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Preface

Go to the roots of calculations! Group the operations. Classify them
according to their complexities rather than their appearances! This,
I believe, is the mission of future mathematicians.

– Evariste Galois

Computational complexity theory is the study of the inherent hardness or easiness

of computational tasks. Research in this theory has two main strands.

One of these strands—structural complexity—deals with high-level complexity

questions: is space a more powerful resource than time? Does randomness enhance

the power of efficient computation? Is it easier to verify a proof than to construct

one? So far we do not know the answers to any of these questions; thus most results

in structural complexity are conditional results that rely on various unproven

assumptions, like P ̸= NP.
The second strand—concrete complexity or circuit complexity—deals with estab-

lishing lower bounds on the computational complexity of specific problems, like

multiplication of matrices or detecting large cliques in graphs. This is essentially

a low-level study of computation; it typically centers around particular models of

computation such as decision trees, branching programs, boolean formulas, various

classes of boolean circuits, communication protocols, proof systems and the like.

This line of research aims to establish unconditional lower bounds, which rely on

no unproven assumptions.

This book is about the life on the second strand—circuit complexity—with a

special focus on lower bounds. It gives self-contained proofs of a wide range of

unconditional lower bounds for important models of computation, covering many

of the gems of the field that have been discovered over the past several decades, right

up to results from the last year or two. More than twenty years have passed since

the well-known books on circuit complexity by Savage (1976), Nigmatullin (1983),

Wegener (1987) and Dunne (1988) as well as a famous survey paper of Boppana and

Sipser (1990) were written. I feel it is time to summarize the new developments in

circuit complexity during these two decades.

The book is mainly devoted to mathematicians wishing to get an idea of what

is actually going on in this one of the hardest, but also mathematically cleanest

fields of computer science, to researchers in computer science wishing to refresh

their knowledge about the state of art in circuit complexity, as well as to students

wishing to try their luck in circuit complexity.
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viii Preface

I have highlighted some of the most important proof arguments for circuit

lower bounds, without trying to be encyclopedic. To keep the length of the book

within reasonable limits, I was forced to focus on classical circuit models—results

on their randomized or algebraic versions receive less attention here. Also, I often

compromise the numerical tightness of results in favor of clarity of argument. My

goal is to present the “big picture” of existing lower bound methods, in the hope

that the reader will be motivated to find new ones. More than 40 open problems,

marked as Research Problems, are mentioned along the way. Most of them are of a

combinatorial or combinatorial-algebraic flavor and can be attacked by students

with no background in computational complexity.

The book is meant to be approachable for graduate students in mathematics

and computer science, and is self-contained. The text assumes a certain mathe-

matical maturity but no special knowledge in the theory of computing. For non-

mathematicians, all necessary mathematical background is collected in the appendix

of the book. As in combinatorics or in number theory, the models and problems in

circuit complexity are usually quite easy to state and explain, even for the layperson.

Most often, their solution requires a clever insight, rather than fancy mathematical

tools.

I am grateful to Miklos Ajtai, Marius Damarackas, Andrew Drucker, Anna Gál,

Sergey Gashkov, Dmitry Gavinsky, Jonathan Katz, Michal Koucky, Matthias Krause,

Andreas Krebs, Alexander Kulikov, Meena Mahajan, Igor Sergeev, Hans Ulrich

Simon, György Turán, and Sundar Vishwanathan for comments and corrections on

the draft versions of the book. Sergey Gashkov and Igor Sergeev also informed me

about numerous results available only in Russian.

I am especially thankful to Andrew Drucker, William Gasarch, Jonathan Katz,

Massimo Lauria, Troy Lee, Matthew Smedberg, Ross Snider, Marcos Villagra, and

RyanWilliams for proofreading parts of the book and giving very useful suggestions

concerning the contents. Their help was crucial when putting the finishing touches

to the manuscript. The strong commitment of Andrew Drucker in organizing these

final touches and proofreading more than a half of the book by himself cannot

be acknowledged well enough. All remaining errors are entirely my fault. My

sincere thanks to Georg Schnitger for his support during my stay in Frankfurt.

Finally, I would like to acknowledge the German Research Foundation (Deutsche

Forschungsgemeinschaft) for giving an opportunity to finish the bookwhileworking

within the grant SCHN 503/5-1.

My deepest thanks to my wife, Daiva, and my daughter, Indrė, for their patience.

Frankfurt am Main/Vilnius S. J.
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Part I

The Basics





1. Our Adversary: The Circuit

Boolean (or switching) functions map each sequence of bits to a single bit 0 or

1. Bit 0 is usually interpreted as “false”, and bit 1 as “true”. The simplest of such

functions are the product x · y, sum x⊕ y mod 2, non-exclusive Or x ∨ y, negation
¬x = 1−x. The central problem of boolean function complexity—the lower bounds

problem—is:

Given a boolean function, how many of these simplest operations do we need

to compute the function on all input vectors?

The difficulty in proving that a given boolean function has high complexity lies in

the nature of our adversary: the circuit. Small circuits maywork in a counterintuitive

fashion, using deep, devious, and fiendishly clever ideas. How can one prove that

there is no clever way to quickly compute the function?

This is the main issue confronting complexity theorists. The problem lies on

the border between mathematics and computer science: lower bounds are of great

importance for computer science, but their proofs require techniques from combi-

natorics, algebra, analysis, and other branches of mathematics.

1.1 Boolean functions

We first recall some basic concepts concerning boolean functions. The name

“boolean function” comes from the boolean logic invented by George Boole (1815-

1864), an English mathematician and philosopher. As this logic is now the basis of

modern digital computers, Boole is regarded in hindsight as a forefather of the field

of computer science.

Boolean values (or bits) are numbers 0 and 1. A boolean function f(x) =
f(x1, . . . , xn) of n variables is a mapping f : {0, 1}n → {0, 1}. One says that

f accepts a vector a ∈ {0, 1}n
if f(a) = 1, and rejects it if f(a) = 0.

A boolean function f(x1, . . . , xn) need not to depend on all its variables. One

says that f depends on its i-th variablexi if there exist constants a1, . . . , ai−1, ai+1, . . . , an

3



4 1 Our Adversary: The Circuit

in {0, 1} such that

f(a1, . . . , ai−1, 0, ai+1, . . . , an) ̸= f(a1, . . . , ai−1, 1, ai+1, . . . , an) .

Since we have 2n
vectors in {0, 1}n

, the total number of boolean functions

f : {0, 1}n → {0, 1} is doubly-exponential in n, is 22n

. A boolean function f is

symmetric if it depends only on the number of ones in the input, and not on positions

in which these ones actually reside. We thus have only 2n+1
such functions of n

variables. Examples of symmetric boolean functions are:

• Threshold functions Thn
k (x) = 1 iff x1 + · · · + xn ≥ k.

• Majority function Majn(x) = 1 iff x1 + · · · + xn ≥ ⌈n/2⌉.
• Parity function ⊕n(x) = 1 iff x1 + · · · + xn ≡ 1 mod 2.
• Modular functions MODk = 1 iff x1 + · · · + xn ≡ 0 mod k.

Besides these, there are many other interesting boolean functions. Actually, any
property (which may or may not hold) can be encoded as a boolean function. For

example, the property “to be a prime number” corresponds to a boolean function

PRIME such that PRIME(x) = 1 iff

∑n
i=1 xi2i−1

is a prime number. It was a

long-standing problem whether this function can be uniformly computed using

a polynomial in n number of elementary boolean operations. This problem was

finally solved affirmatively by Agrawal, Kayal and Saxena (2004). The existence of
small circuits for PRIME for every single n was known long ago.

