z) by a new variable y;, then we
obtain a monotone formula F’(z,y) with the property that F'(z) = F'(z, —x). We
then can replace the y-variables in a balanced equivalent of F” by the corresponding
negations of z-variables to obtain a balanced formula for F'(z).

So we only need to show that every monotone formula with m leaves can be
transformed into an equivalent monotone formula of depth at most clog, m. To
warm-up, we first prove this with a worse constant ¢ = 3; this argument is due to
Brent, Kuck and Maruyama (1973).

We argue by induction on m. The claim is trivially true for m = 2. Now assume
that the claim holds for all formulas with fewer than m leaves, and prove it for
formulas with m leaves. Take an arbitrary monotone formula F' with m leaves.
By walking from the output-gate of F’ we can find a subformula Y such that Y
has > m/2 leaves but its left as right subformulas each have < m/2 leaves. Now
replace the subformula Y of F' by constants 0 and 1, and let Fjy and F} be the
resulting formulas. The key observation is that, due to the monotonicity, Fy (z) =0
implies Fy(z) = 0. Thus the following formula

Fy Y (6.1)
F, A

Vv

is equivalent to F'. The formulas F, and F as well as the left and right subformulas
of Y each have at most m/2 leaves. By the induction hypothesis, F{ and F; can
be replaced by formulas of depth at most 31log,(m/2), and the formula Y can be
replaced by a formula of depth at most 1 + 31og,(m/2). Thus, the resulting entire
formula is equivalent to F' and has depth at most 2 + 1 + 3log,(m/2) = 3log, m,
as desired.

To improve the constant c to 1.82, we must choose the subformulas Fj and F}
more carefully. The point is that we can take the larger of these subformulas to
be the last subformula in the constructed formula. The formula F'(x1, ..., x,) has

6.1 Size versus depth 159

the form F = H(Y,z) where x = (x1,...,x,) and H(y,) is some monotone
formula of n 4 1 variables. Now look at the path from Y to the root of F:

H,y Y
H,y *1
H; *3
*¢
Then F' can be written as
H(Y,x) = Hy x¢ (Hi—1 %11 (... (Ha %9 (Hy %1 Y))))

where each x; is either A or V. Let H" be the AND of all H; feeding into A-gates,
and H" be the OR of all H; feeding into V-gates:

H" = /\ H; and HY := \/ H;.
v

[EETEVAN k=

We set H" = 1 if there are no A-gates, and set HV = 0 if there are no V-gates
along the path. It can be verified that

H"V H(0,z)=H(1,x), (6.2)
HYANH(l,z) = H(0,z). (6.3)

For this, take a vector x € {0,1}". If H(1,2) = 0 then H(0,y) = 0 by the
monotonicity of H, and H" (x) = 0 because otherwise H would output 1 on input
(1,z). On the other hand, if H(1,z) = 1 but H(0,z) = 0, then H depends on its
first input Y. Since neither H" not H" depend on this input, H”(z) = 1 must
hold. This proves (??); (??) follows by a dual argument.

The equalities (??) and (??) imply that

H(Y,z)= (Y AH"(z))V H(0,z), (6.4)
H(Y,z)= (Y VH(z))ANH(1,2). (6.5)

After these preparations, we construct the desired balanced formula by induction
on the leafsize m = L(F') of a given formula F'. Let a > 1 be a parameter satisfying
the following two inequalities:

1 1 1 1 1
1-— <= d7(1——)<—. 6.6
=g Mg ad/) ~ a? (6.6)

Our goal is to show that F' can be transformed into an equivalent formula of depth
at most log, m. Assume that L(H") < L(H"). (The case when L(H") > L(H")

160 6 Formulas

is treated similarly by using (??) instead of (??).) As before, we can find a subformula
Y of F such that Y has > m/a3 leaves but its left as well as right subformula has
< m/a?® leaves. By (??), the formula

HM@) v
HO,2) A
V
is equivalent to F. By (??),
LHO.) < LH) <m(1-) <™, (67)
L(H") < %L(H) <Z(1- a%) < 68)

By the induction hypothesis,

« H(0,z) has an equivalent formula of depth < log,(m/a) = log, m — 1;
« H” has an equivalent formula of depth < log,(m/a?) = log, m — 2;
« Y has an equivalent formula of depth < log, (m/a®) + 1 = log, m — 2.

Thus, the entire formula has depth at most log, m, as desired. It remains to choose
the parameter a > 1 satisfying (??) (the larger a is, the better upper bound we
obtain). In particular, we can take @ = 1.465. This results in the upper bound on
the depth of the form clog, m where ¢ = 1/log, a = 1.82. ad

When reducing the depth of a formula with m leaves, the leafsize m’ of the new
formula increases. The reduction above (for the case ¢ = 3) leads to m’ = O(m®)
with « about 2. Bshouty et al. (1991) showed that m' can be made smaller at the cost
of a somewhat larger depth: for every k > 2, every DeMorgan formula with m leaves
can be transformed to an equivalent formula of depth at most (3% In 2) log, m =~
2.08k logy m and of leafsize at most m®, where o = 1 + (1 + logy(k —1))71 A
simpler proof was later found by Bonet and Buss (1994).

Lemma ?? states that formulas can be balanced: D(f) = ©(log L(f)). Nothing
similar is known for circuits. Let C(f) denote the minimum number of gates in a
circuit over the basis {A, V, =} computing f. It can be easily shown that D(f) =
2(log C(f)). But the best upper bound on depth in terms of circuit size is

D(f) = O(C(f)/1og C(f)) - (6.9)

This was first proved by Paterson and Valiant (1976), and later proved by Dy-
mond and Tompa (1985) using another method. For functions whose circuits are of
exponential size, this is essentially a tight bound. However, for functions that
can be computed by subexponential-size circuits, there is still a large gap be-
tween log C(f) and C(f)/log C(f). In the class of layered circuits a better bound

6.1 Size versus depth 161

D(f) = O(\/C(f)log C(f)) was recently proved by Gél and Jang (2011). A circuit
is layered if its set of gates can be partitioned into subsets called layers, such that
every wire in the circuit is between adjacent layers.

Let D(n) = max D(f) where the maximum is over all boolean functions of n
variables. By considering DNFs or CNFs (depending on whether | f~1(1)| < 277!
or not), we see that D(n) < n + log, n. McColl and Paterson (1977) improved this
to D(n) < n + 1, then Gashkov (1978) improved this to D(n) < n — log, log, n +
2 4 o(1), and finally, Lozhkin (1983) improved this to

D(n) < n — |logylogan —o(1)],

which is already optimal up to the o(1) factor. The optimality follows from D(f) >
log, L(f) together with the fact (Theorem ??) that most boolean functions require
formulas of leafsize at least (1 — €)2™/logy 1

Lozhkin (1981) has also proved the following interesting result: if a boolean
function f can be computed by a depth-d DeMorgan formula using unbounded
fanin AND and OR gates and having S leaves, then

D(f) <d—1+ [log, S].

Note that a trivial upper bound, obtained by simulating each gate by a tree, is only
D(f) = O(dlog S). A similar result was independently proved by Hoover, Klawe
and Pippenger (1984). They consider a dual question of reducing the fanout of gates,
not their fanin. What they proved is the following. Take an arbitrary fanin-2 circuit
with n inputs and m outputs. Let S be the size and D the depth of that circuit. Then
there is an equivalent fanin-2 circuit of fanout-2 whose size is at most 3.5 — 2n and
depth is at most 2D + log m.

The original proofs of these results were somewhat involved. Gashkov (2007)
observed that the proof idea in both papers is actually based on the following simple
fact which may be of independent interest. Let ¢ > 2 be an integer. A g-ary tree T’
is a rooted tree, each node of which has at most ¢ children.

6.2 Theorem Every tree with S leaves and depth d can be transformed into a g-ary
tree with S leaves and depth D satisfying ¢¥ < ¢“S.

Proof. A well-known (and easy to prove) result of Kraft (1949) and McMillan (1956)
states that a g-ary tree with m leaves at depths /¢1,..., ¢, exist if and only if
S g% < 1. We will need the following “weighted” version of this fact. Let T’
be a g-ary tree with ¢ leaves weighted by natural numbers wy, . .., w;. Let [; be the
depth of the i-th leaf. Define the weighted depth of T"as max{¢; + w1, ..., l: +w;}.

6.3 Claim It is possible to transform 7T into a weighted g-ary tree with the same
number of leaves and weighted depth D satisfying ¢ < ¢ Zle qv.

Proof. Set D := [log, Z§=1 q"]; hence, Z§=1 v <qP < q Z§=1 g"¢. Consider
the full g-ary tree 7" of depth D. Let wy > ... > w;. First declare any node v; of
T’ at depth D — w; = {1 aleaf, remove all of its descendants, and give v; weight

162 6 Formulas
w. This removes ¢” % = ¢t leaves of T" from being considered for the rest of
the remaining leaves. In the next iteration choose any node vy from the remaining
tree at depth D — wy = {4, not on the path to vy, remove all of its descendants, and
give it weight wy. This removes a ¢” 2 = ¢ leaves of 7" from being considered
for the rest of the remaining leaves. Since Zle q“ < ¢P, we can continue this
for ¢ iterations, thus a desired tree with ¢ leaves can be constructed. O

We now prove the theorem by induction on d. The case d = 1 follows from
Claim ?? with all w; = 0. Now let d > 2, and suppose that the theorem holds
for all trees of depth at most d — 1. Let v, ..., v, be the children of the root,
and T4, ..., T, subtrees of T rooted in these children. Let .S; be the number of
leaves in T3, and d; the depth of T;. By the induction hypothesis, each T; can be
transformed into a g-ary tree of depth w; such that ¢** < ¢¢~1S;. By Claim ?2.
the entire tree T' can be transformed into a g-ary tree with S leaves and depth D
satisfying g7 < ¢ > qW < ¢? Y, S = ¢?S. O

Earlier, Lozhkin (1976) considered the behavior of the Shannon function D(n)
of the depth of circuits over arbitrary bases (including infinite ones) in the case
where some of the basis functions are assumed to have zero delay, that is, do not
contribute to the depth of a circuit. He proved that, depending on what basis we
take and what gates have zero delay, only one of the following three situations
can occur: either D(n) = «, or D(n) ~ Slogy n, or D(n) ~ ~n. Here «, 8 and v
are non-negative constants depending only on the used basis and on the delays
assigned to its functions; the dependence is explicitly given.

6.2 A quadratic lower bound for universal functions

In order to prove super-linear lower bounds for formulas, one can use the idea of
“universal functions”, going back to Nechiporuk (1966).

Let n = 2" and consider two sequences of variables z = (z1,...,2,) and
y = (Y1,.-.,Yn). Each assignment a € {0,1}" to the z-variables gives us a unique
natural number bin(a) = 2" ta; +--- +2a,_1 + a, + 1 between 1 and n; we call
bin(a) the code of a. Consider the boolean function on r + n variables defined by:

Un(za y) ‘= Ybin(z) -

That is, given two vectors z € {0,1}" and y € {0,1}", we just compute the code
i = bin(z) of z, and output the i-th bit y; of y. This function is also known as
multiplexer or a storage access function, and is “universal” in the following sense.

6.4 Proposition For every boolean function h(z1,...,z,.) there is an assignment
b € {0,1}" such that U, (z,b) = h(z).

Proof. For each a € {0,1}" replace the variable yp,in(q) by the constant h(a). O

6.2 A quadratic lower bound for universal functions 163

By Theorem ??, we know that boolean functions h(z1, . . ., 2,) requiring DeMor-
gan formulas with L(h) > 2"~1 /logr = n/2loglogn leaves exist. Thus, the func-
tion U, (z,y) also requires so many z-leaves. Of course, this lower bound is trivial
because U,, depends on all its y-variables, and hence, requires at least n leaves. One
can, however, boost the complexity of U, (z, y) by considering boolean functions
of 2n variables of the form f(x,y) = U, (g(z),y), where g : {0,1}" — {0,1}* is
some easily computable boolean operator. For this, take a set « of n variables, and
arrange them into a r X m matrix

11 12 *°° Tim

€21 T22 * - T2
x m

Lyl Lr2 *°° Trm

where m = n/r; we assume that n is divisible by r = log, n. If we take a boolean
function ¢(uq, . .., Uy,) of m variables, and apply it to the rows of z, then we obtain
r bits z; = ©(41, T2y -+ Tim), ¢ = 1, ..., 7. The universal function induced by ¢
is the following boolean function of 2n variables:

Ul(x,y) :==Up(21,...,2r,y) where z; = o(2i1,Tia,- .., Tim)-

We call ¢ the generating function of U?(x,y).

Our goal is now to exhibit a boolean function requiring about n? leaves in any
binary formula, that is, in a formula where all 2% = 16 boolean functions in two
variables are allowed as gates. For this purpose, we take as generating function ¢
the OR of variables:

OR(Up,y vy Upp) = UL VU VooV Uy,

Note that the resulting boolean function UPR(x,) of 2n variables is explicitly
given. The function first computes the ORs z; = z;; V -+ V x;,, of variables
along the rows of z, then computes the code i = bin(z) of the resulting vector
z = (z1,...,2), and finally outputs the i-th bit y; of y.

2—o(1)

6.5 Theorem Every binary formula computing UOR must have at least n leaves.

Proof. Let F(x,y) be abinary formula computing U9R (z, y). Fix a boolean function
h(z1,...,z-) of r variables requiring the largest binary formula. By Theorem ??,
we know that any such formula must have at least

c2" cn

—_— = 6.10
logr loglogn (6.10)

leaves, for a constant ¢ > 0. By Proposition ??, there is an assignment b € {0, 1}" to
the y-variables of U, (z, y) such that U, (z,b) = h(z). Thus, the boolean function

164 6 Formulas

m m

f(x) :=UR(z,b) = h(\Zmlj, \/ T2y, \/ x,.j)

j=1 j=1

of n variables is a subfunction of UOR (2, y); recall that m = n/r = n/logn.

In each row of the matrix z of variables, mark a variable which appears as a
leaf of F' the smallest number of times (when compared to the remaining variables
of that row). Set all non-marked variables in x to 0. After this setting we obtain a
formula F’ on r marked variables such that F’ computes h. Since we have fixed
only the “most popular” variables of each row of x, the number of leaves in F' must
be at least m times larger than the number L(F”) of leaves in the obtained formula
F'. Together with (??), this implies that the number of leaves in the formula F'(z, b),
and hence also in the original formula F'(x, y), must be at least

cn an

m-L(F')>m O

. loglogn - lognloglogn
6.6 Remark Note that the same argument works for the universal function U? (x, y)
induced by any(!) boolean function ¢ depending on all its m variables. Recall that a
boolean function ¢(u1, . .., u,;,) depends on its i-th variable if there are constants

A1y .y Qim1y Qig1, - - -y G, in {0, 1} such that the subfunction p (a1, . .., a;—1,u;, ait1, . - .

is either u; or —u;. Having a boolean function (¢ which depends on all its m variables,
we can replace the unmarked variables by the corresponding constants. What we
obtain may (apparently) not be the function h(z1, ..., x,) itself but some function
of the form h'(z1,...,2,.) = h(zy ® 01,...,2, B 0,) where o; € {0,1}. This,
however, does not matter because h’ still requires ¢2" / log r leaves.

6.7 Remark In the definition of the universal function U, (z,y) of r + n variables
with n = 2" we used binary representation of positions ¢ of vector y. One can also
use other encodings of boolean functions. Recall that an elementary conjunction of r

variables z = (21, ..., 2,) is a boolean function of the form K (z) = z{'25% - - - 2%n

n'
where a1,...,a, € {0,1}, 27 = 1ifa; = 0, and 2{ = 0 otherwise. Since each
such conjunction accepts exactly one vector a = (ai,...,a,), every boolean
function f(z) of r variables can be represented as an OR of at most 2" elementary
conjunctions. Thus, if K;,..., K, are all n = 2" elementary conjunctions of

variables z, then the boolean function
Va(z,y) = \/ yi N KG(2)
i=1

is also universal in the sense of Proposition ??. In particular, if we take this function
instead of U, (2, y) and use the OR as the generating function ¢, then the same
argument as in the prof of Theorem ?? yields that resulting function V9% (z, y)
of 2n variables also requires n2~°(!) leaves in any binary formula. Note that the
function V,°R can be computed by a DeMorgan formula with O(n) unbounded
fanin AND and OR gates.

7am)

6.3 The effect of random restrictions 165

6.3 The effect of random restrictions

The quadratic lower bound, given in Theorem ??, is not quite satisfying because
it only holds for some specially designed boolean functions. In fact, this lower
bound does not give much more information about the power of formulas than the
counting lower bounds we derived in Section ??. In particular, such a counting-based
argument says nothing about the complexity of other boolean functions.

As early as 1961, Bella Abramovna Subbotovskaya, a student of Oleg Borisovitch
Lupanov, found a more subtle lower bounds argument for DeMorgan formulas.
Given a formula F' computing some function f, her idea was to set randomly some
of the variables to constants and show that this restriction reduces the size of F' con-
siderably whereas the resulting subfunction of f is not much easier. Subbotovskaya
was actually the inventor of the “method of random restrictions”, one of the most
powerful tools for proving lower bounds.

6.8 Lemma (Subbotovskaya 1961) For every boolean function f of n variables, it is
possible to fix one of its variables such that the resulting boolean function f' of n — 1
variables satisfies

14 3/2
L)< (1-2)" 1)
n
Proof. Let F be a minimal DeMorgan formula which computes f(z1,...,z,) and

has s = L(f) leaves (input gates). Since f has only n variables, at least one variable
x; must appear at least s/n times as a leaf, that is, at least s/n leaves are labeled by
x; or —z;. Thus if we set z; to a constant ¢ € {0, 1}, what we obtain is a formula
of n — 1 variables with at most s — s/n = (1 — 1/n)s leaves. But this is not the
whole truth: when setting a variable to a constant we can expect to “kill off” not
only the variable itself but also some other leaves labeled by other variables.

To show this, say that a subformula G of F is a neighbor of a leaf z, if z A G or
2z V G is a subformula of F.

6.9 Claim If z € {x;, ~x;} is a leaf of F, then the neighbor of z does not contain
the variable x;.

Proof. Let F be a minimal non-constant formula, z € {x;, ~x;} one of its leaves,
and G the neighbor of z in F.. Hence, H = z A G (or H = z V G) is a subformula
of F. For the sake of contradiction, assume that G contains a leaf 2’ € {z;, —x;}.
Replace this leaf by that constant ¢ € {0, 1} for which the literal z get value 1. That
is, replace the leaf 2’ by 1 if 2 = x;, and by 0 if 2 = —z;. (f H = 2 V G, then we
set 2’ so that the literal z gets value 0.)

After this setting, the resulting subformula G’ has one leaf fewer than G, but
the resulting subformula H' = z; A G’ computes the same boolean function as
x; A G. To see this, take an input vector a € {0,1}".If a; = c then z(a) = 1 and
G'(a) = G(a), implying that H'(a) = H(a).If a; = ¢ ® 1 then z(a) = 0, and
we again have that H'(a) = 0 = H(a). Thus, we obtained a formula F’ which

166 6 Formulas

computes the same boolean function as the original formula F' but has one leaf

fewer. This contradicts the minimality of F. O
Take now a variable x; which appears t > s/n times as a leaf of F'. Let 21, . . ., 2
be the leaves labeled by x; or —x;. By Claim ??, for every ¢ = 1,...,¢ there is a

constant ¢; € {0,1} such that, after setting z; = c¢;, the neighbor G; of z; will
disappear from F’, thereby erasing at least one more leaf which is not among the
leaves z1, ..., z:. Let ¢ € {0, 1} be the constant which appears most often in the
sequence ¢y, . .., c. If we set z; = ¢, then all the leaves 21, ..., z; will disappear
from the formula, and at least ¢/2 additional leaves will disappear because of these
secondary effects. In total, we thus eliminate at least ¢ 4+ ¢/2 > 3s/2n leaves, and
the resulting formula has at most

3s 3 1\3/2
_2 . 1_7)< .(1_f
5 2n S(2n =5 n)

leaves, as claimed. O

6.10 Theorem (Subbotovskaya 1961) For every boolean function f of n variables and
for every integer 1 < k < n, it is possible to fix n — k variables such that the resulting
boolean function f' of k variables satisfies

L < (5" L.

n

Proof. Let s = L(f). By applying Lemma ?? n — k times, we obtain a formula of k&
variables with at most

()) e ()

leaves. O

6.11 Example (Parity function) Let f = z1 @ x9 & - - - @ x,,. If we fix all but one
variables of f, we obtain a boolean function f’ (a variable or its negation) requiring
formula of leafsize 1. Thus, we can apply Theorem ?? with £ = 1 and obtain that

t<u < (2) .,

n
which gives the lower bound L(f) > n%/2.

In order to prove larger lower bounds, it is useful to restate Subbotovskaya’s
argument in probabilistic terms. Let f be a boolean function, and X = {x1,...,2,}
the set of its variables. A partial assignment (or restriction) is a function p : X —
{0, 1, x}, where we understand * to mean that the corresponding variable is unas-
signed. Each such partial assignment p yields a restriction (or a subfunction) f, of
f in a natural way: f, = f(p(z1),...,p(zy)). Note that f, is a function of the
variables x; for which p(z;) = *. For example, if

6.3 The effect of random restrictions 167
f = (.231 \Y i) V .’133) A\ ("331 V $2) A (331 \Y _‘373)

and p(1) = 1, p(z2) = p(zs) = * then f, = 75,

Let Ry, be the set of all partial assignments which leave exactly k variables
unassigned. What we will be interested in is the random restrictions f, that results
from choosing a random partial assignment from R . The probability distribution
of restrictions in Ry, we will use is the following: randomly assign k variables to be
*, and assign all other variables to be 0 or 1 randomly and independently.

Theorem ?? states that, for every boolean function f, there exists a restriction
p € Ry, such that L(f,) < (k/n)3/2L(f). We now show that, in fact, this happens
for at least a 3/4 fraction of all restrictions in Ry.

6.12 Lemma Let f be a boolean function of n variables, and let p be a random
restriction from Ry. Then, with probability at least 3/4,

o\ 3/2
L(f,) <4(=) " L.
Proof. The argument is actually the same as in the proof of Theorem ??. Let F' be
an optimal DeMorgan formula for the function f of size s = L(f). Construct the
restriction p in n — k stages as follows: At any stage, choose a variable randomly
from the remaining ones, and assign it 0 or 1 randomly. We analyze the effect of
this restriction to the formula F’, stage-by-stage.

Suppose the first stage chooses the variable z;. When this variable is set to
a constant, then all the leaves labeled by the literals x; and —z; will disappear
from the formula F. By averaging, the expected number of such literals is s/n.
Since x; is assigned 0 or 1 randomly with equal probability 1/2, we can expect (by
Claim ??) at least s/2n additional leaves to disappear. In total, we thus expect at
least s/n + s/2n = 3s/2n leaves to disappear in the first stage, yielding a new
formula with expected size at most s — 3s/2n < s(1 — 1/n)3/2. Subsequent stages
of the restriction can be analyzed in the same way. After each stage the number of
variables decrements by one. Hence, after n — k stages, the expected leafsize of the
final formula is at most s(k/n)3/2. By Markov’s inequality, the probability that the
random variable L(f,) is more than 4 times its expected value is smaller than 1/4,
which completes the proof. O

Subbotovskaya’s result can be stated for more general probability distributions.
Suppose that p is a real number between 0 and 1. A p-random restriction indepen-
dently assigns each variable x; the value 0 or 1 with equal probabilities (1 — p)/2,
and with the remaining probability p keeps x; unfixed. Thus, the distributions we
have considered above correspond to p = k/n. What will be the expected formula
size of the induced function when we apply a random restriction? The obvious
answer is that this size will be at most pL.

What Subbotovskaya actually shows is that formulas shrink more. Namely, she
establishes an upper bound O(p®/2L) on the expected formula size of the induced
function. Her work and the subsequent result of Andreev (Theorem ?? below)
motivated consideration of the shrinkage exponent I" of DeMorgan formulas. This

168 6 Formulas

number I is defined as a largest number such that, if a boolean function f has a
DeMorgan formula of size L, then the expected formula size of the induced function
is O(p''L).

Impagliazzo and Nisan (1993) showed that I" > 1.55, then Paterson and Zwick
(1993) showed I" > 1.63, and finally Hastad (1998) proved that I" = 2.

6.13 Theorem (Hastad 1998) If we apply a p-random restriction to a DeMorgan of
leafsize L, then the expected remaining leafsize is at most O(p*L).

6.4 A cubic lower bound

Andreev (1987a) was the first to prove a super-quadratic lower bound for DeMorgan
formulas. His idea was to combine the method of Subbotovskaya with Nechiporuk’s
method of universal functions (discussed in Section ??) For this purpose, Andreev
considered the universal function generated by the parity function:

DUty ey Um) = UL DU D -+ D Uy,

The resulting function is then a boolean function U (x,y) of 2n variables, where
n = 27 is a power of 2. The first variable = are arranged into an 7 X m matrix

11 12 *°* Tim
| T21 T22 - Xom
Trl Tr2 **° Trm

where m = n/r; we assume that n is divisible by » = log, n. The function first
computes the parities z; = x;1 @ - - - @ x4y, of variables along the rows of x, then
computes the code ¢ = bin(z) of the resulting vector z = (21, ..., z.), and finally
outputs the i-th bit y; of y.

6.14 Theorem (Andreev 1987a) L(UP) > n5/2=0(1),

Proof. Fix a boolean function h(z1,...,z2,) of r variables requiring the largest
DeMorgan formula. By Theorem ??, we know that any such formula must have at
least

271 n

logr 2 loglogn

(6.11)

leaves. Note that, if we replace some variable z; in h by their negations, the resulting
boolean function will require this number of leaves. By Proposition ??, there is an
assignment b € {0, 1}" to the y-variables of U,,(z, y) such that U,,(z,b) = h(z).
Thus, the boolean function

m

f(z) :=UP(z,b) = h(@xlj, @Jfgj, . ,@x,.j)
j=1 j=1 j=1

6.4 A cubic lower bound 169

of n variables is a subfunction of U? (z, y). Recall that # = (x;;) is an r x m matrix
of boolean variables for » = log, n and m = n/r. Let p be a random restriction
from Ry, on the x-variables where k = [rIn(4r)]. Our first goal is to show that,
with a large probability, at least one variable in each row of x will remain unfixed

by p:
3

Prob[p assigns an * to each row of] (6.12)

To show this, observe that the restriction p assigns an * to each single variable with
probability (Z:}) /(%) = £.By the union bound, the probability that some of r
rows will get no * is at most

k m i3
r- (1— 7) <pee W < pee) = 1/4.
n
On the other hand, Lemma ?? implies that
3/2 3

Prob L(f,) <4(%) " L(f)] = 7. (6.13)
Some restriction p will thus satisfy both conditions (??) and (??). Fix such a re-
striction p. By (??), the function & is a subfunction of f,, whereas by (??), L(f,)

is at least 4(k/n)%/? times smaller than L(f). Recalling that k = [r1n(4r)] =
O(lognloglog n) and using (??), for such a restriction p we obtain

Lwd) =L > (1) L

- 12)

S 1<n)3/2 n
—4\k 2loglogn

> pp/2—0() g
The proof of Theorem ?? actually gives the lower bound
LUE) = Q"+,

where I is the shrinking exponent of DeMorgan formulas. Andreev used Sub-
botovskaya’s lower bound I" > 3/2. Using Hastad’s improvement I > 2 (see
Theorem ??), we immediately obtain a larger lower bound for Andreev’s function.

6.15 Theorem (Hastad 1998) L(U®) > n3—°),

170 6 Formulas

6.5 Nechiporuk’s theorem

Nechiporuk (1966) found another argument which works for binary formulas where
all 2% = 16 boolean functions in two variables are allowed as gates. Let Lz (f)
denote the minimum leafsize of a binary formula computing f.

A subfunction of a boolean function f(X)onY C X is a function obtained from
f by setting all the variables of X \ Y to constants.

6.16 Theorem (Nechiporuk 1966) Let f be a boolean function on a variable set X, let
Y1,Ys, ..., Y, bedisjoint subsets of X, and let s; be the number of distinct subfunc-
tions of f on'Y;. Then

1 m
Ls(f) > Zglogsi.

Proof. Let F be an optimal binary formula for f and let /; be the number of leaves
labeled by variables in Y;. It is sufficient to prove that I; > (1/4)logs;. Let L;
be the set of all leaves in F' labeled by variables from Y;. Consider the subtree T;
consisting of all these leaves and all paths from these leaves to the output of F'.
Each node of T; has in-degree 0, 1 or 2. Let W; be the set of nodes of in-degree 2.
Since |W;| < I; — 1, it is enough to lower-bound the number |W;| of such nodes in
terms of the number s; of different Y;-subfunctions of f.

Let P; be the set of all paths in 7; starting from a leaf in L; or a node in W; and
ending in a node in W; or at the root of T; and containing no node in W; as inner
node. There are at most |W;| + 1 different end-points of paths in P;. Moreover, at
most two of these path can end in the same node v. These paths can be found by
starting in v and going backwards until a node in W; or a leaf is reached. Hence

[Pl < 2(]Wil +1). (6.14)

Assignments to the variables outside Y; must lead to s; different subformulas. Fix
such an assignment «. If we remove from I all gates that are evaluated to a constant
0 or 1 by a, then what we obtain is precisely the tree T;. That is, the subfunction
F(Y;, «) is computed by the gates of T; whose fanin-1 gates correspond to fanin-2
gates of ' with one of the input gates replaced by a constant. So, if p is a path in
P;, and h is a function computed at the first gate of p (after an assignment) then
the function computed at the last edge of p is 0, 1, h or —h. Thus, under different
assignments o at most 4/”| subfunctions can be computed, implying that s; < 4/,
Together with (??), this implies that [W;| > (1/4)log s; — 1. Since |W;| < I; — 1,
this gives the desired lower bound I; > (1/4) log s; on the number of leaves labeled
by variables in Y;. a

Recall that the element distinctness function ED,, is a boolean function of n =
2m log m variables divided into m consecutive blocks with 2logm variables in
each of them. Each of these blocks encode a number in [m?]. The function accepts
an input z € {0, 1}" iff all these numbers are distinct.

6.6 Lower bounds for symmetric functions 171

By considering (") subformulas, each testing the distinctness of one pair of
blocks, we see that ED,, can be computed by a DeMorgan formula with about
(") logm = O(n?/logn) leaves. On the other hand, we have already shown
that ED,, has 22(") subfunctions on each of these m = £2(n/logn) blocks (see
Lemma ??). Thus, Nechiporuk’s theorem immediately yields

6.17 Theorem A minimal binary formula computing ED,, has ©(n?/logn) leaves.

Thus, Nechiporuk’s theorem can be used to prove almost quadratic lower bounds.

6.18 Remark Unfortunately, the theorem is inherently unable to give a lower bound
larger than ©(n?/logn). To see this, take an arbitrary partition Y7, ..., Y,, of the
set X of n variables of a boolean function. Let t; := |Y;| and let s; be the number of
subfunctions of f on Y;. Then log s; < min{n — ¢;, 2% }. Assume w.l.o.g. that only
the first k of the block-lengths ¢4, .. ., ¢,, are larger than log n. Since the blocks are
disjoint, this implies that k¥ < n/logn, and the contribution of the first k£ blocks is

k k
Zlogsi < Z(n —t;) <n?/logn.
i=1 i=1

Each of the remaining m — k blocks can contribute at most log s; < 2% < n. Since
the function = — 27 is convex, the sum along these blocks is maximized when
as many of the ¢; as possible are near to their upper bound logn, that is, when
m — k = O(n/logn). Thus, the total contribution of the remaining blocks is also
at most mn = O(n?/logn).

6.19 Remark Nechiporuk’s theorem has no analogue for circuits. Namely, Uhlig
(1991) showed that there exist boolean functions f of n variables such that f has
about 3" subfunctions, but f can be computed by a circuit of depth log n using at
most 2n fanin-2 boolean functions as gates (cf. Exercise ??). Interestingly, earlier
Uhlig (1974) showed that, for every v € [0, 1], the class of all boolean functions
with at least 73" subfunctions contains functions requiring circuits of size ¢, 2" /n.

6.6 Lower bounds for symmetric functions

Recall that a boolean function f(x1, ..., x,) is symmetric if its value only depends
on the number || = 21 + 22 + - - - + ,, of 1s in the input vector. Thus, every such
function is specified by boolean vector v = (vg, v1, ..., vy,) in {0,1}"*! such that
f(z) = 1iff v, = 1; the vector v is the characteristic vector of f.If f is a symmetric
boolean function, then f can have at most n — |Y'| + 1 distinct subfunctions on
any set Y of variables. Thus, Nechiporuk’s method cannot yield superlinear lower
bounds for symmetric functions. Khrapchenko’s method, which we will present in
the next section, can yield even quadratic lower bounds for symmetric functions,
but it only works for DeMorgan formulas.

172 6 Formulas

Bilder/specKker-eps-converted-to.pdf

Fig. 6.1 After setting to O all variables in Y, the function f(X) turns to a homogeneous function
f/(Y). The function f’(Y) has the same values in all odd levels, and has the same values in all
even levels, except perhaps the zero-level. Here a is the boolean vector with ones in position in Y,
and zeros elsewhere.

Superlinear lower bounds L (f) = £2(na(n)) for formulas over an arbitrary
finite complete basis {2 computing symmetric functions f were proved by Hodes
and Specker (1968). Here a(n) is a very slowly growing function, slower than a
k-fold logarithm of n, for every k. Their method was applied by Khrapchenko
(1976) and Paterson (1976), who proved superlinear lower bounds for all symmetric
boolean functions of n variables, except for 16 functions which can be computed
with linear-size formulas. The 16 exceptional functions have the form f(z) =
ag @ a1 P(r) ® an K (1) @ asK (), where the coefficients «; take values 0 and 1,
Pr)=2,® @xp, K@) =21 A Axy,and K(x) =T A+ ATy

Pudlak (1984b) substantially enhanced their method to prove that Lo(f) >
conloglogn holds for all symmetric boolean functions of n variables, with an
exception of only 16 functions described above; here ¢, > 0 is a constant depending
only on the basis (2.

Pudlék’s argument is based on the following structural property of boolean
functions computable by small formulas. Say that a symmetric boolean function f
is homogeneous if its characteristic vector v has the same values in all odd positions,
and has the same values in all even position, except possibly in position 0. That
is, when ignoring the all-0 vector, such a function is either a constant function, or
the parity function, or the negation of the parity function. In other words, every
homogeneous function has the forms f(z) = ag ® a1 P(x) © as K ().

A boolean function f(X) of n variables is r-homogeneous if there exists a subset
Y C X of |Y| = n — r variables such that the subfunction of f obtained by setting
to 0 all variables in Y is a homogeneous symmetric boolean function of r variables
(see Fig 7?).

6.20 Theorem (Pudlak 1984b) Let f(X) be a boolean function of n variables. If f is
not r-homogeneous for some integer r > 3, then

Lo(f) > con(loglogn —logr) .

6.6 Lower bounds for symmetric functions 173

The proof uses Ramsey-type arguments and is sketched, for example, in the book
by Dunne (1988). To see how this theorem works, let us consider the threshold-
2 function Thj and take r = 3. If we set to 0 any n — 3 variables, then the
obtained symmetric subfunction Thg is not homogeneous. Theorem ?? implies that
Lo (Thy) > conloglogn.

Yet another lower bounds argument for the formula size of symmetric boolean
functions was proposed by Fisher, Mayer and Paterson (1982). Their argument
works only for binary formulas (over the basis containing all boolean function of
two variables) but the resulting lower bounds are stronger, up to {2(nlogn).

To state their result, call a subfunction of a boolean function f balanced if
ny —ng € {0, 1}, where n; is the number of variables replaced by ones, and ng is
the number of variables replaced by zeros . Let a(f) denote the maximum number
d such that the set of all balanced subfunctions of f contains a parity function of d
variables or its negation.

6.21 Theorem (Fisher-Mayer—Paterson 1982) There is a constant ¢ > O such that
for every boolean function f of n variables,

Lp(f) = cnlogff)'

The proof can also be found in the book by Dunne (1988). We will only prove an
important consequence of this theorem, giving us a simple lower-bounds criterion.
Say that a boolean function f is m-separated if there exists a constant a € {0,1}
such that f(x) = a for all input vectors x with exactly m ones, and f(z) = a ® 1
for all input vectors = with exactly m + 2 ones.

6.22 Theorem There is a constant ¢ > O such that for every0 < m < n — 2 and
every m-separated boolean function f of n variables, Lp(f) is at least the minimum
of enlogm and cnlog(n —m).

Proof. We can assume w.l.o.g. that m < [n/2]. Since f is m-separated, we know
that f takes some fixed value a € {0, 1} on all inputs with exactly m ones, and
takes value a @ 1 on all inputs with exactly m + 2 ones.

We first prove the assertion for m = |n/2]. It is sufficient to prove thata(f) < 2.
Let us consider an arbitrary balanced subfunction f’ of f on three variables. That is,
/' is obtained from f by setting some n — 3 variables to constants 0 and 1. Moreover,
[(n — 3)/2] variables have been replaced by ones, and | (n — 3)/2] variables have
been replaced by zeros . Since m — [(n — 3)/2] = 1, we have that f'(1,0,0) = a
but f/(1,1,1) = a @ 1. Thus, f’ can be neither the parity of three variables nor its
negation, and Theorem ?? implies that L (f) > enlog(n/2) > cnlogm.

We now consider the case when m < |n/2]. Let F' be an optimal formula for f,
and let r; be “replication” of the i-variable in F, that is, the number of leaves of F’
labeled by z;. Hence, F has L(F) = > r; leaves. Set to zero n — 2m variables of
the largest replication, and let F” be the resulting subformula of 2m variables. Since
the function f was m-separated, its subfunction computed by F” is m-separated
as well. By what we just proved above, F’ must have at least ¢(2m) log m leaves.

174 6 Formulas

Thus, there must be a variable z; such that at least clog m leaves of F’ (and hence,
also of F') are labeled by z;. But then we must also have that r; > clogm for all
n — 2m variables x; which we replaced by zeros. Thus,

Lp(f) = L(F) > (n —2m)clogm + ¢(2m) logm = cnlogm . O

Theorem ?? yields superlinear lower bounds Lp(f) = 2(nlogn) for every
symmetric boolean function f of n variables whose characteristic vector v =
(vo,v1, ..., vy) has a position m such that v,,, # vy 42 and both m and n — m are
at least n?()_ In particular, we have such a lower bound for the majority function
Maj,,, as well as for every counting function Modj (z) = 1iff 1 +--- + =, =
0 mod k, as long as £ > 2 and k is not too large.

6.7 Formulas and rectangles

For DeMorgan formulas, that is, for formulas over the basis {A, VV, =}, we have yet
another lower bounds argument, due to Khrapchenko (1971). He used this argument
to prove an n? lower bound for the parity function. Later, Rychkov (1985) observed
that the essence of Khrapchenko’s argument is more general: it reduces the lower
bounds problem for DeMorgan formulas to a combinatorial problem about the
covering of rectangles by monochromatic subrectangles.

We have already arrived to the concept of “rectangles” and “monochromatic
rectangles” in Chapter ?? when dealing with the communication complexity of
relations, see Definitions ?? and ??. Since we will use these concepts extensively, let
us recall them.

An n-dimensional combinatorial rectangle, or just a rectangle, is a Cartesian
product R = A X B of two disjoint subsets A and B of vectors in {0,1}". A
subrectangle of R is a subset S C R which itself forms a rectangle.

Aboolean function f : {0,1}" — {0, 1} separates arectangle Ax B if f(A) =1
and f(B) = 0, thatis, if f(a) = 1foralla € A and f(b) = Oforallb € B.
Rectangles separated by a boolean variable x; or by its negation —z; are called
monochromatic. That is, a rectangle R is monochromatic, if there exists an index ¢
such that

a; # b; for all edges (a,b) € R.

Rectangles separated by non-negated variables x; are called positively monochro-
matic. For such rectangles we additionally have that

a; = 1 and b; = 0 for all edges (a,b) € R.

For example, if A = {000} and B = {100,010, 001} then the rectangle A x B is not
monochromatic, whereas if A = {001, 111} and B = {000, 110} then the rectangle
A x B is monochromatic, and even positively monochromatic: it is separated by
xIs3.

6.7 Formulas and rectangles 175

The tiling number x(R) of a rectangle R is the smallest number ¢ such that R
can be decomposed into ¢ disjoint monochromatic rectangles. The tiling number
X(f) of a boolean function is the tiling number of the rectangle f (1) x f~1(0).
The monotone tiling numbers, where only positively monochromatic rectangles
are allowed in decompositions, are denoted by x, (R) and x, (f). In general, these
two numbers may not be defined: the simplest example is the function such that
f(0) = 1and f(1) = 0. Butif f is a monotone boolean function f, then f(a) =1
and f(b) = 0 implies that there must be an 4 for which a; = 1 and b; = 0. Hence,
X+ (f) is well-defined for all monotone boolean functions.

Recall that any n-dimensional rectangle R can be covered by at most 2n
monochromatic rectangles, if we do not insist on their disjointness. For this, it
is enough to take the 2n rectangles

Mio={(z,y) € R|z; =a,y;=1—a} (a=0,1andi=1,...,n)

called canonical monochromatic rectangles. Thus, it is the disjointness constraint
which makes the tiling number x(R) nontrivial.

The following lemma reduces the (computational) problem of proving a lower
bound on the formula size to a (combinatorial) problem about decomposition of
rectangles.

Let L(f) be the smallest leafsize of a DeMorgan formula computing f. A formula
is monotone if it has no negated variables as input literals. If f is a monotone boolean
function, then L, (f) denotes the smallest leafsize of a monotone DeMorgan formula
computing f.

6.23 Lemma (Rychkov 1985) For every boolean function f and for every monotone
boolean function g, L(f) > x(f) and L. (g) > x,(9).

Proof. We prove the first inequality by induction on L(f). If L(f) = 1 then f is
just a single variable z; or its negation. In this case R itself is a monochromatic
rectangle.

For the induction step, let ¢ = L(f) and assume that the theorem holds for all
boolean functions g with L(g) < ¢ — 1. Take a minimal formula for f, and assume
that its last gate is an And gate (the case of an Or gate is similar). Then f = fo A f1
for some boolean functions fy and f; such that L(fo) + L(f1) = L(f).

Suppose that f separates a rectangle R = A x B, that is, f(A) = 1 and
f(B) = 0. Consider the set By = {b € B | fo(b) = 0}. Then f; separates the
rectangle Ry = A x By, and f; separates the rectangle R; = A x (B; \ Bp). By
the induction hypothesis, x(R;) < L(f;) for both ¢ = 0, 1. Hence,

X(R) < x(Ro) + x(R1) < L(fo) + L(f1) = L(f).

The proof of the lemma in the monotone case is the same with the basis case
replaced by L (g) = 1. In this case R itself is a positively monochromatic rectangle.
The induction step is the same. O

It is not known whether some polynomial inverse of Rychkov’s lemma holds.

176 6 Formulas

6.24 @ Research Problem
Does L(f) < X(f)o(l)?

What we know is only a “quasi-polynomial” inverse

L(f) < x(f)?osx)

which is a direct consequence of Lemma ??. Still, since boolean functions with
L(f) = £2(2™/logn) exist (see Theorem ??), the latter inequality implies that
boolean functions f of n variables such that x(f) > 2(1—o())Vn exist. Hence, in
principle, the tiling number can also achieve super-polynomial lower bounds on
the formula size.

6.25 Remark Khrapchenko (1971) himself considered not formulas but an equivalent
model of m-schemes (see Proposition ??). These are switching networks of a special
parallel-serial structure. A path in a m-scheme is a set P of contacts in a simple path
from the source to the target node. A cut is a set C' of contacts such that the removal
of C cuts off all paths, and no proper subset of C' does this. Khrapchenko observed
that w-schemes (unlike general switching networks) have the following special
property: | P N C| = 1 for every path P and every cut C (we leave the proof of this
observation as an exercise). Now, with every vector z € f~!(1) we can associate
one path, all contacts of which accept z, and with every vector y € f~1(0) we can
associate one cut, all contacts of which reject y. By the observation above, every
pair (z,y) € f~1(1) x f~1(0) will be associated with exactly one contact in the
scheme, and the set of pairs associated with a single contact form a monochromatic
rectangle. In this way we obtain a partition of f~1(1) x f~!(0) into monochromatic
rectangles whose number is exactly the number of contacts in the scheme.

6.8 Khrapchenko’s theorem

As early as 1971, Khrapchenko suggested one way to prove lower bounds on the
tiling number. Define the set

A®B={(a,b)|a€ Aandb € Banda ~ b},

where a ~ b means that inputs @ and b differ on exactly one bit. The main property
of the set A ® B is accumulated in the following

6.26 Lemma No monochromatic s X t rectangle can cover more than /st elements of
A®B.

Proof. Let S x T be a monochromatic s x t subrectangle of A x B. Since the
rectangle is monochromatic, each element of S differs from each element in 7" in
one particular position j, whereas (a,b) is in A ® B only if a and b differ in exactly
one position. Hence, for any given a € .S, the only possible b € T" for which a ~ b

6.8 Khrapchenko’s theorem 177

is one which differs from a exactly in position j. As a result, we have that S x T’
can cover at most min{|S|, |T'|} = min{s,t} < /st entries of A ® B. O

Intuitively, if A ® B is large, then every formula separating A and B should
be large, since the formula must distinguish many pairs of adjacent inputs. The
following theorem says just how large.

6.27 Theorem (Khrapchenko 1971) If a boolean function f separates a rectangle

A x B, then)
|A® B|
L(f) > %7 -
Al -|B
Viewing A ® B as the set of edges of a bipartite graph with parts A and B, the
theorem states that the leafsize of any formula separating A and B must be at least
the product of the average degrees of these two parts.

Proof. Suppose we have a decomposition of A x B into 7 monochromatic rectangles
of dimensions s; X t;,7 = 1,...,r. Let ¢; be the number of elements of A ® B
in the i-th of these rectangles. By Lemma ??, we know that c? < s;t;. Since the
rectangles are disjoint and cover the whole rectangle A x B, we also have that
|[A®@ B| = >i_,c;and |[A x B| = Y., a;b;. Applying the Cauchy-Schwarz
inequality (3" x;y:)? < (3. 22) - (3. y2) with z; = ¢; and y; = 1, we obtain

\A®B\2:(icl—)Q§ric§§r~iuibi:r~|AxB|. O
i=1 i=1

i=1

Khrapchenko’s theorem can be used to show that some explicit boolean func-
tions require formulas of quadratic size. Consider, for example, the parity function
@n(x) = 21®- - - D, and threshold-k functions Thy, (z) = 1iff z1 +- - -+, > k.

6.28 Theorem L(®,) > n?.

Proof. Let A be the set of all vectors with an odd number of ones, and B the set
of all vectors with an even number of ones. Then |A| = |B| = 2"~!, whereas
|A® B| = n2"~!. Hence,

202(n—1)
L(EB") > n2 = n2 . 0O

— 922(n-1)

This lower bound is almost optimal. Let p,, denote the largest power of 2 not
exceeding n, that is, p,, = 21827

6.29 Theorem (Yablonskii 1954) For everyn > 2,

9
L(®,) < 3np, —2p2 < gnz .

In particular, L(®,,) = n? if n = 2¥ is a power of 2.

178 6 Formulas

Proof. Let A\(n) = L(®,,) denote the smallest leafsize of a DeMorgan formula
computing B, (z) = z1 Pxa®- - - Dx,. Write nasn = 2™+ k where 0 < k < 2™.
Then p,, = 2™ and

3np, — 2p2 = p2 + 3kp, = 2°™ + 3k2™ .

So, it is enough to show that A\(n) < 22™ + 3k2™. We do this by induction on n =
2™ 4 k. Basis cases n = 1, 2 are trivial. For the induction step, we use that fact that a
parity f = g@®h of two functions can be computed as f = (gA—h)V (—gAh). Thus,
L(f) < 2L(g) +2L(g). Since [n/2] = 2™~ + |k/2] and [n/2] = 2™~ 1 + [k/2],
we obtain
() < 2(A([n/2]) + A([n/2]))

— 2(22(7”—1) + 3|_k;/2J 2m—1 + 22(m—1) + 3"k/2" 2m—1)

= 2™ 1 3k2™ = 3np, — 2p>.
It remains to show that 3np,, — 2p2 < (9/8)n?:

9n? — 24np,, + 16p? 3n — 4p,,)?
§n? = Bnp, —) = ———2 T16p, _ (3n 8p) >0. O

6.30 Remark 1t is conjectured that the upper bound given in Theorem ?? is optimal.
Zdobnov (1987) confirmed this conjecture in the class of so-called null-path-free
formulas. When viewed as a parallel-serial network (see Proposition ??), the restric-
tion is that no s-¢ path contains edges labeled by a variable and by its negation. In
other words, if F' A G is a subformula, and if F’ contains a leaf labeled by x;, then
G cannot contain a leaf labeled by —x;. Note that the formula constructed in the
proof of Theorem ?? is null-path-free. Zdobnov shows that this formula is also an
optimal one in this class of formulas. For unrestricted formulas, Rychkov (1994)
showed a lower bound L(,,) > n? + 3 for odd n > 5, and L(®,,) > n? + 2 for
even n > 6 which are not powers of 2.

6.31 Theorem L(Th}) > k(n —k+1).

Proof. Let A be the set of all vectors a € {0,1}" with exactly £ — 1 ones, and B
the set of all vectors b € {0,1}"™ with exactly k ones. Then every element of A
is at Hamming distance 1 from exactly n — k + 1 elements of B. Similarly every
element of B is at Hamming distance 1 from exactly k elements of A. It follows

that [A ® B| = (n — k + 1)|A| = k| B

, and we obtain

(n—k+1)|Al-k|B]

L(Th?) >
g |Al|B|

kEn—k+1). O

A nice application of communication complexity is the following depth ana-
logue of Khrapchenko’s theorem (Theorem ??). Since we always have that D(f) >
log L(f), the theorem itself is a direct consequence of Khrapchenko’s theorem. We

6.8 Khrapchenko’s theorem 179

give here an alternative information-theoretic proof which is interesting in its own
right.

6.32 Theorem (Karchmer-Wigderson 1990) Let f be a boolean function, A C f~1(0)
and B C f~1(1). Then
|A® BP?

D 1
T

Proof. By Theorem ??, it is enough to prove the corresponding lower bound on
the number of communicated bits in the “find a difference” game on the rectangle
A x B: Alice gets a € A, Bob gets b € B, and their goal is to find a position 7 € [n]
such that a; # b;.

We again consider Y := A ® B as a bipartite graph with parts A and B. For a
node a, let N(a) denote the set of its neighbors in this graph. Hence d(a) = |N(a)|
is the degree of a in Y. Then |Y'|/|A| and |Y| /| B| are average degrees of nodes in
A and B, respectively. We claim that the number of bits Alice sends is at least the
logarithm of the average degree of nodes in B (similarly with Bob). Intuitively, this
is so because

- even if Alice knows b € B, she needs log d(b) bits to tell Bob which a € N(b)
she has.

That is, Alice needs to tell Bob in which bit, out of d(b) possible bits, her vector a
differs from b. Thus, if A(a,b) and B(a,b) are the numbers of bits sent by Alice
and Bob on input (a,b) € A x B, then

A(a,b) > logd(b) and B(a,b) > logd(a). (6.15)

Now take (a, b) uniformly at random from Y, and let C(a, b) be the number of bits
communicated on this input. The expectation of this random variable (the average
number of bits communicated on this input) is

1
(a,b)ey
S POD IR TN o) o
beB acN (b aEAbEN(a)
d(b) log d(b) d(a)logd(a by (??).
2 7] S |Y|a§

Since), 5 d(b) = |Y| and since f(x) = zlogx is a convex function, Jensen’s
inequality >~ A\pf(2p) > f(O] M) with Ay = 1/|B| and x, = d(b) yields

Y|
d(b)log d(b) > 1
‘Y‘Z og d(b) %8 3]

beB

and the desired lower bound follows:

180 6 Formulas

Y Y
E[C(a,b)] > log H + log |AW| = log

Y|

[AllBI

6.9 Complexity is not convex

Khrapchenko’s measure (see Theorem ?7?) is of the form

_YP Y|
p(R) i= e = Rl w(@) (6.16)

where p(x) = 22, and Y is the set of all pairs of vectors (z,y) € R differing in
exactly one bit. Exercise ?? shows that this measure cannot yield larger than £2(n?)
lower bounds. All subsequent attempts to modify his measure with the goal of
braking the “n2 barrier” have failed so far. So, what is bad about this measure?
Perhaps larger lower bounds can be obtained by taking other subsets Y of special
entries and/or using some other functions () instead of z2?

The answer, given by Hrubes et al. (2010), is somewhat disappointing. Namely,
it turns out that the reason for the failure of Khrapchenko-type measures is much
deeper than expected: for every choice of the set Y of special entries and for every
convex function ¢ (z), the resulting measure is convex, and convex measures cannot
yield super-quadratic lower bounds! To show this, we first define what is meant
under a “convex” rectangle measure.

Recall that a rectangle of dimension n is a set S of the form S = A x B with
A,B C{0,1}" and AN B = (). A subset R C S is a subrectangle of S if R itself
forms a rectangle. A rectangle function on S is a mapping p that assigns to each
subrectangle R of S a real number u(R). Such a function is a rectangle measure if
it is:

« Subadditive: u(R) < u(R1) + pu(Rz), for every rectangle R € R and for each
of its partitions into disjoint union of rectangles R;, Rz € R.
« Normalized: (M) < 1 for every monochromatic rectangle M.

Rychkov’s lemma (Lemma ??) can then be restated as:

6.33 Lemma Let f be a boolean function and R = A x B be a rectangle with
A C f7Y1) and B C f~1(0). Then for every rectangle measure ji we have that

L(f) =z n(R).

Thus, every rectangle measure gives a lower bound on formula size. The most
restricted class of rectangle measures is that of additive ones. Such measures must
satisfy y1(R) = Y, pu(e). By letting pu(e) := |Y'|?/|R|? for all e € R, we see that
Khrapchenko’s measure (??) is additive, and it cannot break the “n2 barrier”, that is,
cannot yield super-quadratic lower bounds on formula size. We now will identify a
much larger class of “bad” measures.

Let S be a rectangle, Ry, ..., Ry its subrectangles, and rq, . . ., 7, weights from
[0, 1]. We say that the rectangles Ry, ..., R,, with the weights 71,..., 7, form

6.9 Complexity is not convex 181

a fractional partition of the rectangle S'if) ;. . 7 = 1 forall e € S. We will
shorten this condition as S = '_, 7; - R;. Notice that if all 7; € {0,1} then a
fractional partition is a partition.

A rectangle function is convex if, for every rectangle S and every fractional
partition S = Y. 7 R;,

w(S) <> i p(Ry). (6.17)
1

i
A fractional partition number, 7(.S), of a rectangle .S is the minimum

¢
m(S) = min Z r;
i=1

over all fractional partitions Ry, ..., R, r1,..., 7 of S where each rectangle R; is
monochromatic. It is easy to see that 7(.5) is a rectangle measure. It is not difficult
to show that the fractional partition number 7 is the largest convex measure.

6.34 Proposition The measure 7(S) is convex, and for every convex measure y,
w(S) < w(S) for all rectangles S.

Proof. First we will show that 7(5) is convex. Let S = > . ; r; R; be a fractional
partition of S and, for every j, let R; = >, 1, 8ijMij be a fractional partition
of R; such that M;; are monochromatic and 7(R;) = ", s;;. Then, clearly, S =
> 15 T3S M;; is a fractional partition of R into monochromatic rectangles. Hence

m(S) < ersij = ZTJ‘F(RJ')~

Now we will show the second part. Let 1 be a convex measure. Let S =). r;M;
be a fractional partition of .S into monochromatic rectangles such that 7(S) = >, 7.
Using convexity and normality of ;1 we get

u(S) < Zriu(Mi) < Zri =m(9). O

The following is an analogue of Khrapchenko’s theorem using the fractional
partition number.

6.35 Theorem (Karchmer-Kushilevitz—Nisan 1995) Let R be a rectangle, and Y the
set of all pairs of vectors (z,y) € R differing in exactly one bit. Then w(R) >
[Y[?/4|R].

Proof. Applying the duality theorem for linear programs, one can write the frac-
tional partition number as 7(R) = max, »_..gw(e), where the maximum is
over all functions w : R — R satisfying the constraints) _, w(e) < 1 for
all monochromatic rectangles M C R. Hence, in order to prove a lower bound

182 6 Formulas

m(R) > t it is enough to find at least one weight function w : R — R such that
> ecr W(e) > t and the weight of each monochromatic rectangle does not exceed 1.
We define the weight w(e) of each edge e € R by:

1
o P ifeeY,
w(e) = { —p~2 otherwise,

where p > 0 is a parameter to be specified soon. Since only entries of Y have
positive weights, the heaviest monochromatic rectangles M are the square ones
with exactly one entry from Y in each row and column. If M is such a k x k square
rectangle, then

Zw(e):g_wgﬁ(l_g>él'

2
S p p p

Indeed, if £ > p+ 1 then the expression in the parenthesis is at most 0, and if £ < p
then both terms are at most 1. Hence, w is a legal weight function, and we obtain

Y R —-|Y Y R —-|Y
IR Y RSVl
p p p

m(R) > w(e) =

e plY|

For p = 2|R|/|Y|, the expression in the parenthesis is at least 1/2, and we obtain
n(R) > [V /4|R]. 0

Hence, one can obtain quadratic lower bounds using the fractional partition
number, as well. We now show that this is actually the best we can get using any
convex rectangle measure.

Karchmer, Kushilevitz and Nisan (1995) proved that m(S) < 4n? holds for
every n-dimensional rectangle S. Together with Proposition ??, this implies that
u(S) < 4n? holds for every convex rectangle measure p. Using similar arguments,
this upper bound can be improved to an almost optimal one.

6.36 Theorem (Hrubes et al. 2010) If a rectangle measure y is convex then, for every
n-dimensional rectangle S, ju(S) < §(n* +n)

Proof. Following Karchmer, Kushilevitz and Nisan (1995), associate with each subset
I C[n]={1,...,n} the following two I-parity rectangles:

St ={z | ©ierzi = 0} x {y | iery; = 1},

Ty = {z | ®icrri = 1} x {y | Diery: = 0}.

Note that monochromatic rectangles correspond to the case when |I| = 1. There
are exactly 2" ! parity rectangles.

6.37 Claim Every edge (z,y) € {0,1}" x {0, 1}" such that = # y belongs to 2!
parity rectangles.

6.9 Complexity is not convex 183

Proof. For I C [n],letv; € {0,1}" be its incidence vector. If z # y, then z @ y is
not a zero vector. Since each nonzero vector is orthogonal over GF(2) to exactly
half of the vectors in {0, 1}", this implies that precisely 2"~! of the vectors vy are
non-orthogonal to z @ y. This means that (z,y) belongs to precisely 2"~ of the
sets St U T7. Since St NT; = 0, we are done. a

6.38 Claim Let u be a rectangle measure. Then for every I C [n], both p(S7) and
p(T7y) are at most 3|7/2.

Proof. A parity rectangle S; can be viewed as a rectangle corresponding to the
parity function, and 77 as a rectangle corresponding to the negation parity function
in |I| variables. We already know (see Theorem ??) that the parity of m variables
can be computed by a DeMorgan formula of size %m. Since p is a lower bound
to the formula size (see Lemma ??), the desired upper bound on y(Sy) and p(77)

follows. O

Now let .S be an n-dimensional rectangle. Let R be the set of all parity rectan-
gles Sy NS and T7 N S restricted to S. Let also R; C R be the set of all parity
rectangles corresponding to subsets I C [n] of size |I| = 4. For counting reasons,
we shall understand R as a multi-set, elements of R corresponding to different
parity rectangles are considered as different. Under this provision, R has size 271!
and, by Claim ??, every edge in S is contained in exactly 2"~! elements of R.
Hence R forms a fractional partition of S with each rectangle R € R of weight
rr = 2-("=1D By Claim ??, we know that w(R) < ci? for every R € R;, where
¢ = 9/8. The convexity of y implies that

p() < Y e u(R) =270 T p(R) =270V Y TN T u(R)

RER RER i=0 RER;
< 9—(n-1) n\ 2 _ 5—(n-1) n\ .9
< 22(2 ct 2 QCZ ; 1
i=1 i=1
— 9—(n-2) N\ 2 .

Byt

i=1

184 6 Formulas
Thus, ;1(S) < 2= 2e(n? +n)2" 2 =¢(n? +n) = 2(n%+n). O

We now show that many Khrapchenko-like measures (??) are convex, and hence,
cannot yield super-quadratic lower bounds. This observation was made in Hrubes et
al. (2010).

6.39 Theorem Let s(R) be an additive rectangle function such that s(R) > 0 for
every non-empty rectangle R. Let ¢ : R — R be a convex function. Then the rectangle
function

() = () - (7).

is convex if either w(R) is additive, or w(R) is convex and p is nondecreasing.

Proof. To prove the first claim, assume that both w(R) and s(R) are additive,
andlet Ry, ..., Ry, 71 ..., 7 be a fractional partition of R. Set s; = s(R;) and
w; = w(R;). By Exercise ??, we have that w(R) =), r;-w;and s(R) = >, i - 5.

For a real convex function ¢, numbers z; in its domain, and positive weights a;,
Jensen’s inequality states that

> aiT; > aip(xi)
< . 6.18
(,0(Z a;) - Z a; ()
Applying this we obtain (where the sums are over all ¢ with r; > 0):
_ w(R)
W(R) = s(R) o)
_ 2 Wi ise 77
= (zl: TZS,L> . @(m) Exercise ?7
< Zrisi . @(%) (??) with a; = r;s; and x; = w;/s;

If w(R) is convex and ¢ is nondecreasing, then we can replace the second equality
by inequality, and the desired inequality pu(R) < >, 7; - p1(R;) still holds. O

6.10 Complexity is not submodular

In order to prove that some boolean function f requires large formulas, one tries to
find some clever “combinatorial” measure p on the set of all boolean functions satis-
fying two conditions: (f) is a lower bound on the size of any formula computing f,
and u(f) can be nontrivially bounded from below at some explicit boolean functions
f- One class of such measures, proposed by Mike Paterson, is the following.

6.10 Complexity is not submodular 185

Let B, be the set of all boolean function of n variables. A formal complexity
measure of boolean functions is a mapping p : B,, — R which assigns positive
values to each boolean function. The requirements are that y is normalized, that is,
assigns each literal a value < 1, and is subadditive, that is, for all f, g € B,:

p(f Vv g) < u(f)+ plg); (6.19)
p(f A g) < u(f)+ u(g)- (6.20)

Note that the minimal formula size L(f) itself is a formal measure. Moreover, by
induction on formula size it is easy to show that L(f) > u(f) for every formal
complexity measure p. It can also be shown (see Exercise ??) that Khrapchenko’s
measure is a formal complexity measure.

In order to understand what measures are “good” (can lead to large lower bounds)
it is important to understand what measures are “bad”. We have already seen that
convex measures are bad. There is another class of bad measures—submodular ones.

A formal complexity measure p : B,, — R is submodular if it is normalized and
forall f,g € By,

p(f Ng)+u(fVag) <uplf)+ug). (6.21)

Note that this condition is stronger than both (??) and (??). The following result
shows that submodular measures cannot even yield super-linear lower bounds.

6.40 Theorem (Razborov 1992b) If 1 is a submodular measure on B,,, then u(f) <
4(n+ 1) for each f € B,,.

Proof. Let g,, be a random boolean function of n variables z1, . .., x,. That is, we
choose g,, randomly and uniformly from B,,. We are going to prove by induction
on n that

Elu(g,)] <n+1. (6.22)

Given a variable z;, set z} := z; and 2¥ := —;.

Base: n = 1. Here we have u(g(x1)) < 2 for any g(x1). This follows from the
normalization condition if g is a variable 2 or its negation —z;. By the subadditivity
we also have

1(0) + p(1) = plar A —w1) + py V -an) < p) + p(-w) < 2

which proves £1(g(x1)) < 2 in the remaining case when g is a constant.
Inductive step: Assume that (??) is already proved for n. Let the symbol ~ mean
that two random functions have the same distribution. Note that

gn—i—l ~ (g’roz A x?b-‘rl) \% (g’}z A ‘r’}H—l) ’ (623)

where g and gl are two independent copies of g,,. By duality,

i1 (gg \ x2+1) A (grlz \ x711+1) . (6.24)

186 6 Formulas

By the linearity of expectation, we obtain from (??) and (??) (remember that the
latter is a consequence of the submodularity condition) that

E [M(gn+1)] <E [M (gg A x?z-&-l)] +E [M (gi A $711+1)] (6.25)

and similarly from (??) and (??),

E [1(g,41)] <E[p (g(r)i, \ I2+1)} +E[p (g'}L \ 513}:,4-1)] . (6.26)

Summing (??), (??) and applying consecutively (??), normalization of y, and the
inductive assumption, we obtain

2-E [u(g,41)] <E[u(gn Aady)] +E[p(ghvan,)]+
E 1 (gn A 2pgr)] +E [(gn V 2p41)]

<E [u(gn)] + w(xp 1) + E [plgh)] + p(z), 1)
<2-Elu(g,)] +2<2d+4.

This completes the proof of (??). But this inequality only says that the expected
value of u(g,,) does not exceed n + 1 for a random function g,,, whereas our goal
is to give an upper bound on p(f,,) for each function f,,. So, we must somehow
“de-randomize” this result. To achieve this goal, observe that every function f,, € F,
can be expressed in the form

fon=(E, N(g, ®fn®1)V((g,®1)A(g, @ frn) (6.27)

Butg, ~g,® fun®1l=g,®1~g, D fn So,applying to (??) the inequalities
(??) and (??), averagmg the result over g,, and applying (??), we obtain u(f,) =
Ep(fn)] <4-Efu(g,)] <4n+ 4, as desired. 0

6.11 The drag-along principle

Suppose we want to prove that a boolean function f has high complexity, say,
requires large DeMorgan formulas over A, V, —. If the function is indeed hard, then
it should have some specific properties forcing its formulas be large, that is, forcing
every small formula to make an error.

It turns out that formal complexity measures cannot capture any specific proper-
ties of boolean functions. When using such measures, every lower bound for a given
function f must also prove that many other unrelated functions have large complex-
ity. Thus, we cannot use any special properties of our function! Namely, Razborov
and Rudich (1997) proved the following fact; the name “drag-along principle” was
suggested by Lipton (2010).

6.12 Bounds based on graph measures 187

6.41 Theorem (The Drag-Along Principle) Suppose p is a formal complexity measure
and there exists a function f € B, such that u(f) > s. Then, for at least 1/4 of all g
in By, 1(g) > s/4.

Proof. Let g be any function in B,,. Define f = h & g where h = f @ g. Then,
u(f) < u(g) + p(=g) + p(h) + p(=h). (6.28)
This follows from (??) and (??) and the definition of parity,
f=(Uegeg=hag=(hAg)V(-hA-g).

By way of contradiction assume that the set G = {g € B,, | 1(g) < s/4} contains
more than 3/4 of all function in B,,. If we pick the above function g randomly in B,
with probability | B,,| =, then —g, h, ~h are also random elements of B,, (though
not independent) each with the same probability. Using the trivial union bound we

have 1
Prob|one or more of h, —h, g, —gisnotin G] < 4 - 1= 1.

Thus, there must be at least one choice for g such that all four functions h, —=h, g, =g
belong to G, that is, have measure < s/4. By (??), this implies that u(f) < s, which
is a contradiction. O

Theorem ?? above shows that for any lower bound proof for formulas based
on some formal complexity measure ((f), essentially the same lower bound auto-
matically applies to almost all boolean functions. The important “natural proofs”
concept, discussed in the Epilogue, reveals a possible barrier facing attempts to
prove lower bounds of this type.

6.12 Bounds based on graph measures

In view of graph complexity—the concept we have introduced in Section ??—it
is important to have lower-bound arguments for monotone boolean functions
f that only explore the structure of the set of length-2 minterms of f. In this
section we present one approach in this direction. It was suggested by Newman and
Wigderson (1995). In its current form, the method cannot yield lower bounds larger
than n log n. (The reason is the “monotonicity” condition of the graph measures
used.) Still, the approach is applicable to functions for which other arguments fail,
and has the potential to be extended to other graph measures.

Let K,, = ([g]) be the set of all unordered pairs of members of [n] = {1,...,n},
that is, the set of all edges of a complete graph on [n]. Each subset F C K, gives
us a graph on these vertices.

Let 1 be a measure which assigns to each such graph E a non-negative real
number p(E). Say that such a measure y is a good graph measure if

188 6 Formulas

- u(0) =0;

o 4t is subadditive: u(E U F) < u(E) + p(F);

« v is monotone: F C F implies u(E) < pu(F);

p respects cliques: if E' forms a complete bipartite graph on m (out of n) vertices,
then u(E) < m/n.

With every monotone boolean function f(x1,...,z,) such that f(0) = 0 we
associate the graph Iy C K,, where vertices 7 and j are adjacentljiff flei+e;) =1
and f(e;) = f(ej) = 0, as well as set V; C [n] of vertices ¢ € [n] such that
f(e;) = 1. Note that the edges of E'¢ correspond to monotone length-2 minterms
of f: vertices ¢ and j are adjacent in E iff z;z; is a minterm of f. Similarly, V;
corresponds to monotone length-1 minterms: vertex ¢ belongs to V; iff z; is a
minterm of f. For example, if f(x) = Thf(x) is the threshold-2 function of n
variables, then £y = K,, and Vy = 0.

6.42 Lemma (Newman-Wigderson 1995) For every monotone boolean function f of
n variables, and every good graph measure pi, we have thatL, (f) > n - u(Ey).

In fact, we will prove a slightly stronger bound L, (f) > n - u(Ey) + |Vy|. But,
for simplicity, we will ignore the last term | V| since it never exceeds n, and we are
interested in lower bounds that are super-linear in n.

Proof. Define the following cost function ¢(f) of boolean functions f of n variables:

o) = u(izg) + 121

If f = x; is a variable (a leaf of a formula), then Ey = () and we get ¢(z;) = 1/n.
Moreover, the monotonicity of 1 implies that the cost function is monotone with
respect to inclusion: if V; C Vj, and Ey C E}, then ¢(g) < ¢(f).

6.43 Claim ¢(gV h) < c(g) + c¢(h) and c(g A h) < c(g) + c(h).

Note that this claim already implies the theorem since the cost of every leaf
in a formula is 1/n and, by Claim ??, the cost of the output function does not
exceed the sum of the costs of all the leaves. Thus ¢(f) < L, (f)/n, implying that
L,(f) >n-c(f) >n-pu(Ef)+ |V¢|. So, it remains to prove the claim.

Casel: f =gV h.Then Vy =V, UV}, and Ey = E,; U E},. The subadditivity of 1
yields

() = (B, U 1) + V20

< u(Eg) + p(En) + = c(g) +c(h).

Case2: f = g A h.Denote A =V, and B = V},. Since V; = AN B and

Ve]
Wyl | 1V
n

" Here and throughout, ¢; is a 0-1 vector with exactly one 1 in the i-th position.

6.12 Bounds based on graph measures 189
Ef = (EgﬂE}L)UKA7B - EgUEhUKA,B,
where K4 g := (A\ B) x (B\ A), we get:

|AN B
_i'_i

c(f) < u(Ey U EL UKy p) (monotonicity of /1)

< w(Ep) + w(Ey) + p(Kap) +

A\ B[+[B\A[|AN B
+ +
n n

ANB
| | (subadditivity of 1)
n

< u(Eq) + n(En) (i respects cliques)

=) + () + 2 Bl o) o).

This completes the proof of the claim, and thus the proof of the lemma. O

To extend this lemma to non-monotone formulas, we need the following result.
Say that a boolean function f rejects singletons if f rejects all inputs with at most
one 1. Note that in any DNF formula of such a function each monomial must have
at least two non-negated variables.

6.44 Lemma (Krichevskii 1964) Let f be a boolean function which rejects singletons.
Then there exists a monotone boolean function ¢ on the same variables such that:

(@) @y rejects singletons;
(b) @y ei+¢;) > flei +e;) foralli # j, and
(© L(f) = L.(¢y)

Proof. The proof is by induction on the leafsize L(f). For L(f) = 2 the claim is
true since in this case f must be an AND of two variables. Now let F' be an optimal
formula for f.If F = GV H, where GG and H are optimal formulas for g and h, then
by induction there are ¢, and ¢, satisfying all three conditions (a)-(c). It is easy to
see that then the function ¢y = ¢, V @y, also satisfies these three conditions.
The case when F' = G A H is less trivial. The problem is that both formulas G
and H may accept singletons, even if their AND rejects them: if G(e;) = H(e;) =1
and G(e;) = H(e;) = Othen F(e;) = F'(e;) = 0. To overcome this obstacle, define

I, ={i€ [n]|g(e;) =1and x; appearsin G},

and define [, similarly. Since F rejects singletons, these two sets must be disjoint.
Let G be the subformula of G obtained by setting to O all variables z; with i € I,
and let Hy be defined similarly. Consider the formula F' = G’ A H’, where

G":Gg\/\/xi and H':Ho\/\/xi.
icly i€},

Note that the leafsize of F’ is at most that of F', since all leaves corresponding to
variables ; with ¢ € I, appear in G, and are set to 0 in Go; similarly with H and
H.

190 6 Formulas

Since I, N I}, = (), the formula F’ must reject singletons. Further, we claim that
F'(e; +e;) = 1aslong as F(e; + e;) = 1. To show this, suppose that F accepts
the input e; + e;. Then both G and H must accept it. If i or j belongs to I,, then G’
accepts this vector as well. If {, j} N I, = 0, then Go(e; +¢;) = G(e; +¢;) =1,
since e; + e; has only zeros in all bits in /. So, G’ must accept this vector in both
cases. Since the same argument also holds for H’, we are done.

Now, G and Hy are formulas of some boolean functions gy and kg that meet the
requirement of the lemma. So, by induction, there are monotone boolean functions
g, and @y, with monotone formulas G and H as required. By plugging these
monotone formulas into F” we get a monotone formula F'; for ¢ that satisfies all
three conditions (a)-(c). O

Now we can extend Lemma ?? to non-monotone formulas.

6.45 Theorem For every boolean function f of n variables which rejects singletons,
and every good graph measure 11, we have L(f) > n - u(Ey).

Proof. By Krichevskii’s lemma there is a monotone boolean function g = ¢y for
which L(f) > L, (g). From Lemma ?? we get L, (g) > nu(Ey) + |V,]|. Since
g(a) > f(a) for all inputs a with at most two 1s, the monotonicity of x implies the
result. O

6.13 Lower bounds via graph entropy

In order to use Theorem ?? we have to define some good measure of graphs. For
this purpose, Newman and Wigderson (1995) used the measure of graph entropy
introduced by Koérner (1973).

Let E be a graph on |V| = n vertices. The graph entropy H(F) of E is the

minimum

I 1 1.
H(E) = — - min ;logm =- ~m}}n§/logProb[v €Y]

taken over all (arbitrarily distributed) random variables Y over independent sets
in £.If E = (), then we set H(E) = 0.

6.46 Lemma Graph entropy is a good graph measure.
We have to show that the graph entropy is monotone, subadditive and respects

cliques.

6.47 Claim (Monotonicity) If F' C E are graphs on the same set of vertices, then

Proof. Let Y be the random variable taking values in independent sets of F, which
attains the minimum in the definition of the entropy H(E). Since an independent
set in F is also an independent set in F', we have

6.13 Lower bounds via graph entropy 191

H(F) < 1 E log Probv € Y] = H(E). O
n
veV

6.48 Claim (Subadditivity) If £ and F" are graphs on the same set of vertices, then
H(EUF)<H(E)+ H(F).

Proof. Let Y1, Y5 be random variables taking values in independent sets of E' and
F, respectively, which attain the minimum in the definition of entropy. We can
assume that Y7, Y, are independent. Also note that Y7 N Y5 is a random variable
taking values in independent sets of E U F'. We therefore have

1 1
HE)+H(F)=—— Z log Probfv € Y1] — — Z log Prob[v € Y5]
n veV " veV
1
=—= Z log(Prob[v € Y1] - Prob[v € Y3])
n veV
1
=—= Z log Probv € Y1 NY5]
K veV
>H(EUF).O

6.49 Claim (Respecting cliques) If F is a bipartite graph with m (out of n) vertices,
then H(E) < m/n.

Proof. Let A, B C V be the parts of E; hence, |A U B| = m and |V| = n. By the
monotonicity, we can assume that F is a complete bipartite graph, £ = A x B.
Define a random independent set Y by letting Prob[Y = A] = Prob]Y = B] =
1/2 and Prob[Y" = C] = 0 for all remaining independent sets. Then

1
HE) < —— log Prob Y
(B) < == 3" logProblu € V]

veV
1
=—= Z log Problv € Y]
" vEAUB
1
=P
" veEAUB
_JAUB| _m
T on n’
This completes the proof of Claim ??, and thus of Lemma ??. O

Together with Theorem ?? we obtain the following general lower bound on the
formula size in terms of graph entropy.

6.50 Corollary For every boolean function f of n variables which rejects singletons,
we have that L(f) > n-log H(E/).

192 6 Formulas

Graph entropy H (F) can be lower-bounded in terms of the independence num-
ber a(E) of a graph E, that is, the maximum number of vertices in E no two of
which are adjacent.

6.51 Proposition For every graph E on n vertices, we have that

n
H(E)>1 .

(E) 2 log s
Proof. Let Y be a random independent set in E' which attains the minimum in
the definition of the entropy H (FE). For a vertex v, let p,, := Prob[v € Y. Then
> _ by is the expected value of |Y'|, and hence, cannot exceed ov(E). On the other
hand, since log x is a concave function, we can apply Jensen’s inequality and obtain

H(E) = *Z%logm > —log (Z%m)
v=1

E
z—loga()zlog " _n
n

6.52 Corollary For every boolean function f of n variables which rejects singletons,
we have that

n
L(f) > n-log :
a(Ef)

Let f = Thj be the threshold-2 function of n variables. Then Ey = K,, and
Vi = 0. If n is even, then we can cover all edges in K,, by t < [logn] bipartite
complete graphs A; x B; with A; N B; = () and |A;| = |B;| = n/2. So, Th} can
be computed by a monotone DeMorgan formula

t

V(Va)a(V o)

=1 jEA,; keB;
of leafsize at most n[logn].

6.53 Theorem (Krichevskii 1964, Hansel 1964) Every DeMorgan formula computing
Thi must have at least nlogn leaves.

Proof. For f = Th} we have Ey = K,, and V; = (). The only independent sets in
K, are sets consisting of just one vertex; hence, a(Ey) = 1, By Corollary ??, we
obtain that L(f) > nlogn, as desired. O

6.54 Remark Lupanov (1965) proved that for any k, 2 < k < n, the threshold-%
function Th;! can be computed by a DeMorgan circuit with O(n) gates. This shows
a logarithmic gap between circuit and formula complexity of some functions.

As another example, consider the following boolean function f,, in n = ()

variables corresponding to the edges of K ,,,. Each assignment a € {0, 1}" to these

6.14 Formula size, rank and affine dimension 193

variables specifies a graph G, C K,,. The values of the function f,, are defined by:
fn(a) = 1iff the graph G, has a vertex of degree at least 2.

6.55 Theorem Every DeMorgan formula computing f,, must have at least £2(nlnn)
leaves.

Proof. Let f = f,,. Note that the graph F in this case is a line graph L = L(K,,)
of K,,, that is, the graph whose vertices are the edges of K,,, and two vertices are
connected iff they have a common endpoint in K,. Since independent sets in L are
matchings in K,,, we have that the maximum size «(L) of an independent set in L
is a(L) < m/2 = O(y/n). By Corollary ??, we obtain that L(f) = £2(nlogn), as
desired. a

The bad news is that good graph measures y cannot yield lower bounds on the
formula size larger than 2(n logn). Indeed, the upper bound L, (Th}) < 2nlogn
together with the lower bound L(Th%) > n - u(K,,), given by Theorem ??, implies
that u(K,,) < 2logn must hold for any good graph measure . The main reason
for this failure is the monotonicity condition: one of the “simplest” graphs—the
complete graph K,,—has the largest measure.

6.14 Formula size, rank and affine dimension

The approach of Khrapchenko and Rychkov can be used in the graph-theoretic
setting as well. Recall that the bipartite complexity, Ly, (G), of a bipartite n x n
graph G C V; x V; is the minimum number of leaves in a formula over {N, U}
which produces the graph G using any of the complete bipartite graphs P x V3
and V3 x @ with P C V; and) C V4 as inputs.

We already know (see Section ??) that if we encode the vertices of G by binary
vectors of length m = log n, and define the adjacency boolean function fg of 2m
variables by fg(u,v) = 1iff (u,v) € G, then L(f) > Ly (G). Thus, any lower
bound Ly, (G) = 2(log™ n) for K > 3 would improve the best known lower
bound £2(m?) for non-monotone formula size.

Given a bipartite graph G C V; x Vo, let X be the set of its edges, and Y the set
of its nonedges (non-adjacent pairs of vertices from different parts). Consider the
rectangle X X Y'; its elements are (edge, nonedge) pairs. Consider the collection
C = C1 UCs of canonical rectangles in X x Y, where

CL:={(PxVy)x (PxVa)| PC W},
Co={("i xQ)x (Vi xQ)|QCVa}. (6.29)

Note that every entry (z,y) € X x Y lies in at least one of these rectangles just
because x and y cannot share a common endpoint in both parts V7 and Va. Say
that a rectangle R C X X Y is monochromatic if there is a canonical rectangle
containing all elements of R.

194 6 Formulas

Define the edge-nonedge tiling number, x(G), of the graph G as the minimum
number of pairwise disjoint monochromatic rectangles covering all entries of X x Y.

6.56 Lemma Ly, (G) > x(G).

Proof. Another way to look at the concept of bipartite complexity of graphs G C
V1 x V4 is to associate boolean variables zp, zg : V1 x Vo — {0, 1} with subsets
P C Vi and @ C V; interpreted as zp(u,v) = 1iff u € P, and zg(u,v) = 1
iff v €). Then the set of edges accepted by zp is exactly the biclique P x V5,
and similarly for variables zg. Thus, Ly, (G) is exactly the minimum leafsize of a
monotone DeMorgan formula of these variables which accepts all edges and rejects
all nonedges of G.

Arguing as in the proof of Rychkov’s lemma, we obtain that Ly, (G) is at least
the minimum number ;(G) of pairwise disjoint rectangles R such that: (i) their
union covers all entries of the rectangle X x Y, and (ii) each of the rectangles R
is separated by one of the variables zp (or zg), that is, zp(z) = 1 and zp(y) =0
for all (z,y) € R. To show that u(G) > x(G), it remains to observe that each of
the rectangles R separated by a variable zp (or zg) is monochromatic, that is, is
contained in at least one rectangle from C = C; U Ca.

Indeed, if x = (u,v) is an edge, y = (u/,v’) a nonedge of G, then zp(x) = 1
implies that = (u, v) belongs to P X V4, and zp(y) = 0 implies that y = (v, v’)
belongs to P x V5. Therefore, every entry (, %) of the rectangle X x Y separated
by a variable zp belongs to the rectangle (P x Va) x (P x V3) from Cy; similarly
for entries separated by variables zg. ad

6.57 @ Research Problem
Exhibit an explicit bipartite n x n graph G with x(G) = 2(log™ n).

By Lemma ??, this would give a lower bound §2(m*) for the non-monotone
formula size of an explicit boolean function in 2m variables. Unfortunately, no
explicit graphs even with x(G) = 2(log" ™ n) for € > 0 are known.

The edge-nonedge tiling number x(G) of a bipartite graph G can be lower
bounded by the minimum rank of a special partial matrix associated with G, as
well as by so-called “affine dimension” of G.

6.14.1 Affine dimension and formulas

Let W be a vector space of dimension d over some field F. An affine representation
of a graph G associates an affine space S, C W with every vertex v in such
a way that two vertices u and v are adjacent in G iff S, NS, # (). The affine
dimension, adimp(G), of G is the minimum d such that G has a d-dimensional
affine representation.

A partial matrix over F is a usual matrix with the exception that some entries
can be left empty (marked by %) without placing into them any elements of the
underlying field [F. An extension of such a matrix is a fully defined matrix obtained

6.14 Formula size, rank and affine dimension 195

by filling the unspecified entries by some elements of F. The rank of a partial matrix
is the minimum rank of its extension.

Given a bipartite graph G C V; x V,, we can associate with it the following
partial edge-nonedge matrix Ag whose rows correspond to edges « and columns to
nonedges y of G. Fix any two elements a; # ay of IF, and define the entries of Ag
by:

a1 if x and y share a vertex in V7;
Aglz,y] = ay if v and y share a vertex in V5;

x ifxny=0.
6.58 Theorem (Razborov 1990) For every bipartite graph G,

Liip(G) > v(G) > rk(Ag) > adimz(G) .

Proof. The first inequality is Lemma ??. To prove the second inequality x(G) >
rk(Ag), let X be the set of all edges, and Y the set of all nonedges of G. Take a
partition R of X x Y into |R| = x(G) monochromatic rectangles. Thus, each
rectangle R € R lies entirely in some rectangle of the collection C = C; U Cy of
canonical rectangles defined by (??). Split R into two collections R = R1 U Ra,
where Ry ={R€R|RC CforsomeC €C;}and Ry = R\ Ry.

We want to fill in the *-entries of A so that the resulting full matrix B satisfies
rk(B) < |R|. Rectangles in R partition the entire set of entries. Take a non-* entry
(x,y); hence, x and y have a common vertex v. Let R € R be the unique rectangle
containing (z,y). If R € R4, then R C C for some C' € C;, meaning that v € V;
and hence Ag[x,y] = as. Similarly, if R € Ry then Aglz,y] = ay. Thus, for
every rectangle R € R, all non-* entries of Ag lying in R have the same value;
this common value is a; if R € Ro, and is as if R € R1. We can therefore fill all
x-entries of every R € R; by the corresponding to R value. In other words, if Jr
denotes a boolean matrix with Jr[x,y] = 1 for (z,y) € R, and Jg[z,y] = 0 for
(x,y) € R, then the matrix

B :=a Z Jr + as Z Jr

RER2 ReR1

is an extension of Ag. By subadditivity of rank, we have that rk(A¢g) < rk(B) <
|R| = x(G), as desired. This completes the proof of x(G) > rk(Ag).

Now we prove the last inequality rk(A¢g) > adimp(G). Let A be an extension of
the partial edge-nonedge matrix Ag such that rk(A) = rk(Ag). Let a,, be the row
of A corresponding to edge x of G. Assign to each vertex v of G an affine space S,
spanned by all rows a, with v € z, that is, S, is the set of all affine combinations of
these rows. If two vertices u and v are adjacent, then the spaces S, and S, contain
the vector d,, and hence S, NS, # 0.

Now suppose that u and v are not adjacent, and consider the y-th column of
A, where y = wv. Since v € V3, all rows a, with v € = must have as in the y-th
position (in the partial matrix A, and hence also in its extension A), implying that
their affine combination (with coefficients summing up to 1) must also have as in

196 6 Formulas

that position. Thus, all vectors in .S, have as in the y-th position. But v € V; implies
that all vectors in S, must have a; in the y-th position. Thus, S,, N S, = 0. We
have therefore constructed an affine representation of G of dimension rk(A4). O

6.14.2 Projective dimension and branching programs

Another measure of a graph’s dimensionality, called the “projective dimension”,
was introduced by Pudlak and Rédl (1992). Let W be a vector space of dimension d
over some field IF. A projective representation of a graph G associates a vector space
Sy € W with every vertex v in such a way that two vertices v and v are adjacent
in Giff S, N S, # {0}. (Note that 0 belongs to every vector space.) The projective
dimension, pdimgp(G), of G is the minimum d such that G has a d-dimensional
projective representation.

This definition could be restated using representation by subspaces of the pro-
Jjective space of dimension d — 1; adjacent vertices would then correspond to non-
disjoint subspaces of PG(FF,d — 1).

Pudlék and Rédl (1992) showed that pdimy(G) is a lower bound on the size of
branching programs computing the graph G in the following sense. At each node the
program may test any of variables x p and x ¢, as defined in the proof of Lemma ??.
Thus, given a pair of vertices (u, v) € V; x Va, we have that zp(u,v) = 1iffu € P,
and zg(u,v) = 1 iff v € Q. In this way, every pair (u,v) defines the unique path
in the program. The program computes a given bipartite n x n graph G C V; x Vj
if, for every two vertices u € V; and v € V5, u and v are adjacent in G iff the
unique path followed by the pair (u, v) in the program ends in a 1-leaf. The size of
a program is the total number of nodes in it.

Let BP(G) denote the minimum size of a deterministic branching program com-
puting the graph G. For a boolean function f, let also BP(f) denote the minimum
size of a standard deterministic branching program which computes f by testing
its variables. Just like in the case of formulas, we have that BP(f2,,,) > BP(G),
where fa,, : {0,1}?™ — {0,1} is the adjacency function of G with m = logn.
Thus, any lower bound BP(G) = £2(log™ n) would give us a lower bound £2(m*<)
for the branching program size of an explicit boolean function fg in 2m variables.
Recall that the best known lower bound is BP(fa,,,) = £2(m?/log® m) proved by
Nechiporuk (1966) by counting subfunctions.

On the other hand, Pudlak and R3dl (1992) showed that BP(G) > pdimg(G).
Unfortunately, no lower bounds larger than pdimy(G) = 2(logn) for explicit
graphs G are known. The situation with affine dimension is even worse: here
even logarithmic lower bounds are not known. The good news, however, is that
graphs with high projective (and affine) dimensions exist. Let pdimp(n) denote the
maximum of pdimg(G) over all bipartite n x n graphs G.

If the underlying field I has a finite number q of elements, then there are at most

d
E?:o (qi) < qd2 possibilities to assign a vector space S,, C F? of dimension < d to

2
each of the 2n vertices. Thus, there are at most ¢?? ™ different projective realizations

6.14 Formula size, rank and affine dimension 197

of a graph. On the other hand, we have 2n’ graphs in total. By comparing these
bounds, we obtain that pdimg(n) = 2(1/n).

As shown by Pudlak and Radl (1992), a comparable lower bound adimy(n) =
£2(y/n/logn) also holds for the infinite field F = R of real numbers. They have also
shown that adimp(G) < pdimg(G)? for every field, and adimp(G) < pdimp(G)—
1 if the field is infinite. A partial inverse pdimy(G) < adimp(G)P@dime(G)) for
finite fields was shown by Razborov (1990). This does not hold for infinite fields
because, say, a complement M of a perfect matching has adimy(M) = 2 and
pdimy (M) = £2(log n) over the field R. The lower bound pdimy (M) = 2(log n)
over any field F is a direct consequence of the following result due to Lovasz (1977):
ifUy,..., U, are r-dimensional and V1, . .., V;, s-dimensional subspaces of a linear
space over F such that U; NV, = {0} and U; N V; # {0} whenever i < j, then
n< (7).

Exercises

6.1 (Due to Augustinovich 1980) Let Ky,..., K, beallp = 2" possible monomials

in variables x1, ..., zy. Let 21, .. ., 2, be new variables, and consider the boolean
function @ (1, ..., %k, 21, -, 2p) 1= \/1?:1 K A z; . Note that any boolean func-
tion of variables z1, .. .,z is a subfunction of ¢, that is, can be obtained from ¢

by setting its z-variables to constants 0 and 1. Now replace each variable z; in ¢
by an AND z} A 22 A --- A 27 of m = 2% /k new variables. Let f be the resulting
boolean function of n = km + p = 2F*! variables. Let ¢;(f) be the number of
distinct subfunctions of f of the variables in Y; = {z},z%,...,zL} obtained by
fixing the remaining variables to constants in all possible ways. Show that:

(@) logci(f) > 2% =n/2foralli =1,...,m. Hint: Fixani, 1 < i < m, and set to 1 all
variables x] different from zi b, :rfC Show that every boolean function with variables
sczl s azé, A 5”2 is a subfunction of the obtained function ffL

(b) f can be computed by a circuit of size O(n). Hint: Construct a circuit computing all
ANDs of new variables, and take its outputs as inputs to a circuit computing all monomials K;.

6.2 Show that Khrapchenko’s theorem cannot yield larger than quadratic lower
bounds. Hint: Each vector in {0, 1}" has only n neighbors, that is, vectors y with dist(z,y) = 1.

6.3 Suppose that f can be represented by an s-CNF and by a ¢-DNF. Show that
then Khrapchenko’s theorem cannot yield a lower bound larger than st.

6.4 Let R = A x B be arectangle with A, B C {0,1}", AN B = {),and |A| > |B|.
Let @ = (gq,) be the boolean “distance-1” matrix of this rectangle with g, , = 1
iff a and b differ in exactly one bit. Let s, denote the number of ones in the b-th
column of @; hence, s, < n. In these terms, the Khrapchenko measure is

198 6 Formulas

W(R) = g ()

beB

Koutsoupias (1993) proposed the following measure

1
V(R) := A Zs%

beB

Show that v(R) > p(R) with an equality iff all the s;’s are equal, and that v(R) is
a convex measure. Hint: Cauchy-Schwarz inequality and Theorem ??.

6.5 The spectral norm of A is can be defined as

T A
4] = max 124
2 TelTol

where ||z||2 = (3, 2?)'/2 is the Euclidean norm of z. Associate with every matrix
A the following rectangle measure proposed by Laplante, Lee and Szegedy (2006):

| AR|?

AR) = ——————5
pal maxyy A2

where Ag denotes the restriction of A to the rectangle R obtained by setting to 0
all entries outside R, and the maximum is over all monochromatic subrectangles M
of R. Prove that this rectangle measure is convex. Hint: Show that the rectangle function
s(R) = ||zr|* - |lyr]|? is additive, and use Theorem ??.

6.6 (Due to Mike Paterson) Let A = f~1(0) and B = f~!(1). Prove that the
Khrapchenko measure

_ |A® BP?

is a formal complexity measure (see Section ??).

Hint: Argue by induction as in the proof of Rychkov’s lemma (Lemma ??). In the induction step
use the inequality

cf n G o (c1+c2)?
a1-b az-b~ (a1+a2)-b

which can be checked by a cross-multiplication.

6.7 (Zwick 1991) The unweighted size of a formula is the number of occurrences
of variables in it. If the variables x1,...,z, are assigned non-negative costs
C1,...,cn € R then the weighted size of the formula is the sum of the costs of all
occurrences of variables in the formula. Let L.(f) denote the smallest weighted size
of a DeMorgan formula computing f. For vectors a,b € {0,1}", let ¢(a,b) = /¢;
if @ and b differ in exactly the i-th bit, and c(a, b) = 0 otherwise. For A C f~1(0)
and B C f71(1), define ¢(A,B) = >, c4 > pep c(a,b). Show that, for every
weighting ¢q,...,¢, € R,

6.14 Formula size, rank and affine dimension 199

c(A, B)?
Lc(f) > TA Bl
|A[- | B
Hint: Induction. If the formula is a variable x; or its negation —z;, then ¢(A, B) is at most |A|/¢;
as well as at most | B|/c;. In the induction step use the hint to Exercise ??.

6.8 Show that, if x is an additive rectangle function then, for every fractional
partition R = 3", 7; - R;, we have that u(R) = 32'_, r; - u(Rs).

6.9 Show that any linear combination of convex rectangle functions is a convex
rectangle function.

6.10 Let a(R) and b(R) be arbitrary additive non-negative rectangle functions, and
consider the rectangle function u(R) = f(a(R))/g(b(R)), where f,g : R — R
are non-decreasing, and f is sub-multiplicative in that f(z - y) < f(x) - f(y). Show
that, if ;1 is normalized then, for every n-dimensional rectangle R, we have that
w(R) < f(2n). Hint: Consider a covering of R by 2n (overlapping) monochromatic rectangles.

6.11 Consider rectangle measures of the form p(R) = w(R)* /| R|¥~1, where w(R)
is an arbitrary subadditive rectangle function: if R = Ry U - - - U Ry is a partition
of R, then w(R) < w(Ry) + --- + w(R;). Recall that Khrapchenko’s measure
has this form with ¥ = 2 and w(R) being the number of pairs (z,y) € R with
dist(x,y) = 1. The goal of this exercise is to show that, for & > 2, such measures
fail badly: they cannot yield even non-constant lower bounds! Namely, let S, be the
rectangle of the parity function of n variables. Show that, for every constant £ > 2
there is a constant ¢ = ¢;, (depending on k, but not on n) such that u(S,) < c.

Hint: Consider the following decomposition of S.For 1 < i < n, o € {0,1} and a string
u € {0,1}%, let R%, , be the rectangle consisting of all pairs (, y) such that 2,41 = 0, Y41 =
1—candx; =y; =u;forall j =1,...,4. Use the normalization condition /,L(wa,) < 1land
geometric series to show that the sum of ;-measures of these rectangles is constant.

6.12 (Rank-measures are not convex) Given an n X n matrix A (over some field),
associate with it the following measure for n-dimensional rectangles:

pa(R) = — S4B (6.30)

max s tk(Ay)

where Ap, is the restriction of A to the rectangle R (obtained by setting to 0 all
entries outside R), and the maximum is over all monochromatic sub-rectangles of
R.Ifrk(Ag) = 0 then we set p14(R) = 0. Subadditivity of rank implies that these
measures are subadditive.

Let n be even. Take a rectangle R = X x Y with X = {z1,...,2,} and
Y ={y1,...,yn} where x; = €;,y; = €; +e;11 and e; € {0, 1} is the i-th unit
vector. Let A be the complement of the n X n unit matrix. We define the fractional
partition of the rectangle R as follows. For every i € [n] we take the size-1 rectangle
R; = {(x;,y:)} and give it weight r; = 1. To cover the rest of the rectangle R, we

200 6 Formulas

use rectangles Ry = {(z;,y;) |i € I,j ¢ I} forall I C [n] of size |I| =n/2, and

give them weight r; = (4 — 4/n) (n7}2) ~! Show that:

(a) This is indeed a fractional partition of R.
(b) The right-hand of the convexity inequality (??) is < 4, but the right-hand is
pa(R) = (n—1)/2.

7. Monotone Formulas

We have seen that proving lower bound for general circuits is a very difficult task.
Thus it is natural to try to obtain large lower bounds for a more restricted class
of circuits, the class of monotone circuits. Monotone circuits consist only of AND
and OR gates and have no NOT gates. Of course, such circuits cannot compute all
boolean functions. What they compute are monotone functions, that is, functions
f such that f(z) = 1 implies that f(y) = 1 for all vectors y obtained from z by
flipping some of the Os of z to 1s.

In this chapter we present two general arguments —a rank argument and a game
theoretic argument—that allow us to prove super-polynomial lower bounds on
monotone formula size. Recall that a formula is a circuit whose underlying graph is
a tree; the leafsize of a formula is the number of leaves in its underlying tree.

7.1 The rank argument

For a monotone boolean function f, let L (f) denote the minimum leafsize of a
monotone formula for f consisting of fanin-2 AND and OR gates. By results of
Khrapchenko and Rychkov, we already know that L (f) > x.(f), where x.(f)
is the monotone tiling number of f defined as the minimum number of pairwise
disjoint positively monochromatic rectangles covering all edges of the rectangle
S = f71(1) x [(0).

Recall that a rectangle A x B is monochromatic if there is a literal z (a variable x;
or its negation —x;) such that z(a) = 1 foralla € A, and z(b) = Oforallb € B. A
rectangle A X B is positively monochromatic if it is separated by a variable x;, that
is, if there exists an index 7 such that a; = 1 and b; = 0 foralla € Aand b € B.

One approach to lower-bound the tiling number of f is to choose appropriate
subsets of vectors A C f~1(1) and B C f~1(0), to choose an appropriate matrix
M : A x B — F of large rank over some field F, and to show that the submatrix
Mp of M, corresponding to any positively monochromatic subrectangle R, has
rank at most some given number r. Since rectangles in each decomposition must

201

202 7 Monotone Formulas

be pairwise disjoint, the subadditivity of rank implies that

rk(M)

Li(f) =2 x+(f) 2 (7.1)
The proof of this last conclusion is simple. Given a decomposition A x B =
Ry U--- U Ry into t pairwise disjoint monochromatic rectangles, let M; be the
matrix M with all entries outside R; set to 0. Since the R; are disjoint, we have
that M = M; + - - - + M. By our assumption, we also have that rk(M;) < r for
all 7. The subadditivity of rank gives rk(M) < Z§=1 rk(M;) < t-r, from which
t > rk(M)/r follows.

Of course, we have a similar lower bound for non-monotone formulas as well:
if every submatrix corresponding to a monochromatic (not necessarily positively
monochromatic) subrectangle R has rank at most r, then L(f) > rk(M)/r. Unfor-
tunately, in this case the measure rk(M)/r is submodular, and we already know
(see Theorem ??) that submodular measures cannot yield even super-linear lower
bounds. Still, we will now show that in the monotone case the rank argument can
yield strong lower bounds.

7.2 Lower bounds for quadratic functions

The quadratic function of an n-vertex graph G = ([n], E) is a monotone boolean
function

fo(zi,...,2n) = \/ TiLj . (7.2)

{ij}eE

It is often more convenient to consider boolean functions f(z1,...,x,) as set-
theoretic predicates f : 2[") — {0,1}. In this case we say that f accepts a set
a C{1,...,n}if and only if f accepts its characteristic vector v, € {0,1}" with
v, (1) = 1 if and only if ¢ € a. Hence, the quadratic function of a graph G is the
unique monotone boolean function fg such that, for every set of vertices I, we
have that

fo(I) = 0if and only if I is an independent set in G.

Representation (??) shows that L, (fg) < 2|E| for any graph G = (V, E), but for
some graphs this trivial upper bound may be very far from the truth.

7.1 Example Let G = (
SNT =@and|S| =|T

monotone formula

[n], E) be a complete bipartite graph with £ = S x T,
| = n/2. Then |E| = n?/4, but fg can be computed by a

F(zy,...,2,) = (\/ffz)/\<\/%)

ies jET

7.2 Lower bounds for quadratic functions 203

Bilder/rankla-eps-converted-to.pdf

Fig. 7.1 The cases when y € V (left) and when y € FE (right).

of leafsize | S| + |T'| = n.

So, a natural question is: what quadratic functions require monotone formulas
of super-linear size? It turns out that such are dense graphs without triangles and
without 4-cycles, that is, dense graphs that do not contain cycles with three or four
vertices; this was shown in (Jukna, 2006).

7.2 Theorem IfG = (V, E) is a triangle-free graph without 4-cycles, then L (fo) >
|El.

Proof. We consider vertices as one-element and edges as two-element sets. For a
vertex y € V/, let I, be the set of its neighbors. For an edge y € E, let I, be the set
of all its proper neighbors; that is, v € I, precisely when v ¢ y and v is adjacent
with an endpoint of y. Let Z = {I,, | y € V U E}. Since G has no triangles and
no 4-cycles, the sets in 7 are independent sets, and must be rejected by f. We will
concentrate on only these independent sets.

Let M be a boolean matrix of the rectangle E/ x 7 defined as follows. The rows
are labeled by edges and columns by edges and vertices of GG; a column labeled by
y corresponds to the independent set I,,. The entries are defined by:

)1 ifzny #0,
M[x’y]_{o ifzny=0.

7.3 Claim If R is a positively monochromatic rectangle, then rk(Mp) = 1.

Proof. Let R = S x T. Since R is positively monochromatic, there must be a vertex
v € V such that all edges € S and all edges or vertices y € T,

vezandv g [forallz € Sandy € T. (7.3)

Thus, for each y € T, we have two possible cases: either v is in y or not.

Case 1: v € y. Since v € z for all x € 5, in this case we have that z Ny D {v} # 0,
implying that Mp[z,y] = 1 for all z € S. That is, in this case the y-th column of
Mg is the all-1 column.

Case 2: v € y. We claim that in this case the y-th column of Mg must be the all-0
column. To show this, assume that Mp[z,y] = 1 for some edge x € S. Then
x Ny # (), implying that 2 and y must share a common vertex u € Ny (see Fig. ??).

204 7 Monotone Formulas

Moreover, u # v since v ¢ y. Together with v € =, this implies that y = {u,v}.
But then v € I, a contradiction with (??). a

By (??), it remains to show that the entire matrix M has full row-rank |E| over
GF(2). For this, take an arbitrary subset) # F' C F of edges. We have to show
that the columns of the submatrix M’ of M corresponding to the rows labeled by
edges in F' cannot sum up to the all-0 column over GF(2).

If F'is not an even factor, that is, if the number of edges in F' containing some
vertex v is odd, then the column of v in M’ has an odd number of 1s, and we are
done.

So, we may assume that F' is an even factor. Take an arbitrary edge y = uv € F,
and let H C F be the set of edges in F' incident to at least one endpoint of y.
Since both vertices u and v have even degree (in F)), the edge y has a nonempty
intersection with an odd number of edges in F': one intersection with itself and an
even number of intersections with the edges in H \ {y}. Thus, the y-th column of
M’ contains an odd number of 1s, as desired. O

Explicit constructions of dense triangle-free graphs without 4-cycles are known.

7.4 Example (Point-line incidence graph) For a prime power ¢, a projective plane
PG(2,q) hasn = ¢> + q + 1 points and n subsets of points (called lines). Every
point lies in ¢ + 1 lines, every line has ¢ + 1 points, any two points lie on a unique
line, and any two lines meet is the unique point. Here is a PG(2, 2), known as the
Fano plane (with 7 lines and 3 points on a line):

Bilder/Figl2_1-eps-converted-to.pdf

Now, if we put points on the left side and lines on the right, and joint a point = with
aline L by an edge if and only if € L, then the resulting bipartite n x n graph
will have (¢ + 1)n = ©(n3/2) edges and contain no 4-cycles. The graph clearly has
no triangles, since it is bipartite.

7.5 Example (Sum-product graph) Let p be a prime number and take a bipartite
n X n graph with vertices in both its parts being pairs (a, b) of elements of a finite
field Zj; hence, n = pz. We define a graph G on these vertices, where (a, b) and
(¢, d) are joined by an edge if and only if ac = b + d (all operations modulo p). For
each vertex (a, b), its neighbors are all pairs (z,ax — b) with © € Z,. Thus, the
graph is p-regular, and has n = np = p® = n3/? edges. Finally, the graph cannot
have 4-cycles, because every system of two equations ax =b+yandcx =d+y
has at most one solution.

If G is any of these two constructed graphs, then Theorem ?? implies that any
monotone formula computing its quadratic function must have an almost maximal
number £2(n3/2) of leaves.

7.3 A super-polynomial size lower bound 205

The quadratic function fg(x) of a graph G represents this graph: it accepts
all its edges, and rejects all its non-edges (see Section ??). If we could show that
any monotone boolean function f representing a bipartite n x n graph G requires
L, (f) = £2(nlog" n), then the Magnification Lemma would give us an explicit
boolean function of 2m = 2log n variables requiring non-monotone(!) formulas of
leafsize £2(m*). Unfortunately, this argument does not work here: it was important
that the function fg rejects all sufficiently large independent sets, not just non-
edges. Actually, for a large class of graphs G (so-called saturated graphs), we have
that f¢ is the only(!) monotone boolean function representing G (see Exercise ??).
Unfortunately, the argument above does not work for saturated graphs either.

7.3 A super-polynomial size lower bound

Let f : 2ln] {0, 1} be a monotone boolean function, A C 2[7] some subset of
its 1-terms and B C 2" some subset of its 0-terms. We thus have f(a) = 1 for
alla € A, and f(b) = 0 for all b € B; here b = [n] \ b is the complement of b. In
particular, the pair of families A, B is cross-intersecting: a N'b # () foralla € A
and b € B.Indeed, if a N'b = () then a C b, the monotonicity of f together with
f(a) = 1 would imply that f(b) = 1, a contradiction.

In order to apply the rank argument to lower-bound the monotone formula size
of f, we have to associate the rectangle A x B with an appropriate matrix M of
large rank so that each its submatrix, corresponding to a positively monochromatic
subrectangle R, has small rank. Recall that R is positively monochromatic if there is
ani € [n] suchthati € anbforall (a,b) € R.In general, the choice of a matrix M
is not an easy task. But things are easier if the families A and B have the following
“local intersection” property.

7.6 Definition (Local intersection) A pair A, B of families is locally intersecting if
every set b € B can be divided into two nonempty parts b = by U b1 such that every
a € A has a nonempty intersection with exactly one of these parts.

The disjointness matrix of such a pair A, B is an |A| by | B| matrix D 4 g, with
its rows indexed by sets @ € A and its columns indexed by sets b € B, such that
the entries of D = D 4 p are defined by

Dla,b] = 0 ifanby#0,
“U TN ifanb; # 0.

For a 0-1 matrix M, let rk(M) denote its rank over GF(2).

7.7 Lemma (Gal-Pudlak 2003) Let f be a monotone boolean function, A some set of
its 1-terms and B some set of its O-terms. If the pair A, B is locally intersecting, then

L+(f) Z I‘k(DA7B).

206 7 Monotone Formulas

Proof. We are going to apply the rank lower bound (??). For this purpose, we take
the matrix M = D4 _g. By (??), it is enough to show that rk(Mg) < 1 for every
positively monochromatic subrectangle R = A’ x B’ of A x B. We know that
f(a) = 1foralla € A’ and f(b) = O for all b € B’. Since the rectangle R is
positively monochromatic, there must exist an ¢ € [n] such that

i€a\b=aNbforallac A’ andb € B'.

Since the pair A, B is locally intersecting, we know that each b € B’ is divided into
two nonempty parts b = by U by such that each a € A’ intersects exactly one of
these parts. Depending on which of these two parts our element ¢ lies in, we divide
the set B’ into two sets By := {b € B’ | i € by} and B} := {b € B' | i € b1}.
Then the submatrix of Mg, corresponding to the rectangle A’ x B is an all-0
matrix, and that corresponding to the rectangle A’ x B] is an all-1 matrix. Thus,
the submatrix Mg has rank at most 1, as desired. O

7.3.1 Rank of disjointness matrices

In order to get a large lower bound on the formula size, it is therefore enough
to find an explicit locally intersecting pair A, B of families and to show that its
intersection matrix has large rank. The starting point when doing this is the fact
that disjointness matrices of some single families have large rank.

Let A be a family of subsets of [n], and let T : A — 2[" be a mapping which
associates with each member a € A a subset T'(a) C a such that T'(a) € o for
alla’ € A, a’ # a.1f such a mapping T exists, then we call it a contractor of A. In
particular, if A is an antichain, that is, if no member of A is a subset of another
member of A, then the trivial mapping T'(a) = a is a contractor of A, but there
may also be other contractors as well.

7.8 Definition Given an antichain A and its contractor 7', the disjointness matrix of
A is a boolean matrix D 4 whose rows are labeled by members of A and columns
are labeled by all subsets b C T'(a) for all a € A. That is, for every a € A and for
every b C T'(a) there is a column labeled by b. The entry in the a-th row and b-th
column is defined by: D 4[a,b] = 1 if and only if a N b = ().

Formally the matrix D 4 also depends on the contractor 7": different contractors
T may yield different matrices D 4. However, we suppress this for notational con-
venience: for us it will only be important that all resulting matrices D 4 have full
row-rank.

7.9 Lemma For every antichain A, and for each of its disjointness matrices D 4, we
have that tk(D4) = |A.

Proof. The general disjointness matrix D,, is a boolean 2" x 2™ matrix whose rows
and columns are labeled by the subsets a of a fixed m-element set, and the (a, b)-th

7.3 A super-polynomial size lower bound 207

entry is 1 if and only if @ N b = (). It is not difficult to show that this matrix has full
rank over any field, rk(D,,) = 2™ (see Exercise ??).

Take now a disjointness matrix D 4 of A corresponding to some contractor 7’
of A. Our goal is to show that all its rows are linearly independent. Fixana € A
and let M, be the submatrix of D4 consisting of the columns indexed by subsets
b C T(a), and each label a’ of M replaced by o’ N T'(a). Since, by definition of
D 4, every subset of T'(a) appears as a column of D 4, the rows of M, are rows of
the general disjointness matrix D,,, with m = |T'(a)|, some of them repeated. We
already know that D,,, has full rank. Since T'(a) C a, the row with index a is 1 in
the column indexed by the empty set, and 0 in every other column of M. But the
row indexed by a occurs in M, only once, because T'(a) € o’ foralla’ € A, a’ # a.
This implies that this row cannot be a linear combination of other rows in M,:
since the matrix M, has full rank, all its distinct rows must be linearly independent.
Thus, the a-th row of the entire matrix D 4 cannot be a linear combination of others,
either. O

7.3.2 A lower bound for Paley functions

We will consider boolean functions defined by bipartite graphs. Say that a bipartite
n x n graph G = (U UV, E) is k-separated if for every two disjoint subsets X, Y
of U of size at most k there exists a vertex v € V such that every vertex u € X is
connected with v and no vertex u € Y is connected with v.

For a bipartite graph satisfying this condition we define A to be the family of
setsa C U UV such that |a N U| = k and a NV is the set of all vertices that are
joined to every vertex of @ N U, that is, maximal complete bipartite graphs with
the part in U of size k. Associate with each vertex ¢ € U UV a boolean variable x;,
and consider the monotone boolean function

far(x) = \/ /\:Cz

acAi€a

Let, as before, L, (f) denote the smallest leafsize of a monotone formula comput-
ing f. Note that, for every graph G on 2n vertices, and for every 1 < k < n, we
have that

Li(fax) < 2”(2) .

7.10 Theorem If the graph G is k-separated, then L, (fcx) > (7).

Proof. Let f = fg k. Define B to be the family of sets b = by U b; such that
bo C U, |bo| < k and b; consists of all vertices of V' that have no neighbors in b
(Fig. ??). Since each a € A induces a complete bipartite graph and b = by U by
an empty graph, a cannot intersect both by and b;. Moreover, the condition that
the underlying graph is k-separated guarantees that a Nby = 0 if and only if

208 7 Monotone Formulas

U 1%
anU
anV
01 .o bOV =0
bAU =by ©F i 1O

Fig. 7.2 Each a shares a common vertex with each b = bg U b1, but only in one of the parts U
and V.

a N by # . That is, the pair of families A, B is locally intersecting (and hence, also
cross-intersecting). Moreover, this pair must be separated by f: if we had f(b) = 1
for some b € B then, by the definition of f, some set a would lie in the complement
of b, implying that a N b = (), and contradicting the cross-intersection property of
A, B. Thus, Lemma ?? implies that every monotone formula separating the pair
A, B, and hence, any such formula computing fi must have size at least tk(D 4 p).

To lower bound the rank of D 4, relabel eachrowa € Aof Dy gpbya’ := anNU
(a k-element subset of U), and column b € B of D4 g by b’ := by (an at most
k-element subset of U), and let M be the resulting matrix; this matrix differs from
D 4, p only in labelings of rows and columns—the entries remain the same. Since by
ranges over all at most k-element subsets of U, and since we have:

Dy gla,bl =1iffanby #0iffanby =0iffa’ NV =0,

the matrix M is the disjointness matrix D 4, of the family A’ of all setsa’ = aNU
with a € A. (The contractor in this case is a trivial one T'(a’) = a’.) By Lemma ??,
rk(Da,p) = rk(Das) = |A'| = (}) and we are done. O

Paley graphs give an example of explicit bipartite k-separated graphs for k =
2(logn). Let n be an odd prime congruent to 1 modulo 4. A Paley graph is a
bipartite graph G = (U U V, E) with parts U = V = GF(n) where two nodes,
i € U and j € V, are joined by an edge if and only if ¢ — j is a nonzero square in
GF(n), that is, if i — j = 22 mod n for some z € GF(n), z # 0. The condition
n = 1 mod 4 is to ensure that —1 is a square in the field, making the resulting
graph undirected.

Let G be a bipartite n x n Paley graph. Define the Paley function of 2n variables
by:

Paley,,(z) := far(x) where k:=|(logn)/3]. (7.4)

7.11 Theorem L, (Paley,) = n®(°sm),

Proof. Let G = (U UV, E) be a bipartite n x n Paley graph with n sufficiently
large. Given two disjoint sets of nodes A, B C U of size |A| = |B| = k, let

7.4 Alog? n depth lower bound for connectivity 209

v(A, B) denote the number of nodes in V joined to each node of A and to no
node of B. Based on a deep theorem of Weil (1948) regarding sums of quadratic
characters x(z) = £("~1/2 over GF(n), Graham and Spencer (1971), and Bollobas
and Thomason (1981) proved that

|v(A,B) —27%n| < kvn.

This implies that v(A, B) > 0 as long as k2% < \/n. Thus, G is k-separated as long
as k2¥ < \/n, and in particular, is k-separated for k := | (logn)/3|. The desired
lower bound for Paley,, now follows from Theorem ??. O

2(logn)

Finally, we show that Lemma ?? cannot yield larger than n lower bounds.

7.12 Lemma If A, B C 2["] is a locally intersecting pair, then the rank of the disjoint-
ness matrix D 5 p does not exceed nOUogn)

Proof. We will use the following fact (Lemma ?? proved in the first chapter): if
a boolean matrix can be covered by ¢ (not necessarily disjoint) monochromatic
submatrices, then the matrix can be decomposed into at most t21ogt monochromatic
submatrices, and hence, has rank at most 21°8¢,

Let D = Dy4 p be the intersection matrix of the pair (A4, B). Since the pair
is locally intersecting, every set b € B can be divided into two nonempty parts
b = by U by so that every a € A has a nonempty intersection with exactly one of
these parts. Moreover, D[a, b] = a if and only if a N b, # 0, « € {0, 1}. Thus, each
matrix M; . consisting of all pairs (a, b) with ¢ € a N b, is monochromatic (is an
all-a submatrix), and their union covers all entries of D. Since we only have 2n
such submatrices, Lemma ?? yields the desired upper bound on the rank of D. 0O

7.4 Alog? n depth lower bound for connectivity

We already know (Proposition ??) that switching networks are not weaker than
DeMorgan formulas. In this section we will show that monotone switching networks
can be even exponentially more powerful than monotone formulas. To show this,
we consider directed graphs on n+ 2 vertices with two special vertices s (the source)
and ¢ (the target). There is one boolean variable x. for each potential edge e. Each
assignment « of values 0 and 1 to these variables defines a directed graph G. The
st-connectivity problem is a monotone boolean function defined by:

STCONy, (o) = 1 iff G,, contains a path from s to ¢.

Note that this function is indeed monotone: if we add edges we cannot disconnect
an existing path from s to t.

It can be shown (Exercises ?? and ??) that sTcoN,, can be computed by a mono-
tone nondeterministic branching program of size O(n?) as well as by a monotone
DeMorgan circuit of depth O(log? n).

210 7 Monotone Formulas

We will use the communication complexity approach to show that any monotone
circuit solving this problem must have depth £2(log? 1), and hence, any monotone
DeMorgan formula must have super-polynomial leafsize n?(1°6 ™) This lower bound
was first proved by Karchmer and Wigderson (1990); a simpler proof was then found
by Grigni and Sipser (1995).

The corresponding communication game for STCON,, is the following one: Alice
gets a graph G with s-t path, Bob gets a graph H with no s-t paths, and their goal
is to find an edge which is present in G but is absent in H.

Note that this is a monotone game: an edge which is present in / but absent in
G is not a correct answer. Since we are interested in proving lower bounds on the
communication complexity of this game, we can restrict our attention to special
inputs. Thus, the game sTcon,, corresponding to the st-connectivity problem is the
following one:

« Alice gets a directed path p from s to ¢.

« Bob gets a coloring c of vertices by the colors 0 and 1 such that ¢(s) = 0 and
c(t) = 1.

« Find an edge (u,v) € p such that ¢(u) = 0 and ¢(v) = 1.

Note that the path p must have at least one such edge (u, v) because it starts in the
node s colored 0 and ends in the node ¢ colored 1.

Let ¢(sTcon,,) denote the communication complexity of this last game. Note
that every protocol for the original game can be used to solve this (restricted) game:
given a coloring ¢, Bob converts it into a graph H in which « and v are adjacent if
and only if ¢(u) = ¢(v).

So as it is, the game sTCON,, is no longer “symmetric” since the players receive
objects of different types: Alice receives paths and Bob colorings. Still, it is possible
to reduce this game to a symmetric one.

7.4.1 Reduction to the fork game

Let [m]* be a grid consisting of all strings a = (a1, ...,a;) with a; € [m] =
{1,...,m}. Given two paths (strings) a and b in [m]*, say that i € [k] is a fork
position of a, b if either i = 1 and ay # by, or i > 0 and a;—; = b;—;1 but a; # b;.
Note that any two distinct strings must have at least one fork position: either they
differ in the first coordinate, or there must be a coordinate where they differ “for
the first time”. We will be interested in the following symmetric games FOrk (,S) on
subsets S C [m]*.

« Alice gets a string a € .S and Bob gets a string b € S.
« Find a fork position i of a and b, if ay, # b.
« If ay, = by, then i = k + 1 is also a legal answer.

7.4 Alog? n depth lower bound for connectivity 211

Bilder/fork4-eps-converted-to.pdf

Fig. 7.3 Alice extends her string a = (a1, ..., ax) to an s-t path (s, a1, ..., ak,t), and Bob turns
his string b = (b1, ..., bg) into a 2-coloring by assigning color “0” to vertices s, b1, ..., by and
color “1” to all remaining vertices.

If, for example, a = (1,2,4,3,4) and b = (3,2,2,5,4) theni = 1,7 = 3 and
i = 6 are legal answers, and players can output any of them. In particular, if a = b
then ¢ = k + 1 is the only legal answer.

Let ¢(FORK,, ;) denote the communication complexity of the fork game on the
whole set S = [m]F.

We can relate this game to the previous (s-¢ connectivity) game. When doing
this, we restrict our attention to graphs on n = mk vertices, where only edges
connecting nodes from adjacent levels are allowed.

7.13 Lemma ¢(FORK,, k) < ¢(STCON,,).

Proof. Suppose we have a protocol II for sTcon,,. We will show that this protocol
can be used for the game FORK,,, ;. To use the protocol 17, the players must convert

their inputs a = (aq,...,ax) and b = (by, ..., by) for the fork game to inputs for
the s-t connectivity game.

Alice converts her input (aq,...,ax) into a path p = (ug,u1, ..., Uk, Ugt1)
where uy = s, upy1 = t, and u; = a; for 1 < i < k. Bob converts his input
(b1,...,bk) into a coloring ¢ by assigning color 0 to all vertices s, by, . .. , by, and

assigning color 1 to the remaining vertices; hence, ¢(s) = 0 and ¢(t) = 1 (see Fig. ??).
The players now can use the protocol IT for sTcon,, to find an edge (u;—1,u;) in
p such that ¢(u;—1) = 0 and c(u;) = 1. This means that u;_; is in the path
(s,b1,...,b) and u; is not. We claim that ¢ is a valid answer for the fork game on
the pair a, b.

Ifi = 1thenwu;_1 = up = s and u; = ay. Therefore, ¢(s) = 0and c(a;) =1 #
0 = ¢(by1), implying that a; # b; (no vertex can receive two colors).

Now let 1 < ¢ < k. Recall that, for each 5 = 1,..., k, the coloring c assigns
color 0 to exactly one vertex in the j-th layer, namely to the vertex b;. Hence,
the fact that ¢(a;—1) = c¢(u;—1) = 0 means that a;_1 = b;_1, and the fact that
c(a;) = c(u;) = 1 # 0 = ¢(b;) means that a; # b;.

Finally, let ¢ = k + 1. Then u;_1 = ay and u; = t. Since ¢(ag) = ¢(u;—1) =0
and since only the vertex by on the k-th layer can receive color 0, this implies
ar = by. Since, in this case, ¢ = k + 1 is a legal answer for the game, we are
done. O

212 7 Monotone Formulas

7.4.2 Lower bound for the fork game

Let ¢(FORK,,) denote the communication complexity of the game FORK(S) on S =
[m]™ for m = \/n. By Lemma ?? and Exercise ?? we know that ¢(FORK,) =
O(log? n). We will show that this upper bound is almost optimal.

7.14 Theorem (Grigni-Sipser 1995) ¢(FORK,,) = 2(log® n).

Proof. Call a two-player protocol an («, k)-protocol if it is a protocol for the game
FORK(S) on some subset S C [m]* such that |S| > am*. Denote by ¢(a, k) the
minimum communication complexity of an (a, k)-protocol. That is, if ¢(a, k) < ¢
then there exists a subset S C [m]* of |S| > am" strings and a protocol IT
of communication complexity ¢ such that II works correctly on S. In particular,
¢(1,k) = c(FORK, 1)

We start with two simple claims.

7.15 Claim For any k > 1 and any a > 1/m, ¢(a, k) > 0.

Proof. Suppose that ¢(a, k) = 0. Thus, there exists a subset of strings S C [m]*
such that |S| > am® > m*~! and the players must know the unique answer
i €{1,...,k, k+ 1} for all input pairs a, b € S without any communication. Since
|S| is strictly larger than m*~!, there must be two strings a, b € S with a, # by.
Hence, on this input pair (a, b) the answer must be some ¢ < k. But on input pair
(a, a) the only legal answer is i = k + 1, a contradiction. O

7.16 Claim If k > 1 and ¢(«, k) > O then c(c, k) > 1 + c(a/2, k).

Proof. Let ¢ = ¢(a, k). Thus, there exists a subset S C [m]* such that |S| > am*
and there is a protocol I such that for all a,b € S, the protocol correctly solves
the game on these inputs with ¢ bits of communication. Assume w.l.o.g. that Alice
speaks first (the case when Bob speaks first is similar). Hence Alice sends either 0
or 1. After this (first) bit is communicated, the set S is split into two parts Sy and
5. Assume w.lo.g. that |Sg| > |S1]|. Let Iy be the rest of the protocol I1, after
assuming that the first bit send by Alice was 0. That is, I1y works exactly like I7,
but without sending the first bit, and continuing as if the value of the first bit was 0.
The communication complexity of I]j is at most ¢ — 1. Obviously, I1y must work
correctly on Sy, because IT does this on the whole set S = Sy U S;. Hence, 1 is
an («/2, k)-protocol, implying that ¢(a/2,k) < ¢ —1=¢(a, k) — 1. O

Starting with « = 1 and applying Claim ?? ¢ = (logm)/2 times, we obtain
that ¢(1,k) > ¢(o, k) + t with &« = 1/y/m. Since a > 1/m, Claim ?? yields
¢(FORK, 1) = ¢(1, k) = £2(logm). This lower bound is, however, too weak. What
we claim in Theorem ?? is that the actual lower bound is about log k times larger.

7.17 Remark (Amplification) The reason why Claims ?? and ?? alone cannot yield
larger lower bounds is that, when compared to the entire “universe” [m|*, the
density of the sets S (on which a protocol is still correct) drops very quickly. In such

7.4 Alog? n depth lower bound for connectivity 213

situations it is usually helpful to take a projection Sy of S onto some subset I C [k]
and to work in the smaller universe [m]’. The hope is that the relative density of
S within [m]! will be much larger than that of S within the whole universe [m]".
This trick is usually called the “amplification” of density.

The point here is the following. Split the set [k] of positions into two equal-sized
parts [k] = I U J. Since |S| < |S7| - |S|, at least one set of projections, say, St
must have |S;| > |S|'/? strings. Hence, if 11(S) = |S|/mF is the relative density
of the original set S, and ;(Sy) = |S;|/m*/? the relative density of its projection,
then pu(Sy) > |S|'/2/m*/? = /u(S), which is at least twice(!) larger than z(S),
if u(S) <1/4.

We now turn to the amplification step: given an («, k)-protocol with k& > 2
and « not too small, we convert it into a (y/a/2, k/2)-protocol. Thus o may be
amplified greatly while k is only cut in half. By amplifying «, after every about
log k steps, we may keep o > 1/m until k reaches 1, showing the protocol must
have a path of length at least log m times log k.

We will need the following combinatorial fact about dense matrices. Say that
a boolean vector or a boolean matrix is a-dense if at least an a-fraction of all its
entries are 1s.

7.18 Lemma If A is 2ce-dense then

(a) there exists a row which is \/a-dense, or
(b) at least a fraction \/a of the rows are a-dense.

Proof. Let A be a boolean M x N matrix, and suppose that neither case holds.
We calculate the density of the entire matrix. Since (b) does not hold, fewer than
\JaM of the rows are a-dense. Since (a) does not hold, each of these rows has fewer
than \/aN 1s; hence, the fraction of 1s in a-dense rows is strictly smaller than
(v/@)(y/a) = a. We have at most M rows which are not a-dense, and each of them
has fewer than «N ones. Hence, the fraction of 1s in these rows is also smaller
than a. Thus, the total fraction of 1s in the matrix is less than 2, contradicting the
2a-density of A. O

7.19 Lemma (Amplification) For every k > 2 and o > 16/m,
cla, k) > c(Va/2, k/2).

Proof. We are given an («, k)-protocol working correctly on some set S C [m]* of
|S| > am* strings (paths). Consider a bipartite graph G = (U UV, S) with parts
U and V, where U consists of all m*/2 possible strings on the first k/2 levels, and
V consists of all m*/2 possible strings on the last k/2 levels. We connect u € U
and v € V if their concatenation u o v is a string in S; in this case we say that
v is an extension of u. Hence, G is a bipartite graph with parts of size m*/? and
|S| > am* edges. When applied to the adjacency matrix of G, Lemma ?? implies
that at least one of the following two must hold:

(a) Some string ug € U has at least \/gmk/ 2 extensions.

214 7 Monotone Formulas

k/2 k/2 k/2 k/2
X
v . wx(e)
w b wy (b)
Y

Fig. 7.4 Two cases for constructing a protocol for strings of length & /2.

(b) There is an U’ C U such that |U’| > \/gmk/2 and each v € U’ has at least
%mk/2 extensions.

In both cases (a) and (b), we show how to construct a (v/a/2, k/2)-protocol.

Case (a): In this case, we have one string ug on the left that has many extensions v
on the right such that ug o v € S (see Fig. ??). Thus we can recover a (/a/2, k/2)-
protocol as follows: let V' C V be the set of all extensions of ug. Given two strings
v,w € V', the players can play the S’-game on these inputs by following the
S-protocol for the pair of strings ug o v and ug o w. Since these strings are identical
on the first k£/2 coordinates, the answer ¢ must be either k£ 4 1 or a point on the
last k/2 coordinates where the paths v and w diverge.

Case (b): In this case, we take a random partition of the km /2 nodes in the right
k/2 levels. More precisely, take m /2 nodes at random from each of the right & /2
levels, and call their union X; call the set of remaining km/4 right nodes Y. Say
that a string w € U is good if it has an extension vx (u) lying entirely in X and
another extension vy (u) lying entirely in Y.

7.20 Claim The expected number of good strings in U’ is at least 0.9|U”|.

Proof. We can construct a subset of X as follows. Take m /2 uniformly distributed
paths p1,...,py, /2 of the right k/2 layers, color their vertices red and let X be
the union of these vertices. The paths are not necessarily vertex disjoint and some
layers may have fewer than m/2 vertices. To correct the situation, we randomly
color additional vertices red in each layer to ensure that all layers have exactly m /2
red vertices. Finally, we color all remaining vertices blue.

Now take a path u € U’. By (b) we know that each red path p; is an extension of
u with probability at least /2. That is, p; is not and extension of « with probability
at most 1 — /2. Since o > 12/m, the union bound implies that the probability
that none of m /2 red paths is an extension of u does not exceed

(1-a/2)™? < (1-6/m)™?<e®<0.05.

Since the red and blue vertices are identically distributed, the same also holds for
blue paths. Therefore, each u € U’ is good with probability at least 1 —2-0, 05 = 0.9,
implying that the expected fraction of good strings in U’ is at least 0.9. O

7.5 Ann'/® depth lower bound for clique function 215

This yields a (v/a/2, k/2)-protocol as follows. Let U” C U’ be the set of all
good strings in U’. By Claim ?? and since 0.9/4/2 > 0.5, the density of the set U"
within [m]*/? is at least 0.9y/a/2 > \/a/2, as desired. Given strings a,b € U”,
the players follow the S-protocol on the inputs a o vx (a) and b o vy (b). Since the
S-protocol is correct on these strings, and since they share no vertices in the right
k/2 levels, the protocol must return an answer i in the first k/2 levels, hence the
answer is in fact valid for ¢ and b.

This completes the proof of Lemma ??. O

Now we can finish the proof of Theorem ?? as follows.
Letm = k = /n. By r := [log(yv/m/8)| = ©(logn) applications of Claim ??
and one application of Lemma ??, we obtain that

(2/vm k) > c(16/m, k) +r > c(2//m,k/2) + 1.

Applying the last inequality s := |log k| = 2(logn) times, we obtain
c(2/vVm,k) > c¢(2/vVm,1)+r-s>71"5.

Hence, ¢(FORK,, 1) = ¢(1,k) > ¢(2/y/m, k) > - s = 2(log® n). O

7.5 An n'/¢ depth lower bound for clique function

The clique function f, = CLIQUE(n, k) has (%) variables z;;, one for each po-
tential edge in a graph on a fixed set V = {1,2,...,n} of n vertices; the function
outputs 1 if and only if the associated graph contains a clique (complete subgraph)
on some k vertices. The clique function is monotone because setting more edges to
1 can only increase the size of the largest clique. The corresponding to this function

monotone Karchmer-Wigderson game is the following clique-coloring game:

« Alice gets a clique ¢ C V on k vertices.
« Bob getsacoloringc: V — {1,...,k—1}.
« The goal is to find an edge {u, v} C ¢ such that ¢(u) = ¢(v).

Since no clique on k vertices can be properly (that is, in a 1-1 manner) colored by
k — 1 colors, at least one edge of Alice’s clique ¢ must be left monochromatic under
Bob’s coloring; the goal is to find such an edge. Thus, if a leaf of a communication
protocol for this game is reached by some set) x C' of clique/coloring pairs, then
there must be an edge {u, v} such that

{u,v} Cgforallg € Q,and c(u) = ¢(v) forall c € C. (7.5)

That is, the edge must belong to all cliques in () and be monochromatic under all
colorings in C'. In order to force a long path in a communication tree, our strategy
is to achieve that the following invariant holds:

216 7 Monotone Formulas

(*) If an edge is monochromatic in all colorings ¢ € C, then at least one of its two
endpoints lies in none of the cliques ¢ € Q.

It is clear that, if Q x C # () and the invariant (*) holds, then (??) cannot hold, and
hence, the node cannot be a leaf.

In a round the players are allowed to send one bit each rather than only one of
them sending a bit. Since we are interested in the number of rounds rather than the
number of bits transferred, this can only make life easier for them. Each bit that
Alice or Bob sends decreases the set of possible cliques or colorings.

7.21 Remark As in the case of the fork game above, it will be convenient to work
with densities of sets in a given universe, rather than with their actual cardinalities
(cf. Remark ??). Namely, if A is a subset of some given universe B, then its density
in B is the fraction p(A) = |A|/|B|. This definition is useful when we want to
describe how much is known about some element € B. Suppose that we know
that z € A C B. Suppose further that we know the structure of B but that the
structure of A is unknown or very complicated. Then the amount of information
we (this time, the players) have about z is given by the structure of B and p(A).
The smaller p1(A) is the more we know about .

7.22 Example To illustrate the usefulness of dealing with densities instead of cardi-
nalities, let B be the family of all |B| = (}) k-element subsets of [n]. Each element

x € [n] appears in a (Z:i) (2)71 = k/n fraction of sets in B. Take a sub-family
A C B, and say that an element z is “popular” for A if it appears at least twice as
often as the average element, that is, if the family A, C A of all setsin A containing

x has density

| Azl 2k 2k |A]

= Aw > (A== .2

B] wAs) = — - p(A) = — B
relative to the underlying set B. Now remove the element x from all sets, and
consider the resulting families A’ and B’ of subsets of the smaller set [n] \ {z}. We
only know that [A’| = |A,| > 2£|A|. But A’ is a subset of a smaller underlying
family B’ and, relative to this (new) underlying family, has density at least twice
larger than that of the original family A:

Al |Az| n |Az] - n 2k |A]
A/ :‘ = = — . > — . =92. A).
MO T TR G TR e

7.23 Theorem (Goldmann-Hastad 1992) Let 3 < k < (n/2)2/3 andt < \/E/ZL
Then every monotone DeMorgan circuit computing the clique function CLIQUE(n, k)
must have depth at least t.

Note that, in terms of the total number N = (g) of wvariables, the depth
is Q(N1/6),

The proof uses an adversary argument. Given a communication protocol tree
for the clique-coloring game, our goal is to show that it must have a long path. To
analyze the behavior of the protocol, Q); will denote the set of cliques that remain

7.5 Ann'/® depth lower bound for clique function 217

after round ¢, C; the set of colorings that remain after round ¢, M, the set of vertices
that belong to all cliques in Q¢ (“fixed” vertices), L; the set of vertices that belong
to none of the cliques in Q; (“forbidden” vertices), m; = |M;| and I; = |L,|.

All these sets are known to both players. Recalling Remark ?? we consider (),
and C} as subsets of smaller universes so that their relative densities may (and will)
increase:

« (Q is a subset of all cliques ¢ \ M; such that M; C q C V' \ L;.
« C} is a subset of all colorings of V' \ L.

This is because both players already know that Alice’s clique must contain M,
and a monochromatic edge they are looking for cannot have an endpoint in L.
Thus, m; and (@) tells us how much Bob knows about Alice’s clique after round
t. Similarly, /; and p(C}) measure what Alice knows about the Bob’s coloring.

At the beginning (t = 0) we have M; = L; = (). The ¢-th round proceeds in two
sub-rounds: first speaks Alice, then Bob.

Sub-round 1: Alice sends one bit, that is, she splits the current set of cliques Q¢—1
into two parts, and let () be the larger of these parts. We now fix some additional
vertices (add them to M). On average, a vertex appears in a k/n fraction of k-cliques
on n vertices. Say that a vertex v € V' \ M is “popular” if it appears at least twice
as often as the average vertex, that is, if

2k

plge@lveqy) = — - u(Q).

We fix such a vertex (add it to M), remove all cliques that do not contain v, and look
for a new popular vertex in the shrunken set of cliques. Each time when we find a
popular vertex, the density of the new set of cliques increases by at least factor two
since this set is now a subset of a smaller set (cf. Example ??). We proceed in this
way until no popular vertices exist. If M, is the new (extended) set of fixed vertices,
we set

Q,={q€Q|q2>2 M} and C;:={c€ Cy_1|cisl-1on M}.

Thus, the desired edge cannot lie in M;.

Sub-round 2: Bob sends one bit, that is, he splits the current set of colorings into
two parts. In particular, he splits the set C} into two parts, and let C' be the larger
of these parts. We now remove some additional vertices, that is, add them to L. On
average, one pair u # v of vertices is left monochromatic by a fraction 1/(k — 1)
of all colorings. Say that a pair u # v is “popular” if it is left monochromatic by the
colorings in C' at least twice as often as the average pair of vertices, that is, if

pl{e € O ofw) = c(w)}) > o - (C)

Since c is 1-1 on M, at least one of u or v must lie outside M;. We add this
endpoint to the current set L of “forbidden” vertices, and restrict C to colorings

218 7 Monotone Formulas

with ¢(u) = ¢(v). Again, the density p(C) increases by at least the factor two since
the domain V' \ L of colorings is now smaller. We repeat this step until no desired
edges can be found, and let

Ci:={ce€ C|c(u) = c(v) for all popular pairs u # v} .
Let L; be the resulting set of “forbidden” vertices, and set

Qi:={qeQ;lqnL,=0}.

Thus, the desired edge cannot have an endpoint in L;.

When the ¢-th round is over, the resulting set of inputs is the set), x C, where
all cliques g € @ satisfy M; C ¢ C V' \ Ly, and all colorings ¢ € C; are 1-1 on M;
and leave all popular edges (that is, edges touched by L;) monochromatic. Moreover,
if an edge is monochromatic in all colorings ¢ € (Y, then at least one of its two
endpoints must lie in L;, and hence, is in none of the cliques ¢ € Q;. Thus, the set
of inputs @), x C} satisfies our invariant (*). It remains therefore to show that, if
the number ¢ of rounds is small enough, then this set is still non-empty.

Recall that the set Q; x C} is constructed from ;1 X Cy_1 in two sub-rounds:

Qt_1XCt_1 —> Q;XC; — QtXCt.

7.24 Lemma Suppose that 3 < k < (n/2)?/3 andt < \/k/4. Then
1(C) = S u(Ci1) ifms < 2t; (7.6)

1(Qr) = S (@) ifl; <2t. (7.7)

N~ N~

Proof. To prove the first inequality (??), recall that C} consists of all colorings in Cy_4
that are 1-1 on M,. By the definition of L;_1, for every edgee C V\ L;_; the relative
density of all colorings in C;_; leaving e monochromatic is < 2u(Cy—1)/(k — 1).
Since M; C V' \ L;_1, the same must hold for all edges e C M, as well. Since we
only have (”;t) edges e C My, the density of the set of colorings in C;_; leaving at
least one edge in M; monochromatic is at most

my 2/,&(Ct_1) < 4t2
2 k-1 — k-1

1(Ci1) < %N(thl)-

To prove the second inequality (??), recall that, by the definition of @}, the density of
cliques in @)} containing any fixed vertex v & M; must be smaller than 2k /n times
the density p(Q}) of the set Q) itself. Since L; N M; = (), we have the same bound
for all v € L;. The set ; was obtained from @) by removing all cliques containing
a vertex in L;. Hence, the density of removed cliques is at most (2k/n)u(Q)}) times
|L¢| = I;. By our assumptions k < (n/2)?/? and I; = |L;| < 2t < Vk/2, we have
that the density of removed cliques does not exceed

7.5 Ann'/® depth lower bound for clique function 219

2kl k:f k3/ 2 1
(@) < == (@) = (@) < 5 (@) 0
We can now show that, if the number ¢ of rounds is not too large, then both sets

Q@ and C} have a nontrivial density.

7.25 Lemma Let k < (n/2)%/3. Then for everyt < \/k/4 we have that
Q) > 22 and pu(Cy) > 20

Proof. Since we have u(Qo) = u(Co) = 1 and mg = lp = 0, the lemma holds for
t = 0 (at the beginning of the game). Now assume that the lemma holds for the
first t — 1 rounds. First we give explicit lower bounds on 1(Q}) and u(Cy). The
number of new vertices fixed in round ¢ is m; — m;_;. Since after fixing each of
these vertices the density p(Q}) increases by a factor at least two, the induction
hypothesis yields

1 m —
(@) = §2mt Q) = 2M AL (7.8)

Since the density p(Q)}) cannot exceed 1, we obtain that m; < 2¢t—1 < 2t. With this
upper bound on my, (??) yields pu(C}) > u(Ci—1)/2. Together with the induction
hypothesis, we obtain that

p(CY) Z 2T (7.9)

The sets Q; and C; we finally determined in the second part of round ¢, where Bob
(the “color player”) sends one bit. The bounds obtained for (Q}) and p(Cj) allow
us to finish the proof. Since after the removal of all colorings ¢ with ¢(u) # ¢(v)
for a popular pair v # v the density p(C}) increases by a factor at least two, the
lower bound (??) implies

M(Ct) 2 %2lg—lt,1M(C£) Z %2lt—lt,12lt,1—2t+1 — 2lt—2t .

Since p(Cy) < 1 we have that [; < 2t. Thus, we can apply (??) and obtain that
w(Q¢) > 1(Q})/2. Together with (??) this gives the second desired lower bound

~

w(Qe) > —p(Qy) > 2m 2t O

DN | =

After all these preparations we are now ready to finish the proof of Theorem ??
itself.

p@plus6p@

Proof of Theorem ??addpunct: Take an arbitrary communication protocol for the
monotone Karchmer-Wigderson game corresponding to CLIQUE(n, k). Run this
protocol for ¢ = v/k/4 rounds. The adversary’s strategy gives us sets Q;, Cy, M,
and L. Since t < Vk /4, Lemma ?? ensures that the sets Q); and C are both non-

220 7 Monotone Formulas

empty (their densities are not zero). So take some pair (g, c) € Q¢ x C;. We have
that ¢ N Ly = 0.

If ¢ rounds were sufficient, Alice would know an edge {u,v} C ¢ which is
monochromatic under all colorings in CY, including the coloring c. But then, by the
definition of the set L; of “forbidden vertices”, at least one of the vertices u and v
must lie in L, contradicting ¢ N Ly = (). O

endpe false

7.6 An n'/? depth lower bound for matching

Let MarcH,, (z) be a monotone boolean function of (%) variables encoding the

edges of a graph GG, on n = 3m vertices. The function computes 1 if and only if
the graph G, contains an m-matching, that is, a set of m vertex disjoint edges.

7.26 Theorem (Raz—-Wigderson 1992) Every monotone circuit computing MATCH,, ()
must have depth at least 2(n).

Note that, in terms of the total number N = (’2’) of wvariables, the depth
is Q(N1/2).

Proof. Every m-matching p is clearly a 1-term (in fact, a minterm) of MATCH,,.
What are 0-terms? For a subset ¢ of m — 1 vertices, let ¢, be the complete graph on
the remaining 2m + 1 vertices. It is not difficult to see that the complement of ¢,
can contain no m-matching. Hence, the graphs c, are 0-terms of MATCH,,.

In a monotone version of Karchmer-Wigderson game for MATCH,,, Alice (holding
a minterm p) and Bob (holding a 0-term ¢,;) must find an edge e € p N ¢,. It will be
convenient to give Bob not graphs c, but rather the sets g themselves; then e € pNc,
ifand only if e € p and eN ¢ = (. Hence, the monotone Karchmer-Wigderson game
for MATCH,, must solve the following “find edge” problem:

FE,,: Alice gets an m-matching p and Bob gets an (m — 1)-element set ¢ of
vertices. The goal is to find an edge e € p such thate N g = (.

Let ¢, (FE,,) be the deterministic communication complexity of this game. By
Theorem ??, it is enough to show that ¢, (F E,,) = 2(n).

The game F'E,,, corresponds to a search problem: find a desired edge. Our proof
strategy is first to reduce this problem to a decision problem: given two subsets
of [m] decide whether they are disjoint. Since this last problem has randomized
communication complexity at least £2(m), we will be done. To construct the desired
reduction, we consider several intermediate decision problems.

M,,: Alice gets an m-matching p and Bob gets an m-element set ¢’ of vertices.
Is there an edge e such thate € pand e N ¢’ = §?

DIST,,: Alice gets z € {0,1,2}™ and Bob gets y € {0,1,2}™.
Isx; #y;foralli=1,...,n?

7.6 Ann'/? depth lower bound for matching 221

Bilder/matchl-eps-converted-to| pdf

Fig. 7.5 Alice’s vector x = (2,0, 1,2) and Bob’s vector y = (1,2, 0, 2). From the i-th triple, Alice
chooses the edge e = {0, 1,2} \ {z;}, and Bob chooses the vertex y;.

DIS),,: Alice gets z € {0,1}™ and Bob gets y € {0,1}™.
Isz; ANy; =0foralli=1,...,m?

Through a series of reductions we will show (by ignoring multiplicative constants)
that

(a) (b) (c) (d)
‘Q(m) = c1/3(DISJm) < c1/3(DISTm) < c1/3(]‘4771) < C+(FEm)-

The lower bound (a) is due to Kalyanasundaram and Schnitger (1992). A proof of a
weaker lower bound of £2(1/n) is given in Section ??. We use randomized protocols
because we will need randomness in the last reduction (d).

Proof of (b): ¢1 /3(D1sJ,,,) < ¢1/3(DIST,y,). Transform an input (z,%) € {0,1
for pisj,, into an input (x,y’) € {0,1,2}?™ for p1st,, by setting y, = 1 ify; = 1,
and y} = 2ify; = 0. Then 3i ; = y; = 1 if and only if I z; = y/.

Proof of (c): ¢1/3(D18T,,) < ¢ /3(M,y). Since each randomized protocol for a
function f is also a randomized protocol for its negation — f, it is enough to reduce
DIST,, to = M,,. For this, we need to encode inputs for pi1sT,, as inputs for M,,.
To do this, split all n = 3m vertices into m vertex-disjoint triples, and number
the three vertices in each triple by 0,1, 2. Given a vector z € {0,1,2}™, Alice
chooses from the i-th triple the edge e = {0, 1,2} \ {z;}. Similarly, given a vector
y € {0,1,2}™, Bob chooses from the i-th triple the vertex y;. Since the triples are
vertex-disjoint, Alice obtains an m-matching p,, and Bob obtains an m-element
set q; of vertices. It remains to observe that an edge e with e € p, and e N q; =0
exists if and only if z; = y; for some ¢ € [m] (see Fig. ??).

Proof of (d): ¢1/3(M,,) < ¢, (FE,,). This is the only nontrivial reduction. In
both games M,,, and F'E,,, Alice gets an m-matching p. In the game M,,, Bob gets
an m-element set ¢’ of vertices, and the goal is to decide whether some edge of p
does not touch the set ¢’. If we pick a vertex v € ¢’ and remove it from ¢’ to obtain
the (m — 1)-set ¢ = ¢’ \ {v}, then each protocol for FE,, will definitely find an
edge e € p such that e N g = (). If we are lucky and the removed vertex v is not
an endpoint of the found edge e, then we know the answer: the edge e is disjoint
from ¢'. But if v € e, then the answer e of the protocol F E,,(p, q) is useless. The
idea therefore is to introduce randomness in the protocol for F'E,, to make the
probability of this “bad” event small.

Having a protocol P for F'E,,,, we construct a randomized protocol for M,, as
follows.

}Zm

222 7 Monotone Formulas

Bilder/match2-eps-converited-to.pdf

Fig. 7.6 In the situation on the left the gamble is correct: e N ¢’ = (). In the situation on the right
the gamble is wrong since ¢’ Nq’ = (), although eN ¢’ # (). But the error probability is then < 1/2
since, in this case, the protocol will not choose e with probability at least 1/|{e,e'}| = 1/2.

« Given an m-matching p (for Alice) and an m-element set ¢’ of vertices (for
Bob), Bob chooses a random vertex v € ¢’ and defines ¢ := ¢’ \ {v}.

« Alice and Bob flip coins publicly and choose a random permutation 7 : [n] — [n]
on the set of vertices of the graph. Then they execute the protocol P on 7(p)
and (q).If e1, ..., ex, € p were the edges in p which do not intersect ¢, then
P returns each edge from {ey, ..., e} with equal probability. Note that & > 1
since |g| < m — 1.

« The players eventually agree on an edge e such that e € pand e N ¢ = (). Bob
checks whether v € e and reports this to Alice.

« Ifv & ethen eNg’ = (), and the players know that the answer is “1”. Otherwise
they gamble on “0”.

It remains to show that the gamble can only be wrong with probability at most
1/2. Let E be the set of all edges in p that contain no endpoint in ¢’. The gamble is
wrong if £ # () and v € e. But the protocol outputs each edge in F' U {e} with the
same probability 1/|E U {e}| < 1/2. In particular, it will pick the edge e (and not
some edge ¢’ in F) with such a probability (see Fig. ??). Since vertex v cannot be
an endpoint of more than one edge of the matching p, the probability of error is at
most 1/2. To decrease the error probability, just repeat the protocol twice.

This completes the reductions, and thus the proof of Theorem ??. ad

Theorem ??, together with the Formula Balancing Lemma (Lemma ??), gives an
exponential lower bound on the monotone size of DeMorgan formulas. Recall that
MATCH,, is a monotone boolean function of (%) = ©(n?) variables.

7.27 Corollary Every monotone formula for MATCH,, must have size 2(").

Borodin et al. (1982) observed that a randomized algorithm for matching, pro-
posed by Lovasz (1979b), can be implemented by non-monotone circuits of depth
O(log? n). Together with the lower bound £2(n) on the monotone depth, this gives
an exponential gap between the depth of monotone and non-monotone circuits,
just like Theorem ?? gave such a gap for the size of circuits.

Yet another consequence of Theorem ?? is for switching networks. Such a net-
work is monotone if it has no negated variables as contacts.

7.6 Ann'/? depth lower bound for matching 223

7.28 Corollary Every monotone switching network for MATCH,, must have 2°(v™)
contacts.

Proof. Every switching network with s contacts can be simulated by a DeMorgan
circuit of depth O(log” s). We leave this as an exercise. (Hint: binary search.) O

Finally, the proof of Theorem ?? also gives a stronger than Theorem ?? depth
lower bound for the clique function.

7.29 Corollary For every k < n/2, every monotone DeMorgan circuit computing the
clique function CLIQUE(n, k) must have depth at least £2(k).

Proof. Consider graphs on a fixed set V' of |[V| = n = 3m vertices. Observe that
every set ¢, C V of |¢,| = 2m + 1 vertices is a minterm, and every m-matching
is a maxterm of CLIQUE(n, 2m + 1). Hence, a protocol for the “find edge” game
FE,, is in fact a protocol for CLIQUE(n, 2m + 1), with the names of players
switched. Theorem ?? gives an {2(n) depth lower bound for CLIQUE(n, 2m + 1).
By restricting the inputs to graphs containing a fixed clique of an appropriate size,
this also gives lower bounds (2(k) for detecting k-cliques. ad

Exercises

7.1 The general disjointness matrix D,, is a 2" x 2" (-1 matrix whose rows and
columns are labeled by the subsets of an n-element set, and the (a, b)-th entry is 1
if and only if @ N b = (). Prove that this matrix has full rank over any field, i.e., that
rk(D,,) = 2™.

Hint: Use the induction on n together with the following recursive construction of D,,:

_ 11 _ Dyn—1 Dn—1
D1_<10>7 Dn_<Dn_1 0)

7.2 Show that sTcon,, can be computed by a monotone nondeterministic branching
program of size O(nz) Hint: Take one contact for each potential edge.

7.3 Prove that ¢(stcon,,) = O(log2 n). Hint: Use binary search; in fact one of the players
may do most of the talking, with the other player communicating only O(log n) bits overall.

7.4 Say that a string x € [m] is a limit for a subset S C [m]* of strings if z € S
and for every position i = 1,..., k there is a string y € S such that x # y and
x; = y;. Prove: if S C [m]* and |S| > km then S has a limit for itself. Hint: What
does it mean that S does not have a limit for itself?

7.5 The definition of the fork game is somewhat artificial in that the players need
not necessarily output a fork position, even when a # b (note that then at least
one fork position must exist). Instead, they are also allowed to answer “k + 17,

224 7 Monotone Formulas

if ar, = by. It makes therefore sense to look at what happens if we consider the
following modified fork game:

« Alice gets a string a € S and Bob gets a string b € S.
« Find a fork position 7 of a and b, if there is one.

That is, the only difference from the original fork game is the following: if a;, = by,
but a # b, then “i = k4 1” is no longer a legal answer. In this case the players must
output some other position ¢ < k (such a fork position exists since a # b). Prove
that the modified fork game on [m]* has communication complexity §2(k - logm).
Hint: Assume that d bits of communication are enough, where 2¢ < m*/(km). Use the previous
exercise to get a contradiction.

7.6 (Johan Hastad) Let Ay, ..., Ay be finite sets (alphabets), and H be some set
of strings (ay, ..., ar) with a; € A;. On average, each letter of A; appears in the
i-th position of d; = |H|/|A;| such strings. Let B; C A; be the set of all letters
a € A, that appear in the i-th position of at least d;/2k of the strings in H. Let
B = By X -+ X By.Prove that |B| > |H|/2.

Hint: It might be simpler to prove that |H \ B| < |H|/2 using the fact that no letter a € A; \ B;
can appear in more than d; /2k of the strings. Thus, the number of strings not containing a letter
from B; in the i-th position cannot exceed |H|/2k.

7.7 Prove the following analogue of Lemma ??: In any 2a-dense matrix either a
\/a-fraction of its rows or a y/a-fraction of its columns (or both) are (a/2)-dense.
Hint: Argue directly or solve Exercise ?? and apply it for k = 2.

8. Span Programs

In 1993 Karchmer and Wigderson introduced an interesting linear algebraic model
for computing boolean functions—the span program. A span program is just a
matrix over some field with rows labeled by literals. (In this chapter we will only
work over the field GF(2), but the results hold for any field.) The span program
accepts an input assignment if and only if the all-1 vector can be obtained as a
linear combination of the rows whose labels are satisfied by the input. The size of
the span program is the number of rows in the matrix. A span program is monotone
if only positive literals are used as labels of the rows, that is, negated variables are
not allowed.

The model turns out to be quite strong: classical models for computing boolean
functions—like switching networks or DeMorgan formulas—can be simulated by
span programs without any increase in size. Moreover, the size of span programs
lower bounds the size of parity branching programs—a model where no larger than
n3/2/1logn lower bounds are known even in the simplest, read-once case (along
each s-t path, each variable can be tested at most once). It is therefore not surprising
that proving lower bounds on the size of span programs is a hard task, even in the
monotone case.

In this chapter we will show how this task can be solved using linear algebra
arguments.

8.1 The model

First we describe the model more precisely. Let I be a field. A span program over
F is a linear algebraic model that computes a boolean function f(x1,...,z,) as
follows. Literals are variables :L'Zl = x; and their negations CC? = —x;. Fix a vector
space W over I with a nonzero vector w € W, and associate with each of 2n
literals 27 a subspace X7 of W. Any truth assignment a € {0, 1}" to the variables
makes exactly n literals “true”. We demand that the n associated subspaces span

the fixed vector w if and only if f(a) = 1. The size measure for this model is the

225

226 8 Span Programs

sum of dimensions of the 2n subspaces. In a monotone span program we do not
allow negated variables.

It is convenient to consider a span program as a matrix M over F with its
rows labeled by 2n literals; one literal may label several rows. If only positive
literals x1, . . ., x,, are used, then the program is called monotone. The size of a span
program M is the number of rows in it. For an input a = (ay,...,a,) € {0,1}™,
let M, denote the submatrix of M obtained by keeping those rows whose labels
are satisfied by a. That is, M, contains rows labeled by those x; for which a; = 1
and by those —z; for which a; = 0.

The program M accepts the input a if the all-1 vector 1 (or any other, fixed
in advance target vector) belongs to the span of the rows of M,,. A span program
computes a boolean function f if it accepts exactly those inputs a where f(a) = 1.
That is,

f(a) =1 ifand onlyif 1 € Span(M,). (8.1)

In what follows we will work over the field F = GF(2). In this case there is the
following equivalent definition of the acceptance condition (??). Say that a vector v
is odd if the number of 1s in it is odd. Then

f(a) =0 iff there exists an odd vector v such that M, - v = 0. (8.2)

That is, a vector a is rejected if and only if some odd vector v (vector with an
odd number of 1s) is orthogonal to all rows of M. This follows from the simple
observation that 1 € Span(M,,) if and only if all vectors in Span(M,)" are even;
here, as customary, V' is the orthogonal complement of V, and is defined as the
set of vectors orthogonal to every vector in V; Span(V) is the set of all linear
combinations of vectors in V.

8.1 Remark Note also that the number of columns is not counted as a part of the
size. It is always possible to restrict the matrix of a span program to a set of linearly
independent columns without changing the function computed by the program,
therefore it is not necessary to use more columns than rows. However, it is usually
easier to design a span program with a large number of columns, many of which
may be linearly dependent.

Let M be a span program computing f over GF(2). Such a program is canonical
if the columns of M are in one-to-one correspondence with the vectors in f~1(0),
and for every b € f~1(0), the column corresponding to b in Mj is an all-0 column.

8.2 Lemma Every span program can be converted to a canonical span program of the
same size and computing the same function.

Proof. Take a vector b € f~1(0). By (??), there is an odd vector r = 7, for which
My, - rp = 0. Define the column corresponding to b in a new span program N to be
M - 1y,. Doing this for all b € f~1(0) defines the program N and guarantees that it
rejects every b € f~1(0). To see that M’ accepts all ones of f, fixana € f~1(1),

8.2 The power of span programs 227

label sabt edge
a x 1100 {s,a}
“‘ Y Yy 0101 {a,t}
s -y t y 1010 {s,b}
, i z 0011 {b,t}
b -y 0110 {a, b}
Vo 1001

Fig. 8.1 A switching network for the threshold-2 function Th3(x, , z) in three variables (which
outputs 1 if and only if z + y + z > 2) and the corresponding span program.

and let v, be such that v M, = 1. But since 7}, is odd for every column b € f~1(0),
we have that vaa = ngarb =(1,r) = 1. 0

8.2 The power of span programs

Together with Proposition ??, the following fact shows that span programs are not
weaker than DeMorgan formulas.

8.3 Proposition If a boolean function can be computed by a switching network of size
S then it can also be computed by a span program of size at most S. The same holds
for their monotone versions.

Proof. Let G = ([n], E) be a switching network for a function f, with s,t € [n] its
special vertices. Take the standard basis {e; | ¢ € [n]} of the n-dimensional space
over GF(2), that is, e; is a binary vector of length n with exactly one 1 in the i-th
coordinate.

The span program M is constructed as follows. For every edge {4, j} in E add
the row e; ® ¢; = e; + ¢; to M and label this row by the label of this edge (see
Fig. ??). It is easy to see that there is an s- path in G, all whose labeled edges are
switched on by an input vector a, if and only if the rows of M, span the target
vector v := e, @ e;. Therefore, M computes f, and its size is | E|. O

Proposition ?? shows that span programs are not weaker than switching net-
works, and hence, than DeMorgan formulas and deterministic branching programs.
What span programs capture is the size of parity branching programs. These are
switching networks with the “parity-mode”: an input a is accepted if and only if
the number of s-t paths consistent with a is odd (see Section ??). Namely, if SP(f)
denotes the complexity of a boolean function in the class of span programs, and
®BP(f) in the class of parity branching programs, then SP(f) < 2- @BP(f) and
®BP(f) < SP(f)°W; see Karchmer-Wigderson (1993) for details.

228 8 Span Programs

8.3 Power of monotone span programs

We will exhibit a monotone boolean function f of n variables such that f can be
computed by a monotone span program of linear size, but any monotone circuit for
f requires n?(1°8") gates.

A spanning subgraph of a graph G = (V, E) is a graph G' = (V, F) where
F C E; the set of vertices remains the same. A (connected) component of a graph
is a maximal set of its vertices such that there is a path between any two of them. A
graph is connected if it consists of just one component. The degree dr (i) of a vertex
1 is the number of edges of F' which are incident to . An odd factor in a graph is a
spanning subgraph with all degrees odd.

8.4 Lemma If a graph is connected then it has an odd factor if and only if the number
of its vertices is even.

Proof. Suppose that G has an odd factor G’ = (V, F'). Hence, all degrees dp (%) are
odd. By Euler’s theorem, the sum _,,, dr (i) equals 2|F| and is even. Thus, the
number |V| of summands must be even, as claimed.

For the other direction, suppose that the graph G = (V, E) is connected and has

an even number of vertices, say V = {x1,..., 2z, }. Forevery i = 1,...,m, fix
any one path P; = (V;, E;) connecting z; to ;1. Let F be the set of those edges
from E which appear in an odd number of the sets E, ..., E,,.

We claim that the subgraph (V, F) is the desired odd factor. Indeed, observe that
if a vertex x appears in a path P; then either dg, (z) is even or dg, () = 1, and
this last event happens if and only if x is a leaf of this path, that is, if z = x; or
T = Tj+m- Since each vertex x € V is a leaf of exactly one of the paths Py, ..., Py,
we have that the sum of degrees D(z) := > | dp, () is odd. It remains to observe
that, by the definition of F, this sum D(z) is congruent modulo 2 to the degree
dp(z) of x in the graph (V, F). O

The odd factor function has n = m? variables encoding a boolean m x m matrix
representing a bipartite graph with m vertices in each part; the graph is accepted if
it has an odd factor.

8.5 Lemma Every monotone circuit computing the odd factor function requires
n?1o8n) gates,

Proof. We use a theorem of Razborov stating that any monotone circuit computing
the perfect matching function for bipartite n x n graphs requires n?(1°8™) gates
(see Theorem ?? in the next chapter). The proof of this theorem shows that such
number of gates is necessary in any monotone circuit which: (i) accepts every
perfect matching, and (ii) rejects a constant fraction of all unbalanced 2-colorings
of vertices; each 2-coloring is identified with the graph of all monochromatic edges.

Every perfect matching is an odd factor, and should be accepted. On the other
hand, an odd 2-coloring (in which each color occupies an odd number of vertices)
has two odd components, and thus must be rejected: by Lemma ??, none of them

8.4 Threshold functions 229

can have an odd factor. As odd 2-colorings constitute half of all 2-colorings we are
done. O

It is therefore somewhat surprising that the odd factor function can be computed
by a very small monotone span program.

8.6 Theorem (Babai-Gal-Wigderson 1999) The odd factor function can be computed
by a monotone span program of linear size.

Proof. We construct the desired span program for the odd factor function on n = m?

variables as follows. Let V' = V; U V; be the vertex set with |V1| = |Va] = m,
and let X = {x”} with ¢ € V} and 5 € V5 be the corresponding set of boolean
variables (one for each potential edge). Take the standard basis {e; | i € V'} of the
2m-dimensional space over GF(2), that is, e; is a binary vector of length 2m with
exactly one 1 in the i-th coordinate. Let M be the m? by 2m matrix whose rows are
vectors e; + ¢; labeled by the corresponding variables x; ;. We claim that this span
program computes the odd factor function. To verify this we have to show that
the all-1 vector 1 = (1,...,1) is a sum over GF(2) of vectors of the form e; + ¢;
precisely when the corresponding edges {i, j} form an odd factor.

Take an arbitrary graph £ C V; x V, (viewed as a set of edges). Then the program
M accepts F if and only if there exists a subset /' C E such that Z{i7j}eF(ei +
e;) = 1 mod 2. Since for each vector i € V, the vector e; occurs exactly dp(¢)
times in this sum, this happens if and only if) 0, \, dr(i)e; = 1 mod 2. That is,
the program M accepts a graph E if and only if there exists a subgraph F' C F in
which all vertices have odd degrees. Thus, M accepts exactly graphs containing
odd factors as claimed. O

We have seen that, for some monotone boolean functions, their monotone span
program size is exponentially smaller than their monotone circuits size. The con-
verse direction remains open.

8.7 Research Problem
Do there exist functions admitting polynomial-size monotone circuits which require
super-polynomial size monotone span programs?

8.4 Threshold functions

A curious thing about the model of monotone span programs is that it uses non-
monotone operations (linear algebra over a field) to compute monotone functions.
Karchmer and Wigderson (1993) detected yet another curious property unique to
this model: except the trivial AND and OR, all threshold functions have almost the
same complexity! Recall that a k-threshold function Th} (x4, ..., x,) outputs 1 if
andonlyifz +--- 4+, > k.

8.8 Lemma Any monotone span program computing Thy over the field GF(2) has
size at least nlogn.

230 8 Span Programs

Proof. Let M be a monotone span program for Thy. Let ¢ be the number of columns
in M, and R the set of all odd vectors in GF(2)’. Clearly |R| = 2!~1. Let X; be the
span of the rows of M labeled by the i-th variable, and let d; = dim(X);. Recall
that M rejects an input a if and only if at least one vector from R is orthogonal
to all the vectors from those sets X; for which a; = 1. Forevery i =1,...,n,let
R; := RN (X;)*. Since M rejects vectors of weight one, 1 ¢ X, and so for every
R;| = 2¢~4i~1 (see Exercise ??).

We now claim that R; N R; = (). To see this, observe that for every pair i # j
we must have vector 1 in the span of X; U X (as M accepts the vector with 1s in
positions 7 and j). Therefore, for some vectors u; € X; and u; € X, u; ® u; = 1.
If there is a vector 7 € R; N R;, then (r,1) = 1 while (r,u;) = (r,u;) = 0, a
contradiction.

The previous two paragraphs imply that

i,

n

> =3Ikl = | U
=1 1=1

i=1

<|R[=2""",

and hence, Z;;l 24 < 1. Jensen’s inequality states that, if 0 < \; < 1,
Sty A = 1and fis convex, then f(} ./ ; Niz;) < .7, A\ f(x;). Applying
this inequality with \; = 1/n and f(d;) = 2~% we obtain

S 2ot = S 2 (Yo) = 2 (),

implying that the matrix M must have at least) |, d; > nlogn rows. O

8.9 Lemma LetIF be a field with more than n + 1 elements. Then, forany1l < k < n,
the function Th}, can be computed by a monotone span program over I of size n.

Proof. Since the field F has more than n elements, we can find a set {vg, v1, ..., v,} C
F* of n + 1 vectors in general position, that is, any k of these vectors are linearly
independent (see Exercise ??). Moreover, we may assume w.l.o.g. that vy = 1 (the
all-1 vector). This suggests the following span program M over F: M isann X k
matrix whose i-th row (1 <4 < n)is v; and is labeled by x;. It is now straightfor-
ward to check that for any input @ € {0, 1}, the vector 1 is spanned by the rows of
M, if and only if |a| > k. Indeed, if |a| > k then the vectors {v; | a; = 1} contain
a basis for F* (because some k of them are linearly independent), thus vector 1 is a
linear combination of them. If |a| < k — 1 then all the vectors {vo} U {v; | a; = 1}
are linearly independent, and hence, vy = 1 cannot be a linear combination of
{’Ui ‘ a; =].} O

Taking F = GF(2') with [the smallest integer > log n (which corresponds to a
binary encoding of the field elements), it is possible to reduce the constructed span
program over F to a program over the field GF(2) of size O(n logn); see Karchmer
and Wigderson (1993) for details.

8.5 The weakness of monotone span programs 231

8.5 The weakness of monotone span programs

Lower bounds of order n?(Ios™/10g1087) o the size of monotone span programs
were first obtained by Babai et al. (1996) and Babai, Gal, and Wigderson (1999) for
explicit boolean functions defined by bipartite graphs with certain properties. Then,
using a different property of the underlying bipartite graphs, Gal (2001) simplified
and improved these bounds to n?(1°8™) All these proofs were based on a general
combinatorial lower bound for such programs, found earlier by Beimel, Gal, and
Paterson (1996); we will present this lower bound in Section ??.

In this section we will give a different and simpler argument due to Gal and
Pudlak (2003). We saw their rank argument in Section ?? for monotone formulas.
Recall that a pair (A, B) of families of sets is locally intersecting if every set b € B
can be divided in two nonempty parts b = by U b; so that every @ € A has a
nonempty intersection with exactly one of these parts. The disjointness matrix of
such a pair (A, B) is an |A| by |B| matrix D 4 g, with rows indexed by sets a € A
and columns indexed by sets b € B. The entries of D = D 4 p are defined by

D[a b]— 0 ifaﬂbo%@,
)1 ifanbg #0.

The following lemma extends a general lower bound for monotone formulas
(given in Lemma ??) to monotone span programs.

8.10 Lemma (Gal-Pudlék 2003) Let f be a monotone boolean function, and let A, B
be sets of 1-terms and O-terms of f respectively. If the pair A, B is locally intersecting,

then any monotone span program over GF(2) separating this pair must have size at
leasttk(D 4. p).

Proof. Let M be a monotone span program separating (A, B). Let r be the number
of rows and ¢ the number of columns in M. The idea is to show that the disjointness
matrix D = D 4 p of A, B is a matrix of scalar products of vectors of dimension at
most 7. This will yield rk(D) < r, as desired.

For every a € A, let v, € GF(2)" be a vector witnessing the fact that a must be
accepted, which means that
vl M =1,

a

where 1 is the all-1 vector and v,, is a vector which is nonzero only in coordinates
corresponding to elements of a, that is, v, (7) # 0 implies 7 € a.

Let b = by U b, € B. Since the complement b of b cannot be accepted, no
linear combination of the rows of M can give 1; recall that M contains rows of
M labeled by those variables z; for which i € b. Hence, by the dual acceptance
condition (??), for each b € B there is a vector u;, in GF(2)° such that

(1,ub> = 1and Mg~ub =0.

232 8 Span Programs

Let wy, be the vector in GF(2)" obtained from the vector Muy, by replacing to 0 all
its elements, corresponding to the rows labeled by elements of by:

b bo b1

NN A~
Mup,=0...0%...% %...%

wp=0...00...0 %...%

Note that wy (i) # 0 only if ¢ € by. We claim that D[a,b] = (v,, ws). Indeed, if
a N bg # B then a N by = B, and hence, the vectors v, and w;, have no element on
which they both are nonzero, thus (v,, wp) = 0.If a N by # 0 then a N by = B, and
hence, (vy, wp) = (va, Mup), implying that

(Va, wp) = (Va, Mup) = (v M,up) = (1,u) = 1.

This shows that D is a matrix of scalar products of vectors of dimension r, implying

that rk(D) < r. O

Thus, the Paley function Paley,, defined by Eq. (??) in Section ?? requires mono-
tone span programs of super-polynomial size.

8.11 Corollary Every monotone span program computing Paley, must have size
2(logn)
n .

In the next chapter we will show that some explicit monotone boolean functions
(the perfect matching function and some clique-like functions) require monotone
circuits of super-polynomial size whereas their non-monotone circuit size is poly-
nomial. The existence of such a gap between monotone and non-monotone span
programs remains open.

8.12 M Research Problem
Do there exist monotone functions that have span programs of polynomial size but
require monotone span programs of super-polynomial size?

8.6 Self-avoiding families

Let A be a family of subsets of [n]. Given a subset y C [n], define its spread as the
union
Sw= |J a
a€A,any#)

of all members of A that “touch” the set y. Call the family A self-avoiding if it is
possible to associate a subset T'(a) C a with each set @ € A such that:

« T is a contractor of A, that is, no other set in the family A contains 7'(a) as a
subset.

8.6 Self-avoiding families 233

« For every a € A and every subset y C T'(a), the set S(y) \ y contains no
member of A.

In particular, the first condition implies that no member of A can be a subset of an
another member.

8.13 Theorem (Beimel-Gal-Paterson 1996) Every monotone span program comput-
ing a monotone boolean function with the minterms forming a self-avoiding family
has size at least the number of minterms.

Using this theorem, they were able to prove the first nontrivial lower bound for
monotone span programs. Namely, they proved that any such program detecting the
presence of a clique on 6 vertices in a given n-vertex graph must have size £2(n°).
Applying Theorem ?? for explicit boolean functions defined by bipartite graphs with
certain properties, Babai et al. (1996) and Babai, Gal, and Wigderson (1999) obtained a
super-polynomial lower bound of n?(1°8 /108108 ") Then, using a different property
of the underlying bipartite graphs, Gal (2001) simplified and improved these bounds
to n()(log n) .

Their proofs actually give a lower bound for every monotone span program
that accepts all sets a € A and rejects all sets of the form [n] \ S(y) for y C T'(a),
a € A. We shall now show that this can also be derived using the rank criterion,
thus proving that this criterion is at least as general as the method of self-avoiding
families

8.14 Lemma For every self-avoiding family A there is a family B such that the pair
(A, B) is locally intersecting and 1k(D 4) = |A|.

Proof. Given a self-avoiding family A, we construct a locally intersecting pair (A4, B)
as follows: for every a € A, include in B all pairs (b1, by) (more precisely, all sets
b = by Ubg) such that by C T'(a) and by = [n] \ S(b1). Observe that D4 g is just
the disjointness matrix of A corresponding to the contractor 7" (see Definition ??).
Thus, Lemma ?? implies that rk(D4 p) = rk(D4) = |A|. So, it remains to show
that the pair (A, B) is locally intersecting.

To show this, take an arbitrary set a’ in A and b = by U by in B. Our goal is to
show that a’ has a nonempty intersection with exactly one of the parts b; and bs. If
a’' Nby # 0, then a’ C S(by), hence a’ N by = (). Thus a’ intersects at most one of
the sets. If @’ N by = (B, then a’ N by # (), because otherwise we would have that
a’ C S(by) \ by contradicting the definition of A. Thus o’ intersects at least one of
the sets. O

Babai, Gal and Wigderson (1999) asked whether self-avoiding families of expo-
nential size exist. Lemmas ?? and ?? give a negative answer: |A| < n©{°8™) for
every self-avoiding family of subsets of [n].

234 8 Span Programs

8.7 Characterization of span program size

Let f be aboolean function of n variables, and consider the rectangle 5§ = f~!(1) x
f71(0). Recall that a subrectangle R C Sy is monochromatic if there exists a position
i € [n] such that a; # b; for all (a,b) € R, that is, there exists a value o € {0, 1}
such that a; = o and b; = 1 — o for all (@, b) € R. Note that every monochromatic
rectangle is a subrectangle of at least one of 2n canonical rectangles:

R,; :={(a,b) € Sy |a(i) =0,b(i) =1—0}.

Fix a field IF, and consider matrices A : Sy — I over F whose rows are labeled by
vectors in f~1(1), and columns by vectors in f~1(0). Say that such a matrix A4 is
monochromatic if there is a canonical rectangle R, ; containing all nonzero entries
of A.

Define the algebraic tiling number xw(f) of f as the smallest number ¢ such that
there exist ¢ monochromatic matrices of rank-1 summing up (over F) to the all-1
matrix 1.

Recall that the tiling number x(f) is the smallest number of pairwise disjoint
monochromatic rectangles covering the entire ambient rectangle Sy. With each
rectangle in such a decomposition we can associate a 0-1 matrix of rank 1. Since the
rectangles are disjoint and cover all entries of S, the sum of these matrices over
any field F is the all-1 matrix. This shows that xr(f) < x(f) holds in any field F.

We already know (see Lemma ??) that x(f) is a lower bound for the formula size
L(f) of f, but no converse better than L(f) < x(f)2'°6X(/) is known so far. This is
why the following tight(!) characterization of the span program size is particularly
interesting.

8.15 Theorem (G4l 2001) For every boolean function f and every field F,

SPr(f) = xe(f) -

The same also holds for monotone span programs and monotone algebraic tiling
number, where only n canonical rectangles R; ;, 7 = 1,...,n are used.

We will prove the upper and lower bounds on yr(f) separately. For definiteness,
we restrict our attention to the field F = GF(2), but the argument works for every
field. Let M be a span program with s rows my, ..., ms computing f over GF(2).
The rows are labeled by literals z1, ..., 25, with each z; being a variable z; or its
negation —z;, so that for every input vector a € {0,1}", f(a) = 1 if and only if
the set of rows {m; | z;(a) = 1} spans the all-1 vector 1 (we use 1 as the target
vector.)

By Lemma ??, we can assume that our program M is canonical: the columns
of M are in one-to-one correspondence with the vectors in f~1(0), and for every
b € f71(0), the column corresponding to b in M, is an all-0 column. In other words,
for every b € f~1(0) there is a column v, € F* of M with nonzero entries only
at rows whose label take the value 0 on b. On the other hand, since M computes
f, for every a € f~1(1) there is a vector u, € F* with nonzero entries only at

8.7 Characterization of span program size 235

rows whose label take the value 1 on a, such that ugM = 1. Thus, a canonical
span program of size s gives us sets of vectors U = {u, € F* | a € f~1(1)} and

V ={v, € F* | b€ f71(0)} such that
(uq,vy) = 1 for every (a,b) € f~1(1) x £=1(0), (8.3)
and for every position j € [s],

Ua(J) #0=2;(a) =1 and wvp(j) # 0= 2z;(b) =0. (8.4)

8.16 Claim xr(f) < SPr(f).

Proof. Forevery o € {0,1}and 1 <i < n,let J,; :={j € [s] : z; = 27} be the
set of positions corresponding to rows of M labeled by the literal 7. Thus,

Z'J‘”' =5 (=SPr(f)). (8.5)

Let @, ; be the matrix over the ambient rectangle f~1(1) x f~1(0) whose (a,b)-
entry is the scalar product of vectors u, and vj restricted to the positions in J, ;,

that is,
Qoila,b] = > ualj) - vp(j) -

J€Joi

By (??), all nonzero entries of (), ; lie in the canonical rectangle R, ;. Clearly, the
rank of each matrix), ; is at most |.J,; ;|. Hence, we can write each matrix (), ;
as a sum of at most |J, ;| rank-1 matrices, all nonzero entries of each of which lie
in R, ;. Thus, each of these rank-1 matrices is monochromatic. By (??), the matrix
Q =3, ;Qo,iisasum of at most s = SPg(f) monochromatic matrices of rank-1.
It remains therefore to verify that Q = 1. But this follows directly from (??), because
the sets J,; ; form a partition of the entire set [s] of coordinates of the vectors u,
and vy, and the scalar product of these vectors is equal to 1. O

8.17 Claim SPr(f) < xr(/f).

Proof. Let Ay,..., Ay bet = xr(f) monochromatic | f~1(1)| x | f~1(0)| matrices
of rank-1 that sum up to the all-1 matrix 1. We will construct a canonical span
program of size ¢ computing f. In fact, we will construct sets of vectors {u, € F? |
a€ f71(1)} and {v, € F* | b € f~1(0)} satisfying (??) and (??). Then we can take
the vectors v, as columns of our canonical span program for f.

We know that each of the matrices A1, ..., A; hasrank 1, and all nonzero entries
of each A; are contained in one of 2n canonical monochromatic rectangles R ;.
Now, collect together the rank-1 matrices contained in R, ; (resolve ambiguities
arbitrarily, but uniquely) and add them up to form a matrix @), ;. Clearly, rk(Q, ;) is
at most the number of these rank-1 matrices. Write (), ; as a product Q. ; = Ss; -

236 8 Span Programs

T,.; where S, ; (resp., T}, ;) has rk(Q, ;) columns (resp., rows). For a € f~1(1), let
u, be the concatenation of the a-th rows of S, ; for all o, 7. Similarly, for b € f~1(0),
let v, be the concatenation of the b-th columns of Ty ; for all o, 7. Note that u,, and
vy, are vectors in F* with s < 3 tk(A, ;) < 3°'_, 1k(A;) = . So, it remains
to verify that these vectors satisfy the conditions (??) and (??). The first condition
(??) follows from the fact that ZU’ Qo = 22:1 A; = 1. The second condition
(??) follows from the fact that all nonzero entries of every matrix Q) ; lie in the
canonical monochromatic rectangle R ;. O

8.8 Monotone span programs and secret sharing

Monotone span programs capture in an elegant way secret sharing schemes in the
information theoretic model. Informally, a secret sharing scheme for a monotone
function f prescribes a way for a “sender” having a secret s € [F to assign n strings
(“pieces of secret”) s; € Fdi satisfying the following. Let a C [n] be a subset
of (indexes of) the pieces, and denote by f(a) the function f evaluated on the
characteristic vector of a. Then if f(a) = 1 the pieces {s; | i € a} determine the
secret s, while if f(a) = 0 these pieces give no information whatsoever about s.
The size of such scheme is Y-, d;. Let mSP(f) denote the minimum size of a
monotone span program computing f.