To encode properties of graphs on the set of vertices [n] = {1, . . . , n}, we may

associate a boolean variable xij with each potential edge. Then any 0-1 vector

x of length

(
n
2
)
gives us a graph Gx, where two vertices i and j are adjacent

iff xij = 1. We can then define f(x) = 1 iff Gx has a particular property. A

prominent example of a “hard-to-compute” graph property is the clique function
CLIQUE(n, k): it accepts an input vector x iff the graph Gx has a k-clique, that
is, a complete subgraph on k vertices. The problem of whether this function can

also be computed using a polynomial number of operations remains wide open. A

negative answer would immediately imply that P ̸= NP. Informally, the P vs. NP
problem asks whether there exist mathematical theorems whose proofs are much

harder to find than verify.

Roughly speaking, one of the goals of circuit complexity is, for example, to

understand why the first of the following two problems is easy whereas the second

is (apparently) very hard to solve:

1. Does a given graph contain at least

(
k
2
)
edges?

2. Does a given graph contain a clique with

(
k
2
)
edges?

The first problem is a threshold function, whereas the second is the clique function

CLIQUE(n, k). We stress that the goal of circuit complexity is not just to give an

“evidence” (via some indirect argument) that clique is much harder than majority,

but to understand why this is so.

A boolean matrix or a 0-1 matrix is a matrix whose entries are 0s and 1s. If
f(x, y) is a boolean function of 2n variables, then it can be viewed as a boolean
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x y x ∧ y x ∨ y x ⊕ y x → y
0 0 0 0 0 1
0 1 0 1 1 1
1 0 0 1 1 0
1 1 1 1 0 1

x ¬x
1 0
0 1

Fig. 1.1 Truth tables of basic boolean operations.

2n × 2n
matrix A whose rows and columns are labeled by vector in {0, 1}n

, and

A[x, y] = f(x, y).
We can obtain new boolean functions (or matrices) by applying boolean opera-

tions to the “simplest” ones. Basic boolean operations are:

• NOT (negation) ¬x = 1 − x; also denoted as x.
• AND (conjunction) x ∧ y = x · y.
• OR (disjunction) x ∨ y = 1 − (1 − x)(1 − y).
• XOR (parity) x⊕ y = x(1 − y) + y(1 − x) = (x+ y) mod 2.
• Implication x → y = ¬x ∨ y.

If these operators are applied to boolean vectors or boolean matrices, then they are

usually performed componentwise. Negation acts on ANDs and ORs via DeMorgan
rules:

¬(x ∨ y) = ¬x ∧ ¬y and ¬(x ∧ y) = ¬x ∨ ¬y.

The operations AND and OR themselves enjoy the distributivity rules:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Binary cube The set {0, 1}n
of all boolean (or binary) vectors is usually called the

binary n-cube. A subcube of dimension d is a set of the formA = A1 ×A2 ×· · ·×An,

where each Ai is one of three sets {0}, {1} and {0, 1}, and where Ai = {0, 1}
for exactly d of the i’s. Note that each subcube of dimension d can be uniquely

specified by a vector a ∈ {0, 1, ∗}n
with d stars, by letting ∗ to attain any of two

values 0 and 1. For example, a subcube A = {0} × {0, 1} × {1} × {0, 1} of the

binary 4-cube of dimension d = 2 is specified by a = (0, ∗, 1, ∗).
Usually, the binary n-cube is considered as a graphQn whose vertices are vectors

in {0, 1}n
, and two vectors are adjacent iff they differ in exactly one position (see

Fig. ??). This graph is sometimes called the n-dimensional binary hypercube. This is
a regular graph of degree n with 2n

vertices and n2n−1
edges. Moreover, the graph

is bipartite: we can put all vectors with an odd number of ones on one side, and the

rest on the other; no edge of Qn can join two vectors on the same side.

Every boolean function f : {0, 1}n → {0, 1} is just a coloring of vertices of Qn

in two colors. The bipartite subgraph Gf of Qn, obtained by removing all edges

joining the vertices in the same color class, accumulates useful information about

the circuit complexity of f . If, for example, da denotes the average degree in Gf

of vertices in the color-class f−1(a), a = 0, 1, then the product d0 · d1 is a lower
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Bilder/cube-eps-converted-to.pdf

Bilder/hasse-eps-converted-to.pdf

Fig. 1.2 The 3-cube and its Hasse-type representation (each level contains binary strings with the

same number of 1s). There is an edge between two strings if and only if they differ in exactly one

position.

bound on the length of any formula expressing f using connectives ∧,∨ and ¬ (see

Khrapchenko’s theorem in Section ??).

CNFs and DNFs A trivial way to represent a boolean function f(x1, . . . , xn) is to
give the entire truth table, that is, to list all 2n

pairs (a, f(a)) for a ∈ {0, 1}n
. More

compact representations are obtained by giving a covering of f−1(0) or of f−1(1)
by not necessarily disjoint subsets, each of which has some “simple” structure. This

leads to the notions of CNFs and DNFs.

A literal is a boolean variable or its negation. For literals the following notation

is often used: x1
i stands for xi, and x

0
i stands for ¬xi = 1 − xi. Thus, for every

binary string a = (a1, . . . , an) in {0, 1}n
,

x1
i (a) =

{
1 if ai = 1
0 if ai = 0

and x0
i (a) =

{
0 if ai = 1
1 if ai = 0.

A monomial is an AND of literals, and a clause is an OR of literals. A monomial (or

clause) is consistent if it does not contain a contradicting pair of literals xi and xi

of the same variable. We will often view monomials and clauses as sets of literals.
It is not difficult to see that the set of all vectors accepted by amonomial consisting

of k (out of n) literals forms a binary n-cube of dimension n− k (so many bits are

not specified). For example, a monomial x1 ∧x3 defines the cube of dimension n−2
specified by a = (0, ∗, 1, ∗, . . . , ∗). Similarly, the set of all vectors rejected by a clause
consisting of k (out of n) literals also forms a binary n-cube of dimension n− k.
For example, a clause x1 ∨ x3 rejects a vector a iff a1 = 1 and a3 = 0.

A DNF (disjunctive normal form) is an OR of monomials, and a CNF (conjunctive

normal form) is an AND of clauses. Every boolean function f(x) of n variables can

be written both as a DNF D(x) and as a CNF C(x):

D(x) =
∨

a:f(a)=1

n∧
i=1

xai
i C(x) =

∧
b:f(b)=0

n∨
i=1

x1−bi
i .
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Indeed, D(x) accepts a vector x iff x coincides with at least one vector a accepted
by f , and C(x) rejects a vector x iff x coincides with at least one vector b rejected
by f .

A DNF is a k-DNF if each of its monomials has at most k literals; similarly, a

CNF is a k-CNF if each of its clauses has at most k literals.

DNFs (and CNFs) are the simplest models for computing boolean functions. The

size of a DNF is the total number of monomials in it. It is clear that every boolean

function of n variables can be represented by a DNF of size at most |f−1(1)| ≤ 2n
:

just take one monomial for each accepted vector. This can also be seen via the

following recurrence:

f(x1, . . . , xn+1) = xn+1 ∧ f(x1, . . . , xn, 1) ∨ ¬xn+1 ∧ f(x1, . . . , xn, 0) . (1.1)

It is not difficult to see that some functions require DNFs of exponential size. Take,

for example, the parity function f(x1, . . . , xn) = x1 ⊕x2 ⊕ · · · ⊕xn. This function

accepts an input vector iff the number of 1s in it is odd. Every monomial in a DNF for

f must contain n literals, for otherwise the DNF would be forced to accept a vector

in f−1(0). Since any such monomial can accept only one vector, |f−1(1)| = 2n−1

monomials are necessary. Thus the lower bounds problem for this model is trivial.