8.18 Theorem (Karchmer-Wigderson 1993) For every prime p, every monotone func-
tion has a secret sharing scheme over GF(p) of size mSP(f).

Thus, mSP(f) is an upper bound on the size of secret sharing schemes. Beimel
and Chor (1994) showed that mSP(f) is also a lower bound for so-called “linear”
secret sharing schemes.

Proof. Fix a prime p, set F = GF(p) and let M be a monotone span program for a
monotone function f. Let d; be the number of rows in M labeled x;, and M; the
submatrix of M consisting of these rows. Let ¢ be the number of columns in M.

Let s € F be the secret, and let W = {w € F! | (w,1) = s}. Let w € W be
chosen uniformly at random, and define the “random pieces” ¢; € F% for every
i € [n] by q; := M;w. Further, for any subset a C [n] let ¢, := M,w, where M, is
the matrix associated with the characteristic vector of a. Note that ¢, is just the
concatenation of the vectors {¢g; | ¢ € a}. The theorem follows from the following
two claims:

(@) If f(a) = 1 then s can be efficiently determined from g¢,.
(b) If f(a) = O then for every r € F, Prob[s = r|q,] = 1/p.

To prove (a), assume that f(a) = 1. Then, by definition, there is a vector v such that
vI'M, = 1. Then s = (w, 1) = v M,w = (v, q,). To prove (b), assume f(a) = 0.
By (??), there exists a vector z € F! such that M,z = 0 but (z,1) # 0. Then for any
@, we can associate with any w such that M,w = ¢, p vectors w; := w+jz, j € Zp.

8.8 Monotone span programs and secret sharing 237

Note that M,w; = ¢ as well, but the values (wj;, 1) are all distinct and exhaust
GF(p). This breaks up the probability space {w | M,w = ¢} into p equiprobable
classes, each giving s a different value, which concludes the proof of the second
claim (b), and thus the proof of the theorem. a

Exercises

8.1 Let V' C GF(2)™ be a linear space and y € GF(2)" be a vector. Assume that
y & V+. Show that v - y = 0 for precisely one-half of the vectors v in V. Hint: Split
V into Vj and Vi according to whether v-y =0orv -y = 1. Takex € V such thatx -y = 1;
hence x € Vi. Then, show that z + Vo C Vi, + Vi C Vo, |z + Vo| = |Vo| and |z + V1| = |V4|.
8.2 The Vandermonde matrix is the nxn matrix X,, whose i-throwis (1, z;, 22, ...
Prove that det(X,,) = H1§i<j§n(xj — ;). Hint: Argue by induction on n. Multiply each
column by z1 and subtract it from the next column on the right starting from the right-hand side.
This yields det(Xy) = (xn — x1) - - - (w2 — z1) det(Xp—1).

8.3 Let F be a field with more than n + 1 elements. Let ag, a1, ..., a, be dis-
tinct nonzero elements of F. For each 0 < i < n define the vector v; :=
(a¥,al,... ,af_l). Show that any k, the v; are linearly independent over F. Hint:

det(A) # 0 implies rk(A4) = n.

8.4 (Subfunctions) Let f(x1,...,2,) be a boolean function, and g its subfunction
obtained by setting the variable z; to 1. Let M be a canonical span program
computing f. Let Uy C f~1(0) be the subset of vectors whose first coordinate
(corresponding to z1) is 1. Remove from M all rows labeled by x; and —x;, and
all columns corresponding to vectors in f~*(0) \ U;. Show that the resulting span
program computes g.

8.5 (Due to Serge Fehr) Let f : 2["1 — {0, 1} be a non-constant monotone boolean
function. Recall that the dual of f is a monotone boolean function f* : 2"/ — {0, 1}
defined by f*(a) = 1 — f(@). Let M be a monotone s X t (s > t) span program
over GF(2) which computes f using the target vector e; = (1,0,...,0). Let vy be
a solution of the system of linear equations 2TM = e and wy, ..., ws_; a basis
of the linear space {w | wT M = 0}. Let M* be the s x (s — t + 1) matrix with
columns vg, w1, . .., ws_¢, and e = (1,0,...,0) € GF(2)*~t*, Show that:

(@) f(a) = 0if and only if there exists a vector u such that M, -« = 0 and
(u,e1) = 1.

(b) Every solution z of 27’ M = e; is a linear combination of the columns of M*
in which the first column, vy, occurs exactly once.

(c) M* computes f*. Hint: If f(a) = 1 then there exists a vector v such that v" M = e1 and
v(t) = 0 for all ¢ € @. Use (b) to conclude that v = M *u for some vector u with u(1) = 1.
Show that MZu = 0 and (u,e]) = 1, and use (a) to show that @ is not accepted by M*.
For the other direction, assume that the complement @ of some set a is not accepted by M ™.

238 8 Span Programs

Take a vector u guaranteed by (a), and set b := M *u. Show that b(i) = 0 for all ¢ € @ and
b'M = MTM*u= Eu=e.

8.6 (Beimel-Gal-Paterson 1996) Let L1, ..., L, be subsets of [n] such that |L; N
L;| < 1foralli # j.Let Abe the family of all 2-element subsets a = {x;, y;} of the
(2n)-element set X = {z1,...,Zn,Y1,...,Yn} such that j € L;. By Example ??,
explicit families of this form with 2(n?/?) members exist. Prove that the family A
is self-avoiding. Hint: Define T'(a) := a.

8.7 M Research Problem. Let k be the minimal number for which the following
holds: there exist n colorings ¢y, ..., ¢, of the n-cube {0,1}" in k colors such
that for every triple of vectors z, y, z there exists a coordinate ¢ on which not all
three vectors agree, and the three colors ¢;(x), ¢;(y), ¢;(2) are distinct. Bound the
smallest number £ of colors for which such a good collection of colorings ¢y, ..., ¢,
exists.

Comment: This problem is connected with proving lower bounds on the size of non-monotone
span programs, see Wigderson (1993).

8.8 (Wigderson 1993) Consider the version of the problem above where we addition-
ally require that the colorings ¢; are monotone, that is, z < y implies ¢;(x) < ¢;(y).
Prove that in this case k = 2(n).

The goal of the next exercises is to show that we cannot replace the acceptance
condition “accept vector a if and only if the rows of M, span vector 1” of span
programs by “accept vector a if and only if the rows of M, are linearly dependent”.
This is because in that case very simple boolean functions require programs of
exponential size. A monotone dependency program over a field F is given by a
matrix M over F with its rows labeled by variables 1, ..., z,. For an input a =
(a1,...,an) € {0,1}™, let (as before) M, denote the submatrix of M obtained by
keeping those rows whose labels are satisfied by a. The program M accepts the
input a if and only if the rows of M, are linearly dependent (over F). A program
computes a boolean function f if it accepts exactly those inputs a where f(a) = 1.
The size of a dependency program is again the number of rows in it.

Comment: Beimel and Gl (1999) showed that the minimum size of a dependency program for f
is polynomially related to the minimum size of an arithmetic branching program computing — f.
Such branching programs are just extension of parity branching programs from GF(2) to any

field .

8.9 Suppose that a boolean function f # 1 is computed by a monotone dependency
program M of size smaller than the number of minterms of f. Prove that then
there exists a set of minterms A, |A| > 2, such that for any nontrivial partition
A= AgU A, theset S(Ag, A1) := (Usea, @) N (Upea, b) contains at least one
minterm of f.

Hint: For every minterm a of f choose some linear dependence v, of the rows of M, that is, vq is

a vector such that vq - M = 0, and v, has nonzero coordinates only at rows labeled by variables
in a. The vectors v, are linearly dependent (why?). Let A be a minimal set of minterms such

8.8 Monotone span programs and secret sharing 239

that {v, | a € A} are linearly dependent. Thus,)~ _ ,
Observe that for any nontrivial partition A = Ag U A1,

V= Zaavaszaava#O.

a€Ap a€A;

aaqVq = 0 for some coefficients aq # 0.

Let b be the set of variables labeling the rows of M corresponding to nonzero coordinates of v.
This set lies in S(Ao, A1) and contains at least one minterm of f.

8.10 (Pudlak-Sgall 1998) Use Exercise ?? to show that the function f = (21 Vx2) A
(x3V 24) A+ A (Zap—1 V Zay) cannot be computed by a monotone dependency
program of size smaller than 2”. Show that this function has a small monotone
span program.

Hint: Each minterm a of f has precisely one variable from each of the sets {z2;—1,z2:}, 1 =
1,...,n. Hence, there are 2" minterms. Suppose that f has a program of size smaller than 2",
and let A be the set of minterms guaranteed by Exercise ??. Pick 4 such that both sets of minterms
Ao ={a € A|x2i—1 €a}and Ay = {a € A| z2; € a} are non-empty (why is this possible?).
By Exercise ??, the set S(Ap, A1) must contain at least one minterm b of f. But, by the definition
of Ag and A1, this minterm can contain neither x2;_1 nor x2;, a contradiction.

9. Monotone Circuits

We now consider monotone circuits, that is, circuits with fanin-2 AND and OR
gates. As monotone formulas, such circuits can only compute monotone boolean
functions. Recall that a boolean function f is monotone if f(x) < f(y) as long as
x; < y; for all i. The difference from formulas is that now the fan-outs of gates may
be arbitrary, not just 1. That is, a result computed at some gate can be used many
times with no need to recompute it again and again. This additional feature makes
the lower bounds problem more difficult.

Until 1985, the largest known lower bound on the size of such circuits for an
explicit boolean function of n variables was only 4n (Tiekenheinrich 1984). A
breakthrough was achieved in 1985 when two mathematicians from Lomonosov
University in Moscow—Andreev (1985) and Razborov (1985a)—almost simultane-
ously proved super-polynomial lower bounds for monotone circuits.

In this chapter we present Razborov’s method of approximations as well as
another, simpler argument yielding exponential lower bounds even for circuits with
monotone real-valued functions as gates.

As in the entire book, here our focus is on proving lower bounds. A compre-
hensive exposition of known upper bounds for monotone circuits and monotone
switching networks can be found in a survey by Korshunov (2003).

9.1 Large cliques are hard to detect

We will first demonstrate Razborov’s method of approximations for the case of
monotone circuits computing the clique function. Later, in Section ??, we describe
his method in its full generality, and apply it to the perfect matching function.
The clique function f, = CLIQUE(n, k) has () variables x;;, one for each
potential edge in a graph on n vertices [n] = {1, ..., n}; the function outputs 1 iff
the associated graph contains a clique (complete subgraph) on some k vertices. The
clique function is monotone because setting more edges to 1 can only increase the

size of the largest clique.

240

9.1 Large cliques are hard to detect 241

9.1 Theorem (Razborov 1985a, Alon-Boppana 1987) For 3 < k < n'/*, the mono-
tone circuit complexity of CLIQUE(n, k) is W),

We will analyze the behavior of circuits for f,, on two types of input graphs:

« Positive graphs are k-cliques, that is, graphs consisting of a clique on some &
vertices and n — k isolated vertices; we have (Z) such graphs and they all must
be accepted by f,,.

« Negative graphs are (k — 1)-cocliques formed by assigning each vertex a color
from the set {1,2, ...,k —1}, and putting edges between those pairs of vertices
with different colors; we have (k — 1)™ such graphs and they must be rejected
by f,. (Different colorings can lead to the same graph, but we will consider
them as different for counting purposes.)

The main goal of Razborov’s method is to show that, if a circuit is “too small”,
then it must make a lot of errors, that is, must either reject most of positive graphs
or accept most of negative graphs. Circuits can be amorphous, so analyzing their
behavior directly is difficult. Instead, every monotone circuit will be approximated
by another monotone circuit of a very special type—namely, a short DNF that is
tailor-made to represent collections of cliques.

Now we define these DNFs, our so-called “approximators”. For a subset X of
vertices, the clique indicator of X is the monotone boolean function [X of (})
variables such that [X|(E) = 1 if and only if the graph F contains a clique on the
vertices X . Note that [X] is just a monomial

xX1= AN =y

4,j€X;5i<]

depending on only (|)2f |) variables.
An (m, l)-approximator is an OR of at most m clique indicators, whose underly-
ing vertex-sets each have cardinality at most [:

A=\/1x1=\ A =z; (<m |[X|<]).

t=li#jeX,

Here ! > 2 and m > 2 are parameters depending only on values of k and n; the
values of these parameters will be fixed later.

The main combinatorial tool used in the proof of Theorem ?? is the well-known
Sunflower Lemma discovered by Erd6s and Rado (1960). A sunflower with p petals
and a core 71" is a collection of sets S1,. .., S, such that S; N .S; = E forall i # j.
In other words, each element belongs either to none, or to exactly one, or to all of
the S; (Fig. ??). Note that a family of pairwise disjoint sets is a sunflower (with an
empty core).

Sunflower Lemma Let F be family of non-empty sets each of size at most . If
|F| > 1!/(p — 1)! then F contains a sunflower with p petals.

242 9 Monotone Circuits
Bilder/Fig7_|1-eps-converted-to.pdf

Fig. 9.1 A sunflower with 8 petals.

In particular, every graph with at least 2(p — 1)? + 1 edges must have p vertex-
disjoint edges of a star with p edges.

Proof. We proceed by induction on . For [= 1, we have more than p — 1 points
(disjoint 1-element sets), so any p of them form a sunflower with p petals (and
an empty core). Now let [> 2, and take a maximal family S = {S1,...,S:} of
pairwise disjoint members of F.

If t > p, these sets form a sunflower with ¢ > p petals (and empty core), and we
are done.

Assume that t < p—1,andlet S = S; U---U S;. Then |S| < I(p — 1). By
the maximality of S, the set S intersects every member of F. By the pigeonhole
principle, some point z € S must be contained in at least

|FI My — 1)!
517 -1

members of F. Let us delete = from these sets and consider the family

=(-Dip-1)'"

Fo={F\{z} : Fe F,x € F}.

By the induction hypothesis, this family contains a sunflower with p petals. Adding
x to the members of this sunflower, we get the desired sunflower in the original
family F. ad

9.1.1 Construction of the approximated circuit

Given a monotone circuit F' for the clique function f,,, we will construct the
approximator for F' in a “bottom-up” manner, starting from the input variables. An
input variable is of the form z;;, where 7 and j are different vertices; it is equivalent
to the clique indicator [{,j}] = ;.

Suppose at some internal node of the circuit, say at an OR gate, the two subcircuits
feeding into this gate already have their (m, [)-approximators A = \/!_, [X;] and
B =\/;_,[Y;], where r and s are at most m. We could approximate this OR gate
by just AV B, but this could potentially give us a (2m, [)-approximator, while we
want to stay at (m, [).

9.1 Large cliques are hard to detect 243

At this place the Sunflower Lemma comes to our rescue. To apply the Sunflower
Lemma to the present situation, consider the family

'F:{X17"'7XT7Yia"'7YS}

and set
m:=1l(p—1).

If r + s > m then some p of the sets in F form a sunflower. We then replace these
p sets by their core; this operation is called a plucking. Repeatedly perform such
pluckings until no more are possible. The entire procedure is called the plucking
procedure. Since the number of vertex sets decreases with each plucking, after at
most |F| = r + s < 2m pluckings we will obtain an (m, [)-approximator for our
OR gate, which we denote by A U B.

If the gate was an AND gate (not an OR gate) then forming the AND of the
two approximators A = \/;_,[X;] and B = \/]_,[Y;] yields the expression
Viz1 V=1 ([Xi] A [Yi]). Two reasons why this expression itself might not be an
(m, l)-approximator are that the terms [X;] A [Y;] might not be clique indicators
and that there can be as many as m? terms.

To overcome these difficulties, apply the following three steps:

1. replace the term [X;| A [Y;] by the clique indicator [X; UY;];

2. erase those clique indicators [X; U Y;]| for which | X; UY;| > 1+ 1;

3. apply the plucking procedure (described above for OR gates) to the remaining
clique indicators; there will be at most m? pluckings.

These three steps guarantee that an (m, [)-approximator is formed; we denote it
by AN B. (Note an “asymmetry” in the argument: AND gates need more work to
approximate than OR gates.)

9.1.2 Bounding errors of approximation

Now fix a monotone circuit F' computing f,, = CLIQUE(n, k), and let F” be the
approximated circuit, that is, an (m, [)-approximator of the last gate of F. We will
show that

1. Every approximator (including ') must make a lot of errors, that is, disagree
with f;, on many negative and positive graphs.
2. If size(F) is small, then F” cannot make too many errors.

This will already imply that size(F') must be large.

9.2 Lemma Every approximator either rejects all graphs or wrongly accepts at least a
fraction 1 — 12 /(k — 1) of all (k — 1)™ negative graphs.

Proof. Let A = \/!_,[X;] an (m,)-approximator, and assume that A accepts at
least one graph. Then A > [X7]. A negative graph is rejected by the clique indicator

244 9 Monotone Circuits

[X1] iff its associated coloring assigns some two vertices of X the same color.

We have (‘);1 I) pairs of vertices in X1, and for each such pair at most (k — 1)"~*

colorings assign the same color. Thus, at most (l)gll) (k—1)"t < (é) (k—1)n1
negative graphs can be rejected by [X1, and hence, by the approximator A. O

Thus, every approximator (including F’) must make a lot of errors. We are now
going to show that, if size(F') is small, then the number of errors cannot be large,
implying that size(F') must be large.

9.3 Lemma The number of positive graphs wrongly rejected by F' is at most size(F’) -
m (157

Proof. We shall consider the errors introduced by the approximator of a single gate,
and then apply the union bound to get the claimed upper bound on the total number
of errors.

If g is an OR gate and A, B are the approximators of subcircuits feeding into this
gate, then our construction of the approximator A U B for g involves taking an OR
AV B (which does not introduce any errors) and then repeatedly plucking until we
get down our number of clique indicators. Each plucking replaces a clique indicator
[X;] by some [X] with X C X, which can accept only more graphs. Hence, on
positive graphs, A U B produces no errors at all.

Now suppose that g is an AND gate. The first step in the transformation from
ANBto AN Bistoreplace [X;] A[Y;] by [X; UY;]. These two functions behave
identically on positive graphs (cliques). The second step is to erase those clique
indicators [X; U Yj] for which |X; UY}| > [+ 1. For each such clique indicator,
at most IV := (Z:f:}
such clique indicators, at most m2N positive graphs are lost in the second step.
The third and final step, applying the plucking procedure, only enlarges the class of
accepted graphs, as noted in the previous paragraph. Summing up the three steps,
at most m? N positive graphs can be lost by approximating one AND gate. Since
we have at most size(F') such gates, the lemma is proved. O

) of the positive graphs are lost. Since there are at most m?

9.4 Lemma The number of negative graphs wrongly accepted by F" is at most size(F)-
m2?P(k — 1)"7P,

Proof. Again, we shall analyze the errors introduced at each gate.

If g is an OR gate and A, B are the approximators of subcircuits feeding into
this gate, then our construction of the approximator A LI B for g involves taking
an OR A V B (which does not introduce any errors) and then performing at most
2m pluckings until we get down our number of clique indicators.

Each plucking will be shown to accept only a few additional negative graphs.
Color the vertices randomly, with all (k — 1)™ possible colorings equally likely, and
let G be the associated negative graph. Let Z, . .., Z, be the petals of a sunflower
with core Z. What is the probability that [Z| accepts G, but none of the functions
[Z1],...,[Z,] accept G? This event occurs iff the vertices of Z are assigned distinct
colors (called a proper coloring, or PC), but every petal Z; has two vertices colored
the same. We have

9.1 Large cliques are hard to detect 245

Prob[Z is PC and Zy, ..., Z, are not PC]
< Prob[Zy, ..., Z, are not PC|Z is PC]

P
= H Prob|Z; is not PC|Z is PC]
i=1

p
<]l
i=1
(l
<
—\2

Prob[Z; is not PC|
(

>p. E—1)"P<I?(k—-1)""P.

The first inequality holds by the definition of the conditional probability. The second
line holds because the sets Z; \ Z are disjoint and hence the events are independent.
The third line holds because the event “Z; is not a clique” is less likely to happen
given the fact that Z C Z; is a clique. The fourth line holds because Z; is not
properly colored iff two vertices of Z; get the same color.

Thus to the class of wrongly accepted negative graphs each plucking adds at most
1?P(k — 1)"~P new graphs. There are at most 2m pluckings, so the total number of
negative graphs wrongly accepted when approximating the gate OR g is at most
2mi?P (k — 1)"~P,

Next consider the case when g is an AND gate. In the transformation from AA B
to AM B, the first step introduces no new violations, since [X; | A [Y;] > [X,;UY;].
Only the third step, the plucking procedure, introduces new violations. This step
was analyzed above; the only difference is that there can be m? pluckings instead
of just 2m. This settles the case of AND gates, thus completing the proof. ad

Proof of Theorem ?? Set | = |k — 1/2] and p = ©(Vklogn); recall that m =
I(p — 1) < (pl)!. Let F be a monotone circuit that computes CLIQUE(n, k). By
Lemma ??, the approximator F’ of F is either identically 0 or outputs 1 on at least
a(1—1%/(k—1)) > § fraction of all (k — 1)" negative graphs. If the former case
holds, then apply Lemma ?? to obtain

size(F) - m? - (Z_;_i) > (Z) .

Since (7)/(3~%) = (n/k)", simple calculation show that in this case size(F) is

n?(VF)_If the later case holds then apply Lemma ?? to obtain

size(F)-m?- 277 (k—1)"> —(k—1)".

N | —

Since 2¢ = n?(VF)_in this case we again have that size(F) is n? k), O

9.5 Remark Recently, Rossman (2010) gave lower bounds for the Clique function
that apply to finding small cliques in random graphs. Let G(n, p) denote a random
graph on n vertices in which each edge appears at random and independently with

246 9 Monotone Circuits
probability p. Let k be a fixed natural number. It is well known that p := n~2/(k=1)
is a threshold for appearance of k-cliques. Rossman showed that, for every constant
k, no monotone circuit of size smaller than O(n*/*) can correctly compute (with
high probability) the Clique function on G(n, p) and on G(n, 2p) simultaneously.

9.2 Very large cliques are easy to detect

By Theorem ??, we known that there exists a constant ¢ > 0 such that every
monotone circuit computing the clique function CLIQUE(n, k) requires at least
nevk gates. Moreover, it can be shown (see Theorem ?? below) that already for
k = 3 at least £2(n®/log® n) gates are necessary. In fact, Alon and Boppana (1987)
showed that Razborov’s lower bound can be improved to £2((n/log® n)*) for any
constant £ > 3, and for growing k& we need at least 292(Vk) gates, as long as
k < (n/logn)?/3 /4. Thus, small cliques are hard to detect.

By a simple padding argument, this implies that even detecting cliques of size
n — k requires a super-polynomial number of gates, as long as k < n/2 grows
faster than log® n.

9.6 Proposition Fork < n/2, every monotone circuit for CLIQUE(n, n — k) requires
202(k"/%) gates.

Proof. Fix the integer m with m — s = k where s = |(m/logm)?/3/4]; hence
s = 2(k*/3). Then CLIQUE(m, s) is a sub-function of (that is, can be obtained by
setting to 1 some variables in) CLIQUE(n, n — k): just consider only the n-vertex
graphs containing a fixed clique on n — m vertices connected to all the remaining
vertices (the rest may be arbitrary). On the other hand, according to the lower bound
of Alon and Boppana (mentioned above) the function CLIQUE(m, s), and hence,
also the function CLIQUE(n, n — k) requires monotone circuits of size exponential
in 2(y/5) = R(EY3). 0

But what is the complexity of CLIQUE(n,n — k) when k is very small,
say, constant—can this function then be computed by a monotone circuit us-
ing substantially fewer than n* gates? Somewhat surprisingly, for every(!) con-
stant k, the CLIQUE(n,n — k) function can be computed by a monotone cir-
cuit of size O(n?logn). Moreover, the number of gates is polynomial, as long
as k = O(y/Iogn). Recall that CLIQUE(n, k) requires £2(n*/log®* n) for ev-
ery constant k, and that already for k& = w(log®n), any monotone circuit for
CLIQUE(n,n — k) requires a super-polynomial number of gates.

9.7 Theorem (Andreev-Jukna 2008) For every constant k, the function CLIQUE(n, n—
k) can be computed by a monotone DeMorgan formula containing at most O(n?logn)
gates. The number of gates remains polynomial in n as long as k = O(y/logn).

In this Section we will prove Theorem ??. To do this, we need some preparations.
First, instead of constructing a small formula for the Clique function, it will be

9.2 Very large cliques are easy to detect 247

convenient to construct a small formula for the dual function. Recall that the
dual of a boolean function f(z1,...,x,) is the boolean function f*(x1,...,x,) =
=f(—z1,...,xy,). If f is monotone, then its dual f* is also monotone. For example,

(zVy) ==(zV-y =xAy;
Ay =-(zA-y)=zVy.

In particular, the dual of CLIQUE(n,n — k) accepts a given graph G on n
vertices iff G has no independent set with n — k vertices, which is equivalent to
7(GQ) > k + 1, where 7(Q) ist the vertex-cover number of G. Recall that a vertex
cover in a graph G is a set of its vertices containing at least one endpoint of each
edge; 7(@) is the minimum size of such a set. Hence, the dual of CLIQUE(n,n — k)
is a monotone boolean function VC(n, k) of (g) boolean variables representing
the edges of an undirected graph G on n vertices, whose value is 1 iff G does not
have a vertex-cover of cardinality k.

We will construct a monotone formula for VC(n, k). Replacing OR gates by AND
gates (and vice versa) in this formula yields a monotone formula for CLIQUE(n, n—
k), thus proving Theorem ??.

9.2.1 Properties of T-critical graphs

A graph is T-critical if removing any of its edges reduces the vertex-cover number.
We will need some properties of such graphs.

9.8 Theorem (Hajnal 1965) In a T-critical graph without isolated vertices every inde-
pendent set S has at least |S| neighbors.

Proof. Let G = (V, E) be a T-critical graph without isolated vertices. Then G is also
a-critical in that removing of any its edge increases its independence number a(G),
that is, the maximum size of an independent set in G. An independent set T is
maximal if |T| = a(Q).

Let us first show that every vertex belongs to at least one maximal independent
set but not to all such sets. For this, take a vertex = and an edge e = {z, y}. Remove
e from G. Since G is a-critical, the resulting graph has an independent set 1" of
size a(G) + 1. Since T was not independent in G, 2,y € T. Then T\ {z} is an
independent set in G of size |T'\ {}| = a(G), that is, is a maximal independent
set avoiding the vertex x, and T\ {y} is a maximal independent set containing .

Hence, if X is an arbitrary independent set in G, then the intersection of X with
all maximal independent sets in G is empty. It remains therefore to show that, if
Y is an arbitrary independent set, and S is an intersection of Y with an arbitrary
number of maximal independent sets, then

INW)| = IN(S)| = Y] = 5],

248 9 Monotone Circuits

where N (Y') is the set of all neighbors of Y, that is, the set of all vertices adjacent to
at least one vertex in Y. Since an intersection of independent sets is an independent
set, it is enough to prove the claim for the case when 7" is a maximal independent

setand S =Y N T. Since clearly N(S) C N(Y) — T, we have

INY)| = IN(S)| = [N(Y)N T
= [T = [S| =T\ (Y A\ N(Y))|
= a(G) = [S[+ Y] - [(TUY)\ N(Y)|
> [Y]=15],

where the last inequality holds because the set (T"UY) — N(Y') is independent. O

In our construction of a small circuit for the Vertex Cover function, the following
consequence of this theorem will be important.

9.9 Corollary Every T-critical graph G has at most 27(G) non-isolated vertices.

Proof. Let G = (V, E) be an arbitrary 7-critical graph, and let U C V be the set
of non-isolated vertices of G. The induced subgraph G’ = (U, F) has no isolated
vertices and is still T-critical with 7(G’) = 7(G). Let S C U be an arbitrary vertex-
cover of G’ with |S| = 7(G). The complement ' = U — S is an independent set.
By Hajnal’s theorem, the set 7" must have at least |T| neighbors. Since all these
neighbors must lie in S, the desired upper bound |U| = |S| + |T| < 2|5]| < 27(G)
on the total number of non-isolated vertices of G follows. O

Finally, we will need a fact stating that 7-critical graphs cannot have too many
edges. We will derive this fact from the following more general result.

9.10 Theorem (Bollobas 1965) Let A1, ..., Ay, and By,. .., By, be two sequences of
sets such that A; N B; = () if and only ifi = j. Then

m

A; D\
Z('||Z|B|) o1 o)

i=1

Proof. Let X be the union of all sets A; U B;.If A and B are disjoint subsets of X
then we say that a permutation (x1, xo, ..., x,) of X separates the pair (A, B) if
no element of B precedes an element of A, that is, if x5, € A and x; € B imply
k<l

Each of the n! permutations can separate at most one of the pairs (A4;, B;),
i = 1,...,m. Indeed, suppose that (z1,x2,...,x,) separates two pairs (A;, B;)
and (A;, B;) with ¢ # j, and assume that max{k | z, € A;} < max{k | 2 € A;}.
Since the permutation separates the pair (4, B;),

min{l | z; € Bj} > max{k |z € 4;} > max{k |z, € A;}

which implies that A; N B; = (), contradicting the assumption.

9.2 Very large cliques are easy to detect 249

We now estimate the number of permutations separating one fixed pair. If | A| = a
and |B| = b and A and B are disjoint then the pair (A, B) is separated by exactly

(aib)“”’!(” —a-b) = m(@:b)l

permutations. Here (aib) counts the number of choices for the positions of AU B
in the permutation; having chosen these positions, A has to occupy the first a
places, giving a! choices for the order of A, and b! choices for the order of B; the
remaining elements can be chosen in (n — a — b)! ways.

Since no permutation can separate two different pairs (A;, B;), summing up
over all m pairs we get all permutations at most once

m —1
Sl (“’i) <!
%

i=1
and the desired bound (??) follows. O

9.11 Theorem (Erdés—Hajnal-Moon 1964) Every T-critical graph H has at most
(T(H2)+1) edges.

Proof. Let H be a T-critical graph with 7(H) = ¢, and let E = {ey,...,e,} be
the edges of H. Since H is critical, E \ {e;} has a (¢ — 1)-element vertex-cover S;.
Then e; NS; = () while e; NS; # 0, if j # i. We can therefore apply Theorem ??
and obtain that m < (2"'(;_1)) = (t'gl), as desired. O

Proof of Theorem ??

We consider graphs on vertex-set [n] = {1,...,n}. We have a set X of (%;) boolean
variables x. corresponding to edges. Each graph G = ([n], F) is specified by setting
the values 0 and 1 to these variables: F = {e | . = 1}. The function VC(n, k)
accepts G iff 7(G) > k + 1.

Let Crit(n, k) denote the set of all 7-critical graphs on [n] = {1,...,n} with
T(H) = k + 1. Observe that graphs in Crit(n, k) are exactly the minterms of
VC(n, k), that is, the smallest with respect to the number of edges graphs accepted
by VC(n, k).

Given a family F of functions f : [n] — [r], let (X)) be the OR over all graphs
H € Crit(r, k) and all functions f € F of the following monotone formulas

Kra(X)= N V Te.

{a,b}eE(H) ecf~1(a)x f~1(b)

250 9 Monotone Circuits

The formula @ accepts a given graph G = ([n], E) iff there exists a graph H €
Crit(r, k) and a function f € F such that for each edge {a, b} of H there is at least
one edge in G between f~!(a) and f~1(b).

A family F of functions f : [n] — [r] is s-perfect if for every subset S C [n] of
size |S| = s thereisan f € F such that |f(S)| = |S|. That is, for every s-element
subset of [n] at least one function in F' is one-to-one when restricted to this subset.
Such families are also known in the literature as (n, r, s)-perfect hash families.

9.12 Lemma If F is an (n,r, s)-perfect hash family with s = 2(k + 1) andr > s,
then the formula ® computes VC(n, k).

Proof. Since the formula is monotone, it is enough to show that:

(@) 7(G) > k + 1 for every graph G accepted by ¢, and
(b) @F accepts all graphs from Crit(n, k).

To show (a), suppose that @ accepts some graph G. Then this graph must be
accepted by some sub-formula Ky i with f € F' and H € Crit(r, k). That is, for
every edge {a, b} in H there must be an edge in i joining some vertex i € f~1(a)
with some vertex j € f~1(b). Hence, if a set S covers the edge {i, j}, that is, if
SN {i,j} # 0, then the set f(.S) must cover the edge {a,b}. This means that, for
any vertex-cover S in G, the set f(S) is a vertex-cover in H. Taking a minimal
vertex-cover S in G we obtain 7(G) = |S| > |f(S)| > 7(H) =k + 1.

To show (b), take an arbitrary graph G = ([n], E') in Crit(n, k), and let U be the
set of its non-isolated vertices. By Corollary 72, |U| < 27(G) = 2(k+1) < s. By the
definition of F, some function f : [n] — [r] must be one-to-one on U. For i,5 € U
joina = f(i) and b = f(j) by an edge iff {i,j} € E. Since G € Crit(n, k) and f
is one-to-one on all non-isolated vertices of G, the resulting graph H belongs to
Crit(r, k). Moreover, for every edge {a, b} of H, the pair e = {i, j} with f(i) = a
and f(j) = bisanedge of G, implying that z, = 1. This means that the sub-formula
K¢ f of $F, and hence, the formula @ itself must accept G. O

Let us now estimate the number of gates in the formula @ . Using a simple
counting argument, Mehlhorn (1982) shows that (n, r, s)-perfect hash families F
of size |F| < ses /T log n exist for all 2 < s < r < n. In our case we can take
r =s=2(k+1). Hence, |F'| = O(logn) for every constant k.

If we allow unbounded fanin, then each sub-formula Ky g contributes just
one AND gate. Hence, @5 has at most |Crit(r, k)| + | F'| unbounded-fanin AND
gates. The fanin of each AND gate is actually bounded by the number of edges in
the corresponding graph H € Crit(r, k) which, by Theorem ??, does not exceed
l:= (k"£2) = O(1). Hence, |Crit(r, k)| does not exceed (T;) = O(1). Thus, for
every constant k, we have only O(|F|) = O(logn) fanin-2 AND gates in Pp.
Each of these gates takes at most O(n?) fanin-2 OR gates as inputs. Thus, the total
size of our formula @ is O(n? logn), as desired. For growing k, the upper bound

has the form (9(/4:01€2 n?logn) for a constant C, which is polynomial as long as

k= O(v/Iogn).

9.3 The monotone switching lemma 251

We thus constructed a monotone formula @5 for the vertex cover function
VC(n, k). Since this function is the dual function of the clique function CLIQUE(n, n—
k), we can just replace OR gates by AND gates (and vice versa) in this formula to
obtain a monotone formula for CLIQUE(n, n — k). This completes the proof of
Theorem ??. O

9.13 Remark Observe that the formula @ for VC(n, k) is multilinear, that is, inputs
to each its AND gate are computed from disjoint sets of variables. On the other
hand, Krieger (2007) shows that every monotone multilinear circuit for the dual
function CLIQUE(n, n — k) requires at least (};) gates. This gives an example of a
boolean function, whose dual requires much larger multilinear circuits than the
function itself.

9.14 Remark Using explicit perfect hash families we can obtain explicit circuits.
For fixed values of r and s, infinite classes of (n, r, s)-perfect hash families F' of
size |F| = O(log n) were constructed by Wang and Xing (2001) using algebraic
curves over finite fields. With this construction Theorem ?? gives explicit monotone
formulas.

The construction in Wang and Xing (2001) is almost optimal: the family has only
a logarithmic in n number of functions. The construction is somewhat involved. On
the other hand, perfect hash families of poly-logarithmic size can be constructed
very easily.

Let s > 1 be a fixed integer and r = 2°. Let M = {m,;} be ann x b matrix with
b = [logn] columns whose rows are distinct 0-1 vectors of length b. Let hq, ..., hp
be the family of functions h; : [n] — {0,1} determined by the columns of M;
hence, h;(a) = m,;. Letalso g : {0,1}* — [r] be defined by g(z) = > ;_, ;2" 1.

By Bondy’s theorem (Bondy 1972), the projections of any set of s + 1 distinct
binary vectors on some set of s coordinates must all be distinct. Hence, for any
set ai,...,as+1 of s + 1 rows there exist s columns h;,, ..., h; such that all
s+ 1 vectors (h;, (a;),...,hi (a;)),j =1,...,s+ 1 are distinct. Therefore, the
function f(z) = g(hs, (x),. .., hi (z)) takes different values on all s + 1 points
a1,...,0s41. Thus, taking the superposition of g with (2) < log®n s-tuples of
functions hy, . .., hy, we obtain a family F' of |F'| < log® n functions f : [n] — [r]
which is (s + 1)-perfect.

9.3 The monotone switching lemma

In Razborov’s method of approximations one only uses DNFs to approximate gates.
In this way, OR gates can be easily approximated: an OR of DNFs is a DNF, and
we only need to keep its small enough. The case of AND gates is, however, more
complicated. So, a natural idea to try to approximate by both DNFs and CNFs.
When appropriately realized, this idea leads to a general, and relatively simple
lower-bounds criterion for monotone circuits. Due to the symmetry between DNFs

252 9 Monotone Circuits

and CNFs, this criterion is often much easier to apply and yields exponential lower
bounds for many functions, including the clique function.

Still, there are functions—like the perfect matching function—for which the criterion seems
to fail. This is why we will discuss Razborov’s method later in Section ?? in full detail: unlike
the general criterion, which we are going to present now, Razborov’s method is much more
subtle, tailor made for the specific function one deals with and can be applied in situations
where the general criterion fails to produce strong lower bounds. Yet another reason to
include Razborov’s proof for the perfect matching function is that this function belongs to P,
and the proof was never treated in a book.

Our goal is to show that, if a monotone boolean function can be computed by a
small monotone circuit, then it can be approximated by small monotone CNFs and
DNFs. Thus, in order to prove that a function requires large circuits it is enough to
show that it does not have a small CNF/DNF approximation. The proof of this will
be based on the “monotone switching lemma” allowing us to switch between CNFs
and DNFs, and vice versa.

By a monotone k-CNF (conjunctive normal form) we will mean an And of an
arbitrary number of monotone clauses, each being an Or of at most k variables.
Dually, a monotone k-DNF is an Or of an arbitrary number of monomials, each
being an And of at most & variables. In an exact k-CNF all clauses must have exactly
k distinct variables; exact k-DNFs are defined similarly. For two boolean functions
f and g of the same set of variables, we write f < g if f(x) < g(x) for all input
vectors x. For a CNF/DNF C we will denote by |C'| the number of clauses/monomials
in it.

The following lemma was first proved in (Jukna, 1999) in terms of so-called
“finite limits”, a notion suggested by Sipser (1985); we will also use this notion later
(in Section ??) to prove lower bounds for depth-3 circuits. In terms of DNFs and
CNFs the lemma was then proved by Berg and Ulfberg (1999). Later, a similar lemma
was used by Harnik and Raz (2000) to improve the numerically strongest known
lower bound 22(""/*/1087) of Andreev (1987b) to 2¢2((n/log ") The idea of the
lemma itself was also implicit in the work of Haken (1995).

9.15 Lemma (Monotone Switching Lemma) For every (s — 1)-CNF f€ there is an
(r — 1)-DNF f® and an exact r-DNF D such that

fP<fE<fPVD and |D|<(s—1)". (9.2)

Dually, for every (r — 1)-DNF fP there is an (s — 1)-CNF f€ and an exact s-CNF C
such that
FEAC <P <fC and O] < (r—1)°. 9.3)

Proof. We prove the first claim (the second is dual). Let f€ = g1 A -+ A ¢; be an
(s — 1)-CNF; hence, each clause ¢; has |¢;| < s — 1 variables. It will be convenient
to identify clauses and monomials with the sets of indices of their variables. We say
that a monomial p pierces a clause ¢; if p N q; # 0.

We associate with f€ the following “transversal” tree T of fan-out at most s — 1
(see Fig. ??).

9.4 The lower-bounds criterion 253

[¢] [¢]
Z1 x3 o1 T4
T2
[¢] [¢]
o o o Ty 3
T Ty Z1 T4 T2
T2 [¢] [e] (¢}

[¢] [e] [e] o [¢]
T Ty
[e] o

Fig. 9.2 Two DNF-trees of the same 3-CNF f€ = (z1 V 22 V x3) A (21 V @2 V 1) A (21 V T4).
The second tree is obtained by parsing the clauses of f€ in the reverse order.

The first node of T corresponds to the first clause g;, and the outgoing |¢; | edges
are labeled by the variables from ¢;. Suppose we have reached a node v, and let p
be the monomial consisting of the labels of edges from the root to v. If p pierces
all the clauses of f€, then v is a leaf. Otherwise, let ¢; be the first clause such that
p N ¢; = (). Then the node v has |¢;| outgoing edges labeled by the variables in g;.

Note that the resulting tree T' depends on what ordering of clauses of f€ we fix,
that is, in which order we parse the clauses (see Fig ??). Still, for any such tree we
have that, for every assignment x € {0,1}", f¢(x) = 1 if and only if z is consistent
with at least one path from the root to a leaf of T This holds because f€(x) = 1 iff
the set S, = {i | ; = 1} intersects all clauses ¢1, . .., g.

Some paths in 7" may be longer than — 1. So, we now cut off these long paths.
Namely, let P be the OR of all paths of length at most r — 1 ending in leafs, and
D be the OR of all paths of length exactly r. Observe that for every assignment
x € {0,1}™

o fP(z) =1 implies f€(x) = 1, and
« f¢(z) = 1 implies f°(x) =1 or D(x) = 1.
Thus, f° < f¢ < fPV D. Finally, we also have that |D| < (s — 1)", because every

node of T has fan-out at most s — 1. O

Most important in the Switching Lemma is that the exact DNFs and CNFs
correcting possible errors contain only (s — 1)” monomials instead of all (Z)

possible monomials, and only (r — 1)® clauses instead of all (f) possible clauses.

9.4 The lower-bounds criterion

We now give a general lower-bounds criterion for monotone circuits.

9.16 Definition Let f be a monotone boolean function of n variables. We say that
f is t-simple if for every pair of integers 2 < r, s < n there exists an exact s-CNF
C, an exact r-DNF D, and a subset I C [n] of size |I| < s — 1 such that

254 9 Monotone Circuits

(@ |C]<t-(r—1)°and |D| <t-(s—1)",and

(b) either C' < for f < DV \/,.; z; (or both) hold.
9.17 Theorem If a monotone boolean function can be computed by a monotone circuit
of sizet, then f ist-simple.

Proof. Let F'(x1,...,x,) be a monotone boolean function, and suppose that F' can
be computed by a monotone circuit of size t. Our goal is to show that the function
F is t-simple. To do this, fix an arbitrary pair of integer parameters 2 < s,r < n.

Let f = ¢ * h be a gate in our circuit. That is, f is a function computed at
some node of the circuit, and ¢g and h are functions computed at its inputs. By an
approximator of this gate we will mean a pair (f€, fP), where f€ is an (s — 1)-CNF
(a left approximator of f) and fP is an (r — 1)-DNF (a right approximator of f)
such that f? < f€.

We say that such an approximator f€, fP of f introduces a new error on input
x € {0, 1}™ if the approximators of g and of h did not make an error on z, but the
approximator of f does. Thatis, g°(z) = ¢g°(x) = g(x) and h€(x) = hP(z) = h(x),
but either f€(x) # f(z) or fP(x) # f(z).

We define approximators inductively as follows.

Case 1: f is an input variable, say, f = z;. In this case we take f€ = fP := z;. It is
clear that this approximator introduces no errors.

Case 2: f is an And gate, f = g A h. In this case we take f€ := g A h€ as the
left approximator of f; hence, f€ introduces no new errors. To define the right
approximator of f we use Lemma ?? to convert f€ into an (r — 1)-DNF f; hence,
fP < fC€.Let E; be the set of inputs on which fP introduces a new error, that is,

By = {e| f() = [(a) = 1 but f°(z) = 0}.

By Lemma ??, all these errors can be “corrected” by adding a relatively small exact
r-DNF: there is an exact 7-DNF D such that |D| < (s — 1)" and D(z) = 1 for all
S Ef.

Case 3: f is an Or gate, f = gV h. This case is dual to Case 2. We take P := g°V hP
as the right approximator of f; hence, f® introduces no new errors. To define the
left approximator of f we use Lemma ?? to convert fP into an (s — 1)-CNF f¢;
hence, fP < f€.Let E; be the set of inputs on which f€ introduces a new error,
that is,

By o= (o | f(z) = /() = 0 but [(x) = 1}.

By Lemma ??, all these errors can be “corrected” by adding a relatively small exact
5-CNF: there is an exact s-CNF C' such that |C| < (r — 1)® and C(x) = 0 for all
T < Ef.

Proceeding in this way we will reach the last gate of our circuit computing the
given function F. Let (F'®, F'®) be its approximator, and let F be the set of all inputs
x € {0,1}" on which F differs from at least one of the functions F© or F®. Since
at input gates (= variables) no error was made, for every such input x € E, the

9.4 The lower-bounds criterion 255

corresponding error must be introduced at some intermediate gate. That is, for
every x € I/ there is a gate f such that x € E (approximator of f introduces an
error on z for the first time). But we have shown that, for each gate, all these errors
can be corrected by adding an exact s-CNF of size at most (r — 1)® or an exact
r-DNF of size at most (s — 1)". Since we have only ¢ gates, all such errors x € E
can be corrected by adding an exact s-CNF C of size at most ¢ - (r — 1)° and an
exact r-DNF D of size at most ¢ - (s — 1)", that is, for all inputs x € {0,1}", we
have

C(x) AN FC(z) < F(z) < FP(z) vV D(x),

where FP < F°€. This already implies that the function F is t-simple. Indeed, if
the CNF F© is empty (that is, if F© = 1) then C < F', and we are done. Otherwise,
F© must contain some clause ¢ of length at most s — 1, say, ¢ = \/,c; x; for
some I C [n] of size |I| < s — 1. Since clearly F'© < g, the condition F® < F*¢
implies F < FP vV D < F¢V D < qV D, as desired. This completes the proof of
Theorem ??. O

In applications, boolean functions f are usually defined as set-theoretic predi-
cates. In this case we say that f accepts aset S C {1,...,n} and write f(S) =1
if and only if f accepts its incidence vector. Let S = {1,...,n} \ S denote the
complement of S. We say that a set S'is a

« positive input for f if f(S) = 1;
« negative input for f if f(S) = 0.

Put differently, a positive (negative) input is a set of variables which, if assigned
the value 1 (0), forces the function to take the value 1 (0) regardless of the values
assigned to the remaining variables. The minimal (under set inclusion) positive
inputs for f are called minterms of f. Similarly, the maximal negative inputs for f
are called maxterms of f.

Note that one and the same set S can be both a positive and a negative input!
For example, if f(x1,z2,x3) outputs 1 iff 21 + x2 + x3 > 2, then S = {1,2} is
both positive and negative input for f, because f(1,1,23) = 1 and f(0,0,23) = 0.

To re-formulate the definition of ¢-simplicity (Definition ??) in terms of posi-
tive/negative inputs, note that if C' is a CNF, then C' < f means that every negative
input of f must contain at least one clause of C' (looked at as set of indices of
its variables). Similarly, f < D V \/,.; z; means that every positive input must
either intersect the set I or contain at least one monomial of D. Thus, if F; (Fp)
is a family of positive (negative) inputs of f, and #(F) denotes the maximum
number of members of F containing a fixed k-element set, then Theorem ?? gives
the following more explicit lower bound.

9.18 Theorem For every integers 2 < r, s < n, every monotone circuit computing f
must have size at least the minimum of

Fl-G-1D-#F) . |F
(s— 1) (F1) (= 1) #(Fo)

256 9 Monotone Circuits

That is, a monotone boolean function requires large monotone circuits if its
positive as well as negative inputs are “scattered” well enough.

9.5 Explicit lower bounds

In order to show that a given boolean function cannot be computed by a monotone
circuit of size at most ¢, it is enough, by Theorem ??, to show that the function
is not t-simple for at least one(!) choice of parameters s and r. In this section we
demonstrate how this can be used to derive strong lower bounds for concrete
boolean functions.

9.5.1 Detecting triangles

We begin with the simplest example, yielding a polynomial lower bound. We will
also present more “respectable” applications leading to exponential lower bounds,
but this special case already demonstrates the common way of reasoning fairly
well.

Let us consider a monotone boolean function 4,,, whose input is an undirected
graph on n vertices, represented by v = (g) variables, one for each possible edge.
The value of the function is 1 if and only if the graph contains a triangle (three
incident vertices). Clearly, there is a monotone circuit of size O(n?) computing this
function: just test whether any of (g) triangles is present in the graph. Thus, the
following theorem is tight, up to a poly-logarithmic factor.

9.19 Theorem Any monotone circuit, detecting whether a given n-vertex graph is
triangle-free, must have 2(n®/log* n) gates.

Proof. Let t be the minimal number for which A, is t-simple. By Theorem ??, it is
enough to show that ¢ = £2(n®/ log* n). For this proof, we take s := | 5log® n| and
r := 2. According to the definition of ¢-simplicity, we have only two possibilities.

Case 1: Every positive input for A, either intersects a fixed set I of s edges, or
contains at least one of L < ts" = ts? 2-element sets of edges Ry,...,RL.

As positive inputs for A,, we take all triangles, that is, graphs on n vertices with
exactly one triangle; we have (%) such graphs. At most s(n — 2) of them will have
an edge in I. Each of the remaining triangles must contain one of ¢s? given pairs of
edges R;. Since two edges can lie in at most one triangle, we conclude that, in this
case,

t> W = 2(n?/log*n).

Case 2: Every negative input for A,, contains at least one of t(r — 1)° = ¢ sets of

edges S1, ..., St each of size |\S;| = s.

9.5 Explicit lower bounds 257

In this case we consider the graphs £ = E; U F, consisting of two disjoint
non-empty cliques F; and Fs (we consider graphs as sets of their edges). Each such
graph FE is a negative input for A,,, because its complement is a bipartite graph,
and hence, has no triangles. The number of such graphs is a half of the number
2™ of all binary strings of length n excluding the all-0 and alll strings. Hence, we
have 2"~! — 1 such graphs, and each of them must contain at least one of the sets
Sy, ..., S Every of these sets of edges S, is incident to at least v/2s vertices, and
if E D S; then all these vertices must belong to one of the cliques F; or Es. Thus,
at most 2"~ V25 — 1 of our negative inputs ' can contain one fixed set S;, implying
that, in this case,

2" -1 V2s—1 310
— gn 3
tZQH_\@_lZ? > 2 >n”.
Thus, in both cases, t = 2(n3/ log* n), and we are done.]

9.5.2 Graphs of polynomials

Our next example is the following monotone boolean function introduced by An-
dreev (1985). Let ¢ > 2 be a prime power, and set d := |(¢/1Inq)'/?/2]. Consider
boolean ¢ x ¢ matrices A = (a; ;). Given such a matrix A, we are interested in
whether it contains a graph of a polynomial i : GF(q) — GF(q), that is, whether
a; p(s) = 1 for all rows i € GF(q).

Let f,, be a monotone boolean function of n = ¢ variables such that f,,(A4) = 1
iff A contains a graph of at least one polynomial over GF(q) of degree at most

d — 1. That is,
n(X) = \/ /\ Ti (i) 5

h ieGF(q)

where h ranges over all polynomials over GF(g) of degree at most d — 1. Since we
have at most ¢¢ such polynomials, the function f,, can be computed by a monotone
boolean circuit of size at most qd+1, which is at most n©@ = 20("1/4m). We
will now show that this trivial upper bound is almost optimal.

9.20 Theorem Any monotone circuit computing the function f,, has size at least
2!2(711/4\/111 n)

Proof. Take a minimal ¢ for which the function f,, is t-simple. Since n = ¢ and (by
our choice) d = @(n'/*y/Inn), it is enough by Theorem ?? to show that ¢ > ¢**(%).
For this proof, we take s := |dln¢| and r := d, and consider input matrices as
bipartite ¢ x g graphs. In the proof we will use the well-known fact that no two
distinct polynomials of degree at most d — 1 can coincide on d points. According to
the definition of ¢-simplicity, we have only two possibilities.

258 9 Monotone Circuits

Case 1: Every positive input for f, either intersects a fixed set I of at most s edges,
or contains at least one of L < ¢s” r-element sets of edges R1, ..., RL.

Graphs of polynomials of degree at most d — 1 are positive inputs for f,,. Each
set of I (1 <1 < d) edges is contained in either 0 or precisely ¢! of such graphs.
Hence, at most sq%~! of these graphs can contain an edge in I, and at most ¢%~" of
them can contain any of the given graphs R;. Therefore, in this case we have

d _ d—1 o)
> q® — sq _ (g) (r):qg(d).
sr,qd—r s

Case 2: Every negative input for f,, contains at least one of K < tr® s-element sets
of edges S4,...,Sk.

Let E be a random bipartite graph, with each edge appearing in E independently
with probability v := (2dIn ¢)/q. Since there are only ¢ polynomials of degree at
most d — 1, the probability that the complement of E will contain the graph of at
least one of them does not exceed ¢%(1 — 7)? < ¢~%, by our choice of . Hence,
with probability at least 1 — ¢~ ¢, the graph E is a negative input for f. On the other
hand, each of the sets .S; is contained in E with probability 7'5” = ~*. Thus, in this

case,
d

t>1—q_ :(q)(2(5):29(3)2619(60
 rsys 2d%Inq ’

where the third inequality holds for all d < (q/1Inq)'/?/2.

We have proved that the function f can be t-simple only if ¢ > ¢*(4), By
Theorem ??, this function cannot be computed by monotone circuits of size smaller
than ¢*2(4). a

9.6 Circuits with real-valued gates

We now consider monotone circuits where, besides boolean AND and OR gates,
one may use arbitrary monotone real-valued functions ¢ : R? — R as gates. Such
a function ¢ is monotone if p(x1,x2) < ©(y1, y2) whenever z1 < y; and x5 < ys.
The corresponding circuits are called monotone real circuit.

First lower bounds for monotone circuits with real-valued gates were proved by
Pudlak (1997), via an extension of Razborov’s argument, and by Haken and Cook
(1999), via an extension of the “bottleneck counting” argument of Haken (1995).

As in boolean circuits, inputs for such circuits are also binary strings « € {0,1}";
the output must also be a binary bit 0 or 1. But at each intermediate gate any
monotone function f : {0,1}"™ — R may be computed. Hence, unlike in boolean
case, here we have uncountable number of possible gates ¢ : R? — R, and one may
expect that at least some monotone boolean functions can be computed much more
efficiently by such circuits. Exercise ?? shows that this intuition is correct: so-called
“slice functions” can be computed by a very small monotone circuit with real-valued

9.6 Circuits with real-valued gates 259

gates, but easy counting shows that most slice functions cannot be computed by
boolean circuits of polynomial size, even if NOT gates are allowed! Thus, monotone
real circuits may be even exponentially more powerful than circuits over {A, V, =}

It is therefore somewhat surprising that the (simple) criterion for boolean cir-
cuits (Theorem ??) remains true also for circuits with real-valued gates. The only
difference from the boolean case is that now in the definition of ¢-simplicity we
take slightly larger CNFs and DNFs, which does not greatly change the asymptotic
values of the resulting lower bounds.

We say that a monotone boolean function f is weakly t-simple if the conditions
in Definition ?? hold with (a) replaced by

(@) |C] <t-(2r)*Ttand |[D| < t-(25)" T

That is, the only difference from the definition of ¢-simplicity is a slightly larger
upper bound on the number of clauses in C' and monomials in D.

9.21 Theorem (Criterion for Real Circuits) Let f be a monotone boolean function. If
f can be computed by a monotone real circuit of size t then f is weakly t-simple.

Proof. The theorem was first proved in (Jukna, 1999) using finite limits. A much
simpler proof, which we present below, is due to Avi Wigderson. The argument
is similar to that in the boolean case (Theorem ??). We only have to show how to
construct the approximators for real-valued gates. The idea is to consider thresholds
of real gates and approximate the thresholded values. For a real-valued function
f :{0,1}™ — R and a real number a, let f, denote the boolean function that
outputs 1 if f(x) > a, and outputs 0 otherwise.

Now let ¢ : R? — R be a gate at which the function f(z) is computed, and let
g(x) and h(x) be functions g, h : {0,1}"™ — R computed at the inputs of this gate.
A simple (but crucial) observation is that then

¢(9(x),h(z)) >a <= 3Tb,c: g(z)>b, h(z) >c and ¢(b,c) >a.

The (=) direction is trivial: just take b = g(x) and ¢ = h(x). The other direction
(<) follows from the monotonicity of p: p(g(z), h(z)) > p(b,¢) > a.

Together with the fact that f,(z) = 1iff p(g(x), h(x)) > a, this allows us to
express each threshold function f, of a gate f = (g, h) from the thresholds of its
input gates as:

fa= "\ (@nhe) (9.4)
»(b,c)>a
as well as
fa= N\ (@ Vhe). (9.5)
p(b,c)<a

It is convenient to think these expressions as an infinite AND and an infinite OR,
respectively. However, since the number of settings « € {0, 1}" for input variables
is finite, the real gates take only finite number of possible values, and we therefore
only need finite expressions.

260 9 Monotone Circuits

Fix a pair 1 < s,r < n of integer parameters. As before, every threshold f, is
approximated by two functions: an s-CNF [(left approximator) and an 7-DNF fP
(right approximator). The approximators for the thresholds of the input variables
are 0, 1, or the variable itself, depending on the value of the threshold; they can
always be represented by at most one literal and thus never fail.

Now let f = ¢(g, h) be an intermediate gate with two input gates g and h, and
suppose that, for all (finitely many!) reals b, c, the left and right approximators for
threshold functions g, and &, of its input gates are already constructed.

To construct the left approximator f$ of f, from the approximators of its two
input gates g and h, we first consider the representation

fa: \/ (ng/\h]c))'

o(b0)>a

Since the monomials in the »-DNFs gp and h2 have length at most 7, all the subex-
pressions g A h_ can be turned into a single 2r-DNF D, such that

Dy(z)=1 iff fo(z)=1 iff f(z)>a. (9.6)

After that we use the same procedure as before (that is, Lemma ??) to convert this
DNF into an s-CNF f<. This can be done for each (of the finitely many) threshold
values a, and we only need to ensure that the number of errors introduced when
approximating the whole gate f does not depend on this number of thresholds.

When forming the s-CNF [, we introduce errors as we throw away clauses
that become longer than s. We want to count the number of inputs z € {0,1}"
such that f,(z) = 0 while f$(x) = 1 for some a, that is, the union over a of the
errors introduced in a gate by fS. To do this, let us list in the increasing order
a1 < ag < ... < ay all the N < 2" possible values f(z) the gate f can output
when the input vector x ranges over {0, 1}". Hence,

D =D, V Dy V-V Dy,

is a 2r-DNF, and this DNF makes no error on z, that is, D(z) = f(z). By (??), we
have that
Da1 ZDaz Z"'ZDaN~

That is, every monomial of D, 1 contains at least one monomial of D,,. Hence, if
t(D) denotes the family of all transversals of D, that is, the family of all subsets of
variables, each of which intersects all the monomials of D, then

t(Dal) - t(Daz) c-.-C t(DGN)v

implying that ¢(D) = t(D,,). This means that all the clauses (=transversals),
which we throw away (because they are longer than s) when forming an s-CNF f¢
from the DNF D, are precisely those clauses, which we would throw away when
converting the 2r-DNF D, into an s-CNF. Thus, by Lemma ??, all the errors that
may appear during the construction of the left approximator f€, can be corrected

9.6 Circuits with real-valued gates 261

by an exact (s + 1)-CNF C of size |C| < (2r)*T!. That is, for every input x such
that f(z) = 0 but f¢(z) = 1, we have that C(z) = 0.

A dual argument can be used to bound the number of errors introduced when
constructing the right approximator fP. Note that we cannot use the DNF (??) for
this purpose since D is a 2r-DNF, not an r-DNF. But we can argue as above by using
the expression (??) instead of (??). Then all the introduced errors can be corrected
by an exact (r + 1)-DNF D of size | D| < (2s)"*L. The rest of the proof is the same
as that of Theorem ??. a

Since the definitions of ¢-simple functions and of weakly ¢-simple function are
almost the same, Theorem ?? allows us to extend lower bounds for the monotone
boolean circuits (we proved above) to the monotone real circuits. For example, the
same argument as in the proof of Theorem ?? yields

9.22 Theorem Any monotone real circuit computing the polynomial function f, has

size at least 22(n"/*Vinn),

Lower bounds for monotone real circuits have found intriguing applications in
proof complexity. In particular, Pudlak (1997) used such bounds to prove the first
exponential lower bound on the length of so-called “cutting plane proofs”, a proof
system for solving integer programming problems. We will describe this result in
Chapter ??.

The extension of the lower-bounds criterion from monotone boolean circuits
to monotone real circuits shows the power of the criterion. On the other hand,
monotonicity is crucial here.

9.23 Proposition Any boolean function of n variables can be computed using n — 1
real monotone fanin-2 gates and one non-monotone unary gate.

n

Proof. For an input vector z € {0,1}", let bin(z) = Y. | 2;2°~! be the number
whose binary code is z. It is easy to see that bin(z) can be computed by a circuit
C(z) using n — 1 real fanin-2 gates of the form g(u, v) = u + 2v. This can be done
via the recurrence:

bin(z) = x1 + 2 - bin(z’) = g(x1, bin(z)),

where 2’ = (z, ..., ;). These gates are monotone.
Now, every boolean function f defines the unique set of numbers

Ly = {binx) | f(x) = 1}.

Hence, in order to compute f, it is enough to attach the (non-monotone) output
gate testing whether C(x) € Ly. O

262 9 Monotone Circuits

9.7 Criterion for graph properties

Fixaset V of |V| = n vertices, and let (%) be the set of all potential edges e = {u, v}
with u # v € V on these vertices. Assign a boolean variable . to each potential
edge e. Then every 0-1 vector x of length (7) defines the graph S, = {e | z. = 1};
we consider graphs as sets S C (g) of their edges. Thus, every boolean function f
of (g) variables defines some property of n-vertex graphs.

An example of a graph property is the clique function f,, = CLIQUE(n, k)
we have considered in Sections ?? and ??. If applied directly, the symmetric lower-
bounds criterion (Theorem ??) cannot yield strong lower bounds for this function.
In this case, we can take as positive inputs of f,, the family F of all (Z) cliques on

k vertices. But then we would only have that #,.(F) < (Z::/fi) because some sets

S of |S| = r edges may touch at most /1 vertices, with the worst case of S being
a clique. Hence, the fraction

oo () %nﬁ_(n)\”
) T (v s s
in this case is too small: we cannot take s and r large enough. The reason for this
failure is that, so far, we only used a trivial measure of “length” for clauses and
monomials—the total number of variables in them. But in the case of graph properties,
variables z. correspond to edges. Thus, clauses and monomials correspond in this
case to graphs (sets of edges). Say a clause ¢ = \/, g . corresponds to the graph
S. We therefore have more flexibility to define an appropriate notion of “length”
of a monomial than just as the number of variables in it. We can, say, define the
“length” of a graph S as the number v(S) of vertices touched by (incident with)
the edges in S, or as the number k(S) of connected components in S, or somehow
else. It makes therefore sense to extend the lower-bounds criterion for the case of
different length measures. We will now show that this can be done quite easily.
By a legal length measure we will mean any non-negative measure (4 (.S) of graphs
satisfying the following conditions for some non-negative constants c, d:

u(8) < u(SU{e}) < u(S)+c and |S| < u(S)".

Parameter c tells us how much the measure of a graph can increase when one edge
is added, and d tells us how much smaller can the measure of a graph be when
compared to the total number of edges in it. For simplicity of exposition, we will
only consider length measures with ¢ = d = 2. For arbitrary c and d the arguments
are the same, although the bounds we get are slightly worse.

Note that the length measure 1(S) = |.S| (the total number of edges) we have
considered in the previous sections has all these properties. The measure p(.S) =
the number of vertices touched by the edges in S also has these properties. If we
could use 11(5) instead of |S|, then only at most (") of k-cliques would contain
a fixed graph S with p(S) = r, and the fraction

9.7 Criterion for graph properties 263

7] () (my
s7 -, (F) = ST({E::) ~ (E)

would then already be large enough. We have therefore only to show that our lower
bounds criteria can be extended to the case of arbitrary legal length measures.

Now, when some length measure of graphs is fixed, we can define the notions
of k-CNF and of exact k-CNF in a similar way. By a k-CNF relative to 1 we will
now mean a monotone CNF each whose clause has p-length at most k. In an exact
k-CNF relative to ;1 we require that all clauses have p-length at least k; and similarly
for DNFs.

It is not difficult to verify that the Monotone Switching Lemma remains true for
any pair of length measures for clauses and for monomials. The only difference is
that now we have slightly worse upper bounds on |D| and |C|, namely |D| < s%"
and |C| < s,

Proof sketch. Argue as in the proof of Lemma ??. Regardless of which length measure
for clauses we use, each clause of length s will have at most s2 variables. Construct
the “transversal tree” T in the same manner. Having a length measure x for mono-
mials, we now define DNFs f® and D in the same way with the words “monomial
of length” replaced by “monomial of u-length”. This time we say that a monomial
p pierces a clause g; if there exists a variable x in ¢; such that u(p U {z}) = u(p).
Namely, the DNF fP now consists of all paths of p-length smaller than r, and the
DNF D consists of all paths whose pi-length reached the threshold r for the first
time, that is, D consists of all paths p such that u(p) > 7 but u(p’) < r, where
p’ is the path p without its last edge. Since adding one edge can only increase the
measure by an additive factor 2, every monomial in D has length (not just u-length)
at most 2r. Since every node of T" has fan-out at most s2, this gives the desired
upper bound | D| < (s2)?" = 5" on the total number of monomials in D. O

Thus, in the case of graph properties f we have a more flexible lower-bounds
criterion allowing us to choose different length measures for positive inputs (graphs
accepted by f) and negative inputs (graphs whose complements are rejected by f).
Let) be some length measure for negative inputs, and i be some length measure
for positive inputs.

9.24 Definition (Approximators) By an (r, s)-approximator of f of size t we will
mean a triple (R, S, I) wherelj

« I is a graph of n-length < s;
« Ris a family of |R| < #(25)*" graphs of p-length > 7, and
« Sis afamily of |S| < #(2r)*® graphs of n-length > s

such that at least one of the following two conditions holds:

1. Every positive input of f either intersects the graph I or contains at least one
of the graphs in R.

" We take (2r)*" instead of just 74° in order to cover also the real-valued case.

264 9 Monotone Circuits
2. Every negative input of f contains at least one of the graphsin S.

9.25 Theorem If a monotone boolean function can be computed by a monotone real
circuit of size t, then it has an (r, s)-approximator of sizet forany1 <r,s <n —1
and for every pair of length measures.

The proof of this theorem is the same as that of Theorem ??: just use the modified
version of the Monotone Switching Lemma. We leave a detailed proof as an exercise.

9.8 Clique-like problems

We consider graphs on a fixed set V of |V'| = n vertices. We have m = (};) boolean

variables, one for each potential edge. Then each boolean function f : {0,1}" —
{0, 1} describes some graph property. A prominent NP-complete graph property
is a monotone boolean function CLIQUE(n, k) which accepts a given graph on n
vertices iff it contains a k-clique, that is, a subgraph on £ vertices whose all vertices
are pairwise adjacent. Instead of proving a lower bound on this function we will do
this for a much larger class of “clique-like” functions.

An a-coclique is formed by assigning each vertex a color from the set {1,2, ..., a},
and putting edges between those pairs of vertices with different colors. Note that
no such graph can have an (a + 1)-clique.

Let 2 < a < b < m be integers. An (a, b)-clique function is a monotone boolean
function f such that, for every graph G' on m vertices,

0 if G is an a-coclique;
flG)y=<1 if G is a b-clique;
any value otherwise.

Hence, CLIQUE(n, k) is an (a, b)-clique function with e = k — 1 and b = k.

9.26 Theorem (Jukna 1999) Let 32 < a < b < n/32, and let f be an (a,b)-clique
function. Then the minimal number of gates in a monotone real circuit computing f is
exponential in min{a, n/b}'/*.

Proof. Let f be an (a, b)-clique function. We are going to apply the refined version
of the lower-bounds criterion (Theorem ??). To do this, we must first choose ap-
propriate length measure (s for positive inputs an a length measure 7 for negative
inputs.

What to take as positive inputs and how to measure their length is clear. All
b-cliques are positive inputs for f. A natural measure for a clique S is to take

w(S) := the number of vertices touched by the edgesin S'.

It is clear that (.9) is a legal length measure:

9.8 Clique-like problems 265

u(S U {e}) < ulS) + p({e}) = u(S) +2 and |S] < (“(25)) < u(S)?,

Our choice of negative inputs is also clear: we take all complements of a-cocliques.
Each such complement G, is defined by a coloring h of vertices in a colors: two
vertices u and v are adjacent in G, iff h(u) = h(v). But what should we take as a
length measure 1(.S) of such graphs in this case?

Having a graph S of a given n-measure n(S) = s, we want that as few as
possible a-colorings h can color the edges of .S monochromatically, that is, color
both endpoints of each edge ¢ € S by the same color. If S is a tree with s vertices,
then we could take the same measure 7(S) = u(S) = the number of vertices
touched by the edges in S. Now, G}, 2O S implies that h must assign the same color
to all s = 7(S) vertices of S, and we can have at most a - "~ = a"~**! such
colorings. Thus, if S is a connected graph then we could take 1(.S) be the maximum
number of edges in its spanning tree. For general (not necessarily connected) graphs
we can do the same, and consider the measure:

7(S) = maximum number of edges in a forest /' C S.

Since every tree with m edges has m + 1 vertices, 7(S) is just the number of
vertices minus the number of connected components in S. But is 1) a legal length
measure? The first condition n(S) < (S U {e}) < n(S) + ¢ clearly holds with
¢ = 1. But does the second condition |S| < 7(S)? hold? To show that it does, let m
be the number of vertices touched by edges in .S, and suppose that S consists of
k connected components, the i-th of which has m,; vertices. We may assume that
m; > 2 for all i. Then (m; — 1)% > ("“) holds for all i, and we obtain that

n(S)Qz[Z —1} zi i —1)? 22()zS|.

Thus, both measures (S) and 7)(.5) are legal length measures. By Theorem ?? it
remains to choose parameters r, s and to show that our function f can have an
(r, s)-approximator of size ¢ only if ¢ is large enough. For this purpose, we set (with
foresight):

ri=|(a/32)"*] and s:= [(n/320)'/%].

According to Definition ?? we have only two possibilities, depending on what of
the two of its items holds.

Case 1: (Positive inputs) There exist a set I of |I| < s? edges and a family
Q1,...,Qr of L < t(2s)* r-cliques such that every b-clique must either intersect
the set I or contain at least one of the cliques Q;.

Atleast (}) — s? (Z:g) > 1(3) of b-cliques must avoid a fixed set I of |I| < s*
edges. Each of these b-cliques must contain at least one of r-cliques ();. Since only
(’Z T) of b-cliques can contain one clique ();, and we only have L < #(2s)%" of the

Q;, in this case we have the lower bound

266 9 Monotone Circuits

L > % Z) _ (n)Q(T) _ 29(111/4)
) .

~(28) (3T 16s4b B

Case 2: (Negative inputs) Recall that negative inputs are graphs G, corresponding
to colorings h of vertices in a colors; two vertices v and v are adjacent in G,
iff h(u) = h(v). Recall also that 7(S) is the maximum number |F| of edges in a
spanning forest I’ C S. Thus, in the second case of Definition ?? there must be
a family F of | F| < t(2r)** forests with |F'| > s edges in each F' € F such that
every graph G}, contains at least one of these forests. That is, for every coloring h,
there must be at least one forest F' € F such that h(u) = h(v) for all edges of F'.

Fix one forest F' € F, and let T1,...,T; be all its connected components
(trees). All vertices in each of these trees must receive the same color. Since each
tree T; has |T;| + 1 vertices, the total number of vertices in the forest F' is m =
Z?:1(|T,;| +1) = |F| +d > s + d. There are a¢ ways for the coloring h to color
the trees T}, and at most ¢~ < g~ (5+d) ways to color the remaining n — m
vertices. Thus, the number of graphs G, containing one fixed forest F' € F does
not exceed a?a™ (%) = ¢q"~*_ Since we only have |F| < t(2r)* forests in F, in
this case we have the lower bound

a” a * 1/4
t > = () = 2(®/b) " i
~ (2r)4san—s 16r4

As mentioned above, the class of clique-like functions includes some NP-
complete problems, like CLIQUE(n, k). But the class of (a, b)-clique functions
is much larger—so large that it also includes some graph properties computable by
non-monotone circuits of polynomial size!

A graph function is a function ¢ assigning each graph G a real number ¢(G).
Such a function ¢ is clique-like if

w(G) < p(G) < x(G),

where w(G) is the clique number, that is, the maximum number of vertices in a
complete subgraph of G, and x(G) is the chromatic number, that is, the smallest
number of colors which is enough to color the vertices of G so that no adjacent
vertices receive the same color.

Although we always have that w(G) < x(G), the gap between these two
quantities can be quite large: results of Erdds (1967) imply that the maximum
of X(G)/w(G) over all n-vertex graphs G has the order O(n/ log?n). So, at least
potentially, the class of clique-like functions is large enough. And indeed, Tardos
(1987) observed that this class includes not only NP-complete problems (like the
clique function) but also some problems from P.

9.27 Lemma (Tardos 1987) There exists an explicit monotone clique-like graph func-
tion ¢ which is computable in polynomial time.

Proof. In his seminal paper on Shannon-capacity of graphs Lovasz (1979a) intro-
duced the capacity 9(G). The function ¢'(G) := ¥(G), where G denotes the

9.9 What about circuits with NOT gates? 267

complement of G, is a monotone clique-like function. Grétschel, Lovasz and Schri-
jver (1981) gave a polynomial time approximation algorithm for ¢. That is, given a
graph G and a rational number € > 0 the algorithm computes, in polynomial time,
a function g(G, €) such that

NG) < g(Gre) <V(G) +e.

Now, for any 0 < € < 1/2 the function |g(G, €)] is a polynomial time computable
clique-like function. This function might not be monotone. Let us therefore consider
the monotone function

p(G) = [9(G,n™?) +¢(G) - n7?],

where n is the number of vertices and e(G) the number of edges in G. This is the
desired monotone clique-like function computable in polynomial time. O

Fix k to be the square root of the number n of vertices, and let f, denote the
monotone boolean function of (Z) boolean variables encoding the edges of a graph
on n vertices, whose values are defined by

(@) =1 iff o(G)>k.

Observe that f,(G) = 1if w(G) > k, and fy(G) = 0if x(G) < k — 1. Thus, f,
isa (k — 1, k)-clique function. Theorem ?? and Lemma ?? immediately yield the
following tradeoff between monotone real and non-monotone boolean circuits.

9.28 Theorem For every clique-like graph function o, the boolean function fq can be
computed by a non-monotone boolean circuit of polynomial size, but any monotone

QQ(nl

. . . /8)
real circuit requires gates.

Thus, there are explicit monotone boolean functions, whose boolean non-
monotone circuits are exponentially smaller than their monotone real circuits.
We will use this theorem later in Section ?? to prove exponential lower bounds for
widely used proof system—cutting plane proofs.

But what about the other direction: can every non-monotone boolean circuit
computing a monotone boolean function be transformed into a monotone real
circuit without an exponential blow-up in size? Using counting arguments one can
give a negative answer (see Exercises ??-77).

9.9 What about circuits with NOT gates?

As we mentioned at the very beginning, no non-linear lower bounds are known for
circuits using NOT gates. So, what is missing in the arguments we described in this
and the previous chapters?

A possible answer is that the arguments are just too general! In order to show
that no circuit with ¢ gates can compute a given boolean function f, we have

268 9 Monotone Circuits

to show that no such circuit C' can separate the set f~1(0) from f~1(1), that is,
reject all vectors in f~1(0) and accept all vectors in f~1(1). Current arguments for
monotone circuits (and formulas) do much more: there are relatively small subsets
A C f71(0) and B C f~1(1) (sets of particular negative and positive inputs) such
that every monotone circuit separating A from B must be large.

To be more specific, let A be the set of all complete (k — 1)-partite graphs on
n vertices, and B be the set of all k-cliques. Hence, for any k-clique function f,
members of A are negative inputs and members of B are positive inputs for f. We
have shown that any monotone circuit separating A from B must have exponential
size.

On the other hand, A can be separated from B by a small circuit if we allow
just one NOT gate be used at the top of the circuit! Indeed, each graph in A has at
least K = {2(n) edges, whereas each graph in B (a k-clique) has only (g) edges,
which is smaller than K for k = o(y/n). Hence, if ¢ = =Thx is the negation of
the threshold- K function, then g(a) = 0 foralla € A, and g(b) = 1 forall b € B.
Since threshold functions have small monotone circuits (at most quadratic in the
number of input variables), the resulting circuit is also small, separates A from B,
and has only one NOT gate.

That is, it is not hard to separate the pair A, B by a monotone circuit—it is only
hard to do this separation in the “right” direction: reject all a € A, and accept all
b € B. This motivates the following definition.

Let f be a monotone boolean function. Say that a pair A, B with A C f~1(0)
and B C f~1(1) is 7-hard if every monotone circuit separating a 2" fraction of A
from a 27" fraction of B (either in a “right” or in a “wrong” direction) must have
super-polynomial size.

Exercise ?? shows that any r-hard pair A, B requires a super-polynomial number
of gates in any circuit that separates A from B and uses up to NOT gates. In the
next chapter we will show that r = [log(n + 1)] is a critical number of allowed
NOT gates: having an r-hard pair for such an r would imply a super-polynomial
lower bound for general non-monotone circuits! The best result known today is that
the clique function produces an r-hard pair for r about log log n; this was shown
by Amano and Maruoka (2005).

9.29 B Research Problem
Exhibit an explicit pair A, B of disjoint subsets of {0,1}" which is r-hard for
r > loglog n.

9.10 Razborov’s method of approximations

To describe the Method of Approximations in its full generality, it will again be
convenient to look at boolean functions f : {0,1}* — {0, 1} as computing set-
theoretic predicates f : 2% — {0, 1}. In this way we get a 1-to-1 correspondence
between boolean functions f and families A(f) = {S C X | f(S) = 1} of subsets

9.10 Razborov’s method of approximations 269

of X with the properties A(f V g) = A(f) U A(g) and A(f A g) = A(f) N A(g).
If f is monotone, then A(f) is monotone with respect to set inclusion: if £ € A(f)
and F C F then F' € A(f).

Every family F C 2% can be extended to a monotone family " F ' defined by

FF1 .= UFF—', where "F":={EC X |FCE}.
FeF

In particular, if F = () is the empty set, then " F7 = 2% whereas "F ' = () (empty
family), if 7 = (). The reason to consider monotone families is that we only consider
monotone boolean functions f, and for them we have that "A(f)" = A(f).

Thus, each monotone circuit for a monotone boolean function f starts with the
basic monotone families A(z1), ..., A(z,), A(1) = 2%, A(0) = () corresponding
to input variables and the two constant functions, applies set-theoretic union (U)
and intersection (N) operations to them, and finally produces the family A(f). The
idea is now to approximate the operations U and N by some other set-theoretic
operations LI and . This leads to the following definition.

A collection MM C 2% of monotone families with two operations U (join) and 1
(meet) is a legitimate lattice if it satisfies the following two conditions:

« Families A(z1), ..., A(zy,), A(1), A(0) belong to I
« M is a lattice with respect to set inclusion, that is, M, N C M U N and
MMTN C M,N forall M, N € 9.

Note that the second condition implies that
MUNCMUN and MNONCMNN.

Thus, if we replace the gates U and M in our circuit by the lattice operations L and
M, then some element M € 91 instead of the target family A(f) could be computed.
To capture the errors arising at each gate, define:

0_(M,N):=(MUN)\(MUN),
0 (M,N):=(MnNN)\(MNN).
Define the distance p(f, 9) of a boolean function f from a lattice 90 as the smallest
number t for which there exist elements M, M;, N; (1 < i < t) of the lattice 9t
such that
M\A(f) g 5—(1\41,]\71) U--- U(s—(Mt7Nt)7
A(/)NM C 6 (My,N1)U--- Uy (Mg, Ny).

The proof of the following theorem is by easy induction on the number of gates,
and we leave it as an exercise.

9.30 Theorem For every legitimate lattice M, every monotone boolean circuit com-
puting f requires at least p(f,9MN) gates.

270 9 Monotone Circuits

In order to apply this theorem for a given monotone boolean function f, we have
to define an appropriate legitimate lattice 9t and show that f has a large distance
from this lattice.

If we take 9 to be a trivial lattice consisting of all monotone families, then
p(f,90) = 0 for any monotone boolean function. So, in order to have a nontrivial
distance, one has to consider some nontrivial lattices. For this, we need to achieve
the following two goals:

1. Every family M € 9t must differ from A(f) in many members.
2. The “error-families” 0_ (M;, N;) and 04 (M;, N;) must be relatively small.

Crucial here is the second goal. Razborov achieves this goal by ensuring that each
family in 90 has relatively few minimal (w.r.t. set-inclusion) members. This, in
turn, is achieved by introducing a clever “closure” operation, and by applying this
operation when the union of two families in 9t has too many minimal members.

9.10.1 Construction of legitimate lattices

Let r > 2 a fixed integer. Say that sets Fi,..., F,. imply a set Fj, and write

Fi,. .. F.FFy it F;NFEF; C Fyforalll <@ < j < r. We write F = F if there

exist not necessarily distinct members Fy, ..., F;. of F such that F,..., F,. - F.
A general construction of legitimate lattices is as follows.

1. Fix an appropriate “ambient” family 7 C 2X. In the case of the clique function
a natural choice is the family of all cliques on < s vertices, whereas in the case
of the perfect matching function such is the family of all matchings with < s
edges; s is a parameter.

2. Say that a family F C P is r-closed (or just closed) if F - F and I’ € P implies
FeF.

3. Define M = {" A7 | A C P and A is r-closed}.

Since the intersection of closed families is also closed, there is the smallest closed
family containing A, which we will denote by A*.

9.31Lemma Forevery familyP C 2%, 90 is a legitimate lattice with lattice operations
given by

FATN™BT'="ANBT and "TATUTB ="(AUB)* .

Proof. First note that the condition (a) in the definition of a legitimate lattice is
fulfilled: we have A(x;) = "{x;}7 A(1) ="P " and A(0) ="0".

Let 2 denote the set of all r-closed families A C P. As the partially ordered with
respect to the set-inclusion set, the set 2 is a lattice with inf(A;, A3) = A3 N A
(intersection of two closed families is closed) and sup(A;,.As) = (A; U Ay)*. The
mapping "7 : A — 9N is a homomorphism of partially ordered under set-inclusion
sets. So, to finish the proof of the lemma, it is enough to show that this mapping is
in fact an isomorphism. That is, to show that " A4; ' C " A, " implies A; C As.

9.11 A lower bound for perfect matching 271

To show this, let " 4,7 C " 457 and Ey € A;. Then E; € " A;7, and hence,
E1 € " Ay That is, there must exist a set F5 € Aj such that F5 C FE;. But then
Es, ..., By Eq, implying that £y € A,, since A is r-closed. We have therefore
shown that " A; 7 C " Ay implies A; C As, as desired. a

The main property of closed families is that they cannot have too many minimal
members with respect to set-inclusion.

A set family F is an antichain if for no distinct A, B in F do we have A C B.
For a family F, let min(F) denote the antichain consisting of all smallest members
of F with respect to set-inclusion.

9.32 Lemma IfF isr-closed and |F| < s for all F € F, then | min(F)| < slr®.

Proof. Assume that | min(F)| > s!r®. Then the Sunflower Lemma (applied with
l =sandp = r+ 1) gives us r + 1 sets Fy, F1,..., F, in min(F) forming a
sunflower. Since JF is an antichain, the core £ of this sunflower is a proper subset
of each of the F;, and hence, also &/ C Fy. But F; N F; = Fforalll <i<j<r
implies that F1,...,F, F E, and hence, E must be a member of F since F is
r-closed. This contradicts our assumption that Fiy € min(F). O

9.11 A lower bound for perfect matching

The perfect matching function is a monotone boolean function f,,, of m? variables.
Inputs for this function are subsets £ C K, ,,, of edges of a fixed complete bipartite
m x m graph K, ,,,, and f,,,(E) = 1 iff E contains a perfect matching, that is,
a set of m vertex-disjoint edges. Taking a boolean variable z; ; for each edge of
K., m, the function can be written as

fm: \/ /\xi,a(i)a

ocESy i=1

where S, is the set of all m! permutations of 1,2,...,m. The function f,, is
also known as a logical permanent of a boolean m x m matrix, the adjacency
matrix of F. Hopcroft and Karp (1973) showed that this sequence of functions
(fm | m=1,2,...) can be computed by a deterministic Turing machine in time
O(m®/?). Hence, f,,, can be computed by a non-monotone circuit using only O (m?)
gates. But what about monotone circuits for this function?

Using his Method of Approximations, Razborov (1985b) was able to prove a
super-polynomial lower bound m*?(°8™) also for this function. Fu (1998) showed
that, after an appropriate modification, Razborov’s proof works also for monotone
real circuits.

The lattice ,,, with large distance p(fp,, M.,) from f,,, will depend on two
parameters 7 and s which we will set later. Namely, let 9t,,, be the lattice constructed
as above when starting with the ambient family P = Per, where

272 9 Monotone Circuits
Pers = {E C K, 1, | E is a matching and |E| < s}

is the set of all matchings with up to s edges. That is, each element of M € 9,,
is produced by taking an r-closed collection A C Per; of matchings, each with
< s edges, and including in 9, the monotone family M = " A" of all graphs
(not just matchings) containing at least one matching in A. In particular, minimal
(under inclusion) members of each M are matchings of size at most s, that is,
min(M) C Pers.

Our goal is to prove that, for appropriately chosen parameters r and s, we have
/J(fm, mm) — mQ(Iog m)'

It will be convenient to use probabilistic language. Let E be a random graph
taking its values in the set of all m! perfect matchings with equal probability 1/m!.
It is clear that

Prob[fm(E4)=1]=1.

Let h be a random 2-coloring assigning each vertex of K, ,, a value 0 or 1 indepen-
dently with probability 1/2. This coloring defines a random graph E_ = {(u, v) |

h(u) =h(v)}.
9.33 Lemma 9
PI'Ob[fT,L(E_) = O] Z 1-— \/7% .
Proof. Let U and V be the two parts of K, ,,,; hence, |U| = |V| = m. The graph
E_ has a perfect matching iff > ., h(u) = > .y h(v). Hence,

Prob[fy, (E_) = 1] = Prob[S hw) =Y h(v)]

uclU veV
iProb[Zh }.Prob[Zh(v):j}
J=0 uelU veV
s - () o= e

veV

In order to show that the distance p(fy,, I,) is large, it is enough to show that,
for every two members M;, Mo of the lattice 9, the probabilities Prob[E; €
6+ (Ml, Mg)] and PI‘Ob[E_ €o_ (]\417 Mg)] are small.

9.11.1 Error-probability on accepted inputs

The case of E is relatively simple. Recall that E is a random perfect matching.
9.34 Lemma For any My, My € 9M,,, we have that

(mfs—l)'

Prob[E, € 64 (My, Ms)] < (s!r®)? - ml

9.11 A lower bound for perfect matching 273

Proof. Let My =" A; " and My =" A5™. Since for any family F and any two sets
A, B we have that "min(F)"="Fland"A"N"B"="AU B, the error-set

84 (My, My) = (My N M)\ (My 1 M) = (TA; TN A7) \ (T A N A7)

is the union of sets "F; U By \ (" A1 N A7) over all By € min(A;) and E, €
min(Az). Fix any two such sets F1 and Es, and let E = E; U E5. Our goal is to
upper-bound the probability Prob[E; € "E™] = Prob[E C E_]. We have three
possibilities.

Case 1: E is not a matching. In this case Prob[E C E;] = 0.

Case 2: E is a matching and |E| < s, thatis, E € Pery. Since A; is closed, F; € A;
and E € Per, implies that E = E; U Ey € A;. Similarly, E € As. Hence
E € A1 N Ay, implying that "F1 U E5 7\ (TA; N A7) = 0.

Case 3: E is a matching but |E| > s + 1. In this case

(m — |E])! < (m—s—l)!.

Prob[E C E,] =

m/! m!

Since, by Lemma ??, | min(A;)| - | min(A;)| < (s!r®)2, we are done. 0

9.11.2 Error-probability on rejected inputs

To upper bound the probability Prob[E_ € §_ (M, M>)] requires more work. The
problem is that the events e; € E_ and e € E_ for edges e1, 5 are not necessarily
independent. Still, the following lemma shows that the events are independent if
the edges come from a fixed forest. Recall that a forest is a graph without cycles.

9.35 Lemma Let E = {(u1,v1),..., (Up,vp)} C Ky, m be a forest. Then the events
(u;,v;) € E_ are independent, and each happens with probability 1/2.

Proof. 1t is enough to show that, for any subset K C {1,...,p} of indices, the
event
(u;,v;) € E_foralli € K, and (u;,v;) ¢ E_forallj ¢ K

happens with probability 277. By the definition of E_, this event is equivalent to the
event that the values h(u;), h(v;) satisfy the following system of linear equations
over GF(2):

h(uz)—l—h(vl):XK—i—l z:L,p, (97)
where h(u;), h(v;) are treated as variables, and x k is the characteristic function of

the set K. Since E is a forest, the left-hand side of this system is linearly independent
(see Exercise ??). Thus, the system has exactly 22m—P golutions, as desired. O

9.36 Lemma Let F C Per, be a set of | F| = r pairwise disjoint matchings. Then
there exits a subset Fo C F of | Fo| > +/r/s matchings such that UFy is a forest.

274 9 Monotone Circuits

Proof. Choose Fy C F such that UFy is a forest and | Fp| is maximal. It is enough
to show that | Fy| > /7/s.