Boolean functions as set systems By identifying subsets S of [n] = {1, . . . , n}
with their characteristic 0-1 vectors vS , where vS(i) = 1 iff i ∈ S, we can consider

boolean functions as set-theoretic predicates f : 2[n] → {0, 1}. We will often

go back and forth between these notations. One can identify a boolean function

f : 2[n] → {0, 1} with the family Ff = {S | f(S) = 1} of subsets of [n]. That is,
there is a 1-to-1 correspondence between boolean functions and families of subsets

of [n]:

boolean functions of n variables = families of subsets of {1, . . . , n}.

Minterms and maxterms A 1-term (resp., 0-term) of a boolean function is a smallest

subset of its variables such that the function can be made the constant 1 (resp.,

constant 0) function by fixing these variables to constants 0 and 1 in some way.

Thus after the setting, the obtained function does not depend on the remaining

variables. Minterms (maxterms) are 1-terms (0-terms) which are minimal under the

set-theoretic inclusion.

Note that one and the same set of variables may be a 1-term and a 0-term at the

same time. If, for example, f(x1, x2, x3) = 1 iff x1 + x2 + x3 ≥ 2, then {x1, x2} is

a 1-term of f because f(1, 1, x3) ≡ 1, and is a 0-term of f because f(0, 0, x3) ≡ 0.
If all minterms of a boolean function f have length at most k then f can be

written as a k-DNF: just take the OR of all these minterms. But the converse does

not hold! Namely, there are boolean functions f such that f can be written as a

k-DNF even though some of its minterms are much longer than k (see Exercise ??).

Duality The dual of a boolean function f(x1, . . . , xn) is the boolean function f∗

defined by:
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f∗(x1, . . . , xn) := ¬f(¬x1, . . . ,¬xn) .

For example, if f = x ∨ y then f∗ = ¬(¬x ∨ ¬y) = x ∧ y. The dual of every

threshold function Thn
k (x) is the threshold function Thn

n−k+1(x). A function f is

self-dual if f∗(x) = f(x) holds for all x ∈ {0, 1}n
. For example, the threshold-k

function f(x) = Th2k−1
k (x) of 2k − 1 variables is self-dual. Hence, if the number

n of variables is odd, then the majority function Majn is also self-dual.

In set-theoretic terms, if S = [n] \ S denotes the complement of S, then the

values of the dual of f are obtained by: f∗(S) = 1 − f(S). Thus a boolean function

f is self-dual if and only if f(S) + f(S) = 1 for all S ⊆ [n].

Monotone functions For two vectors x, y ∈ {0, 1}n
we write x ≤ y if xi ≤ yi for

all positions i. A boolean function f(x) is monotone, if x ≤ y implies f(x) ≤ f(y).
If we view f as a set-theoretic predicate f : 2[n] → {0, 1}, then f is monotone iff

f(S) = 1 and S ⊆ T implies f(T ) = 1. Examples of monotone boolean functions

are AND, OR, threshold functions Thn
k (x), clique functions CLIQUE(n, k), etc. On

the other hand, such functions as the parity function ⊕n(x) or counting functions

Modn
k (x) are not monotone.

Monotone functions have many nice properties not shared by other functions.

First of all, their minterms as well as maxterms are just subsets of variables (no

negated variable occurs in them). In set-theoretic terms, a subset S ⊆ [n] is a
minterm of a monotone function f if

f(S) = 1 but f(S \ {i}) = 0 for all i ∈ S,

and is a maxterm of f if

f(S) = 0 but f(S \ {i}) = 1 for all i ∈ S.

Let Min(f) and Max(f) denote the set of all minterms and the set of all maxterms

of f . Then we have the following cross-intersection property:

S ∩ T ̸= ∅ for all S ∈ Min(f) and all T ∈ Max(f).

Indeed, if S and T were disjoint, then for the vectors x with xi = 1 for all i ∈ S,
and xi = 0 for all i ̸∈ S, we would have f(x) = 1 (because S is a minterm) and at

the same time f(x) = 0 (because T ⊆ S is a maxterm of f ).
The next important property of monotone boolean functions is that every such

function f has a unique representation as a DNF as well as a CNF:

f(x) =
∨

S∈Min(f)

∧
i∈S

xi =
∧

T ∈Max(f)

∨
i∈T

xi .

Moreover, for every monotone boolean function f we have the following three

equivalent conditions of their self-duality:

• Min(f) = Max(f).
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• Both families Min(f) and Max(f) are intersecting: S ∩ S′ ̸= ∅ for all S, S′ ∈
Min(f), and T ∩ T ′ ̸= ∅ for all T, T ′ ∈ Max(f).

• The family Min(f) is intersecting and, for every partition of [n] into two parts,

at least one minterm lies in one of these parts.

Equivalence of the first condition Min(f) = Max(f) with the definition of self-

duality (f(S) = 1 − f(S) for all S ⊆ [n]) is not difficult to see. To show that also

the second and the third conditions are equivalent, needs a bit more work.

In the rest of this section we recall some facts that turn out to be very useful

when analyzing circuits. We include them right here both because they have elegant

proofs and because we will use them later several times.

Functionswithmany subfunctions A subfunction of a boolean function f(x1, . . . , xn)
is obtained by fixing some of its variables to constants 0 and 1. Since each of the n
variables has three possibilities (to be set to 0 or to 1 or remain unassigned), one

function can have at most 3n
subfunctions.

If Y is some subset of variables, then a subfunction of f on Y is a boolean function

of variables Y obtained from f by setting all the variables outside Y to constants 0
and 1, in some way. Some settings may lead to the same subfunction. So let NY (f)
denote the number distinct subfunctions of f on Y . It is not difficult to see that, if

|Y | = m, then

NY (f) ≤ min{2n−m, 22m

} .

Indeed, we have at most 2n−m
possibilities to assign constants to n− |Y | variables,

and there are atmost 22m

distinct boolean functions on the same setY ofm variables.

But some functions f may have fewer distinct subfunctions. For example, the parity

function ⊕n(x) = x1 ⊕x2 ⊕· · ·⊕xn has onlyNY (⊕n) = 2 different subfunctions.

On the other hand, we will show later (in Section ??) that functions with many

subfunctions cannot be “too easy”. So what functions have many subfunctions?

The simplest known example of a function with almost maximal possible number

of distinct subfunctions is the element distinctness function EDn(x) suggested by

Beame and Cook (unpublished). This is a boolean function of
* n = 2m logm

variables divided intom consecutive blocks Y1, . . . , Ym with 2 logm variables in

each of them; m is assumed to be a power of 2. Each of these blocks encode a

number in [m2] = {1, 2, . . . ,m2}. The function accepts an input x ∈ {0, 1}n
if

and only if all these numbers are distinct.

1.1 Lemma On each block, EDn has at least 2n/2/n subfunctions.

Proof. It suffices to prove this for the first block Y1. So let N = NY1(EDn), and
consider the function f ofm variables, each taking its value in [m2]. The function
accepts a string (a1, . . . , am) of numbers in [m2] iff all these numbers are distinct.

Thus EDn(x) is just a boolean version of f .
For a string a = (a2, . . . , am) of numbers [m2], let fa : [m2] → {0, 1} be

the function fa(x) := f(x, a2, . . . , am) obtained from f by fixing its last m − 1
variables. Note that N is exactly the number of distinct functions fa.