To show this, assume that | Fy| < /7/s, and let Ey = UFy; hence, |Ep| < /T
Let Up C U and Vjy C V be the sets of vertices incident with at least one edge of Ej.
Then |Up| < +/r and |Vp| < /r. Since F contains |F| = r > |Uy x V| matchings,
at least one of these matchings £; must have no edge in Uy x Vj (every edge can
belong to at most one matching in F, since these matchings are disjoint). Since E;
is a matching and Ej is a forest lying in Uy x Vj, the graph Ey U E; is a forest as
well. But E; N Ey = () implies that 1 ¢ Fg, a contradiction with the maximality
of ‘]:0 ‘ O

Now we are able to upper-bound Prob[E_ € §_ (M7, My)]. Note that the num-
ber of matchings in Per; is

s 2 s
|Pers| < g <m) -l <m?® g (m) < m?.
1 1
=0

=0

9.37 Lemma For any My, My € M, we have that
Prob[E_ € 6_(My, My)] < (1 —275)V7/* . m?s .

Proof. Let M7 = " A7, My = " A and A3 = A; U Ay. Then 6_(My, Ms) =
FA37\ " A3™, where Aj is the closure of Aj3. Hence, there is a sequence of families
Az, Ay, ... 7Ap = .A§ such that Ai+1 =AU {El} with A; - E; and E; € A,.
Hence, §_ (M7, M>) is the union of all sets "E; "\ "A;7, ¢ = 3,...,p — 1. Since
p < |Per,| < m?$, it remains to show that A C Per, and A - Ej implies that

Prob[E_ € TEy7\ "AT] < (1 - 27%)V7/s. (9.8)

To prove this, let E, ..., E, be matchings in A such that £y, ..., E, - Ey. Hence,
the sets Ef := F; \ Ey must be disjoint. If at least one of these sets is empty,
then "Ey" C " A", and the inequality (??) trivially holds. Otherwise, we can use
Lemma ?? to choose a subset 7o C {E7,..., E’} such that UF is a forest and
|Fo| > +/7/s. Then

Prob[E_ € "TEy'\TA7] <Prob[Ey CE_and E; Z E_foralli=1,...,7]
<Prob[Ef ZE_foralli=1,...,r]
< Prob[E* Z E_ forall E* € Fy |.

By Lemma ??, all events E* Z E_ for E* € Fj are independent, and
Prob[E* CE_]| =27 1E"l > 27,

Therefore,

9.11 A lower bound for perfect matching 275

Prob[E* Z E_ forall B* € Fo] = [[Prob[E* 2 E_] < (1—27)V"/=.
ExeFo

This finishes the proof of (??), and thus of the lemma. ad

9.38 Theorem (Razborov 1985b) Every monotone circuit computing the perfect match-
ing function f,, must have m*(1°8™) gates.

Proof. By Theorem ??, it is enough to show that p(f,,, M) = m?1°8™) For the
proof we assume that m is sufficiently large, and set the parameters and s to

= |(logm)/8] and r:=[m'*(logm)?].

Let M, M;, N; (1 < i < t) be elements of the lattice 9,,, such that
t
M\ A(fm) C U (M;, N;), (9.9)

A(fm) \ M C | J 04 (M;, N;) . (9.10)

'C~ m

I
—

?

We consider two cases; M = () and M #).

Case 1: M = (. In this case, (??) implies that the entire set A(f,,) must lie in
the union of error-sets §, (M;, N;),i = 1,...,t. Since E; lies in A(f,,) with
probability 1, the sum of probabilities Prob[E; € 04 (M;, N;)] must be at least 1
as well. Together with Lemma ??, this implies that (for sufficiently large m)

m!
(m—s—1)l(slrs)?
(2 ;)

32m (logm)/8
)

(ml/z(log m)18
_ mQ(log m))

| \/

> (m/2)" - (s1)7*

Y

Case 2: M # (). By the construction of 9,,, there exists a matching E € Per; for
which "E™ C M. Together with (??), this implies that

CTETC A(fm) U6 (M1, N1)U---Ud_(My, Ny).
We have

Prob[E_ € TE7 =27 1Bl > 9= by Lemma ??
Prob[E_ € A(fm)] <2m~'/? by Lemma ??
Prob[E_ € 6_(M;, N;)] < (1 —275)V7/s . m?s by Lemma ??

276 9 Monotone Circuits
This implies that

t Z (2—8 _ 2m—1/2)(1 _ 2—5)—\/;/Sm—28

> %m—l/S . exp (Q_Sﬁ) 28
s
11 -1/8 ,,1/8 . 4
Z %mfgleogmexp (8m m (logm))

logm
_ WL.Q(log3 m) 0

9.39 @ Research Problem
Can the lower bound m#?(legm)
constant € > 0?

for perfect matching be improved to 2(™°) for a

Exercises

9.1 A partialb—(n, k, \) designis a family F of k-element subsets of {1,...,n} such
that any b-element set is contained in at most) of its members. We can associate
with each such design F a monotone boolean function fr such that fz(S) = 1if
and only if S D F for at least one F' € F. Assume that In |F| < k — 1 and that
each element belongs to at most /N members of F. Use Theorem ?? to show that
for every integer a > 2, every monotone circuit computing fr has size at least

L= min{;(2b1§|}'|)a’ |]:|>: Zb' = }

Hint: Take r = a, s = b and show that under this choice of parameters, the function fr can be
t-simple only if ¢ > L. When doing this, note that the members of F are positive inputs for fr.
To handle the case of negative inputs, take a random subset 7" in which each element appears
independently with probability p = (1 + In |F|)/k, and show that T is not a negative input for
f7 with probability at most | F|(1 — p)* < e™'.

9.2 Derive Theorem ?? from the previous exercise.

Hint: Observe that the family of all @ graphs of polynomials of degree at most d — 1 over GF(q)
forms a partial b-(n, k, \) design with parameters n = ¢%, k = g and A = ¢¢~°.

9.3 Andreev (1987b) showed how, for any prime power ¢ > 2 and d < ¢, to
construct an explicit family F of subsets of {1, ..., n} which, for every b < d + 1,
forms a partial b—(n, k, \) design with parameters n = ¢3, k = ¢2, A = ¢?¢+1=t
and | F| = ¢??*1. Use Exercise ?? to show that the corresponding boolean function
fp requires monotone circuits of size exponential in £2(n!/3—°(1),

9.4 Aboolean function f(z1,...,x,) is a k-slice function if f(z) = 0 for all x with
|x| < k,and f(z) = 1 for all with |z| > k, where |z| = 21 + - - - + x,,. Show that

9.11 A lower bound for perfect matching 277

some slice functions require DeMorgan circuits of size 22("). Hint: Take k = n/2 and
argue as in the proof of Theorem ??.

9.5 (Rosenbloom 1997) Given a vector x = (z1,...,Z,) in {0, 1}", associate with
it the following two integers hy (x) := |2]|2" + b(x) and h_(z) := |z|2" — b(z),

where |2| = 1+ +z, and b(x) = ;| ;2" 1. Prove that for any two vectors

T #Y,

1. if |z| < |y|, then hy(z) < hy(y) and h_(z) < h_(y);
2. if |z] = |y|, then hy(x) < hy(y)if and only if h_(z) > h_(y).

9.6 Let f(x1,...,x,) be a k-slice function, 0 < k < n. Use the previous exercise
to show that f can be computed by a circuit with O(n) monotone real-valued
functions as gates.

Hint: As the last gate take a monotone function ¢ : R? — {0, 1} such that
p(h+(z),h—(z)) = f(2)

for all inputs x of weight |z| = k.

9.7 Let f be a boolean function and suppose that it can be computed by a circuit of
size ¢ with at most r negations. Show that for any A C f~1(0) and B C f~1(1),
there is a monotone boolean function g such that g can be computed by a monotone
circuit of size at most ¢ and either g or its negation —¢g rejects a 27" fraction of
inputs from A and accepts a 27" fraction of inputs from B.

Hint: Argue by induction on r. If » > 1, then consider the first negation gate and the function
g which is computed at the gate immediately before this negation gate. Let € € {0, 1} be such
that g(a) = € for at least one half of the inputs a € A. If also one half of the inputs b € B have
g(b) = € @ 1, then either g or =g has the property stated in the lemma. If this is not the case, try
to apply the induction hypothesis.

9.8 Let G be a graph with n vertices and m edges, and let M be its m x n edge-
vertex adjacency 0-1 matrix. That is, there is a 1 in the i-th row and j-th column iff
the j-th vertex is an endpoint of the i-th edge. Show that the rows of M are linearly
independent over GF(2) if and only if G is a forest.

Hint: In any non-empty forest there are at least two vertices of degree 1. If some subset of rows
sums up to zero, then the subgraph formed by the corresponding edges must have minimum
degree at least 2.

9.9 Aset A C {0,1}" of vectors is Downward Closed if z € A and y < x implies
y € A. Similarly, a set is Upward Closed if z € A and z < y implies y € A.
Note that, if a boolean function f : {0,1}" — {0, 1} is monotone, then f~1(0) is
Downward Closed and f~1(1) is Upward Closed. Prove the following result due to
Kleitman (1966): if A, B are Downward Closed subsets of {0, 1}", then

Al 1B

ANB| > ————.

278 9 Monotone Circuits

Hint: Apply induction on n, the case n = 0 being trivial. For a € {0, 1}, set ¢, = |Aq| and
do = |Bal|, where Ay = {(x1,...,2n-1) | (x1,...,Zn-1,a) € A}. Apply induction to show
that |A N B| > (codo 4 c1d1)/2™ ! and use the equality codo + c1d1 = (co + ¢1)(do + d1) +
(co — ¢1)(do — d1) together with A; C A and B1 C Bo.

9.10 Show that Kleitman’s theorem (Exercise ??) implies the following: Let A, B be
upward closed and C' downward closed subsets of {0,1}". Then

Al - 1B [Al-1C]
n on

|[ANB| > and [ANnC| <

Hint: For the first inequality, apply Kleitman’s theorem to the complements of A and B. For the
second inequality, take B := {0,1}" \ C, and apply the first inequality to the pair A, B to get
A= |ANC| = |AN B| > 27" 4(2" - |C)).

9.11 Let f : 2" — {0,1} be a monotone boolean function, and let F be the
family of all subsets S' C [n] that are both positive and negative inputs of f, that is
f(S) =1and f(S) = 0. Show that |F| < [f~1(0)| - | f~L(1)|/2™.

9.12 (Flower Lemma, Hastad et al. 1995) A blocking set of a family F is a set which
intersects all the members of F; the minimum number of elements in a blocking set is
the blocking number of F and is denoted by 7(F); if) € F then we set 7(F) = 0. A
restriction of a family F onto a set Y is the family Fy := {S\Y | S € F, SD Y}
A flower with k petals and a core Y is a family F such that 7(Fy) > k. Note that
every sunflower is a flower with the same number of petals, but not every flower is
a sunflower (give an example). Prove the following “flower lemma”:

Let F be a family of sets each of cardinality s, and £ > 1 and integer. If
|F| > (k — 1)° then F contains a flower with & petals.

Hint: Induction on s. If 7(F) > k then the family F itself is a flower with at least (k—1)°*+1 > k
petals (and an empty core). Otherwise, some set of size & — 1 intersects all the members of F, and
hence, at least | F|/(k — 1) of the members must contain some point z.

9.13 Let f be a monotone boolean function of n variables, and suppose that all its
maxterms have length at most ¢. Show that then for every s = 1,. .., n the function
f has at most ¢° minterms of length s.

Hint: Let F be the family of all minterms of f of length s. Every maxterm must intersect all the
minterms in F. Assume that | F| > ¢° and apply the Flower Lemma to get a contradiction with
the previous sentence.

9.14 Use Exercise ?? to give an alternate proof of the Monotone Switching Lemma.

10. The Mystery of Negations

The main difficulty in proving nontrivial lower bounds on the size of circuits using
AND, OR and NOT is the presence of NOT gates—we already know how to prove
even exponential lower bounds for monotone functions if no NOT gates are allowed.
The effect of such gates on circuit size remains to a large extent a mystery. It is
therefore worth describing what we actually know about this mystery. Among the
basic questions concerning the role of NOT gates are the following:

1. For what monotone boolean functions are NOT gates useless, that is, do not
lead to much more efficient circuits?

2. Given a function f, what is the minimum number M (f) of NOT gates in a
circuit computing f? Note that M (f) = 0if f is monotone.

3. Given a circuit, to what extent can we decrease the number of NOT gates in it
without a substantial increase in circuit size? In particular, how much can the size
of a circuit increase when trying to compute f using the smallest possible number
M(f) of NOT gates?

4. Suppose that a function f of n variables can be computed by a circuit of size
polynomial of n, but every circuit with M (f) negations computing f requires
super-polynomial size. What, then, is the minimal number of negations sufficient to
compute f in polynomial size? In other words, how many NOT gates do we need
in order to achieve super-polynomial savings in circuit size?

In this chapter we answer these questions.

10.1 When are NOT gates useless?

Let us consider circuits with AND, OR and NOT gates. Recall that such a circuit is
a DeMorgan circuit if NOT gates are only applied to input variables. A circuit is
monotone if it has no negated inputs.

As we have already mentioned, current methods are not able to prove lower
bounds larger than 5n for general circuits. On the other hand, we know how to
prove even exponential lower bounds for monotone circuits where we have no NOT

279

280 10 The Mystery of Negations

Bilder/slice-eps-converted-to.pdf

Fig. 10.1 A k-slice function. For inputs with < £ ones it takes value 0, for inputs with > £ ones it
takes value 1, and is only non-trivial on inputs with exactly k ones.

gates at all. Even better, there is a large class of monotone boolean functions for
which NOT gates are almost useless, that is, monotone circuits for such functions are
almost as efficient as non-monotone ones. These are the so-called “slice functions”.

10.1.1 Slice functions

Aboolean function f(z) is a k-slice functionif f(z) = O when |z| < k,and f(z) =1
when |z| > k; here and throughout, |x| = 21 + ... + 2, is the number of 1s in x
(see Fig. ??). Note that slice functions are monotone! They are, however, nontrivial
only on the k-th slice of the binary n-cube {0, 1}". Note also that, for every boolean
function f, the function ¢ defined by

g=f ANThyV Thyq

is a k-slice function. Here, as before, Thy(z) is the threshold-k function which
accepts a given vector x iff || > k. An important property of slice functions is
that NOT gates are almost useless when computing them. This is because we can
replace each negated input in a circuit for a k-slice function f by a small monotone
circuit computing a threshold function. The idea, due to Berkowitz (1982), is to
consider threshold functions Thy(x — z;) where

Xr—x; = (:El,.. .,xi_l,zi+1,...,x,,,)

is the vector x with its i-th component removed. A simple (but crucial) observation
is that, for all input vectors x € {0,1}"™ with exactly k ones, Thy(x — z;) is the
negation of the i-th bit z;:

Thy(z — ;) = —x; for all vectors x with |z| = k. (10.1)

10.1 When are NOT gates useless? 281

Indeed, if x1 +- - -4z, = k,thenx1+---+x;_1 + 241+ - -+ 2, > kifand only
if x; = 0.1t is known that all these n threshold functions Thy (z —x;),i =1,...,n
can be simultaneously computed by a monotone circuit of size O(n log® n). This
was proved by Mike Paterson (unpublished), Wegener (1985), and Valiant (1986).
Hence, if we replace all n negated inputs in a (non-monotone) circuit

flz, ... zn) =F(z1, ..., Tn, 21, ..., " Ty)
for a k-slice function f by outputs of this circuit, we obtain a monotone circuit
Fi(x1,...,2n) = F(x1,...,2n, Thp(z — z1),..., Thp(z — 2,)) .

It is not difficult to verify that F; also computes f. That F (z) = F(x) for all
inputs = with |x| = k ones follows from (??). To show that the same holds for all
remaining input vectors, observe that

F(z,0,...,0) < F(z,~21,...,72y) < F(z,1,...,1).

This holds because the circuit F itself is monotone, that is, has only AND and OR
gates (negations are only on inputs). Since f is a k-slice function, |z| < k implies
f(z) = 0 independent of whether z; = 0 or z; = 1. Hence, on such input vectors,

F“r(xla"'axn):F(Ila"'axnvoa"'vo)Sf(xlv"'7xn):0'

The case of input vectors with more than k ones is dual.
What we have just proved is the following:

10.1 Theorem If f is a slice function of n variables, then any non-monotone DeMorgan
circuit for f can be transformed to a monotone circuit by adding at most O(n log® n)
gates.

Thus, any lower bound w(nlog? 1) on the monotone(!) complexity of a slice
function would yield superlinear lower bound on their non-monotone complexity.
Unfortunately, existing methods for monotone circuits (and formulas) do not work
for slice functions. The obstacle is that either the set of positive or the set of
negative inputs of a slice function is not “scattered” well enough. For the lower-
bounds criterion (Theorem ??) to work, we need that the number of positive (as
well as negative) inputs of f containing a fixed r-element set is relatively small.
Now, if f is a k-slice function with, say, k < n/2, then the only interesting negative
inputs are (n — k)-element sets, corresponding to the vectors on the k-th slice of
the n-cube on which the function takes value 0. But then up to o(n=k)=r > on/2-r
such inputs may share r common elements.

When trying to understand the monotone complexity of k-slice functions, it
is important to first understand the case k = 2. This leads to so-called “graph
complexity”, a notion we have already described in Section ?? and which we will
apply in Section ?? for depth-3 circuits.

282 10 The Mystery of Negations

10.1.2 Negated inputs as new variables

There is yet another bridge between monotone and non-monotone complexities.
Namely, Lipton (2010) observed that it is possible to slightly modify any boolean
function f of n variables to obtain a monotone boolean function gy of 2n variables so
that C(f) > C, (gy) — 4n, where C(f) is the minimum size of a DeMorgan circuit
computing f, and C, (gy) the minimum size of a monotone circuit computing gj.
To show this, let f(z) be any boolean function of n variables. Take a set y of new n
variables and define a boolean function g (z,y) by

gr(z,y) = [f(@) Aa(z,y)] V B(x,y),

where
n n

a(z,y) = /\(l‘z‘ Vyi) and B(z,y) = \/(l‘i Ayi)
i=1 i=1
That is, a(z,y) = 1iff z Vy =1 and B(x,y) = 1 iff A y # 0 (component-wise
OR and AND).

10.2 Claim For any boolean function f, g is a monotone function.

Proof. If g(x,y) = gs(x,y) is not monotone, there must be vectors a, b so that
g(a,b) = 1 and changing some bit from 0 to 1 makes g = 0. Clearly, 3(a, b) = 0;
otherwise, after the change § would still output 1. Since g(a,b) = 1 it must be
the case that «(a,b) = 1. But then after the change S must be equal to 1, a
contradiction. O

10.3 Claim For any boolean function f,

gr(T1, .oy Ty, o T) = f(T1,.00, T) -

Proof. Let y be the vector y = (—x1,...,2y,). Then, by definition, a(z,y) = 1
and S(z,y) = 0. O

10.4 Theorem (Lipton 2010, Theorem 11.1) For any boolean function f of n variables,
C(f) = Cilgy) = C(f) + 4n.

Proof. The first inequality C(f) < C, (g) follows from Claim ??. Now suppose that
f has a circuit F(x1, ..., %y, 721, ..., Zy,) of size L. This is a monotone circuit
with fanin-2 AND and OR gates; inputs are variables and their negations. Replace
the negated inputs =1, ..., ~x, by new variables y = (y1,...,Yyn), extend the
circuit by adding an AND with a circuit monotone computing «(x, y) and adding an
OR with a circuit monotone computing 5(z, y). Let F’(x, y) the resulting monotone
circuit:
F/(:C’y) = [F(z,y) Na(z,y)] V B(z,y) .

It is clear that " has size at most L + 4n. We claim that F" is the desired monotone
circuit, that is, g¢(z,y) = F'(z,y).

10.2 Markov’s theorem 283

Suppose that F” is different from g7 for some values of the inputs x and y. Then,
clearly, 5(z, y) = 0; otherwise, they would agree. Also (z, y) must equal 1; again,
if not, the two values could not disagree. We now claim that for each k, 1, = —y.
Suppose that this was false. Then, let x;, = yj, for some k. Clearly, the common
value cannot be 1 since 8 = 0. Also the common value cannot be 0 since o = 1.
This proves that for each k, x;, = —yy. But then

fx)=F(x1,...,Tn,"21,...,~2y) = F'(z,y).

Since, by Claim ??,

f(x) :gf(xla'"amna_‘xlw"a_‘xn) :gf(may)7

we have that g¢(z,y) = F'(z, y). This is a contradiction with our assumption that
gy and F” differ on input (z, y). O

10.2 Markov’s theorem

We now consider circuits over {A, V, =} that are not necessarily DeMorgan circuits.
That is, now inputs of NOT gates may be arbitrary gates, not just input variables.
The inversion complexity, I(f), of a boolean function f is the minimum number of
NOT gates in any such circuit that computes f. It is clear that I(f) < n for every
boolean function f of n variables: just take a DeMorgan circuit.

More than 50 years ago, Markov (1957) made an amazing observation that every
boolean (and even multi-output) function of n variables can be computed by a
circuit with only about log n negations! Moreover, this number of negations is in
general necessary! To state and prove this classical result, we need a concept of the
“decrease” of functions.

For two binary vectors ¢ = (1,...,%,) and y = (y1,...,yn) We write, as
before, x < y if z; < y; for all i. We also write ¢ < yif x < y and x; < y;
for at least one i. A boolean function f : {0,1}" — {0,1} is monotoneif v < y
implies f(x) < f(y). A chain in the binary n-cube is an increasing sequence
Y = {y! <y? < ... < y*} of vectors in {0, 1}". Note that no chain can contain
more than n + 1 vectors. A typical chain of this length consists of vectors 1¢0" ¢,
i=0,1,...,n.

Given such a chain, we look at how many times our boolean function f changes
its value from 1 to 0 along this chain, and call this number the decrease of f on
this chain. That is, we count how many times the following event happens along
the chain: © < y but f(x) > f(y). Formally, say that ¢ is a jump position (or a
jump-down position) of f along a chain Y = {y! < y? < ... <y*},if f(y*) =1
and f(y**1) = 0. The number of all jump-down positions is the decrease dy (f) of f
on the chain Y. The decrease d(f) of f is the maximum of dy (f) over all chains Y.

Note that we only count the jump-down positions from 1 to 0: those j for which
f(y?) =0and f(y’*!) = 1 (the jump-up positions) do not contribute to dy (f). In

284 10 The Mystery of Negations

particular, we have that d(f) < n/2 for every boolean function f of n variables,
and d(f) = 0 for all monotone functions.

10.5 Theorem (Markov 1957) For every boolean function f,
d(fy =20 —1.

That is, the minimum number I(f) of negations that are enough to compute f
is equal(!) to the length of the binary code of d(f), I(f) = [log(d(f) + 1)].

10.6 Remark The same result also holds for circuit computing sets F' of boolean
functions. We can view each subset F’ of |F'| = m functions as an operator F :
{0,1}™ — {0,1}™. In this case, the decrease of F along a chain Y = {y! < % <
... < y*} is the number vectors y' such that F(y') £ F(y'*!).

We prove the lower and upper bounds on I(f) separately.
10.7 Lemma (Upper bound) d(f) < 2/(f) —1.

Proof. We use induction on I(f). The basis case I(f) = 0 is obvious because then
f is monotone, and d(f) = 0. For the induction step, assume that d(g) < 2/(9) — 1
holds for all boolean functions with I(g) < I(f)—1.In any circuit for f (containing
at least one negation) there is a NOT gate whose input does not depend on the
outputs of any other NOT gates. So, f may be decomposed as f(x) = g(—h(z), z),
where I(g) = I(f) — 1 and I(h) = 0 (h is a monotone function).

Fix a chain Y = {y! < 3? < ... < y*} for which dy (f) = d(f). By mono-
tonicity of h, there is an 1 < [< k such that h outputs 0 on all vectors in
Yy = {y! < y? < ... < y'},and outputs 1 on all remaining vectors in Y; := Y\ Y;.
Now let g;(z) := g(—i,z) fori = 0,1. Then I(g;) < I(g) < I(f) — 1, so by the
induction hypothesis, dx (g;) < 27(9:) — 1 for every chain X. In particular,

dy, (f) = dy, (g0) <2709 —1 < 2MD=1 1
le (f) = le (gl) < QI(QI) -1< 21(f)_1 —1.

It follows that d(f) = dy (f) < dy, (f) +dy, (f) +1 < 2! —1. O
10.8 Lemma (Lower bound) d(f) > 2/(f) — 1.

Proof. We have to prove that I(f) < M(f) where M (f) := [log(d(f)+1)] is the
length of the binary code of d(f). We will do this by induction on M (f). The base
case M (f) = 0 is again obvious, because then d(f) = 0, so f is monotone and
1(f) = 0.

For the induction step, suppose I(g) < M (g) holds for all boolean functions g
such that M (g) < M (f) — 1. Let S be the set of all vectors = € {0,1}" such that
dy (f) < 2MU)=1 for every chain Y starting with z:

S ={x | dy(f) < 2M~1 for any chain Y starting in z} .

10.2 Markov’s theorem 285

Bilder/cube4-eps-converted-to.pdf

Fig. 10.2 Chain Yy ends in «, and chain Y7 starts with x.

Note that the set .S is upwards closed: if z € S and « < y, then y € S. This holds
because each chain starting in y can be extended to a chain starting in x.

10.9 Claim For every chain Y ending in a vector outside the set S we also have
dy(f) < 2M(H)-1,

Proof. Assume that there is a chain Yj ending in a vector ¢ S and such that
dy, (f) > 2M)1 (Fig. 2?). The fact that does not belong to S means that there
must be a chain Y] starting in z for which dy, (f) > 2™(/)=1 But then the decrease
dy,uy, (f) of f on the combined chain Yy U Y7 is

dy,uvs () = dy, (f) + dy, (f) > 2M) = 2MesldDFVT > g(f),

contradicting the definition of d(f). O

Consider now two functions fj and f; defined as follows:

) f(x) ifxels,)1 ifx e s,
fO(z)_{o P fl(z)_{f(x) ifodS. (10.2)

10.10 Claim Both d(fo) and d(f,) are strictly smaller than 2 (/)=1,

Proof. We show this for fj (the argument for f; is similar). Let Y be a chain for
which dy (fo) = d(fo). Let x be a vector which Y starts in and y be a vector which
Y endsin. If z € Sory ¢ S, then d(fy) < 2M(/)=1 by Claim ?? and definition
of S. So, assume that x ¢ S and y € S. Since the set S is upwards closed, some
initial part Yy of the chain Y lies outside S and the remaining part Y7 lies in S. By
the definition of the function fy, it is constant 0 on Y, and coincides with f on
Y. By the definition of the set S, we have that the decrease of fy on Y; is smaller
than 2M(f)~1 _ 1. Since fo(z) = 0 for all z € Yy, there cannot be any additional
jump-down of fj along the entire chain Y = Y, U Y7. ad

Hence,

286 10 The Mystery of Negations
M(fi) = [log(d(f:) +1)] < Mlog2M D=1 = M(f) - 1.

By the induction hypothesis, I(f;) < M(f;) < M(f) — 1 for bothi = 0,1. It
therefore remains to show that

I(f) < 14+ max {I(fo), I(f1)}. (10.3)

For this, we need one auxiliary result. A connector of two boolean functions fj(x)
and f1(x) of n variables is a boolean function g of n + 2 variables such that

9(0,1,2) = fo(x) and g(1,0,2) = f1(z).

10.11 Claim Every pair of functions fy(x), f1(x) has a connector g such that

I(g) < max {I(fo),I(f1)}

Proof. We argue by induction on 7 := max {I(fo),I(f1)}. If r = 0 then both
functions f; are monotone, and we can take

g(u,v,z) = (uA f1)V (v A fo).

For the induction step, let C;(z) be a circuit with I(f;) negations computing f;(z).
Replacing the first NOT gate in C; by a new variable £ we obtain a circuit C/ (¢, z)
on n + 1 variables which contains one NOT gate fewer. Let f/(&, «) be the function
computed by this circuit; hence, I(f/) < r — 1. Moreover, if h;(x) is the monotone
function computed immediately before the first NOT gate in C;, then

fo(z) = fo(=ho(x),z) and fi(x) = fi(=hi(z),z). (10.4)

By the induction hypothesis, there is a boolean function ¢’(u, v, £,) (the connector

of the pair f§, f{) such that I(g’) < max {I(f}), I(f{)} <r - 1,
G(0,1,6,2) = fi(€,x) and ¢'(1,0,€,2) = fl(€.2).
We now replace the variable ¢ in ¢'(u, v, £, x) by the function
Z(u,v,2) = ((uAhi(z)) V(v A ho(z))) .

Since Z(0,1,x) = —ho(z) and Z(1,0,x) = —hy(z), (??) implies that the obtained
function g(u, v, x) is a connector of fy and f;. Since the functions hg and h; are
monotone, we have I(g) <1+ I(g’) < r, as desired. m|

We now can complete the proof of Lemma ?? as follows. Let ys(z) be the
characteristic function of S, that is, yg(z) = 1 fora € S,and xs(z) = Oforz &€ S.
Let g be a connector of fy and f; guaranteed by Claim ??. By the definition of the
functions fy and f;, we then have that our original function f(z) can be computed
as

f(z) = g(—xs(x), xs(x), z) .

10.3 Formulas require exponentially more NOT gates 287

Indeed, if z € S then f(z) = fo(z) = g(0,1,z) = g(—xs(x), xs(x),z), and
similarly for all vectors « ¢ S. Since the set S is upwards closed, its characteristic
function xg(x) is monotone, and hence, requires no NOT gates. Thus, Claim ??
implies

I(f) <1+1(g) < 1+max {I(fo),I(f1)}

This completes the proof of (??), and thus the proof of Lemma ??. O

10.12 Remark (Nondeterministic circuits) A nondeterministic circuit is a circuit
C(z,y) whose input variables are partitioned into two groups: “actual” inputs
Z1,...,Tn, and “guess” inputs y1, . .., Ym. A circuit computes a boolean function
f(z) in a natural way: f(x) = 1iff C(z,y) = 1 for at least one y € {0,1}™.
Let I(f,m) denote the minimum number r such that f can be computed by a
nondeterministic circuit over {A,V, =} with negations and at most m guess
inputs. Nondeterministic circuits were (apparently) first introduced by Karchmer
and Wigderson (1993b), where several tight combinatorial characterizations of such
circuits are presented. Morizumi (2009b) extended Markov’s theorem by showing
(see Exercises ?? and ??) that

I(f,m) = [logy(d(f)/2™ +)]

10.13 Remark (Symmetric functions) For circuits computing symmetric boolean
functions, Tanaka, Nishino and Beals (1996) established the following structural
result. Let f be a symmetric boolean function of n variables. Suppose that d(f) = m,
where m = 2" — 1 for some integer r. For a € {0,1}", let d(a) denote the
maximum decrease of f along a chain ending in a; note that this number depends
only on the number of ones in a. Consider an arbitrary circuit G = (g1, g2, - - -, gt)
computing f and using r negations. Fori = 1,...,r, let h; be the boolean function
computed at the input of the i-th NOT gate. Then, for every a € {0,1}", the 0-1
sequence (hq(a),. .., h,(a)) is the binary representation of ds(a).

10.3 Formulas require exponentially more NOT gates

We now consider formulas, that is, circuits with AND, OR and NOT gates whose
fanout in a circuit is 1. The only difference from the general circuits (over the same
basis) considered in the previous section is that now the underlying graph of a
circuit is a tree, not an arbitrary directed acyclic graph. It is intuitive that requiring
fanin 1 should restrict the power of circuits. And indeed, we will now show that
the minimal number of NOT gates in formulas must be exponentially larger than
in circuits.

Define the inversion complexity, I'r(f), of a boolean function f in the class of
formulas as the minimum number of NOT gates contained in a formula computing f.

288 10 The Mystery of Negations

By Markov’s theorem, the minimum number of NOT gates in a circuit for f is
aboutlj log d(f), where d(f) is the decrease of f.In the case of formulas we have:

10.14 Theorem (Nechiporuk 1962) For every boolean function f, we have

Ie(f) = d(f).

This result was apparently not known in the West, and it was independently
proved by Morizumi (2009). We again prove the lower and upper bounds on I (f)
separately.

10.15 Lemma (Lower bound) Iz (f) > d(f).

Proof. Let C be a formula computing f, and let Iz (C) be the number of NOT gates
in it. Fix a chain Y = {y* < y? < ... < y*} for which dy (f) = d(f). Our goal
is to show that dy (f) < Ip(C). This follows by induction on the leafsize of C'
using the following three inequalities: dy (f A g) < dy (f) + dy(g),dy (f V g) <
dy(f) +dy (g) and dy(—\f) < dy(f) + 1.

The first two inequalities are trivial because every jump-down position of f A g
as well as for f V g must be a jump-down position of at least one of the functions
f and g. To see the third inequality, observe that each jump-down position for
—f is a jump-up position for f. Hence, dy (—f) — dy (f) = f(v*) — f(y'), and
dy (=f) < dy(f) + 1 follows. 0

10.16 Lemma (Upper bound) Ir(f) < d(f).

Proof. The original proof by Nechiporuk (1962) is somewhat complicated because
he describes an explicit formula. But, as observed by Morizumi 2009, one can also
argue by induction on d(f), as in the proof of Lemma ??. The base case d(f) = 0 is
trivial, since then f is monotone and Ir(f) = 0.

For the induction step, suppose that d(f) > 1,and Iz (f") < d(f’) for all boolean
functions f’ such that d(f’) < d(f) — 1. Let S be the set of all vectors z € {0, 1}"
such that dy (f) = 0 for every chain Y starting with x:

S ={z | dy(f) = 0 for any chain Y starting in } .

Note that the set S is upwards closed: if x € S and = < y then y € S. This holds
because each chain starting in y can be extended to a chain starting in z.

As in the proof of Markov’s theorem, consider two functions fy and f; defined
by Eq. (??). Let also x s be the characteristic function of the set S itself, that is,
xs(xz) =1forz € S,and xs(x) = 0for z € S. It is easy to see that

f=J oV (fiA=xs)-
10.17 Claim d(fy) = d(xs) =0and d(f;) < d(f) — 1.

" As before, all logarithms are to the basis of two.

10.4 Fischer’s theorem 289

Proof. Since the set S is upwards closed, its characteristic function y g is monotone,
implying that d(xs) = 0. That d(fo) = 0 follows from the fact that fy cannot take
value 1 on a chain Y until Y enters the set S.

To show that d(f1) < d(f) — 1, assume that d(f1) > d(f). Since we only
count the number of changes of values of f on a chain from 1 to 0 (not from 0
to 1), the maximum d(f;) = maxx dx(f1) is achieved on a chain X ending in a
vector y such that f1(y) = 0. Since dy (f) = 0 for all chains Y starting with some
vector in S, there must be a chain X which ends in some vector y ¢ S and for
which dx (f1) > d(f) holds. On the other hand, the fact that y is not in .S implies
that there must be a chain Y starting in y such that dy-(f) > 1. But then for the
combined chain X UY we have that dxuy (f) = dx(f) + dy(f) > d(f) + 1,
contradicting the definition of d(f). O

By Claim ?? and the induction hypothesis, we have that I»(fy) = 0, Ir(xs) =0
and Ir(f1) < d(f) — 1. Hence, the desired upper bound follows:

Ip(f) < Ir(fo) + Ip(f1) +1r(xs) +1 < d(f). o

10.4 Fischer’s theorem

According to Markov’s theorem, every boolean function of n variables can be
computed by a circuit with at most M (n) = [log(n + 1)] NOT gates. The next
important step was made by Fischer (1974): restricting the number of negations to
M (n) entails only a polynomial blowup in circuit size!

10.18 Theorem (Fischer 1974) If a function on n variables can be computed by a
circuit over {A\,V, 1} of size t, then it can be computed by a circuit of size at most
2t + O(n?log® n) using at most [log(n + 1)] NOT gates.

Proof. 1t is easy to show that every circuit of size ¢ can be transformed to a circuit
of size at most 2¢ such that all negations are placed only on the input variables.
Hence, it is enough to show how to compute the (multi-output) function

INV, (21, ..., Tp) = (mx, ..., 0Ty)
by a circuit of size O(n? log® n) using M (n) := [log(n+1)] negations; the function
INV,, is also known as an inverter.

We already know (see Eq. (??)) that, on inputs = € {0, 1}" with exactly k ones,
the negation —z; of its i-th bit can be computed as —x; = Thy(x — x;), where

Thi(x — x;) := Thy(z1, ..., 2i—1, Tig1,. .., ZTn) -

Using this observation, we can also simulate the behavior of —z; on all inputs. For
eachi=1,2,...,n consider the function

290 10 The Mystery of Negations

n

filw) ==\ (-Thi(2) v Thi(z — ;) .

k=1

10.19 Claim For any z € {0,1}" and any 1 < i < n, we have that f;(z) = —a;.

Proof. Take an arbitrary vector a € {0,1}". If —z;(a) = 1 then a; = 0, implying
that in this case Thi(a) = Thg(a — a;) forallk = 1,..., n, and hence, f;(a) = 1.
If —=z;(a) = 0 then a; = 1. So, for k = |a|, we then have Thy(a) = 1 and
Thy(a — a;) = 0, implying that f;(a) = 0. O

It can be shown (we will not do this) that all the functions Thy, () and Thy (z—x;)
(0 <k <n,1 <i < n)canbe computed by a monotone circuit of size O(n? log2 n).
Hence, it remains to compute the function

—T(z) := (=Thy(z), "Tha(z),. .., Thy,(z))

using at most M (n) = [log(n + 1)] negations. To do this, we first take a monotone
circuit Cy (x) computing the function

T(z) := (Thy(z), Thy(z),. .., Thy(z)) .

Observe that the outputs of this circuit belong to the set A, of all inputs y €
{0,1}"™ whose bits are sorted in decreasing order y; > y2 > ... > y,. That is,
Agort consists of n + 1 strings of the form 10", i = 0,1,...,n. Using only
M (n) negations it is possible to construct a circuit Ca(y) of size O(n) which
computes INV,, (y) correctly on all inputs in A+ (Exercise ??). Thus, the circuit
C(z) = C3(C4(x)) computes —T'(z), as desired. O

10.20 Remark The additive term O(n? log® n) in Theorem ?? has been subsequently
improved. Namely, Tanaka and Nishino (1994) proved that 1Nv,, can be computed
by a circuit with 7 = [log,(n 4 1)] NOT gates and using at most O(n log® n) gates
in total; the depth of the constructed circuit is O(log? n). Later, Beals et al. (1998)
improved the size to O(n log n); the depth of their circuit is O(log n). By increasing
the depth to O(log ™) n) and allowing O(log' *°™") n) negations, Morizumi and
Suzuki (2010) were able to reduce the size to O(n).

10.5 How many negations are enough to prove P £ NP?

In order to prove the well known conjecture that P # NP, it would be enough to
prove that some functions f : {0,1}" — {0,1}" in NP cannot be computed by
circuits of polynomial (in n) size. By the results of Markov and Fischer, it would be
enough to prove a “weaker” result. Namely, let

10.5 How many negations are enough to prove P # NP? 291

P(" = class of all sequences of functions f : {0,1}" — {0,1}" computable by
polynomial-size circuits with at most » NOT gates.

Let CLIQUE be the monotone boolean function of (g) variables which accepts a
given input graph on n vertices iff it contains a clique on n/2 vertices (see Section ??).
Since P # NP if CLIQUE ¢ P, Markov-Fischer results imply that:

If CLIQUE ¢ P for r = [log(n + 1)], then P # NP.
The breakthrough result of Razborov (1985a), see Theorem ??, states that
CLIQUE ¢ P") for r = 0.

Amano and Maruoka (2005) showed that essentially the same argument yields a
stronger result:

CLIQUE ¢ P") even for r = (1/6) loglog n.

At first glance, this development looks like a promising way to prove that P # NP:
just extend the bound to circuits with a larger and larger number r of allowed
NOT gates. But how large must the number 7 of allowed NOT gates be in order to
yield the conclusion P # NP? This question motivates the following parameter for
functions f:

R(f) = min{r | f & P") implies f & P}.
By the results of Markov and Fischer, for any f, we have that

0 < R(f) < [log(n +1)]

holds for every function f of n variables. This parameter is most interesting for
monotone functions since they need no NOT gates at all, if we don’t care about
the circuit size. We already know that R(f) = 0 for a large class of monotone
boolean functions f, namely for slice functions. But no specific slice function f
with f & P(9) is known.

On the other hand, if it were the case that R(f) < (1/6)loglogn for every
monotone function f, then we would already have that CLIQUE ¢ P, and hence,
that P # NP. Unfortunately, it was shown in (Jukna, 2004) that there are monotone
functions f in P for which R(f) is near to Markov’s log n-border.

10.21 Theorem There is an explicit monotone function f : {0,1}" — {0,1}" such
that f € P but f & P") unlessr > logn — O(loglogn).

Proof. The proof idea is to take a monotone boolean function g : {0,1}" — {0,1}
which is feasible (that is, belongs to P), and consider a monotone multi-output
function f : {0, 1}*" — {0,1}* computing k = 2" copies of g on disjoint sets of
variables. We call such a function f a k-fold extension of g. We then show that, if
g requires monotone circuits of exponential size, then f requires circuits of super-
polynomial size, even if up to » NOT gates are allowed.

292 10 The Mystery of Negations

10.22 Claim Let f be a monotone boolean function, and k be a power of 2. If the
k-fold extension of f can be computed by a circuit with log k NOT gates, then f
can be computed by a monotone circuit of the same size.

Proof. It is enough to prove the lemma for k = 2 (we can then iterate the argument).
Thus, take a circuit with one NOT gate computing two copies fo = f(Yp) and
f1 = f(Y71) of the monotone function f(X) on disjoint sets of variables. Let g be
the monotone(!) boolean function computed at the input to the (unique) NOT gate.

We have only two possibilities: either some minterm of ¢ lies entirely in Y7, or
not. In the first case we assign the constant 1 to all the variables in Y7, whereas in
the second case we assign the constant 0 to all the variables in Yj. As the function
g is monotone, in both cases it turns into a constant function (1 in the first case,
and 0 in the second), and the subsequent NOT gate can be eliminated. But since
YoNY; = 0, the setting Y. — € does not affect the function f;_.. Hence, we obtain
a circuit which contains no NOT gates and computes either fj or fi, and hence,
also f(X) after renaming the input variables. O

To finish the proof of Theorem ??, we will make use of an explicit monotone
boolean clique-like function 7}, in m variables considered by Tardos (1987). In
Section ?? we have shown (see Theorem ??) that this function is feasible—can be
computed by a non-monotone circuit of size m® ") —but every monotone circuit
computing it requires size is exponential in £2(m!/16).

Let n = km where k = 2" and r = |logn — 32loglogn|; hence, k is about
n/(logn)32. Consider the k-fold extension f,, of T},. Then f,, can be computed by
a (non-monotone) circuit of size at most & - m©P) | which is, of course, polynomial
in n. Hence, f,, € P. On the other hand, Claim ?? and Theorem ?? imply that
every circuit with at most » NOT gates computing f,, must have size exponential
in m'/1% ~ (n/k)Y/16 = (logn)3¥/'6 = (logn)2. Thus, f, ¢ P") unless r >
logn — 32loglog n. a

The definition of Tardos’ function 7}, is somewhat complicated. Much more
explicit is the logical permanent function f,,(z) = V,cg Aiti Tio@) of m?
variables, where S, is the set of all m! permutations of 1,2, ..., m. This function
also belongs to P, but requires monotone circuits of size m?(1°8) (see Theorem ??).
For the k-fold extensions f,, of this function the same argument yields R(f,) =
2(logn).

The message of Theorem ?? is that, in the context of the P vs. NP problem, it is
important to understand the role of NOT gates when their number r is very close
indeed to the Markov-Fisher upper bound of log n.

The function f,, in Theorem ?? has many output bits. It would be interesting to
prove a similar result for a boolean (that is, single output) function.

10.23 M Research Problem
Find an explicit sequence of monotone boolean (one-output) functions f,, such that

R(fn) = £2(logn).

10.5 How many negations are enough to prove P # NP? 293

Exercises

10.1 Show that I(1nv,,) = [logs(n + 1)].
10.2 Show that I(—®,,) = [logy(n + 1)], where @, (z) = z1 a2 B -+ B xp.

10.3 Let n = 2" — 1, and consider the set A+ of all n + 1 vectors « € {0,1}"
whose bits are sorted in decreasing order x1 > x9 > ... > x,,. Construct a circuit
C,, of size O(n) which has at most NOT gates and computes the inverter INv,, ()
for all inputs © € Aot

Hint: Let x = (z1,...,%n) € Asort. Take the middle bit z,, (m = n/2) and show that the
output of C',, can be obtained from the output of C,, /> and the output of =@y, . For this, observe
that —x,, = 1 implies ~x; = —x, for all j > m, whereas —~z,, = 0 implies ~x; = —x, for all
j<m.

10.4 Let, as before, I(f, m) denote the minimum number r such that f can be
computed by a nondeterministic circuit over {A, V, -} with r negations and at most
m guess inputs (see Remark ??). Prove that

I(f,m) = [logy(d(f)/2™ +1)] .

Hint: Induction on m, the basis case being Markov’s theorem. For the induction step, let C'(z, y)
be a nondeterministic circuit with m guess bits y = (y1, . . . , ym) and r negations computing f.
Take a chain X = {2 < 22 < ..., z*} with dx (f) = d(f), and let I C {1,...,k} be the
set of jump-down positions of f along this chain. For each ¢ € I there must exist a setting
y' € {0,1}™ of values to the guess bits such that C(z*, y*) = 1, whereas C'(z**, y) = 0 for all
settings 3. Look at the last, m-th position y%, of vectors y*, i € I.If y’, = 0 for at least half of
these vectors, then fix the last guess bit of C(z, y) to 0; otherwise, fix it to 1. Let f’ be a boolean
function computed by the resulting nondeterministic circuit with m — 1 guessing bits. Argue that
d(f") > ds(X) > [d(f)/2], and use the induction hypothesis.

10.5 Prove that I(f,m) < max{I(f) —m,0} + 1 < [log,(d(f)/2™ +1)] + 1.

Hint: By Markov’s theorem, there is a deterministic circuit C' which computes f and contains
I(f) NOT gates N1, ..., Ny(y). Let i), and oy be the input and the output of Ny, respectively.
Let z be the output of C'. Use m nondeterministic guess inputs y1, . .., Ym to guess the outputs
of the first m NOT gates and one additional NOT gate to guarantee correctness of the guess.
Compute z A (A= (ix V ox)) A (= Vi, (ir V o)) as the output of the new (nondeterministic)
circuit. Show that C’(z, y) # 0 only if iy, = —yy, forall k = 1,...,m. In this case, z = f since
o = Yy = iy for all k.

Chapter Notes

Besides the results described above, the question about the power of NOT gates was
considered by many authors. In particular, Okolnishnikova (1982) and Ajtai and
Gurevich (1987) showed that there exists monotone functions that can be computed
by polynomial-size, constant-depth circuits with unbounded-fanin gates, but cannot

294 10 The Mystery of Negations

be computed by monotone, polynomial-size, constant depth circuits. Moreover, it
was shown by Santha and Wilson (1993) that in the class of constant-depth circuits
we need much more than [log(n + 1)] negations: there is a (multi-output) function
computable in constant depth that cannot be computed in constant depth with
o(n/log" T n) negations. (Note that this result does not contradict with the Markov-
Fischer upper bound: their simulation requires logarithmic depth.) Another line
of research was to restrict the use of NOT gates. For circuits of logarithmic depth,
a lower bound R(f) = {2(n) was proved by Raz and Wigderson (1989) under the
restriction that all the negations are placed on the input variables: there is an explicit
monotone function (corresponding to the connectivity problem for graphs) that can
be computed by polynomial-size, depth O(log® n) circuits, but cannot be computed
by polynomial-size, depth k log n circuits using only o(n/2*) negated variables.

Part IV

Bounded Depth Circuits

11. Depth-3 Circuits

We consider boolean circuits with unbounded-fanin AND and OR gates. Inputs are
variables and their negations. Conjunctive and disjunctive normal forms are such
circuits of depth two, and exponential lower bounds for them are easy to prove. For
example, any depth-2 circuit computing the parity function z; G2 & - - - & x,, must
have 2"~ gates. The situation with depth-3 circuits is much more complicated—this
is the first nontrivial case.

11.1 Why is depth 3 interesting?

A I3 circuit is a circuit of depth 3 whose gates are arranged in three layers: AND
gate at the top of the circuit (this is the output gate), OR gates on the next (middle)
layer, and AND gates on the bottom (next to the inputs) layer (see Fig. ??). Inputs
are variables and their negations. As before, a circuit is a formula if each its gate
has fanout at most 1. Thus, II5 formulas are just ANDs of DNFs. A Y5 circuit is
defined dually by interchanging the OR and AND gates. Thus, a X3 formula is just
an OR of DNFs. The size of a circuit is the total number of gates in it.

There are several methods for proving strong lower bounds for depth-3 circuits,
and even for depth-d circuits with an arbitrary constant d. We will discuss these
methods in this and the next chapter. For depth d the obtained lower bounds are
exponential in n'/(?=1); for depth 3 this is exponential in \/n. However, these results
do not solve the problem completely, because most boolean functions require much
larger circuits.

Namely, let C4(n) be the Shannon function for depth-d circuits, that is, the
smallest number ¢ such that every boolean function can be computed by a depth-d
circuit containing ¢ gates. Let also L;(n) be the Shannon function for depth-d
formulas; here all gates have fanout at most 1, and we count the leaves, not the
gates. It can be easily shown that Lo(n) = n2" (see Exercise ??). Lupanov (1961,
1977) proved that, for boolean functions of maximal circuit complexity, depth-3
circuits are already as powerful as circuits of any fixed depth: for d > 3 we have

297

298 11 Depth-3 Circuits

T1 T27T1 T2L3T4T3 T4 T1T2 T1L2 T37T4 T3 T4

Fig. 11.1 A II3 formula for Parity 1 @ z2 @ z3 @® x4 of n = 4 variables.

Lg(n) ~ L3(n) ~2"/logn and Cyi(n) ~ Cz(n) ~2"/n.

Thus, there exist boolean functions that require far more than 2V gates in depth-d
circuits, and it would be interesting to exhibit an explicit function requiring more
than this number of gates.

Even to find an explicit boolean function f of n variables such that any depth-3
circuit for f requires 29(") gates, for some g(n) = w(n/loglogn), is an important
open problem. Namely, this would give the first super-linear lower bound on the
size of log-depth circuits with NOT and fanin-2 AND and OR gates, thus resolving
an old problem in circuit complexity. We explain this implication next.

A binary circuit is a circuit in which all boolean functions of at most two vari-
ables can be used as gates. Let NCj; | denot the set of all boolean functions
fn(x1,...,2,) for which there exist constants ¢;1,c2 > 0 such that f,, can be
computed by a binary circuit of depth c; logn and size caon.

Fix an arbitrarily small constant ¢ > 0, and let X5(f,,) denote the smallest
number ¢ such that f,, can be written as a sum of ¢ CNFs each with at most 2™
clauses. Note that the top gate is now a sum gate (over the reals), not just an OR
gate. Thus, what we obtain is a restricted version of a X5 circuit: the circuit is a
formula (all gates have fanout 1) and, for every input vector, at most one AND gate
on the middle layer is allowed to output 1. Formally Y5(f,,) depends on €; however,
we suppress this for notational convenience.

An important consequence of Lemma ?? is that any log-depth circuit of linear
size can be reduced to a X3 circuit of moderate fanin of middle layer gates and not
too large fanin of the top gate.

11.1 Lemma (Valiant 1983) If f,, € NC},, thenlog X3(f,) = O(n/loglogn).

Proof. The idea is to decompose a given circuit into subcircuits of depth d < elogn;
by Lemma ??, this can be done by removing a relatively small number of wires.

" Usually, the nonuniform class NC* denotes the class of all boolean functions computable by
binary circuits of depth d = O(log® n) and polynomial size. Thus, superscript “1” tells us that we
are dealing with log-depth circuits, and subscript “lin” tells that we only allow linear size. The
acronym “NC” stands for “Nick’s Class” and was suggested by Stephen Cook after Nick Pippenger
for his research on circuits with polylogarithmic depth and polynomial size.

11.1 Why is depth 3 interesting? 299

Since each gate has fanin at most 2, each subcircuit can depend on at most 2d — pe
its inputs. We can thus write each subcircuit as a CNF with at most 2" clauses. It
then remains to combine these CNFs into a depth-3 formula computing the original
function.

To be more precise, take a circuit C' of depth ¢; log n with con fanin-2 gates.
Hence, the circuit has at most S < 2¢on wires. We are going to apply Lemma ??
which states the following. Let d = 2¥ and 1 < r < k be integers. In any directed
graph with S edges and depth d it is possible to remove S/k edges so that the
depth of the resulting graph does not exceed d/2".

Now apply this lemma with & about log(c; logn) and r about log(cy/e) (a
constant). This gives us a set E with |E| < Sr/k = O(n/loglogn) wires whose
removal leaves us with a circuit of depth at most d = 27" - ¢; logn = elogn.

Take a set of new variables y = (y. | e € E), one for each cut wire. For each
such wire e = (u, v) € E, let C, be the subcircuit of C' whose output gate is u. Each
subcircuit C, depends on some z-variables (inputs of the original circuit) and some
y-variables (variables attached to removed wires). Moreover, each subcircuit C,
depends on at most 2¢ = n¢ variables because each of these subcircuits has depth
at most € logn, and each gate has fanin at most 2. Hence, the test y. = C.(z,)

can be written as a CNF ¢, (x, y) with at most 22" = 27" clauses. Consider the CNF

1#(%1/) = ¢o($,y) A /\ d)e(x’y))

eckE

where ¢ is the CNF of the last subcircuit, rooted in the output gate of the whole
circuit. The CNF ¢ has (| E| + 1)2™ clauses, and for every assignment o = (v, |
e € E) in {0, 1}Z], we have that ¢)(z,) = 1iff C(z) = 1 and the computation
of C on input z is consistent with the values assigned to cut wires by «. Since the
computation of C' on a given vector x cannot be consistent with two assignments
oy # g, the function computed by our circuit C' can be written as a sum C'(z) =
S, U(z,), overalla € {0, 1}IE], of s = 2IEI CNFs, each with at most (| E|+1)2"°
clauses. O

11.2 @ Research Problem

Exhibit an explicit boolean function of n variables requiring depth-3 circuits of size
2w(n/ loglog n))

The best we can do so far are lower bounds of the form 22(V"), The only known
strongly exponential lower bounds were obtained by Paturi, Saks and Zane (2000)
under the restriction that the bottom OR gates have fanin 2, that is, when the circuit
is just an OR of 2-CNFs. Currently known lower-bound techniques seem incapable
of providing a lower bound better than 2™*{¥:/k} on the number of gates, where
k is the bottom fanin.

300 11 Depth-3 Circuits

11.2 An easy lower bound for Parity

A binary vector is odd if it has an odd number of 1s; otherwise the vector is even.
A parity function is a boolean function 1 @ z2 & - - - @ z,, which accepts all odd
vectors and rejects all even vectors. Recall that a formula is a circuit in which all
gates have fanout at most 1. The top fanin is the fanin of the output gate.

11.3 Theorem (Tsai 2001) Every I13 formula of top fanin t computing x1 @ xo O
- @ x,, requires at least t2("~1)/* AND gates on the bottom layer.

Proof. Let s; be the fanin of the i-th OR gate on the middle layer. The ANDs
at bottom layer can be labeled with (i,j) for 1 < i < tand1 < j < s; (see
Fig. ??). Let h; j denote the (4, j)-th AND. Then the circuit computes the function
A, \/j=1 hi, ;. By the distributive rule A (y V 2) = (z Ay) V (z A 2), this is an
OR of ANDs of the form H = hy j, A haj, A+ A hy j,. We call these “big” ANDs
H the monomials produced by the circuit. We claim that: each monomial H accepts
at most one odd vector. To show this, say that a variable x; is seen by a gate, if either
x; or T; is an input to this gate.

Case 1: Each of n variables is seen by at least one of hy j,, ha j,, ..., h j,. In this
case, H is a (possibly inconsistent) product of all n variables, and hence, can accept
at most one vector.

Case 2: Some variable z; is seen by none of the gates hy j,,h2 5,,...,ht j,. We
claim that in this case H (1) = (). Indeed, if the set H (1) of accepted inputs
is nonempty, that is, if the monomial H contains no variable together with its
negation, then H~1(1) must contain a pair of two vectors that only differ in the
i-th position. But this is impossible, since one of these two vectors must be even,
and the circuit would wrongly accept it.

Hence, we have s153 - - - s; monomials H, and each of them can accept at most
one odd vector. Since we have 2”1 odd vectors, this implies 5159 -+ S¢ > on—1,
Since our circuit is a formula, the total number of AND gates on the bottom layer is
S1 4 -+ + S¢. Using the arithmetic-geometric mean inequality, we can conclude
that s; + -+ 5, > t(s159 - -~ 5¢) '/t > 2D/t O

11.3 The method of finite limits

The above argument only gives nontrivial lower bounds for circuits with small top
fanin, much smaller than n. We now describe another, less-trivial argument which
works for circuits with arbitrary top fanin. This approach, suggested by Hastad,
Jukna and Pudlak (1995), is based on so-called “finite limits”.

11.4 Definition (Finite limits) A vector y € {0, 1}" is a k-limit for a set of vectors
B C {0, 1}™ if for every k-element subset S C {1,...,n} of positions there exists
a vector z € B such that

11.3 The method of finite limits 301
y # xbuty; =x; foralli € S.

This concept, suggested by Sipser (1985), captures the following “information
bottleneck” if y does not belong to B but is a k-limit for B then the fact that y ¢ B
cannot be detected by looking at k or fewer bits of . If a k-limit y for B satisfies
the stronger condition

y#rxandy < xbuty;, =x; foralli € S,

then we call y a lower k-limit for B.

The following lemma reduces the lower bounds problem for depth-3 circuits to a
purely combinatorial problem about finite limits. We say that a circuit C' separates
apair A,BC{0,1}", AnNB=01if

1 £ A
C’(x): orxr € A,
0 forx € B.

We also say that a circuit has bottom neg-fanin k if each gate on the bottom (next to
the inputs) level at most k negated input-variables as inputs; the total number of
inputs to the gate may be arbitrary.

11.5 Lemma (Limits and circuit size) If every 1 /¢ fraction of vectors in B has a lower
k-limit in A, then every II5 circuit of bottom neg-fanin k separating (A, B) must
have top fanin larger than /.

Proof. Suppose, for the sake of contradiction, that (A, B) can still be separated by
a II3 circuit of bottom neg-fanin and top fanin ¢. Since the last (top) gate is an AND
gate, some of the OR gates g on the middle layer must separate a pair (A, B’) for
some B’ C B of size |B’| > |B|/{. By our assumption, the set A must contain a
vector a which is a lower k-limit for the set B’. Hence,

g(a) =1,but g(b) = 0forallb € B’.

To obtain the desired contradiction, we will show that the gate g, and hence, the
whole circuit C, is forced to (incorrectly) reject the limit a.

Take an arbitrary AND gate h on the bottom layer feeding in g, and let .S be the
corresponding set of negated input variables to h:

ies jer

Since |S| < k and since a is a lower k-limit for B’, we know that there must exist
a vector b = bg in B’ such that a < band a; = b; for all € S. Since g is an OR
gate and since g must reject all vectors in B’, we also know that A(b) = 0. If some
negated variable feeding into h computes 0 on b, then it does the same on a (since
a coincides with b on all positions in S), and hence h(a) = 0. Otherwise, the 0
is produced on b by some non-negated variable. Since a < b, this variable must

302 11 Depth-3 Circuits

produce 0 on a as well, and hence h(a) = 0. Since this holds for every AND gate h
feeding into the OR gate g, this implies that the gate g must (incorrectly) reject a, a
contradiction O

In order to show that a given boolean function f cannot be computed by a I3
circuit with fewer than ¢ gates, we can now argue as follows.

1. Assume that f can be computed by such a circuit.

2. Assign some variables of f to constants in order to reduce the bottom fanin of
the circuit to k.

3. Choose appropriate subsets A C f~!(1) and B C f~1(0), and show that every
subset B’ C B of size | B’| > |B|/¢ has a lower k-limit y € A.

4. Apply Lemma ?? to get a contradiction.

The bottom fanin can be reduced using the following simple fact.

11.6 Proposition Let F be a family of subsets of [n], each of cardinality more than k.
If
k/2
F< () (11.1)
m

then some subset T of [n] of size |T| = n — m intersects all members of F.

Proof. We construct the desired set T via the following “greedy” procedure. Since
each set in F has more than k elements, and since we only have n elements in
total, at least one element x; must belong to at least k/n fraction of sets in F.
Include such an element z; in 7', remove all sets from F containing z; (hence, at
most a (1 — k/n) fraction of sets in F remains), and repeat the procedure with the
remaining sub-family of F, etc. Our goal is to show that, if the number | F| of sets
in the original family F satisfied (??), then after n — m steps all the sets of F will
be removed.
The sub-family resulting after n — m steps has at most «|F| sets, where

k k k
= (-5 (k)
n n—1 m+1
Using the estimate 1 + z < e” and known estimates H,, = Inn + ~,, on harmonic
series Hy =1+1/2+ /3+---+ 1/n with § <, < 2, we obtain that

n n-—1 m+1
— efk(anHm) < efk(lnnflnmfl/G)

()= ()

Thus, after n — m steps no sets will remain, as desired. O

11.4 A lower bound for Majority 303

Given a II3 circuit we will want to set a small subset of the variables to 1 so
that the resulting circuit has neg-fanin k. We will use Proposition ?? to find which
variables to set to 1.

The next task—forcing a k-limit—depends on which boolean function we are
dealing with. To demonstrate how this can be done, let us consider the Majority
function Maj,, (z1,. .., z,), which accepts an input vector z iff it contains at least
as many 1s as Os.

11.4 A lower bound for Majority

To handle the case of the majority function, we need the following “limit lemma”
for threshold functions.

11.7 Lemma Let B C {0, 1}" be a set of vectors, each with exactly r ones. If | B| > k"
then there is a lower k-limit y for B with fewer than r ones.

Proof. We use induction on the number r of ones in vectors of B. If r = 1 and
|B| > k+1then 0 = (0,...,0) is the desired k-limit for B. Suppose now that
the lemma holds for all ¥ < r — 1 and prove it for r. So, take a set B of |B| > k"
vectors each with 7 ones. If 0 is a k-limit for B, then we are done.

Otherwise, by the definition of a k-limit, there must be a set of k£ coordinates
such that every vector in B has at least one 1 among these coordinates. Hence, at
least a 1/k fraction of vectors in B must have a 1 in some, say i-th, coordinate.
Replace in all these vectors the i-th 1 by 0, and let B’ be the resulting set of vectors.
Since each vector in B has exactly 7 — 1 ones and we have |B’| > |B|/k > k™!
vectors in total, the induction hypothesis gives us a vector y with fewer than r — 1
ones which is a lower k-limit for B’. The i-th coordinate of y is 0. Replacing this
coordinate by 1 we obtain a vector ' with at most — 1 ones; ¢’ is the desired
lower k-limit for B. ad

11.8 Theorem (Hastad-Jukna-Pudlak 1995) Any depth-3 circuit computing the ma-
jority function Maj,, has size at least 2°(V™),

Proof. Let ¢ be the minimal size of a depth-3 circuit computing —Maj,,, the negation
of majority, and hence, the minimal size of a depth-3 circuit computing Maj,, itself.
Since ~Mayj,, is self-dual (that is, complementing the output and all inputs does not
change the function), we can w.l.o.g. assume that we have a I3 circuit.

Let k < nand r < n/2 be parameters (to be specified later). Set m :=n/2 +r
and assume that the size ¢ of our circuit satisfies the inequality

(< (%)m. (11.2)

For each bottom AND gate that has > k + 1 negated variables, that set of variables
will be a set in the family JF. Since there are at most ¢ such gates, | F| < £. Hence, by

304 11 Depth-3 Circuits

Proposition ??, there will be |T| = n — m variables that intersect all the members
of F. If we set all the variables in T to 1, this will kill off (evaluate to 0) all bottom
AND gates that had > k + 1 negated variables. So, the resulting I73 circuit has
bottom neg-fanin at most & (that is, at most k negated variables enter each bottom
AND gate). This circuit computes a boolean function f : {0,1}" — {0,1} of m
variables such that f(x) = 1 iff has fewer than n/2 — (n — m) = r ones. Hence,
the new circuit separates the pair (A, B) of sets

A = {all vectors in {0, 1}"" with fewer than r ones}

and
B = {all vectors in {0, 1}™ with precisely r ones} .

Since the new circuit has size at most ¢ and its bottom neg-fanin is at most k,
Lemma ?? implies that no 1/¢ fraction of vectors in B can have a lower k-limit in
A. Together with Lemma ??, this implies that | B|/¢ = (") /¢ cannot be larger than

k". Hence,
o (5) e ()

By our assumption (??), this lower bound holds for any parameters k, » and m =

n/2 + r satisfying
(= ()"

To ensure this, we can take, say, k = 21/m and r = /m/4. Under this choice, (??)
is fulfilled, and we obtain the desired lower bound

0> (%) = 292(r) — 92(V) | 0

11.9 Remark It would be interesting to extend the lower bounds argument based on
finite limits to circuits of larger depths. For this, however, we need stronger “limit
lemmas” than, say, Lemma ??. To see the difficulty, recall that in the case of depth-3
circuits it was enough to show (see Lemma ??) that every sufficiently large subset
B of f~1(1) has a k-limit in the entire set f~(0) of rejected input vectors. In the
case of depth-4 circuits we need a stronger statement that every sufficiently large
subset B of f~!(1) has a k-limit in every sufficiently large subset A of f~1(0).

11.5 NP # co-INP for depth-3 circuits

In this section we will exhibit a boolean function f of n variables such that f has a
Y5 circuit of size O(n) but its complement — f requires X3 circuits of size 2(vV7),
Since Y5 circuits have an OR gate on the top, they constitute a nondeterministic
model of computation: guess a CNF and evaluate it. For an added thrill, we can
consider the “depth-3 version” of the class NP to consist of all boolean functions

11.5 NP # co-NP for depth-3 circuits 305

computable by X5 circuits of polynomial size. In these terms, we are going to prove
that NP # co-NP in the class of depth-3 circuits.

Note that we cannot take the majority function Maj,, for this purpose just
because it is self-dual:

-Maj,, (-1, ..., x,) = Maj, (z1,...,25) .

Hence, by Theorem ??, both Maj,, and ~Maj,, require X3 circuits of exponential
size. We therefore must use another function.
So, let £, be the boolean function with n = 2sm variables defined by

fom(@y) =\ N\ (52ij vV -wiy). (11.4)
i=1j=1

This is an important function, known as the Iterated Disjointness function. function.
The function takes two sequences x = (z1,...,2s)andy = (y1, . ..,ys) of subsets
of [m] = {1,...,m}, and accepts the pair (x,y) iff z; Ny; = 0 for at least one
i€ [s].

It is clear (from its definition) that f; ,, can be computed by a X5 circuit of size
1+ s(m + 1) = O(n). We shall show that for s = m = /n, this function requires
I circuits of size 2°(V™), implying that any X3 circuit for its negation — f; ,,
requires this size.

11.10 Theorem (Héstad-Jukna—Pudlak 1995) Any II3 circuit computing S s . s has
size at least 22(V™).

By a result of Klawe et al. (1984), the function S/ | s has II3 circuits of size
20(v7) thus the bound is optimal.

We first prove a lower bound for the subfunction gs () = fsm(z,1) of
fs.m(x,y) obtained by setting all y-variables to 1.

11.11 Claim If g, (z) = Vi_; /\Jm:1 —; ; is computed by a II3 circuit of size ¢
and bottom neg-fanin k, then ¢ > (m/k)*.

Proof. Any circuit for gs ., must separate the pair (4, B) where A C {0,1}*™
is the set of all vectors with at most s — 1 ones and B is the set of m® vectors
with exactly s ones killing all ANDs in f. Now assume that ¢ < (m/k)°. Then, by
Lemma ??, no subset B’ C B of size |B’| > |B|/¢ > m?®/(m/k)® = k® can have a
lower k-limit in A, a contradiction with Lemma ??. O

The theorem now follows from the following claim by taking s = m = y/n and

k= /n/2.

11.12 Claim For any k < sm, any Il3 circuit computing f; ,, has size at least
min {2%, (m/k)*} .

306 11 Depth-3 Circuits

Proof. Take a IT3 circuit computing fs ., (z,y); let ¢ be its size, and assume that
¢ < 2F. We claim that then there exists a setting of constants to variables such that
the resulting circuit has bottom fanin k and computes f; ,,. Together with Claim ??,
this claim implies that either £ > 2% or ¢ > (m/k)®, and we are done. So it remains
to prove the claim.

The most natural way is to randomly set one variable from each pair z; ;, y; ; to
1. Any such setting will leave us with a circuit computing g ,,. It remains therefore
to show that at least one of such settings will leave no bottom AND gate with more
than k negated inputs.

If a bottom AND gate contains both x; ; and y; ; negatively for some 1, j then it
is always reduced to 0. Otherwise, such an AND gate with > k negated inputs is
not reduced to 0 with probability < 2~(*+1)_Since we have at most £ < 2* such
AND gates, the probability that some of them will not be reduced to 0 does not
exceed /-2~ (F+1) < /2. This, in particular, means that such a setting of constants
exists. O

11.13 Remark Note that every [I3 circuit is also a Yy circuit (with the top OR
gate missing). The tradeoff between X3 and X circuits was proved earlier by

Hastad (1989), who gave a lower bound 992(n'/®/\/1og) for the size of X3 circuits
computing a function which has a X4 circuit of size O(n). A tradeoff between X5
and I73 formulas was established by Shumilina (1987) using the threshold-2 function
Thi . This function has a X3 formula of leafsize (number of input literals) O(n log n)
(see Exercise ??), but requires T3 formulas of leafsize £2(n3/2). Actually, Shumilina
(1987) established an exact complexity of Thi in the class of IT3 formulas. Namely,
the minimum leafsize of a IT3 formula computing Th is 2n(k — 1) + m(n — k?)
if n < km, and is 2n(m — 1) — k(m? — n) if n > km, where k = |\/n| and
m = [v/n].

11.14 Remark Recently, Razborov and Sherstov (2010) showed that the Iterated
Disjointness function (??) is hard in yet another respect: if A = (a5) inann x n
+1 matrix with n = m?3 and gy =1—2" fy, m2(2,y), then A has signum rank

292(n'/?) (cf. Section ??). Recall that the signum rank of a real matrix A with no
zero entries is the least rank of a matrix B = (b,) such that a, , - by, > 0
for all z, y. This result resolved an old problem about the power of probabilistic
unbounded-error communication complexity; we have already mentioned this in
Section ??.

The strongest known lower bounds for depth-3 circuits computing explicit
boolean functions of n variables have the form 2(v") We have seen how such a
lower bound can be derived for the majority function. To break this “square root
barrier” is an important open problem. It is especially interesting in view of possible
consequences for log-depth circuits (see Lemma ?7?).

11.15 M Research Problem
Prove an explicit lower bound 2¢(V™ for X5 circuits.

11.6 Graph theoretic lower bounds 307

To get such lower bounds, one could try to use the graph-theoretic approach
introduced in Section ??.

11.6 Graph theoretic lower bounds

The idea of graph complexity (introduced in Section ??) is to reduce the lower
bounds problem for boolean functions to that for bipartite graphs. Given a graph
G = (V, E), we associate a boolean variable x,, with each of its verticesv € V. A
boolean circuit F'(x) of these variables represents the graph G if it accepts all edges
and rejects all non-edges. On other subsets of vertices the circuit ' may output
arbitrary values. That is, we only require that

the function F’ acts correctly on input vectors with exactly two ones!

On inputs 2 € {0, 1}V with 3" |, 2, # 2 the function may output any value
in {O, 1}. Only if contains exactly two 1s in, say, positions u and v, the circuit must
output F'(z) = 1 if and only if u and v are adjacent in G. In particular, every graph
G = (V, E) on |V| = n vertices can be represented by the following monotone X5
formula with at most 2n gates:

F(z)=\/ zu A (\/ xq,), (11.5)

uesS viuver

where S C V is an arbitrary vertex-cover of G, that is, a set of vertices such that
every edge of G has is endpoint in 5.

As already mentioned in Section ??, our motivation to consider graph represen-
tation is that even moderate lower bounds for the monotone complexity of graphs
imply strong lower bounds for the non-monotone circuit complexity of boolean
functions.

If G is a bipartite n x n graph with n = 2™, then we can identify its vertices
with vectors in {0, 1}™ and consider the characteristic function fg of G defined by:
fa(u,v) = 1iff u and v are adjacent in G.

Now fix an arbitrary model 90t of circuits. A bottom gate is a gate whose inputs
are only literals (variables and their negations). We only require that bottom gates
are either ORs or Parities of their inputs; the remaining (non-bottom) gates may be
arbitrary, depending on the circuit model one deals with. For a boolean function
f and a graph G, let Loy (f) denote the smallest size of a circuit in 9t computing
f>and L;rn (G) the smallest size of a positive circuit in 97 representing G; being
positive here means having no negated literals as inputs.

The Magnification Lemma (Lemma ?? in Section ??) immediately yields:

11.16 Proposition For every bipartite graph G, Lon(fc) > Li (G).

Thus, any lower bound L;T(G) > n® for an n X n graph G immediately gives a
lower bound Lox (fg) > 2%™ for its characteristic function f¢; recall that f has

308 11 Depth-3 Circuits

only 2m variables. Hence, any lower bound Loy (G) > n® for an explicit graph G
with @ = w(lnlnn/Inn) would give us a super-polynomial lower bound for an
explicit boolean function!

To start with, let us consider the simplest model—that of CNFs. Each such circuit
is an AND of ORs of input literals. In the case of graphs, we only need to consider
monotone CNFs

F(x):(\/ ;vv>/\(\/ xv>/\---/\(\/ mv).

vEST vE Sy vES,

Such a CNF rejects a pair {u, v} of vertices iff at least one of the complements I; =
S; covers this pair, that is, contains both endpoints u and v. Hence, F’ represents a
graph G'iff I, ..., I, are independent sets of G whose union covers all non-edges
of G. Thus, if cnf(G) denotes the minimum number of clauses in a monotone CNF
representing the graph G, and if A is the adjacency matrix of GG, then

enf(G) = Cov(Ag), (11.6)

where A is the complement of A, and Cov(A) is the smallest number of all-1
submatrices of A covering all its ones. This immediately yields strong lower bounds
for many explicit graphs. For example, if G is a (bipartite) complement of an n-
to-n matching, then Ag is an identity matrix, implying that cnf(G) > n. By
Proposition ??, this implies that the boolean function f(x,y) of 2m variables,
defined by f(x,y) = 1 iff x # y, requires CNFs with at least 2™ clauses.

Of course, such a lower bound for CNFs is far from being interesting: we already
know that, say, the parity of 2m variables needs even 22m—1 (Jauses. Still, strong
lower bounds for CNF-size of graphs could imply impressive lower bounds for
boolean functions, if we could prove such bounds for graph properties.

To illustrate this, let us consider bipartite K5 >-free graphs, that is, bipartite
graphs without 4-cycles. It is conjectured that K5 >-freeness of graphs makes
them hard for CNFs. The following problem is just Problem ?? (in the Exercises of
Chapter ??) re-stated in graph-theoretic terms.

11.17 W Research Problem
If G is a Ky o-free graph of average degree D, does then cnf(G) > D?(1)?

Together with Proposition ??, a positive answer to this problem would resolve
Problem ??. Let us see why this is true.

As we have already mentioned in Section ??, explicit constructions of dense
graphs G,, without 4-cycles are known (see Examples ?? and ??). These graphs
are d-regular bipartite n x n graphs with d = ©(y/n). Now suppose that G,, can
be represented by a monotone X5 circuit of size s. Then some subgraph H of G,
with at least en®/2 /s edges can be represented by a monotone CNF with at most
s clauses. The graph H is still K5 o-free and has average degree D > ey/n/s. A
positive answer to Problem ?? would imply that s > D° > (ey/n/s)?, from which
a lower bound s > (ey/n)%/? = n?(M) on the size s follows.

11.7 Depth-2 circuits and Ramsey graphs 309

Thus, an affirmative answer to Problem ?? would resolve Problem ??, and hence,
give us an explicit boolean function of m variables that cannot be computed by
DeMorgan circuits whose depth is logarithmic in m and size is linear in m. To
exhibit such a boolean function has been an open problem in circuit complexity for
more than 30 years.

Note that K5 >-freeness in Problem ?? is not crucial: one can consider any
hereditary property of graphs, that is, a property which cannot be destroyed by
removing edges.

Finally, let us mention that graphs of small degree have small circuits, and hence,
are “bad candidates” for a strong lower bound. Namely, we have already proved in
Section ?? (see Lemma ??) that Cov(A) = O(dIn | A]) for every boolean matrix A,
where |A] is the total number of ones in A, and d is the maximal number of zeros in
a line (row or column) of B. Thus, (??) implies that cnf(G) = O(dlogn) for every
bipartite n x n graph G of maximum degree d.

11.7 Depth-2 circuits and Ramsey graphs

The problem with using the graph-theoretic approach in boolean function complex-
ity is that “combinatorially complicated” graphs are not necessarily “computation-
ally complicated”. To illustrate this, let us consider Ramsey-type graphs.

A graph over vertex set V is said to be a t-Ramsey graph if for every S C V
satisfying |S| = t, the graph induced by S is neither empty, nor complete. A
bipartite graph over vertex sets L and R, |L| = |R| = n, is said to be a t-Ramsey
graph if for every S C L and T C R satisfying |S| = |T| = t, the bipartite graph
induced by S and T is neither empty, nor complete. That is, neither the graph nor
its complement contains a complete bipartite ¢ x t graph K ;. We call a graph
(bipartite or not) just a Ramsey graph if it is t-Ramsey for ¢t = 2logn.

A celebrated result of Erdés from 1947 shows that non-bipartite Ramsey graphs
exist. Irving (1978) proved that bipartite ¢-Ramsey graphs exist already for t =
O(log n/loglogn). But constructing explicit Ramsey graphs is a notoriously hard
problem.

The best known explicit construction of non-bipartite t-Ramsey graphs due to
Frankl and Wilson only achieves ¢t = exp(1/lognloglogn). In the bipartite case,
even going from ¢ = n'/? to t = n% for an arbitrary constant § > 0 was only
recently obtained by Pudlak and R4dl (2004), Barak et al. (2010), and Ben-Sasson and
Zewi (2010). Moreover, these constructions are not explicit in the way that would
satisfy Erd6s. The constructions are algorithmic: when given a pair of vertices, the
algorithm runs in time polynomial in the length of its input and answers whether
this pair is an edge of the constructed graph.

In view of these difficulties to construct Ramsey graphs, such graphs might be a
promising place to look for explicit functions that require large circuits, but alas,
they are not: there exist bipartite Ramsey n x n graphs that can be represented as a
Parity of just 2log n ORs of variables.

310 11 Depth-3 Circuits

To show this, we consider depth-2 circuits whose output gate is a parity gate
and bottom (next to the inputs) gates are OR gates; inputs are variables (no negated
inputs are allowed). Such a circuit has the form

r

Fa)=P V = (11.7)

=1 vel;

Let r(G) denote the smallest number of OR gates in such a circuit representing the
graph G. By letting S, = {i | u € I;}, we see that vertices u and v are adjacent in
G iffr —|S, NS, | is odd. Thus, the adjacency matrix Ag of G can be represented as
a boolean matrix of scalar products of vectors of length over GF(2). This implies
that

7(G) is at least the rank of Ag over GF(2) minus 1.

The Sylvester graph is a bipartite m x m graph H,,, with m = 2" whose vertices
are vectors in GF(2)". Two vertices are adjacent in H,,, iff their scalar product over
GF(2) is equal to 1. Note that H,, can be represented by a very small circuit of the
form (??): r(H,,) < r = log m. We will show that, nevertheless, H,, contains a
large induced subgraph that is Ramsey.

11.18 Theorem There exist bipartite n X n Ramsey graphs H such that r(H) <
2logn.

Proof. Let F = GF(2) and r be a sufficiently large even integer. With every subset
S C F" we associate a bipartite graph Hg C S x S such that two vertices u € S
and v € S are adjacent if and only if (u,v) = 1, where (u, v) is the scalar product
over . Thus, H,,, = Hg with S = F" and m = 2".

We are now going to show that H,,, contains an induced n x n subgraph Hg with
n = /m which is a Ramsey graph. The fact that Hg is an induced subgraph implies
that (??) is also a representation of Hg: just set to 0 all variables z, with v & S.
Thus, r(Hg) < r(H,,) < logm = 2logn. To prove that such a subgraph exists,
we first establish one Ramsey type property of graphs Hg for arbitrary subsets
S CF".

11.19 Lemma (Pudlak-Raodl 2004) Suppose every vector space V. C F” of dimension
|(r +1)/2] intersects S in fewer thant elements. Then neither Hg nor the bipartite
complement H g contains K, ;.

Proof. The proof is based on the observation that any copy of K, ; in Hg would
give us a pair of subsets X and Y of S of size ¢ such that (u,v) = 1forallu € X
and v € Y. Viewing the vectors in X as the rows of the coefficient matrix and
the vectors in Y as unknowns, we obtain that the sum dim(X”) + dim(Y”) of the
dimensions of vector spaces X’ and Y, spanned by X and by Y, cannot exceed
r + 1. Hence, at least one of these dimensions is at most (r + 1)/2, implying that
either | X' N S| < tor|Y' N S| < t. However, this is impossible because both X’
and Y’ contain subsets X and Y of S of size . O

11.8 Depth-3 circuits and signum rank 311

It remains therefore to show that a subset S C F” of size | S| = 2"/2 = \/m sat-
isfying the condition of Lemma ?? exists. We show this by probabilistic arguments.

Let m = 2" and let SS C F" be a random subset where each vector u € F" is
included in SS independently with probability p = 2'="/2 = 2/,/m. By Chernoff’s
inequality, |SS| > pm/2 = 27/? with probability at least 1 — e~ (™) =1 — o(1).

Now let V' C F" be a subspace of F” of dimension | (r+1)/2| = r/2 (remember
that 7 is even). Then |V| = 2"/2 = \/m and we may expect p|V| = 2 elements
in |SS N V. By Chernoff’s inequality, Prob[|SS N V| > 2¢] < 272¢ holds for any
¢ > 2e. The number of vector spaces in " of dimension /2 does not exceed
(r;z) < 2"/y/r. We can therefore take ¢ = r/2 and conclude that the set SS
intersects some r/2-dimensional vector space V' in 2¢ = r or more elements with
probability at most 2"~ (1087)/2=" — ;-=1/2 — ,(1). Hence, with probability 1 — o(1)
the set SS has cardinality at least 2"/2 and [SS N V| < r for every r/2-dimensional
vector space V. Fix such a set S’ and take an arbitrary subset S C S’ of cardinality
|S| = 27/2. By Lemma ??, neither Hg nor H g contains a copy of K, . O

We have seen that some “combinatorially complicated” graphs can be represented
by very small circuits, even in depth 2. On the other hand, some “combinatorially
simple” graphs require large circuits of this type (??). This follows from our observa-
tion above that r(G) is just the rank of the adjacency matrix Ag of G over GF(2).
In particular, if M is an n-matching (a set of n vertex-disjoint edges), then A,y is a
permutation matrix with exactly one 1 in each row and column. Since A, has full
rank, we obtain that (M) > n — 1.

11.20 Remark Arora, Steurer and Wigderson (2009) considered a related question,
albeit one outside the graph complexity framework we’ve been considering. Suppose
the characteristic function fg of a graph G has “low” circuit complexity. What
can then be said about the properties of the graph (itself? Let AC? be the family
of all graphs G on n vertices (n = 1,2,...) whose characteristic functions f¢
can be computed by a constant-depth circuit with a polynomial (in the number of
variables of f) number of NOT and unbounded-fanin AND and OR gates. They
observed that Hastad’s theorem (Theorem ?? in the next chapter) implies that none
of the graphs in AC? is t-Ramsey for ¢ smaller than exp(log n/poly(loglogn)).
On the other hand, they show that AC® contains good expanders, and that many
algorithmic problems on AC’-graphs are no easier to solve than on general graphs.

11.8 Depth-3 circuits and signum rank

In this section we consider X5 formulas, that is, X3 circuits with fanout-1 gates.
By the size of such a formula we will now mean the number of OR gates on the
bottom (next to the inputs) level. We already know that every bipartite n x n graph
can be represented by a X3 formula of size n using formula (??). Our goal is to
relate the size of Y5 formulas representing bipartite graphs to the signum rank

312 11 Depth-3 Circuits

of their adjacency matrices. Recall that the signum rank, signrk(A), of a boolean
matrix A is the minimum rank, rk(M), of a real matrix M such that M[z,y] < 0
if Alz,y] =0,and M[z,y] > 0if Alz,y] = 1.

11.21 Theorem (Lokam 2003) Let G be a bipartiten xXn graph, and A its0-1 adjacency
matrix. If G can be represented by a monotone X3 formula of size S, then

signrk(A) < 90(5"?10g”?)

Recall that an OR of variables represents a union of stars, that is, the bipartite
complement of a complete bipartite graph. Adjacency matrices of complete bipartite
graphs are primitive matrices, that is, boolean matrices of rank 1. Hence, if a graph
G can be represented by a monotone X'5 formula of size .S, then its adjacency matrix

A can be written as .
t i
A=\/ \ Ry, (11.8)
i=1j=1

where d; +---+d; < S and Eij = J — R;; are complements of primitive matrices
R;;; as usually, J stands for the all-1 matrix, and boolean operations on matrices
are computed component-wise. Our goal is to upper-bound the signum rank of such
matrices A in terms of S. For this, we need one result concerning representations
of boolean functions by real polynomials.

11.22 Lemma If a boolean matrix H = \/f:1 R; is an OR of d primitive matrices then,
for every k > 2, there exists a real matrix M such that |M[z,y] — H[z,y]| < 1/k
for all entries (x,y), and

rk(M) < do(\/glogk:))

Proof. Let f(z1,...,24) = \/f-l:1 z;. By Lemma ??, there exists a real polynomial
p(z1,...,2q) of degree r < ¢y/nIn k approximating f(z) with the factor 1/k, that
is, [p(2) — f(2)| < 1/kforall z € {0, 1}<. Syntactically substitute the matrix R; for
z; in this polynomial, but interpret the product z;-z; as an entry-wise product 2,0 R
of matrices. Thus, a monomial z;, z;, - - - 2;, is replaced by the rank-1 boolean matrix
R;, 0R;,0- - -oR;,. The matrix obtained by computing the polynomial p(Ry, . .., Rq)
in this way gives us the desired matrix M. Since M is a linear combination of rank-
1 matrices, one for each of at most m = >_._, (‘f) < (ed/r)" < d°) possible
monomials of p, it follows that the rank of M is at most the number m of these
monomials, as desired. O

Now let A be a boolean matrix of the form (??), and let d = max; d;.

11.23 Lemma There exist real n X n matrices B and C' of ranks
rk(B) < exp(Vdlogdlogt) andk(C) < [[i_, d;

such that
(i) Blz,y] < —-1/6 if Alz,y] =0, and Blz,y] > +1/6 if Alz,y] = 1;

11.8 Depth-3 circuits and signum rank 313
(i) Clz,y] > 1ifAlz,y] =0, and Clz,y] = 0 if Alz,y] = 1.

Proof. The matrix Aisan OR A = \/7;:1 A; of t matrices, each of which has the
form A; = /\;li1 R;;. Since A; = \/;li:1 R;;, we can apply Lemma ?? with k = 3¢
to each matrix A; and ob@n a real matrix M; that approximates A; with the factor
1/(3t). Since A; = J — A;, the matrix N; = J — M, approximates A; with the
same factor. Consider now the matrix

1
B=Ni+-+No—5-J.

Let us verify that this matrix has the desired property (i).

« If Alz,y] = 0 then A;[z,y] = 0 for all ¢; hence, |N;[z,y]| < 1/(3t) for all
i=1,...,t implying that Blz,y] <1/3—1/2 = —1/6.

o If Alz,y] = 1 then A;[z,y] = 1 for at least one i; for this i, we have that
N;[z,y] > 1 — 1/(3t). Since N;[z,y] > —1/(3t) for all i, we obtain that
Blz,y] >1 -0 (1/3t) —1/2 = 1/6.

Hence, B satisfies (i). Since N; = J — M; and tk(M;) < O(\/d;logd;), the
subadditivity of rank yields rk(B) < exp(v/dlogdlogt).

To construct the matrix C, recall (again) that our matrix Aisan OR A = \/:Z1 A;
of ¢ matrices, each of which has the form A; = /\?;1 Rij. Define C; = Z;l;l Rij,

and let C' be the component-wise product of the matrices C1, ..., C, that is,
t d;
i=1j=1

If Alz,y] = 0thenVi 3j : R;j[z,y] = 1, implying that C[z,y] > 1.If Afz,y] =1
then 3i Vj : R;;[z,y] = 0, implying that C|x,y] = 0. Hence, C satisfies (ii). Since
the rank of a component-wise product of two matrices does not exceed the product
of their ranks, we obtain that rk(C) < [['_, tk(C;) < [[i_, d:. O

p@plus6p@

Proof of Theorem ??addpunct: We want to upper-bound the signum rank of a boolean
matrix A of the form .
t i
A=\ NRj,
i=1j=1

where dy + -+ + d; < S. Some of the fanins d; may be small, some may be
large. Large ANDs are “bad” because then our upper bound on the rank, given by
Lemma ?? is “too large”. The good news, however, is that we cannot have too many
large ANDs since the total sum 22:1 d; is upper bounded by .S. We therefore take
a threshold D (to be specified later) and split these ANDs into “small” and “large”
subsets I = {i | d; < D} and J = {i | d; > D}. Consider the corresponding
matrices

314 11 Depth-3 Circuits

We first apply Lemma ?? to A, to get a matrix B such that
As[z,y] =1 = Blz,y] > 1/6,and As[z,y] =0 = Blz,y] < —1/6. (11.9)

Furthermore, we have that rk(B) < exp(v/Dlog D logt).
We then apply Lemma ?? to A; to get a matrix C' such that

Allz,y) =1 = Clz,y] =0,and 4;[z,y] =0 = Clz,y] > 1. (11.10)

Since 3_'_, d; < S, we have that |.J| < Z§=1 d;/D < S/D. Using the arithmetic-

. . . 1/n)
geometric mean inequality (H:L:l .131) /n < % >, x; we can estimate the rank

of C as follows:

rk(C) < H d; by Lemma ??
ie
1 171 . A : A .
< (m Z d,») arithmetic-geometric mean inequality
icJ

< exp(|J]log S)
< exp((S/D)logS) since |J| < S/D.

Now define the matrix M by

1
Using (??) and (??), it is easy to verify that M[z,y] < —1/12if A[z,y] = 0, and
Mlz,y] > 1/12if Alz,y] = 1. Thus, signrk(A) < rk(M). Since the rank of a
component-wise product of two matrices does not exceed the product of their ranks,
we obtain that rk(M) < rk(B) - rk(C) + 1, which is at most exponential in

VDlog Dlogt + %logS.

By setting D = (S/log $)2/3, this is at most exponential in $1/31og®/® S, as
desired. ad

endpe false

The adjacency matrix A of the Sylvester n x n graph H,, is a Hadamard matrix,
and we already know (see Corollary ??) that its signum rank is at least 2(y/n).
Together with Theorem ??, this implies

11.24 Corollary Every monotone X3 formula representing the Sylvester graph Sy,

3—o0(1)

must have size at least log n.

11.9 Depth-3 circuits with parity gates 315

Thus, using the signum rank one can derive nontrivial lower bounds on the
depth-3 representation complexity of graphs. The result of Razborov and Sherstov
(2008) mentioned in Remark ?? implies, however, that the signum rank alone cannot
lead to lower bounds substantially larger than £2(log® n).

11.9 Depth-3 circuits with parity gates

In this section we will use graph-theoretic arguments to prove truly exponential
lower bounds for modified X3 circuits, where all gates on the bottom level are
Parity gates (not OR gates). A lower bound for a boolean function f of n variables
is truly exponential if it has the form 2" for a constant ¢ > 0.

A X circuit is a X3 circuits with the OR gates on the bottom (next to the inputs)
layer replaced by Parity gates. Hence, at each AND gate on the middle layer the
characteristic function of some affine subspace over GF(2) is computed. The fanin
of the top OR gate tells us how many affine subspaces lying within f~(1) do we
need to cover the whole set f~1(1).

Let X¥ (G) denote the smallest top fanin of a X5 representing the graph G.
For a boolean function £, let X5 (f) denote the smallest top fanin of a X§ circuit
computing f. Note that ¥5" (G) < n for every bipartite n xn graph G = (V1UVa, E)
because G can be represented by a formula of the form

F(z) = \/ xu/\(@ xv).

ueVy veVa:uveR

Our starting point is the following immediate consequence of Proposition ??:
For every bipartite graph G, X5 (fg) > X5 (G). Hence, if X5 (G) > n¢, then
YP(fe) > 2™, and we have a truly exponential lower bound for fg; recall that
fa is a boolean function of 2m variables.

We are going to prove a general lower bound: any dense graph without large
complete subgraphs requires large top fanin of X circuits. This immediately yields
exponential lower bounds for many explicit boolean functions.

A graph is K, -free if it does not contain a complete a x b subgraph. For a graph
G, by |G| we will denote the number of edges in it. It turns out that every dense
enough graph without large complete subgraphs requires large X5 circuits; this
was observed in (Jukna, 2006).

11.25 Theorem Ifann x n graph G is K, ,-free, then every X5 circuit representing
G must have top fanin at least |G|/(a + b)n.

To prove the theorem, we first give a combinatorial characterization of the top
fanin of X circuits representing bipartite graphs (Lemma ??), and then a general
lower bound on this characteristics (Lemma ?7?).

A fat matching is a union of vertex-disjoint bipartite cliques (these cliques need
not to cover all vertices). Note that a matching (a set of vertex-disjoint edges) is

316 11 Depth-3 Circuits

Bilder/fat-eps-converted-to.pdf

Fig. 11.2 (a) An adjacency matrix of a fat matching, (b) the adjacency matrix of a graph represented
by an OR gate g = \/U cAup Tv> and (c) the adjacency matrix of a graph represented by a Parity

gate g = @1}€AUB Lo

also a fat matching. A fat covering of a graph G is a family of fat matchings such
that each of these fat matchings is a subgraph of G and every edge of G is an edge
of at least one member of the family. Let fat(G) denote the minimum number of
fat matchings in a fat covering of G.

Theorem ?7? is a direct consequence of the following two lemmas.

11.26 Lemma For every bipartite graph G, fat(G) = X5 (G).

Proof. Let U and V be the color classes of GG, and let g = @veAuB z, with A CU
and B C V be a gate on the bottom level of a X5’ circuit representing G. Since g
is a parity gate, it accepts a pair uv of vertices u € U, v € V iff either u € A and
v ¢ B,oru ¢ Aand v € B. Thus, g represents a fat matching (A x B) U (A x B)
where A = U \ Aand B =V \ B (see Fig ??(c)). Since the intersection of two fat
matchings is again a fat matching (show this!), each AND gate on the middle level
represents a fat matching. Hence, if the circuit has top fanin s, then the OR gate on
the top represents a union of these s fat matchings, implying that s > fat(G).

To show X5 (G) < fat(G),let M = Ay x By U---U A, x B, be a fat matching.
Let A be the union of the A;, and B the union of the B;. We claim that the following
AND of Parity gates represents M:

F:@J;u/\@xu/\ @ T AN A @ Ty -

u€A vEB H}EAlUEl weATUET

Indeed, if a pair e = wwv of vertices belongs to M, say, u € A; and v € By, then
the first three sums accept uv because u € A; and v ¢ B;. Moreover, the mutual
disjointness of the A; as well as of the B; implies that u ¢ A; and v € By C B; for
alli = 2,..., 7. Hence, each of the last sums accepts the pair uv as well. To prove
the other direction, suppose that a pair uv of vertices is accepted by F'. The last r
sums ensure that, for each i = 1,...,r, one of the following must hold: (a) u € 4;
and v € By; (b)u & A; and v ¢ B;. The first two sums of F ensure that (b) cannot
happen for all 7. Hence, (a) must happen for some 4, implying that uv belongs to
M. O

11.27 Lemma Let G be a bipartite n x n graph. If G is K, p-free then fat(G) is a at
least |G|/(a + b)n.

11.9 Depth-3 circuits with parity gates 317

Proof. Let H = Ule A; X B; be a fat matching, and suppose that H C G. By
the definition of a fat matching, the sets Ay, ..., A;, as well as the sets By, ..., B;
are mutually disjoint. Moreover, since G contains no copy of K, ;, we have that
|A;| < aor|B;| < bforalli. Hence, if we set I = {i : |4;| < a}, then

t t
[H| =Y [Aix Byl =Y |Ail - |Bil <Y a-[Bil + Y [Ai] -b < (a+b)n.
i=1 i=1

i€l il
Thus, no fat matching H C G can cover more than (a + b)n edges of G, implying
that we need at least |G|/(a + b)n fat matchings to cover all edges of G. O

There are many explicit bipartite graphs which are dense enough and do not
have large complete bipartite subgraphs. By Theorem ?? and Proposition ??, each
of these graphs G immediately give us an explicit boolean function fg requiring
X¥ circuits of truly exponential size.

To give an example, consider the disjointness function. This is a boolean function
DISJ 5, in 2m variables such that

DISTom (Y1, -+ s Yms 215 - - -, 2m) = 1 if and only if Zyizi =0.

i=1
Note that this function has a trivial IT5 circuit (a CNF) of size O(m).
11.28 Theorem Every Ega circuit for DISJ o, has top fanin at least 2°0-95™,

Proof. The graph Gy of the function f = DISJ5,, is a bipartite graph G,,, C U xV
where U and V' consist of all n = 2™ subsets of [m] = {1,...,m}, and wv € G,
iff uNv = (. The graph G,,, can contain a complete bipartite a X b subgraph
AX B#(Qonlyifa < 2k and b < 2™~k for some 0 < k < m, because then

(Uxu)ﬂ(va)zw.

ucA vEB

In particular, G, can contain a copy of K, , only if a < om/2 — \/n. Since G,
has

|G| = Z d(u) = Z gm—|u| _ i (m) gm—i — gm > 158
uelU uelU =0 L

edges, Theorem ?? yields that any X§ circuit representing G, —and hence, any
X¥ circuit computing DIS.J2,,—must have top fanin at least

n1.58

[

__ . 0.08 _ 50.08m
2an = nis " =2 ' =

318 11 Depth-3 Circuits

Bilder/discrim-eps-converted-tp.pdf

Fig. 11.3 Schematic description of discriminators: Ag(A) is large in case (a), and Ar(A) = 0in
case (b).

We now consider a generalization of ZgB circuits, where we allow to use an
arbitrary threshold gate, instead of an OR gate, on the top. To analyze such circuits,
we will use the so-called “discriminator lemma” for threshold gates.

Let F be a family of subsets of a finite set X. A family F1, ..., F} of members of
F is a threshold cover of a given set A C X, if there exists a number 0 < k£ < ¢ such
that, for every € X, we have that z € A if and only if = belongs to at least k of
the F;. Let thrz(A) denote the minimum number ¢ of members of F in a threshold
cover of A.

To lower bound thr z(A) the following measure turns out to be useful:

Ar(A) = max Ap(A),

where

[AnF| [AnF|
A |A]

If Ar(A) is small, this means that every member F' of F is split between the set A
and its complement A in a “balanced” manner: the portion of F' N A in A is almost
the same as the portion of ' A in A (see Fig. ??). The following lemma is a special
case of a more general lemma proved by Hajnal et al. (1993); see the next section.

Ap(A) =

11.29 Lemma (Discriminator Lemma) thrz(A4) > 1/Ax(A).

Proof. Let Fy, ..., Fy € F be a threshold-k covering of A, thatis, x € A iff ©
belongs to at least k of the F;’s. Our goal is to show that Az (A) > 1/¢.

Since every element of A belongs to at least k of the sets AN Fj;, the average size
of these sets must be at least k. Since no element of A belongs to more than k — 1
of the sets A N Fj, the average size of these sets must be at most £ — 1. Hence,

max

\AmF| |AmF| IANF| |ANF]
< E _
1 Z Al T isize| A A
= 4l |A]

Now we are able to prove strong lower bounds on the size of X circuits with
an arbitrary threshold gate on the top.

11.9 Depth-3 circuits with parity gates 319

A Hadamard matrix of order n is an n X n matrix with entries =1 and with row
vectors mutually orthogonal over the reals. A graph associated with a Hadamard
matrix M (or just a Hadamard graph) of order n is a bipartite n x n graph where
two vertices u and v are adjacent if and only if M[u,v] = +1.

11.30 Theorem Any X circuit which has an arbitrary threshold gate on the top and
represents an n X n Hadamard graph must have top fanin 2(y/n).

Proof. Let A be an n x n Hadamard graph. Take an arbitrary X5 circuit which
has an arbitrary threshold gate on the top and represents A. Let s be the fanin
of this threshold gate, and let F be the set of all fat matchings participating in
the representation. Then, by Lemma ??, s > thrz(A). To prove s = 2(y/n) it is
enough, by Lemma ??, to show that for every fat matching F' = Ule S; x Ry,

[AnF| [AnF|| _
A Al

O(n~1?).

Since both the graph A and its bipartite complement A have ©(n?) edges, it is
enough to show that |[A N F| — [AN FH < n3/2 . By Lindsey’s Lemma (see
Appendix ?? for the proof), the absolute value of the sum of all entries in any a x b
submatrix of an n x n Hadamard matrix does not exceed v/abn. Thus, the absolute
value of the difference

|Aﬂ (Sl X Rl)| — ‘Zﬂ (Sz X R1)|

. ¢
does nc;t exceed /s;7;n, where s; = |.S;| and ; = | R;|. Since both sums >, s;
and) ,_, r; are at most n, we obtain

4 4
ANF| = [AF|| =140 (S x Rl = 3 [AN (S x Ry)l
=1 =1
£ L

Szy/siring \/ﬁz% <n3?n

i=1 i=1

Recall that the inner product function is a boolean function of 2m variables
defined by

m
IPm('T17'"3xm7y1;-~-,y7n) - szyz IHOd 2
i=1

Since the graph Gy of f = IP,,, is a Hadamard n x n graph with n = 2™,
Theorem ?? immediately yields

11.31 Corollary Any X¥ circuit which has an arbitrary threshold gate on the top and
computes I Py,,, must have top fanin £2(2™/?).

320 11 Depth-3 Circuits

11.10 Threshold circuits

A boolean function f(x1,...,x,) is a real threshold function if there exist real
numbers wo, w1, . . . , Wy, such that for every x € {0,1}", f(z) = 1 if and only if
wixy + -+ - + wpx, > wo. The absolute values |w;| are called weights. Since some
finite amount of precision is always sufficient, it is easy to see that we can assume
that the weights are integers. Let W (n) be the smallest number W such that every
possible real threshold function of n variables can be realized using integer weights
of magnitude < W. It is well-known (see, for example, Muroga (1971)) that

W(’I’L) < 2%nlognfn(1+o(1)))

Since, as shown by Yajima and Ibaraki (1965), and by Smith (1966), there are at least
27(n=1)/2 distinct real threshold functions, we also have that W (n) = 2% A
much tighter lower bound

W(n) > Q%nlog n—n(2+o0(1))

on the weight was obtained by Héstad (1994) when n is a power of 2, and by Alon
and Vi (1997) for arbitrary n.

A threshold circuit is a circuit using arbitrary real threshold functions as gates.
For a boolean function f(z1,...,z,), let T(f) denote the smallest number of gates,
and T, (f) the smallest sum of weights in a threshold circuit computing f. Let also
T(n) and T\, (n) denote the corresponding Shannon functions. Zacharova (1963)
proved that

2n
Ty(n) ~ -

By improving earlier estimates of Nechiporuk (1964, 1965), Lupanov (1973) estab-
lished the asymptotic for the number of gates:

T(n) ~ Qﬁ.

In the class of partially defined functions that are defined on N input vectors, he
also proved that for N — o0,

| N
T(n,N) ~2 :
(n, N) og N

Finally, for the Shannon function S(n) restricted to symmetric boolean functions,

he proved that
[n
S(n) ~ 2 .
(n) logn

11.10 Threshold circuits 321

g1 g2

g3

Fig. 11.4 A general form of a threshold circuit of size 3 computing any of the functions f(z) = 1
iff 1 + -+ + xn = k, for a given integer 0 < k < n. The first gate g1 (z) outputs 1 iff
(=Dz1+---(—1)zn > —k + 1, and the second g2(z) outputs 1 iff z1 + - - - + xp, > k+ 1. The
last gate g3(y1,y2) outputs 1 iff —y1 — y2 > 0, that is, iff y; = y2 = 0.

The lower bound here follows from the lower bound on T(n) because every boolean
function f(x1,...,x,) of n variables can be considered as a symmetric boolean
function F of 2" — 1 variables: just assign weight 2°~! to z;; then

f(x) :F(T ,1‘2,.’13‘2,.1?3,.%'3,1‘3,1‘3,...,$n,...,In).
' ——
20 21 22 on—1

This map from inputs in {0, 1}" to integers {0, ...,2" — 1} is clearly injective. So,
if any symmetric function of 2" variables can be computed using M gates, then
any boolean function of n variables can be computed using M gates. This implies
that T'(n) < S(27).

To show the upper bound, take a threshold circuit C'(z) = y computing the
binary representation y € {0,1}™ of the sum) .-, z;, with m = [logy(n + 1)].
Since one can design such a circuit with only m gates (see Exercise ??), this implies
S(n) <m+ T(m).

11.10.1 General threshold circuits

The problem of proving explicit lower bounds for threshold circuits is even harder
than, say, for DeMorgan circuits. In the latter model any boolean function essentially
depending on all its n variables requires at least n — 1 gates. For example, if we
define the exact-k function by Ex}(x) = 1iff 1 + - - - + x,, = k, then this function
depends on all its variables but, as shown in Fig. ??, this function can be computed
by a threshold circuit using only three gates! Thus, even proving non-constant
lower bounds on T(f) is a non-trivial task.

In the case of unrestricted threshold circuits the strongest remains the lower
bound T(IP,) > n/2 proved by Gréger and Turan (1991) for the inner product
function I P, (x,y) = 1y1 + - - - + Tn Yy, mod 2.

322 11 Depth-3 Circuits

In the proof of this bound, by a rectangle we will mean a Cartesian product
R = X x Y of two subsets of vectors X,Y C {0, 1}"; its dimension is dim(R) =
min{|X|, |Y'|}. A boolean function on such a rectangle is a mapping f : X x Y —
{0,1}. A function f(z,y) is monochromatic on a subset S C X x Y if it takes the
same value on all inputs (z,y) € S.

The weakness of real threshold functions is captured by the following lemma.

11.32 Lemma Let f(x,y) be a boolean function on a rectangle of dimension d. If f is
a real threshold function, then it is monochromatic on a subrectangle of dimension at
least |d/2].

Proof. Let f : X xY — {0,1} where X, Y C {0,1}" andd = | X| < |Y|.If f is
a real threshold function then there exist real numbers a1, ...,a,,b1,...,b, and
¢ such that, for every (z,y) € X XY, f(x,y) =1lifandonlyifa-z +b-y > ¢,
wherea -z =) ax;andb-y =" by,

Order the elements of X according to the value of a - x, and elements in Y
according to the value of b-y, resolving ties arbitrarily. Let 1 < ¢ < d be the smallest
number such that the ¢-th elements ' € X and y* € Y satisfy a - 2t +b-y* < c.
Then f(z,y) is constant 0 on the rectangle {z',... 2!} x {y!,...,y'}, and is
constant 1 on the rectangle {z!*1,... 2} x {y'*! ..., y?}. Since one of these
rectangles must have dimension at least |d/2] , we are done. O

For a boolean function f : X x Y — {0,1}, let mono(f) denote the maximal
dimension of a subrectangle X’ x Y/ C X x Y on which f takes the same value.

11.33 Theorem (Gréger-Turan 1991) If f(x,y) is a boolean function of 2n variables,
then any threshold circuit computing f must have at least n — log mono(f') gates.

Proof. Let g1, 9o, ..., g: be a threshold circuit computing f. By Lemma ??, there
is a rectangle R; C {0,1}" x {0,1}" of dimension 2"~! such that the function
computed at the first gate g; takes the same value ¢; € {0,1} on all inputs (x,y) €
R;. Replace the gate g; by the constant c;. The resulting circuit still computes f
correctly on all inputs in R;. The first gate in this new circuit is the gate g of the
original circuit one of which input is apparently set to the constant ¢;. In any case,
this is a real threshold function on R, and Lemma ?? again gives us a rectangle
Rs C R; of dimension 2”2 such that the function computed at the first gate go
takes the same value ¢; € {0,1} on all inputs (z,y) € Ro.

Arguing in this way, we obtain that the original circuit must output the same
value on some rectangle R; of dimension 2" ~%, This implies that mono(f) > on—t
from which the desired lower bound ¢ > n — log mono(f) on the number of gates
follows. ad

11.34 Corollary T(IP,) > n/2.

Proof. Consider a 2" x 2" matrix H defined by H[z,y] = (—1)"F»(®¥)_ For every
x # 0, we have that TP, (z,y) = 1 for exactly half of vectors y. Hence, H is a
Hadamard matrix (every two rows are orthogonal over the reals). By Lindsey’s
Lemma (see Appendix ?? for the proof), H can contain an k X k monochromatic

11.10 Threshold circuits 323

submatrix only if k2 < vk - k - 27, that is, only if k < 27/2 Thus, mono(IP,) <
2"/2 and it remains to apply Theorem ??. O
11.35 Remark Impagliazzo, Paturi and Saks (1997) considered the question of how
the number of wires in threshold circuits depends on their depth. Let W4(f) denote
the smallest number of wires in a general threshold circuit of depth d computing f.
For the parity function @, () = 1 @22 @ - - - ® x,,, they proved a lower bound
Wy(®,) > n' 0D where 0(d) = c(1++/2)"%and ¢ > 0is a constant independent
on n and d. They also proved that any depth-d threshold circuit computing &, ()
must have at least (n/2)'/2(?=1) gates. Similar results for threshold circuits with
polynomially bounded weights were proved earlier by Paturi and Saks (1994).

11.10.2 Threshold circuits of depth two

Super-polynomial lower bounds are only known for depth-2 and depth-3 threshold
circuits under various additional restrictions. The weight of a threshold circuit
C(z) of n variables is the maximal absolute value of weights occurring in gates
of C'. We say that C' is a bounded-weight circuit if its weight is at most some
polynomial in n. A circuit is unweighted if each its weight is either 0 or 1. Note
that unweighted threshold circuits are just unbounded fanin circuits with (boolean)
threshold functions as gates.

Goldmann, Hastad and Razborov (1992) proved that any threshold circuit of
depth d can be simulated by a bounded-weight circuit of depth d + 1 with only a
polynomial increase of size. But, so far, no exponential lower bound is known for
depth-3 circuits, even for unweighted circuits. Even threshold circuits of depth 2
are hard to deal with: here exponential lower bounds are only known when weights
are bounded.

It can be shown (see Exercise ??) that the inner product function I P,, can be
computed by an unweighted threshold circuit of depth 3 using O(n) gates. In the
class of depth-2 threshold circuits, exponential lower bounds for I P,, are known
when either the weights of the top (output) gate or the weights of the bottom (next
to the inputs) gates are bounded. In the first case the proof is based on so-called
“Discriminator Lemma”, and is based on known lower bounds on the signum rank
in the second case.

Let f(x) be a boolean function of n variables, and A, B C {0,1}" be disjoint
sets. Let P4, (resp. Pp) denote the uniform probability distribution on A (resp. B).
Hence, Ps(f(z) =1) = |{z € A| f(x) = 1}|/|A|, and similarly for Pg. Then f
is an e-discriminator for A and B if

|Pa(f(z) =1) = Pp(f(z) =1)| > €.

In particular, f is a 1-discriminator for A and B if f separates these two sets in
that f(a) # f(b) forall (a,b) € Ax B.If A= g~!(1) and B = g~1(0) for some

324 11 Depth-3 Circuits

boolean function g, and if |A| = | B|, then f being an e-discriminator for A and B
means that f coincides with g on a fraction (1 + €) /2 of all inputs.

A threshold combination of boolean functions f1, ..., fm : {0,1}"™ — {0,1} of
total weight « is a boolean function of the form

T (x) =1 ifand only if Zaifi(ac) > ag

a
=1

where ag, a1, . .., a,, are integers, and Y ;- | |a;| = a.
The following lemma is an extension of Lemma ?? to threshold gates with
arbitrary weights.

Discriminator Lemma Ifa threshold combination of f1, . . ., f, of total weight accepts
all vectors in A and rejects all vectors in B, then some f; is a (1/«)-discriminator for

A and B.

Proof. Let the random variable f{(z) (resp. fZ (z)) be the output of f; when z is dis-
tributed uniformly on A (resp. B). Then /" | a; f1(z) > apand Y"1 | a; P (z) <
ag — 1. Taking expectations and rearranging, we obtain

—_
IN

a; (B [f{(2)] - E [f7(2)])

<a- 12&%}:ﬂ|PA(f¢(x) =1) - Pp(fi(z) =1)[.0

11.36 Theorem (Hajnal et al. 1993) If the weights of the top gate in a threshold circuit
of depth 2 computing I P,, are at most 20("1/3), then the top gate must have fanin at
least 22(n"""),

Proof. Take a depth-2 threshold circuit computing I P, (x,y). Assume that all
weights of the top (output) gate are at most 20(n"*) Let m be the fanin of the

output gate. Our goal is to show that m > 202(n'/?),
Let o be the sum of weights of the output gates; hence, « < m - 20(”1/3). By
the Discriminator Lemma, some of the bottom gates f(x,y) must be a (1/«)-

discriminator for
A={(z,y) | IPy(z,y) = 1} and B = {(z,y) | [Pa(2,y) = 0}.

The gate f is of the form

f(z,y) =1 if and only if Z a;x; + Z biy; > ¢
i=1 i=1
for some integers a;, b; and c. The 2" x 2" matrix H with H[z,y] = (—1)/ (@)
is a Hadamard matrix. By Lindsey’s Lemma (see Appendix ?? for the proof), the

11.10 Threshold circuits 325

Bilder/disrim-eps-jconverted-to.pdf

Fig. 11.5 The N x N matrix of f(z,y) with N = 2" is divided into N?/3 consecutive squares of
size N2/3 x N2/, There are at most 2 - N/3 squares containing both a 0 and a 1. The 1-entries
not in these squares can be covered by N/3 rectangles of height N?/3 and width < N.

absolute value of the sum of all entries in any a X b submatrix of an N x N Hadamard
matrix does not exceed v abNN.

Now consider the set F' = {(x,y) | f(x,y) = 1} of inputs accepted by the
gate f. We will view this set as a 2" x 2" matrix where the rows are indexed by
vectors z in increasing order of Y ;- ; a;z;, and columns are indexed by vectors y
in increasing order of) ", b;y;; the entry (z,y) of the matrix is f(z,y). In this
matrix every entry either to the right of, or below an entry which is 1, is also equal
1.

Divide the matrix into 22*/3 consecutive squares of size 22/3 x 22"/3 (Fig. ??).
There are at most 2 - 2"/ squares containing both a 0 and a 1. The 1-entries not
in these squares can be covered by at most 2*/3 rectangles of height 22*/% and
width < 27. Thus, using the Lindsey Lemma, the absolute value of the difference
|AN F| —|BnN F| does not exceed

9. 2n/3 . 2477,/3 4 277,/3 A /22n/3 .on . 9n — 3. 25n/3 .

In our case the sets A and B are of about the same size: |A| = 227~1 — 271 and
|B|] = 22"~1 42"~ Hence, the bottom gate f can be an e-discriminator for A and
Bonlyife < 9—2(n'/%) Thus, 1/a < 9—2(n'/?) Together with o < m - 20("1/3),
this gives the desired lower bound m > 29 (%) on the fanin m of the top gate. O

The theorem was generalized and extended by Krause (1996), and Krause and
Waack (1995). The case of depth-2 threshold circuits with unrestricted weights of
the top gate was considered by Krause and Pudlak (1997). They proved that the
lower bound for I P,, given in Theorem ?? also holds in this case, if only modular
gates MOD,,, for odd integers m > 3 are used at the bottom level. Such gates are
defined by:

MOD,,(z1,...,z,) =1 ifandonlyif x; +...+ 2, =0mod m.

326 11 Depth-3 Circuits

Forster et al. (2001) considered real threshold circuits when the weights of the
top gate are arbitrary and bottom gates are threshold functions with bounded but
exponentially large weights.

11.37 Theorem (Forster et al. 2001) If the weights of the bottom gates of a threshold
circuit of depth 2 computing I P, do not exceed 2""/3, then the top gate must have
fanin at least 2°2(").

Proof. We will view boolean functions f(x,y) of 2n variables as boolean 2™ x 2™
matrices of their values. By the rank, rk(f), of a boolean function f(z,y) we will
mean the real rank of its matrix. In particular, the matrix of I P, is (the boolean
version of) a 2" x 2" Hadamard matrix Han. By the result of Forster (2002), we
know that this matrix has signum rank at least 2"*/2 (see Corollary ??). Thus, to
prove the theorem, it is enough to show that every depth-2 threshold circuit of
small top-fanin and bounded weight of bottom gates has small signum rank. We
first show that small-weight threshold functions (that is, our bottom gates) have
small rank.

11.38 Claim If f(x,y) is a real threshold function with integer weights not exceed-
ing W, then rk(f) < 2nW + 1.

Since f(x,y) is a real threshold function with integer weights not exceeding W,
there are integers a;, b; and c of absolute value at most W such that

f(z,y) =1 if and only if Zaixi + Zbiyi >c.

i=1 i=1

Let F be the 2" x 2™ matrix of f(z,y). For each integer u between —nW and
nW, let F,, be the submatrix of F' formed by all rows = with } | | az; = w.
Since these submatrices are disjoint, and each of them has rank at most 1, the
subadditivity of rank implies that the rank of F' is at most the number 2nW + 1 of
these submatrices. a

Since, by the assumption of the theorem, all bottom gates have weights W <
21/3 and since the matrix of I P, has signum rank at least 27/2 the theorem follows
directly from the following claim.

11.39 Claim If a boolean function f(x,y) is computed by a depth-2 threshold
circuit with top-fanin s, then f has signum rank at most O(snW) where W is the
maximum weight of a bottom gate.

Proof. Let the top gate have weights w1, . .., ws and threshold wy. Hence,
f(xv y) = lifand Only lele wlfz(xv y) —wp = Oa

where f;(x,y) is a threshold function computed at the i-th bottom gate. Hence, if
F,Fy, ..., F; are the corresponding 2" x 2™ matrices, then the value of F' only
depends on the signum of the matrix

11.10 Threshold circuits 327
M:w1F1+"'+wst_w0‘]a

where J is the all-1 2" X 2" matrix. By Claim ??, tk(F;) < 2nW + 1 for all
i =1,...,s. Thus, the signum rank of F' does not exceed

rk(M) <1+) rk(F) <1+ s(2nW + 1) = O(snW)
i=1

as claimed. O

11.40 B Research Problem
Prove an exponential lower bound for unrestricted depth-2 threshold circuits.

11.10.3 Threshold circuits of depth three

In the case of depth 3, even the power of unweighted threshold circuits remains
unclear. In view of the fact that we do not have lower bounds for unbounded weight
threshold circuits of depth-2, this is not surprising: Goldmann, Razborov and Hastad
(1992) proved that every depth-d circuit with unbounded weights can be simulated
by a depth-(d 4 1) circuit consisting of majority gates—the increase in size is only
polynomial; see the survey of Razborov (1992d) for more information. Note that
such (majority) circuits constitute a subclass of unweighted threshold circuits.

Unweighted threshold circuits of depth 3 are also important due to the following
impressive result of Yao (1990). He showed that every boolean function in ACC" is
computable by depth-3 threshold circuits of “moderate” size and with only AND
gates on the bottom level. An ACC circuit (an alternating circuit with counting
gates) of depth-d is a circuit formed by d alternating levels of unbounded-fanin
AND and OR and arbitrary modular functions MOD,,, as gates. The class Acc?
consists of all (sequences of) boolean functions computable by constant-depth ACC
circuits of size polynomial in the number of variables; we will consider such circuits
in the next chapter.

11.41 Theorem (Yao 1990) If f € ACC® and f has n variables, then f can be

computed by an unweighted depth-3 threshold circuit of size 2(1°% Y and AND
gates of fanin at most (logn)°™") at the bottom.

We omit the somewhat technical proof of this important result.

Unfortunately, so far we cannot prove large lower bounds for unweighted thresh-
old circuits of depth 3. We only can do this under additional restrictions of the
circuit structure. Below we will prove the largest known lower bound for depth-
3 threshold circuits with AND gates on the bottom. Unfortunately, the bound is
“only” super-polynomial, and does not imply lower bounds for constant-depth ACC
circuits.

Recall that the generalized inner product function is defined as

328 11 Depth-3 Circuits

GIPms(x) = é /s\ Lij -

i=1 j=1

Héstad and Goldmann (1991) combined Lemma ?? with the Discriminator Lemma
to prove the following lower bound for depth-3 threshold circuits with restricted
bottom fanin.

11.42 Theorem (Hastad-Goldmann 1991) Any depth-3 threshold circuit which com-
putes GIP,, ; and has bottom fanin at most v < s, must be of size exp(£2(n/rd")).

In particular, any depth-3 threshold circuit which computes GIP,, 105, and has
bottom fanin at most (logn)/3, must be of size exp(n?’(})). Now consider the
following boolean function

n logn n

@) =D N\ D

i=1 j=1 k=1

11.43 Theorem (Razborov-Wigderson 1993) Any unweighted threshold circuit of
depth-3 which computes f,,(x) and has unbounded-fanin AND gates at the bottom,
must be of size nf2ogn),

Proof. Let C be an unweighted depth-3 threshold circuit computing f, (). Suppose
that C' has only AND gates on the bottom (next to the inputs) level. The strategy of
the proof is to hit C' with a random restriction in order to reduce the bottom fanin.
Then we apply Theorem ?? to the resulting sub-circuit.

Set p := (2Inn)/n. Let p be the random restriction which assigns each variable
independently to * with probability p, and to 0, 1 with probabilities (1 —p)/2. Given
a boolean function g of n variables and a restriction p, we will denote by g, the
function we get by doing the substitutions prescribed by p.

Let K be a monomial, that is, a conjunction of literals. Denote by | K| the number
of literals in K. We are going to show that for each K we have

Prob[|K,| > Llogn] < n~?0em) (11.11)
To show this, consider two cases.

Case 1: |K| < (logn)?. In this case we have

logn)?\ 1
PI‘ObHKp‘ 2 %10gn] S ((101.%;/)) .p3 logn g O(plogn)(logn)/?) S n—fl(logn) .
3 ogn

Case 2: |K| > (logn)?. In this case we have

|K]
1
Prob[|K,| > % logn] < Prob[K, # 0] = (—;—p) < p~$2logn)

11.10 Threshold circuits 329

Now, when we have (??), the reduction to Theorem ?? becomes easy. Namely, if
our original circuit C' had size at most n¢!°8™ for a sufficiently small € > 0 then,
by (??), the probability that C, has an AND gate on the bottom level of fanin
larger than %logn would tend to 0. On the other hand, we have nlogn sums
g(x) = @} _, xijk in f,, and the probability that some of them will be evaluated
by p to a constant, is also at most

1
nlogn = 08 Ly,
n

(1—p)"nlogn < e P'nlogn = e 21"

So there exists an assignment p such that both of these events happen. That is,
after this assignment p we are left with a depth-3 threshold circuit C’ which has
bottom fanin at most % log n and computes a subfunction f, of f,, where none of
the sums g(x) is set to a constant. By setting (if necessary) some more variables
to constants, we will obtain a circuit of bottom fanin at most % logn computing
GIP,;, 10 n- By Theorem ??, this is only possible if size(C"), and hence also size(C),

is at least exp(n’(1)), contradicting our assumption that size(C') < n€'°8”. 0O

The reason why Theorem ?? does not imply large lower bounds for ACC circuit{]
is that Yao’s reduction (mentioned above) requires much larger lower bounds,
namely bounds of the form exp((logn)®) for & — oc.

In Theorem ?? bottom gates are required to be AND gates. But, as mentioned by
Razborov and Wigderson (1993), Johan Hastad observed that the same argument
actually gives super-polynomial lower bounds also for unweighted depth-3 circuits
whose bottom gates are arbitrary boolean functions of restricted fanin. The restric-
tion is that, if the computed function has N variables, then the fanin of bottom
gates cannot exceed N'~¢, for an arbitrarily small but fixed constant ¢ > 0. To
see this, fix a constant € > 0. Let n = N2, m = N/nlogn, and consider the
following function of N variables:

n log n

m
D

k=1

=

=1 j=

11.44 Theorem Any unweighted depth-3 threshold circuit which computes fn and has
fanin at most s at the bottom must be of size at least the minimum of (m/s)(°&m)

d2n9(1)

Proof. We follow the proof of Theorem ?? with p := (21nn)/m. The same analysis
as in Case 1 shows that for any function of at most s variables, the probability that
f,» depends on at least (log n) /3 variables does not exceed (s/m) (8™ The rest
is the same. O

" And can not imply since, by its definition, the function f,, itself can be computed by a small
ACC circuit of depth 3.

330 11 Depth-3 Circuits

Thus, any unweighted depth-3 threshold circuit computing fn and having fanin
at most N1 7€ at the bottom, must be of size N ?(log V)

Exercises

11.1 Show that every boolean function of n variables can be written as a DNF with
at most n2" ! literals, and that boolean functions requiring this number of literals
exist. Hint: For the upper bound use induction on n, and use the parity function for the lower
bound.

11.2 For a bipartite graph G, let (as before) cnf(G) denote the smallest number
of clauses in a monotone CNF representing G. Define the intersection dimension
int(G) of G as the smallest number r for which it is possible to assign each vertex v
asubset S, C {1,...,r} such that u and v are adjacent in G iff S,, NS, = 0. Prove
that cnf(G) = int(G). Hint: Given a monotone CNF Cy A --- A Cr, let Sy = {i | #u & Ci}.

11.3 Show that a bipartite graph can be represented by a monotone X' circuit with
top fanin s and middle fanin 7 iff it is possible to assign each vertex v a boolean
s X r matrix A, such that u and v are adjacent in G iff the product-matrix A, - AL,
(over the reals) has at least one 0 on the diagonal. Hint: Previous exercise.

11.4 Show that almost all bipartite n x n graphs require monotone X3 circuits of
size 2(y/n). Hint: Previous exercise.

11.5 B Research Problem. Prove or disprove: there exists a bipartite 2™ x 2"* graph
G such that G can be represented by a monotone X3 circuit of size gpolylog(m) g
its bipartite complement G cannot be represented by a monotone X3 circuit of such
size.

Comment: Note that here G need not be explicit—a mere existence would be enough! This would
separate the second level of the communication complexity hierarchy introduced by Babai, Frankl
and Simon (1986), and thus solve an old problem in communication complexity.

11.6 (Khasin 1969) Let n = kr and consider colorings of ¢ : [n] — [k] of the set
[n] = {1,...,n} by k colors. Say that such a coloring is balanced if each color is
used for the same number 7 of points. Given a k-element set of points, say that
it is differently colored if no two of its points get the same color. Prove that there
exist £ = O(ke” logn) balanced colorings such that every k-element subset of [n]
is differently colored by at least one of them.

Hint: Consider independent copies c1, . . . , ¢, of a balanced coloring c selected at random from

the set of all n!/(r!)* such colorings. Show that for every k-element subset S of [n], ¢ colors S
differently with probability p = ¥ - (:) ~! Use the union bound to show that, with probability
at least 1 — (Z) (1 — p)*, every k-element subset S will be colored differently by at least one of

¢1,...,ce. Recall that r = n/k and show that this probability is nonzero for £ = O(ke* logn)

11.10 Threshold circuits 331

11.7 Consider the k-threshold function Thy (x1, . .., x,) which outputs 1 if and only
if x; 4+ -+ x,, > k. Use the previous exercise to show that Thj, can be computed
by a monotone Y5 formula of size O(kekn log). Hint: Each balanced k-coloring c of
{1,...,n} gives us a CNF formula F, = /\f:1 V
them into an Or-And-Or formula for Th},.

. xj. Use the previous exercise to combine
c(j)=i

11.8 (Parity decision trees) A @-decision tree of n variables x1, ..., x, is a binary
tree whose internal nodes are labeled by subsets S C [n] and whose leaves have
labels from {0, 1}. If a node has label S then the test performed at that node is to
examine the parity P, g ;. If the result is 0, one descends into the left subtree,
whereas if the result is 1, one descends into the right subtree. The label of the leaf
so reached is the value of the function (on that particular input). Let DISJ o, (z,y)
be a boolean function of 2n variables defined by DISJo, (z,y) = 1iff z;y; = 0 for
alli=1,...,n. Show that any ®-decision tree for DIS.J 5, requires 2°("") leaves.

Hint: Transform the decision tree into a E? circuit.

119 Let m = [logy(n + 1)], and consider the function Sum,, ,, : {0,1}" —
{0,1}™ which, given a vector = € {0,1}" outputs the binary code of the sum
r1 4+ 29 + -+ - + x,,. Show that T(Sumnym) = m. Hint: Let y = Sumy, (z). Then yrm =1
iffz1 + - +xn > 271 Also Ym—1 = 1iffx1 + -+ xp — ym2"71 > 2772 etc.

11.10 Show that every symmetric boolean function of n variables can be computed
by an unweighted depth-2 threshold circuit using 2n + 3 gates. Hint: Let f be a
symmetric boolean function defined by S = {s1,...,sk} C {0,1,...,n}, thatis, f(z) =1
iff 27:1 x; € S. As an output gate take the threshold function Thi’j_l. As its inputs take the
outputs of Thy, (x) and ThZ (z) fori =1,...,k; here ThZ (z) outputs 1 iff Z::I i < 85.

11.11 Recall that the inner product function is a boolean function of 2n variables
defined by I P,,(z,y) = >, 2;y; mod 2. Show that this function can be computed
by an unweighted threshold circuit of depth 3 using O(n) gates. Hint: Exercise ??.

12. Large-Depth Circuits

We now consider circuits of depth d > 3. Out of attempts to prove lower bounds
for such circuits, two powerful methods emerged.

The first is a “depth reduction” argument: One tries to reduce the depth one layer
at a time, until a circuit of depth 2 (or depth 1) remains. The key is the so-called
Switching Lemma, which allows us to replace CNFs on the first two layers by DNFs,
thus reducing the depth by 1. This is achieved by randomly setting some variables
to constants. If the total number of gates in a circuit is not large enough and the
initial circuit depth is small enough, then we will end with a circuit computing a
constant function, although a fair number of variables were not set to constants.
For functions like the Parity function, this yields the desired contradiction.

The second major tool is a version of Razborov’s Method of Approximations,
which we have already seen applied to monotone circuits. Given a bounded-depth
circuit for a boolean function f(z), one uses this circuit to construct a polynomial
p(z) of low degree which differs from f(x) on relatively few inputs, if the circuit
does not have too many gates. This immediately implies a lower bound on the
circuit size of any boolean function, like the Majority function, which cannot be
approximated well by low-degree polynomials.

12.1 Hastad’s switching lemma

Recall that a boolean function is a ¢-CNF function if it can be written as an AND of
an arbitrary number of clauses, each being an OR of at most ¢ literals (variables and
negated variables). Dually, a boolean function is an s-DNF if it can be written as an
OR of an arbitrary number of monomials, each being an AND of at most s literals.

In the “depth reduction” argument, an important step is to be able to transform
t-CNF into s-DNF, with s as small as possible. If we just multiply the clauses we
can get very long monomials, much longer than s. So the function itself may not be
an s-DNF. In this case, we can try to assign constants 0 and 1 to some variables and
“kill oft” all long monomials (that is, evaluate them to 0). If we set some variable z;,

332

12.1 Hastad’s switching lemma 333

say, to 1, then two things will happen: the literal —x; gets value 0 and disappears
from all clauses, and all clauses containing the literal x; disappear (they get value
1).

Of course, if we set all variables to constants, then we would be done: no mono-
mials at all would remain. The question becomes interesting if we must leave some
fairly large number of variables unassigned. This question is answered by the
so-called switching lemma.

Recall that a restriction is a map p of the set of variables X = {x1,...,z,} to the
set {0, 1, x}. The restriction p can be applied to a function f(z1,...,z,), then we
get the function f, (called a subfunction of f) where the variables are set according
to p, and p(z;) = * means that x; is left unassigned. Note that f, is a function of
the variables x; for which p(z;) = *. We can then apply another restriction 7 of
the remaining variables to obtain a subfunction f,. of f,, etc.

Suppose that p is a real number between 0 and 1. A p-random restriction assigns
each variable x; a value in {0, 1, *} independently with probabilities

Problp(z;) =] = p

and
Problp(z;) = 0] = Prob[p(z;) = 1] = 1%79 .

Thus, on average, such a restriction leaves a p fraction of variables unassigned. We
will sometimes abbreviate the notation and write Prob[*] rather than Prob[p(xz;) =
). Note that the probability that more than s variables remain unassigned does not
exceed (")p® < (epn/s)*. This, in particular, is an upper bound on the probability
that f, cannot be written as an s-CNF.

The Switching Lemma is a substantial improvement of this trivial observation: if
fisat-CNF, then f, will not be an s-DNF with probability at most (8pt)°. Important
here is that this “error probability” does not depend on the total number of variables.
In fact, we have an even stronger statement (see Exercise ?? for why this statement
is stronger): f, will have a minterm longer than s with at most this probability.
Recall that a minterm of a boolean function f is a minimal (under inclusion) subset
of its variables such that the function can be converted into the constant-1 function
by fixing these variables to constants 0 and 1 is some way. Let min(f) denote the
length of the longest minterm of f.

Switching Lemma Let f be a t-CNF, and let p be a p-random restriction. Then
Prob[min(f,) > s] < (8pt)*.

This versiorﬂ of the Switching Lemma is due to Hastad (1986, 1989). Somewhat
weaker versions of this lemma were proved earlier by Ajtai (1983), Furst, Saxe, and
Sipser (1984), and Yao (1985). All these proofs used probabilistic arguments. A novel,
non-probabilistic proof was later found by Razborov (1995), and we present it in
the next section. Actually, his argument also yields an upper bound Prob[D(f,) >

" With a smaller constant 5 instead of 8.

334 12 Large-Depth Circuits

s] < (8pt)*®, where D(f) is the minimum depth of a decision tree computing f; see,
for example, a survey of Beame (1994) for details.

12.2 Razborov’s proof of the switching lemma

Throughout this section, let s and ¢ be integers with 1 < s < ¢ < n, where n is
the total number of variables. We denote by R’ the set of all restrictions leaving
exactly £ variables unassigned. Hence,

¢ N\ gn—¢
— (")t
Y| (6)

Recall that a minterm of f is a restriction p : [n] — {0,1, *} such that f, = 1 and
which is minimal in the sense that unspecifying any single value p(i) € {0,1}
already violates this property. The support of p is the set of all bits ¢ with p(i) # *,
and the length of p is the size of its support. Let min(f) be the length of the longest
minterm of f, and let

Bady((,s) :== {p € R' | min(f,) > s} .

In particular, Bad (¢, s) contains all restrictions p € R* for which f, cannot be
written as an s-DNF.

12.1 Lemma (Razborov 1995) If f is a t-CNF then
Bady (£, 5)| <R[(20)° .

Before giving the proof this lemma, let us show that it indeed implies the Switch-
ing Lemma. To see this, take a random restriction p in R for £ = pn, where n is the
total number of variables. Then, by this lemma, for every p < 1/2, the probability
that f, cannot be written as an s-DNF is at most

By (0] (L2t y: p ¢
< < 1) = (7)< (sp0)°
R ST et S \e—e) W= o,) = @)
Proof of Lemma ??. A cute idea of this proof (which itself is relatively simple) is to

use the following “coding principle”:

In order to prove that some set A cannot be very large, try to construct a
mapping Code : A — B of A to some set B which is a priori known to be
small, and give a way to retrieve each element a € A from its code Code(a).
Then Code is injective, implying that |A| < |B|.

Let F' be a t-CNF formula for f. Fix an order of its clauses and fix an order of literals
in each clause. We want to upper-bound the number [Bad (¢, s)| of restrictions
p € R’ that are “bad” for f, that is, for which the subfunction f, contains a minterm

12.2 Razborov’s proof of the switching lemma 335

of length > s. Our goal is to use the underlying CNF formula F' to construct an
encoding

Code : Bad(¢,5) — R ™* x S with S C {0,1}*** and |S| < (2t)*

such that, knowing the formula F', we can reconstruct a restriction p from Code(p).
By the coding principle, we will be then done.

To construct the desired encoding, fix a bad restriction p € Bad(¢, s). We
know that the subfunction f, must contain a minterm 7’ of length s’ > s + 1. By
unspecifying an arbitrary subset of s’ — s variables, we truncate 7’ to 7 so that
7 has length exactly s. After p is applied to F', some clauses get the value 1 and
disappear, while some literals get the value 0 and disappear from the remaining
clauses. Moreover, p cannot set any clause to 0, for otherwise we would have f, = 0.
Further, we have that f, cannot be constant because 7’ was a minterm of f,,.

Consider the first clause C; of F' which is not set to 1 by p but is set to 1 by p.
Let 71 be the portion of 7 that assigns values to variables in C'. Let also 71 be the
uniquely determined restriction which has the same support as 7 and does not set
the clause C1 to 1. That is, 771 evaluates all the literals “touched” by 7 to 0.

Define the string @; € {0, 1}! based on the fixed ordering of the variables in
clause C by letting the j-th component of @; be 1 if and only if the j-th variable in
C1 is set by 71 (and hence, also by 7r1). That is, d; is just the characteristic vector
of the (common) support of restrictions 7m; and 7;. Note that there must be at least
one 1 in a@; (the support of 71 cannot be empty). Here is a typical example:

Chr= 23V x4 VagVaorV
™ = * 1 * 1 0
T * 1 * 0 0
a= 0 1 0 1 1

The main property of the string a; is that knowing C; and d; we can reconstruct
71: string @ tells us what literals of C'; must be set by the restriction 71, and the
property that C'; does not evaluate to 1 allows us to infer the restriction itself.

Now, if 71 # 7, we repeat the above argument with 7 \ 7 in place of 7, pmy in
place of p and find a clause C'y which is the first clause not set to 1 by pmr;. Based on
this we generate o, 7o and ds as before. Continuing in this way we get a sequence
of clauses C, Cy, Each C; contains some variable that was not in C; for j < 1,
so we must stop after we have identified m < s clauses. Hence, 7 = m1ma

Let b € {0, 1}* be a vector that indicates for each variable set by 7 (which are
the same as those set by T = T 72 . . . T,) Whether it is set to the same value to
which 7 sets it. (Recall that 7; must set at least one literal of C; to 1 and may set
some of them to 0, whereas 7; sets all these literals to 0.) We encode the restriction
p by the string

Code(p) == (pT1T2 .. . Ty @1y, D).

336 12 Large-Depth Circuits

Our goal is to show that: (1) the mapping p — Code(p) is injective, and (2) its range
is not too large. To achieve the first goal, it is enough to show how to reconstruct p
uniquely, given Code(p).

First note that it is easy to reconstruct 7;. Identify the first clause of F’ which is
not set to 1 by pm1 75 ... Ty, Since none of the 7; sets a clause to 1, this must be
clause C;. Now use @; to identify the variables of C'; that are set by 71, and use
bto identify how m; would set these variables. Thus we have reconstructed the
sub-restrictions m; and ;. Knowing these sub-restrictions and the entire restriction
PT1Ts . . . Ty, We can reconstruct the restriction pm 7o . . . Tp,.

Now we can identify C: it is the first clause of F' which is not set to 1 by
pPT1Ts ... Tm. Then we use d@s to identify the variables of C5 set by 7o, and use
b to identify how mo would set these variables. Continuing in this way, we can
reconstruct the restriction 7172 . . . T, and thus the original restriction p.

To finish the proof of the lemma, it is enough to upper-bound the range of the
mapping Code. First, observe that restrictions p7, 7 . . . 7, belong to R‘~*. Hence,
the number of such restrictions does not exceed |R‘~*|. The number of strings
b € {0,1}* is clearly at most 2°. Finally, each (@1, .. ., @) is a string in {0, 1}™*
with the property that each substring @; € {0, 1}" has at least one 1 and the total
number of 1s in all @; is s. The number of such strings (@1, . . ., @y,) with k; ones
in d; is

| (t) 2 [.
The number of positive integers k1, . . ., ky, suchthatky +---+k,, = sis (;;11) <
2° (show this!). Thus the range of Code(p) does not exceed |R*~%| x (2t)*, as
desired. O

12.3 Parity and Majority are not in AC°

An alternating circuit of depth d, or an AC circuit, is a circuit formed by d alter-
nating levels of unbounded-fanin AND and OR gates; inputs are variables and
their negations. The clas ACY consists of all (sequences of) boolean functions
computable by constant-depth alternating circuits of size polynomial in the number
of variables. We will now use the Switching Lemma to show that the parity function

Parity, () = 21 + 22 + - - - + 2, mod 2
cannot be computed by such circuits of polynomial size; that is,

Parity,, & ACY.

" Usually, AC* denotes the class of all boolean functions computable by AC circuits of depth
d = O(log” n). Thus, superscript “0” tells us that we are dealing with constant-depth circuits.

12.3 Parity and Majority are not in AC° 337

It can be shown that, for every d > 2, the parity function can be computed by
depth-(d + 1) circuits of size 20(n'/?) (see Exercise ??). In particular, if we allow
circuit depth to be about log n/ loglog n then Parity,, () can be computed using
only O(n?/logn) gates.

Theorem ?? below shows that the upper bound 20" s almost optimal. The
theorem itself is a direct consequence of a fact that every function in AC" can be
reduced to a constant function by setting relatively few variables to constants.

Let R(f) denote the minimal number such that f can be made constant by
fixing r variables to constants 0 and 1. The larger R(f) is, the more “robust” the
function is. For example, R(f) = 1 if f is an OR or an AND of literals, whereas
R(f) = nif f is the parity of n variables.

The following theorem states that functions computable by small circuits of
constant depth are not robust enough.

12.2 Theorem Ifa boolean function f of n variables can be computed by a depth-(d+1)
alternating circuit of size S, then

n

M= o 5yt

4+ 2log S,

where cq > 0 is a constant depending only on d.

This gives the following lower bound on the size S:

21og § > W — (n— R(f)). (12.1)

Proof. Fix a depth-(d + 1) circuit of size S computing f. Our first goal is to reduce
the fanin of gates on the first (next to the inputs) layer. Suppose that they are OR
gates (a symmetric argument applies if they are AND gates).

We think of each OR gate on the bottom layer as a 1-DNF. We apply the Switching
Lemma with t = 1, s = 2log S and Prob[«] = p := 1/16, and deduce that after a
random restriction each of the these 1-DNFs becomes an s-CNF (in fact, a single
clause of length < s) with probability at least

1—8pt)y=1-2"°=1-5"2.

Since we have at most S of the 1-DNFs, this in particular implies that there is a
restriction that makes all these 1-DNFs expressible as an OR of at most s input
literals. We apply such a restriction, and what we obtain is a circuit of depth d + 1
such that each bottom gate has fanin at most £ := 2log .S and the circuit still
computes a subfunction of f on ny = n/32 variables.

We now apply the Switching Lemma to the first two bottom layers of the obtained
circuit with Prob[*] = ¢ := 1/(16k) and both s and ¢ equal to k. We get that, for
each AND gate on layer 2, after the restriction the gate can be replaced by a k-DNF
with probability at least

1—8gk)f=1-2""=1-5"2,

338 12 Large-Depth Circuits

\Y, \Y, \% level 3 \Y, vV vV
& & & level 2 \Y \Y, V
\Y, \Y, \Y, level 1 & & &

input variables

Fig. 12.1 After the Switching Lemma is applied to the CNFs computed at the first two levels (from
the bottom), the levels 2 and 3 can be collapsed into one level.

Hence, there is a restriction for which this is true for all the (at most) S gates at

layer 2. We apply this restriction, replace each layer-2 gate with a k-DNF, and use

associativity to collapse the OR gate of each DNF into an OR gates of the second

layer of the original circuit. In this way we collapse layer 2 with layer 3 (see Fig. ??).
Now we have a circuit of depth d that computes a subfunction of f on

n n

=162 ~ ok (c = 256)

qgni
variables, and such that every bottom gate has fanin at most k.

If we repeat the same argument another d — 2 times, we will eventually end
up with a circuit of depth 2 such that the fanin of the bottom gates is at most
k = 2log S and the circuit computes a subfunction of f on

n n
m:= =

(cR)TT ~ cq(log 511

variables, where ¢, is a constant depending only on d. Every k-DNF (as well as
every k-CNF) can be evaluated to a constant 1 (resp., constant 0) by setting at most
k = 2log S variables to constants. We therefore have that the original function f can
be made constant by fixing n—m+k variables of f implying that R(f) < n—m+k,
as desired. a

Since R(Parity,,) = n, (??) immediately yields the following lower bound for
the parity function.

12.3 Theorem (Hastad 1986) Any depth-(d 4+ 1) alternating circuit computing the
parity of n variables requires 292(n"/") gates.

»

12.4 Remark (Majority function) Theorem ?? can be used to show that other “simple
boolean functions require large constant-depth circuits as well. For this, it is enough
to show how, from a depth-d circuit for f, we can construct a circuit of almost the

12.3 Parity and Majority are not in AC° 339

same size and depth computing the parity function Parity,, (). To illustrate this,
let us consider the majority function Maj,, (z) of an even number n of variables.

Note that, when directly applied, the lower bound (??) will only give a constant
lower bound on for Maj,,, because R(Mayj,,) < n/2.To obtain a larger lower bound,
we take an arbitrary depth-d circuit computing Maj,,. Let S be its size. Having such
a circuit, we can compute all functions

Ep/%(2) o= Thy/*(2) A ~Thi{3 ()

for all odd k& < n/2 using depth-d circuits of size O(nS). Now, Parity,, () is
just an OR of these functions, implying that Parity,, ,, can be computed by a depth-
(d+ 1) circuit of size O(n.S). Thus, Theorem ?? implies that Maj,, requires depth-d
circuits of size § = 22(n"/"),

12.5 Remark We know that the majority function does not belong to ACP. This
function outputs value 1 on all inputs of weight n/2, and outputs value 0 on inputs
of weight smaller than n/2; the weight of a binary vector is the number of ones in
it. But what if we will only require that the circuit outputs 0 on inputs of “small”
weight, and outputs 1 on inputs of “large” weight; on other inputs the circuit can
output any value. It turns out that this relaxed problem is actually much easier.

A 1/4-approximate selector is any boolean function whose value is 0 if the number
of ones in the input is at most n/4, 1 if the number of ones is at least 3n/4, and can
be either O or 1 otherwise. Such a function provides a rough estimate of the number
of ones and is extremely useful in parallel computation. It was shown by Ajtai
(1983), and Ajtai and Ben-Or (1984) that there exist polynomial-size, constant-depth
circuits that compute a 1/4-approximate selector function.

12.6 Remark By Theorem ??, any polynomial-size circuit of constant depth can be
made to output a constant by fixing n — n/polylog(n) inputs. That is,

n

0 impli <n——.
f € AC” implies R(f)<mn polylog ()

This yields a superpolynomial size lower bound for a constant depth circuit comput-
ing any function that cannot be made constant by setting n — n/polylog(n) input
bits. However, it does not say anything about functions which can be made constant
by setting this many bits. Can one prove at least super-linear lower bounds for such
functions? Motivated by this question, Chaudhuri and Radhakrishnan (1996) used a
direct combinatorial argument to prove that if a boolean function f of n variables
can be computed by a depth-k alternating circuit of size S, then

S = Q(R(f)T).

Now, if f is any 1/4-approximate selector, then R(f) > n/4, and we obtain a
super-linear lower bound S = 2(n'+1/ 4k) on the size S of any depth-k circuit

340 12 Large-Depth Circuits

computing f. They also proved that a 1/4-approximate selectors computable by a
depth-k circuit of size 5 = 2(n'+1/2") exist.

Using similar arguments as in the proof of Theorem ??, the following general
lower bound for bounded-depth circuits can be derived.

Let C(f) denote the minimum number & such that f can be written as a k-DNF
and as a k-CNF. The number C(f) is also known as the certificate complexity of f.

12.7 Theorem Let f be a boolean function computable by a depth-d circuit of size S,
and let p be a p-random restriction with p = 16=%k=9*1, Then

Prob[C(f,) > k] < S-27F.

Proof. (Due to Linial, Mansour and Nisan 1993) We view the restriction p as ob-
tained by first having a restriction with Prob[«] = 1/16, and then d — 1 consecutive
restrictions each with Prob[«] = 1/(16k).

With high probability, after the first restriction, at the bottom level of the circuit
all fanins are at most k. To see this, consider two cases for each gate at the bottom
level of the original circuit.

Case 1: The original fanin is > 2k. In this case, the probability that the gate was
not eliminated by p, that is, that no input to this gate got assigned a 0 if this
is an AND gate, or no input got assigned a 1 if this is an OR gate is at most
(14 p)/2)% < (0.6)%F < 27F,

Case 2: The original fanin is < 2k. In this case, the probability that at least k inputs
got assigned a * is at most (2kk)pk < (2e)k(1/16)F < 27F.

Thus the probability of failure at the first stage is at most m;2~%, where m; is
the number of gates at the bottom level.

We now apply d — 2 more restrictions with Prob[«] = 1/(16k). After each of
these, we use the Switching Lemma (with ¢ = k) to convert the lower two levels
from CNF to DNF (or vice versa), and collapse the second and third levels (from
the bottom) to one level, reducing the depth by one. For each gate at distance two
from the inputs, the probability that it has a minterm (respectively, maxterm) of
size larger than k is bounded by (8pk)® = 27F. The probability that some of these
gates has a minterm (respectively, maxterm) of size larger than k is no more than
m;27*, where m; is the number of gates of level 4 of the original circuit.

After these d — 2 stages we are left with a CNF (or DNF) formula of bottom fanin
at most k. We now apply the last restriction with Prob[«] = 1/(16k) and, by the
Switching Lemma, get a function f, with min(f,) < k. The probability of failure
at this stage is at most (8pk)* = 2.

To compute the total probability of failure, we observe that each gate of the
original circuit contributed a 2~* probability of failure exactly once. O

12.3 Parity and Majority are not in AC° 341

12.3.1 Majority of ACP circuits

Aspnes, Beigel, Furst and Rudich (1994) proved that the parity function remains
hard to compute by shallow circuits, even if a majority gate is allowed as an output
gate. By an output-majority circuit we will mean an unbounded fanin circuit over
{A, V, =} whose last (output) gate is a majority gate Maj; recall that this function
outputs 1 iff at least half of its inputs are 1s.

12.8 Theorem (Aspnes et al. 1994) Every majority-output circuit of depth d + 1 for
Parity,, (x) requires size at least 22(n'/")

Proof. We first show that AC-circuits of small depth and small size can be approxi-
mated well enough by low-degree polynomials. To spare parenthesis, we will often
say that a function g(n) “is at most about” h(n) if g(n) = O(h(n)).

12.9 Claim For any € > 0 and any boolean function f computed by an AC-circuit
of depth d and size S, there exists a real multivariate polynomial of degree at most
about ((log(S/€) log S)¢ which computes f for all but at most 2" input vectors.

Proof. Set r := |log(S/€)]. Consider the distribution of the inputs of each gate
when the inputs of the circuit are chosen uniformly at random. By Lemma ??, using .S
as an upper bound on the number of inputs to a gate g, there exists some polynomial
of degree at most about r log S which computes the value of the gate with probability
atleast 1 — 27" > 1 — €/S when the inputs to the circuit are generated uniformly.
The composition of these polynomials is a polynomial of degree at most about
(rlog S)? which computes f with probability at least 1 — S(e/S) = 1 — ¢, that is,
which computes f for all but at most €2™ inputs. O

We now add a majority gate on the top of the circuit and obtain the following
analog of Claim ??. Recall from Section ?? that a real polynomial p(z) signum-
represents a given boolean function f(z) if p(x) > 0 for all z € f~1(1), and
p(x) < 0forallz € f~1(0).

12.10 Claim For any € > 0 and any boolean function computed by a majority-
output circuit of depth d + 1 and size S, there exists a real multivariate polynomial
of degree at most about ((log(S?/¢)log S)¢ which signum-represents f for all but
at most €2” input vectors.

Proof. Suppose that the majority gate has k inputs; hence, k& < S. For the subcircuit
generating the i-th input, use Claim ?? to obtain a polynomial p; of degree at most
about (log(kS/€) log S)? which computes that input for all but €2 /k inputs. Then
E?Zl p; — k/2 is a polynomial of degree at most about (log(S?/¢) log S)? which
signum-represents f for all but at most €2” inputs. O

We now turn to the actual proof of Theorem ??. Suppose the size of the circuit is
S. Then by Claim ?? (applied with, say, € = 1/4), there exists a real polynomial p
of degree k at most about (log(452) log S)¢ = (log S)?? which signum-represents

342 12 Large-Depth Circuits

Parity () for all but at most 2" /4 input vectors. But by Corollary ?? the degree of
p must be k = 2(,/n), and thus log S = 2(n!/44). 0

12.11 Remark Recently, there was an interesting development concerning the size
of constant-depth circuits computing the clique function CLIQUE(n, k). Recall
that this function has (g) variables x;;, one for each potential edge in a graph on a
fixed set of n vertices; the function outputs 1 iff the associated graph contains a
clique (complete subgraph) on some k vertices. It is easy to see that this function
can be computed by a depth-2 circuit (a monotone DNF) of size (Z) < n*. Ross-
man (2008) showed that, for every fixed integer k, any depth-d circuit computing
CLIQUE(n, k) must have c4n*/* gates. Note that only the multiplicative constant
in the lower bound depends on the circuit depth.

12.3.2 Parity is even hard to approximate

We have seen that shallow circuits of small size cannot compute the parity function
Parity(x) exactly. But perhaps such circuits can at least approximate this function?
Note that a trivial circuit, which outputs 0 on all input vectors, agrees with Parity (z)
on a 1/2 fraction of all 2" inputs. It turns out that this is almost the best shallow
circuits can do.

12.12 Theorem (Hastad 1986) Every alternating depth-d circuit of size S < 20(n'’")
can agree with Parity(x) on at most a1/2 4+ 1/S fraction of input vectors.

Proof. We follow the simplified proof due to Klivans and Vadhan as described in
the survey of Viola (2009). Let F'(z) be a depth-d circuit over {A,V, =} of size
S < 20(”1/d), and suppose that it agrees with Parity(z) on more thana 1/2+1/5
fraction of input vectors. Hence,

Prob[F(z) = Parity(z)] > = +

)

N | =
|~

where z is a random vector uniformly distributed in {0,1}". We will use F(x)

to design a majority-output circuit of depth d and size 20(n"") \which computes
Parity(z) on all inputs, contradicting Theorem ??. For this purpose, associate with
each vector a € {0,1}" the circuit

F,(z) :== F(a @ x) @ Parity(a) .

Each circuit F}, has the same depth and size as the original circuit F. Moreover, for
any fixed x € {0, 1}", we have that

F,(x) @ Parity(z) = F(a ® z) ® Parity(a) @ Parity(z)
= F(a @ z) @ Parity(a @ x) .

12.4 Constant-depth circuits and average sensitivity 343

Thus for every fixed z € {0,1}", we have that

1 1
Prob[F,(x) = Parity(z)] > 3 +e with e= 5
where this time a is a random vector uniformly distributed in {0, 1}". Now pick
m := n.S? independent copies aj, ..., a,, of a, and consider the (random) output-
majority circuit

F(x) :=Maj(F,, (z),...,F,, (7).

By the Threshold Trick (Lemma ??; see also the proof of Theorem ??), the probability
that this circuit makes an error on at least one of all 2" possible inputs is at most
one—2¢m _ gne=2n & 1. Therefore, there must be a setting of the random inputs
which gives the correct answer for all inputs. The obtained circuit is no longer
probabilistic, and its size is at most m.S + 1, which is polynomial in .S, the size of
the original circuit F. O

12.4 Constant-depth circuits and average sensitivity

We will call two boolean vectors (assignments) x, y € {0, 1}" neighbors and write
x ~ y,if x and y differ in exactly one position. The sensitivity, s(f, z), of a boolean
function f on an assignment € {0, 1}" is the number of neighbors of = on which
f takes different value than f(z):

s(fox) = [{y:y~wzand f(y) # f(2)|

Sensitivity is an important measure of boolean functions: as shown by Khrapchenko
(1971), high sensitivity implies large formula size (see Theorem ??). Namely, if we
set for a € {0, 1},

1
do(f) := m xe;(a) s(f,z),

then Theorem ?? implies that every DeMorgan formula computing f must have at
least do(f) - d1(f) leaves.

We are now going to show that high “average sensitivity” forces large circuits of
constant depth as well. The average sensitivity, as(f), of f is the expected sensitivity
of f on a random assignment:

as(f):=27" Zs(f, x).

T

For example, if f(x) = Parity(z) is the parity of n variables, then s(f, x) = n for
every assignment z, implying that as(f) = n. We have already seen that Parity(x)
requires constant-depth circuits of exponential size. It turns out that any boolean
function of large average sensitivity requires large constant-depth circuits.

344 12 Large-Depth Circuits

12.13 Theorem (Boppana 1997) For every boolean function f, every depth-d circuit
computi h b hat i jal i 1/(d=1)
puting [must have a number of gates that is exponential in as(f) .

A somewhat weaker lower bound 22@()"") was proved earlier by Linial,
Mansour and Nisan (1993) using Fourier transforms of boolean functions. Actually,
they proved a more general result: for every ¢t > 0, every depth-d circuit computing

f requires at least
22070 N f(s)?

SC[n]:|S|>t

~

gates, where f(.9) is the S-th Fourier coefficient of f.
As an immediate consequence, we obtain that all functions in AC? have small
average sensitivity.

12.14 Corollary If a boolean function f can be computed by an alternating depth-d
circuit of size S, then as(f) = O(log? ' S).

We split the proof of Theorem ?? into a sequence of lemmas, each of which might
be of independent interest. We first show that depth-2 circuits have low average
sensitivity.

12.15 Lemma If f is a k-DNF or a k-CNF function, then as(f) < 2k.

Proof. Let f be a k-DNF function. (The k-CNF case is dual.) Take an assignment x
for which f(z) = 1. Then there must be a monomial M of length at most & such
that M (x) = 1. Hence,

s(frix)=Hylz~y, fly) =0} <H{ylz~y, M(y) =0} < k.

Since | f~1(1)| < 2", Exercise ?? yields

as(f) = 5o > s(fr) < 2" = 2k.0
z€f=1(1)

2n—1

Let)y, be the n-dimensional binary hypercube. Recall that this is a graph whose
vertices are vectors in {0, 1}". Two vectors z,y € {0,1}" are adjacent in Q,,
written as ~ y, if « and y differ in exactly one position. This is a regular graph of
degree n with 2" vertices and n2" ! edges. A random edge is a random variable
(x,y) that is uniformly distributed over the set Q,, of all edges.

12.16 Lemma If (x,y) is a random edge in Q.,, then

as(f) = n - Prob[f(z) # f(y)]-

Proof. Every boolean function f of n variables defines a bipartite graph Gy with
parts f~1(0) and f~*(1), where (z,y) € f~1(0) x f~'(1) is an edge of G iff
y = x®e; for some i € [n]. Every vertex of Q,, has degree n. By Euler’s theorem, the
sum of degrees of all vertices in any graph is equal to two times the number of edges.

12.4 Constant-depth circuits and average sensitivity 345

Thus, there are n2" /2 = n2"~! edges in Q,,. By Exercise 22, as(f) = |G¢|/2" 1.
Hence, (z,y) belongs to Gy with probability

Prob[f(x) # f(y)] = |Gl /n2" " = (as(f)2" ") /m2" " =as(f)/n. O

12.17 Lemma (Sensitivity of restrictions) If f is a boolean function, and p is a p-
random restriction, then E[as(f,)] = p - as(f).

Proof. Let z ~ y be a random edge of (), independent of p. Let i be the unique
position for which z; # y;. Let px denote the assignment in {0, 1}" whose j-th
position (j = 1,...,n) is z; if p assigns * to this position (that is, p; = *), and
otherwise is the bit 0 or 1 assigned by p to that position (that is, p; = 0 or p; = 1).
If for example, z = (1,1,0,1,1) and p = (0, *, 1, *,0) then px = (0,1,1,1,0).

Observe that px = py if p; # *, and px ~ py if p; = *. Let (2/,y) be the condi-
tional random variable (pzx, py) conditioned on the event p; = *. By the implication
pi = * = px ~ py, the pair (2’ y’) is always an edge of Q,,. Furthermore, (2',y")
is a random edge of (),,, because we favored no particular edge. By Lemma ??,

Efas(f,)] = E[n - Prob[f(pz) # f(py)llp]

- E[Prob[f(px) # f(py)]lp]

- Prob[f,(z) # fo(y)]

- Prob[f(pz) # f(py)]

- Problpx # py A f(px) # f(py)]

-Problp; = * A f(px) # f(py)]

- Problp; =] - Prob[f(pz) # f(py)|pi = *]
-p - Prob[f(pz) # f(py)|pi = *]

-p - Prob[f(2") # f(y')]

~as(f).O

Il
" 3 3 3 3 3 3 3 3

As the next step in our proof of Theorem ??, we give a version of the Switching
Lemma that applies to a collection of functions. Let F' be a nonempty, finite set of
boolean functions. The DNF complexity, dnf(F'), of F' is the minimum number &
such that every function f € F' can be written as a k-DNF. The CNF complexity
cnf(F) is defined similarly. If p is a restriction, define F, = {f, | f € F}.

12.18 Lemma Let F' be a nonempty, finite set of boolean functions, and let p be a
p-random restriction. If 16p - cnf (F') < 1 then E[dnf(F),)] < log(4|F).

Proof. Let t be a non-negative integer, and let D := dnf(F}). By the Switching
Lemma and our assumption 16p - cnf(F') < 1, we have

Prob[D > #] < Y Prob[dnf(f,) > #] < Y (8p-cnf(f))" < |F|/2".
fer fer

Let [be an integer such that 2! < |F| < 2/*1. Then

346 12 Large-Depth Circuits

E[D] = i Prob[D >]

t=1

l oo
= Prob[D >+ Y Prob[D >t
t=1 t=I+1

<l+ » ProbD>#<l+ > |F|/2"
t=I+1 t=Il+1
=1+ |F|/2" <log|F|+2 = log(4|F|). 0

By a (d, w, k)-circuit we will mean an unbounded-fanin circuit such that: (i) its
depth is precisely d + 1, (ii) every gate on the bottom (next to inputs) level has fanin
at most k, and (iii) each of the remaining levels has at most w gates.

12.19 Lemma If f is a boolean function that is computable by a (d, w, k)-circuit, then
as(f) < 2k[16 log(4w)]4=1.

Proof. The proof is by induction on d. In the base case d = 1 we have either a
k-DNF or a k-CNF, and the result follows from Lemma ??. For the induction step,
assume that d > 2. If £ = 0 then f is a constant function, and hence has average
sensitivity 0. So assume that k > 1, and take a (d, w, k)-circuit that computes f;
by duality, we may assume that the bottom level consists of OR gates. Let F' be
the set of functions computed by the gates at the next level; hence, |F| < w and
enf(F) < k.

Let p be a p-random restriction, where p = 1/16k. Set [:= dnf(F),). By merging
levels 2 and 3, we see that f, is computable by a (d — 1, w, [)-circuit. So we may
apply the induction hypothesis with f := f, and k := [. Then

as(f) = %E[as(fp)] by Lemma ??

= 16k - E[as(f,)] since p = 1/16k
< 16k - E [2(16 10g(4w))d_2] by the induction hypothesis
= 32k - (16 log(4w))*~2 - E[l]

< 32k - (161log(4w))?~2 - log(4w) by Lemma ??

= 2k(16log(4w))?~1t. O

p@plus6p@

Proof of Theorem ??addpunct: We can now finish the proof of Theorem ??. as follows.
Let C be a circuit of depth d + 1 and size w that computes f Let C’ be C' with
a “dummy” level of gates inserted between inputs and the bottom level, whose
gates have fanin 1. Then C” is a (d + 1, w, 1)-circuit that computes f. Now apply
Lemma ??. a

endpe false

12.5 Circuits with parity gates 347

O’Donnell and Wimmer (2007) used Boppana’s theorem to show that the majority
function (like the parity function) is even hard to approximate by AC" circuits.
Namely, they showed that if a boolean function f(z) coincides with the majority
function Maj,, (x) on all but an € fraction of all 2" input vectors, where w(1/y/n) <
€ <1/2 —w(1/4/n), then as(f) = £2(as(Maj,,)). Using the fact that as(Maj,,) =
O(y/n) (see Exercise ??), Theorem ?? implies

12.20 Theorem (O’Donnell-Wimmer 2007) For any constant € > 0, every alternating
depth-d circuit of size go(n'/(24=2))
of input vectors.

can agree with Maj,, (x) on at most a 1 — € fraction

12.5 Circuits with parity gates

We already know that the Parity function cannot be computed by constant depth
circuits using a polynomial number of unbounded-fanin AND and OR gates. It is
natural, then, to extend our circuit model and allow Parity functions to be used as
gates as well. What functions remain difficult to compute in this model? We will
show that the Majority function Maj,,, which accepts an input vector of length n
iff it has at least as many 1s as Os, is one such function.

In the case of monotone circuits, we obtained high lower bounds on circuit size
by approximating them with CNFs and DNFs. In the case of non-monotone circuits
of bounded depth, similar bounds can be obtained via particular approximations
by polynomials. (We have already used approximation by polynomials in the proof
of Theorem ??.) In order to show that a given boolean function f requires large
circuits we then argue as follows:

1. Show that functions, computable by small circuits, can be approximated by
low-degree polynomials.
2. Prove that the function f is hard to approximate by low-degree polynomials.

To achieve the first goal, one takes a small circuit computing the given boolean
function f. Each subcircuit computes some boolean function. One tries to inductively
assign each gate a low-degree polynomial over GF(2) which approximates the
function computed at that gate well enough. This is done in a bottom-up manner.
The main problem is to approximate OR and AND gates without a big blow-up in
the degree of resulting polynomials.

The AND of n variables x1, . .., z,, is represented by the polynomial consisting
of just one monomial []"_, z;, and the OR is represented by the polynomial 1 —
[T;-,(1 — ;). These polynomials correctly compute AND and OR on all input
vectors x, but the degree of these polynomials is n. Fortunately, Lemma ?? shows that
the degree can be substantially reduced if we allow errors: for every integer r > 1,
and every prime power g > 2, there exists a multivariate polynomial p(x) of n
variables and of degree at most (g — 1) over GF(q) such that dist(p, or,,) < 2"~ 7.
Here, as before, dist(f, g) is the distance between two function f,g : F* — F
defined as the number

348 12 Large-Depth Circuits

dist(p, f) = {z € {0,1}" | p(x) # f(x)}]

of boolean inputs 2 on which the polynomial p outputs a wrong value. Using this
result we can upper bound the degree of polynomials approximating small size
circuits.

12.21 Lemma Let f(x) be a boolean function of n variables, and suppose that f can
be computed by a depth-d circuit over the basis {\,V, ®} using M gates. Then, for
every integer v > 1, there exists a polynomial p(z) of degree at most r% over GF(2)
such that

dist(f,p) < M -2"7".

Proof. Our goal is to show that, if a boolean function f can be computed by a
small-depth circuit with a small number of AND, OR and Parity gates, then f can be
approximated well enough by a low-degree polynomial. This is done in a bottom-up
manner. Input literals z; and 1 — x; themselves are polynomials of degree 1, and
need not be approximated. Also, since the degree is not increased by computing
the sum @E:l p;(x), parity gates do not have to be approximated either.

To approximate OR and AND gates we apply Lemma ?? with ¢ = 2. By this
lemma, for any OR f(z) = \/!_, pi(z) of polynomials of degree at most h over
GF(2) there exists a polynomial p(z) of degree at most hr over GF(2) such that p(z)
and f(z) disagree on at most 2"~ " input vectors « € {0, 1}". Thus the functions
computed by the gates at the i-th level will be approximated by polynomials of
degree at most r’. Since we have only d levels, the function f computed at the top
gate will be approximated by a polynomial p(z) of degree at most 7¢. Since, by
Lemma ??, at each of M gates we have introduced at most 2"~" errors, p(z) can
differ from f(x) on at most M - 2"~" inputs. ad

Our next goal is to show that the majority function is hard to approximate by
low-degree polynomials. We will show this not for Majority function itself but
rather to a closely related function, the threshold-k function Thy. This function is
1 when at least k of the inputs are 1. Note that each such function is a subfunction
of the Majority function in 2n variables: just set some n — k variables to 1 and
some k of the remaining variables to 0. It is therefore enough to prove a high
lower bound on Thj! for at least one threshold value 1 < k < n. We will consider
k = [(n+ h + 1)/2] for an appropriate h.

12.22 Lemma Letn/2 < k < n. Then

dist(p, Thy) > ()

for every polynomial p(z1, . .., z,) of degreed < 2k —n — 1 over GF(2).

Proof. (Due to Lovasz, Shmoys and Tardos 1995) Let p(x) be a polynomial of de-
gree d < 2k —n —1 over GF(2),andlet U = {z | p(x) # Th}(x)} denote the set
of all vectors where p(x) differs from Thj. Let A denote the set of all 0-1 vectors
of length n containing exactly k ones.

12.5 Circuits with parity gates 349

Consider the 0-1 matrix M = (m,_,) whose rows are indexed by the members
of A, columns are indexed by the members of U, and

Mg, = 1ifand only if @ > w.

Our goal is to prove that the columns of M span the whole linear space; since the
dimension of this space is |A| = (}), this will mean that we must have [U| > (})
columns.

The fact that the columns of M span the whole linear space follows directly
from the following claim saying that every unit vector lies in the span:

12.23 Claim Ifa € Aand U, = {u € U | mq,,, = 1} then, for every b € A,

1 ifb=aq;
AT
T, if b # a.

To prove the claim, observe that by the definition of U,, we have (all sums are
over GF(2)):

Yompu= Y, 1= Y (Thi(z)+p(@)= Y Thi(zx)+ D pl@)

uelU, uelU z<aAb z<aAb z<aAb
u<aAb

where a A b denotes the componentwise AND of vectors a and b. The second term
of this last expression is 0, since a A b has atleastn —2(n — k) =2k —n >d+1
ones (see Exercise ??). The first term is also 0 except if a = b.

This completes the proof of the claim, and thus the proof of the lemma. O

12.24 Theorem (Razborov 1987) Every unbounded-fanin depth-d circuit over {A,V, @}
computing Maj,, requires 202(n'/?%) gates.

Proof. Since every threshold function ThZ is a subfunction of the Majority function
in 2n variables, it is enough to prove such a lower bound for a depth-d circuit
computing a k-threshold function Thj for some n/2 < k < n (to be specified
later). Take such a circuit of size M computing Th}. Lemmas ?? and ?? imply that

M > (Z) gr—n (12.2)

Taking r = [n'/®?] and k = [(n + r¢ 4+ 1)/2] = [(n + /n + 1)/2], and using

the estimate () = ©(2"/+/n) valid for all k = n/2 + ©(y/n), the right hand side

of (??) becomes 22("), and we are done. O

350 12 Large-Depth Circuits

12.6 Circuits with modular gates

An AC][p] circuit of depth d is an AC circuit of depth d where, besides AND, OR
and NOT gates, the counting gates MOD,, defined by

MOD,(z1,...,&m) =1 iff z1+...+ 2, =0modp

can be used. In particular, an AC[2] circuit is an AC" circuit where unbounded fanin
parity functions are also allowed to be used as gates. The class AC"[p] consists of
all (sequences of) boolean functions computable by constant-depth AC|[p] circuits
of polynomial (in the number of variables) size. The class ACC is the union of the
classes AC°[p] for p = 2,3,4,. ...

It is clear that AC® ¢ ACCP. Moreover, this inclusion is strict, because a single
MOD; gate computes the (negation of the) parity function which, as we know, does
not belong to AC°. Thus, MOD, cannot be computed by a constant depth circuit
with polynomial number of NOT, AND and OR gates. But what if, besides NOT,
AND and OR gates, we allow some modular gates MOD,, for some p > 3, be used
as gates—can MOD; then be computed more easily? It turns out that the use of
gates MOD,,, where p > 3 is a prime power, does not help to compute MOD5 much
more efficiently. We will show this for the special case p = 3: Parity ¢ ACY[3].

The general proof idea will be the same as in Section ??: show that functions
computable by small circuits with MOD3 gates can be approximated by low-degree
polynomials over GF(3), and prove that the parity function is hard to approximate
by such polynomials.

12.25 Lemma Let f(x) be a boolean function of n variables, and suppose that f can
be computed by an AC[3] circuit of depth d using M gates. Then, for every integer
r > 1, there exists a polynomial p(x) of degree at most (2r)% over GF(3) such that
dist(f,p) < M - 27",

The proof of this lemma is exactly the same as that of Lemma ??. The only
difference is that now we work in the larger field GF(g) for ¢ = 3. This results
in a slightly worse upper bound (¢ — 1) = 2r (instead of r) on the degree of
polynomials approximating OR and AND gates.

To apply Lemma ?? to the parity function, we have to show that this function
cannot be approximated well enough by small degree polynomials over GF(3).

12.26 Lemma There is a constant ¢ > 0 such that dist(p, Parity) > ¢2™ for any
polynomial of degree at most \/n over GF(3).

Proof. For this proof, we represent boolean values by 1 and —1 rather than 0 and
1. Namely, we replace each boolean variable z; by a new variable y;, = 1 — 2z;.
Hence, y; = 1 if x; = 0, and y; = —1 if x; = 1. The parity function then turns to
the product of the y;:

é%‘ =1 ifand only if ﬁyi =-1.
i=1 =1

12.6 Circuits with modular gates 351

Suppose that p(y) is a polynomial over GF(3) = {—1,0, +1} of degree at most /7.

We need to show that this polynomial differs from H _, Yi on at least a fraction
c of the vectors in {1, —1}", for some constant ¢ > 0. For this, let A be the set of
all vectors a € {1,—1}" such that p(a) = [[;_, a;- We wish to show that A is
“small”, that is, has size at most (1 — ¢)2" for an absolute constant ¢ > 0. We will
do this by upper-bounding the number | F'| functions in the set F’ of all functions
f:A—{=1,0,1}: since |F| = 3/4! we may bound the size of A by showing that
|F'| is small.

We claim that every function in F' can be represented as a multilinear polynomial
over GF(3) of degree at most (n + /n)/2. We can represent each function f € F'

as a polynomial
y) = Z f H a;Y; — 1

acA =1

This polynomial agrees with f on all y € {1, —1}", but its degree can be as large
as n. We can, however, use the fact that y? = 1 for y; € {1,—1} and replace
each monomial M = [],.qu: of qf with |[S| > (n + \/n)/2 by a monomial
M" = [],¢syi - p(y). Since for every y € {1, —1}",

Hyi'ﬁyi:Hyi‘Hyzzznyiv

igs =1 i€S igS i€s

we have that M’ (y) = M (y) forally € A, and

degree(M’) < (n — |S|) + degree(p) < — f ++vn = \/ﬁ .

Thus every function in F' can be represented as a multilinear polynomial over
GF(3) of degree at most (n + /n) /2.

The number of multilinear monomials of degree at most (n + /1) /2 is

ntvm

N = Z() (1—c)2"

for a constant ¢ > 0 and large n. Since,

, we conclude that
|A] = logy [F| < N < (1 -)2". 0

Combining the two lemmas above we obtain the following

12.27 Theorem (Smolensi(y 1997) Any AC|3] circuit of depth d computing the parity
1/2
function requires 2(™) gates.

Proof. Let M be the minimum size of an AC|[3] circuit of depth-d computing the
parity function Parity of n variables. Taking = n'/2¢/2 in Lemma ??, we obtain
that there must exist a polynomial p(x) of degree at most /n over GF(3) such that

352 12 Large-Depth Circuits

Bilder/symm-eps-converted-to.pdf

Fig. 12.2 A symmetric (7, s)-circuit. The output gate is a symmetric boolean function of s variables,
and its inputs are ANDs of literals each.

dist(p, Parity) < M - gn—n'/*1/2.

But Lemma ?? implies that dist(p, Parity) > ¢2™, and the desired lower bound on
M follows. 0

Thus, Parity ¢ AC°[3]. More generally, by results of Razborov (1987) and
Smolensky (1987), the function MOD,,, does not belong to AC°[p] for prime p
unless m is a power of p. Since MOD,,, is a symmetric function, and since every
symmetric boolean function can be computed by an unweighted threshold circuit
using a linear number of gates (even in depth 2; see Exercise ??), this also implies
that Maj,, ¢ AC[p] for every prime number p. Much less is known about the
power of AC°[p] circuits where p is a composite number. In particular, even the case
p = 6 remains unclear.

Recently, Williams (2010) showed that so-called NEXP-complete functions do
not belong to ACC? (we shortly discuss this result in Sect. ??). One such boolean
function, called succinct 3-SAT, is defined as follows. Given a binary string x of
length n, the function interprets it as a code of a DeMorgan circuit C,, of n'/1°
input variables. Then the function uses the circuit C, to produce the string of all its
gn'/" possible outputs, interprets this huge string as a code of a (also huge) 3-CNF
F, and accepts the initial string x iff the CNF F, is satisfiable.

But the ACC? circuits are suspected to be of much weaker power. In particular,
it is conjectured that even the Majority function does not belong to ACC".

12.28 B Research Problem
Prove or disprove that Majority ¢ ACCY.

An interesting and useful property of ACCY circuits (which was also used by
Williams (2010)) is that they can be relatively efficiently simulated by depth-2
circuits, as we will see next.

ACC? and symmetric depth-2 circuits

A depth-2 symmetric (r, s)-circuit is a circuit of the form g(Kj,..., K;), where
g:{0,1}* — {0,1} is a symmetric boolean function, and each K; is an AND of

12.6 Circuits with modular gates 353

at most r literals (see Fig. ??). Since the negation of a symmetric function is also
symmetric, one can also take ORs instead of ANDs.

Let SYM be the class of all (sequences of) boolean function of n variables that
can be computed by a symmetric (r, 2")-circuit with 7 < (logn)®™). This class
is surprisingly rich. Allender (1989) showed that AC® C SYM. Then Yao (1990)
showed that ACC? is contained in the probabilistic version of SYM. Finally, Beigel
and Tarui (1994) showed that ACC® C SYM. Furthermore, Allender and Gore (1994)
showed that the corresponding symmetric circuit can be efficiently constructed.

12.29 Theorem (Yao 1990, Beigel-Tarui 1994) ACC? C SYM.

The full proof of this important result is somewhat technical, and we omit it.
Theorem ?? allows us to extract some special properties of functions in ACC®. In
particular, it implies that these functions can be “easily separated” by low-degree
polynomials, and that the corresponding to these functions bipartite graphs have
small “intersection dimension”.

ACC? and low-degree polynomials

By a multilinear 1 polynomial of weight w we will mean polynomial

p(x1,...,x,) = Z /\SHa:i

SCln] €S

over the reals with coefficients Ag € {—1,0, 41} such that [{S : \g # 0}| = w. A
polynomial p(x) separates a boolean function f if p(z) # p(y) forallz € f~1(1)
and y € f71(0). Say that a boolean function f of n variables is easy to separate if
it can be separated by a polynomial of poly-logarithmic in n degree d and weight
w < 2% In particular, all symmetric functions are easy to separate: they all are
separated by the polynomial p(z) = z1 + z2 + - -+ + .

12.30 Lemma Every function in ACC is easy to separate.

Proof. Let f(z) be a boolean function of n variables, and suppose that f € ACC®.
By Theorem ??, there exists a constant ¢ such that f can be computed by a symmetric
(r, s)-circuit with » < (logn)® and s < 2(ogn)® That is, there exist monomials
g1,.-.,9s and asubset T C {0,1,...,s} such that f(z) = 1 iff the number of the
g; accepting x belongs to 7. This, in particular, means that

Zgl(x) * Zgz(y) forallz € f~1(1) and y € f~1(0).
i=1 i=1

Now, each monomial g; has a form g;(z) = A;c;zi \je,;T; with INJ = 0
and |I U J| < r. On 0-1 vectors z this monomial outputs the same values as the
polynomial p;(z) = [[;c; % [[;¢ ;(1 — ;). This is a &1 polynomial of weight at

354 12 Large-Depth Circuits

most 2" < s. Hence, p(z) := Y _;_, pi(x) is a 1 polynomial of weight at most
52 < 22(08m)° implying that f is easy to separate, as desired. O

12.31 M Research Problem
Exhibit an explicit boolean function which is not easy to separate by a polynomial.

ACC? and graph complexity

Let G = (V; U Va, F) be a bipartite n x n graph, and L C {0,1,...} a subset
of natural numbers. An intersection representation relative to L is an assignment
v +— S, of subsets S, C {1,...,t} such that two vertices uw € V; and v € V;
are adjacent in G iff |S, N S,| € L. The smallest number ¢ for which such a
representation exists is the intersection dimension of G relative to L, and is denoted by
idimr,(G). The intersection dimension, idim(G), of G is the minimum of idimf,(G)
over all sets L.

If n = 2™, then we can encode the vertices by binary vectors of length m, and
associate with GG a boolean function fg of 2m variables (the characteristic function
of G) such that fg(u,v) =1iff uv € E.

Easy counting shows that graphs with idim(G) = {2(n) exist. On the other
hand, graphs whose characteristic functions belong to ACC® have small intersection
dimension.

12.32 Lemma If fg € ACC? then idim(G) < 2(1oglogn) 7Y

Proof. If f € ACCY, then Theorem ?? implies that fi can be computed by a
symmetric (1, 2")-circuit with at most about (log m)¢ for a constant ¢. In particular,
fa can be computed by a depth-2 circuit with a symmetric gate g of fanin s = 2"
on the top, and ORs of literals on the bottom level. By the Magnification Lemma
(Lemma ?? in Section ??), the graph G is then represented by a depth-2 circuit
with g on the top level, and OR gates Vyer, T, - . ., Vyer. T, on the bottom level.
Since the gate g is symmetric, there exists a subset L C {0, 1,..., s} such that g
rejects an input vector iff the number of 1s in this vector belongs to L. Hence, the
sets S, = {i | v € I,} give us an intersection representation of G, implying that
1d1rn(G) <s< 2(10gm)C — 2(log10gn)°. 0

12.33 @ Research Problem
Exhibit an explicit bipartite n x n graph of intersection dimension at least
2(10g10gn)“<1)

By Lemma ??, the characteristic function of any such graph lies outside ACCP.
Actually, by the results of Green et al. (1995), it would be enough to prove such a
lower bound on idimy, (G) for the specific set L consisting of all natural numbers
whose binary representations have bit 1 in the middle. Such sets (also called middle-
bit set) consist of disjoint intervals of consecutive numbers.