*

If not said otherwise, all logarithms in this book are to the basis of 2.
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The number of ways to choose a string a = (a2, . . . , am) with all the ai distinct

is

(
m2

m−1
)
(m − 1)!: each such string is obtained by taking an (m − 1)-element

subset of [m2] and permuting its elements. If b = (b2, . . . , bm) is another such

string, and if b is not a permutation of a, then there must be an ai such that

ai ̸∈ {b2, . . . , bm}. But for such an ai, we have that fa(ai) = 0 whereas fb(ai) = 1;
hence, fa ̸= fb. Since there are only (m − 1)! permutations of a, we obtain that

N ≥
(

m2

m−1
)

≥ mm−1 ≥ 2n/2/n. ⊓⊔

Matrix decomposition AmatrixB is primitive if it is boolean (has only entries 0 and

1) and has rank 1 over the reals. Each such matrix consists of one all-1 submatrix

and zeros elsewhere. The weight, w(B), of such a matrix is r + c, where r is the
number of nonzero rows, and c the number of nonzero columns in B. Here is a

primitive 4 × 5 matrix of weight 2 + 3 = 5:
1 0 1 1 0
0 0 0 0 0
1 0 1 1 0
0 0 0 0 0


Primitive matrices are important objects—we will use them quite often.

A decomposition of a booleanm× n matrix A is a set B1, . . . , Br of primitive

m× n matrices such that A can be written as the sum A = B1 +B2 + · · · +Bt of

these matrices over the reals. That is, each 1-entry of A is a 1-entry in exactly one

of the matrices Bi, and each 0-entry is a 0-entry in all matrices. The weight of such
a decomposition is the sum

∑t
i=1 w(Bi) of weights of the Bi. Let Dec(A) denote

the minimum weight of a decomposition of a boolean matrix A, and let |A| denote
the number of 1-entries in A.

Note that Dec(A) ≤ mn: just decompose A into m primitive matrices corre-

sponding to the rows of A. In fact, we have a better upper bound.

1.2 Lemma (Lupanov 1956) For every booleanm× n matrix,

Dec(A) ≤ (1 + o(1)) mn

logm .

Proof. We first prove that for every booleanm× n matrix A and for every integer

1 ≤ k ≤ m,

Dec(A) ≤ mn

k
+ n2k−1 . (1.2)

We first prove (??) for k = n, that is, we prove the upper bound

Dec(A) ≤ m+ n2n−1 . (1.3)

Split the rows of A into groups, where the rows in one group all have the same

values. This gives us a decomposition of A into t ≤ 2n
primitive matrices. For the

i-th of these matrices, let ri be the number of its nonzero rows, and ci the number

of its nonzero columns. Hence, ri + ci is the weight of the i-th primitive matrix.
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Since each nonzero row of A lies in exactly one of the these matrices, the total

weight of the decomposition is

t∑
i=1

ri +
t∑

i=1
ci ≤ m+

n∑
j=0

∑
i:ci=j

j ≤ m+
n∑

j=0

(
n

j

)
· j = m+ n2n−1 ,

where the last equality is easy to prove: just count in two ways the number of pairs

(x, S) with x ∈ S ⊆ {1, . . . , n}.
To prove (??) for arbitrary integer 1 ≤ k ≤ n, split A into submatrices with k

columns in each (one submatrix may have fewer columns). For each of these n/k
submatrices, (??) gives a decomposition of weight at most m + k2k−1

. Thus, for

every 1 ≤ k ≤ n, every m × n matrix has a decomposition of weight at most

mn/k + n2k−1
.

To finish the proof of the theorem, it is enough to apply (??) with k about

logm− 2 log logm. ⊓⊔

Using a counting argument, Lupanov (1956) also showed that the upper bound

given in Lemma ?? is almost optimal:m× n matrices A requiring weight

Dec(A) ≥ (1 + o(1)) mn

log(mn)

in any decomposition exist, even if the 1-entries in primitive matrices are allowed

to overlap (cf. Theorem ??). Apparently, this paper of Lupanov remained unknown

in the West, because this result was later proved by Tuza (1984) and Bublitz (1986).

Splitting a graph When trying to “balance” some computational models (decision

trees, formulas, communication protocols, logical derivations) the following two

structural facts are often useful.

Let G be a directed acyclic graph with one source node (the root) from which

all leaves (nodes of outdegree 0) are reachable. Suppose that each non-leaf node

has outdegree k. Suppose also that each vertex is assigned a non-negative weight

which is subadditive: the weight of a node does not exceed the sum of the weights

of its successors. Let r be the weight of the root, and suppose that each leaf has

weight at most l < r.

1.3 Lemma For every real number ϵ between l/r and 1, there exists a node whose
weight lies between ϵr/k and ϵr. In particular, every binary tree with r leaves has a
subtree whose number of leaves lies between r/3 and 2r/3.

Proof. Start at the root and traverse the graph until a node u of weight > ϵr is
found such that each of its successors has weight at most ϵr. Such a node u exists

because each leaf has weight at most l ≤ ϵr. Due to subadditivity of the weight

function, the (up to k) successors of u cannot all have weight ≤ ϵr/k, since then
the weight of u would be ≤ ϵr as well. Hence, the weight of at least one successor
of u must lie between ϵr/k and ϵr, as desired.
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To prove the second claim, give each leaf of the tree weight 1, and define the

weight of an inner node as the number of leaves in the corresponding subtree. Then

apply the previous claim with k = 2 and ϵ = 2/3. ⊓⊔

The length of a path we will mean the number of nodes in it. The depth of a

graph is the length of a longest path in it. The following lemma generalizes and

simplifies an analogous result of Erdős, Graham and Szemerédi (1976). Let d = 2k

and 1 ≤ r ≤ k be integers.

1.4 Lemma (Valiant 1977) In any directed graph with S edges and depth d it is possible
to remove rS/k edges so that the depth of the resulting graph does not exceed d/2r .

Proof. A labeling of a graph is a mapping of the nodes into the integers. Such a

labeling is legal if for each edge (u, v) the label of v is strictly greater than the label

of u. A canonical labeling is to assign each node the length of a longest directed path

that terminates at that node. If the graph has depth d then this gives us a labeling

using only d labels 1, . . . , d. It is easy to verify that this is a legal labeling: if (u, v)
is an edge then any path terminating in u can be prolonged to a path terminating

in v. On the other hand, since in any legal labeling, all labels along a directed path

must be distinct, we have that the depth of a graph does not exceed the number of

labels used by any legal labeling.

After these preparations, consider now any directed graph with S edges and

depth d, and consider the canonical labeling using labels 1, . . . , d. For i = 1, . . . , k
(where k = log d), let Ei be the set of all edges, the binary representations of labels

of whose endpoints differ in the i-th position (from the left) for the first time.
If Ei is removed from the graph, then we can relabel the nodes using integers

1, . . . , d/2 by simply deleting the i-th bit in the binary representations of labels. It

is not difficult to see that this is a legal labeling (of a new graph): if an edge (u, v)
survived, then the first difference between the binary representations of the old

labels of u and v were not in the i-th position; hence, the new label of u remains

strictly smaller than that of v. Consequently, if any r ≤ k of the smallest sets Ei

are removed, then at most rS/k edges are removed, and a graph of depth at most

d/2r
remains. ⊓⊔

1.2 Circuits

In this section we recall the most fundamental models for computing boolean

functions.

General circuits Let Φ be a set of some boolean functions. A circuit (or a straight line
program) ofn variables over the basisΦ is just a sequence g1, . . . , gt of t ≥ n boolean
functions such that the first n functions are input variables g1 = x1, . . . , gn = xn,

and each subsequent gi is an application gi = φ(gi1 , . . . , gid
) of some basis function

φ ∈ Φ (called the gate of gi) to some previous functions.
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Fig. 1.3 On the left is a circuit with six gates over the basis {∧, ∨, ¬} computing the majority

function Maj3(x, y, z) = 1 iff x + y + z ≥ 2. Its depth is five. On the right is a circuit with five

gates over the basis {⊕, ∧} computing the binary representation (a, b) of the (real) sum x + y + z
of three 0-1 bits.

That is, the value gi(a) of the i-th gate gi on a given input a ∈ {0, 1}n
is the

value of the boolean function φ applied to the values gi1(a), . . . , gid
(a) computed

at the previous gates. A circuit computes a boolean function (or a set of boolean

functions) if it (or they) are among the gi.

Each circuit can be viewed as a directed acyclic graph whose fanin-0 nodes (those

of zero in-degree) correspond to variables, and each other node v corresponds to
a function φ in Φ. One (or more) nodes are distinguished as outputs. The value at

a node is computed by applying the corresponding function to the values of the

preceding nodes (see Fig. ??).

In the literature circuits are usually drawn in a “bottom-up” manner: the first (lowest) level

consists of inputs, and the last (highest) level consists of output gates. We will, however,

mostly draw circuits in a more natural “top-down” manner: inputs at the top, and outputs at

the bottom. Only where there already are established terms “top gate” and “bottom level” we

will use bottom-up drawings.

The size of the circuit is the total number t − n of its gates (that is, we do

not count the input variables), and its depth is the length of a longest path from

an input to an output gate. More precisely, input variables have depth 0, and if

gi = φ(gi1 , . . . , gid
) then the depth of the gate gi is 1 plus the maximum depth of

the gates gi1 , . . . , gid
. We will assume that every circuit can use constants 0 and 1

as inputs for free.

Formulas A formula is a circuit all whose gates have fanout at most 1. Hence, the
underlying graph of a formula is a tree. The size of a formula is also the number

of gates, and the leafsize of a is the number of input gates, that is, the number of

leaves in its tree, and the depth of a formula is the depth of its tree. Note that the

only (but crucial) difference of formulas from circuits is that in the circuit model a
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result computed at some gate can be used many times with no need to recompute

it again and again, as in the case of formulas.

DeMorgan circuits A DeMorgan circuit is a circuit over the basis {∧,∨} but the

inputs are variables and their negations. That is, these are the circuits over the

basis {∧,∨,¬}, where NOT gates are only applied to input variables; these gates

do not contribute to the circuit size. Such circuits are also called circuits with tight
negations. If there are no negated variables as inputs, then the circuit is monotone.
By using DeMorgan rules ¬(x ∨ y) = ¬x ∧ ¬y and ¬(x ∧ y) = ¬x ∨ ¬y, it can be

easily shown that any circuit over {∧,∨,¬} can be reduced to this form by at most

doubling the total number of gates; the depth of the circuit remains the same. In

the case of formulas, even the leafsize remains the same.

Probabilistic circuits Such circuits have, besides standard input variables x1, . . . , xn,

some specially designed inputs r1, . . . , rm called random inputs. When these ran-

dom inputs are chosen from a uniform distribution on {0, 1}, the output C(x) of
the circuit is a random 0-1 variable. A probabilistic circuitC(x) computes a boolean

function f(x) if

Prob[C(x) = f(x)] ≥ 3/4 for each x ∈ {0, 1}n .

There is nothing special about using the constant 3/4 here—one can take any

constant > 1/2 instead. The complexity would not change by more than a constant

factor.

Can probabilistic circuits have much smaller size than usual (deterministic)

circuits? We will answer this question negatively using the following simple (but

often used) “majority trick”. It implies that if a random circuit errs on a fixed input

with probability < 1/2, then the majority of not too many independent copies of

such a circuit will err on this input with exponentially small probability. A Bernoulli

random variable with success probability p is a 0-1 random variable taking the

value 1 with probability p.

1.5 Lemma (Majority trick) If x1, . . . , xm are independent Bernoulli random vari-
ables with success probability 1/2 + ϵ, then

Prob[Maj(x1, . . . , xm) = 0] ≤ e−2ϵ2m .

Proof. Let F be the family of all subsets of [m] = {1, . . . ,m} of size > m/2, and
let q := Prob[Maj(x1, . . . , xm) = 0]. Then

q =
∑
S∈F

Prob[xi = 0 for all i ∈ S] · Prob[xi = 1 for all i ̸∈ S]

=
∑
S∈F

(1/2 − ϵ)|S|(1/2 + ϵ)m−|S|

≤
∑
S∈F

(1/2 − ϵ)m/2(1/2 + ϵ)m/2
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≤ 2m(1/4 − ϵ2)m/2 = (1 − 4ϵ2)m/2 ≤ e−2ϵ2m .

The first inequality here follows by multiplying each term by

(1/2 − ϵ)m/2−|S|(1/2 + ϵ)|S|−m/2 ≥ 1 . ⊓⊔

1.6 Theorem (Adleman 1978) If a boolean function f of n variables can be computed
by a probabilistic circuit of sizeM , then f can be computed by a deterministic circuit
of size at most 8nM .

Proof. Let C be a probabilistic circuit that computes f . Takem independent copies

C1, . . . , Cm of this circuit (each with its own random inputs), and consider the

probabilistic circuitC ′
that computes the majority of the outputs of thesem circuits.

Fix a vector a ∈ {0, 1}n
, and let xi be an indicator random variable for the event

“Ci(a) = f(a)”. For each of these random variables we have that Prob[xi = 1] ≥
1/2 + ϵ with ϵ = 1/4. By the majority trick, the circuit C ′

will err on a with

probability at most e−2ϵ2m = e−m/8
. By the union bound, the probability that the

new circuit C ′
makes an error on at least one of all 2n

possible inputs a is at most

2n · e−m/8
. If we takem = 8n, then this probability is smaller than 1. Therefore,

there must be a setting of the random inputs which gives the correct answer for

all inputs. The obtained circuit is no longer probabilistic, and its size is at most 8n
times larger than the size of the probabilistic circuit. ⊓⊔

Average time of computations Let C = (g1, . . . , gs) be a circuit computing some

boolean function f(x) of n variables; hence, gs(x) = f(x). The number s of gates
is the size of the circuit. One can also consider a notion of “computation time” on a

given input a ∈ {0, 1}n
. For this, let us introduce one special boolean variable z,

the output variable. Some of the gates may reset this variable, that is, set z = gi(a).
In particular, gates of the form z = 0 and z = 1 are allowed. The last gate gs always

does this, that is, sets z = gs(a). Our goal however is to interrupt the computation

sequence g1(a), . . . , gs(a) as soon as the output variable already has the correct

value z = f(a).
To realize this goal, we declare some gates as “stop-gates”. Such a gate g stops

the computation on an input a if g(a) = 1. Now, given an input a ∈ {0, 1}n
, a

computation g1(a), g2(a), . . . , gi(a) continues until the first gate gi is found such

that gi is a stop-gate and gi(a) = 1. The computation on a then stops, and the

outputC(a) of the circuit is the actual value of the output variable z at this moment

(see Fig ??). The computation time tC(a) of the circuit C on a is the number i of
gates evaluated until the value was computed. The average time of the circuit C is

t(C) = 2−n
∑

a∈{0,1}n

tC(a) .

If we have no stop-gates at all, then tC(a) = s for all inputs a, and hence, the

average time t(C) of the circuit C is just the size s of C .
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z = 1 z = x1 ∨ x2 (stop) g1 = x1 ∨ x2

g1 = x1 (stop) z = x3 ∨ x4 g2 = x3 ∨ x4

g2 = x2 (stop) z = g1 ∨ g2

g3 = x3 (stop)
g4 = x4 (stop)
z = 0

Fig. 1.4 Three circuits computing the OR x1 ∨ ∨x2 ∨ x3 ∨ x4 of four variables. On input a =
(0, 1, 0, 0) the first circuit takes time tC(a) = 3, the second takes time tC(a) = 1, and the third

(standard) circuit takes time tC(a) = 3. The average time of the last circuit is t(C) = 3, whereas
that of the middle circuit is t(C) = 1

16 (12 · 1 + 4 · 2) = 5/4.