12.6 Circuits with modular gates 355

ACC? and communication complexity

For a boolean function f of n = km variables we fix a partition of its variables in k
blocks, each of size m, and let ¢ (f) denote the k-party communication complexity
of f with respect to this partition (see Section ??).

Symmetric depth-2 circuits are related to communication games via the following
simple observation: if [n] = {1,,...,n} is partitioned into disjoint blocks of size
n/k then every (k — 1)-element subset of [n] must be disjoint with at least one of
the blocks. This holds because, if a set has an element in each block, then it must
have at least k elements in total. We now can imagine that the i-th player can see
all bits except those in the i-th block. Then every (k — 1)-element set is seen by at
least one of the players.

12.34 Lemma (Hastad-Goldmann 1991) Every symmetric depth-2 circuit which com-
putes f and has bottom fanin k — 1 must have top fanin at least 2°(F)/¥

Proof. Fix a symmetric (k — 1, s)-circuit computing f. We will show that ¢ (f) <
klog, s. By the observation we just made, each bottom gate can be evaluated by
at least one of the k players. Partition the bottom gates among the players such
that all the gates assigned to a player can be evaluated by that player. Now each of
the first &k — 1 player broadcasts to the k-th players the number of her gates that
evaluate to 1. This can be done using at most (k — 1) log, s bits. Finally, the k-th
player can evaluate the top gate and tell the one bit result to the others. The total
number of bits used is 1 + (k — 1) log, s < klog, s. O

Note that there was nothing special in having only AND gates on the bottom:
the lemma remains true also when arbitrary boolean functions of fanin at most
k — 1 are used as bottom gates.

Recall that the generalized inner product function Gip(z) is a boolean function of
kn variables, arranged in an n X k matrix z = (x;;), and is defined by:

n k
GIPn,k,(I) = @ /\ Tij -

i=1 j=1

Note that this function belongs to ACCP, and hence also to SYM. We have al-
ready proved that the k-party communication complexity of Gip,, 5 is £2(nd~*)
(see Theorem ??). Together with Lemma ??, this immediately yields the following
corollary.

12.35 Corollary Every depth-2 symmetric circuit of bottom fanin k — 1 computing
GIP,, 1, must have top fanin 292(n/ka®)

12.36 Remark In order to use Theorem ?? and Lemma ?? to show that a given
boolean function f of n variables does not belong to ACCY, we need non-trivial
lower bounds on the k-party communication complexity ¢ (f) of f in the case

356 12 Large-Depth Circuits

when k > (logn)“(, that is, when the number k of players is larger than poly-
logarithmic in n. Unfortunately, known lower bound on ¢ (f) (some of which we
presented in Chapter ??) are trivial already for k = logn.

12.7 Circuits with symmetric gates

Recall that a boolean function g(y1,. .., y:) is symmetric if its value only depends
on the value of the sum y; + --- + y; of the values of its input bits. In other
words, g is symmetric if the is a function F' : {0,1,...,n} — {0,1} such that
9y1,--) = F(y1 + - + yt). A symmetric circuit is a circuit whose gates are
arbitrary symmetric boolean functions. The size of such a circuit is the number of
wires in it. For a boolean function f, let S;(f) denote the minimum number of wires
in a symmetric depth-d circuit computing f, and let S(f) denote the minimum
number of wires in an arbitrary symmetric circuit computing f.

For the corresponding Shannon function S(n), Grinchuk (1996) proved that
S(n) ~ 2" /n, and S(n) ~ 2" /log, n in the case of formulas (symmetric circuits
with fanout-1 gates). But proving high lower bounds for explicit boolean functions
even in the class of depth-2 symmetric circuits is a difficult task. By Theorem ??, a
lower bound Sy (f) > 2(l°# n)“ implies f ¢ ACC". Actually, even proving strong
lower bounds for symmetric circuits of depth 1 (where only one symmetric boolean
function can be used as gate) is not a trivial task.

As we have mentioned in Section ??, every boolean function f(z) = f(z1,...,zy)
can be computed by a symmetric circuit consisting of just one symmetric gate g:

f(x) = g(r1 ,T2,X2,T3,T3,T3,T3,... axna"'7xn) .
~— N —
20 21 22 on—1

This shows that Sy (f) < 20+ 21 +... 42771 = 2" —1 for every boolean function
f of n variables. On the other hand, direct counting shows that boolean functions

f of n variables requiring
Sl(f) Z 271, _ n2

exists. To show this, let L(n, m) denote the number of distinct boolean functions f
of n variables such that S; (f) < m. For each such function f, there is a function
F:{0,1,...,m} — {0,1} and non-negative integers A1, ..., A\, such that \; +
<o+ A, <mand f(z) = F(A\z1+- -+ A\yx,). For every integer 0 < r < m, the
equation A\; +- - -+ A, = 7 has ("Jr:*l) non-negative integer solutions Ay, ..., A,:
the number of such solutions is exactly the number of possibilities to interrupt a
sequence of n +r — 1 ones by 7 — 1 zeros . Thus, the inequality A\; +-- -+ X, <m
has 37 ("T771) = (") solutions. Since there are only 2™+ functions F :

T

{0,1,...,m} — {0, 1}, we obtain that

)

L(n,m) < 2™+ <” N m) < (ntm)e

n n!

12.8 Rigid matrices require large circuits 357

which is smaller than the total number 22" of boolean functions, as longasn >5
and m < 2" — n2.
Smolensky (1990) used algebraic arguments to show that the function

f@1,. o zn) = (@1 @ 22) A(23 B Tg) Ao A (Tp—1 © T0)

requires Sy (f) > 2™/2. Then Grinchuk (1996) exhibited another boolean function
requiring an almost-maximal number of wires to realize by one symmetric gate.
His function is defined by:

fn((I}l, e ,.’En) =122 VT122x3 V T1X2x3L4V -V T1...Tp—9Tn_1Ty -

That is, the value f(a) on a given input a = (ay, ..., a,) is the value of that bit
which occurs after the first (from the left) occurrence of a 1 in a.

12.37 Theorem (Grinchuk 1996) S (f,,) > 2"~ — 1.

Proof. Let A = S1(fy). Then there exist nonnegative integers Aq,..., A, such
that A\; + -+ + A, = A and a function F : {0,1,...,A} — {0,1} such that
fn(x) = F(l(z)), where I(z) := Aix1 + - - - + A2y Say that two input vectors
a,b € {0,1}" are equivalent if [(a) = I(b).

12.38 Claim No two vectors a and b with a; = b; = 0 are equivalent.

Proof. Assume that a = (0,a2,...,a,) and b = (0,bs,...,b,) are equivalent,
that is, [(a) = I(b). Let ¢ be the first position (from the left) in which a and b
differ for the first time. Assume w.l.o.g. that a; = 0 and b; = 1. Now consider the
vectors ' = (0,...,0,1,0,a;41,...,a,) and b’ = (0,...,0,1,1,b;41,...,bp).
Since I(a) — I(a’) = 1(b) — ('), we have that I(a’) = I(V'). But f,(a/) =0#1 =
fn(b'), a contradiction. O

Since the values of [(x) are integers between 0 and), the claim implies that
S1(fn) = A must be at least 2"~ — 1, as desired. O

12.8 Rigid matrices require large circuits

We now consider boolean circuits computing boolean matrices, that is, 0-1 matrices
of some fixed dimension. Inputs are primitive matrices, that is, boolean matrices of
rank 1. Each of these matrices consist of an all-1 submatrix, and has zeros elsewhere.

Boolean operations on matrices are computed component-wise. For example,
AV B is aboolean matrix whose entries are ORs A[i, j]V B]i, j] of the corresponding
entries of A and B. Thus each such circuit computes some matrix. As before, the
depth of a circuit is the length of a longest path from an input to an output gate.
The size is the number of gates. Our goal is to show that matrices of high “rigidity”
require large circuits.

358 12 Large-Depth Circuits

Note that, given a boolean matrix A, we want to compute (or produce) the matrix A itself
starting form primitive matrices and using component-wise boolean operations, like AND,
OR, NOT or Parity. Just like, given a boolean function, we want to compute it starting
from “primitive” boolean functions (variables and their negations). A related (albeit different)
question (which we will consider in the next chapter) is to compute the linear transformation
y = Az given by the matrix A.

The rigidity, Rig,, (), of aboolean matrix M over GF(2) is the smallest number
of entries of A that must be changed in order to reduce its rank over GF(2) down
to r. That is,

Rigys (r) = min{|B| : k(M @ B) <r},

where |B| is the total number of 1s in B. It is known that matrices M of rigidity at
least about (n —)2/ Inn exist (see Proposition ?? in the next chapter). However,
the largest known lower bound on the rigidity of an explicit matrix remains the
lower bound of about (n?/r) In(n/r) due to Friedman (1993).

In the following theorem, M is an arbitrary boolean n x n matrix, d > 2 an
integer, and f(r) := (In7)Y/(d=1),

12.39 Theorem (Razborov 1989b) IfRig,, () > n?/27(") then every depth-d circuit
over {\,V,—, @} computing M must have 2%/ (") gates.

Proof. We will again use the approximation method. This time we will approximate
matrices, computed at intermediate gates of the circuit, by matrices of small rank.
Set s := 2 f(r) where f(r) := (Inr)'/(¢=Y_Note that for constant r the theorem
is obvious, so we assume that r and s are large enough.

Suppose we have an unbounded-fanin circuit over {A, V, =, @} of depth at most
d and size ¢ computing the matrix M. We have to show that Rig,, (r) > n?/2/(")
implies ¢ = 2°(/(1),

At each gate of the circuit some boolean matrix A is computed. We inductively
assign to each gate on the i-th layer an approximator, which is a boolean matrix A’
of rank

rk(A') < 05" . (12.3)

As before, the assignments are done inductively, first to the inputs, then working
up to the output. Each assignment introduces some errors, that is, positions the
approximator A’ differs from the matrix obtained by applying the true operator
at that gate to the approximators of the gates feeding into it. Our goal is to assign
approximators in such a way that

at most n? /2% errors are introduced at each gate. (12.4)

We first show that (??) and (??) already imply the theorem. To see this, let M’ be
the approximator of the matrix computed at the last gate. We have two cases: either
the rank of M’ is large or not.

Case 1: tk(M') > r. In this case, (??) implies that r < 05, where S := O(sd’) is
about
(In)@= = (In)=V E@=D = (Inr)/f(r).

12.8 Rigid matrices require large circuits 359

Hence,In¢ > (Inr)/S = 2(f(r)), as desired.

Case 2: k(M) < r.In this case, our assumption Rig,, () > n?/2/(") implies that
|M @ M’| > n?/2/("). On the other hand, (??) implies that

M@ M| <0-n?/28 =0-n?/22F()

Comparing these two estimates, the desired lower bound ¢ > 2/(") follows.

It therefore remains to show how to assign approximators satisfying (??) and
(??). Approximators of input matrices are matrices themselves. Recall that these
matrices have rank < 1.

If the gate is a NOT gate and the unique gate feeding into it has an approximator
A’, then we assign this gate the approximator —A’. Since rk(-A4") < rk(A’) + 1,
the rank condition (?7?) is fulfilled.

If the gate is a parity gate, then let its approximator be just the sum modulo 2 of
the approximators of all its m < £ inputs gates. The rank condition (??) is fulfilled
by the subadditivity of rank.

So far we have introduced no errors at all. The source of errors are, however,
AND and OR gates. For these gates we use the following approximation lemma.

12.40 Lemma Let s > 1 be an integer. If A = \/;;1 A; is an OR of booleann X n
matrices, each of rank at most r, then there is a boolean matrix C' such that rk(C) <
1+ (14 hr)® and |[A® C| < n?/2°.

Proof. Let L be the linear space of boolean matrices over GF(2) generated by
A1,..., Ap. By the subadditivity of rank, we have that rk(B) < hr for every
B € L. Take a matrix B = (b;;) in £ at random. That is,

B:AlAl@AQAQEB"'@)\hAha

where the \; are independent uniformly distributed 0-1 random variables. Let
A = (a;;) be the OR of matrices Ay, ..., Ay. If a;; = 0 then clearly b;; = 0. If
a;; = 1 then the (4, j)-th entry of at least one of the matrices Ay, ..., Ay is 1, and
hence,

bij = MAL[1, 5] ® Ao Agli, j] ® - - - Ay Anli,]

equals 0 with probability 1/2. That is, Prob[b;; = 0] = 0if a;; = 0, and Prob[b;; =
0] =1/2if a;; = 1. Thus if we let C' = (¢;;) to be the OR of s independent copies
of B, then Prob[c;; = 0] = 1 if a;; = 0, and Prob[¢;; = 0] < 27° if a;; = 1. That
is, the expected number of positions, where C' deviates from A, does not exceed
n?/2s.

Thus there exists a matrix C' of the form C' = \/j_, By, such that |[A & C| <
n?/2% and rk(B;) < hr for each i. Using therulez Vy = (z D 1) A (y @ 1) ® 1,
this OR can be written as an all-1 matrix plus an AND of s matrices, each of which
has rank at most 1 + Ar. Since the AND of matrices is a component-wise product
of their entries, and component-wise product is bilinear in the space of rows of
matrices, this implies that tk(A A B) < rk(A) - rk(B). Since we have an AND

360 12 Large-Depth Circuits

of s matrices each of rank at most 1 + hr, this gives the desired upper bound
rk(C) <14 (14 hr)® on the rank of C. O

Now, if the gate is an OR gate at the i-th layer of our circuit, and if it has h
inputs, then Lemma ??, applied with r = ¢G=Ds""" and h = ¢, yields the desired
approximator satisfying (??). The case of an AND gate reduces to that of OR gates
by DeMorgan rules. O

Theorem ?? has several interesting consequences. Babai, Frankl and Simon (1986)
introduced the communication complexity analogue P H ° of the complexity class
PH, and proved that PH® coincides with the class of boolean n x n matrices
M whose constant depth circuit complexity over the basis {A, V} does not exceed
exp ((Inln n)°W). Theorem ?? immediately implies that, if

n2

Rigy, (r) = for > gnlnm*®

exp(Inr)o
then M ¢ PH¢®. That is, the class PH® does not contain highly rigid matrices.

Razborov (1988) used probabilistic arguments to show that unbounded-fanin
circuits over {A, @, 1} of small depth can efficiently compute some combinatorially
“complicated” matrices, sharing many extremal properties of random matrices.
Together with Theorem ?? this implies that matrices of low rigidity can share many
properties of random matrices.

Chapter Notes

Apparently, the first non-trivial lower bound for small-depth circuits was proved by
Lupanov (1970). From the current point of view, this result is not very impressive.
But this was the first attempt to say something non-trivial about small-depth circuits,
and the result is tight. He considered the following boolean function

fn(xay) = \/ i A /\ Yi
i=1 j=i

and proved that, for d > 1, the smallest number of leaves in a monotone depth-
(d+1) formula for f, is asymptotically equal to cgn't'/¢ where cq = (1 — 1/(d +
1))(d")'/¢. The function f,, naturally arises when computing the sum of two n-bit
numbers.

The first superpolynomial lower bound for AC" circuits was proved by Tka-
chov (1980). He considered circuits of depth 3; however, in contrast with current
conventions, he also let negation gates count towards the depth. Thus his class is
smaller than what we call depth 3 now and contains the depth 3 monotone circuits.
Unfortunately this result was published in some unimportant proceedings with

12.8 Rigid matrices require large circuits 361

small distribution and remained almost unknown outside the Soviet Union. His
method is based on a clever counting.

The most successful method, the method of random restrictions, was introduced
by Furst, Saxe and Sipser (1984), and Ajtai (1983). This resulted in superpolynomial
lower bounds 72(1°8™) for ACY circuits.

In the attempt to prove exponential lower bounds, the simpler case of monotone
small-depth circuits was studied. Valiant (1983) proved that the clique problem
needs exponential size circuits when the depth is restricted to 3. Boppana (1986)
proved that depth-d monotone circuits computing the Majority function require

size about 27"/ 7" , while Klawe et al. (1984) obtained similar lower bounds for the
Iterated Disjointness function we have considered in Section ??.

The first breakthrough in proving exponential lower bounds without restricting
circuits to be monotone was obtained by Yao (1985) who proved that depth-d circuits

computing the Parity function require about gn'/* gates. Finally, Hastad (1986)

1/(d—1)

improved this to an almost optimal lower bound of about 2" ; see Theorem ??.

Exercises

12.1 Show that, for every integer d > 3, the parity function Parity(x) of n variables

can be computed by depth-(d + 1) circuits over {A,V, =} of size 2000"") Hin.
Consider a circuit of depth d consisting of parity gates of fanin r = n'/? Each such gate can be
replaced by a CNF as well as by a DNF of size 2" = 27" When doing this, the depth increases
till 2d. To reduce the depth, use the associativity of OR to collapse consecutive layers of OR gates

into a single layer; the same with AND gates.

12.2 Let h = [[,;. g i be a monomial of degree d = |S| < n — 1, and let a be a 0-1
vector with at least d + 1 ones. Show that, over GF(2), >, , h(b) = 0. Hint: There

are only two possibilities: either a; = 1 for all i € S, or not.

12.3 Let p = 1/4/n, and consider a p-random restriction p on n variables.

(@) Let C be a clause, and ¢ > 0 an integer. Show that C', will depend on more
than ¢ variables with probability at most n /3.

Hint: Consider two cases depending on whether: (i) C' contains more than m := tlogn
literals, or (ii) C' contains at most m literals. Show that in the first case C, will be non-
constant with probability at most ((1 4+ p)/2)™, whereas in the second case C), will contain
at least ¢ variables with probability at most (T) pt. Show that both of these bounds are at

—t/3

most n if n is large enough.

(b) Prove the following weaker version of the Switching Lemma: for every integer
constants t, k > 1 there is a constant s = s(t, k) with the following property:
if F'is a t-CNF on n variables, then

Prob[F,, depends on > s variables| < n=k.

362

12 Large-Depth Circuits

Hint: Argue by induction on ¢. Use the previous exercise for the base case b(1, k) = 3k. For
the induction step, take a maximal set of clauses in F' whose sets of variables are pairwise
disjoint, and let Y be the union of these variable sets. Hence, each clause of F' has at least
one variable in Y. Consider two cases depending on whether |Y| > k2 logn or not. If
|Y'| > k2" log n, then use the disjointness of clauses determining Y to show that F, becomes
constant with probability at least 1 — n ™", In the case when |Y| < k2’ log n show that, for
every ¢, the probability that more than ¢ variables in Y will remain unassigned is at most
n=43; of. part (a). Take i = 4k, set these 4k free variables of Y to constants in all possible
ways to obtain a (t — 1)-CNF F”, and apply induction hypothesis to F".

13. Circuits with Arbitrary Gates

In this chapter we consider unbounded-fanin circuits with arbitrary boolean func-
tions as gates. The size of such a circuit is defined as the total number of wires
(rather than gates) it has. Of course, then every single boolean function f of n
variables can be computed by a circuit of size n: just take one gate—the function f
itself. The problem, however, becomes nontrivial if instead of one function, we want
to simultaneously compute m boolean functions f1, ..., f;;, on the same set of n
variables 21, . . ., Zp, that is, to compute an (n, m)-operator f : {0,1}" — {0,1}™.
Note that in this case the phenomenon which causes complexity of circuits is infor-
mation transfer instead of information processing as in the case of circuits computing
a single function.

As before, a circuit computing a given (n, m)-operator can be imagined as a
directed acyclic graph with n input nodes corresponding to the variables z1, . .., x5,
m output nodes corresponding to the boolean functions f1, ..., f,, to be computed,
and each non-input node computing an arbitrary boolean function of its inputs.

Note that we cannot expect larger than quadratic lower bounds for general
circuits: every operator f : {0,1}" — {0,1}" can be computed using at most >
wires, even in depth 1. On the other hand, using counting arguments, it can be
shown that operators requiring £2(n?) wires in any circuit with general gates exist
(see Exercise ??).

In this chapter we will concentrate on general circuits of depth 2—the first
nontrivial case. These circuits are powerful, and their study was strongly motivated
by work of Valiant (1977), who showed that any operator with w(n?/loglogn)
depth-2 wire complexity also cannot be computed by linear-size, logarithmic-depth
boolean circuits of fanin 2 (see Lemma ?? below).

There are known superlinear lower bounds of £2(n In®/2 n) for depth-2 circuits.
Many superlinear lower bound proofs are given by algebraic arguments (based
on the matrix rigidity) or given by graphic theoretic arguments based on various
superconcentration properties of graphs: Pippenger (1977, 1982), Dolev et al. (1983),
Pudlak and Savicky (1993), Pudlak (1994), Alon and Pudlak (1994), Pudlak, Rodl
and Sgall (1997), Radhakrishnan and Ta-Shma (2000), Raz and Shpilka (2003), Gal et
al. (2011).

363

364 13 Circuits with Arbitrary Gates

The advantage of arguments based on superconcentrators is that they generally
provide rich addition to the structural information about how the circuits for
a given operator must look like. The disadvantage of these arguments is only
numerical: even for depth-2 circuits, these arguments cannot lead to larger than
2(nIn” n) lower bounds on the number of wires, as proven by Radhakrishnan and
Ta-Shma (2000).

For depth-2 circuits, larger lower bounds of £2(n3/?) were recently proved using
a much simpler information theoretic argument, and we present it below. The
argument itself is reminiscent of Nechiporuk’s argument for formulas (Theorem ??):
an operator requires many wires if the number of its distinct “sub-operators” is
large.

13.1 Entropy and the number of wires

As mentioned above, counting arguments yield that most operators f : {0,1}" —
{0, 1}™ require about n? wires in any circuit using arbitrary boolean functions as
gates (see Exercise ??). But where are these “hard” operators? In particular, what is
the complexity of often used operators like matrix product or cyclic convolution
(corresponding to product of polynomials)? What we need are lower bounds for
specific operators. That is, we want to understand what properties of operators
make them hard to compute. In this section we will show that high “entropy” of
operators is one of these properties.

An operator f : {0,1}" — {0,1}™ maps binary strings of length n to bi-
nary strings of length m. Each such operator can be viewed as a sequence f =
(f1,-- ., fm) of m (not necessarily distinct) boolean functions f; : {0,1}" — {0,1},
each on the same set of n variables. The range of f is the set

Range(f) = {f(a) [a € {0,1}"} € {0,1}"

of distinct values taken by f. Define the plain entropy, E(f), of an operator f as
the logarithm base 2 of the number of distinct values taken by f. That is,

E(f) := log, [Range(f)] -

It is clear that for any operator f = (f1,..., fm) : {0,1}" — {0,1}™, we have
that E(f) < min{n, m}, just because |Range(f)| < min{2", 2 }. We will use the
following properties of entropy:

P1) E(f) < {f1,---, fm}| Thatis, E(f) cannot exceed the number of distinct
boolean functions in f. This holds because only different functions can produce
different values.

(P2) E(f) > rif we have r distinct single variables among the functions f1, ..., fy,.

This is because the operator f must take at a minimum of 2" distinct values
on r distinct variables.

13.1 Entropy and the number of wires 365

(P3) E(f) < E(g) if every function f; of f can be computed as some boolean
function applied to the functions of operator g. Indeed, in this case g(a) = g(b)
implies f(a) = f(b). Hence, f cannot take more distinct values than g.

(P4) Suppose that there is a subset S C [n] such that from the value f(x) one can
always infer the values of all input bits ; with ¢ € S. Then E(f) > |S|. This
is a direct consequence of (P2) and (P3).

Properties (P1) and (P3) imply that, if a depth-2 circuit for an operator f has no
direct input-output wires, then there must be at least E(f) nodes on the middle layer.
To lower bound the number of wires, we introduce the concept of an “augmented
operator”.

Given an operator f = (f1,..., fm), asubset I C [n] of its inputs and a subset
J C [m] of its outputs, define the augmented operator fr ; of f as the operator

fro=(fjliel,jel)

consisting of || - |J| (not necessarily distinct) boolean functions f; with ¢ € I and
j € J, where

fi 4o, 1}7=I'— {0, 1} is a subfunction of f; obtained by setting the i-th
variable to 1 and all remaining variables in I to 0.

Note that f; ; has as its domain the bits {x; | | ¢ I}. Thus, f; ; maps binary
strings of length n — |I| (|| variables are fixed) to binary strings of length |I| - |.J|
(the number of augmented functions f; we have). In particular, by (P1), we always
have that E(f; ;) < |I] - |J|. On the other hand, the entropy of an augmented
operator fr ; may be much larger than that of the operator f itself. To see this,
consider the following (n, 1)-operator (the inner product function): f(z,y) =
T1Y1 +Taya + - - - + Yy mod 2. Then E(f) = 1 because f takes only two values.
But if we let I to correspond to the z-variables, and J = {1} (we have only one
output function) then, for every i € I,

Fia,y) =0yt Loyt 00y, =y

Thus, the augmented operator in this case is f7 j(z,y) = (y1,...,Yn), implying
that E(f[’J) >n.

Now take an arbitrary circuit computing an operator f. Let I be some set of
its input nodes, and J some subset of its output nodes. Define a .J-cut to be any
set V' of non-input nodes such that every path from an input node to a node in
J goes through at least one node in V. Say that a node v € V' can see an input if
there is a path from that input to v. The weight of a node v relative to a given set
I of inputs is the number of inputs in I seen by that node. The weight of a set V'
of nodes relative to I, denoted by w;(V), is the sum of weights of all nodes in V'

relative to /. That is,
wi (V) = 3 10),
veV

366 13 Circuits with Arbitrary Gates

where I(v) is the set of all inputs in I from which there is a path to v. In other
words, w; (V') is the sum, over all nodes v € V, of the number of input variables in
I on which the function g, computed at v can depend.

The following lemma, which was implicitly used by Cherukhin (2005) and was
made explicit in terms of entropy in (Jukna, 2010), states that this number of
variables must be large if the augmented operator has high entropy.

13.1 Lemma IfV is a J-cut then |V| + wr (V) > entr(fr,s).

Proof. For anode v € V, let g, be a boolean function computed at this node. For
i € I, let g be the subfunction of g, obtained by setting z; = 1 and z; = 0 for
all j € I\ {i}. Let also g2 be obtained from g, by setting to 0 all variables z;
with i € I. Consider the operator g = (g¢ | v € V,i € I). A simple but crucial
observation is:

If there is no path from the i-th input to v, then g, cannot depend on the ¢-th
input variable, implying that g¢ = ¢9.

In particular, this implies that gi = ¢ for all i ¢ I(v). Thus, for each node
v € V, the function g, computed at this node constitutes at most 1+ | (v)| distinct
functions to the operator g: the function ¢° and at most |I(v)| distinct functions
gt with i € I(v). We have therefore shown that the total number of distinct
boolean functions in g does not exceed |V| + w; (V). By (P1), this implies that
entr(g) < |V|+wr(V).

To finish the proof, observe that, since V' is a J-cut, all functions f; with j € J
must be computable from the set of functions g, with v € V. Hence, the augmented
operator fr j must also be computable from g. In particular, if on some two input
vectors, the operator g takes the same value, then the operator f;, ; is forced to
take the same value, as well. Together with (P3) this implies entr(fr, ;) < entr(g),
and hence, also entr(f; ;) < |V|+w; (V). O

13.2 Entropy and depth-two circuits

In this section we apply Lemma ?? to depth-2 circuits with general gates computing
operators f : {0,1}"™ — {0,1}"™. We will assume that there are no direct wires
from input to output nodes: this can be easily achieved by adding n new nodes of
fanin 0 on the middle layer labeled with input variables. Thus, a depth-2 circuit
for f consists of three layers. The first (input) layer contains n nodes 1,...,n
corresponding to input variables 1, ..., z,, the middle layer consists of some
number of nodes, each computing some boolean function of its inputs, and the
third (output) layer consists of m nodes 1, ..., m corresponding to m components
fi,-.., fm of f;ateach output node an arbitrary boolean function can be computed
as well.

Our goal is to prove a general lower bound on the smallest number s3(f) of
wires in a depth-2 circuit computing a given operator f. To do this, take an arbitrary

13.2 Entropy and depth-two circuits 367

depth-2 circuit computing a given operator f. Let I be a subset of input nodes and .J
a subset of output nodes. Let also Wires(I, J) denote the number of wires leaving
I plus the number of wires entering J.

13.2 Lemma In a depth-2 circuit computing an operator f, for any subset I of inputs
and any subset J of outputs, we have that

Wires(Z, J) > entr(fr,5) .

Proof. Let V be the set of all nodes on the middle layer from which there is a wire
to a node in J. In particular, V' is a J-cut, and |V is at most the number of wires
entering the nodes in J. On the other hand, for every node v € V, |I(v)] is at most
the number of wires starting in I and entering v. Hence, wr(V) = >\, [I(v)]
is at most the total number of wires leaving nodes in /. Lemma ?? implies that
Wires(I,J) > |V| +wr(V) > entr(f1 7). O

13.3 Remark Note that our lower bound on the number of wires going from V' to J
is very “pessimistic”: we lower bound this number just by the number |V| of the
starting nodes of these wires, as if these nodes had fanout 1. Here, apparently, is
some space for an improvement.

13.4 Definition (Entropy of operators) The entropy, E(f), of an operator f is the
maximum, over all sequences I,..., I, of disjoint subsets of inputs, and all se-
quences Ji, ..., J, of disjoint subsets of outputs, of the sum

E(f) = entr(f1,,s,) + entr(fr,,0,) + - -+ + entr(f1,,7,)
of plain entropies of the corresponding (to these subsets) augmented operators.

Since no wire can leave more than one input node, and no wire can enter more
than one output node, Lemma ?? immediately yields the following lower bound for
depth-2 circuits.

13.5 Theorem For every operator f, s2(f) > E(f).

13.6 Remark Taking disjoint subsets of inputs and outputs in Theorem ?? is not
crucial. It is enough to require that no element belongs to more than k of the
sets I1, ..., Ip, and no element belongs to more than k of the sets Ji, ..., J,. The
argument taking disjoint subsets utilizes k¥ = 1. Now, if d() is the number of wires
leaving the input ¢, then the sum

SN da)y =Y d(i) < kY d(i)
t=1icl, i=1tu€cl; i=1

is at most k times larger than the total number)., d(i) of wires leaving the
inputs. Since the same also holds for the number of wires entering the output nodes,
Lemma ?? implies

368 13 Circuits with Arbitrary Gates

Bilder/mult-eps-converted-to.pdf

Fig. 13.1 For every fixed 7 and j, the product E;; - Y gives the j-th row of Y.

[E(ffl,Jl) +E(fry,0) + -+ E(fIP,Jp)} .

El

s2(f) >

13.3 Matrix product is hard in depth two

Let n = m?. The operator f = Mult,,(X,Y") of matrix product takes two m-by-m
matrices X and Y as inputs, and produces their product Z = X - Y. Since Z is
just a sequence of m? scalar products, each of 2m variables (row of X times a
column of Y)), all these scalar products can be computed by depth-1 circuit using
2m - m? = 2n>/? wires.

Raz and Shpilka (2003) proved that Mult,, cannot be computed by a circuit
of any constant depth using O(n) wires. For depth-2 circuits their lower bound
on the number of wires has the form {2(n1nn) for both finite and infinite rings.
However, the difference between n In nn and n?/? is still large. Jukna (2010) provided
a nearly matching lower bound for the Mult,, operator over the field GF(2) using
the entropy argument.

13.7 Theorem Any depth-2 circuit for Mult,,(X,Y) requires at least n®/? wires.

Proof. Tt is enough to observe that if we take I to be the i-th row of the first input
matrix X, and J to be the i-th row of the output matrix Z, then the augmented
operator f; s contains all m? = n single variables of Y among its boolean functions.
Indeed, if we set x;; = 1 and all other entries of X to 0, then the product F;; - Y
of Y with the resulting boolean matrix F;; is just the j-th row of Y (see Fig. ??).
When doing this for all j = 1,...,m, we obtain all n = m? variables Y = {y;;}
among the functions in f; ;. By the property (P2) of the entropy function, we then
have that E(f; ;) > n.

Since we have m = nl/2

rows, we have m sets I1,..., I, of inputs and m
sets Ji, ..., Jn, of outputs. Since the I;’s and J;’s are disjoint, Theorem ?? im-
plies that every depth-2 circuit computing f(X,Y) = X - Y must have at least
S E(fr.) = mn = n®/? wires. 0

13.8 Remark Note that the entropy of the matrix product operator f(X,Y) = XY
is large only for this special “row-wise” partition I1,..., I, and Jy,..., J,, of
inputs and outputs, where I; is the i-th row of the input matrix X, and J; is the i-th

13.3 Matrix product is hard in depth two 369

row of the output matrix Z = X - Y. In particular, E(f7, 5;) < |J;| = m = y/n for
i # j, because in this case the assignments of constants to the i-th row of X does
not affect the results computed at the j-th row of Z, which are m scalar products
of m columns of Y with the j-th row of X.

13.9 Remark (Cyclic convolution) There are, however, “more complicated” oper-
ators whose entropy remains large under any partitions of inputs and outputs.
Consider, for example, the operator of cyclic convolution f = Conv(z,y). This
operator takes two boolean vectors © = (xq, ..., Zn—1) and ¥y = (Yo, - - -, Yn—1) as
inputs and outputs the vector z = (2o, . .., z,—1), Where z; = Z?:_OI Z;Yi+; mod 2
and 7 + j is taken modulo 7. In other words, the j-th output z; is the scalar product
of vector = with the cyclic shift of vector y by j positions to the left. It can be
shown (see Exercise ??) that, if n = pq then for every partition of z-variables into
p consecutive intervals Z = {I3,..., I, } of length g, there exists a partition of the
output vector z into ¢ disjoint sets 7 = {J1, ..., J,} such that E(f; ;) > n for all
IeZandJeJ.

13.10 Remark (Limitations) How large can entropy of operators be? Recall that in
the definition of the entropy of operators we first split the inputs into p blocks
I,...,I, of some sizes aq,...,a,, and the outputs into p blocks Jy,...,J, of
some sizes by, ... b,. Then we just take the sum

E(f) =E(fn,n) +E(fr,,0) +-- +E(f1,.1,)

of the entropies of the corresponding (to these blocks) augmented operators. Say
that a partition is balanced if a; < as < ... < apand by > by > ... > by
Note that the partition (into the rows) which we used for the matrix product is
balanced—there all a;’s and b;’s were equal.

Since each of the sets {fjZ | i € It,j € Ji} can have at most |I; X J¢| = aby
functions, the entropy of this set cannot exceed a.b;. If the partition is balanced,
then Chebyshev’s inequality (see Hardy, Littlewood, and Polya 1952, Theorem 43,
page 43) yields

BU) < Y < L (Sa) (Dom) < M
t=1

Rt t=1 p

On the other hand, we have a trivial upper bound E(f) < pn. Substituting p >
E(f)/n in the previous inequality, we obtain that E(f) < n./m. Thus, at least
with respect to balanced partitions, the entropy of any (n, m)-operator does not
exceed n+/m. In particular, for such partitions, matrix multiplication has the largest
possible entropy ©(n?/2) among all (n, n)-operators.

370 13 Circuits with Arbitrary Gates

13.3.1 Restricted matrix product is easy in depth three

As observed by Drucker (2011), the proof of Theorem ?? actually gives a lower bound
n3/2 for the following restricted version of matrix product: mult,,(X,Y) = X - Y
if X contains exactly one 1-entry, and mult,, (X,Y") = 0 (all-0 matrix) otherwise.
Yet it can be shown that the operator mult,, can be computed by a depth-3 circuit
using only a linear number of wires, as we will see next. This shows a separation
between depth-2 and depth-3 circuits.

13.11 Theorem (Drucker 2011) The operator mult,, can be computed by a depth-3
circuits using O(n) wires.

Proof. Letn = m?2. Given two boolean m x m matrices X and Y, we want to
detect whether X is “good” (contains exactly one 1-entry) and, if this is the case,
to compute the matrix Z = X - Y. To detect whether X is good, we just put one
“security gate” s on the first (next to inputs) layer. This gate takes all X -variables as
inputs and outputs 1 if X has exactly one 1-entry, and 0 otherwise.

The goal of the remaining operator computed at the first layer is to determine the
unique 1-entry in a good matrix X. Our goal is to do this using O(m) instead of m?
gates. For this, we associate with each position (i, j) € [m]? a distinct 2-element
subset S; ; of [3m]; this can be done since (*]") > m?2. Then we put on the first
layer 3m “hash gates” hq, . .., ks, The (4, j)-th entry x;; is wired to gates h,, and
hq where S; ; = {p, ¢}. Each hash gate computes the sum modulo 2 of its inputs.

Observe that if we are promised that X contains exactly one 1-entry in, say,
position (i, j), then this position can be determined from the value of the operator
H(X) = (hi(X),...,h3m(X)). In fact, this value is just the characteristic vector
Liij) € {0,1}*™ of the set S, ;.

Next we put on the second layer “row gates” ry,...,7,, and “column gates”
C1,...,Cm. Each row gate ry, takes hq, ..., hs,, and s as inputs. We define r;, = 1
iff s = 1 and the hash gates output 1(; ;) for some j € [m]. The column gate ¢
takes hy, ..., ham, and the [-th column of Y as inputs. We define ¢; = y;; if the
hash gates output 1, ;) for some i € [m], and ¢; = 0 otherwise. Finally, we compute
the entries zj, ; of the product matrix on the last, third layer by letting 2 ; := 71 - ¢;.

We argue that this circuit computes mult. First suppose that X does not have
exactly one 1-entry. Then s(X) = 0, so all row gates output 0 and zj ; = 0 for all
(k,1), as required. Next suppose z; ; = 1 while all other entries of X are 0. Then
H(X) =1 ;) and s(X) = 1.1t follows that 7, = 1iff k = 4, whereas (c1, ..., cn)
is the j-th row (y;1,...,¥y;m) of Y. Thus, zx; = 71 - ¢; is O for k # ¢, and is y;
for k = i. This is precisely the (k,[)-entry of mult,, (X,Y).

It remains to count the wires. Each X -variable is connected to 2 hash-gates, for
2m? wires in total leading to hash gates. The security gate s has m? inputs. Each
row and column gate has at most 2m inputs, for a total of at most (2m)? wires
entering the second layer. Finally, each output gate z;; has 2 inputs, so the total
number of wires in the circuit is O(m?) = O(n) as desired. O

13.4 Larger-depth circuits 371

13.4 Larger-depth circuits

For a function f : N — N such that 1 < f(n) < n define

fr(n) == min{k | f(f(--- f(n)---)) <1}
——

k times

Now define the functions Ag(n):
A1(n) == [Vn], Xa(n):=[logyn]| and M\4(n):= \j_,(n) ford > 3.

In particular, A3(n) = O(Inlnn). Since loglogn is the 2-fold composition of
log n, we obtain that A5(n) = ©(\4(n)). By induction, Aggy1(n) = O(A2q(n))
for all d > 2. These slowly growing functions arose when dealing with so-called
“superconcentrators”. Although we will not use them later, let us summarize some
results about superconcentrators.

An n-superconcentrator is a directed graph with n input and n output nodes,
such that for every r < n, any r input nodes may be connected to any r output nodes
in some order by r vertex-disjoint directed paths. Let ¢(n) denote the minimum
number of wires in an n-superconcentrator, and c4(n) the minimum number of
wires in an n-superconcentrator of depth at most d. It is clear that ¢;(n) = n?: one
has to take the complete bipartite graph. It is therefore somewhat surprising that
much fewer wires are enough if we allow just one more layer of wires.

« Pippenger (1977) proved that c3(n) = O(nIn*n) and cy(n) = 2(nlnn).

. Alon and Pudlék (1994) improved the lower bound to 2(n In*2 n).

« Finally, Radhakrishnan and Ta-Shma (2000) proved an almost optimal bound
ca(n) = O(nln®n/Inlnn).

« Alon and Pudlak (1994) proved that c3(n) = O(nlnlnn).

« For d > 4, bounds c4(n) = ©(nA4(n)) were proved by Dolev et al. (1983), and
Pudlak (1994).

« By improving an earlier upper bound ¢(n) = O(n) of Valiant (1976), Pip-
penger (1977) showed that c4(n) = O(n) holds already when d = O(Inn);
moreover, his superconcentrator is quite regular: it has constant maximum
degree. Basalygo (1981) proved that we actually have c4(n) < 36n + O(lnn)
for d = O(Inn). The depth was improved to d = min{k | Ax(n) < 1} by
Dolev et al. (1983).

Raz and Shpilka (2003) used superconcentrator-type properties of circuits to
prove lower bounds 2(n\;(n)) for the operator of matrix product. Their proof
is based on the following graph-theoretic lemma generalizing results of Dolev et
al. (1983) and Pudlak (1994). We formulate the lemma in a slightly different (weaker)
form. The proof of the lemma is somewhat technical, and we omit it.

13.12 Lemma (Raz-Shpilka 2003) Let d > 2 be an integer. For every constant € > 0,
there is a constant 6 > 0, depending only on d and €, such that if a leveled directed
acyclic graph of depth d has more than n vertices and fewer than dnq(n) edges,

372 13 Circuits with Arbitrary Gates

then there exists a set W of inputs and outputs and a set S of inner nodes such that
[W US| <en,|S| > /n and at most €2n?/|S| input-output paths do not go through
anodeinW U S.

Cherukhin (2008b) observed that an appropriate combination of this lemma with
the entropy argument (described in Section ??) allows one to increase known lower
bounds for depth-d circuits from £2(nAg(n)) to 2(nAs—1(n)). In particular, known
lower bound of 2(nlnlnn) for depth-3 circuits can be improved to £2(nlnn).
Cherukhin gave this combined argument only for one special operator—cyclic
convolution. A natural question therefore is: can this combination be used to
improve, say, lower bounds of Raz and Shpilka (2003) for the matrix product?

Below we give a negative answer. We first put Cherukhin’s argument in a
more general setting to characterize which operators’ lower bounds the combined
argument can improve. We discover that this is only possible for operators whose
entropy remains high under highly unbalanced partitions of input and output.
Cyclic convolution has this property but unfortunately matrix multiplication does
not.

By an n-operator we will mean any operator f : {0,1}¥ — {0,1}™ with
N, m > n. By a (p, q)-partition of inputs and outputs of such an operator we will
mean a partition Z of some n inputs into |Z| = p disjoint subsets I of size n/p, and
a partition J of some n outputs into | 7| = ¢ disjoint subsets .J of size n/q. (Here
and though the proof we shall ignore floors and ceilings whenever appropriate as
this does not affect the asymptotic nature of our result; hence me may assume n/p
and n/q are integers.)

Definition Say that an n-operator f has strong multiscale entropy if there exist
constants C,y > 0 such that for every integer p lying between C'v/n and n, there
is a (p,n/p)-partition Z, J of its inputs and outputs, such that E(f; ;) > yn for
all €eZand J € J.

Remark ?? shows that the operator of cyclic convolution has strong multiscale
entropy. The following theorem, due to the author of the book, was never published
before.

13.13 Theorem Let d > 3 be a constant. Every depth-d circuit computing an operator
of strong multiscale entropy must have £2(nA\4—1(n)) wires.

In particular, the operator of cyclic convolution requires this number of wires.

Proof. Let f be an n-operator of strong multiscale entropy, and take an arbitrary
depth-d circuit computing this operator, where d > 3 is constant. Let e > 0 be a
small enough constant; it is enough to take ¢ = min{1/C,~/17}, where C and
v are constant from the definition of operators with strong multiscale entropy.
Assume, for the sake of contradiction, that the total number of wires in the circuit
is smaller than dnA;_1(n), where § = §(d, €) is a constant from Lemma ??. Our
goal is to derive a contradiction with Lemma ??.

Let L; be the set of nodes on the i-th layer of our circuit, 7 = 0, 1, ..., d. Consider
the graph induced by the last d — 1 layers L1, ..., Ly. When applied to this graph,

13.4 Larger-depth circuits 373

Bilder/superconc-eps-iconverted-to.pdf

Fig. 13.2 Every path from the input layer Lo to output nodes in J must contain a node in the set
V=LiU(LiNnW)USU(JNW).Then, V isa J-cut.

which is of depth d — 1, Lemma ?? gives us a set W of inputs and outputs, and a set
S of inner nodes such that |[W U S| < en, |S| > v/n and at most €2n?/|S| paths
from the nodes in L; to the nodes in L, do not go through a node in W U S. To
obtain the desired contradiction, take a (p, ¢)-partition Z, J of inputs in Ly and
outputs in L4 with

pi= [@—‘ 2@ and q::ﬁzﬂ.
17 = 2]
Since f is an operator of a strong multiscale entropy, we know that E(f; ;) > yn
must hold for every I € 7 and J € J. We will use the sets W and .S guaranteed
by Lemma ?? to choose a set I € 7 of inputs, a set J € J of outputs and a J-cut V'
such that
V| +wr(V) < 16en < yn, (13.1)

which contradicts Lemma ??.

By Lemma ??, at most b := €2n?/|S| of the paths from L; to Ly can avoid the
set W U S. Recall that |IW U S| < en and |S| > /n. Since we have ¢ > en/2|S|
disjoint sets J € J, there must exist a J € J such that J has at most

2w
TN W] <q| < 4|S| < 4en

nodes in W and at most 2b/q < 4en of these b “bad” paths can enter .J. Thus, if we
take the set L) C Ly of |L)| < 4en starting points of these “bad” paths, then the

set
V=W uSu(JnNW)with W :=LjU (L NW)

is a J-cut of size |V | < 10en (see Fig. ??).

To finish the proof of (??), and thus the proof of the theorem, it remains to show
that w; (V) < 6en holds for at least one I € Z. Since W’ C L is a set of nodes
on the first (next to input) layer of our original circuit, each I(v) forv € W' is
just the set of wires going from [to v. Since all p sets in Z are disjoint, the sum
> rei wr(W’) cannot exceed the total number of wires which, by our assumption,

374 13 Circuits with Arbitrary Gates

is at most dnAg_1(n) < nlog, n. Hence, there exists an I € 7 such that

1
wr(W') < niog <ey/nlogn < en
for all large enough n. Further, we use |J N W| < 2|W|/q < 4|S| and a trivial

estimate w;(U) < |I| - |U], holding for any set U of nodes, to obtain that

wr(®) <1115 < "2 < en

and

wi(JAW) < |I]-|JAW]| < % ~4|S| < den.
Thus, w; (V') < 6en. This completes the proof of Theorem ??. O

13.14 Remark A possible big imbalance of partitions resulting from the proof of
Theorem ?? (with p = 2(n) and ¢ = O(1)) arises from the trivial upper bound
wr(S) < |I| - |S| given at the end of the proof. Actually, if we do not have any
additional information about the set .S than that given in Lemma ??, this imbalance
cannot be avoided. In particular, we cannot exclude the possibility of the following
undesired situation: from every input at least one path goes through at least one
node in S. In this case w;(S) = |I| - |S| = n|S|/p. Then, in order to achieve
wr(S) < en, we would be forced to take p = £2(n), and hence, the block length
|7| = O(1). But since we need E(f;, ;) > yn and since E(f; ;) < |I| - |J| holds
for all I and J, this forces |J| = {2(n), and hence, ¢ = O(1). Thus, the weakness
of the entire argument is that the choice of parameters p and g is forced by the size
|S| of the set S guaranteed by Lemma ??, and we only know that \/n < |S| < en.

We have just seen that the combination of Lemmas ?? and ?? (superconcentrators
plus entropy) can only work for operators that have high entropy under very
unbalanced partitions, where inputs are split into blocks of constant size. Remark ??
shows that the operator of cyclic convolution has this property. This is a lucky
exception: many other important operators, like the matrix product operator, do
not have this property.

13.15 Remark An interesting question is: can the property of strong multiscale
entropy alone lead to higher lower bounds than given in Theorem ??? Recently,
Drucker (2011) gave a negative answer: there is an explicit operator with this
property that is computable in depth d with O(nA;—1(n)) wires, for d = 2,3 and
for even d > 6. Roughly speaking, the operator is a simplified variant of cyclic
convolution.

13.5 Linear circuits for linear operators 375

Fig. 13.3 A matrix

001000
010011
A=(100100

110111
111111 Bilder/lupanovO-eps-converted-to.pdf

and a linear depth-2 circuit
computing y = Ax. Each
non-input gate is the sum
mod 2 of its inputs.

13.5 Linear circuits for linear operators

We now consider linear operators, that is operators of the form f(x) = Ax where A
is a boolean n x n matrix and computations are in GF(2). Entropy of such operators
cannot be larger than the rank of A, and the entropy method does not seem to
work for linear operators. In fact, for such operators it is difficult to prove high
lower bounds even in the class of linear circuits, where each gate computes the
sum mod 2 of its inputs. It can be shown that matrices A requiring linear depth-2
circuits with about n?/ log n wires exist (see Theorem ?? below), but no explicit
lower bound n'*#() is known so far.

Recall that a linear circuit has n input nodes z1, ..., z, and m output nodes
Y1, - - - , Ym- Each non-input node computes the sum mod 2 of its inputs. Thus, every
such circuit computes a linear transformation y = Ax for some boolean m x n
matrix A (Fig. ??). A special property of linear circuits is that they only need to
correctly compute the transformation for basis vectors x.

Namely, say that a (not necessarily linear) circuit represents a boolean m x n
matrix A = (a;;) if on each input vector e; = (0,...,0,1,0,...,0) with precisely
one 1 in the j-th position, the circuit outputs the j-th column of A. That is, a circuit
represents A if it correctly computes the linear operator Az over GF(2) on alln
unit vectors ey, . .., e,; on other input vectors x the circuit can output arbitrary
values. In particular, if a circuit is linear then it represents the matrix A if for every
i €[m]andj € [n],

a;; = 1 iff the number of paths from x; to y; is odd. (13.2)

13.16 Proposition A linear circuit computes y = Ax iff it represents A.

Proof. If a circuit (not necessarily linear) computes y = Az for all inputs z, then
it clearly represents A. For the other direction, observe that the behavior of a
linear circuit on all input vectors z is completely determined by its behavior on
n unit vectors: just write each input vector z = (z1,...,x,) as the sum z =
xr1€e1 @ - - - @ x, e, and use the linearity of gates. O

376 13 Circuits with Arbitrary Gates

It is clear that every matrix A can be represented by a depth-1 linear circuit, but
the number of wires in this case is just the total number | A| of ones in A. However,
already in depth-2 we can have much more compact representations.

13.17 Example Recall that a primitive matrix is a 0-1 matrix of rank 1, that is, a
boolean matrix consisting of one all-1 submatrix and zeros elsewhere. Such a matrix
R can be specified by a subset S of rows and a subset 7" of columns such that B has
ones in all positions in S x T, and has zeros elsewhere. As before, we call |\S| + |T|
the weight of R. In depth-1, such a matrix requires |S| - |T'| wires. But in depth-2,
already |S| + |T'| wires are enough: just take one vertex on the middle layer and
connect it to all inputs in S and all outputs in 7.

13.18 Theorem (Lupanov 1956) Every boolean n X n matrix can be represented by a
linear depth-2 circuit with O(n?/ Inn) wires, and matrices requiring linear circuits
with 2(n?/Inn) wires in any depth exist.

Proof. By Lemma ??, the matrix A can be decomposed into primitive matrices so that
their total weight (sum of weights of primitive matrices in the decomposition) does
not exceed 2n?/ log n. Since each primitive matrix of weight w can be represented
using w wires (see Example ??), and since the matrices in the decomposition are
disjoint (have no common 1-entries), we are done.

The lower bound follows by counting arguments: there are 27" boolean n x 1
matrices and, by Lemma ??, at most (9t)t linear circuits with ¢ wires. O

Thus, if we denote by ling (Ax) the minimum number of wires in a linear depth-
2 circuit computing Ax, then n x n matrices with ling(Ax) = £2(n?/Inn) exist.
Nothing similar, however, is known for general (non-linear) circuits. Let so(Ax)
denote the minimum number of wires in a depth-2 circuits with arbitrary boolean
functions as gates computing the linear transformation y = Ax.

13.19 B Research Problem
Do matrices A with sy(Az) = 2(n?/Inn) exist?

One can show that the answer is positive if either all gates on the output layer
or all gates on the middle layer are required to be linear. The case when all output
gates are linear is simple (see Exercise ??). The case when only middle gates are
required to be linear can be proved using Kolmogorov complexity arguments (see
Exercise ?7?).

Concerning explicit lower bounds, no lower bound n'+() is known, even in
the case of linear circuits! The first nontrivial lower bound ling (Az) = 2(nlnn)
for linear circuits was proved by Alon, Karchmer, and Wigderson (1990) using the
Sylvester matrix; nearly the same lower bound holds for general (non-linear) depth-
2 circuits as well (see Theorem ?? below). It was also stated by Pudlak and Rédl
(1994) (on page 260, without proof) that the lower bound liny (Az) = £2(n1n/? n)
can be derived from a well-known bound on the rigidity due to Friedman (1993).
Recently, Gal et al. (2011) proved the same lower bound for general circuits, while
computing good linear codes.

13.5 Linear circuits for linear operators 377

Let A be boolean m x n matrix. Say that A is good if there exist constants o, 8 > 0
such that n > am and every two vectors in Range(A4) = {Az | € GF(2)"} have
Hamming distance at least Sm. Thus, every good matrix is a generator matrix of a

linear self-correcting code Range(A) of rate n/m = (2(1) and minimal distance

13.20 Theorem (G4l et al. 2011) If A is a good m X n matrix, then any depth-2 circuit
computing Az must have 2(n1n®/? n) wires.

Proof. (Sketch) Consider a depth-2 circuit C' computing y = Ax. The circuit has
n input nodes, m = O(n) output nodes, and some number ¢ of middle nodes
V1, V2, . . ., V. Suppose the middle nodes have total degrees (fanins plus fanouts)
di > dy > ... > d;. Hence, L = Z:Zl d; is the total number of wires in the circuit.
The proof of the theorem proceeds by establishing the following inequality for any
integer r between log n and y/n/4 (where € > 0 is a constant):

d; 2 1
Z <en\/logn) = r (13.3)

i>r

The desired lower bound) . d; = 2(n - logn - v/logn) then follows from the
Monotone Sums Lemma (see Appendix ??).

To prove (??), fix an r in the desired interval, and let P be the number of length-2
paths from an input node to an output node that only use middle nodes v; with
i > r.Note that P <)", d?. By averaging, there is a set I of |I| > n/2 input
nodes such that each of them has at most s := 2P/n such paths to an output node.

Each middle node v; computes some boolean function g;(x). We now replace
each v; with ¢ > r by a constant g;(0). Let C’ be the modified circuit. Let also
k < |I| be a parameter (to be fixed later), and say that an input string € {0,1}"
is legal if it has k ones, and z; = O forall j & I.

For every such string x, the outputs C(x) and C’(x) can differ in at most ks
coordinates, because there are at most ks output nodes for which there is a path
from an input node with value 1 through a middle node v; with ¢ > r. If ks is
smaller than half of the distance of the code, we can decode any such x from the
value C’(x). However, the values C’(x) depend only on < r bits (so many non-fixed
gates are on the middle layer). Since we have (IQ) legal strings x, the number r of
these bits must satisfy the inequality
li') > klog‘—i| > klog

r>lo i

=8 2%
The only constraint on k is that ks = 2k P/n must be less that half of the distance
of the code, and the later is £2(n). This allows us to set k = ©(n?/P), yielding

Tl2

r:Q(Plog§>.

378 13 Circuits with Arbitrary Gates

Using this lower bound as well as inequalities logn < r < y/n/4, one can derive
that P = £2((n*/r)logn). Together with P <)", d?, this already establishes
the desired inequality (??). O

Gal et al. (2011) also showed that, using large distance alone, one cannot hope
to substantially improve the lower bound of Theorem ??: there exist generator
matrices A of codes of distance £2(n) such that ling(Az) = O(n(lnn/Inlnn)?).
The existence of such generator matrices is proved using probabilistic arguments.
Actually, the authors (personal communication) can improve the lower bound in
Theorem ?? to an optimal bound of liny (Az) = 2(n(lnn/Inlnn)?).

13.6 Circuits with OR gates: rectifier networks

We now consider circuits where each gate is the OR of its inputs. Such a circuit
for a boolean m x n matrix A = (a;;) has n input nodes z1, . .., x, and m output
nodes y1, . . . , Ym. At the i-th output of such a circuit the OR y; = \/j:aij:1 xj of
the input variables is computed. That is, the circuit computes the operator y = Ax
over the boolean semiring. Note that in this case a circuit represents the matrix A
if for every i € [m] and j € [n],

a;; = 1 iff there exists a path from z; to y;. (13.4)

Thus, we can just ignore the gates, and consider our circuit a directed acyclic graph
with this property (??). Such a model for matrix representation, known as rectifier
network, was introduced by Lupanov (1956), and was subsequently intensively
studied in the Russian literature. The size of such a network is again the total
number of wires.

It is easy to see that Theorem ?? remains true also in the case of rectifier net-
works: every n X n matrix can be represented by a depth-2 rectifier network using
O(n?/1nn) wires, and matrices requiring this number of wires exist. But unlike
in the case of linear circuits, where no explicit lower bound larger than n /% n
in depth-2 is known, explicit lower bounds for OR-circuits (rectifier networks) are
easier to obtain, even without depth restrictions!

A lower bound of £2(n?/?) was first obtained by Nechiporuk (1969) for the “point-
line incidence” matrix defined in Example ??. Using a different matrix constructed by
Brown (1966), a larger lower bound £2(n°/3) was later obtained by Pippenger (1980).
Similar lower bounds were also obtained by Mehlhorn (1979) and Wegener (1980).

It is not difficult to show that any rectifier network representing a boolean matrix A must
contain at least |A|/r(A) wires, where |A| is the total number of 1-entries in A, and (A) is
the maximum number of entries in an all-1 submatrix of A. This lower bound follows from the
following simple observation: the sets of inputs and outputs connected by paths going through
a fixed wire must form an all-1 submatrix of A. Since we always need at least |A|/r(A) all-1
matrices to cover all ones of A, this number of wires is necessary. Unfortunately, this lower
bound is too weak: if, say, A is an n X n matrix, then r(A) is at least the maximum number

13.6 Circuits with OR gates: rectifier networks 379

of 1s in a row or a column of A, implying that |A|/r(A) < n. Much larger lower bounds
can be obtained using the fact that coverings resulting from circuits must have some special
properties.

Say that a boolean matrix A is (s, t)-free if it does not contain any (s + 1) x (t 4+ 1)
all-1 submatrix. A matrix is k-free if it is (k, k)-free.

13.21 Theorem If A is a boolean k-free matrix, then any rectifier network representing
A must have at least |A|/k? wires.

Proof. (Due to Pippenger 1980) Take a rectifier network F' for A. For anode w in F,
let s,, be the number of input nodes from which w is reachable, and ¢,, the number
of output nodes reachable from w. Let us call a wire ¢ = (u, v) “eligible” if s, < k
and t, < k.If (4, j) is a 1-entry of A (that is, a;; = 1), we say that e “covers” this
entry if there is a path from the j-th input node to u, and there is a path from v to
the ¢-th output node.

Since each eligible wire e = (u, v) can cover at most s,, - t,, < k2 1-entries of A,
it remains to prove the following claim.

13.22 Claim Every 1l-entry of A is covered by at least one eligible wire.

To prove the claim, take a l-entry (i,j) of A. Then there must be a path
Vg, V1, - . ., Uy in our circuit beginning in vg = j and ending in v,, = 4. Letting
81 = 8y, be the number of inputs from which v; is reachable, and ¢; := ¢,, denote
the number of outputs reachable from v;, we have that

s1<s9<...<sqandt; >ty >...>t,.

Let p be the largest number for which s, < k, and ¢ the smallest number for which
ty < k.If ¢ < p+ 1, then the wire ¢ = (v, vp41) covering the entry (i,7) is
eligible, and we are done. So assume for the sake of contradiction that ¢ > p + 2.
By the definition of positions p and ¢ we have that s, > k and ¢, > k. But
then at least k£ + 1 inputs are connected with at least £ + 1 outputs going through
the node v,41, contradicting the k-freeness of A. This completes the proof of the
claim, and thus the proof of the theorem. O

We already know explicit constructions of 1-free n x n matrices A with |A| =
Q(n3/ 2) ones; see Examples ?? and ??. For these matrices, Theorem ?? yields that
any OR-circuit representing them requires £2(n3/?) wires.

13.23 Example (Brown’s construction) The following construction of dense 2-free
matrices is due to Brown (1966). Let p be an odd prime and let d be a non-zero
element of Z, = {0,1,...,p — 1} (the field of integers modulo p) such that d
is a quadratic non-residue modulo p if p = 1 modulo 4, and a quadratic residue
modulo p if p = 3 modulo 4. Let A be a boolean n x n matrix with n = p3
whose rows and columns correspond to all triples of elements in Z,. The entry
of A corresponding to a row (a1, as,a3) and column (b1, b, b3) is 1 iff the sum

380 13 Circuits with Arbitrary Gates

(a1 — b1)? + (a2 — b3)? + (az — b3)? modulo p is equal to d. Brown showed that
this matrix has |A| = p*(p — 1) = 2(n®/?) ones, and is 2-free.

Thus, Brown matrices require OR-circuits with £2(n°/?) wires. Subsequent con-
structions of dense square-free matrices have lead to even higher lower bounds.

13.24 Example (Norm graphs) Let ¢ be a prime-power, t > 2 an integer, and consider
the field GF(¢") with ¢" elements. The norm of an element a of this field is defined
as the element

N(a) =q - aq . aqt71 — a(qt—l)/(q—l)

of this field. Now let n = ¢*, and construct a bipartite n x n graph with vertices in
each part being elements of GF(q*). Two vertices a and b are adjacent iff N (a+b) =
1. It is known that the number of solutions in GF(g") of the equation N(z) = 1 is
(q* —1)/(q—1); this and other basic facts about finite fields can be found in the book
by Lidl and Niederreiter (1986). Hence, each vertex of this graph has degree d =
(¢* —1)/(q — 1), implying that the total number of edges is dq’ > ¢*'~! = n?~1/t,
Kollar, Rényai and Szab6 (1996) proved that, for any ¢ distinct elements a1, . . ., a; of
GF(q"), the system of equations N (a1 +x) = 1, N(as+z) =1,...,N(a;+z) =1
has at most ¢! solutions = € GF(¢"). This immediately implies that the constructed
graph has no copy of a complete bipartite ¢ x (¢! + 1) graph, and hence, the
adjacency matrix of this graph is (¢ — 1,¢!)-free. Explicit matrices with slightly
worse parameters were constructed earlier by Andreev (1986).

For the adjacency matrices of norm graphs, Theorem ?? yields almost maximal
lower bounds §2(n2~¢) for an arbitrarily small constant ¢ > 0. Nothing similar,
however, is known for linear circuits, even in depth 2.

13.25 @ Research Problem
Can a k-free matrix constructed in Example ?? or in Example ?? be represented by
a linear depth-2 circuits using fewer than n'*%() wires?

13.26 Remark In this problem it is important that we only consider circuits of
depth 2. Gashkov and Sergeev (2010) showed that 1-free n x n matrix A with
|A] = 02(n?/?) ones, constructed in Example ??, as well as Brown’s matrix and
some other dense square-free matrices, can be represented by linear circuits of
depth O(In n) using only O(n In nInlnn) wires. Their construction is based not
on the properties of matrices (their square-freeness) but rather on their construction.
Actually, the authors can show (personal communication) that, for every integer
k > 1, the resulting circuits of depth 2k — 1 have only O(n'*1/*) wires.

13.6.1 Circuits with OR and AND gates

One may ask whether the number of wires in an OR-circuit can be substantially
decreased if one also allows AND gates? As shown by Nechiporuk (1969), Pip-

13.6 Circuits with OR gates: rectifier networks 381

penger (1980), and Mehlhorn (1979), at least for k-free matrices this is not the case:
the number of wires can only be decreased by a factor at most 1/k (see Exercise ??).

Since the number of wires in a monotone circuit with unbounded fanin AND
and OR gates is proportional to the number of gates in a standard monotone circuit
(with fanin-2 AND and OR gates), we obtain the following lower bound on the
monotone complexity of monotone operators f. Let Cx v (f) denote the smallest
number of gates in a fanin-2 monotone circuit computing f. For a boolean m x n
matrix A = (a;), let f4 : {0,1}" — {0,1}™ denote the monotone operator
fa(x) = Az over the boolean semiring (A, V, 0, 1). That is, the i-th component of
fa is just the disjunction a;1x1 V @022 V - -+ V Qi @n.

13.27 Theorem If A is a k-free matrix, then C v/ (fa) = 2(|A]/K3).

Thus, constructions described above give us explicit n x n matrices A with
Cav(fa) = 2(n?7¢). Similar (almost optimal) lower bounds can be obtained for
yet another important operator, the so-called “boolean cyclic convolution”.

A boolean n x n matrix A is circulant if its i-throw fori = 1,...,n — 1 is the
cyclic shift of the first row (ag, a1, ..., a,—1) by i positions to the left:

ap ay ... aQpn—2 AGp—1
al as - B agp
A= S : (13.5)
Ap—2 An—-1 AQ Ap—3
p—1 Qo ... Gp-3 AQp—-2

Note thatif S = {i | a; = 1} C Z,, = {0,1,...,n — 1} is the set of all positions
of 1s in the first row of A, then A is k-free if and only if the set S is k-sparse
in the following sense: I + J ¢ S for every pair of subsets I,J C Z, of size
|I| = |J| = k + 1; here I + J is the set of all possible sums i + j modulo n with
1€landj € J.

Grinchuk (1988) used probabilistic arguments to show that k-sparse subsets S C
Zy, of size |S| = 12 (nl_\/?’Tk /k*) exist. This implies the existence of circulant k-free
n X n matrices A with |A| = Q(nQ_\/ﬂ/k‘l) ones. Grinchuk and Sergeev (2011)
recently improved this to |A| = £2(n?~3/¥ /k3). In particular, for k = O(logn) we
have that |[A| = 2(n?/log® n).

Circulant matrices are related to the operator of cyclic convolution which we have
already considered above; see Remark ??. The operator of boolean cyclic convolution
z = fp(z,y) is a boolean operator of 2n variables defined in a similar way:

n—1

zi=\/ Tilhisjmoan for i=01,...,n—1.
=0

That is, f,(z,y) = Yz is a result of a matrix-vector product over the boolean
semiring, where Y is the circulant matrix of the form (??) induced by the vector y =
(Yo, - - -, Yn—1) of the last n variables. Since every circulant matrix can be obtained

382 13 Circuits with Arbitrary Gates

from the matrix Y by substituting constants to the last n variables yo, .. ., yp—1 of
fn(x,y), the result of Grinchuk and Sergeev (together with Theorem ??) implies
that C v (f,) = 2(n?/log® n).

Gashkov and Sergeev (2011) gave a general construction showing how sparse
subsets of vectors can be transformed into sparse subsets of numbers. In particular,
they show that the mapping 1 : Z!, — Z2,_1y: given by

t—1
Y(ao, ..., a1-1) = Zai(2n —1)
i=0

translates every k-sparse subset S C Z!, of vectors into a k-sparse subset 1(.S) C
Z(2n—1y+ of numbers. Together with the construction of norm graphs given in
Example ??, this yields explicit k-free circulant n x n matrices A with |A| =
2(n?>=1/t/2%) ones, where k = t!.

13.6.2 Asymptotic bounds

Finally, let us mention some results about the asymptotic behavior of the Shannon
function of rectifier networks. Let B(n) denote the minimal number of wires which
is enough to represent any boolean n X n matrix by a rectifier network. Let B,.(n)
denote the analogous number in the class of networks of depth at most r. Let also
B, (n, «) denote the minimal number of wires which is enough to represent any
boolean n x n matrix with an? ones. Finally, let \, := —z logy, 2—(1—2) log, (1—1)
be the binary entropy function.

Lupanov (1956) proved that

2

Ba(n) ~ logn

Nechiporuk (1969a) proved that the asymptotic is achieved at depth 3:

Tl2

B(n) ~ Bs(n)

~ 2logn
He also proved that
n? n?
B ~Ag—— and B ~ A=
2(71,0[) alogn an 3(”705) 0(210g’l’L

as long as logn = o(A\,n) and — log min(a, 1 —) = o(logn). For the minimal
number B(m,n) of wires which is enough to represent any boolean m x n matrix,
Orlov (1970) proved that

Bs(klogn,n) ~ (k+ 1)n

13.7 Non-linear circuits for linear operators 383
holds for every positive integer k, and
B(m,n) ~ Ba(m,n) ~ 2™ 4 n

holds as long as n > 2(2™ — m — 1).

In all these estimates, the upper bounds were obtained by constructing networks
with a special property that every input is connected with every output by at most
one path. Thus, the same asymptotic equalities also hold for linear circuits.

13.7 Non-linear circuits for linear operators

A positive answer to Problem ?? would mean that, for at least some matrices A, using
non-linear gates cannot help significantly to compute the linear transformation
y = Aux. In this section we will show that non-linear gates can help much if we
only want to represent the matrix A, that is, to correctly compute y = Az only for
vectors z with exactly one 1.

Theorem ??, together with Proposition ??, implies that, in the class of linear
circuits, some matrices A require £2(n?/In n) wires to represent them. We will now
show that in the class of general circuits the situation is entirely different; this was
observed in (Jukna, 2010).

13.28 Theorem Every boolean n X n matrix A can be represented by a depth-2 circuit
with O(nlInn) wires.

Proof. We construct the desired depth-2 circuit representing A = (a;;) as follows.
Let m be the smallest even integer such that (7:}2) > n; hence m = O(Inn). Take
m middle nodes V' = {v1, ..., vy }. To each input variable x; assign its own subset
S; C V of |S;| = m/2 middle nodes; hence, S;, C S;, iff j1 = jo. Join z; with all
nodes in S;. Finally, connect each v € V' with all output nodes. The total number
of wires is then n(m/2) + nm = O(nlnn).

Now we assign gates to the nodes. If v is a node on the middle layer connected
to inputs x;,, ..., x;,, then assign to v the gate g, = z;, ® --- ® x;,. To the i-th
output node we assign the gate

i = a;1h1 @ apphs @ - - © anhy , where hy, = H v -
VES)

Then

hi(e;) = 1iff g, (ej) = 1 forall v € Sy,
iff x; is connected to all nodes in S,
iff S, C 5
iff k =j.

384 13 Circuits with Arbitrary Gates

Hence, hj(e;) = 1 and hi(e;) = 0 for all k& # j. Thus, if f;(x) is the function
computed at the ¢-th output gate then, forall j = 1,...,n, we have that

file;) = ¢ilej) =ain - 0& - @ay 18 ®am 0= aj,
as desired. O

We now show that the upper bound nlnn in Theorem ?? is almost optimal.
To do this, we will use the Sunflower Lemma proved in Section ??. Recall that a
sunflower with k petals is a family S, ..., Sk of k finite sets, each two of which
share precisely the same set of common elements, called the core of the sunflower.
That is, there is a set C' (the core of the sunflower) such that S; NS; = C for
all 1 < ¢ < j < k. The Sunflower Lemma states that every family of more than
s!(k — 1)® sets, each of which has cardinality at most s, contains a sunflower with
k petals.

For a matrix A, let dist(A) denote the smallest Hamming distance between the
columns of A. Alon, Karchmer and Wigderson (1990) proved that every matrix
A requires {2(d - Inn/Inlnn) wires to be presented by a linear depth-2 circuits,
where d = dist(A). The next theorem extends this result to general (non-linear)
circuits.

13.29 Theorem Every depth-2 circuit representing a boolean n x n matrix with
dist(A) = d requires at least 2(d - Inn/Inlnn) wires.

Proof. Fix a minimal depth-2 circuit with arbitrary gates representing a given
matrix A. Without loss of generality, we may assume that there are no direct wires
from inputs to outputs: this can be easily achieved by adding at most n new wires.
Let z1,...,x, be its input nodes, and 51, ..., S, be sets of their neighbors on the
middle layer. Let f1, ..., f, be the functions computed at the output nodes. Since
the circuit represents A, we must have that f;(e;) = a;; forall1 <i,j <n.

Let L, be the number of wires leaving the input nodes, and Lo the number of
wires entering the output nodes. Hence, L; = Z?:l |Si|, and Ly + Lo is the total
number of wires. Set m := cIlnn/Inlnn for a sufficiently small constant ¢ > 0. If
we have L > mn wires leaving the input nodes, then we are done. So, assume that
L; < mn. Our goal is to show that we must have Ly > m - dist(A) wires entering
the output nodes.

Our assumption Y .-, |S;] < mn implies that at least n/2 of the sets S; must
be of size at most s = 2m. Hence, if the constant ¢ in the definition of m is small
enough then, by the Sunflower Lemma, these sets must contain a sunflower with
k = 2m petals. Having such a sunflower with a core C, we can pair its members
arbitrarily (Sp,,Sq,), .., (Sp,., Sq..); hence, S,, NSy, = Cforalli =1,...,m.
Important for us will only be that the symmetric differences

Spi ® S, P (sz \S%) U (sz \S 1) = (Silh US!Ii)\C

13.7 Non-linear circuits for linear operators 385

of these pairs of sets are pairwise disjoint. Hence, we have m pairwise disjoint
subsets S, @ Sy, of nodes on the middle layer, and we only have to show that each
of these sets has at least dist(A) outgoing wires: then Lo > m - dist(A).

Fix one of the pairs (Sp, Sq). Since the circuit represents the matrix A, the value
f(e;) of the computed operator f = (fi,..., fn) on the j-th unit vector must be
the j-th column of A. Since the Hamming distance between the p-th and the ¢-th
columns of A must be at least d, there must exist a set I of |I| > dist(A) rows such
that

filep) # fi(eq) foralli € I. (13.6)

13.30 Claim Every output f; with ¢ € I must be adjacent to at least one node in
Sp @ S4.

Proof. Let V be the set of all nodes on the middle layer. For a node v € V, let
9v(21,...,x,) be the boolean function computed at this node. Let O denote the
all-0 vector. Observe that, if a wire (j, v) is present, then the values g, (¢;) and g, (0)
must be different: would they be the same, then we could remove the wire (4, v)
and replace g, by a new boolean function g, obtained from g, by fixing the j-th
variable x; of g, to 0. The behavior of this new gate would then be the same on all
unit vectors. But then we would have one wire fewer, contradicting the minimality
of our circuit.

This observation implies that g, (e,) = g,(eq) for all v & S, & S,. Indeed, if
v & S, U S, then neither the wire (p, v) nor the wire (g, v) is present, implying
that g, (ep) = gu(0) = g(eq). If v € S, NSy, then both wires (p,v) and (g, v)
must be present, and the above observation implies that g, (e,) # g,,(0) as well as
gv(eq) 7 gv(0). Hence, in this case we also have that g, (e,) = g, (e4). just because
g, can take only two values. Thus the behavior of every gate g, withv € S, & S,
is the same on both unit vector e, and e,.

To finish the proof of Claim ??, take the boolean function f; computed at the
i-th output gate with ¢ € I.If there were no wire from a node in S, ® S to this
output gate, then f; would also be forced to take the same value on both unit vector
ep and e, contradicting (??). O

By Claim ??, for each of m pairs (S,, Sy,) of subsets of nodes on the middle
layer, there must be at least |I| > dist(A) wires going from the vertices in .S),, & S,

to the output layer. Since the sets S, © Sg,, % = 1,...,m, are pairwise disjoint,
the total number of wires going from the middle layer to the output layer must be
at least m - dist(A), as desired. O

There are explicit boolean n x n matrices H,, (so-called Sylvester matrices) such
that dist(H,,) > n/2 but, still, the entire linear transformation y = H,,z can be
computed by a linear depth-2 circuit with n logn wires (Exercise ??). Thus, the
lower bound in Theorem ?? is almost tight.

386 13 Circuits with Arbitrary Gates

13.31 Remark Drucker (2011) has recently shown that the lower bound in The-
orem ?? is, in fact, tight: the factor 1/Inlnn cannot be removed. He uses par-
ticular combinatorial designs to construct a boolean n x n matrix A such that
dist(A) = £2(n) but A can be represented, and even f4(z) = Az can be computed
by a linear depth-2 circuit using only O(n Inn/Inlnn) wires. He also shows that
there exists a matrix with dist(4) = §2(n) such that Az can be computed by a
linear depth-3 circuit using only O(n) wires. Thus, large distance between columns
alone cannot force a large number of wires.

13.8 Relation to circuits of logarithmic depth

A depth-2 circuit of width r has n boolean variables x4, ..., x, as input nodes, r
arbitrary boolean functions hq, ..., h, as gates on the middle layer, and arbitrary
boolean functions ¢y, ..., g, as gates on the output layer. Direct input-output
wires, connecting input variables with output gates, are now allowed! Such a
circuit computes an operator f = (f1,..., fn) : GF(2)" — GF(2)" if, for every
1=1,...,n,

filx) = gi(z, hi(z), ..., h(x)).

The degree of such a circuit is the maximum, over all output gates g;, of the number
of wires going directly from input variables x4, .. ., x,, to the gate g;. That is, we
ignore the wires incident with the gates on the middle layer. Let Deg,.(f) denote
the smallest degree of a depth-2 circuit of width 7 computing f.

It is clear that Deg,, (f) = 0: just put the functions f1,..., f,, on the middle
layer. Hence, this parameter is only nontrivial for < n. Especially interesting is
the case when r = O(n/Inlnn):

13.32 Lemma IfDeg,.(f) = n?M forr = O(n/Inlnn), then f cannot be computed
by a circuit of depth O(Inn) using O(n) fanin-2 gates.

Proof. Suppose that f = (f1,..., fn) can be computed by a circuit ¢ of depth
O(Inn) using O(n) fanin-2 gates. By Valiant’s lemma (Lemma ??), for an arbitrarily
small constant € > 0, any such circuit can be reduced to a circuit of depth at most
€logn by removing a set of at most r = O(n/loglogn) edges.

Put on the middle layer all the r boolean functions computed at these (removed)
edges, and connect each middle node with all inputs as well as with all outputs.
Because a subcircuit of ¢ computing each f; has depth at most € log n, each such
subcircuit can depend on at most 2€1°8™ = n¢ original input variables. By joining
the i-th output node with all these n° inputs we obtain a desired depth-2 circuit of
degree at most n° computing our operator f. Since this holds for arbitrarily small
constant € > 0, we are done. O

The highest known lower bound for an explicit operator f, proved by Pudlak,
R4dl and Sgall (1997) has the form Deg,.(f) = 2((n/r)In(n/r)), and is too weak
to have a consequence for log-depth circuits.

13.8 Relation to circuits of logarithmic depth 387

A natural question therefore was to improve the lower bound on the degree, at
least for linear circuits, that is, for depth-2 circuits whose middle gates as well as
output gates are linear boolean functions over GF(2). Such circuits compute linear
operators f4(x) = Ax for some matrix A over GF(2). By Lemma ??, this would
give a super-linear lower bound for log-depth circuits over {®, 1}. (Yes, even over
this basis no super-linear lower bound is known so far!)

This last question attracted the attention of many researchers because of its
relation to a purely algebraic characteristic of the underlying matrix A—its rigidity.
Recall that the rigidity, Rig 4 (r), of a matrix A over GF(2) is the smallest number
of entries of A that must be changed in order to reduce its rank over GF(2) until r.
That is,

Rig, (r) = min{|B| : tk(A® B) <r},

where |B| is the number of ones in B. For a linear operator f4(z) = Az over
GF(2), let Lin-deg,.(f4) denote the minimum degree of a linear depth-2 circuit of
width r computing f4.

13.33 Proposition Let A be a boolean n x n matrix, Rig 4 (r) its rigidity and f4(z) =
Az the corresponding linear operator over GF(2). Then

Lin-deg,(fa) = Riga (r) /n.

Proof. Fix a depth-2 circuit @ of width r computing f4. If we set all direct input-
output wires to 0, then the resulting degree-0 circuit will compute some linear
transformation A’z. The operator y = A’z takes 2'%(4") different values. Hence,
the operator H : GF(2)" — GF(2)" computed by 7 boolean functions on the
middle layer of ¢ must take at least so many different values, as well. This implies
that the width r must be large enough to fulfill 2" > 254" from which rk(A’) < r
follows. On the other hand, A’ differs from A in at most dn entries, where d is the
degree of the original circuit @. Hence, Rig 4 (1) < dn from whichd > Rig, (r) /n
follows. O

13.34 M Research Problem
Exhibit an explicit boolean n x n matrix A of rigidity Rig, (r) > n!*¢ for r =
O(n/Inlnn).

By Lemma ?? and Proposition ??, this would give us a linear operator f4(z) = Az
which cannot be computed by log-depth circuit over {®, 1} using a linear number
of parity gates. Motivated by its connection to proving lower bounds for log-depth
circuits, matrix rigidity (over different fields) was considered by many authors.

It is clear that Rig 4 (1) < (n—r)? for any n X n matrix A: just take an arbitrary
r X 1 submatrix A’ of A and set to 0 all entries outside A. Valiant (1977) proved that
n x n matrices A with Rig 4 (r) = (n — r)? exist if the underlying field is infinite.
For finite fields the lower bound is only slightly worse.

13.35 Proposition There exist n x n matrices A over GF(2) such that, for allr <

n —+/2n + logn,

388 13 Circuits with Arbitrary Gates

(n—7r)?—2n—1logn

i >
Rig, (r) = log(2n?)

Proof. Direct counting. Recall that the rigidity Rig, () of A over GF(2) is the
smallest number | B| of nonzero entries in a boolean matrix B such that k(A®B) <

2
7. For | B| = s there are at most (",) < n?® possibilities to choose s nonzero entries

of B, and at most (:)2 < 221 possibilities to choose a nonsingular r X r minor of
A @ B. Assuming that s is strictly smaller than the lower bound on Rig 4 (), given
in the proposition, it can be verified that the number of possible matrices A with
Rig4 (r) < s is upper bounded by 2n’ /n, which is smaller than the total number
27 of such matrices. O

The problem, however, is to exhibit an explicit matrix A of large rigidity. The
problem is particularly difficult if we require A to be a boolean matrix or at least a
matrix with relatively few different entries. What we need are explicit matrices A
with Rig 4 (r) > n?/r'=° for a constant § > 0; this would already solve Problem ??.

We now show that it is this “—§” which makes the problem difficult: explicit
n x n +1 matrices A of rigidity Rig 4 (r) = £2(n?/r) over the reals are easy to
present.

Let n = 2™. The n x n Sylvester £1-matrix S,, = (s;;) by labeling the rows

and columns by m-bit vectors 2,y € GF(2)™ and letting s;; = (—1)®¥. Hence,

14141 41
_[+1+1 41411 BEES
2= Ll 1} e R [sn S,
+1-1-1+1

where S, is the matrix obtained from S,, by flipping all +1’s to —1’s and all —1’s
to +1’s. The rigidity of these matrices over the reals is n?/4r.

13.36 Theorem Ifr < n/2 is a power of 2 then Rigg (r) > n?/4r.

Proof. (Due to Midrijanis 2005) Divide S,, uniformly into (n/2r)? submatrices of
size 2r x 2r. One can easily verify that these submatrices each have full rank over
the reals. So we need to change at least r elements of each submatrix to reduce each
of their ranks to r, a necessary condition to reducing the rank of S, to 7. The total
number of changes is then at least 7 - (n/2r)% = n?/4r. O

This proof works for any matrix whose submatrices have full rank. Consider the
n x nmatrix B = (b;;) where b;; = 1ifi = j mod 2r, and b;; = 0 otherwise. By
the same proof Rigp () > n?/4r even though the rank of B is only 2r.

In fact, it was observed by many authors that any Hadamard matrix has rigidity
2(n?/r). Recall that a Hadamard matrix of order n is an n X n matrix with entries
£1 and with row vectors mutually orthogonal over the reals. It is easy to verify
that the Sylvester matrix S,, constructed above has this property. It follows from
the definition that a Hadamard matrix H of order n satisfies HHT = nl,,, where
I,, is the n x n identity matrix. Hence, the eigenvalues of H are all +/n

13.8 Relation to circuits of logarithmic depth 389

13.37 Theorem Let H be ann x n Hadamard matrix. If r < n/2 then Rigy (r) >
n?/4r.

Proof. (Due to Ronald de Wolf 2006) Let R be the minimum number of changes
that brought the rank of H down to r. By a simple averaging argument, we can
find 27 rows of H that contain a total of at most 2rR/n changes. If n < 2rR/n,
then R > n2/2r and we are done. Hence, we can assume that n — 2rR/n > 0.
Consider the n — 2rR/n columns that contain no changes in the above set of
rows. We thus get a 2r x (n — 2rR/n) submatrix B that contains no changes and
hence is a submatrix of H. By definition of R, this submatrix must have rank at
most r. But every a X b submatrix of H must have rank at least ab/n (see Lemma ??
in Appendix ??). Thus, we get r > rk(B) > 2r(n — 2rR/n)/n. Rearranging this
inequality, we get R > n?/4r. O

These bounds on rigidity are, however, still too weak to have consequences for
log-depth circuits over {®, 1}.

The best known lower bounds for the rigidity of explicit n x n matrices over
a finite field is due to Friedman (1993) and have the form 2((n?/r)In(n/r)). As
shown by Shokrollahi, Spielman and Stetmann (1997), such bounds can also be
obtained using the following combinatorial fact. The fact itself is an almost direct
consequence from well-known bounds for the Zarankiewicz problem.

13.38 Lemma Letlog®n < r < n/2 and let n be sufficiently large. If in ann x n
matrix fewer than
n? | n
o % r—1

entries are marked, then there exists an r X r submatrix with no marked entries.

(13.7)

Proof. Let M = (m;;) be an arbitrary n x n matrix, some of whose entries are
marked. Let A = (a;;) be a 0-1 matrix with a,;; = 1 iff m,; has not been marked.
Let R be the number of marked entries in M. Obviously |A| = n? — R. Define

pln,r) = n(n—r—f—l)(l— (T;I)l/r).

It is well known (see, for example Bollobas (1978), page 310) that if A has

Al > (r=DY"(n—r+ DY+ (r = Dn = n? — u(n,r)

ones, then A contains an 7 x r all-1 submatrix. Hence, this condition is satisfied if
only R < p(n,r) entries were marked. It remains to show that p(n,) is at most
(??) as long as logn <r < n/2. Asn(n —r + 1) > n?/2 for r < n/2, it suffices

to show that
r—1\1/r _ 1
1-— () > —log
n 2r r—1

holds for r > log? n. Setting K := n/(r — 1), this inequality is equivalent to

390 13 Circuits with Arbitrary Gates

r/log K 1/log K
(1ilogK)/0g Z(l) og 7;

2r K
This holds because for large n the left-hand side converges to 1/+/e > 1/2. O

As observed by Lokam (2009), the lemma cannot be substantially improved. This
can be shown using the following result of Stein (1974) and Lovéasz (1975), which
itself has already found many other applications.

13.39 Theorem (Lovasz—Stein theorem) Let A be a boolean N x M matrix. Suppose
that each row of A has at least v ones and each column at most a ones. Then A contains
an N x K submatrix C' with no all-0 rows and such that K < N/a+ (M /v)Ina <
(M/v)(1+1na).

For us, the following consequence of this theorem will be important. Let 7 be a
finite family of subsets of some finite set X. The blocking number 7(F) of F is the
smallest size |T| of a set T' C X intersecting all members of F.

13.40 Corollary If each member of F has at least v elements, and each point x € X
belongs to at most a of the sets in F, then

7(F) < |)U(—|(1+lna).

Proof. Let A be the incidence matrix of F. That is, the rows of A correspond to
the members F' of F, and columns to the points x in the underlying set X. The
(F,x)-th entry of A is 1iff x € F. By the assumption of the theorem, each row has
at least v ones, and each column has at most a ones. Theorem ?? implies that there
must be a subset T of |T'| < |X|(1 4 lna)/v columns such that every row of A has
at least one 1 in these columns. Thus, the set 7" must intersect every member of F,
and we are done. O

13.41 Theorem (Lokam 2009) In every n X n matrix it is possible to mark at most
O((n?/r)In(n/r)) entries so that every r X r matrix will contain at least one marked
entry.

Proof. Given an n x n matrix M, let F be the family of all its » x 7 submatrices.
The underlying set X in our case is the set of all | X| = n? entries in M, and each
entry belongs to exactly a = (::11

has v = r? elements. Corollary ?? gives us a set T of

)2 members of F. Moreover, each member of F

| X n? N1\ 2 n?. n
7l < =1 +Ina) = 1+ (7)) = (’)(T—an ;)
entries of M intersecting every r X r submatrix of M. O

More results on various versions of rigidity can be found in the survey of
Lokam (2009).

13.8 Relation to circuits of logarithmic depth 391

Exercises

13.1 Consider circuits of arbitrary depth with all boolean functions allowed as gates.
Prove that operators f : {0,1}" — {0, 1}" requiring {2(n?) wires in such circuits
exist.

Hint: Show that: (i) in an optimal circuit no gate has fanin larger than n, (ii) if there are L wires
in a circuit, then at most n/2 gates can have fanin larger than 2L /n.

13.2 Let Conv(x, y) be the operator of cyclic convolution defined in Section ??. Let
n = pq. Show that for any partition of the input vector = (xq,...,Z,—1) into p
consecutive intervals Iy, ..., I, of length ¢, there exists a partition of the output
vector z = (20, ..., 2n—1) into ¢ disjoint sets .Jy, . .., .J, such that E(Convy, j,) >
n for all i and j. Hint: Consider residue classes modulo p.

13.3 Recall that the rank of an n x n matrix A over some field is the smallest
number 7 such that A can be written as a product A = B - C of an n X r matrix B
and an r X n matrix C'. For a boolean matrix A, let |A| be the number of 1s in A.
Define the weighted rank of A by:

Rk(A) = min{|B|+|C|: A=B-C}.

That is, now we are interested not in the dimension of the matrices B and C but
rather in the total number of 1s in them. Prove that liny(A4) = Rk(A), that is, the
smallest number of wires in a linear depth-2 circuit representing a matrix A is equal
to the weighted rank of A.

Hint: Take the adjacency matrices of the bipartite graphs formed by the first and the second level
of wires.

13.4 Prove that ling(Az) = L if and only if there exist primitive matrices
By, ..., B; (that is, boolean matrices of rank 1) of dimensions 71 X S1,...,7; X 8¢

such that A = @E:l B; and Zle(ri +s;) = L.

Hint: Each matrix By, is uniquely described by a set I, of its rows and a set .Jj; of its columns
containing at least one 1. For each k, put a node v on the middle layer and connect it with all
inputs in Jj, and all outputs in I.

13.5 Let A, = (di;) be a triangular boolean n x n matrix, that is, d;; = 1 iff
i < j.Let n be a power of two. Show that ling (A, z) = O(nlogn). Hint: Show that
ling(Anz) < n+2-lina(4,, /21).

Comment: Pudlék and Vavrin (1991) showed that the rigidity of Ay, is ©(n?/r) for all r = o(n).

13.6 Let n = 2" and consider a boolean n X n matrix H,, whose rows and columns
are indexed by vectors in GF(2)", and H, [z, y| is the scalar product of z and y
over GF(2). Such matrices are known as (0, 1)-Sylvester matrices. Show that:

(a) H,, can be defined inductively by

392 13 Circuits with Arbitrary Gates

0000
00 0101 H, H,
Hé—{oJ’fh"oo11 mﬂ}ﬁ”_{HnHJ’
0110

where H,, is the matrix obtained from H,, by flipping all its entries.

(b) ling(H,x) < 2nlogn. Hint: Exercise ??.

(c) The matrix H,, cannot be represented by a general depth-2 circuit using fewer
than 2(nlnn/Inlnn) wires. Hint: Show that dist(H,,) > n/2 and apply Theorem ??.

13.7 Show that Problem ?? has an affirmative answer if all output gates are required
to be linear: if a depth-2 circuit & computes a linear operator f4(z) = Az and has
linear gates on the output layer, then @ can be transformed into an equivalent linear
circuit of the same size and width. Hint: Replace the operator H, computed at the middle
layer, by a linear operator H'(z) := ?:1 x;H(e;) mod 2.

13.8 We consider depth-2 circuits whose middle gates are linear (output gates may
be arbitrary). Let A be a boolean n X n matrix. Show that, if the linear transformation
Ax can be computed by such a circuit using L wires, then the matrix A can be
encoded using O(L logn) bits. That is, there exists a binary string £ of length
O(L logn) such that the matrix A can be reconstructed from &. Use this to conclude
that some matrices will require £2(n?/logn) wires.

Hint: At the middle layer a linear transformation is computed. Use the fact that every linear space

is uniquely described by any of its bases. To get the last conclusion, show that some matrices
cannot be encoded using substantially fewer than n? bits.

13.9 Recall that a boolean function f is symmetric if there is a set 1" of natural
numbers (called also the type of f) such that f accepts a binary vector x iff the
number of 1s in x belongs to T. A symmetric depth-2 circuit is a depth-2 circuit
with parity gates on the middle layer, and symmetric boolean functions of the same
type on the output layer. Let sym(A) denote the smallest number of nodes on
the middle layer of a symmetric depth-2 circuit of type T representing a boolean
matrix A = (a;;). (Actually, on the middle layer, we can allow any gates g such
that g(0) = 0 and g(x) = 1 for every vector x with exactly one 1.) Let also sym(A)
be the minimum of sym(A) over all types T C {0, 1, ...}. Show that:

(a) symp(A) = smallest number r for which it is possible to assign to each
row/column ¢ a subset S; C {1,...,r} such that a;; = 1 if and only if
|Sl n SJ| eT.

(b) Show that sym(A) = §2(n) for almost all n x n matrices A.

13.10 (Threshold vs. parity types) Let n = 2™, and consider an n x n Sylvester
matrix H,,. Recall that its rows and columns are labeled by vectors in GF(2)™,
and the entries of H,, are the scalar products of these vectors over GF(2). Hence,
symp(H,) < m for the type T consisting of all odd natural numbers. A type
T C{0,1,...}isathreshold-k typeif T' = {k, k+1,...}. Prove that sym(H,) =
2(y/n) for any threshold type 7.

13.8 Relation to circuits of logarithmic depth 393

Hint: Let r = symy(Hy), and consider an assignment ¢ +— S; of subsets S C {1,...,7} to
rows/columns of Hy, = (hsj;) such that h;; = 1iff |S; N .S;| > k. Take E = {(i,7) | hsj = 1}
and consider the family 7 = {F1,...,F;.} with Fy, = {(4,4) | k € Si N S;}. Show that
r > thrz(F), where thr z(E) is the threshold cover number of F dealt with in the Discriminator
Lemma (Lemma ??). Then use Lindsey’s Lemma (proved in Appendix ??) to show that disc z(E) =
O(n~1?).

13.11 M Research Problem. Exhibit an explicit boolean 7 x n matrix A such that
sym(A) > 2(g1oe™)” for some a(n) — oco.

Comment: This is a reformulation of Research Problem ?? in terms of matrices: just consider
bipartite graphs as their adjacency matrices.

13.12 M Research Problem. Say that T' C {0, 1,...} is an interval type if T =
{a,a+1,...,b} for some non-negative integers a < b. Let sym,,,(A) denote the
minimum of sym(A) over all interval types T'. Exhibit an explicit boolean n x n
matrix A such that sym; (A) is larger than 2(°81°8™)° for any constant c.Comment:
This would be a major step towards resolving the previous problem.

13.13 Let A = (a;;) be a boolean m x n matrix, and consider the operator f(x) =
Az over the boolean semiring. Thus, the operator computes m disjunctions f;(x) =
Vjiay;=124, @ = 1,...,m. Suppose that A is k-free, and that f(x) = Az can be
computed by a monotone circuit using L fanin-2 AND and OR gates. Show that
then f(z) can also be computed by a circuit containing at most & - L OR gates and
no AND gates at all.

Hint: Take the last AND gate g = h1 A hz in the circuit. Let s be the number of variables among
Z1,...,%n that imply g, that is, the number of terms of length 1 in the disjunctive normal form of
g. Let also ¢ be the number of functions among f1, ..., fm that are implied by g. Argue that s and
t cannot be both larger than k. If s < k, then replace the AND gate g by a circuit computing the
OR of the corresponding s variables. If ¢ < k, then replace g by the constant 0, and let f1, ..., f,
be the functions computed after this replacement. Show that, for each of the i with f; # f;, either
fi = fl Vhior fi = f V ha must hold.

13.14 M Research Problem. Prove or disprove: if a linear operator f4(z) = Ax
can be computed by a depth-2 circuit of degree d and width w, then f4 can also be
computed by a linear depth-2 circuit of degree O(d) and width O(w).

13.15 An extension of a partial m-by-n matrix M with entries in {0, 1, *} is obtained
by setting all *-entries to constants 0 and 1. Let mr(M) denote the smallest possible
rank of an extension of M over GF(2). Let F’ be a depth-2 circuit computing a
linear operator f4(z) = Ax over GF(2). Say that the (, j)-th entry of A is seen by
the circuit, if there is a direct wire from z; to the i-th output gate. Replace all entries
of A seen by the circuit with *’s, and let A be the resulting (0, 1, *)-matrix. Note
that the original matrix A is one of the extensions of Ap; hence, rk(A) > mr(Ap).
Prove the following:

(a) If the circuit F is linear, then width(F') > mr(Ap).

Hint: Every assignment of constants to direct input-output wires leads to a depth-2 circuit of
degree d = 0 computing a linear operator Bx, where B is an extension of Ar. Argue that

394 13 Circuits with Arbitrary Gates

the operator H : GF(2)" — GF(2)" computed by w = width(F’) boolean functions on

the middle layer of F' must take at least 2°%(B) different values.

(b) Every depth-2 circuit F' computing a linear operator can be transformed into an
equivalent linear depth-2 circuit of the same degree and width at most mr(Ag).

Hint: Let B be an extension of Ap of rank r = mr(Ar). Take any r linearly independent
rows of B and put on the middle layer r scalar products of the input vector x with these
rows. Show that the resulting linear circuit computes the same linear operator.

13.16 M Research Problem. Let M be a partial m-by-n matrix with entries in
{0,1,*}. An operator f = (f1,..., fm) : GF(2)" — GF(2)™ is consistent with
M if the i-th coordinate f; of f can only depend on variables corresponding to
x-entries in the i-th row of M. Let Sol(M) denote the maximum, over all extensions
A of M and all operators f consistent with M, of the number of solutions of the
system of equalities Az = f(z) over GF(2). Prove or disprove that there exists a
constant € > 0 such that Sol(M) < 2n—emr(M),

Comment: Some partial results towards this problem were obtained by Jukna and Schnitger (2011).
Together with Exercise ??, an affirmative answer would give an affirmative answer to the research
problem stated in Exercise ??.

Part V

Branching Programs

14. Decision Trees

A decision tree is an algorithm for computing a function of an unknown input. Each
node of the tree is labeled by a variable and the branches from that node are labeled
by the possible values of the variable. The leaves are labeled by the output of the
function. The process starts at the root, knowing nothing, works down the tree,
choosing to learn the values of some of the variables based on those already known
and eventually reaches a decision. The decision tree complexity of a function is the
minimum depth of a decision tree that computes that function.

14.1 Adversary arguments

Let f : {0,1}™ — {0, 1} be a boolean function. A deterministic decision tree for f
is a binary tree whose internal nodes have labels from z1, . .., x,, and whose leaves
have labels from {0, 1}. If a node has label z; then the test performed at that node
is to examine the i-th bit of the input. If the result is 0, one descends into the left
subtree, whereas if the result is 1, one descends into the right subtree. The label of
the leaf so reached is the value of the function on that particular input (Fig. ??).

The depth of a decision tree is the number of edges in a longest path from the
root to a leaf, or equivalently, the maximum number of bits tested on such a path.

Let D(f) denote the minimum depth of a decision tree computing f.

When trying to prove that every decision tree for a given boolean function
requires large depth, one possibility is to use the so-called adversary argument.
The idea is that an all-powerful malicious adversary pretends to choose a “hard”
input for the solver (a decision tree). When the solver wants to look at a bit, the
adversary sets that bit to whatever value will make the solver do the most work. If
the solver does not look at enough bits before terminating, then there will be several
different inputs, each consistent with the bits already seen, that should result in
different outputs. Whatever the solver outputs, the adversary can “reveal” an input
that has all the examined bits but contradicts the solver’s output, and then claim
that was the input which he was using all along. Since the only information the

397

398 14 Decision Trees

x2

x3 1

0 1

Fig. 14.1 A decision tree of depth 3. It accepts only three inputs (0, 0, 0), (1,0,0) and (0, 1, 1).

solver has is the set of bits it examined, the algorithm cannot distinguish between a
malicious adversary and an honest user who actually chooses an input in advance
and answers all queries truthfully.

Let us demonstrate this on decision trees for the following problem on graphs:
Given an n-vertex graph G as input, we would like to know how many pairs of
its vertices a decision tree might have to inspect in order to determine whether G
is connected. To express this problem as a boolean function, associate a boolean
variable z. with each possible pair ¢ = {u,v} of vertices u # v. Then, each
assignment x of (”) boolean values to these variables gives us a graph G; with the

2
edge-set E = {e | z, = 1}. The graph connectivity function f,, is defined by:

fn(x) = 1if and only if G, is connected.
14.1 Proposition D(f,) > n?/4 > 3(3).

Proof. Fix a partition V' = V; U Vs of the vertex-set into two equal size parts
|[V1| = |V2| = n/2. Imagine an adversary that constructs a graph, edge by edge, in
response to the queries of a solver (decision tree). If the decision tree queries an
edge e whose both endpoints lie in V; or both lie in V5, then the adversary replies
with “z. = 1” (the edge is present). On crossing edges e € V; x V5 the adversary
replies with “x, = 0”. Thus, the graph constructed along that path is disconnected:
it consists of two vertex disjoint cliques. But the decision tree cannot detect this
unless it has already queried all n2 /4 crossing edges. O

14.2 Theorem D(f,) = (3).

Proof. The adversary now maintains two graphs, Y and M (“yes” and “maybe”),
both on all n vertices. The graph Y contains all the edges that the solver knows are
definitely in the input graph. The graph M contains all the edges that the solver
(the decision tree) thinks might be in the input graph, or in other words, all the
edges of Y plus all the unexamined edges. Initially, Y is empty and M is complete.
Suppose now that the solver asks whether an edge e is in the input graph or not.
The adversary strategy is:

14.2 P = NP N co-NP for decision tree depth 399

« If M\ {e} is connected then answer “z, = 0” and remove e from M.
« If M \ {e} is not connected then answer “z, = 1” and add e to Y.

Notice that, at each step, Y is a subgraph of M, and M is connected: if the removal
of an edge e from M would result in a disconnected graph, the adversary adds e
to Y, and hence, keeps that edge in M. Further, if M has a cycle, then none of its
edges can belong to Y: deleting any edge in a cycle cannot disconnect a graph.
This, in particular, implies that Y is acyclic. We claim that, if Y # M then Y is
disconnected. To show this, assume that Y is connected. The only connected acyclic
graph is a spanning tree, that is, a tree on the entire set of vertices. Thus, Y is a
spanning tree and some edge e is in M but not in Y. But then there is a cycle in M
that contains e, all of whose other edges are in Y. This violates the fact (we just
established) that no cycle in M can have an edge in Y.

Now, if the solver terminates before examining all (g) edges, then there is at
least one edge in M which is not in Y. Since the solver cannot distinguish between
M and Y, even though M is connected and Y is not, the solver cannot give the
correct output for both graphs. Thus, in order to be correct, any algorithm must
examine every edge. O

14.2 P = NP N co-NP for decision tree depth

Given an input @ = (ay,...,ay) from {0,1}", we would like to know whether
f(a) = L or f(a) = 0. How many bits of a must we see in order to answer this
question? It is clear that seeing D(f) bits is always enough: just look at those bits
of a which are tested along the (unique) path from the root to a leaf.

In a deterministic decision tree all the tests are made in a prescribed order
independent of individual inputs. Can we do better if we relax this and allow for
each input a to choose its own smallest set of bits to be tested? This question leads
to a notion of “nondeterministic” decision tree.

A nondeterministic decision tree for a boolean function f(z1,...,2,) is a (not
necessarily binary) tree each whose edge is labeled by a literal (a variable or a
negated variable). One literal can label several edges leaving one and the same
node. Such a tree T' computes f in a nondeterministic manner: T'(a) = 1 if and
only if there exists a path from a root to a leaf such that all literals along this path
are consistent with the input a, that is, are evaluated to 1 by this input. Let C}(f)
denote the smallest depth of a nondeterministic tree computing f, and define the
dual measure by Cy(f) := Cy(—f). It is not difficult to verify that

C1(f) = min{k | f can be written as a k-DNF}

and

Co(f) = min{k | f can be written as a k-CNF} = C(—f).

400 14 Decision Trees

It is important to note that C; (f) is not the length of a longest minterm of f. Recall
that a minterm of a boolean function f is a minimal under inclusion subset of its
variables such that the function can be made constant-0 function by fixing these
variables to constants 0 and 1 in some way. Let min(f) denote the length of the
longest minterm of f. Exercise ?? shows that there are boolean functions f of
n + log n variables such that

min(f) >n but Ci(f) <1+logn.

How do the depths of nondeterministic and deterministic trees are connected? It is
clear that max{Cy(f),C1(f)} < D(f), that is, for every input a, seeing its D(f)
bits is enough to determine the value f(a), be it 0 or 1. Is this upper bound optimal?
The following example shows that this may not be the case: there are boolean
functions f for which

max{Co(f), C1(f)} < V/D(f).

For example, for the monotone boolean function f(X) onn = m? boolean variables

defined by
F=NAV = (14.1)

i=1j=1

we have Cy(f) = C1(f) = m but D(f) = m? (see Exercise ??), implying that
D(f) = Co(f) - Ca(f).

It turns out that the example given above is, in fact, the worst case. Namely, the fol-
lowing theorem has been re-discovered by many authors in different contexts: Blum
and Impagliazzo (1987), Tardos (1989), and Hartmanis and Hemachandra (1991).

14.3 Theorem For every boolean function f, D(f) < Co(f) - C1(f).

Proof. Induction on the number of variables n. If n = 1 then the inequality is trivial.
For the induction step, let (say) f(0,...,0) = 0; then some set Y of k& < Cy(f)
variables can be chosen such that by fixing their value to 0, the function is 0
independently of the other variables. We can assume w.l.o.g. that the set Y =
{z1,...,z1} of the first k variables has this property.

Take a complete deterministic decision tree T of depth k on these k variables.
Each of its leaves corresponds to the unique input a = (ay,...,a) in {0, 1}*
reaching this leaf. Replace such a leaf by a minimal depth deterministic decision
tree T,, for the subfunction

fa = f(a/la"'7a’k7xk+17""'rn)'

Obviously, Co(fs) < Co(f) and C1(f,) < C1(f). We claim that the latter inequal-
ity can be strengthened:

Ci(fa) < Ci(f) —1. (14.2)

14.3 Certificates, sensitivity and block sensitivity 401

To prove this, take an arbitrary input (agy1, ..., ay) of f, which is accepted by
fa- Together with the bits (a1, . .., ax), this gives an input of the whole function f
with f(as,...,a,) = 1. According to the definition of the quantity C (f), there
must be a set Z = {xz;,,...,2;, } of m < C1(f) variables such that fixing them
to the corresponding values x;, = a;,,...,%;,, = a;, ,the value of f becomes 1
independently of the other variables. A simple (but crucial) observation is that

YNnZ#0. (14.3)

Indeed, if Y NZ = () then the value of f(0,...,0,ax+1,--.,a,) should be 0 because
fixing the variables in Y to O forces f to be 0, but should be 1, because fixing the
variables in Z to the corresponding values of a; forces f to be 1, a contradiction.

By (??), only | Z\ Y| < m — 1 of the bits of (ax+1, . . ., a,) must be fixed to force
the subfunction f, to obtain the constant function 1. This completes the proof of
).

Applying the induction hypothesis to each of the subfunctions f, with a €
{0,1}*, we obtain D(f,) < Co(fa) - C1(fa) < Co(f)(C1(f) — 1). Altogether,

D(f) < k+max D(fa) < Co(f) + Co(/)(C1(f) =1) = Co(f)C1(f). O

14.3 Certificates, sensitivity and block sensitivity

Let f: {0,1}™ — {0, 1} be a boolean function, and a € {0,1}"™. An f-certificate of
aisasubset S C {1,...,n} suchthat f(b) = f(a) for all vectors b € {0,1}" such
that b; = a; for all ¢ € S. That is, the value f(a) can be determined by looking at
only bits of a in the set S.

Certificates are related to monomials and clauses as follows. Associate with each
vector a € {0,1}" and each subset .S C [n] the monomial

— ai
Msa = M\ z¥,
i€S
where 2} = z; and 2¥ = —z;, as well as the clause
— 1—a;
Cs,q = \/ x; .
icS

If f(a) =1, then S is an f-certificate for a iff Mg ,(x) < f(x) forall z € {0,1}".
If f(a) = 0, then S is an f-certificate for a iff Cs o(x) > f(x) for all z € {0,1}™.

By C(f,a) we denote the minimum size of an f-certificate for a. The certifi-
cate complexity of f is C(f) = max, C(f, a). Therefore, considering what was
mentioned before,

C(f) = max{C1(f), Co(f)}

402 14 Decision Trees
= min{k | f can be written as a k-DNF and as a k-CNF} .

Theorem ?? gives the following relation between the decision tree depth of boolean
functions and their certificate complexity:

C(f) < D(f) <C(f)°.

A similar relation also exists between certificate complexity and another important
measure of boolean functions—their sensitivity and “block sensitivity”.

Recall that the sensitivity of a boolean function f : {0,1}" — {0,1} ona €
{0,1}" is defined as the number of distance-1 neighbors b of a such that f(b) #
f(a). For example, if f(z) =21 Vo V- -V xz,,thens(f,0) =nbuts(f,a) =0
for every vector a with at least two 1s. The sensitivity (or maximum sensitivity) of
f is defined as s(f) = max, s(f, a).

Study of sensitivity of boolean functions originated from Cook and Dwork (1982)
and Reischuk (1982). They showed an 2(logs(f)) lower bound on the number of
steps required to compute a boolean function f on a so-called “consecutive read
exclusive write parallel random access machine” (CREW RAM). Such a machine
is a collection of synchronized processors computing in parallel with access to a
shared memory with no write conflicts. Nisan (1989) then found a way to modify
the definition of sensitivity to characterize the minimum number of steps required
to compute a function on a CREW PRAM. For this purpose, he introduced a related
notion called “block sensitivity”.

A natural generalization of sensitivity is to flip blocks of bits rather than single
bits. To formalize this, we use the following notation. For a vector a € {0,1}" and
a subset S C [n] of its bit-positions, let a® denote the vector a, with all bits a; with
i € S flipped to opposite values. That is, a° differs from a exactly on the bits in
S. For example, if a = (0,1,1,0,1) and S = {1, 3,4}, then ® = (1,1,0,1,1).In
particular, if S = {i} then a® = a @ e;.

We say that f is sensitive to S on a if f(a®) # f(a). The block sensitivity of f
on a, denoted bs(f, a), is the largest number ¢ for which there exist ¢ disjoint sets
(blocks) St, ..., S: C [n] such that f is sensitive on a to each of these sets, that is,
f(a®) # f(a) foralli = 1,...,t. The block sensitivity of a boolean function f is
bs(f) = max, bs(f,a).

It is clear that s(f,a) < bs(f,a): this follows by considering the partition
where every S; is a singleton. Moreover, we also have that bs(f,a) < C(f,a):
any certificate of @ must include at least one variable from each set to which f is
sensitive on this input a. Hence

s(f) <bs(f) = C(f) = D(f).

It can be shown (see Exercise ??) that
s(f) =bs(f) = C(f) for every monotone f.

It can also be shown (Exercise ??) that

14.3 Certificates, sensitivity and block sensitivity 403

n+1

s(f) >

for every symmetric f of n variables.

The biggest known gap between s(f) and bs(f) is quadratic.

14.4 Lemma (Rubinstein 1995) There are boolean functions f with

bs(f) = s(f)?/2.

Proof. For an even m, let g be a boolean function of m variables such that g(z) = 1
if and only if x9;_1 = x2; = 1 for some 1 < i < m/2 and x; = 0 for all other
positions j. For example, if m = 8, then

11000000
.. _loo110000
9 M=100001100

00000011

By taking blocks S; = {2i — 1,2i} for i = 1,...,m/2, we see that bs(g) >
bs(g; 0) = m/2. Moreover, s(g,a) = 1 for alla € g~*(0), and s(g, b) = m for all
beg (1)

Now let f = g1 V- -V g,, be an OR of m copies of g on disjoint sets of variables;
hence, f hasn = m? variables. Then

bs(f) > bs(f;0) =m-bs(g;0) > m?/2 =n/2.

On the other hand, for every a € f~1(0) we have thats(f,a) < > i" s(g,a) < m,
and for every b € f~'(1) we have that s(f,b) < max;s(gj,b) < m; this last
inequality holds because f(b) = 1 and f(b%) = 0 implies that g;(b) = 1 for exactly
one of the g;. Hence, s(f) < m = y/n. O

It remains unknown whether there is a polynomial relationship between sensi-
tivity and block sensitivity.

14.5 @ Research Problem
Do there exist constants ¢, d such that bs(f) < c - s(f)? holds for all boolean
functions f?

More information about this problem, known as the Sensitivity Conjecture, can
be found in a survey of Hatami, Kulkarni and Pankratov (2011).
14.3.1 Block sensitivity versus certificate complexity

That C(f) can be at most quadratic than bs(f) was shown by Nisan (1989).

14.6 Theorem (Nisan 1989) For every boolean function f,

404 14 Decision Trees

C(f) <s(f)-bs(f) < bs(f)?.

Proof. Take an arbitrary input a € {0,1}". Our goal is to show that C(f,a) <
s(f) - bs(f). First we show that minimal blocks to which a function f is sensitive
cannot have more than s(f) variables. Let S C [n] a minimal with respect to
set-inclusion subset such that f(a®) # f(a).

14.7 Claim |S| < s(f).

Proof. If we flip one of the S-variables in ¢, then the function value must flip
from f(a®) to f(a), for otherwise S would not be minimal. So, every S-variable is
sensitive for f on input @, implying that s(f) > |S|. O

Now let Sy, ..., S; be disjoint minimal sets of variables that achieve the block
sensitivity t = bs(f, a) < bs(f). Consider the set S = S;U- - -U.S;. By the previous
claim, we have that |S;| < s(f) for all ¢. Hence, |S| < s(f) -t < s(f) - bs(f), and
it remains to show that S is an f-certificate of a.

If S is not an f-certificate of a, then let b € {0, 1}" be an input that coincides
with @ on S, and f(b) # f(a). Let Si11 be the set of positions on which b differs
from a; hence, b = a”+1. Now f is sensitive to Sy,1 on a and Sy, is disjoint from
S1,...,S; which contradicts ¢ = bs(f, a). Hence, S is a an f-certificate of a, as
claimed. O

14.3.2 Block sensitivity versus depth

Since D(f) < C(f)?, Theorem ?? gives an upper bound D(f) < bs(f)* on the
decision tree depth. A better upper bound D(f) < bs(f)? can be obtained from
the following result.

14.8 Theorem (Beals et al. 2001) If a boolean function f can be written as a k-DNF
or a k-CNF, then D(f) < k - bs(f).

The inequality is tight because, if f(z) =21 V22V -V 2y, then D(f) =n, f
is a 1-DNF and bs(f) = n.

Proof. Suppose that a boolean function f of n variables can be written as a k-DNF
(the case of k-CNF is dual). Let ¢ := bs(f). We will describe an algorithm which,
given an input vector a € {0,1}", queries at most & - ¢ bits of a to compute the

value f(a).
Stage 1: Repeat the following at most ¢t = bs(f) times:

« Pick a monomial M consistent with the values of all queries made so far.

« If there is no such monomial, then return value 0 and stop.

« Otherwise, query all not yet queried variables of M and assign them values
corresponding to the bits of a.

« If all these values agree with a then return value 1 and stop.

14.3 Certificates, sensitivity and block sensitivity 405

Stage 2: If Stage 1 does not stop after performing it ¢ times, then pick a vector
b € {0,1}" consistent with all queries made so far and return value f(b).

The nondeterministic “pick” can easily be made deterministic by choosing the
first monomial M and the first vector y in some fixed in advance order. Since the
algorithm runs for at most t = bs(f) steps and each step queries at most k variables,
at most ¢ - k variables are queried in total.

It remains to show that the algorithm always returns the right answer. If it
returns an answer in Stage 1, this is either because no monomial is consistent
with a (and hence f(a) must be 0) or because a is found to agree with a particular
monomial (and hence f(a) must be 1). In both cases the algorithm gives the right
answer.

Now consider the case where the algorithm returns an answer only in Stage 2.
We will show that f(b) = f(a) for all vectors b € {0, 1} that are consistent with
the path constructed by vector a in step (1). Suppose not. Then there are consistent
vectors b and ¢ with f(b) = 0 and f(c) = 1. On input a, the algorithm has queried
all variables of a sequence of t = bs(f) monomials M, ..., My, and both vectors
b and ¢ coincide with a on all these variables. Moreover, since f(c) = 1, there also
must be a monomial M1 consistent with c. We will derive from these monomials
disjoint non-empty sets 51, ..., St41 of variables such that f is sensitive to each
S; on input b. This will imply that bs(f,b) > ¢t + 1 = bs(f) + 1, contradicting the
definition of bs(f).

For every i = 1,...,t + 1, define .S; as the set of variables in the monomial
M, that are inconsistent with the corresponding bits of b (and hence, also of a).
Clearly, each S; is non-empty because f(b) = 0. Note that b is already consistent
with M;, so f (bs’i) = 1, which shows that f is sensitive to each S; on b. To obtain
the desired contradiction, it remains therefore to show that all the S; are pairwise
disjoint.

To show this, take a variable z;, € S; and assume that z;, € S; for some j > i.
Assume w.l.o.g. that a;, = 1; hence, also by, = 1. Then both monomials M; and M;
must contain the same literal —zy. This already implies that j # ¢ + 1, because
¢k = a and My 1(c) = 1. So, i < j < t, meaning that M} has been chosen after
all variables of M;, including x, where queried. But this is impossible because M
is not consistent with the (already queried) value a. Thus, no two of the sets S;
can share a common variable, as desired. O

Since every boolean function f can be written as a k-DNF and as a k-CNF with

k = C(f), and since C(f) < s(f) - bs(f), we obtain the following

14.9 Corollary D(f) <s(f)-bs(f)? < bs(f)3.

14.10 @ Research Problem
Is D(f) = O(bs(f)2)?

406 14 Decision Trees

14.3.3 Sensitivity and degree of polynomials

We now relate block sensitivity of a boolean function f with the degree of real
polynomials representing f. Recall that a multilinear polynomial p : R” — R
represents a boolean function f : {0,1}" — {0,1} if p(a) = f(a) for all a €
{0, 1}"™. We already know (see Section ??) that every function f : {0,1}" — R has
a unique representation as a multilinear polynomial over R:

f(z) = Z f(a) H Z; H (1—$j): Z CSH«%"

ac{0,1}n :a;=1 j:a;=0 SC[n] i€S

The degree, deg(f), of a boolean function f is the degree of the unique multilinear
real polynomial p that represents f. The AND of n variables 1, ..., x, is repre-
sented by the polynomial consisting of just one monomial []"_, z;, and the OR is
represented by the polynomial 1 — [, (1 — ;). Hence, both of these functions
have degree n.

Besides that the degree is an interesting algebraic parameter of boolean functions,
it can be used to lower-bound the depth of decision trees: it can be easily shown
(see Exercise ??) that D(f) > deg(f).

How is the degree related to sensitivity? On the one hand, there are boolean
functions f such that

s(f) =bs(f) = C(f) =v/n but deg(f)=n.

Take, for example, the function f of n = m? variables defined by (??): since the
degree of each AND as well as of each OR of m variables is m, we have that
deg(f) = m? = n.

On the other hand, deg(f) may also be significantly smaller than C(f), and
hence, than s(f) and bs(f). To see this, consider the boolean function f : {0,1}" —
{0, 1} constructed in the proof of Lemma ??. This function has degree deg(f) <
n0-631- and maximal sensitivity s(f, 0) = n. Hence,

s(f) =bs(f) = C(f) =n but deg(f) < no03L,

Our goal is now to show that deg(f) can be no more than quadratically smaller
than bs(f). This shows that the gap of the last example is close to optimal.

14.11 Theorem (Nisan-Szegedy 1994) For every boolean function f,

deg(f) = v/bs(f)/2.

Proof. Let f(x) be a boolean function of n variables, and let ¢ : R™ — R be the
multilinear polynomial of degree d representing f; hence ¢(x) = f(x) for all
x € {0,1}"™. By Lemma ??, we know that every boolean function f of n variables,
which rejects the all-0 vector and accepts all n vectors with exactly one 1, has

14.3 Certificates, sensitivity and block sensitivity 407

deg(f) > \/n/2. 1t is therefore enough to construct a multilinear polynomial p of
t = bs(f) variables satisfying the conditions of this lemma.

Let t = bs(f), and a € {0,1}" be an input such that bs(f,a) = bs(f). We

assume without loss of generality that f(a) = 0. Let also Sy, ..., S; be the cor-
responding disjoint subsets of [n] such that f(a%) = 1foralli = 1,...,t. We
transform ¢(z1, . .., z,) into a multilinear polynomial p(y1, . .., y:) of ¢t new vari-

ables by replacing every variable z; in p as follows

Yi ifa;j=0andj €S,
zj:=q1—y, ifa;j=1landjecs;,
a; lf‘]gSlUUSf

That is, for y € {0, 1}* we have that

p(y) =q(a®y1S1 ®Y2S2 @ -+ Dy, Sy)

where p
/—/g
yiSi = (07"'7O7y17"'ayi707"'70)'
It is clear that p is a multilinear polynomial of degree at most d, and p(y) takes
valuesin {0, 1} forally € {0, 1}, since p(x) does this for all z € {0, 1}". Moreover,
we have that p(0) = ¢(a) = f(a) =0, and

ple) = gla®) = f(a¥) = 1

for all unit vectors e; € {0,1}!,7 =1,...,t. We can therefore apply Lemma ?? and

conclude that d = deg(g) > deg(p) > \/t/2 = \/bs(f)/2. O

Together with Corollary ??, Theorem ?? gives the following relation between
the depth of decision trees and the degree of boolean functions.

14.12 Corollary (Nisan-Szegedy 1994) D(f) < 8 - deg(f)°.

This upper bound was improved by Nisan and Smolensky (unpublished); see the
survey of Buhrman and de Wolf (2002).

14.13 Theorem
D(f) < deg(f)?-bs(f) <2-deg(f)*.

Proof. (Due to Nisan and Smolensky) Let f be a boolean function of n variables. By
a maxonomial of f we will mean a monomial with maximal degree in the multilinear
polynomial representing f.

14.14 Claim For every maxonomial M of f, there is a set S of variables in M such

that f(0%) # £(0).

Proof. Obtain a subfunction g of f by setting all variables outside M to 0. This g
cannot be constant 0 or 1, because its unique polynomial representation (as obtained

408 14 Decision Trees

from p) contains M. Thus there must be some subset S of the variables in M that
makes g(0%) # g(0) and hence f(0°%) # £(0). O

14.15 Claim There exists a set of deg(f) - bs(f) variables that intersects each
maxonomial of f.

Proof. Greedily take all variables in maxonomials of f, as long as there is a max-
onomial that is still disjoint from those taken so far. By Claim ??, each maxonomial
contains a sensitive block on 0. Since there can be at most bs(f) disjoint sensi-
tive blocks, this procedure can go on for at most bs(f) maxonomials. Since each
maxonomial of f contains only deg(f) variables, the claim follows. O

We can now finish the proof of the theorem as follows. Let a € {0,1}" be
an arbitrary input vector. By Claim ??, there is a set of deg(f) - bs(f) variables
that intersects each maxonomial of f. Query all these variables. This induces
a restriction g of f on the remaining variables, such that bs(g) < bs(f) and
deg(g) < deg(f) (because the degree of each maxonomial in the representation of
f drops by at least one). Repeating this inductively for at most deg(f) times, we
reach a constant function and learn the value f(a). This algorithm uses at most
deg(f)? - bs(f) queries, hence D(f) < deg(f)? - bs(f) where, by Theorem ??,
bs(f) < 2-deg(f)>. O

It is conjectured that deg(f) = O(s(f)?).

14.16 @ Research Problem
Do there exist constants ¢, d such that deg(f) < ¢ - s(f)? holds for all boolean
functions f?

14.4 Sensitivity and subgraphs of the n-cube

Problem ?? is related to the following problem about the maximum degree of induced
subgraphs of the n-dimensional binary hypercube Q,,. For a set S C {0,1}" of
its vertices, let Q,,[S] denote the subgraph of),, induced by S. That is, S is the
vertex-set of), [S], and edges of @,,[S] are all edges of Q);, connecting two vertices
in S.

Let A(n) denote the maximal number D such that, for every subset S C {0,1}"
of size |S| # 277!, the maximum degree of Q,[S] or Q,[S] is at least D. The
condition | S| # 2"~ is necessary because if we take S = {z | >_""_, z; is even},
then the subgraph of),, induced by S'is empty, that is, has zero degree. It is known
that A(n) < /n + 1.

14.17 Example (Chung et al. 1988). For simplicity, assume that n = m? is a square

number. Look at vectors « € {0, 1}™ asm xm matrices. Say that x is even (resp., odd)
if it has an even (resp., odd) number of ones. Let Sy be the set of all even matrices
containing at least one all-1 row, and let S be the set of all odd matrices containing

14.4 Sensitivity and subgraphs of the n-cube 409

no all-1 rows. Consider the subgraph G of @,, induced by S, and let dg(z) denote
the degree of z in this graph. It can be shown that dg(z) < m = y/nforallz € S
(and the same also holds for the subgraph induced by the complement S).

Indeed, by flipping one 1 to 0 we can destroy only one all-1 row. So, if a vector
x belongs to Sy, then only its neighbors in S7 can be those corresponding to the
positions of the unique all-1 row of z. Since each row has only m positions, this
implies that dg(z) < m = /n. If we take a vector x € S then (again) all its
neighbors lying in S must belong to Sy, that is, must have an all-1 row. Since
flipping one 0 to 1 we can produce only one all-1 row, the only neighbors of z in S
are those corresponding to “almost all-1” rows of z, that is rows with exactly one 0.
Since we only have m rows, this again implies that dg(z) < m = \/n.

On the other hand, Gostman and Linial (1992) showed that deg(f) < s(f)? as
long as A(n) > n'/4; in fact, they show that these two inequalities are equivalent.
Thus, to solve Problem ?? it would be enough to prove or disprove that A(n) > n¢
for a constant € > 0.

14.18 Theorem (Gostman-Linial 1992) The following are equivalent for any mono-
tone function h : N — R:

(@) A(n) > h(n).

(b) For any boolean function f, s(f) > h(deg(f)).

Proof. It will be convenient to switch to the +1 notation and consider boolean
functions as colorings f : Q,, — {—1,+1} of the hypercube @,, whose vertices
are vectors in {0,1}", and two vertices are adjacent if and only if they differ in
exactly one coordinate. This transformation can be done via mapping a € {0, 1}
to (—1)® € {—1,+41}. The degree, deg(f), of f is then the maximum size |I| of a
subset I C [n] for which the Fourier coefficient

=% @[
TEQn el

is nonzero; recall from Section ?? that all these coefficients are real numbers between
—1 and +1. Associate with a subgraph G of (),, induced by a set of vertices S C @,
a boolean function g : Q,, — {—1,+1} such that g(z) = 1l ifand only if z € S.
Let dg(x) denote the degree of x in the graph G. Observe that

dg(z) =n —s(g,x) forallz € S (14.4)

and the same holds in the subgraph induced by S. Let E[g] = 27" > g(x) be the
average of g on C),. Observe that

E[g] = 0iff |S] = 2n~ L. (14.5)

By (??) and (??), (a) and (b) are equivalent to the following:

(A) For any boolean function g, E [g] # 0 implies s(g,z) < n — h(n) for some
T € Qn.

410 14 Decision Trees

(B) For any boolean function f, s(f) < h(n) implies deg(f) < n.
To see the equivalence of (A) and (B), define

Since [];-, ; is the parity function in the &1 notation, and since the parity function

is sensitive to all n variables, we have that s(g,2) = n — s(f,z) for all z €
{-1,41}", and
gy =2""> gl@) [Jei=2"">_ f@) [[z = F(n]\ 1)
T icl T i1

~

for all I C [n]. In particular, E [g] = §(0) = f([n]), where f([n]) is the highest
order Fourier coefficient in the representation of f as a polynomial

~

(A) = (B): Assume that deg(f) = n, that is, f([n]) # 0. This is equivalent to
E[g] # 0. By (A), there exists a vector = such that s(g,z) < n — h(n), that is,
s(f,z) > h(n), contradicting the premise s(f) < h(n) of (B).

(B) = (A): Assume that s(g,) > n — h(n) for all . This implies that s(f) < h(n).
By (B), we have that deg(f) < n, which is equivalent to E [g] = g(0) = f([n]) =0,
contradicting the premise E [g] # 0 of (A). O

Sherstov (2010) has recently proved the following lower bound on deg(f) based
on rank. Define the AND-rank of a boolean function f : {0,1}" — {0,1} as
the rank over R of the 2™ x 2" boolean matrix M whose entries are given by
Mlz,y] := f(zAy), where x Ay = (21 Ay1, ..., Tn AYy). The OR-rank is defined
similarly. Let R(f) be the maximum of the AND-rank and the OR-rank of f. Then
deg(f) = £2(log R(f))-

14.5 Evasive boolean functions

To prove that some boolean function f requires decision trees of large depth, it is
useful to imagine the situation as a game between Alice and Bob. This time the
players are not cooperative: Alice acts as an “adversary”. Bob knows the function
f:{0,1}™ — {0, 1} but does not know the actual input vector x € {0,1}". He
can ask Alice what the i-th bit of x is. Then what the j-th bit is, and so on. He
stops when he definitely knows the answer “f(z) = 0” or “f(x) = 1”. Alice’s goal
is to inductively construct (depending on what bits Bob has already asked about)
an input = on which Bob is forced to make many queries. That is, Alice tries to
construct an “evasive” path forcing Bob to make his tree deep. This is the adversary
argument we described in Section ??.

14.5 Evasive boolean functions 411

We now demonstrate this argument on symmetric functions. Recall that a boolean
function is symmetric if every permutation of its variables leaves its value unchanged.
That is, a boolean function is symmetric if and only if its value depends only on
how many of its variables (not on which of them) are 0 or 1.

A boolean function f of n variables is called evasive if it has maximal possible
depth, that is, if D(f) = n.

14.19 Lemma Every non-constant symmetric boolean function is evasive.

Proof. Let f : {0,1}" — {0,1} be the symmetric boolean function in question.
Since f is not constant, there is a k with 1 < k < n such that if k — 1 variables have
value 1, then the function has value 0, but if k£ variables are 1 then the function’s
value is 1 (or the other way round).

Using this, we can propose the following strategy for Alice. She thinks of a 0-1
sequence of length n and Bob can ask the values of each bit. Alice answers 1 on
the first k — 1 questions and 0 on every question that follows. Thus, after n — 1
questions, Bob cannot know whether the number of 1s is k£ — 1 or k, that is, he
cannot know the value of the function. O

Every boolean function f of n variables splits the n-cube {0, 1}" into two disjoint
blocks f~1(0) and f~*(1). Since the number 2" of vectors in the n-cube is even,
the sizes of these blocks must be both even or both must be odd. It turns out that
all boolean functions with odd block size are evasive.

14.20 Lemma If|f~1(0)| is odd then f is evasive.

Proof. Consider an arbitrary deterministic decision tree that computes the function
f. Let v be an arbitrary node in this tree. If the depth of v is d, then exactly 2"~ ¢
of the possible inputs lead to v. In particular, any node whose depth is at most
n — 1 is reached by an even number of possible inputs. On the other hand, each
input reaches exactly one leaf. Thus, if | f~1(0)] is odd, there must be a leaf which
is reached by a single input = with f(z) = 0; this leaf has depth n. O

Symmetric functions are very special; the following class is significantly more
general. Call a boolean function of n variables weakly symmetric if for all pairs
x;, z; of variables, there is a permutation of the variables that takes x; into x; but
does not change the value of the function. For example, the function

(1 Aza)V(za Az3) V-V (Tpoy Axp) V (zp Ay)

is weakly symmetric but not symmetric (check this!).

14.21 Theorem (Rivest-Vuillemin 1976) Let n be a prime power. If f : {0,1}" —
{0, 1} is weakly symmetric, and f(0) # f(1), then f is evasive.

Proof. Every permutation 7 : [n] — [n] on the input coordinates induces a permu-
tation 7 : {0,1}™ — {0, 1}"™ on the set of possible input vectors:

%(xl, .. .,xn) = (.%'ﬂ.(l), ce ,.%'ﬂ.(n)) .

412 14 Decision Trees

Let I be the set of all permutation 7 that leave the value of the function unchanged,
that is,
I' ={n| f(7(x)) = f(x) for all vectors =} .

It can be easily verified that I" forms a group. Moreover, since the function f is
weakly symmetric, this group is transitive, that is, for any pair of ground elements ¢
and j, there is a permutation = € I" such that 7(i) = j.

We define the orbit of a vector = € {0, 1}" to be the set of images of x under

permutations in I
orbit(z) = {7(x) |7 € I'}.

14.22 Claim For any vector x except O or 1, the size |orbit(z)| is divisible by n.

Proof. Since x # 0 and x # 1, the orbit of x has more than one element. Let |z|
denote the number of 1s in x. Then

n

Y ow= Y Yu=3 Y

yEorbit(x) y€orbit(x) i=1 1=1 yeorbit(x)

Since I is transitive, for every i, there must be a permutation 7 € I" such that
7(¢) = 1. Thus the last summand does not actually depend on 4, implying that

Z ly|=mn- Z Y-

yEorbit(x) y€E€orbit(x)

On the other hand, since all vectors in the orbit have the same number of 1s, we

have
> 1ol = Jorbit(@)] - .
y€Eorbit(x)
Thus, |orbit(x)| - |z| is divisible by n. On the other hand, 0 < |z| < n implies

that |x| is not divisible by n. Since n is prime power, Euclid’s theorem implies that
|orbit(x)| must be divisible by n. O

By Lemma ??, the function f is evasive if

S:= > (-pH£o.

z€f~1(0)

If f(z) = 0, then the orbit of x contributes

> (=1 = Jorbit(x)] - (1)1

y€Eorbit(x)

to this sum, since all vectors in orbit(z) have the same number of 1s. By Claim ??,
this is a multiple of n, except for the cases © = 0 and = = 1. Since exactly one of

14.6 Decision trees for search problems 413

the vectors 0 and 1 is in f~1(0), the sum S is either one more or one less than a
multiple of n. In either case, S # 0, so f must be evasive. O

14.6 Decision trees for search problems

So far we have considered decision trees solving decision problems. That is, for each
input the decision tree must give an answer “yes” (1) or “no” (0). For example, if
n = (3) then each input z € {0, 1}" can be interpreted as a graph G on v vertices,
where . = 1 means that the edge e is present in G, and 2, = 0 means that the
edge e is not present in GG. There are a lot of decision problem for graphs. Is the
graph connected? Has the graph a clique of size k£? Is the graph colorable by &
colors?

But decision alone is often not what we actually need. Knowing the answer
“the graph has a triangle”, we would like to find any of these triangles. Given an
unsatisfiable CNF and an assignment to its variables, we would like to find a clause
which is not satisfied.

In general, a search problem is specified by n boolean variables and a collection
W of “witnesses”. In addition, this collection must have the property that every
assignment to the n variables is associated with at least one witness. That is, a
search problem is specified by a relation ' C {0,1}" x W such that, for every
x € {0,1}" there exists at least one w € W such that (z,w) € F. The problem
itself is:

Given an z € {0,1}", find a witness w € W such that (z,w) € F.

With every boolean function f : {0,1}" — {0, 1} we can associate the relation
F C {0,1}"™ x W, where W = {0,1} and (z,w) € F if and only if f(z) = w.
Hence, decision problems (=boolean functions) are special case of search problems.

14.23 Example Consider the graphs G, on v vertices, encoded by binary strings
z € {0,1}" of length n = (3,), one bit for each potential edge. As a set W of
witnesses we can take some special element A and the set of all triangles. Define
the relation F' by: (z,w) € F if w = X and graph G is triangle-free, or w # A
and w is a triangle in G, Then the search problem is, given an input € {0,1}",
either to answer “no triangle” if G, is triangle-free, or to find a triangle in G.

Given a bipartite graph G = (U U V, E), define the search problem Degree(G)
in the following way. We have | E| variables ., one for each edge e € E. Each
assignment x € {0, 1}¥ to these variables is interpreted as a subgraph G, of G,
defined by those edges e for which z. = 1, thatis, G, = {e € F | z. = 1}. The
search problem Degree(G) is:

Given an input vector z, find a vertex whose degree in G is not one.

414 14 Decision Trees

It is clear that such a vertex always exist, as long as the sides of the graph are not
equal. Thus, as long as |U| # |V, Degree(G) is a valid search problem. Note also
that Degree(G) can be solved by a nondeterministic decision tree of depth at most
d, where d is the maximum degree of G. For this, it is enough to guess a vertex of
degree # 1 and check the incident edges of this vertex.

We will now show that deterministic decision trees must have much larger depth.
For this, we take a bipartite (2n) x n graph G = (U UV, E) of maximum degree d.
Suppose that G has the following expansion property:

Every subset S C U of | S| < n/4 vertices has at least 2|.S| neighbors in V.

Such graphs exist for d = O(1) and infinitely many n’s, and can be efficiently
constructed using known expander graphs. The following theorem, as well as
separations between deterministic, nondeterministic and randomized decision trees
for search problems, were proved by Lovasz, Naor, Newman and Wigderson (1995).

14.24 Theorem (Lovéasz et al. 1995) Let G be a bipartite 2n x n graph of maximum
degree d. If G has the expansion property, then every deterministic decision tree for
Degree(G) requires depth £2(n/d).

Proof. We use an adversary argument. At each step, Bob (a deterministic decision
tree) queries some edge e € E. Based on what edges Bob has queried so far, Alice
(the adversary) answers either “z. = 1” (the edge e is present) or “z, = 0” (the
edge e is not present) in the subgraph. That is, Alice constructs a subgraph of G
step-by-step depending on what edges (pairs of vertices) Bob has queried so far. We
will show that Alice can cause Bob to probe {2(n/d) edges of G. The adversary will
be limited to produce (at the end) a subgraph of G in which all vertices in U have
degree at most 1 and all vertices in V" have degree exactly 1. Hence, the answer is a
vertex in U.

To describe the adversary strategy we need some definitions. For step ¢ (after ¢
edges were already probed), let GG; be the subgraph of G obtained by removing all
edges e € I such that:

« the edge e was already probed and was rejected;
« the edge e was not probed yet but e is adjacent in G with at least one already
probed and accepted edge.

That is, G; contains all edges of G that are still possible for the adversary to use in
her final subgraph without violating the above limitations.

A set S C U cannot be matched to V in G; if it has fewer than |S| neighbors
in G;. Let S(G;) denote a minimum cardinality unmatchable set in G;. By the above
limitation on the adversary, at step ¢ the subgraph G; contains a (partial) matching
from U to V. Bob cannot know the answer as long as there is no isolated vertex in
G;. Such a vertex itself is a minimum unmatchable set of size 1.

Initially, since the graph G has an expansion property, we have that |S(G)| >
n/4. Thus, Alice’s strategy is to make sure that the minimum unmatchable set size
does not decrease too fast.

14.6 Decision trees for search problems 415

To describe her strategy, suppose that an edge e = (u, v) is probed in step 4
(after i edges were already probed). In order to give an answer “z. = 1” or “z. = 0,
Alice first constructs two sets of vertices:

+ S%e) = the minimum unmatchable set that would occur in G;.; if Alice
answered “x, = 0”.

+ Sl(e) = the minimum unmatchable set that would occur in G;; if Alice
answered “z, = 1”.

Alice then chooses the answer on ¢ so as to make S(G 1) the larger of S°(e) and
S1(e). The heart of the argument is the following claim

14.25 Claim [S(Gi41)| > 3|S(G))l.
Proof. Assume e is asked in step i + 1. By the above strategy,
[S(Git1)| = max{|S°(e)],|S* (e)]} -

Consider the set S = S°(e) U S1(e). This set cannot be matched into V in G, for
otherwise either S°(e) or S'(e) would be matchable after the decision about e is

made. Thus, S contains an unmatchable set for step i of cardinality no more than
1S9(e) U S (e)| < 2 max{|S%(e)],|S*(e)} = 2+ [S(Giva)l- O

We can now complete the proof of the theorem by the following argument.
During the game between Alice and Bob, a sequence Sy, S1, . . ., .S of minimum
unmatchable sets S; = S(G;) of vertices in U is constructed. At the beginning
|So| > m/4, and |S;| = 1 at the end. Moreover, by Claim ??, we have that the
cardinality of the S; does not decrease by more than a factor of 2. It must therefore
be a step 7 at which n/16 < |S;| < n/8 and S; has fewer than |S;| neighbors in
the i-th subgraph G; of G. However, by the expansion property of G, the set 5;
has had at least 2|.5;| neighbors in the original graph G. Since at each step and for
any set, the number of its neighbors can drop down by at most a factor of 1/d, it
follows that at least |S;|/d = £2(n/d) edges were probed up to step 3. O

In a randomized decision tree, Bob (the decision tree) is allowed to flip a not
necessarily fair coin at each step to decide which variable to test next. These random
flips are “for free”: only queries of variables contribute to the depth of the tree. The
complexity measure in this case is the expected depth of the tree under the worst
case input. Equivalently, a random decision tree can be defined as a probability
distribution over all deterministic decision trees.

We now show that using random flips the search problem Degree(G) can be
solved much more efficiently.

14.26 Theorem For every bipartite 2n x n graph G of maximum degree d, the search
problem Degree(G) can be solved by a randomized decision tree of expected depth
O(d?).

416 14 Decision Trees

Proof. Let G = (U UV, E) be a bipartite 2n x n graph of maximum degree d.
Consider the following random decision tree. Pick at random a vertex « € U and
independently a vertex v € V, query all edges that are incident to each of the two
vertices, that is, at most 2d edges are being checked. If u or v produce a witness
stop, otherwise repeat this process until done.

14.27 Claim In each iteration, the probability that a witness is discovered is at least
1/(d+1).

Proof. Let H be a subgraph of GG determined before the i-th iteration. That is, H
consists of all edges e of G, the query to which was answered as “z, = 1”. If there
are more than 2nd/(d + 1) edges in H, then at least n/(d + 1) of the n vertices
in V are of degree at least 2. In this case the fact that v € V is chosen at random
proves the claim. If, on the other hand, H has less then 2nd/(d + 1) edges, then
at least 2n/(d + 1) of the vertices in U are of degree 0 in H. Thus, the fact that
uw € U is chosen at random proves the claim in this case. O

We get that the expected number of iterations is d + 1, in each of them at most
2d edges are probed which yields the desired upper bound on the expected depth
of the tree. O

14.7 Linear decision trees

In standard decision trees we have considered so far, at each node a test on a single
variable is made. If the result is 0, one descends into the left subtree, whereas if the
result is 1, one descends into the right subtree. The label of the leaf so reached is
the value of the function (on that particular input). We will now consider decision
trees where more general test are allowed.

A real threshold function is a boolean function f : {0,1}" — {0, 1} for which
there exists real numbers ay, . . ., a,, b such that, for every vector z € {0, 1}",

f(z)=1lifandonlyif } ., a;z; > b;

the sum here is over the reals. In a linear decision tree, at each node a real threshold
function on the entire input vector z is evaluated. If the result is 0 one descends
into the left subtree, whereas if the result is 1, one descends into the right subtree.
Note that the decision trees considered above correspond to simplest threshold
functions f(z) = liffx; > 1.

By a rectangle we will mean a cartesian product R = X X Y of two subsets
of vectors X, Y C {0,1}"; its dimension is dim(R) = min{|X]|, |Y|}. A boolean
function on such a rectangle is a mapping f : X x Y — {0, 1}. A function f(z,y)
is monochromatic on a subset S C X x Y if it takes the same value on all inputs
(z,y) € S.For a boolean function f : X x Y — {0, 1}, let mono(f) denote the

14.8 Element distinctness and Turan’s theorem 417

maximal dimension of a subrectangle X’ x Y’ C X X Y on which f takes the
same value.

We already know (see Lemma ??) that if f(x,y) is a real threshold function
defined on a rectangle of dimension k, then mono(f) > k/2.

14.28 Theorem (Groger—Turan 1991) If f(z,y) is a boolean function of 2n variables,
then any linear decision tree computing f must have depth at least n. — log mono(f).

Proof. Let X =Y = {0,1}" and f : X x Y — {0, 1}. Consider a linear decision
tree 7' computing f(x,y). We define a sequence of rectangles R; C X x Y such
that dim(R;) > 2"~* and inputs in R; follow the same path in 7. To do this, let
Ry := X xY,assume that R; is defined and let v; be the node of T" where the inputs
in R; arrive after i test are evaluated (thus v is the root). Assume that v; is not a
leaf, and let f; be the linear test made in v;. Apply Lemma ?? to g; : R; — {0,1} to
get a subrectangle R; 1 C R; of dimension (2"~%)/2 = 2"~ (+1) on which f; is
constant. Clearly all inputs in R;; follow the same path of length ¢ +- 1 in T
Now assume that v; is a leaf. Then f must be constant on R;, implying that
2"~" < dim(R;) < mono(f), from which the lower bound 2° > 2" /mono(f), and
hence, also the desired lower bound 7 > n — log mono(f) on the depth of the tree
follows. ad

The inner product function is a boolean function I P, (z, y) of 2n variables defined
by: IP,(z,y) = lifand only if Y, z;4; mod 2 = 1. That is, I P,(z,y) = 1 if
and only if the vectors = and y share an odd number of common 1-coordinates.
Note that I P, is a boolean function on the rectangle X x Y of dimension N = 2"
with X =Y = {0,1}".

We already know (see the proof of Corollary ??) that mono(IP,) < 2"/2. To-
gether with Theorem ??, this implies that I P, requires deep linear decision trees.

14.29 Corollary Every linear decision tree computing the inner product function I P,,
requires depth at least n /2.

Groger and Turan (1991) also proved a similar lower bound of {2(n) for random-
ized linear decision trees.

14.8 Element distinctness and Turan’s theorem

Let D be some finite domain. We consider general decision trees computing func-
tions f : D™ — {0,1}. We have n variables 1, ..., z, taking their values in D.
At each node of a decision tree an arbitrary function g : D* — {0, 1} may be
computed. If the result of the test g(x;, x;) is 0 one descends into the left subtree,
whereas if the result is 1, one descends into the right subtree.

The element distinctness function over D is the function ED,, : D" — {0,1}
such that, for every input string a € D", ED,,(a) = 1iff a; # a; for all positions
i # j. We restrict our domain to D = [n] := {1,2,...,n}. Note that in this case,
ED,, accepts a string a € [n]™ iff a is a permutation of [n].

418 14 Decision Trees

14.30 Theorem (Boppana 1994) Any general decision tree computing ED,, over the
domain D = {1,...,n} must have depth at least {2(n+/logn).

Proof. Given a decision tree " for ED,, and one of its leaves [, define the computation
graph G as follows. The vertex set is [n], and an edge is placed between ¢ and j
iff on the paths to [there is a node at which a test g(z;, z;) or a test g(x;, ;) for
some function g is made. Let a(G;) denote the size of a largest independent set in
G, andlet A = {a € [n]™ | ED,(a) = 1} be the set of all accepted inputs.

14.31 Claim If [is a 1-leaf then at most n!/«(G})! inputs a € A can reach .

Proof. Fix a largest independent set S in G|, of size s = a(G)). Say that two inputs
a,b € A are equivalent if a; = b; for all i € S. Notice that this equivalence relation
partitions the set A into
— n!
nn—1)--(n—|S|+1)=nn-1)---(s+1) = o
equivalence classes, one for each setting of distinct values outside S. Therefore, it
suffices to show that no two equivalent inputs reach the same leaf .

Assume, for the sake of contradiction, that some two equivalent inputsa # b € A
reach l. Let k € S be a position for which ai # by. Consider the input ¢ that equals
a on all positions except the k-th one, and equals b on the k-th position, that is,
¢, = by, and ¢; = a; for all ¢ # k. The input ¢ must be rejected by our decision tree,
since some two of its positions must be equal (both a and b were permutations of
[n]). To obtain the desired contradiction, we will now show that input c reaches the
leaf [too.

To show this, note that since c differs from a on only position k, the only place
the computation on ¢ can diverge from that on a is at a node at which a test g(x;,)
or g(xy, x;) is made. Since the set S is independent, and since k € .S, the position
i must be outside S. But by the definition of ¢, and since a and b are equivalent
(a; = b; for all ¢ € 5), it follows that

(cirer) = (as, br) = (b, br) -

In other words, the computation on ¢ follows the same direction as b does. Since b
reaches the leaf I, ¢ will reach [too. This gives the desired contradiction. O

To finish the proof of the theorem, we will use the following celebrated theorem
of Turan (1941) which states that a sparse graph contains a large independent set
(see Exercise ?? for the proof): if G is a graph with n vertices and m edges, then

n2

2m+n

a(G) > (14.6)
Now let T" be a decision tree for the element distinctness function ED,,, and let h
be its depth. Then, for every leaf [of T, the computation graph G; has at most h
edges. By Claim ?? and by Turan’s theorem, every leaf [of T can be reached by

14.9 P # NP N co-NP for decision tree size 419

at most n!/s! inputs a € A, where s := n?/(2h + n). Since there are at most 2"
leaves in 7', it follows that 7" can accept at most 2"n!/s! inputs a € A. Since there
are |A| = n! such inputs in total, we obtain the inequality 2"n!/s! > |A| = n!,
and hence, the inequality 2" > s!. Using Stirling’s formula s! > (s/e)*, and taking
logarithms, we obtain the inequality

n? n?
h > sl = 1 .
Z slog(s/e) 2htn ° (2h +n)e
Solving for h, we find that h = 2(n+/logn), as desired. O

14.9 P # NP N co-NP for decision tree size

The size of a decision tree is the number of all its leaves. Let Size(f) denote the
minimum size of a deterministic decision tree computing f. The minimum size of a
nondeterministic decision tree for f is denoted by dnf(f). Note that dnf(f) is just
the minimal number of monomials in a DNF of f. That is, dnf(f) is the minimal
number ¢ such that f can be written as an Or of t monomials.

We already know that P = NP N co-NP for decision trees if we consider their
depth as complexity measure. In this section we will show that the situation changes
drastically if we consider their size (the total number of nodes) instead of the depth:
in this case we have P # NP N co-NP. Namely, there are explicit boolean functions
f such that both f and its negation — f have nondeterministic decision trees of size
N, whereas the size of any deterministic decision tree for f is N 2(log N)

Let f be a boolean function, and suppose we know that dnf(f) is small. Is then
the decision tree also small? The following examples show that it may be not the

case: o
F=V N\ai.
i=1j=1
It can be shown that Size(f) > 29f(/) (Exercise ??). This shows that P # NP for
decision tree size. Well, this function has very small DNF (of size m) but the DNF

of its negation
m

m
v AV =

i=1j=1
is huge—it has m™ monomials. It is therefore natural to ask what happens if
both the function f and its negation — f have small DNFs? Put differently, does
P = NP N co-NP for decision trees if we consider the size as their complexity
measure? Below we answer this question negatively.

The sum N(f) := dnf(f) + dnf(—f) will be called the weight of f. It is clear

that N(f) < Size(f) (just because every decision tree represents both the function
and its negation). But what about the other direction: is Size(f) polynomial in

420 14 Decision Trees

N (f)? For a long time only a quasi-polynomial relation was known: the decision
tree size of any boolean function is quasi-polynomial in its weight.

14.32 Theorem (Ehrenfeucht and Haussler 1989) Let f be a boolean function of n
variables and N = dnf(f) + dnf(—f) be its weight. Then Size(f) < n©(g” V)

Proof. (Due to Petr Savicky) The idea is to apply the following simple “greedy”
strategy: given DNFs for f and —f, let the decision tree always test the “most
popular” literal first.

Assume, we have DNFs for both f and —f, and let V be the total number of
monomials in these two DNFs. Since the disjunction of these two DNFs is a tautology
(that is, outputs 1 on all inputs), there must exist a monomial of length at most
log NV, just because monomial of length k accepts only 2" % of the inputs.

Select one of such monomials and denote its length by k. The selected monomial
belongs to one of the two DNFs. By the cross-intersection property of monomials
(see Exercise ??), every monomial in the other DNF contains at least one literal
which is contradictory to at least one literal in the selected monomial. Hence, there
is a literal in the selected monomial, which is contradictory to at least a 1/k-portion
of the monomials in the other DNF. Thus, if we evaluate this literal to 1, then all
these monomials will get the value 0 and so will disappear from the DNF.

Test this variable first and apply this strategy recursively to both restrictions
which arise. By the observation we just made, for each node v, at least one of its
two successors is such that at least one of the two DNFs in it decreases by a factor
of 1 — 1/k. Let us call the corresponding outgoing edge(s) decreasing. Now, if v is
a node (not a leaf) such that the path from the source to v contains s decreasing
edges, at least one of the two initial DNFs was decreased at least s/2 times, and
each time it was decreased by a factorof 1 — 1/k > 1 — 1/log N.If s were at least
2log? N then at least one of the DNFs at v would have only

N(l— 1)5/2 < N‘efs/(QlogN) <N'6710gN :leloge <1
log N -

monomials, which is impossible (because v is not a leaf). Thus, every path to a leaf
has at most n edges, and among them at most s := 2log? N can be decreasing.
Recall that for every node at least one of the out-going edges was decreasing. Assume
w.lo.g. that every node has exactly one decreasing edge (if there were two, we
simply ignore one of them). Mark decreasing edges by 1 and the remaining edges
by 0. Then every leaf corresponds to a 0-1 string of length at most n with at most s
ones. The number of such strings (and hence, the total number of leaves) does not
exceed L(n, s/2), where L(n,t) denotes the maximal possible number of leaves in
a decision tree of depth n such that every path from the root to a leaf has at most ¢
1-edges.

It remains to estimate L(n,t) for ¢ = s/2. Clearly, we have the following
recurrence:

L(n,t) < L(n—1,t)+ L(n—1,t — 1) with L(0,¢) = L(n,0) = 1. (14.7)

14.9 P # NP N co-NP for decision tree size 421

By induction on n and ¢, it can be shown that
e ne\t
L(n,t) < ") < (—) .
<2 (7)< (5

Indeed, using the identity (";1) + (Z_}) = (}), the induction hypothesis together
with the recurrence (??) yields:

() (e () -2)

Thus,
) n \O(log?N)
Size(f) < L(n, s/2) = L(n,log? N) < (f)
log® N
14.33 B Research Problem)
Is it possible to improve the upper bound Size(f) < n®1°&" N) in Theorem ?? to

Size(f) < 2000g” N)7

In the next section we will exhibit explicit boolean functions f requiring deter-

ministic decision trees of size N (V18 N) (jterated majority function) and even
N0ogN) (jterated NAND function), where N = dnf(f) + dnf(—f) its the weight
of f. Namely, Jukna, Razborov, Savicky and Wegener (1999) proved the following
lower bound.

14.34 Theorem There are explicit boolean functions f such that both f and —f have
DNFs of size N, but any deterministic decision tree for f has size N?{1°8 V),

That is, for the size of decision trees we have that P # NP N co-NP. The rest of
this section is devoted to the proof of this theorem. For this purpose, we will use an
argument which has many applications in engineering. The argument is based on
harmonic analysis of boolean functions, and is known as the “spectral argument”.

14.9.1 Spectral lower bound

We will use Fourier transforms over the field R of real numbers (see Section ??). For
this, it will be convenient to switch to (—1, +1)-notation, that is, to consider boolean
functions as mappings from {—1,+1}" to {—1, +1}, where the correspondence
1 — —1and 0 — +1 is assumed. To convert from the standard 0/1 representation
to the Fourier 41 representation map « — 1 — 2z = (—1). To convert from the

422 14 Decision Trees

Fourier £1 representation to the standard 0/1 representation map z — (1 — z)/2;
hence, -2 maps to (1 + x)/2.

14.35 Example Suppose n = 3 and f is the Majority function Maj;. So, in
the +1 notation we have that Maj;(1,1,1) = 1, Majs(1,1,—-1) = 1, ...,

Majs(—1,—1,—1) = —1. Denoting x = (z1, T2, ¥3), we can write
. 1+zi\/1+z2\ /1423
Maia(o) = () () () -
ain(r) = (57 (F52) (F55) - ()
1+x 1+x2)(1—x3)
(41
()))
+

171’1 17.%2)(17173)
-(—1).
()T

If we actually expand out all of the products, tremendous cancelation occurs and

we get
, 1 1 1 1

Majs(z) = §x1 + 5;32 + 53:3 - §$1$2$3 . (14.8)

We could do a similar interpolate-expand-simplify procedure even for a function

f:{-1,1}" — R, just by multiplying each z-interpolator by the desired value

f(z). Note that after expanding and simplifying, the resulting polynomial will

always be multilinear, that is, have no variables squared, cubed, etc. In general,

a multilinear polynomial over variables 1, ..., x, has 2" terms, one for each
monomial
xs(z) = H z;,
i€S
where S C [n] = {1,...,n}; for S = () this monomial is constant 1. Hence, every

function f : {—1,1}" — R can be expressed (in fact, even uniquely) as a multilinear
polynomial

f(z) = Z cs - xs(x), (14.9)

SCln]

where each cg is a real number. The S-th coefficient cg is call the S-th Fourier

o~

coefficient of f, and is usually denoted by f(S). It can be computed as
F(S) =273 fla)xs(x).

~

14.36 Proposition If f does not depend on the i-th variable, then f(S) = 0 for every
S withi € S.

Proof. For a vector # € {—1,1}" and a coordinate i € [n], let z(*) denote the
vector x with its i-th coordinate z; replaced by —x;. If ¢ € S, then we have that

F(a) = f(x) but xs(2() = —ys(x), implying that 3, f(z)xs(x) = 0. O

14.9 P # NP N co-NP for decision tree size 423

This proposition allows us to compute Fourier coefficients of arithmetic combi-
nation of some functions with disjoint sets of variables.

14.37 Proposition Let S = S1 U Sy be a partition of S into two disjoint nonempty
blocks. Let g, h : {—1,1}° — {—1,1} be functions such that g only depends on
variables x; withi € Sy, and h only depends on variables x; withi € Ss. Then

n 0 iff=g+h;
S) = ~
1) {a<sl>~h<52> =g h

We leave the proof of this as an exercise.

The following general lower bound on the size of decision trees is a combination
of Lemma 4 in Linial, Mansour and Nisan (1993) with Lemma 5.1 of Kushilevitz and
Mansour (1991).

14.38 Lemma (Spectral Lower Bound) For every boolean function f of n variables

and every subset of indices S C {1, ...,n} we have the bound
Size(f) > 2151 Y | F(1)] . (14.10)
T2S

Proof. Take a decision tree for f of size Size(f). For aleaf [, let val(l) € {—1,+1}
be its label (recall that we are in +1-notation), and let I; be the set of indices of
those variables, which are tested on the path to [. Let B; C {—1,41}" be the set
of all the inputs that reach leaf [; hence, |B;| = on—Ihl,

Since each input reaches a unique leaf, the sets B) are pairwise disjoint. Hence,
for every T C [n],

) =27 f@) xr(@) =27 Y fla) xr(z) =Y val(l)- A(T, 1),
x 1

I xeB;

where

AT 1) :=2"") xr(z).

zEB;

Now, if T I, that is, if some variable z; with ¢ € T is not tested along the path
from the root to the leaf [, then y7(x) = +1 for exactly half of the inputs € By,
and hence, A(T,1) = 0.If T' C I, then the value of x7 is fixed on B to either +1
or —1, and so,

|A(T,)| = 27" - |By| = 27111,
Thus, in both cases, | A(T,1)| < 271, Since for any S C [n] there are only 2/7/-15|
sets T satisfying S C T' C I}, we conclude that

YoM Y DIATDI=d] Y AT

T:TDS T:TDS 1 Il T:TDS

<> 2718 = 27181 Sige(f),
l

424 14 Decision Trees

and the desired bound (??) follows. a

We are going to apply Lemma ?? for S = [n] to the Iterated Majority function
and for S = () to the Iterated NAND function.

14.9.2 Explicit lower bounds

Recall that our goal is to exhibit a boolean function f which requires decision tree
of size super-polynomial in its weight N = dnf(f) + dnf(—f). For this purpose,
we take the Iterated Majority function which is defined as follows.

The majority of three boolean variables is given by

Majs(z1, T2, x3) = 122 V 123 V 2223 .

In Example ?? we have shown that in the (—1, +1)-representation (that is, when
the correspondence 1 — —1 and 0 — +1 is assumed) we have that

. 1 1 1 1
Majs (21, x2, 23) = §$1 + 5332 + 5333 — §x1$2x3.

Now consider the monotone function F}, in n = 3" variables which is defined
by the balanced read-once formula of height h in which every gate is Majs, the
majority of 3 variables. That is, Fy = z, Fi = Maj;(x1, 22, 23) and for h > 2,

Fy = Majy(F" FP L ED) (14.11)

where F,Ey_)l are three copies of Fj,_; with disjoint(!) sets of variables.

14.39 Theorem Let f = F}, be the iterated majority function and N = dnf(f) +
dnf(—f) be its weight. Then Size(F},) > N?(V1osN),

Proof. 1t can be shown (Exercise ??) that the function Fp, (21,22, ...,2,) hasn =
3h = 2¢h yariables, where ¢ = log 3 > 3/2, and has weight

N =2.32""1 = 200" — 90(n**)

Since 29(") > 292(10g®? N) — N2(\log N) it i enough to prove the lower bound
Size(Fy) > 2. To prove this, we will apply Lemma ?? with S = [n] =
{1,...,n}. Letting

an i= | Fu([n])
denote the absolute value of the leading Fourier coefficient of F},, this lemma yields

Size(Fy) > ap - 2™. It remains therefore to prove an appropriate lower bound on
ap. We proceed by induction on h.

14.9 P # NP N co-NP for decision tree size 425
Vv A Vv
T1 T2 V Vv A AN
T1 T2 T3 T4 \% Vv Vv \%
T1 T2 T3 T4 Ts Tg X7 T8

Fig. 14.2 Iterated NAND functions G'1, G2 and G3.

Clearly, ag = 1, since Fjp is a variable (cf. Exercise ??), and a; = 1/2 by the
above representation of Majs.
For the inductive step recall that in the (—1, +1)-representation,

3 3
. 1
MaJ3(3317332,$3)=§(E xi_Hmi)~
1 i=1

i=
Thus,
(R P
Fh:gZth_iHFhfr
v=1 v=1

By Proposition ??, the first summand does not contribute to F}, ([n]) and we obtain
that

1 .
ap — 5 a‘;_l .
Together with the condition a¢ = 1, this recursion resolves to
apn=2""a}_ =27) , =27) = =278
where
0 1 2 h—1 3" -1 R
Thus

as desired.

We now present a boolean function almost matching the upper bound in Theo-
rem ??.

The iterated NAND function is a boolean function G, in n = 2" variables which
is computed by the balanced read-once formula of height i in which every gate is
NAND, the negated AND operation NAND(z,y) = =(x Ay) = -z V —y. Up to
complementation of the inputs this is equivalent to a monotone read-once formula
with alternating levels of AND and OR gates (see Fig. ??).

426 14 Decision Trees

14.40 Theorem Let f = Gy, be the iterated majority function and N = dnf(f) +
dnf(—f) be its weight. Then Size(f) > N?{ogN),

Proof. We have that dnf(Gy) = dnf(—Gy) = 1 (since Gy is a single variable), and
it is easy to see that for every h > 1 we have duf(G}p) < 2 - dnf(—Gj,—1) and
dnf(=G}) < dnf(G},_1)?. By induction on h one obtains dnf(G},) < 92D/
(h/2)+1 _ . (h/2)+1

and dnf(—=G},) < 22 2 Since n = 2", we have N < 22 = 4V" and
our statement boils down to showing Size(G},) > 29(%).

Let us say that a Fourier coefficient CA;h(S) is dense if for every subtree of height
2, S contains the index of at least one of the four variables in that subtree. We are
going to calculate exactly the sum of absolute values of dense coefficients. Denote
this sum by ¢;,. Note that in the (—1, +1)-representation, we have NAN D(z,y) =
(xy —x —y — 1)/2. Hence,

1

Gn=5 (G, a2 —al -6 -1) (14.12)

where G;Ll_)l, G;?_)l are two copies of Gj,_1 with disjoint sets of variables.

In order to compute ¢, we use the following transformation. Let f; = G 51) +1/2
and fo = Ggm + 1/2. Then it follows from (??) that

Gy = %flfQ — %f1 - Zfz—F%-
Since each monomial in f; and f5 contains at least one variable and the sets of
variables of f; and f; are disjoint, there are no common monomials in the four
terms in the above expression of G5. Hence, it is easy to calculate the sum of
the absolute values of the coefficients in the non-constant monomials, which is
ca=1/2-1r1-19+3/4-(r1 +re) = 27/8 = 3.375, where r; = ry = 3/2is the
sum of the absolute values of the coefficients in f; and fs.

In order to compute ¢, for b > 2, we use (??) directly. Only the first term
Gglljl . Ggi)l in this equation can contribute to dense coefficients, and its individual
contributions do not cancel each other. Hence, we have the recursion

Cp = 5 0271 .
This resolves to ¢;, = 2(02/2)2%2 which is 22(") since ¢, > 2. The proof is now
completed by applying Lemma ?? (this time with S = (). O
Exercises

14.1 Consider the following function f(X) on n = m? boolean variables:

14.9 P # NP N co-NP for decision tree size 427

m m

F=NA\V i (14.13)

i=1j=1

Show that for this function f we have that Co(f) = C1(f) = m but D(f) = m2.
Hint: Take an arbitrary deterministic decision tree for f and construct a path from the root by
the following “adversary” rule. Suppose we have reached a node v labeled by x;;. Then follow
the outgoing edge marked by 1 if and only if all the variables x;; with [# j were already tested
before we reached the node v.

14.2 Let f : {0,1}™ — {0, 1} be aboolean function, and let k¥ = k(f) be the largest
natural number such that | f~1(0)] is divisible by 2¥. Show that D(f) > n — k(f).
Hint: The number of inputs z € f~*(0) leading to a given leaf of depth d is either 0 or 2"~

14.3 Let D; be a DNF of a boolean function f, and D5 be a DNF of its negation
—f. Show the following cross-intersection property: if K is a monomial in D1, then
every monomial in Dy contains at least one literal which is contradictory to at least
one literal in K.

14.4 Show that s(f) = bs(f) = C(f) for every monotone boolean function f.
Hint: Since s(f) < bs(f) < C(f) holds for any boolean function f, it is enough to show that
C(f) < s(f). Take a vector a with C(f,a) = C(f), assume that f(a) = 0. Let S be an f-
certificate of a of smallest size, and let b be the vector a with all bits outside S set to 1. Show that
f is sensitive on b to each bit ¢ € S.

14.5 Show that for every boolean function f, deg(f) < D(f). Hint: The tests along
paths to 1-leaves define a multilinear polynomial.

14.6 Recall that a boolean function f(z) of n variables is symmetric if its value
only depends on the number |z| := z1 + --- + z,, of ones in x. That is, there
exists a subset L C {0,1,...,n} such that f(z) = 1 if and only if |z| € L. Show
that symmetric functions have high sensitivity: s(f) > (n + 1)/2 holds for every
non-constant symmetric boolean function f of n variables. Hint: We can assume (why?)
that there is a non-negative integer k < (n — 1)/2 such that k ¢ L and k + 1 € L. Take a vector
a with |a| = k ones, and argue that s(f,a) > n — k.

14.7 Recall that the average sensitivity, as(f), of aboolean function f is the expected
sensitivity of f on a random assignment: as(f) := 27") s(f,a). Let T be a
decision tree, and let p, be the length of the unique path in it consistent with a.
The average depth of T'is 27") p,. Show that the average depth of any decision
tree for f is at least as(f).

14.8 Let L(f) denote the minimum leafsize of a DeMorgan formula computing f.
Let as(f) be the average sensitivity of f, and let p = |f~1(1)|/2". Show that

as(f)?
L(f) > -7

428 14 Decision Trees

Hint: Theorem ?? and Exercise ??.

14.9 Show that, for the boolean function f defined by (??), we have that Size(f) >
9dnt(f)_

Hint: Observe that all the minterms and maxterms of f have length m. Show that every such

function requires a decision tree of size at least 2.

14.10 Let G = ([n], E) be a graph on n vertices and let d; denote the degree of the
i-th vertex. Prove that

1
a(G) =) e (14.14)
i=1 "

Hint: Let : [n] — [n] be a random permutation taking its values uniformly and independently
with probability 1/n!. Let A; be the event that w(j) > 7(¢) for all d; neighbors j of i. Show that

. n di!(nfdifl)! . 1
Prob[4;] = (di N 1)] R

Let U be the (random) set of those vertices i for which A; holds. Show that E [|[U[] = """ 1/(di+
1). Fix such a set U, and show that for every edge {i, j} of G, either w(i) < 7(j) or w(j) < m(3).

14.11 (Turan’s theorem) Derive from Exercise ?? the Turan theorem: If a graph G
has n vertices and nk/2 edges, then a(G) > n/(k+1). Show that this is equivalent
to Eq. ??.

Hint: Fixing the total number of edges, the sum ZZL:I 1/(d; + 1) is minimized when the d;’s are

as nearly equal as possible. By Euler’s theorem Z?:l d; is exactly two times the number of edges
inG.

14.12 Let f be a monotone boolean function. Suppose that every minterm of f
has length > s and every maxterm has length > r. Show that any decision tree

computing f must have at least (**") leaves. Hint: (}) = (", ') + (721)-

o~

14.13 Let f = x; be a single variable. Show that f({i}) = 1.

14.14 Show that the iterated majority function F}, defined by (??), has n = 3h
variables and its weight is 2 - 321,

Hint: Observe that: (1) dnf(Fp) = 1 and dnf(F},) = 3 - dnf(F},_1)?, and (2) the minimal DNF of
the negation —F}, coincides with the DNF of F}, with all the variables negated.

14.15 A V-decision tree is a generalization of a deterministic decision tree, where
at each node an OR g(z) = \/, g ; of some subset S of variables can be tested.
Hence, decision trees correspond to the case when |S| = 1. Consider the threshold-
k function Th (z1,...,z,) = lifand only if 1 + - - - + x,, > k. Show that any
V-decision tree for Thy, requires at least (") leaves.

14.9 P # NP N co-NP for decision tree size 429

Hint: Look at Thj, as accepting/rejecting subsets of [n]. Suppose that some two different (k — 1)-
element subsets A, B C [n] reach the same leaf. Show that then also the set C' = A U B will
reach that leaf.

14.16 Consider the search problem for a given relation ' C {0,1}™ x W (see
Section ?7?). Our goal is to give a game-theoretic lower bound on the minimum size,
Size(F"), of a decision tree solving the search problem for F'. There are two players,
Prover and Delayer. Given an input vector € {0, 1}", the goal of the Prover is to
find a witness w € W such that (z,w) € F. The goal of Delayer is to delay this
happening as long as possible. The game proceeds in rounds. In each round, the
Prover suggests a variable z; to be set in this round, and Delayer either chooses a
value 0 or 1 for z; or leaves the choice to the Prover. In this last case, the Delayer
scores one point, but the Prover can then choose the value of x;. The game is over
when a desired witness w is found. Let Score(F") denote the maximal number of
points the Delayer can earn in this game independent of what strategy the Prover
uses. Prove that Size(F') > 9Score(F)

Hint: Prove the converse direction: if the search problem for F' can be solved by a decision tree of
size S, then the Prover has a strategy under which the Delayer can earn at most log S points. If
the Delayer defers the choice to the Prover, then let the Prover use the “take the smaller sub-tree”
strategy.

15. General Branching Programs

A branching program is a generalization of a decision tree where the underlying
graph can be an arbitrary directed acyclic graph. The model of branching programs
is one of the most fundamental sequential (in contrast to parallel, as circuits or
formulas) model of computations. This model captures in a natural way the deter-
ministic space whereas nondeterministic branching programs do the same for the
nondeterministic mode of computation.

In this chapter we first establish almost quadratic lower bounds for general
branching programs and show that counting programs are not much weaker than
nondeterministic ones. Then we prove a surprising result of Barrington that branch-
ing programs of constant(!) width are not much weaker than DeMorgan formulas.
Finally, we establish some width versus length bounds for oblivious programs.

15.1 Nechiporuk’s lower bounds

The best we can do so far for unrestricted programs is a quadratic lower bound
2(n?/log® n) for deterministic programs, and £2(n3/2 / log n)) for nondeterministic
programs. These bounds can be shown by counting arguments due to Nechiporuk
(1966): just compare the number of subfunctions with the number of distinct sub-
programs.

Let BP(f) denote the number of nodes in a deterministic branching program,
S(f) the number of contacts (labeled wires) in a switching network, and NBP(f)
the number of contacts in a nondeterministic branching program computing f.
Recall that a switching network is a nondeterministic branching programs whose
underlying graph is undirected; in this case unlabeled wires are redundant.

Let f(X) be a boolean function depending on all its variables. Let Y7,...,Y,,
be disjoint subsets of the variable set X. For every i € [m)], let ¢;(f) be the number
of distinct subfunctions of f on the variables Y; obtained by fixing the remaining
variables to constants in all possible ways.

15.1 Theorem (Nechiporuk 1966) There exists a constant € > 0 such that

430

15.1 Nechiporuk’s lower bounds 431

and

1 m
NBP(f) >+ Vioge (D).
i=1
The lower bound on S(f) was proved by Nechiporuk (1966); his argument was
then extended to NBP(f) by Pavel Pudlak (unpublished).

Proof. Let N (r, h) denote the number of switching networks of r variables and with
h contacts. We already known (see Lemma ??) that the number of graphs with i
edges does not exceed (9h)". Every switching network with & contacts is obtained
from one of these graphs by labeling its edges by literals. Since such a labeling can
be done in at most (2r)" ways, we obtain N (r, h) < (9h)"(2r)" < (18rh)™.

Now take a partition Y7, ..., Y, of variables of f, and take a minimal switching
network computing f. For each i € [m], each setting of constants to variables
outside Y; yields an induced subnetwork whose contacts are the contacts of the
original network labeled by variables from Y;. Say there are h; such contacts.
Then the obtained subnetworks can compute at most N (|Y;|, h;) different boolean
functions. Since we have c; (f) such subfunctions, this implies (18|Y;|h;)" > c;(f),
where |Y;| < h; because f depends on all its variables. We thus obtain that h; must
be a constant times log ¢;(f)/loglog ¢;(f). Since S(f) = hy1 + - + hs,, we are
done.

To prove the lower bounds on NBP(f),let G(V, E) be a nondeterministic branch-
ing program computing f. Any fixing of the variables outside Y; to constants results
in a reduced branching program for the resulting subfunction. Let E; C E be the
set of wires whose labels are literals of variables from Y;, and let V; be the set
of vertices touched by these wires. Then without loss of generality the reduced
program uses only the vertices V;, on which we have the contacts F; and perhaps
some extra unlabeled wires (switches) that resulted from fixing values. That is, each
reduced program is obtained by drawing some additional (to the contacts in F;)
unlabeled wires between the nodes in V;. Thus, there are at most 2lVil* different
possible programs, and as |V;| < 2|E;| and the size of our programis Y .-, |E;l,
the desired lower bound on NBP(f) follow. O

15.2 Remark Note that the same lower bound as for NBP(f) holds for nondeter-
ministic branching programs with any acceptance mode. In particular, this bound
holds for parity branching programs.

Recall that the element distinctness function ED,, is a boolean function of n =
2mlog m variables divided into m consecutive blocks with 2 logm variables in
each of them. Each of these blocks encode a number in [m?]. The function accepts
an input « € {0, 1}" if and only if all these numbers are distinct.

We have already shown that ED,, has 2(") subfunctions on each of these
m = £2(n/logn) blocks (see Lemma ??). Thus, Theorem ?? immediately yields

432 15 General Branching Programs

15.3 Theorem (Nechiporuk 1966) The element distinctness function ED,, requires
deterministic branching programs and switching networks of size 2(n?/log® n), and
nondeterministic branching programs of size £2(n*/%/logn).

Using a similar argument as in Remark ??, one can show that Theorem ?? cannot
yield larger than £2(n?/log® n) lower bounds on BP(f). Beame and McKenzie
(2011) showed that Theorem ?? cannot yield larger than 2(n®/2/logn) lower
bounds on NBP(f).

To prove this last claim, take an arbitrary partition of the n variables into disjoint
subsets Y71,...,Y,,, and consider the sum s(f) := >.." | \/log¢;(f). Using the
fact that ¢;(f) < min{22‘yiI , 2= 1Yil} the sum s(f) is at most 3" | h(y;), where
y; = |Yi| and h(z) := min{2%/2,\/n — z}. Clearly, h(z) = 2%/2 for x < log(n/2),
and hence, h(xz) + h(y) < h(z +y) if z + y < log(n/2). We can therefore
assume that at most one y; is smaller than ¢ := 1 log(n/2). Such a small y; has
h(y;) < 2%/2 < n'/% There are at most n/t larger y;, and each of them has

h(yi) < v/n—yi < /n. Hence,
m

S <Y hlw) < (/8)- Vi 0t/ = 02 logn)

15.1.1 Lower bounds for symmetric functions

If f is a symmetric boolean function of n variables, then f can have at most
n — |Y| 4+ 1 distinct subfunctions on any set Y of variables. Thus, Nechiporuk’s
method cannot yield superlinear lower bounds for symmetric functions. A series of
lower bounds were proved for such functions using Ramsey-type arguments. Let
BP(f) denote the minimal size of a deterministic, and ®BP(f) the minimal size of
a parity branching program.

« Pudlak (1984) proved that BP(Maj,,) = 2(nlnlnn/Inlnlnn).

« Babai et al. (1990) improved this to BP(Maj,,) = 2(nlnn/Inlnn).

« For switching networks, an intermediate model whose size lies between BP(f)
and NBP(f), Grinchuk (1987, 1989) proved than Maj,, requires £2(an) contacts
where o = a(n) is an extremely slowly growing function.

« In the most powerful model of nondeterministic branching programs, Razborov
(1990b) proved NBP(Maj,,) = £2(8n) where 5 = B(n) is also an extremely
slowly (but faster than «) growing function.

« Karchmer and Wigderson (1993) proved ®BP (Maj,,) = 2(5n).

The function 3 in these lower bounds has the form 3(n) = logloglog™ n, where
log™ n is the maximal natural number r such that ¢(r) < n, where ¢(0) = 1 and
t(x +1) = 21@),

All these proofs employ quite nontrivial combinatorics, mainly Ramsey theory.
The obtained (barely non-linear) lower bounds might be seen as “too weak”. The

15.2 Branching programs over large domains 433

point however is that one cannot expect larger than quadratic bounds for such
functions: Lupanov (1965b) proved that, for every sequence (f,,) of symmetric
boolean functions, BP(f,)) = O(n?/logn) and NBP(f,) = O(n*/?). Krasulina
(1986, 1987) proved that S(Maj,,) = O(%n In* n), where p = (Inlnn)?. This was
later improved by Sinha and Thathachar (1997) to BP(Maj,,) = O(%n In® n) where
p=(Inlnn)(lnlnlnn)

Actually, the above mentioned papers of Grinchuk and Razborov give more.
Namely, it is possible to completely characterize symmetric boolean functions hav-
ing size O(n) in each of the three basic models (deterministic branching programs,
switching networks and nondeterministic branching programs) and, moreover,
this characterization is the same for all three models. They show that such func-
tions are exactly the symmetric boolean functions f,, with the following property:
fn(x) = fn(y) whenever there is a constant 7' > O such that T’ < |z|, |y| <n —T
and |z| — |y| is divisible by T'; here, as before, || is the number of ones in z.

15.2 Branching programs over large domains

One can define branching programs also for functions f : D™ — {0, 1} over larger
domains D than {0, 1}. In this case, instead of just tests z; = 0 and z; = 1 the
program is allowed to make tests x; = d for elements d € D. Different edges leaving
the same node may make the same test—this is why a program is nondeterministic.
As before, an input @ € D™ is accepted if and only if all the tests along at least one
path from the source node s to the target node t are passed by «, that is, if all the
tests x; = d made along at least s-t path are consistent with the input string a in
that a; = d. A switching network is a nondeterministic branching program whose
underlying graph is undirected. Edges are labeled by tests x; = d, and are called
contacts. Note that in this case unlabeled edges are redundant since we can always
contract them. We are going to prove a lower bound on the number of contacts
which is about | D| times the binary length n log | D| of the input.

As our domain D we take Z, := {0,1,...,¢ — 1}. The counting modulo ¢
function Mody, : Zg — {0, 1} is defined by:

Mody (z) = Oifand only if z; +--- + 2, =0 (mod q).

That is, Modg rejects the input vector if the sum of its components is divisible by g.
In particular, Mod} is the parity function.

Cardot (1952) proved that every switching network computing Modj must have
4n — 4 contacts, and this bound is optimal. In contrast, the number of contacts
needed to compute this functions in the class of parallel-serial networks (that are
equivalent to DeMorgan formulas) lies between n? and (9/8)n? (see Section ??).

15.4 Theorem (Rychkov 2009) The function Mod;; can be computed by a switching
network with g*>n contacts, and every switching network computing Mod;; must have
£2(gnlog q) contacts.