This model of stop-circuits was introduced by Chashkin (1997, 2000, 2004); he

calls this model “non-branching programs with conditional stop”.

The average time, t(f), of a boolean function f is the minimum average time of

a circuit computing f . We always have that t(f) ≤ C(f). Chashkin (1997) showed

that boolean functions f of n variables requiring t(f) = Ω(2n/n) exist. But some

functions have much smaller average time than C(f).

1.7 Example Consider the threshold-2 function Thn
2 (x). Since every boolean func-

tion f , which depends on n variables, requires at least n− 1 gates, we have that

C(Thn
2 ) ≥ n− 1. On the other hand, it is not difficult to show that t(Thn

2 ) = O(1).
To see this, let us first compute z = Th3

2(x1, x2, x3). This can be done using 6
gates (see Fig. ??), and hence, can be computed in time 6. After that we compute

z = Th3
2(x4, x5, x6), and so on. Declare each gate re-setting the variable z as a

stop-gate. This way the computations on 42n−3 = 2n−1
inputs will be stopped

after 6 steps, the computations on 422n−6 = 2n−2
remaining inputs will be stopped

after 6 · 2 = 12 steps and, in general, the computations on 4t2n−3t = 2n−t
inputs

will be stopped after 6t steps. Thus, the average computation times is at most∑n/3
t=1 6t2−t = O(1).

An interesting aspect of stop-circuits is that one can compute non-monotone

boolean functions using monotone operations! For example, the following circuit

over {0, 1} computes the negation ¬x of a variable x:

z = 0; g1 = x (stop); z = 1

and the following circuit over {∧,∨, 0, 1} computes the parity function x⊕ y:

z = 0; g1 = x ∧ y (stop); z = 1; g2 = x ∨ y (stop); z = 0 .
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Let tm(f) denote the minimum average time of a circuit over {∧,∨, 0, 1} comput-

ing f . Chashkin (2004) showed that there exist boolean functions f of n variables

such that t(f) = O(1) but tm(f) = Ω(
√

2n/n).

Arithmetic circuits Such circuits constitute the most natural and standard model

for computing polynomials over a ring R. In this model the inputs are variables

x1, . . . , xn, and the computation is performed using the arithmetic operations +,×
and may involve constants from R. The output of an arithmetic circuit is thus a

polynomial (or a set of polynomials) in the input variables. Arithmetic circuits are a

highly structured model of computation compared to boolean circuits. For example,

when studying arithmetic circuits we are interested in syntactic computation of

polynomials, whereas in the study of boolean circuits we are interested in the

semantics of the computation. In other words, in the boolean case we are not

interested in any specific polynomial representation of the function, but rather we

just want to compute some representation of it, while in the arithmetic world we

focus on a specific representation of the function. As such, one may hope that the

P vs. NP question will be easier to solve in the arithmetical model. However, in

spite of many efforts, we are still far from understanding this fundamental problem.

In this book we will not discuss arithmetic circuits: a comprehensive treatment can

be found in a recent survey by Shpilka and Yehudayoff (2010).

1.3 Branching programs

Circuits and formulas are “parallel” models: given an input vector x ∈ {0, 1}n
, we

process some pieces of x in parallel and join the results by AND or OR gates. The

oldest “sequential” model for computing boolean functions, introduced already in

pioneering work of Shannon (1949) and extensively studied in the Russian literature

since about 1950, is that of switching networks; a modern name for these networks

is “branching programs.”

Nondeterministic branching programs Perhaps the most general of “sequential”

models is that of nondeterministic branching programs (n.b.p.). Such a program is

a directed acyclic graph with two specified nodes
* s (source) and t (target). Each

wire is either unlabeled or is labeled by a literal (a variable xi or its negation ¬xi).

A labeled wire is called a contact, and an unlabeled wire is a rectifier.
The graph may be a multigraph, that is, several wires may have the same end-

points. The size of a program is defined as the number of contacts (labeled wires).

Each input a = (a1, . . . , an) ∈ {0, 1}n
switches the labeled wires On or Off by

the following rule: the wire labeled by xi is switched On if ai = 1 and is switched

Off if ai = 0; the wire labeled by ¬xi is switched On if ai = 0 and is switched Off

if ai = 1. The rectifiers are always considered On.

*

We prefer to use the word “node” instead of “vertex” as well as “wire” instead of “edge” while

talking about branching programs.
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Fig. 1.5 A nondeterministic branching program computing the majority function Maj3(x, y, z) =
1 iff x + y + z ≥ 2, and a non-monotone switching network computing the threshold function

Th4
2(x1, x2, x3, x4) = 1 iff x1 + x2 + x3 + x4 ≥ 2.

A nondeterministic branching program computes a boolean function in a natural

way: it accepts the input a if and only if there exists a path from s to t which is

consistent with a, that is, along which all wires are switched On by a. That is, each
input switches the wires on or off, and we accept that input if and only if after that

there is a nonzero conductivity between the nodes s and t (see Fig. ??). Note that
we can have many paths consistent with one input vector a; this is why a program

is nondeterministic.

An n.b.p. ismonotone if it does not have negated contacts, that is, wires labeled by
negated variables. It is clear that every such program can only compute a monotone

boolean function. For a monotone boolean function f , let NBP+(f) denote the
minimum size of a monotone n.b.p. computing f , and let NBP(f) be the non-

monotone counterpart of this measure. Let also l(f) denote the minimum length of

its minterm, and w(f) the minimum length of its maxterm.

1.8 Theorem (Markov 1962) For every monotone boolean function f ,

NBP+(f) ≥ l(f) · w(f) .

Proof. Given a monotone n.b.p. program, for each node u define d(u) as the mini-

mum number of variables that need to be set to 1 to establish a directed path from

the source node s to u. In particular, d(t) = l(f) for the target node t.
For 0 ≤ i ≤ l(f), let Si be the set of nodes u such that d(u) = i. If u is connected

to v by an unlabeled wire (i.e., not a contact) then d(u) ≥ d(v), hence there are
no unlabeled wires from Si to Sj for i < j. Thus for each 0 ≤ i < l(f), the set Ei

of contacts out of Si forms a cut of the branching program. That is, setting these

contacts to 0 disconnects the graph, and hence, forces the program output value 0
regardless on the values of the remaining variables. This implies that the setX(Ei)
of labels of contacts in Ei must contain a maxterm of f , hence |X(Ei)| ≥ w(f)
distinct variables. ⊓⊔

For the threshold function Thn
k we have l(Thn

k ) = k and w(Thn
k ) = n− k + 1,

so every monotone n.b.p. has at least k(n− k + 1) contacts. Actually, this bound is

tight, as shown in Fig. ??. Thus we have the following surprisingly tight result.

1.9 Corollary (Markov 1962) NBP+(Thn
k ) = k(n− k + 1).

In particular, NBP+(Majn) = Θ(n2).
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Fig. 1.6 The naive monotone n.b.p. for Thn
k has k(n − k + 1) contacts; here n = 9, k = 6.
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Fig. 1.7 A graph which is not parallel-serial: it has a “bridge” {a, b} which is traversed in different

directions.

It is also worth noting that the famous result of Szelepsényi (1987) and Immerman

(1988) translates to the following very interesting simulation: there exists a constant

c such that for every sequence (fn) of boolean functions,

NBP(¬fn) ≤ NBP(fn)c .

This is a “NP = co-NP” type result for branching programs.

A parity branching program is a nondeterministic branching program with the

“counting” mode of acceptance: an input vector a is accepted iff the number s-t
paths consistent with a is odd.

Switching networks A switching network (also called a contact scheme) is defined in
the same way as an n.b.p. with the only difference that now the underlying graph

is undirected. Note that in this case unlabeled wires (rectifiers) are redundant since

we can always contract them.

A switching network is a parallel-serial network (or π-scheme) if its underlying
graph consists of parallel-serial components (see Fig. ??). Such networks can be

equivalently defined as switching networks satisfying the following condition: it is

possible to direct the wires in such a way that every s-t path will turn to a directed

path from s to t; see Fig ?? for an example of a switching network which is not
parallel-serial.

It is important to note that switching networks include DeMorgan formulas as a

special case!

1.10 Proposition Every DeMorgan formula can be simulated by a π-scheme of the
same size, and vice versa.

Proof. This can be shown by induction on the leafsize of a DeMorgan formula

F . If F is a variable xi or its negation ¬xi, then F is equivalent to a π-scheme
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Fig. 1.8 A π-scheme corresponding to the formula x1(x2 ∨ x3)(x3 ∨ x4x5(x1 ∨ x2)).
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Fig. 1.9 A deterministic branching program computing the majority function Maj3(x, y, z) = 1
iff x + y + z ≥ 2, and such a program computing the parity function Parity(x, y, z) = x + y +
z mod 2; wires left without a label in the latter program make tests y = 1 and z = 1, respectively.

consisting of just one contact. If F = F1 ∧ F2 then, having π-schemes S1 and S2
for subformulas F1 and F2, we can obtain a π-scheme for F by just identifying the

target node of S1 with the source node of S2 (see Fig. ??). If F = F1 ∨ F2 then,

having π-schemes S1 and S2 for subformulas F1 and F2, we can obtain a π-scheme

for F by placing these two schemes in parallel and gluing their source nodes and

their target nodes. ⊓⊔

That the presence of unlabeled directedwires in a networkmakes a difference, can

be seen on the example of the threshold functionThn
2 . Let S(f) denote the minimum

number of contacts in a switching network computing f , and let S+(f) denote
the monotone counterpart of this measure. By Markov’s theorem, NBP+(Thn

2 ) =
2n − 3, but it can shown that S+(Thn

2 ) = Ω(n log2 n) (see Exercise ??). In fact,

if n is a power of 2, then we also have S+(Thn
2 ) ≤ n log2 n, even in the class of

π-schemes (see Exercise ??). It can also be easily shown that in the class of non-
monotone switching networks we have that S(Thn

2 ) ≤ 3n − 4 (see Fig. ?? for a
hint).

Deterministic branching programs In a nondeterministic branching program as

well as in a switching network one input vector a ∈ {0, 1}n
can be consistent with

many s-t paths. The deterministic version forbids this: every input vector must be

consistent with exactly one path.

Formally, a deterministic branching program for a given boolean function f of n
variables x1, . . . , xn is a directed acyclic graph with one source node and two sinks,

that is, nodes of out-degree 0. The sinks are labeled by 1 (accept) and by 0 (reject).

Each non-sink node has out-degree 2, and the two outgoing wires are labeled by

the tests xi = 0 and xi = 1 for some i ∈ {1, . . . , n}; the node itself is labeled by

the variable xi.
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Such a program computes a boolean function f : {0, 1}n → {0, 1} in a natural

way: given an input vector a ∈ {0, 1}n
, we start in the source node and follow the

unique path whose tests are consistent with the corresponding bits of a; this path
is the computation on a. In this way we reach a sink, and the input a is accepted iff

this is the 1-sink.
Thus, a deterministic branching program is a nondeterministic branching pro-

gramwith the restriction that each non-sink node has fanout 2, and the two outgoing
wires from each such node are labeled by the tests xi = 0 and xi = 1 on the same
variable xi. The presence of the 0-sink is just to ensure that each input vector can

reach a sink.

A decision tree is a deterministic branching program whose underlying graph is

a binary tree. The depth of such a tree is the maximum number of wires in a path

from the source node to a leaf.

In the literature, branching programs are also called binary decision diagrams or shortly
BDDs. This term is especially often used in circuit design theory as well as in other fields

where branching programs are used to represent boolean functions. Be warned, however,

that the term “BDD” in such papers is often used to denote a much weaker model, namely

that of oblivious read-once branching programs (OBDD). These are deterministic branching

programs of a very restricted structure: along every computation path all variables are tested

in the same order, and no variable is tested more than once.

It is clear that NBP(f) ≤ S(f) ≤ BP(f), where BP(f) denotes the minimum

size of a deterministic branching program computing f . An important result of

Reingold (2008) translates to

BP(fn) ≤ S(fn)O(1) .

This is a “P = NP” type result for branching programs.

1.4 Almost all functions are complex

We still cannot prove super-linear lower bounds for circuits with AND, OR and

NOT gates. This is in sharp contrast with the fact, proved more than 60 years ago

by Riordan and Shannon (1942) that most boolean functions require formulas of

leafsize about 2n/ logn. Then Shannon (1949) showed a lower bound 2n/n for

circuits. Their arguments were the first applications of counting arguments in

boolean function complexity: count how many different boolean functions of n
variables can be computed using a given number of elementary operations, and

compare this number with the total number 22n

of all boolean functions. After these

works of Riordan and Shannon there were many results concerning the behavior of

the so-called “Shannon function” in different circuit models.

1.11 Definition (Shannon function) Given a circuit model with a particular their

size-measure, the Shannon function for this model is µ(n) = max µ(f), where the
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maximum is taken over all boolean functions f of n variables, and µ(f) is the

minimum size of a circuit computing f .

In other words, µ(n) is the smallest number t such that every boolean function

of n variables can be computed by a circuit of size at most t.

Most bounds in circuit complexity ignore constant multiplicative factors. Moreover, boolean

functions f : {0, 1}n → {0, 1} are parameterized by their number of variables n. Hence,
under a boolean function f we actually understand an infinite sequence {fn | n = 1, 2, . . .}
of boolean functions. So the claim “f requires Ω(φ(n)) gates” means that there exists a

constant ϵ > 0 such that, for infinitely many values of n, the function fn cannot be computed

using fewer than ϵ ·φ(n) gates. We will also say that f requires a “super-polynomial” number

of gates, if φ(n) ≥ nα
for some α → ∞ as n → ∞, and that f requires an “exponential”

number of gates, if φ(n) ≥ 2nϵ

for a constant ϵ > 0.

Through this section, by a circuit (formula) we will understand a circuit (formula)

over the basis {∧,∨,¬}; similar results, however, also hold when all 16 boolean

functions of two variables are allowed as gates. By Bn we will denote the set of all

22n

boolean functions of n variables x1, . . . , xn.

1.4.1 Circuits

LetC(f) denote theminimum size of a fanin-two circuit over {∧,∨,¬} computing f .
Let also

ϕ(n, t) := |{f ∈ Bn | C(f) ≤ t}|

denote the number of distinct boolean functions f ∈ Bn computable by circuits

of size at most t. As before, we assume that the function computed by a circuit

g1, g2, . . . , gt is the function computed at its last gate gt. So we now assume that

every circuit computes only one boolean function. This implies that every class

F ⊆ Bn of |F | > ϕ(n, t) functions must contain a function requiring circuits of

size > t. This was the main idea of Riordan–Shannon’s argument.