434 15 General Branching Programs

Proof. To prove the upper bound, take a graph G = (V, E') whose set of vertices
is divided into disjoint subsets Vy, V1, ..., V,, each of size q. The set of edges is
definedas E = F4 U --- U E,, where F; = V;_1 x V;; hence, |E| = *n. Identify
the vertices in each V; with members of Z, = {0,1,...,q — 1}. Label the edge
joining u € V;_1 with v € V; by the test ; = (v — u) mod ¢. As the source node
take the vertex vg in Vo numbered by 0. Observe that for every input vector a € Zj
and for every 1 <4 < n, the set of contacts in F;i consistent with a forms a perfect

matching between V;_; and V;. Thus, there is exactly one path p = (vg, v1,...,v,)
from the source node vy to a node v,, in V,, which is consistent with a. Moreover,
we have that v; — v;_1 = a; mod ¢ foralli =1,...,n. Thus,

Uy =Up — Vg = (V1 —vg) + (V2 —v1) + (v3 —v2) + -+ + (U — Vn—1)

=a;+ax+a3+---+a, modgq.

Thus, if we remove from V,, the node numbered by 0 and glue all remaining vertices
in V, to one target node, the obtained switching network will compute Mody,.

To prove the lower bound, take a switching network F'(x) computing Mod,.
We claim that for every pair 1 < ¢ < j < n, the network must contain {2(qlog q)
contacts labeled by tests on variables x; and x;. This already implies the desired
lower bound £2(gn log ¢) on the total number of contacts. By symmetry, it is enough
to prove the claim for ¢ = 1 and j = 2. The idea is to use Hansel’s result (see
Exercise ??) that any monotone switching network computing the threshold-2
function Thj" must have £2(mlogm) contacts.

From F' we obtain a network F’ depending only on z; and x5 as follows. First,
remove from F' all contacts labeled by tests ©; = a for i« > 3 and a # 0. Then
contract all contacts labeled by tests x; = 0 for ¢ > 3. The resulting network
computes the function F’(x1,x2) = F(x1,22,0,...,0). That is, F’ accepts a pair
(a,b) of integers if and only if a + b ¢ {0, ¢}. Thus, for every input (a, b) with
a+ b ¢ {0, g}, there must be a consistent path p in F’ from the source node s to
the target node ¢ such that along p

(i) only tests 1 = a and x5 = b are made, and

(ii) eachtestzq; = a and x5 = bis made at least once: if, say, only tests 21 = a were
made along p, then F’ would be forced to wrongly accept the input (a,q — a).

On the other hand, no s-¢ path can be consistent with the input (0, 0) or any of the
inputs (a, ¢ — a) with a € Z,.

Take ¢ new variables y1, . . ., y, and relabel the contacts of F’ as follows. For
every a € Zg, a # 0, replace all tests ;1 = a and 2 = ¢ — a by the test y, = 1.
Further, replace all tests 21 = 0 and xo = 0 by the test y, = 1. Let F"'(y1,...,Yq)
be the obtained monotone boolean switching network. We claim that this network
computes the threshold-2 function Th(y1, ..., y,).

To show this, take an arbitrary vector y € {0, 1}? with exactly two 1s in positions
a and b with 1 < a < b < q. We have to show that y must be accepted by F".

If b < g and a + b # ¢, then property (i) ensures that y is accepted by F". So,
assume that b < g and a + b = ¢. Since a < b, we have that either a + a or b+ b

15.3 Counting versus nondeterminism 435

must not be equal to q. Assume that a + a # ¢ (the case b + b # ¢ is similar).
Then F’ must accept the input (a, a). By property (i), there must exist a consistent
s-t path in F’ along which only tests 1 = a and x5 = a are made. But by our
construction, these tests are replaced by tests y, = 1 and y,—, = 1, that is, by tests
Yo = 1 and y, = 1. Hence, F accepts y also in this case. Finally, let b = ¢. Then a
lies between 1 and ¢ — 1, and hence, the input (a, 0) must be accepted by F”. The
corresponding path in F” has only tests y, = 1 and y, = 1, implying that y is
accepted by F”'.

It remains to show that F” rejects every vector y € {0, 1} with exactly one
1 in, say, position a. For the sake of contradiction, assume that F" accepts such
a vector y. Then F” must contain an s-t path along which only the variable y,
is tested. By our construction, the corresponding path in F’ can only make tests
x1 = a or Ty = ¢ — a. But then (ii) implies that F’ must wrongly accept the input
(a7 q— a’)'

Thus, we have shown that F”’ is a monotone switching network computing the
threshold-2 function Thi, and we already know (see Exercise ??) that any such
network must have {2(qlog ¢) contacts. O

An important subclass of switching networks is that of parallel-serial switching
networks (or m-schemes). We know (see Proposition ??) that such networks are
equivalent to DeMorgan formulas. DeMorgan formulas have literals as inputs and
use AND and OR operations as gates. If we will give “generalized literals” as inputs,
then such a formula will compute a function f : D™ — {0,1}. As a generalized
literal we take a function z¢ : D™ — {0, 1} such that for every a € D", z¢(a) = 1
if and only if a; = d. Let L(f) denote the minimum leafsize of a (generalized)
DeMorgan formula computing f.

Since formulas are special switching networks, Theorem ?? implies that L(Mody,) =
£2(gnlog q). By extending the argument of Khrapchenko (see Section ??) to func-
tions over larger domains, Rychkov (2009) improved this lower bound to

L(Mody) > (¢ — 1n?.

But what about the complexity of the negation ~Mod; of Mod;? Note that for
boolean functions f : D™ — {0,1} with D = {0, 1}, we always have that L(— f) =
L(f). This, however, does not hold for larger domains D. In this case, L(z¢) = 1
but L(—z¢) = |D| — 1 because =z is an OR of ¥ over all k € D, k # d. This
last observation implies that L(—f) > L(f)/(|D| — 1). For the negation ~Mod, of
Mody, this yields the lower bound L(=Mody) > n*. For domains D larger than the
number 7 of variables, Rychkov (2010) improved this to L(-=Mody) > 2(|D| — 1)n.

15.3 Counting versus nondeterminism

Our goal is to show that, at the cost of a slight increase of size, every nondeterministic
branching program can be simulated by a parity branching program. That is, in the

436 15 General Branching Programs

model of branching programs nondeterminism is not much more powerful than
counting. But perhaps more interesting than the result itself is its proof: it uses
in a nontrivial manner an interesting fact that random weighting of elements will
almost surely isolate exactly one member of a family.

Let X be some set of n points, and F be a family of subsets of X. Assign a
weight w(z) to each point z € X, and define the weight of a set F to be w(E) =
> wep W(z). It may happen that several sets of F will have the minimal weight. If
this is not the case, that is, if min pc 7 w(FE) is achieved by the unique E € F, then
we say that w is isolating for F.

Let X be a set with n elements, and let w : X — {1,..., N} be a random
function. Each w(z) is independently and uniformly chosen over the range.

15.5 Lemma (Mulmuley-Vazirani-Vazirani 1987) For every family F of subsets of
X, Prob[w is isolating for F] > 1 — 4.

Proof. (Due to Spencer 1995) For a point z € X, set

@) = ppin B~ p i wEA).
A crucial observation is that the evaluation of o(x) does not require knowledge of
w(x). As w(x) is selected uniformly from {1, ..., N}, we have that w(z) = a(x)
with probability at most 1/, and hence, the probability that w(x) = a(x) for some
x € X does not exceed n/N. But if w had two sets A, B € F of minimal weight
w(A) =w(B)and z € A\ B, then

i FE)=w(B i E =w(A) —
plin w(E) =w(B) and min w(E\{z}) = w(d)—w(z),
sow(x) = a(x). Thus, if w is not isolating for F then w(z) = a(z) for some x € X,

and we have already established that the last event can happen with probability at
most n/N. O

15.6 Theorem (Wigderson 1994) There is a constant c such that for every boolean
function f of n variables, we have that ®BP(f) < cn - NBP(f)®.

Proof. Let G = (V, E) be a directed graph and w : E — {1,...,2|E|} a weight
function on its edges. The weight of an s-¢ path is the sum of weights of its edges; a
path is lightest if its weight is minimal. Let d,,(G) denote the weight of the shortest
s-t path in G} hence,

du(G) < M =2V |E].

Having a weight function w and an integer [, define the (unweighted, layered)
version G!| = (V', E') of G as follows. Replace every vertex u € V by | + 1 new
vertices ug, u1, - .., u; in V' (that is, V' consists of [+ 1 copies of V, arranged in
layers). For every edge e = (u,v) in E and every 0 < i < [— w(e) put an edge
(i, Vitw(e)) in B’ (see Fig. 2?); hence, [V/| < (1 +1)|V|and |[E'| < (1 +1)|E|.

15.3 Counting versus nondeterminism 437

Bilder/wigd-panity-eps-converted-to.pdf

Fig. 15.1 A fragment of the graph G, for I = 4, w(e1) = 2 and w(ez) = 1.

15.7 Claim If G has no s-t path, then for every w and [, G, has no so-t; path. If
G has an s-t path and | = d,,(G), then G, has an sy-t; path. Moreover, the later
path is unique if the lightest s-t path in G is unique.

Proof. Let P = (ey, ea,...,€ex) be an s-t path in G. The first node of this path is s.
In the new graph G, the first node is s and, following the path P in this new graph,
at the i-th edge e; we move by w(e;) vertices down (in the next, (¢ + 1)-th layer of
nodes). Hence, P can produce an so-t; path in G, if and only if Zle w(e;) <.
That is, a graph G, has an s-t; if and only if G has an s-t path and Zle w(e;) <.
For I = d,,(G), only lightest paths can fulfill this last condition. O

Now let G = (V, F) be a nondeterministic branching program computing a
given boolean function f(z1,...,x,). Say that a weight function w is good for an
input a € {0, 1}" if either G(a) has no s-t paths or the lightest s-¢ path in G(a) is
unique.

For each input a € {0, 1}", taking the family F, to be all s-¢ paths in the graph
G(a), the isolation lemma (Lemma ??) implies that at least one-half of all weight
functions w are good for a. By a standard counting argument, there exists a set W of
|[W| < 14log(2™) = n+1 weight functions such that, for every input a, at least one
w € W is good for a. If w is good for a, then the graph G', (a) with [= d,, (G(a))
has the properties stated in Claim ??. For different inputs a, the corresponding
values of [may be different, but they all lie in the interval 1, ..., M. Thus, there
exist m < (n + 1) - M nondeterministic branching programs Hq, ..., H,, (with
each H; = Gfu for some w € W and 1 < [< M) such that, for every input
a € {0,1}", the following holds:

(i) if |G(a)| = 0, then |H,(a)| = 0 for all j;
(ii) if |G(a)| > 0, then |H;(a)| = 1 for at least one j.

Let s;,1; be the specified vertices in Hj, j = 1,..., m. We construct the desired
parity branching program H as follows: to each H; add the unlabeled edge (s;,t;),
identify t; and s;41 for every j < m, and add the unlabeled edge (s1,%,) (see
Fig. 7?).

It is easy to see that, for every input a € {0,1}", |H(a)| = 1 mod 2 if and only
if |G(a)| > 0.Indeed, if |G(a)| = 0, then by (i), H (a) has precisely two $1-t,, paths
(formed by added unlabeled edges). On the other hand, if |G(a)| > 0, then by (ii),
at least one H;(a) has precisely one s;-t; path, implying that the total number of
$1-t,, paths in H(a) is odd. Thus, H is a parity branching program computing the

438 15 General Branching Programs

Bilder/Figl3_4-eps-converted-to.pdf

Fig. 15.2 Construction of the parity branching program H.

same boolean function f. Since [< M and m < nM with M = 2|V|-|E| < 2|E|?,
the size of (the number of edges in) H is at most m(l + 1)|E| = O(n|E|?). O

15.4 A surprise: Barrington’s theorem

The length of a branching program is the number of edges in a longest path (be it
consistent or not)ﬂ If the nodes are arranged into a sequence of levels with edges
going only from one level to the next, then the width is the number of nodes of the
largest level.

Intuitively, the smaller the width is, the fewer information can be transferred
through each level of a program. So, if the width is small (say constant), then boolean
functions with a lot of dependency between parts of its input variables “should”
require very long branching programs.

In this section we will show that this intuition is wrong! Even programs of width
five are not much longer than DeMorgan formulas. We will also give lower bounds
on the length of width-restricted branching programs.

We first consider branching programs of constant(!) width. At first glance, it
seems that such a drastic width restriction might be very crucial: if the width is
bounded by some constant then, when going from one level to the next, we can
keep only a constant amount of information about what we have done before.
It was therefore conjectured by many researchers that, due to this “information
bottleneck”, even such function as the Majority function Maj(z1,. .., x,) should
require very long branching programs, if their width is constant. A trivial branching
program would try to remember the number of 1s among the bits, which were
already read; but this would require non-constant width of about log n.

With a surprisingly simple construction, Barrington (1989) disproved this con-
jecture. He showed that constant-width branching programs are unexpectedly
powerful: they are almost as powerful as DeMorgan formulas!

15.8 Theorem (Barrington 1989) If a boolean function can be computed by a DeMor-
gan formula of a polynomial size, then it can also be computed by an oblivious width-5
branching program of polynomial length.

Before we present his proof, let us explain the intuition behind it.

" A path is inconsistent if it contains two contradicting queries z; = 0 and x; = 1 on the same
variable.

15.4 A surprise: Barrington’s theorem 439

Bilder/widthl-eps-converited-to.pdf

Fig. 15.3 On input vector = (0, 1, 1) this program outputs the identity permutation P(z) = e,

123

=l3712 . Bold arrows

whereas on input = (0, 1, 0) it produces a cyclic permutation P(z)

correspond to tests #; = 1, the remaining ones to tests z; = 0.

The (wrong) intuition above (that large width is necessary to keep the collected
information) relies on viewing the computation by a program as a sequential
process which gradually collects information about the input vector. This intuition
is borrowed from our view at how Turing machine works. But branching programs
constitute a nonuniform model of computation. Each input a € {0, 1}" defines (at
once!) a subprogram of our branching program in a natural way. Thus, for a program
to correctly compute a given boolean function f, it is enough that subprograms
produced by inputs in f~1(0) are different from those produced by inputs in f~1(1).
It then remains to show how the program can detect this difference.

To be more specific, assume that our branching program is an oblivious program
of width w and length . That is, the nodes are arranged into a w by [array. All [
levels have w nodes, and all nodes at a given level are labeled by the same variable.
Moreover, at each level the 0-edges and the 1-edges going to the next level form
two mappings from [w] = {1,...,w} to [w]. If that level is labeled by a variable x;,
then one of these mappings is given by edges corresponding to tests z; = 1, and
the other to tests x; = 0 (see Fig. ??). The length |P| of such a program P is the
number of levels in it.

Thus, we can view such a program as a sequence of instructions (i, o, 7) where
x; is the variable tested at the corresponding level, and o, 7 : [w] — [w] are the two
mappings corresponding to whether z; = 0 or 1 = 1. Every input a € {0,1}"
gives a sequence of [mappings, and let P(a) : [w] — [w] be their superposition.
Now, for the program to correctly compute a given boolean function f, it is enough
that P(a) # P(b) foralla € f~1(0) and b € f~1(1).

A basic question is: how, starting from programs for boolean functions f and
g, can we build programs for —f, f A g and f V ¢g? Barrington showed that this
can be easily done if we restrict programs and only allow cyclic permutations
0,7 : [w] = [w] be used. A permutation is cyclic if it is composed of a single cycle
on all its elements. For example,

(12345 (13542
77\ 31524) " (35421
is a cyclic permutation, which we will denote as

1-3—-5—4—2—1 orshortlyas o= (13542).

440 15 General Branching Programs

The nodes of a width-w permuting branching program P of length ¢ are arranged
into a w X £ array, where two permutations of [w] are computed between any of
its two levels. Any input vector « € {0, 1}" yields a permutation P(z) which is
the composition of the selected permutations at each level. For a boolean function
f and a permutation o, say that branching program P o-computes f if for every

input z,
R K if f(x)
P@) {e if f(x)

1,
O’

where e is the identity permutation.

The following three simple claims accumulate the basic properties of permuting
branching programs that use only cyclic permutations.

Let 0 and 7 be cyclic permutations, f and g boolean functions, P and () permuting
branching programs.

15.9 Claim (Changing output) If P o-computes f, then there is a permuting branch-
ing program of the same size 7-computing f.

Proof. Since o and 7 are both cyclic permutations, we may write 7 = 6o~ ! for
some permutation 6. Then simply reorder the left and right nodes of P according
to 6 to obtain the 7-computing branching program P’:

if P(x) = 0109 --+0y = o then P'(x) = o109 -+ 04,071 = 0o~ ! = 7.

That is, we replace the permutation o; computed at the first layer by the permutation
o1, and the permutation o; computed at the last layer by the permutation ;01
O

15.10 Claim (Negation) If P o-computes f then there is a permuting branching
program of the same size o-computing — f.

Proof. Use the previous lemma to obtain a branching program P’ which o~!-
computes f. Hence, P'(z) = o~ ' if f(z) = 1, and P'(x) = e if f(z) = 0. Then
reorder the final level by o so that the resulting program P o-computes —f:

if P'(z) = 0109 - - 0 then P (z) = 0105 - - - 040.

In this way, P”(z) outputs e if P’(x) = o~ !, that is, if f(z) = 1; otherwise, P" ()
outputs o. O

15.11 Claim (Computing AND) If P o-computes f and () 7-computes g, then
there is a permuting branching program of length 2(| P| + |Q|) which oo =17~ 1-
computes f A g.

Proof. Use Lemma ?? to get a program o~ !-computing f and 7~ !-computing g.
Then compose these four programs in the order o, 7,0 ~!, 7= 1. This has the desired

effect because replacing either o or 7 by e in o70 1771 yields e. O

15.4 A surprise: Barrington’s theorem 441

Bilder/perml-eps-converted-to.pdf

Fig. 15.4 Cyclic permutations o = (12345), 7 = (13542) of {1, 2, 3,4, 5} and their commutator
p=oro tr7t = (13254).

The next claim is the only place where the value w = 5 is important; neither
w = 3 nor w = 4 suites for this purpose.

15.12 Claim There are cyclic permutations o and 7 of {1, 2, 3,4, 5} such that their

commutator p = oo~ 177! is cyclic.

Proof. See Fig. 7?. O

By w-PBP we will mean a permuting branching program of width w all whose
permutations are cyclic permutations of [w].

15.13 Theorem If a boolean function can be computed by a DeMorgan circuit of depth
d, then it can be computed by a 5-PBP of length 4¢.

In particular, if a boolean function f can be computed by a DeMorgan formula of
polynomial leafsize, then f can also be computed by a 5-PBP of polynomial length!

Proof. By induction on the depth d. If d = 0, the whole circuit for f is either a
variable x; or its negation —z;, and f can be easily computed by a one-instruction
program.

Now suppose that d > 1. By Claim ??, we can assume that f = g A h, where g
and h have formulas of depth d — 1, and thus (by induction hypothesis) 5-PBPs G
and H of length at most 4971,

Let 0 and 7 be the permutations from Claim ??. By Claim ??, we may assume that
G o-computes g and H 7-computes h. By Claim ??, there is a 5-PBP of length at
most 2(size(G) +size(H)) < 4% which 070 =17~ -computes f. Since, by Claim ??,
the permutation 070~ 7! is cyclic, we are done. a

To derive Theorem ?? from Theorem ?? it is enough to show that any w-PBP of
length [can be transformed into a width-w branching program of length .

To show this, let P(x) be a w-PBP o-computing a boolean function f(z). Hence,
P(z) = oif f(z) =1, and P(z) = e (the identity function) if f(z) = 0. Choose
an i € [w] such that o (i) # i. Declare the i-th node on the first level as the start
node of our branching program, and in the final level we let node o (%) be the 1-leaf,
and all other nodes on this level be the 0-leafs.

442 15 General Branching Programs

15.5 Oblivious branching programs

Every boolean function of n variables can be computed by a trivial branching
program of length | = n and width w = 2": just take a decision tree. But what
if we restrict the width w—how long then the program must be? To answer this
question we use communication complexity arguments.

A branching program is oblivious if the nodes are arranged into a sequence of
levels with edges going only from one level to the next, and at all nodes of each level
the same variable is tested. As before, the width of such a program is the number of
nodes of the largest level.

An s-overlapping protocol for a boolean function f : {0,1}" — {0,1} is a
deterministic communication protocol between two players under a restriction
that each player cannot see s variables seen by the other player. The remaining
n — 2s variables are seen by both players! Also, before the game begins, the players
(knowing the function f) are allowed to decide what s variables should be their
“private” variables (not seen by the other player).

Let ¢5(f) denote the maximum number of bits communicated by a best determin-
istic s-overlapping protocol for f on the worst case input. The larger the number
n — 2s of common variables is, the easier is the game. Hence, s < ¢ implies that

es(f) < alf).

15.14 Theorem Suppose that a boolean function f : {0,1}™ — {0,1} can be com-
puted by an oblivious branching program of width w and length l. Ifl < 0.1nlogn
then, for everyn®6/4 < s <n/2,

¢.(f) :O(llogw).

n

Because the branching program is oblivious, we can think of its labels as forming
a string z of length [over the alphabet [n]. To obtain a communication protocol
from the program, we need the following combinatorial result.

Let z be a string over an alphabet X = {z1,...,2,}. A subsiring of z is a
sequence of its consecutive letters. Given two sets A, B C X of letters, say that
a string z has an (r, A, B)-partition if z can be partitioned into r substrings z =
2172 ... Zr such that none of the substrings z; contains letters from both sets A and

B. For example, if X = {1,2,3,4,5,6}, A={1,3}, B={2,4} and
2=162326415312465132

then we have the following (8, A, B)-partition of Z:

A A A A
A~ P —_— =
z=16 2 3 264 1531 2465 13 2

~—~ — — ~—

15.5 Oblivious branching programs 443

15.15 Lemma (Alon-Maass 1988) Let A, B C X be two disjoint sets of size |A| =
| B| = m. Let z be a string over X such that each a € A appears in z at most k 4 times
and each b € B appears in z at most kg times. Then there are A’ C A and B’ C B
of size at least m /2" such that z has a (k, A’, B')-partition, where k = ka + kp.

Proof. Induction on k. If k = 1, then either k4 or kp is 0, and we can take A’ = A
and B’ = B. For the induction step, assume w.l.o.g. that each letter appears in z at
least once (otherwise, extend z with the missing letters in an arbitrary way).

Examine the letters of z one by one until we reach a location where we already
have seen m/2 letters of one of A and B but fewer than m/2 of the other; such
a location must exist since A N B = (). Denote the prefix by 2’ and the rest of
z by 2”. Let it was A whose m/2 letters appear in 2z’ (the case when it is B is
dual). Let A* = {a € A | a € Z'} be those letters of A that appear in 2/, and
B* = {be B |b¢ =z} be those letters of B that do not appear in z’. It follows that
|A*|,|B*| > m/2.

Now consider the suffix z”. Each letter of A* appears in 2’/ at most k4 — 1
times, since each of them already appeared in 2’ at least once. Hence, we can apply
the induction hypothesis to the string z” for sets A* and B*, and obtain subsets
A’ C A* and B’ C B* such that z” has a (k — 1, A’, B’)-partition with

|A'| > |A*| /261 > m/2% and | B'| > |B*| /26! > m/2*.

Since the prefix z’ can only contain letters of A’ but none of B’, the entire string
z = 2’7" also has a (k, A’, B')-partition. O

p@plus6p@

Proof of Theorem ??addpunct: Now let z be the string over X = {z1,...,z,} of
length [corresponding to the labels of our branching program. Observe that at
least n/2 variables must appear at most 2{/n times, for otherwise the length of
the string would be larger than (n/2)(2l/n) = [. Partition these variables into two
sets A and B each of size n/4 in an arbitrary way. By Lemma ?? with m = n/4,
ks = kp = 2l/n and k = 4l/n, there are disjoint sets of variables A’ and B’
such that |A’|, |B’| > n/(4-2%) and z is a (k, A’, B')-partition. Moreover, since
[< 0.1nlogn, we have that

47 0.4nlogn

k=—<
n n

= 0.41logn .

Hence,]
A |B| = n/(4-2%) > n®%/4.

Since the sequence z of variables, tested along the [levels of the program, has a
(k, A’, B')-partition, it is possible to split z into k substrings z = 2125 - - - 2, such
that no substring z; contains variables from both subsets A’ and B’. Hence, if we
give all variables in A’ to Alice, all variables in B’ to Bob and the rest to both
players, the players can determine the value of our function by communicating
according to the underlying branching program.

444 15 General Branching Programs

To carry out the simulation, the players need to tell each other, at the end of
each of k blocks, the name of the node in the next level from which the simulation
should proceed; for this logw bits are sufficient. Hence, the obtained protocol
communicates O(k - log w) bits, that is, O((Ilog w)/n) bits in total. The protocol
is s-overlapping with s > min{|A’|, |B’|} > n%6/4. O

endpe false

Thus, to obtain a large tradeoff between the width and the length of oblivious
branching programs, we need boolean functions of large overlapping communica-
tion complexity. We will now show that such are characteristic functions of good
codes.

A linear (n, m, t)-code is a linear subspace C' C GF(2)" of dimension n — m
such that the Hamming distance between any two vectors in C' is at least 2t + 1. A
characteristic function of C'is a boolean function f : {0,1}™ — {0, 1} such that
f(z) =1ifandonlyifz € C.

15.16 Lemma If f is the characteristic function of a linear (n, m, t)-code, then cs(f) >
2tlog(s/t) — m.

Proof. Take an arbitrary s-overlapping protocol for f(X).Let A C X be the set of
variables seen only by Alice, and B C X be the set of variables seen only by Bob.
Hence, |A|,|B| > s, and at most r := n — 2s variables are seen by both players.
We can assume w.l.o.g. that |A| = |B| = s (the fewer “forbidden” bits we have,
the easier the life of the players is). Since there are only 2" possible settings o of
constants to these (common) variables, at least one of these settings gives us a
subfunction f, of f in 2s variables which is the characteristic function of some
linear (n — r,m — r,t)-code C.

After this setting, our protocol turns to a usual communication protocol for the
matrix M = {f,(z,y)}. From Section ?? we know that this last protocol must
communicate at least log Cov(M) bits, where Cov(M) is the smallest number
of (not necessarily disjoint) all-1 submatrices of M covering all its 1s. (In fact,
log Cov(M) is a lower bound even for nondeterministic communication complexity
of M, but we will not need this now.)

15.17 Claim Every row and every column of M has at most 2° (i) ~! ones.

Proof. Fix one row x € {0,1}* of M (the case of columns is the same). Since the
Hamming distance between any two vectors in C' is at least 2¢ + 1, we have that
any two vectors y # y’' € {0,1}° of M such that M[z,y] = M[z,y'] = 1 must
also be at Hamming distance at least 2¢ + 1. Hence, no Hamming ball of radius ¢
over a vector y with M [z, y] = 1 can contain another vector y’ with M[z,y'] = 1.
Since each such ball has Z::O (%) > (§) vectors, this implies that each row and

-1
each column of M can have at most 2° (i) ones. O

The matrix has |[M| = 27"~™~" = 2257 ones and, by Claim ??, every all-1
submatrix of M has at most 2%%(5) 2 ones, the desired lower bound on Cov(M),
and hence, on ¢, (f) follows:

15.5 Oblivious branching programs 445

225—m 2 2t
Cov(M) > —— = <S> 9=m > (f) g m, 0

22s (t) t t

Consider Bose-Chaudhury codes (BCH-codes). These are linear (n, m, t)-codes
C with m < tlog(n + 1). Such codes can be constructed for any n such that n + 1
is a power of 2, and for every t < n/2. Since the parity-check matrix of C' has
m rows, the characteristic function fc of C' is just an AND of m negations of
parity functions, and hence, can be computed by an oblivious branching program
of constant width and length | = mn = O(tnlogn). If, however, we require the
length be smaller than n log n, then an exponential width is required.

15.18 Corollary Let0 < € < 0.01 be a constant, and C' be a BCH-code of minimal
distance 2t + 1 with t = n%9. Then any oblivious branching program for fc of
length | = O(nlogn) must have width w = 292(n®),

Proof. We apply Lemma ?? with s = n-6. Since (s/t)? = n'*t(1), we obtain that
cs(fo) > 2tlog(s/t) —m > tlog(s/t)? —tlog(n + 1) = 2(tlogn).

Hence, Theorem ?? implies that [logw = 2(tnlogn) = 2(n** logn). O

Exercises

15.1 Recall that the Majority function Maj of n variables accepts an input vec-
tor if and only if the number of 1s in it is at least n/2. Show that any constant-
width branching program for Maj must have length | = 2(n logn). Hint: Show that
cs(Maj) = £2(log s) and use Theorem ??.

15.2 (Due to Razborov 1990b) Our goal is to give an exact(!) combinatorial char-
acterization of NBP(f) for any boolean function f.Let U := f~1(0) and V :=
f71(1). Denote by F the set of all nontrivial monotone functions F : 2V — {0, 1},
that is, F()) =0, F(U) = 1,and F(B) = 1 aslong as F(A) = 1 for some A C B.
Given1 <i<mn,e€ {0,1},and A C U, define

0ie(A) ={(F,v) e FxV]|v=¢FA)=1FAnX;) =0},

where X is the set of all vectors in {0, 1}" with € in their i-th position. Let A

be the collection of all such sets J; .(A); this is a huge collection, |A| = 222",
Let Cov(f) denote the smallest number of members of A whose union covers the

whole set F x V.
(@) Show that Cov(f) < NBP(f).

Hint: Take an arbitrary nondeterministic branching program P computing f. Let s be its
source, and t its target nodes. For every node w of P, let f., be the boolean function computed
by the subprogram with source s and target node w. Hence, fs = 1 and f; = f. Associate

446

(b)

15 General Branching Programs

with every contact e = (w,w’) labeled by a literal z§ the set §(e) := &;,(U N fu 1 (1)).
Show that the sets 6(e) cover the whole set F x V. For this, take a point (F,v) € F x V
and consider an arbitrary path accepting the vector v. Since F is nontrivial, F(U) = 1
and F(0) = 0. Hence, there must be some contact ¢ = (w,w’) on that path for which
FUNfz (1)) =1and F{UN fl;,l(l)) = 0. Show that (F,v) € d(e).

Show that NBP(f) < Cov(f).

Hint: Let Ag C A covers the whole set F x V', and |Ag| = Cov(f). As nodes take all subsets
A C U. For each pair A C B of theses subsets include a non-labeled edge (A, B). For every
set §;.c(A) include an edge (A, A N X;) labeled by z§. (Recall that we only count contacts,
that is, labeled edges in NBP(f).) Set s := U as the source node, and ¢ := () as the target
node. Show that the resulting program computes £. For this, take a vector v € V = f~1(1)
and show that there must be a path from s = U to t = () whose labels are consistent with v.

16. Bounded Replication

Since, so far, we are unable to prove exponential lower bounds for general branching
programs, it is natural to try to do this for restricted programs. We have seen that
restricting the width of a program does not decrease their power too much: the
resulting class of programs is almost as powerful at that of (unrestricted) formulas.
Another possibility is to restrict the “length” of a program, that is, the length of a
longest computation path. A path from the source to a sink is a computation path,
if the tests made along its wires are passed by at least one input vector, that is, if
the path does not contain two contradictory tests “is z; = 1?” and “is z; = 0?” on
the same variable ;. In a read-k times branching program it is required that along
every computation path, each variable is tested at most k times. We will consider
such programs in the next chapter.

In this chapter we restrict the number of variables that can be queried more than
once during a computation. Namely, define the replication number of a branching
program as the smallest number R such that along every computation path at most
R variables are tested more than once. Sets of variables re-tested along different
computations may be different! Also, the (up to R) re-tested variables may be re-
tested arbitrarily often. Thus, restricted replication does not mean restricted length
of computations—it may still be arbitrarily long. Finally, note that the restriction is
only on computation paths: we have no restrictions on inconsistent paths. Branching
programs with replication number R are also known as (1, +R)-programsﬂ

Note that for every branching program of n variables we have 0 < R < n.
Moreover, every boolean function f of n variables can be computed by a branching
program with R = 0: just take a decision tree. However, the size S of such (trivial)
branching programs is then exponential for most functions. It is therefore interesting
to understand whether S can be substantially reduced by allowing larger values
of R.

The goal is to prove exponential lower bounds on the size of branching programs
of as large replication number R as possible. An ultimate goal is to do this for

" The meaning of this notation is that we have a read-one branching program with up to R
exceptions along each computation.

447

448 16 Bounded Replication

R = n: then we would have an exponential lower bound for unrestricted branching
programs.

In this chapter we will come quite “close” to this goal by exhibiting boolean
functions f (based on expander graphs) with the following property: there is a
constant € > 0 such that every branching program computing f must either have
replication number R > en or must have exponential size.

16.1 Read-once programs: no replications

To “warm up”, we start with read-once branching programs (1-BP), that is, programs
along each path of which no variable can be tested more than once. This corresponds
to programs with replication R = 0.

Read-once programs constitute just a small generalization of decision trees.
Indeed, it is not difficult to see that the minimal size of a read-once program for
a function f is precisely the minimal number of non-isomorphic subtrees in any
decision tree for f.

Since subtrees correspond to subfunctions, it seems intuitive that the number
of non-isomorphic subtrees (and hence, the size of the corresponding read-once
program) must be large, if f has many different subfunctions. This motivates the
following definition.

Say that a boolean function f is m-mixed if for every subset of m variables
and for every two distinct assignments a # b of constants to these variables, the
obtained subfunctions f, and fj of f are distinct, that is, there exists an assignment
¢ to the remaining variables such that f,(c) # f(c).

16.1 Lemma (Folklore fact) If f is an m-mixed boolean function, then every deter-
ministic read-once branching program computing f must have at least 2™ — 1 nodes.

Proof. Let P be a deterministic read-once branching program computing f. Our
goal is to show that the initial part of P must be a complete binary tree of depth
m — 1. For this, it is enough to show that no two initial paths (starting in the source
node) of length m — 1 can meet in a node. For the sake of contradiction, assume
that some two paths p and ¢ of length m — 1 meet in some node v.

16.2 Claim The sets of variables tested along p and q are the same.

Proof. Assume that some variable x is tested along p but not along g. Let Y be the
set of variables tested along g; hence, z ¢ Y. The path ¢ defines an assignment to
the variables in Y. Extend this assignment to two assignments a and b by setting the
variable x to 0 and to 1. In this way we obtain two distinct assignments to the same
set of |Y U {x}| = m variables. Since both of these extended assignments remain
consistent with the path ¢, and since, due to the read-once property, the variable
x cannot be tested along any path starting in v, the subfunctions of f defined by
these assignments must be the same, contradicting the m-mixedness of f. O

16.1 Read-once programs: no replications 449

By Claim ??, the paths p and ¢ define two assignments on the same set Y of
m variables. Moreover, these assignments are different since the computations on
them split before they meet. But the read-once property again implies that these
two assignments define the same subfunction of f, contradicting the m-mixedness
of f. O

There are many natural boolean functions of n variables that are m-mixed for m
about /n. We now describe one function which is m-mixed for m = n — O(y/n).
For this, we use the following important number-theoretic result of Dias da Silva
and Hamidoune (1994). Let p be a prime, and A C Z,. For an integer 1 < h < |A],
let ,, A denote the set of all elements b € Z,, that can be represented as sums
b=ay; +as+ -+ ap modulo p of h distinct elements a1, ..., ay of A.

16.3 Theorem | @D, A| > min{p, h|A| — h* + 1}.

Let n be a square of a natural number, and n < p < 2n a prime number. Take
h =2/nand k = 2h. Then hk —h? +1 = h? +1 = 4n+1 > p. Hence, for every
k-element subset A of Z,,, we can obtain each element of Z,, as a sum of h elements
in A. In particular, this holds for every k-element subset A of [n] = {1,...,n}.
Hence, if we define a mapping s : {0,1}" — Z, by

s(z) = x1 + 2x9 + 323 + - - - + nx, mod p,

then we have the following interesting property.

16.4 Lemma For every index r € [n], every partial assignment with at least 4,/n
unspecified entries can be extended to an assignment x € {0, 1}" such that s(z) = r.

Proof. Lety € {0,1}! be apartial assignment, A = [n]\Iands = >, iy; mod p.
Assume that |A| > 4,/n. By Theorem ?? and its discussion, there exist a subset
B C A of |B] = 2+/n elements of A whose sum is equal to 7 — s modulo p. Hence,
ifwesetxy =ygforallk € [,z = 1forallk € B,and z, = 0forallk € A\ B,
then s(x) = s+ (r — s) = r, as desired. O

The weighted sum function is a boolean function w,,(x) defined by:

T otherwise.

if 1,...
W (T1,...,2p) = {xs(z) ifs(z) € {1,...,n}

16.5 Theorem (Savicky—-Zak 1996) The function w,(x) is m-mixed form = n —

Proof. Let f(z) = wy(z), and m = n — 4,/n — 2. Take an arbitrary subset I C [n]
of size |I| = m, and let J = [n] \ I be its complement. Take any two distinct
assignments z,y € {0, 1}. Our goal is to find an assignment z € {0, 1}” such that
f(z,2) # f(y, z). When doing this we will use a simple fact that, modulo p, the
weighted sum of the vector (y, z) is the weighted sum of the vector (z, z) plus the
difference

450 16 Bounded Replication

A= Ziyi — sz mod p.
iel iel
We start with the simpler case where A = 0. Fix a position r € I for which
x, # y,. Since | J| > 4/n, Lemma ?? gives us an assignment z € {0, 1}” such that
s(x, z) = r. Since A = 0, we also have that s(y, z) = s(z,2) + A = r. Hence, in
this case we have that f(z, z) = x, # y.. = f(y, 2), as desired.

In the following, we can assume that A # 0. Fix an arbitrary j € J \ {1},
and let 7 be rest of j + A modulo p, if this rest lies in {1,...,r}, and set r := 1
otherwise. In any case, we have that r # j because j # 1 and A # 0. To define
the desired assignment z € {0,1}”, we consider two possible cases. If 7 € J
then set z; := 0 and 2z, := 1.If r € I then set z; := 1 — y,.. In both cases we
still have at least 41/n unspecified bits in J which, by Lemma ??, can be set in
such way that s(z,z) = j; hence, s(y,2z) = s(z,2) + A = j+ A = r. Now,
if r € J then we have that f(z,2) = 2;, = 0# 1 = 2z, = f(y,2).Ifr € I
then f(z,2) = z; = 1 =y, # yr = f(y,2)Thus, in both cases we have that
f(z,2) # f(y, 2), as desired. O

16.6 Corollary Every deterministic read-once branching program computing the
weighted sum function w,, (x) must have size at least 2"~ (V")

16.2 P # NP N co-NP for read-once programs

We now consider nondeterministic branching programs. Call such a program read-
once (or a 1-NBP) if along any path from the source node to the target node every
variable appears at most once. Note that this is a “syntactic” restriction: such a
program cannot contain any inconsistent paths, that is, paths along which two
contradictory tests “is x; = 1?” and “is ©; = 0?” on the same variable x; are made.
Recall that every boolean function of n variables can be computed by a 1-NBP of
size at most 2v/27; see (??).

Just as we did it for the size of decision trees, we can ask the P versus NPNco-NP
question for their (slight) generalization—read-once programs. We will show that
here we also have P # NP N co-NP.

Namely, we will exhibit a boolean function f of n variables (the “pointer func-
tion”) such that both f and —f have nondeterministic read-once branching pro-
grams of polynomial size but any deterministic read-once program for f must have
exponential size.

The pointer function 7, (x1,. .., x,) is defined as follows. Let s and k be such
that ks> = n and k = log n. Arrange the n indices 1, ..., n of the variables into a
k x s? matrix, split the i-th row (1 < i < k) into s blocks By, Bja, . . ., Bjs of size
s each, and let y; be the OR of ANDs of variables in these blocks:

ylz\q/(/\a:l) i=1,...,k, (16.1)

j=1 leByj

16.3 Branching programs without null-paths 451
Then define the pointer function by
7-‘-n(xla e 7xn) = :Ebin(y)Jrl 5

where bin(y) = 2871y, + 287 2yy + - - + 2y, 1 + yi is the number whose binary
code is the vector y = (y1, ..., Yk)-

16.7 Example Here is an example of the pointer function of n = 8 variables with
k=s=2:
v Y2
(171 V 562) A\ (Ig V 134) (.CE5 V 136) N (1‘7 V Ig)
—_— Y Y

Bi11 Bi2 B2 Bao

On input a = (1,0,...,0) we have y; = yo = 0, and hence, bin(y) = 0, implying
that m(a) = @bin(y)+1 = a1 = 1.Oninputa = (1,0,0,1,0,0,1,0) we have y; = 1,
y2 = 0, and hence, bin(y) = 2, implying that 7(a) = apin(y)+1 = az = 0.

16.8 Theorem Both m,, and —,, have 1-NBPs of size O(n) whereas any 1-BP com-
puting m, must have size at least 2°~" = exp (£2(n/ log n)1/2).

Proof. We first prove the upper bound. On input vector x = (1, ..., 2,) in {0,1}",
the desired 1-NBP first guesses a binary string a = (ay, ..., ax) € {0,1}*. After
that it remains to test if the values y; = a1, ..., yr = ay satisfy the equalities (??)
and if the corresponding (to the string a) variable x; := Tyn(q) + 1 has the value 1
(or 0 in the case of —7r,,). It is clear that the resulting program is read-once, except
that the variable x; could be tested two times: once in the program P; making that
of the tests (??) for which | € B;; U ... U B;s, and then once more at the end of a
computation. A simple (but crucial) observation is that we can safely replace the
variable z; in that program P; by the constant 1 (or by 0, in the case of —7,,), so
that the whole program is read-once.

We now prove the lower bound. By Lemma ?? it is enough to show that the
function 7, is m-mixed for m = s — 1. To show this, take any two different
assignments a and b of constants to a set of m variables in X. Since m is strictly
smaller than s, we have that: (i) every block B;; has at least one unspecified variable,
and (ii) in every row, at least one block consists entirely of unspecified variables.
This means that (regardless of the values of a and b) we can arrange the rest so that
the resulting string (y1, . .., yx) points to a bit 2; where the assignments a and b
differ. O

16.3 Branching programs without null-paths

A null-path in a nondeterministic branching program (NBP) is a path from the
source to a sink node containing an edge labeled by a variable x; and an edge
labeled by its negation —x;. Hence, such a path has “zero conductivity”: it cannot
be consistent with any input vector. Although such paths seem to be “useless” (they

452 16 Bounded Replication

Bilder/najorize-eps-converted-to.pdf

Fig. 16.1 A function f majorizes A if it does not accept a vector x ¢ A with at most m ones. The
function isolates A if it additionally rejects all inputs ¢ A with at most 2m ones.

cannot accept any vector), their presence may exponentially reduce the size (total
number of edges) of the program; compare Corollary ?? with Proposition ?? below.
Actually, the presence of such “redundant” paths, just like the presence of NOT
gates in circuits, is exactly what makes it so difficult to analyze general branching
programs. So, let us look what happens if we forbid null-paths. Let us call such
programs null-path-free programs. Note that every deterministic null-path-free
program is just a read-once program. So, the restriction is only interesting for
nondeterministic branching programs and switching networks. It is clear that every
1-NBP is null-path-free but not every null-path-free NBP must be read-once.
Theorem ?? shows that 1-NBP may be exponentially more powerful than their
deterministic counterparts, 1-BP. Thus, it is harder to prove high lower bounds even
for 1-NBP. Still, we have a general lower-bounds criterion for null-path-free NBP.
For a 0-1 vector z, let || denote the number of ones in it. We say that a set
A C {0,1}" is m-uniform, if |z| = m for all x € A. A set A is uniform if it is
m-uniform for some 0 < m < n. We also say (see Fig. ??) that a boolean function

f:4{0,1}™ — {0,1}

« majorizes A if for every x € {0,1}" with |z| < m, f(z) = 1 implies x € A;
« isolates A if for every x € {0,1}" with |z| < 2m, f(z) = 1 implies z € A.

Define the k-th degree, dj,(A), of A as the maximum number of vectors in A, all of
which have 1s on some fixed set of k coordinates. That is,

dp(A) = lr}llzi)l(c|{x€A|mi =1foralli € I}|.

Define also d(A) = mindy(A) - dp—k(A), where the minimum is taken over all

k, 1 < k < m. The following general lower bounds were proved by Jukna and
Razborov (1998).

16.9 Theorem Let A C {0, 1}™ be a uniform set of vectors. Then every 1-NBP ma-
jorizing A as well as every null-path-free NBP isolating A requires at least | A|/d(A)
nodes.

16.3 Branching programs without null-paths 453

Proof. We first consider the case of 1-NBP Let m be the number of ones in the
vectors of A, and let P be a 1-NBP majorizing A. Hence, P computes some boolean
function f(z) such that for every vector x € {0, 1}" with || < m ones, f(z) =1
iff v € A.Let 1 < k < m be an integer for which d(A) = di(A) - dim—r(A4).

For each input a € A, fix an accepting path consistent with a. Since a has m
1-bits, and no vector with a smaller number of 1-bits can be accepted, all the m
1-bits of @ must be tested along this path. Split this path into two segments (p,, ¢a).
where p, is an initial segment of the path accepting a along which exactly k 1-bits
of a are tested. We denote the corresponding set of bits by I,,, and let .J, denote
the set of remaining m — k 1-bits of a. For a node v of P, let A, denote the set of
all inputs a € A such that v is the terminal node of p,. We are going to finish the
proof by showing that |A,| < di(A)d,,—r(A) for every node v.

Fix some node v of P,andletZ = {I,:a € A,},J = {Jp : b € A, }. Since our
program is read-once, we have that I N J = () forall I € 7 and J € J. Take now
an arbitrary pair I € Z, J € J, and denote by c;, s the input defined by ¢y s(i) =1
iffie TUJ.

16.10 Claim For every I € 7 and J € J, the combined input c;_; belongs to A.

Proof. Choose some a,b € A, such that I = I,,, J = J. Since I and J are disjoint,
the path (pg4, qs) is consistent with the input ¢; ;. Hence, this input is accepted
because the path leads to an accepting sink. But since |I| + |J| = m and m is the
smallest number of 1s in an accepted input, this is possible only when this combined
input ¢ s belongs to A. O

With this claim in mind, we fix an arbitrary J € J and notice that {c; ; |
I € 7} is a set of different inputs from A, all of which have 1s on J. Hence,
IZ| < djj(A) < dm—r(A) (provided J # (). Similarly, | 7| < dp(A) which
implies |Z| - |7| < di(A) - dp—k(A). Finally, every a € A, is uniquely determined
by the pair (1,, J,), therefore |A,| < |Z| - |J|. This completes the proof of the
desired inequality |A,| < di(A)d,,—r(A), and thus, the proof of the theorem in
the case of 1-NBP.

If our program P is null-path-free but not necessarily a 1-NBP, then along an
accepting path, some variables may be tested many times. This, in particular, means
that the sets I and J may not be disjoint. Still, if we require that our program
not only majorizes the set A but also isolates it, then Claim ?? applies also in this
case. Indeed, as before, the path (p,, ¢») is consistent with the combined input ¢; j,
meaning that this input must be accepted by the program. But since this input
has |e; s = [TUJ| < |I| +|J| < k+ m < 2m ones, and since the program
cannot accept any input with < 2m ones lying outside A, this implies that c;_;
must belong to A. The rest of the proof is the same as in the case of 1-NBP. O

The perfect matching function is a monotone boolean function PM,, of m?
variables. Inputs for this function are subsets £ C K,, ,,, of edges of a fixed
complete bipartite m x m graph K, ,,, and f,,,(E) = 1 iff E contains a perfect
matching, that is, a set of m vertex-disjoint edges. Taking a boolean variable x; ;

454 16 Bounded Replication

for each edge of K, ,,, the function can be written as

m

PMn(x) = \/ /\ Lo (i)

oc€S,, i=1

where S, is the set of all m! permutations of 1,2, ..., m.

The exact perfect matching function EPM,, accepts a graph F iff E is a perfect
matching. That is, EPM,, takes a boolean n x n matrix as an input, and outputs
1 iff this is a permutation matrix, that is, each row and each column has exactly
one 1.

In Section ?? we have shown that PM,, requires monotone circuits of super-
polynomial size. Now we show that it also requires 1-NBP of exponential size.

16.11 Corollary Every 1-NBP computing PM,, as well as any null-path-free NBP
computing EPM,, must have size 2(").

Proof. Let A be the set of all | A| = n! permutation matrices; hence, A is m-uniform
with m = n. Since only (n — k)! perfect matchings can share k edges in common,
we have that di(A) = (n — k)!. In particular, taking ¥ = n/2, we obtain that
d(A) < (n/2)!- (n/2)!. Observe that every program computing PM,, majorizes A,
and every program computing EPM,, must isolate A. Thus, Theorem ?? yields the

desired lower bound n!/d(A) > (7:/12) O

To better understand the role of null-paths, we have to first solve the following
problem. Say that a nondeterministic branching program is weakly read-once if
along any consistent s-t path no variable is tested more than once. That is, we now
put no restrictions on inconsistent paths: only consistent paths are required to be
read-once.

The following problem is one of the “easiest” questions about branching pro-
grams, but it still remains open!

16.12 M Research Problem
Prove an exponential lower bound for weakly read-once nondeterministic branching
programs.

That such programs may be much more powerful than 1-NBPs shows the fol-
lowing observation made in (Jukna, 1995).

16.13 Proposition The function EPM,, can be computed by a weakly read-once non-
deterministic branching program of size O(n?).

Proof. To test that a given square 0-1 matrix is a permutation matrix, it is enough
to test whether every row has at least one 1, and every column has at least n — 1
zeros. These two tests can be made by two nondeterministic branching programs
P, and P, designed using the formulas

16.4 Parity branching programs 455

n n

P(X)= /\ \/x” and P(X) = /\ \/
j=1k=1

i=1j=1

RIRE

>

~

Wil
E

~

Let P = P; A\ P be the AND of these two programs, that is, the sink-node of P,
is the source-node of P,. The entire program has size O(n?). It remains to verify
that P is read-once. But this is obvious because all the contacts in P are positive
whereas all contacts in P, are negative; so every s-¢ path in the whole program P
is either inconsistent or is read-once. O

Thus, the presence of “redundant” paths—those consistent with none of the input
vectors—may exponentially decrease the size of branching programs! To understand
the actual role of such paths is one of the main problems in circuit complexity.

16.4 Parity branching programs

We already know how to prove exponential lower bounds for “syntactic” read-
once branching programs, where along any input-output path each variable is
tested at most once. In this case we can prove high lower bounds for deterministic
as well as for nondeterministic programs. The situation with parity branching
programs (-BP) is, however, much worse: here no high lower bounds are known
even for syntactic read-once programs. Recall that a ©-BP is just a nondeterministic
branching program with a counting acceptance mode: it accepts a given input vector
a iff the number of input-output paths consistent with a is odd. In a read-once &-BP

no variable can be re-tested along any path.

16.14 M Research Problem
Prove an exponential lower bound for read-once parity branching programs.

So far, exponential lower bounds for such programs are only known under the
additional restriction that the program is oblivious. The nodes are partitioned into
at most n levels so that edges go only from one level to the next, all the edges of
one level are labeled by contacts of one and the same variable, and different levels
have different variables.

To prove exponential lower bounds for oblivious read-once &-BPs, we will
employ one specific property of linear codes—their “universality”.

Recall that a linear code is just a set of vectors C' C {0, 1}™ which forms a linear
subspace of GF(2)™. The minimal distance of a code C' is a minimal Hamming
distance between any pair of distinct vectors in C. It is well known (and easy to
show) that the minimal distance of C' is exactly the minimum weight of (that is, the
number of 1s in) a nonzero vector from C. The dual of C is the set C- of all those
0-1 vectors that are orthogonal over GF(2) to all vectors in C, that is, the set of all
vectors whose scalar product over GF(2) with every vector in C' is equal 0.

456 16 Bounded Replication

Say that a set of vectors C' C {0,1}" is k-universal if for any subset of k
coordinates I C {1,...,n} the projection of vectors from C onto this set I gives
the whole cube {0,1}!. A nice property of linear codes is that their duals are
universal.

16.15 Proposition The dual of every linear code of minimal distance k + 1 is k-
universal.

Proof. Let C be alinear code of minimal distance k+1, and takeaset I C {1,...,n}
with |I| < k. The set of all projections of vectors in the vector space W = C* onto
I forms a linear subspace. If this subspace were proper, then some nonzero vector
x, whose support S, = {i | z; = 1} lies in I, would belong to the orthogonal
complement W+ = C of W. But this would mean that C has minimum distance at
most |S;| < |I] < k, a contradiction. O

A characteristic function of a set C' C {0, 1}™ is a boolean function f¢ such that
fc(JC) =1iffx e C.

16.16 Theorem Let C C {0, 1}"™ be a linear code with minimal distance d1, and let do
be the minimal distance of the dual code C-. Then every oblivious read-once ®-BP
computing the characteristic function fc of C has size at least 2™ {d1.d2}—1,

Proof. Let P be an oblivious read-once &-BP computing f, set k := min{d;, da}—1,
and let I C {1,...,n} be the set of bits tested on the first k = |I| levels of P.
Every assignment a : I — {0, 1} (treated for this purpose as a restriction) defines
a subfunction f, of f of n — |I| variables which is obtained from f by setting z;
to a(i) for all i € I. Let F be the subspace of the 2" ~*-dimensional space of all
boolean functions on n — k variables, generated by the subfunctions f, of f with
a: I — {0,1}. It is not difficult to see that size(P) > dim(F).

Indeed, if vy, . .., v, are the nodes at the k-th level of P, then for every assign-
ment a : I — {0, 1}, the subfunction f, is a linear combination of the functions
computed by the sub-programs with source-nodes vy, ..., v,.: f,(b) = 1 iff the
number of accepting paths in P(a, b) is odd. Hence, we need at least r > dim(F)
such functions to get all the subfunctions in F.

Now we can finish the proof as follows. Since the dual of C' has distance dy >
k + 1, we have by Proposition ??, that the code C itself is k-universal. This, in
particular, means that for every assignment a : I — {0, 1} there is an assignment
x, : I — {0,1} suchthat (a,z,) € C.Moreover, since C has distance d; > k = ||,
we have that (b, z,) € C for every other assignment b : I — {0,1}, b # a. Thus,
if we describe the subfunctions f,, a : I — {0,1}, as rows of a 2% x 2"~* matrix,
then this matrix contains a diagonal 2¥ x 2* submatrix with entries f(a,x) such
that f(a,z) = 1iffz = x,. So, the matrix has row-rank equal 2¥, which means that
the subfunctions in F are linearly independent (over any field, including GF(2)).
Thus, size(P) > dim(F) = | F| > 2, as desired. O

To give an explicit lower bound, recall that the r-th order binary Reed—Muller
code R(r,m) of length n = 2™ is the set of graphs (sequences of values) of all

16.5 Linear codes require large replication 457

multilinear polynomials in m variables over GF(2) of degree at most r. We have
Sio (T) ~ m" possible monomials, and each subset of these monomials gives us
a polynomial. We list the vectors in {0, 1} as a1, .. ., a,, and associate with each
polynomial p(21, . .., z,) a code-word (p(a1),...,p(a,)) in {0, 1}". This code is

linear and has minimal distance 2™~ ".

16.17 Corollary Letn = 2™ andr = |m/2]. Then every oblivious read-once ®-BP
computing the characteristic function of the Reed-Muller code R(r, m) has size at least

902(vn)

Proof. It is known (see, for example, MacWilliams and Sloane (1997), p. 374) that the
dual of R(r, m) is the code R(m — r — 1,t). Hence, in the notation of Theorem ??
we have that d; = 27" > Q(y/n) and dy = 2" ! > 2(y/n). The desired bound
follows. O

For other explicit codes, as BCH-codes, the lower bound can be increased to
292(n). see Example ?? below.

16.5 Linear codes require large replication

Recall that the replication number of a program is the minimal number R such that
along every computation path, at most R variables are tested more than once. The
sets of variables re-tested along different computations may be different. We will
now prove exponential lower bounds for deterministic branching programs with
replication number R = en for a constant € > 0. Recall that R = n is the maximal
possible value corresponding to unrestricted branching programs.

But before we start, let us first show that testing just one bit twice can help a
lot! For this, let us again consider the pointer function 7, introduced in Section ??.
We already know (see Theorem ??) that any deterministic branching program of
replication number R = 0 (that is, a read-once program) for this function must
have exponential size. We now show that allowing to re-test just one bit along each
path reduces the size drastically.

16.18 Proposition The pointer function m,, can be computed by a deterministic branch-
ing program of size O(n?/logn) and replication number R = 1.

Proof. Foreachi =1,...,k,let P; be an obvious 1-BP of size s = n/k < n/logn
computing the function y; = \/;:1 (Nse B, x). Arrange these programs into a
binary tree of height k: the first level consists of P;, the second consists of two copies
of P, having the 0 and 1 leaves of P as its start nodes, and the ¢-th one consists of
20~1 copies of P;. In this way we obtain a read-once program of size O(2¥n/k) =
O(n?/logn). This program has 2¥ = n leaves, each labeled by the corresponding
string a = (ay,...,ay) of values of (y1, ..., yx), and hence, by the corresponding
index [= bin(a). Replace each such leaf by a size-1 branching program testing the

458 16 Bounded Replication

corresponding variable x; 1. The resulting program has replication number R = 1,
computes 7, and has the desired size. O

We are now going to show that some explicit boolean functions require large
replication number R, growing with the number n of variables. We will present
two entirely different lower bounds arguments for (1, +R)-branching programs.
The first one, presented in this section, is numerically weaker—works only for
R = o(n/logn)—but is (apparently) more instructive. Moreover, it works for
important objects—characteristic functions of linear codes. A different argument,
presented in the next section, gives exponential lower bounds for programs of
almost maximal replication R = (2(n), but the functions for which it works are no
longer as “simple”—they are quadratic functions of good expander graphs.

The following theorem gives a general lower-bounds criterion for (1, +R)-
branching programs: a function is hard to compute by such programs if the accepted
inputs lie far away from each other, and if the function cannot be made constant 0
by fixing few variables to 0 and 1. Namely, say that a boolean function is

o d-rare if any two accepted inputs differ in at least d bits;
« m-robust if it is not possible to make the function be constant 0 by fixing fewer
that m variables.

The following general lower bound was proved by Jukna and Razborov (1998)
using earlier results of Zak (1995), and Savicky and Zak (1997).

16.19 Theorem Let 0 < d,m,R < n be arbitrary integers. Every (1,+R)-

branching program computing a d-rare and m-robust function must have size at
least 2(min{d, m/(RJrl)}fl)/Q.

The idea behind the proof of this fact is the following. If all computations are long
(of length at least m) and the program is not too large, a lot of computation paths
must split and join again. At that node where they join again, some information
about the inputs leading to this node is lost. If too much information is lost and not
too many (at most R) variables may be re-tested once again, it is not possible to
compute the correct value of the function.

The intuition about the “loss of information” is captured by the following notion
of “forgetting pairs” of inputs. Given a branching program P and a partial input
a: [n] = {0,1,%}, comp(a) is the path in P consistent with a until we reach a
node where the first test of * is made. For two partial inputs a and b, let D(a, b)
be the set of all bits where they both are defined and have different values. The
support S(a) of a partial input a is the set of all specified bits, that is, bits i for
which a(i) # *. A composition b = ajas - - - as of partial inputs ay,as, ..., as,
whose supports are pairwise disjoint, is a (partial) input defined by b(¢) = a, () for
i € S(a;). The size | P| of a branching program P is the number of nodes.

Let a, b be (partial) inputs with S(a) = S(b). Given a branching program P,
the pair a, b is called a forgetting pair (for P) if there exists a node w such that w
belongs to both comp(a) and comp(b), and both computations read all the variables
with indices in D(a, b) at least once before reaching w (Fig. ??). Thus, all the bits

16.5 Linear codes require large replication 459

Bilder/forgetting-eps-converted-to.pdf

Fig. 16.2 Forgetting pairs a1 and b1, a1a2 and a1b2, a1aza3 and aiazb3.

from D(a,b) are “forgotten” when the computations reach the node w. To increase
the number of these forgotten bits, we need the following definition.

Say that a sequence (a;, b;), 7 = 1,..., s of pairs of partial inputs a; # b; forms
an (s,1)-chainif S(a;) = S(b;) = I, |I;] < [, the I; are pairwise disjoint and, for
allj =1,...,s, theinputs a; - --a;_1a; and a; - - - a;_1b; form a forgetting pair.

16.20 Lemma Let P be a branching program in which every computation reads at
least m different variables. If s < m/(2log |P| + 1) andl < 2log |P| + 1, then P
has an (s, 1)-chain.

Proof. Given a branching program P, one can get a forgetting pair by following all
the computations until 7 := |log | P|] +1 different bits are tested along each of them.
Since |P| < 27, at least two of these paths must first split and then join in some
node. Take the corresponding partial inputs ¢ and b} and extend them to a; and by
such that S(a1) = S(b1) = S(a}) U S(b)) and D(ay,b1) C S(a}) N S(b}). In this
way we get a forgetting pair of inputs a; # b; both of which are defined on the
same set of at most |S(a}) U S(b])| < 2r — 1 bits. We can now repeat the argument
for the program P,, obtained by setting all variables z; with ¢ € S(a;) to the
corresponding values of a1, and obtain next forgetting pair of inputs a;as and a;bs,
etc. We can continue this procedure for s steps until s(2r—1) < s(2log|P|+1) does
not exceed the minimum number m of different variables tested on a computation

of P. O

p@plus6p@

Proof of Theorem ??addpunct: Suppose that some branching (1, +R)-program P
computes a d-rare and m-robust function and has size | P| smaller than stated in
Theorem ??, that is, assume that

2log|P|+1 < min{d, m/(R+1)}.

We can assume w.l.o.g. that d > 2 (otherwise the bound becomes trivial), and this
implies that every 1-term of f has size n > m. Hence, in order to force f to either
0 or 1 we must specify at least m positions, implying that every computation of P
must read at least m different variables. Since 2log |P| + 1 < m/(R + 1), we can
apply Lemma ?? with s := R + 1 and obtain that P must contain an (s, !)-chain
with s = R+ 1and! < 2log |P|+ 1 < min{d, m/(R + 1)}. That is, we can find
R + 1 pairwise disjoint sets I; of size

|I;] <2log|P|+ 1 < min{d, m/(R+1)} (16.2)

460 16 Bounded Replication

and pairs a; # b; of assignments on these sets such that all partial inputs
ai---a;—1a; and ap - - - a;—1b; form forgetting pairs in P.

By (??), the partial input a; - - - a1 specifies strictly fewer than m variables.
Since f is m-robust, a; - - - ap1 can be extended to a totally defined input a such
that f(a) = 1.

As the sets I, ..., Ir41 are non-empty and pairwise disjoint, and at most R
variables can be re-tested along any computation, there must exist j such that all
variables with indices from I; are tested at most once along comp(a). Now, let w
be the node that corresponds to the forgetting pair a; - - - a;_1a; and a; - - - aj_1b;.
The node w is on comp(a). All variables with indices from D(a;,b;) C I; are
already tested along comp(a) before w, hence no such variable is tested after w,
and the computation on the input c obtained from a by replacing a; with b; can
not diverge from comp(a) after the node w. Therefore, f(c) = f(a) = 1. But (??)
implies that |I;| < d, contradicting the d-rareness of f. This completes the proof of
Theorem ?7. O

endpe false

This theorem is especially useful for (characteristic functions of) linear codes,
that is, for linear subspaces of GF(2)". It is clear that the characteristic function
fc of alinear code C' is d-rare if and only if the minimal distance of C' is at least d.
Also, Proposition ?? implies that f¢ is m-robust if and only if the minimal distance
of its dual C is at least m. Hence, Theorem ?? implies the following lower bound
for characteristic functions of linear codes.

16.21 Theorem Let C' be a linear code with minimal distance dy, and let do be
the minimal distance of the dual code C--. Then every (1, + R)-branching program
computing the characteristic function of C' has size exponential in min{d;, d2/R}.

This theorem yields exponential lower bounds on the size of (1, 4+ R)-branching
programs computing characteristic functions of many linear codes.

16.22 Example (BCH-codes) Let n = 2¢ — 1, and let C' C {0, 1}" be a BCH-code
with designed distance § = 2t + 1, where t < \/n/4, and let f¢ be its characteristic
function. Let d3 be the minimal distance of its dual C*. The Carliz—Uchiyama bound
(see, e.g., MacWilliams and Sloane (1997), p. 280) says that do > 2t-1 _ (t— 1)2”2
which is £2(n) due to our assumption on t. Since the minimal distance d; of a BCH-
code is always at least its designed distance d, we get from Theorem ?? that every
(1, +R)-branching program computing fc has size exponential in min{t, n/R}.
In particular, if ¢ = w(log n) then every such program must have super-polynomial
size as long as R = o(n/logn).

16.6 Expanders require almost maximal replication

We are now going to prove exponential lower bound on the size of branching
programs with almost maximal replication number R = 2(n). This was done in

16.6 Expanders require almost maximal replication 461

(Jukna, 2008). The functions for which we prove such a bound will be quadratic
functions of a specially chosen graph, the so-called Ramanujan graph. Let G' =
(V, E) be an undirected graph on V' = {1,...,n}. The quadratic function of G
over GF(2) is a boolean function

fe(@1,... zn) = Z x;x; mod 2.
{i,j}€E

That is, given an input vector a € {0,1}", we remove all vertices ¢ with a; = 0,
and count the number of the surviving edges modulo 2.

It is clear that fi can be computed by an unrestricted branching program (with
replication R = n) of size O(n?). We will show that good expanding properties
of the graph G imply that every branching program computing fo A (21 ® xo &
-+ @ x, ® 1) must have either replication number R > en for a constant € > 0 or
must have exponential size.

But first we will prove a general theorem telling us what properties of boolean
functions do actually force the replication number of their branching programs to
be large.

A boolean function r(x1, ..., x,) is a rectangular function if there is a balanced
partition of its variables into two parts such that r can be written as an AND of two
boolean functions, each depending on variables in only one part of the partition.
A set R C {0,1}™ of vectors is a combinatorial rectangle (or just a rectangle) if
R = r71(1) for some rectangular function . So, each combinatorial rectangle has
aform R = Ry x Ry where Ry C {0,1}{° and R; C {0, 1}!* for some partition
[n] = Ip U I of [n] = {1,...,n} into two disjoint parts Iy and I; whose sizes
differ by at most 1.

The rectangle number, p(f), of a boolean function f is the maximum size of a
rectangle lying in f~1(1):

p(f) = max{|R| : Ris arectangle and f(x) = 1forallxz € R}.

Finally, we say that a boolean function f of n variables is:

« sensitive if any two accepted vectors differ in at least two bits;
o denseif |f~1(1)| > 2"°(") and
. rectangle-free if p(f) < 272,

16.23 Theorem There is a constant € > 0 with the following property: if f is a sensi-
tive, dense and rectangle-free boolean function of n variables, then any deterministic
branching program computing f with the replication number R < en must have
292(") nodes.

Proof. Let f be a sensitive and dense boolean function of n variables. Suppose also
that the function f is rectangle-free, that is, f~1(1) does not contain a rectangle of
size larger than 2n=9n for some constant & > 0. Take an arbitrary deterministic
branching program computing f with replication number R < en, where € > 0 is
a sufficiently small constant to be specified later; this constant will only depend

462 16 Bounded Replication

on the constant §. Our goal is to prove that the program must have at least 2(")
nodes.

For an input @ € {0, 1}" accepted by f, let comp(a) denote the (accepting)
computation path on a. Since the function f is sensitive, all n bits are tested at
least once along each of these paths. Split every path comp(a) into two parts
comp(a) = (Pa, qa), Where p, is an initial segment of comp(a) along which n/2
different bits are tested. Hence, the remaining part ¢, can test at most n/2 + R
different bits. (Note that we only count the number of tests of different bits—the
total number of tests along comp(a) may be much larger than n + R.) Let S be the
number of nodes in our program.

Viewing segments p, and g, as monomials (ANDs of literals), we obtain that f
can be written as an OR of at most S ANDs P A () of DNFs P and () satisfying the
following three conditions:

(i) All monomials have length at least n/2 and at most n/2 + R. This holds by
the choice of segments p, and q,.

(ii) Any two monomials in each of the DNFs are inconsistent, that is, one contains
a variable and the other contains its negation. This holds because the program
is deterministic: the paths must split before they meet.

(iii) For all monomials p € P and q € @, either pg = 0 (the monomials are
inconsistent) or | X (p) N X(¢)] < R and | X(p) U X(q)| = n, where X(p)
is the set of variables in a monomial p. This holds because the program has
replication number R and the function f is sensitive.

Now fix one AND P A @ for which the set B of accepted vectors is the largest
one; hence, the program must have at least | f~1(1)|/|B| > 2"~°™ /| B| nodes,
and it remains to show that the set B cannot be too large, namely that

IBl < 2n—!2(n))

We do this by showing that otherwise the set B, and hence, also the set f -1 (1),
would contain a large rectangle in contradiction with the rectangle-freeness of f.
When doing this we only use the fact that all vectors of B must be accepted by an
AND of DNFs satisfying the properties (i)-(iii) above.

By (iii) we know that every vector a € B must be accepted by some pair of
monomials p € P and ¢ € @ such that | X (p) N X(q)| < R. A (potential) problem,
however, is that for different vectors a the corresponding monomials p and ¢ may
share different variables in common. This may prohibit their combination into a
rectangle (see Example ?? below). To get rid of this problem, we just fix a set Y of
|Y'| < R variables for which the set A C B of all vectors in B accepted by pairs of
monomials with X (p) N X (q) =Y is the largest one. Since R < en, we have that

R
1A] > \B|/Z (") > (B|.2mHE)
1
i=0

where H(xz) = —zlogy x — (1 — x) logy(1 — z) is the binary entropy function.

16.6 Expanders require almost maximal replication 463
16.24 Claim The set A contains a rectangle C of size

A7
€12 5 gwr
Assuming the claim, we can finish the proof of the theorem as follows. By the
rectangle-freeness of f, we know that |[C| < 2"7°" for a constant § > 0. By
Claim ??, we know that

‘A| <3. 2(n+R)/2|C‘ <3. 2(1+e)n/2+(176)n)

Hence, if R < en for a constant ¢ > 0 satisfying € + 2H (¢) < 26, then

IB| < |A| - 2H©n < §. gn=(20-e=2H(9)n/2 £ gn—2(n)

It remains therefore to prove Claim ??.

Each monomial of length at most k accepts at least a 2~* fraction of all vectors
from {0, 1}"™. Hence, there can be at most 2¥ mutually inconsistent monomials of
length at most k. By (i) and (ii), this implies that

|P| < 2"/2 and |Q| < 27/2+E. (16.3)

For each monomial p € PUQ, let A, = {a € A | p(a) = 1} be the set of all
vectors in A accepted by p; we call these vectors extensions of p. Note that, by the
definition of the set A, a € A,, iff pg(a) = 1 for some monomial ¢ € @) such that
X(p)nX(q) =Y.

Since, by (ii), the monomials in P are mutually inconsistent, no two of them can
have a common extension. Since every vector from A is an extension of at least one
monomial p € P, the sets A, with p € P form a partition of A into | P| disjoint
blocks. The average size of a block in this partition is |A|/| P|. Say that a monomial
p € P is rich if the corresponding block A,, contains |A,| > £|A|/|P| vectors.
Similarly for monomials in). By averaging, at least two-thirds of vectors in A must
be extensions of rich monomials in P. Since the same also holds for monomials in
@, at least one vector x € A must be an extension of some rich monomial p € P
and, at the same time, of some rich monomial ¢ € Q.

Let y be the projection of z onto Y = X (p) N X (). Since all variables in Y are
tested in both monomials p and g, all the vectors in A, and in A, coincide with
y on Y. Consider the set of vectors C' = C; x {y} x Cs, where (1 is the set of
projections of vectors in A, onto the set of variables X \ X (¢), and (% is the set of
projections of A, onto the set of variables X \ X (p). Since both monomials p and
q have at least n/2 variables, the set C' is a rectangle of size

Al Al 1Al JAl 1 AP

= . =1A,-1A,] > — = — .
|C‘ |Cl| ‘CQ‘ | P| | q|73|P| 3‘Q| 79271/2 2n/2+R 92n+R

Hence, it remains to verify that C' C A, i. e., that all vectors ¢ € C are accepted by
PAQ.

464 16 Bounded Replication

The vector x belongs to C' and has the form = = (x1,y, x2) with x; € C;. Now
take an arbitrary vector ¢ = (c1,y, ¢2) in C. The vector (21, y, c2) belongs to A,,.
Hence, there must be a monomial ¢’ € @ such that X (p) N X(¢') = Y and pq’
accepts this vector. Since all bits of z; are tested in p and none of them belongs to Y,
none of these bits is tested in ¢’. Hence, ¢’ must accept also the vector ¢ = (¢1, y, ¢2).
Similarly, using the fact that (¢1,y, z2) belongs to A,, we can conclude that the
vector ¢ = (c1, ¥y, ¢2) is accepted by some monomial p’ € P. Thus, the vector c is
accepted by the monomial p’¢’, and hence, by P A Q.

This completes the proof of Claim ??, and thus, the proof of Theorem ??. ad

In the last step of the proof of Theorem ?? it was important that every vector
from A is accepted by a pair of monomials sharing the same set of variables Y;
otherwise, the rectangle C need not lie within the set A.

16.25 Example Take P = {x1,~x1} and Q = {x9, 122} with p = 27 and
q = x2. The AND P A Q) accepts the set of vectors A = {11, 01, 10}. The projection
of A, = {11,01} onto X \ X(q) = {x1} is C1 = {0,1}, and the projection of
A, ={11,10} onto X \ X (p) = {z2} isalso Cy = {0,1}. But C = Cy x Cy Z A,
because 00 does not belong to A.

In the proof of Theorem ?? it was also important that the branching program was
deterministic: this resulted in the property (ii) above which, in its turn, gave upper
bounds (??) on the total number of monomials. In the case of nondeterministic
branching programs we do not necessarily have this property, and in this case no
exponential lower bounds are known even for R = 1 (cf. Research Problem ??).

16.6.1 Quadratic functions of expanders are hard

To apply Theorem ??, we need an explicit boolean function which is sensitive,
dense and rectangle-free. Note that the first two conditions—being sensitive and
dense—are easy to ensure. A more difficult task is to ensure rectangle-freeness. The
problem here is that f must be rectangle-free under any balanced partition of its
variables. For this purpose, we consider quadratic functions of graphs. Recall that a
quadratic function of a graph G = ([n], F) is a boolean function

fG('T17"'7$n): Z .’Eil‘ijdQ.
{i,j}eE

What properties of the underlying graph G do ensure that its quadratic function
fc is rectangle-free? We will show that if G has a large “matching number”, then
fc is rectangle free.

Define the matching number m(G) as the largest number m such that, for every
balanced partition of vertices of G, at least m crossing edges form an induced
matching. (An edge is crossing if it joins a vertex in one part of the partition with a

16.6 Expanders require almost maximal replication 465

Bilder/matching-eps-converted-to.pdf

Fig. 16.3 After the setting to O all variables outside the induced matching, the function fo =
EB“ iyer Tili turns to the inner product function I Py, = 21y1 ® - - - B TmYm.

vertex in the other part. Being an induced matching means that no two endpoints
of any two edges of the matching are joined by a crossing edge.)

16.26 Lemma For every graph G on n vertices, p(fq) < 2" ™(G),

Proof. Fix an arbitrary balanced partition of the vertices of GG into two parts. The
partition corresponds to a partition (z, y) of the variables of fg. Let r = 1 (z) A
r9(y) be an arbitrary rectangle function with respect to this partition, and suppose
that 7 < f. Our goal is to show that r can accept at most 2" ™) vectors.

By the definition of m(G), some set M = {z1y1,...,TmYm} of m = m(G)
crossing edges z;y; forms an induced matching of G. We set to 0 all variables
corresponding to vertices outside the matching M. (see Fig. ??). Since M is an
induced subgraph of G, the obtained subfunction of f is just the inner product
function

m
TP (21, oy Ty Y1y e s Ym) = Za:lyl mod 2.
i=1

The obtained subfunction v’ = (1, ...,%m) AT5(Y1,. ., Ym) of the rectangle
function r = r1 A o is also a rectangle function such that r’(a) < I P,,(a) for all
a € {0,1}2™ Since r’ was obtained from 7 by setting to 0 at most n — 2m variables,
we have that |r~1(1)| < |B|-2"~2™ where B = {a | 7’(a) = 1}. Hence, it remains
to show that | B| < 2™. For this, let H be a 2™ X 2™ matrix defined by

Hlz,y] = (—1)1Pm(m,y)@1 .

Since, for every « # 0, I P,,(x,y) = 1 for exactly half of vectors y, this matrix is
a Hadamard matrix. Since our set B C {0,1}™ x {0, 1} lies within 1P, (1), it
corresponds to an all-1 submatrix of H. By the Lindsey Lemma (see Appendix ??),
|B| < 2m™. O

By Lemma ??, we need graphs G such that, for any balanced partition of their
vertices, many crossing edges form an induced matching. To ensure this property,
it is enough that the graph is “mixed enough”.

466 16 Bounded Replication

Say that a graph is s-mixed if every two disjoint s-element subsets of its vertices
are joined by at least one edge.

16.27 Lemma If an n-vertex graph G of maximum degree d is s-mixed, then
n—2s
G)>——.
m(@) 2 775D

Hence,
n s

logplfo) <n= 1m0y T o1y

Proof. Fix an arbitrary balanced partition of the vertices of G into two parts. To
construct the desired induced matching, formed by crossing edges, we repeatedly
take a crossing edge and remove it together with all its neighbors. In each step we
remove at most 2d + 1 vertices. If the graph is s-mixed, then the procedure will
run for m steps as long as [n/2] — (2d 4+ 1)m is at least s. O

Fix a prime power ¢ > 2%, and let f be the quadratic function of a Ramanujan
graph G = RG(n, q) of degree ¢ + 1. By Corollary ??, Ramanujan graphs RG(n, q)
are s-mixed for s = 2n/,/q. Consider the function

fo=fcN(@1 @ Dz, D).

That is, given an input vector a € {0, 1}", we remove all vertices ¢ with a; = 0,
and let f,,(a) = 1 iff the number of 1’s in a is even and the number of surviving
edges is odd.

16.28 Theorem There is a constant € > 0 such that any deterministic branching
program computing f,, with the replication number R < en requires size 22("),

Proof. Our function f;, is a polynomial of degree at most 3 over GF(2). Moreover,
fn is nonzero because f,,(a) = 1 for an input vector a € {0,1}" with precisely
two 1s corresponding to the endpoints of some edge of G. Thus, Exercise ?? implies
that f,, accepts at least 2”3 vectors, and hence, is a dense function. Since ¢ > 2°,
the graph G is s-mixed for s = n/4. Thus, Lemma ?? implies that the quadratic
function f, and hence, also the function f,, is rectangle-free. Finally, the presence
of the parity function in the definition of f,, ensures that f,, is a sensitive function.

Since f,, is sensitive, dense and rectangle-free, Theorem ?? implies that there
is a constant € > 0 such that any deterministic branching program computing g,
with the replication number < en must have size 2("), O

Theorem ?? also gives an exponential lower bound for programs working in
bounded time. Say that a program works in time 7" if every accepting computation
in it has length at most T'.

16.29 Corollary There is a constant € > 0 such that any deterministic branching
program computing f,, and working in time T < (1 + €)n requires size 2°(™).

16.6 Expanders require almost maximal replication 467

Proof. Since f, is sensitive, along each accepting computation all n its variables
must be tested at least once. This means that for branching programs computing
sensitive functions we always have R < T — n. Hence, Theorem ?? yields expo-
nential lower bounds also for the class of time (1 + €)n branching programs for a
constant € > 0. a

Exercises

16.1 Let P = {1,...,n} be the set of points of a projective plane PG(2, q) of order
g,andlet Ly, ..., L, be the lines viewed as subsets of P; hence n = ¢ + ¢ + 1.
Recall that each line has exactly ¢ + 1 points, every two lines intersect in exactly
one point, and exactly g + 1 lines meet in one point. A blocking set is a set of points
which intersects every line. The smallest blocking sets are just the lines. Show that
the characteristic function f(z) = Ai_; V¢, ; of blocking sets is m-mixed for
m=gq— 1.

Hint: Show that for every subset I C P of |[I| = g — 1 points there must be two distinct lines
Li,Lasuchthat IN Ly =1NLay = {l}

16.2 A boolean function f(X) is m-stable if, for every Y C X of size |Y| < m
and for every variable © € Y, there exists an assignment ¢ : X \ Y — {0, 1} such
that either f.(Y) = z or f.(Y) = —z. That is, after the assignment ¢, the value
of the subfunction f.(Y) depends only on that of the variable x. Show that every
m-stable boolean function is also m-mixed.

16.3 For a monotone boolean function f, let Min(f) be the set of all its minterms.
Show that a monotone boolean function is m-stable if and only if, for every Y C X
of size |Y| < m and for every variable 2 € Y, there exists a minterm K € Min(f)
suchthat, KNY = {z} and W\ (K UY) # () forall W € Min(f) withz ¢ W.

16.4 The perfect matching function is a monotone boolean function PM,, in n?

variables, encoding the edges of a bipartite graph with parts of size n. The function
computes 1 iff the input graph contains a perfect matching. Taking a boolean
variable x; ; for each edge of K, ,,, the function can be written as

PM, = \/ /\ Tio(i) s

€S, i=1

where 9, is the set of all permutations of {1, ...,n}. We have shown in Section ??
that this function requires monotone circuits of size n>(1°8™)_ Show that the function
PM,, is (n — 1)-stable.

16.5 Call a boolean function f(X) weakly m-mixed if for every Y C X of size
|Y| = m and any two different assignments a,b : Y — {0,1}, it holds that
fo = fo =0o0r fo # fp. Define Cov(f,k) to be the minimal ¢ for which there

468 16 Bounded Replication

exist mutually inconsistent monomials K1, ..., K; of k literals each, such that
f < K; V...V K, Show that every deterministic read-once branching program
computing a weakly m-mixed boolean function f must have at least Cov(f,m —1)
nodes. Hint: Argue as in the proof of Lemma ??, but consider only accepting paths.

16.6 Recall that a boolean function f is d-robust if f cannot be made a constant-0
function by fixing any its d — 1 variables to constants. Show that, if a boolean
function f of n variables is (d + 1)-robust, then Cov(f, k) is at least exponential in

dk/n.

Hint: Hit the inequality f < K1 V...V K} with a restriction a assigning random 0-1 values to
randomly chosen d variables. Let K be any monomial of length k. Given that exactly s variables

of K are set by a, the probability that K, # 0 is 27°. Use this to show that Prob[K, # 0] <
9—2(dk/n)

16.7 Show that, if a boolean function f can be computed by a 1-NBP of size .5,
then f can be written as an OR of at most .S rectangular functions.

16.8 Recall that the clique function CLIQUE(n, k) has (g) variables z;;, one for
each potential edge in a graph on a fixed set of n vertices; the function outputs 1 iff
the associated graph contains a clique (complete subgraph) on some k vertices. Use
Exercise ?? to show that the size of every 1-NBP computing this function must be
exponential in min{k, n — k}.

Hint: The union of any two graphs, each with at most £ — 1 non-isolated vertices, cannot contain
a k-clique.

16.9 Show that every nonzero polynomial p(z1, ..., x,) of degree k over GF(2)
has at least 2" % nonzero points, that is, [{a | p(a) = 1}| > 2"~ *. Hint: Take a
monomial Hz <y i of p with |I| = k. Show that, for every setting b of constants to variables x;
with ¢ ¢ I, there is a setting ¢ of constants to the remaining k variables such that p(b, ¢) = 1.

17. Bounded Time

In this chapter we show a time-size tradeoff for nondeterministic branching pro-
grams. By the size of a program in this chapter we will mean the number of nodes,
not just the number of labeled edges. A program computes a given function in
time T if every accepted input has at least one accepting computation of length at
most 7.

Our goal is to show that some functions of n variables cannot be computed
in time 7' = O(n) unless the program has size 2("). In the case of deterministic
branching programs such a result was established in a celebrated paper of Ajtai
(1999b). The case of nondeterministic branching programs is, however, much more
difficult: here no exponential lower bounds are known even for T' = n.

Let us stress that our restriction is a “semantic” one: inconsistent paths may be
arbitrarily long! Even consistent paths may be arbitrarily long: we only require that
for every accepted input there exists at least one short path consistent with this
input. The “syntactic” case, where all paths (be they consistent or not) must have
length at most 7', is easier to deal with (see the chapter notes and Exercise ?7?).

To obtain high lower bounds for “semantic” nondeterministic programs, we
consider programs computing functions f : D™ — {0, 1} over domains D larger
than {0, 1}. In this case, instead of just tests “is x; = 0?” and “is x; = 1?” the
program is allowed to make tests “is z; = d?” for elements d € D. Different
edges leaving the same node may make the same test—this is why a program is
nondeterministic. As before, an input a € D" is accepted iff all the tests along at
least one path from the source node to the target node are passed by a.

The exposition below is based on the papers by Ajtai (1999a), Beame,]ayramﬂ
and Saks (2001), and Jukna (2009Db).

" Formerly Jayram S. Thathachar

469

470 17 Bounded Time

Bilder/broom2-eps-converited-to.pdf

Fig. 17.1 An m-rectangle with a broomstick w.

17.1 The rectangle lemma

We consider nondeterministic branching programs computing a given function
f: D™ — {0,1} and working in time kn where k is an arbitrarily large constant.
We want to show that any such program must be large. As in the case of programs
with bounded replication, the idea is to show that if the number of nodes is small
then the program is forced to accept all vectors of a large rectangle. Having shown
this, we construct a function f that cannot accept many vectors of any rectangle.
This will imply that any program for f working in time kn must have large size.

Let X = {z1,...,x,} be a set of n variables. A subset R C D" of vectors is an
m-rectangle (m < n/2), if there exist two disjoint m-element subsets X and X7 of
X, subsets Ry C D!Xol and R, C D!X11 of vectors, and a vector w in D of length
n — 2m such that (after some permutation of the variables) the set R can be written
as R = Ry x {w} X Ry;the vector w is then the broomstick of the rectangle. That
is, on the variables outside Xy U X all vectors in R have the same values as the
vector w. Below is an example of a 2-rectangle over the domain D = {0, 1, 2} with
a broomstick w = (1, 2,0,0, 2):

R{1}><{g}x{2}x{g}x{O}x{O}x{?&}x{Z}.

With some abuse of notation we will write R = Ry x {w} x R, meaning that this
holds after the corresponding permutation of variables:

05 . o
rR=3" x{l}x{2}x{0}x{0}x{2}x{§}}.
10

Note that combinatorial rectangles considered in the previous chapter are m-
rectangles with m = n/2. That is, we now just refine this notion, and consider
rectangles, all vectors in which have a common “broomstick” (i.e., which coincide
on some fixed set of n — 2m positions).

The main property of m-rectangles is (again) the “cut-and-paste” property: if
some m-rectangle R contains two vectors (ag, w, a1) and (g, w, b1), then it must
also contain both combined vectors (bg, w, a1) and (ag, w, by).

17.2 A lower bound for code functions 471

The refined rectangle number, p,,(f), of a function f : D™ — {0,1} is the
maximum size of an m-rectangle lying in f~1(1):

pm(f) = max{|R| : R is an m-rectangle and f(x) = 1forallz € R}.

In general, we have that 0 < p,,(f) < |D|*™ for every function f : D" — {0, 1}.
Standard examples of functions with very small rectangle number are characteristic
functions f of codes C' C D™ of large minimum distance d: for such functions we
have that p,,,(f) = 1 aslongasm < d — 1.

A function f : D™ — {0,1} is sensitive if any two accepted vectors differ
in at least two positions. The only property of sensitive functions we will use is
that, in any branching program computing such a function, each variable must
be tested at least once along any accepting computation path. The density of f is

p(f) =171 @)1/|D"

Rectangle Lemma If a sensitive function f : D™ — {0,1} can be computed by a
nondeterministic branching program of size S working in time kn then, for every
m < n/2k+1,

@) (n) g
() d r=8k"2".

We first give an application of this lemma, and then prove the lemma itself.

1
pm(f) > Z‘D‘zm where A=

17.2 A lower bound for code functions

As our domain D we take a Galois field D = GF(q). We consider the function
gn (Y, z) of N = n? + n variables, the first n? of which are arranged in an n x n
matrix Y. The values of the function are defined by

gn (Y, x) = 1iff the vector x is orthogonal over GF(g) to all rows of Y.

In other words, gy (Y,) = 1 iff the vector x belongs to a linear code defined by
the parity-check matrix Y.

We say that a nondeterministic branching program computes gy (Y, x) in time
T if for every accepted input (Y, x), there exists at least one accepting s-t path for
(Y, x) along which at most T tests on z-variables are made—the first n? variables
from Y can be tested an arbitrary number of times.

Using ideas similar to those in the proof of Theorem ??, it is not difficult to show
that gn (Y, n) can be computed by a branching program of size O(¢>N) whose
every path has length at most about n?: we only need to compute the AND of n
scalar products over GF(q), each of at most 2n variables. The following theorem
shows that if the time is restricted to kn for a constant k, then exponential size is
necessary.

472 17 Bounded Time

17.1 Theorem Let k > 1 be an integer. If ¢ > 23*19 then every nondeterministic
branching program computing gn (Y, x) in time kn must have size exponential in

VN /E?4F,

Proof. Let d = m + 1 where m = n/2*+1. By the Gilbert-Varshamov bound (see,
e.g., MacWilliams and Sloane (1997)), linear codes C of distance d and size

q" q"
> =
€l = Vin,d—1) V(n,m)

exist, where
m

ifn m (T
Vonm =3 a1 () <0 (1)

is the number of vectors in a Hamming ball of radius m around a vector in GF(¢)™.

Let H be the parity-check matrix of such a code, and consider the function
f:GF(¢)"™ — {0,1} such that f(z) = 1iff Hx = 0. Thatis, f(z) = 1iffx € C.
The function f(x) = gn(H,x) is the characteristic function of the code C' and
is a subfunction of gy (Y, x). Hence, if the function gy (Y, z) can be computed by
a nondeterministic branching program working in time kn, then the size of this
program must be at least the minimum size S of a nondeterministic branching
program computing f(x) in time kn. To finish the proof of the theorem, it remains
therefore to show that S must be exponential in m /r, where r = 8k%2* is from the
Rectangle Lemma.

The function f(z) has density u(f) = |C|/q"™ = 1/V (n, m). Hence, the Rect-
angle Lemma yields

w ome P am
@5) ()" T @S)dgm(n)’ (28)rd()’

Recalling that m = n/2%+! and ¢ > 23*, we obtain

(n>3 < (%)37” — (B2kEBym < (93 +8ym < (g)m

m m

Pm(f) >

Hence, (25)"d > 2™ /pnm(f). On the other hand, since the Hamming distance
between any two vectors in C' is at least d = m + 1, we have that p,,(f) < 1,
and the desired lower bound S = 2(™/") on the size of our branching program
follows. O

17.3 Proof of the rectangle lemma

We will use one purely combinatorial result which may be of independent interest.

17.3 Proof of the rectangle lemma 473

Let F = (F1,..., F,) be a sequence of not necessarily distinct subsets of some
set X. By a separator for F we will mean a pair (S, T) of disjoint subsets of X
such that each member of F is disjoint from either S or from T, that is, none of
the members of F can contain elements from both sets S and 7. The size of