1.12 Lemma ϕ(n, t) ≤ tte2t+4n. In particular, ϕ(n, t) ≤ 2t2
for t ≥ n ≥ 16.

Proof. Clearly, we may suppose n, t ≥ 2. Let g1, . . . , gt be names of the gates in

a circuit. To describe a concrete circuit, it is sufficient to attach to each gate one

of the connectives ∧,∨,¬ and an unordered pair of names of two other gates or

literals. There are at most(
3
(

t−1+2n
2

))t

≤ 2t(t+ 2n)2t

such descriptions. Clearly, some of these descriptions do not represent a circuit

satisfying all requirements, but every correct circuit may be described in this

way. Note that the output does not have a special name. In a correct circuit, it

is determined by the fact that it is the only gate not used in any other gate. It is

easy to see that every function representable by a circuit of size at most t is also
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representable by a circuit of size exactly t satisfying the additional requirement that

no two of its gates compute the same function. It is also easy to see that in a circuit

satisfying the last mentioned property, each of the t! permutations of the names of

the gates leads to a different description of a circuit computing the same function.

So using estimates t! ≥ (t/3)t
and 1 + x ≤ ex

, we can upper bound ϕ(n, t) by

2t(t+ 2n)2t

t! ≤ 2t3t(t+ 2n)2t

tt
= 6ttt

(
1 + 2n

t

)2t

≤ tt6te4n . ⊓⊔

1.13 Lemma (Kannan 1981) For every integer k ≥ 1, there is a boolean function of n
variables such that f can be written as a DNF with n2k+1 monomials, but C(f) > nk .

Proof. We view a circuit computing a boolean function f as accepting the set

of vectors f−1(1) ⊆ {0, 1}n
, and rejecting the remaining vectors. Fix a subset

T ⊆ {0, 1}n
of size |T | = nt2 = n2k+1

. By Lemma ??, we know that at most

2n2k

< 2|T |
distinct subsets of T can be accepted by circuits of size at most nk

.

Thus, some subset S ⊆ T cannot be accepted by a circuit of size nk
. But this subset

S can be accepted by a trivial DNF with |S| ≤ |T | = n2k+1
monomials: just take

one monomial for each vector in S. ⊓⊔

Since we have 22n

distinct boolean functions of n variables, setting t := 2n/n in

Lemma ?? immediately implies the following lower bound on the Shannon function

C(n) in the class of circuits.

1.14 Theorem For every sufficiently large n, C(n) > 2n/n,.

On the other hand, it is easy to see that C(n) = O(n2n): just take the DNFs.
Muller (1956) proved that C(n) = Θ(2n/n) for any finite complete basis. Lupanov

(1958a) used an ingenious construction to prove an asymptotically tight bound.

1.15 Theorem (Lupanov 1958a) For every boolean function f of n variables,

C(f) ≤ (1 + αn)2n

n
where αn = O

( logn
n

)
. (1.4)

Proof. We assume that the number n of variables is large enough. For a boolean

vector a = (a1, . . . , an), let bin(a) :=
∑n

i=1 ai ·2n−i
be the unique natural number

between 0 and 2n − 1 associated with a; we call bin(a) the code of a.
LetHn,m(i) denote the set of all boolean functions h(x) of n variables such that

h(a) = 0 if bin(a) ≤ m(i − 1) or bin(a) > mi. That is, we arrange the vectors
of {0, 1}n

into a string of length 2n
according to their codes, split this string into

consecutive intervals of lengthm, and let Hn,m(i) to contain all boolean functions

h that take value 0 outside the i-th interval:

. . . , 0, 0, ∗, . . . , ∗︸ ︷︷ ︸
values on m vectors

, 0, 0, . . . .



24 1 Our Adversary: The Circuit

Thus,
*
for each i = 1, . . . , 2n/m, each function inHn,m(i) can only accept a subset

of a fixed set ofm vectors, implying that

|Hn,m(i)| ≤ 2m+1

for all i. Since every input vector a has its unique weight, every boolean function

f(x) of n variables can be represented as a disjunction

f(x) =
2n/m∨
i=1

fi(x) , (1.5)

where fi ∈ Hn,m(i) is the functions such that fi(a) = f(a) for every a such that

m(i− 1) < bin(a) ≤ mi. We can associate with every a ∈ {0, 1}n
the elementary

conjunction
Ka = xa1

1 xa2
2 · · ·xan

n .

Recall that xσ
i = 1 if ai = σ, and xσ

i = 0 otherwise. Hence,Ka(b) = 1 if and only

if b = a, and we have 2n
such elementary conjunctions of n variables.

1.16 Claim All elementary conjunctions of n variables can be simultaneously com-

puted by a circuit with at most 2n + 2n2n/2
gates.

Proof. Assume for simplicity that n is even. We first compute all 2n/2
elementary

conjunctions of the first n/2 variables using a trivial circuit with at most (n/2)2n/2

gates, and do the same for the conjunctions of the remaining n/2 variables. We

now can compute every elementary conjunction of n variables by taking an AND

of the corresponding outputs of these two circuits. This requires 2n/2 · 2n/2 = 2n

additional gates, and the entire circuit has size at most 2n + n2n/2
To include the

case when n is odd, we just multiply the last term by 2. ⊓⊔

We now turn to the actual construction of an efficient circuit for a given boolean

function f(x) of n variables. Let 1 ≤ k,m ≤ n be integer parameters (to be

specified latter). By (??), we can write f(x) as a disjunction

f(x) =
∨
a

Ka(x1, . . . , xk) ∧
2n/m∨
i=1

fa,i(xk+1, . . . , xn) ,

where a ranges over {0, 1}k
, and each fa,i belongs to Hn−k,m(i). We will use

this representation to design the desired circuit for f . The circuit consists of five
subcircuits (see Fig. ??). The first subcircuitF1 computes all elementary conjunctions

of the first k variables. By Claim??, this circuit has size

L(F1) ≤ 2k + 2k2k/2 .

*

An apology to purists: for simplicity of presentation, we will often ignore ceilings and floors.
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Fig. 1.10 The structure of Lupanov’s circuit.

The second subcircuit F2 also computes all elementary conjunctions of the remain-

ing n− k variables. By Claim??, this circuit has size

L(F2) ≤ 2n−k + 2(n− k)2(n−k)/2 .

The third subcircuit F3 computes all functions fa,i from the sets Hn−k,m(i) using
elementary conjunctions computed by F2. Since every function inHn−k,m(i) is an
OR of at mostm elementary conjunctions, each of length n− k, and since we have

at most 2m+1 · 2n−k/m such functions, the subcircuit F3 has size

L(F3) ≤ m2n−k+m+1/m = 2n−k+m+1 .

The fourth subcircuit F4 computes all functions

fa(xk+1, . . . , xn) =
2n/m∨
i=1

fa,i(xk+1, . . . , xn)

using the functions fa,i computed by F3. Since we have at most 2k
such functions

fa, each of which is an OR of at most 2n−k/m of the functions fa,i, the subcircuit

F4 has size

L(F4) ≤ 2k · 2n−k/m ≤ 2n

m
+ 2k .

The last subcircuit F5 multiplies functions computed by F3 by elementary con-

junctions computed by F1, and computes the disjunction of these products. This

subcircuit has size

L(F5) ≤ 2 · 2k .

Thus, the entire circuit F computes f(x) and has size

L(F ) ≤ 2n

m
+ 4 · 2k + 2n−k + 2n2k/2 + 2n2n−k + 2n−k+m+1 .
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Now set k = n − 2 logn and m = n − 4 logn. Then all but the first terms are

at most O(2n/n2), and we obtain that L(F ) ≤ 2n/m + O(2n/n2). After simple

computations, this implies L(F ) ≤ (1 + α)2n/n where α ≤ c(logn)/n for a

constant c. ⊓⊔

Lozhkin (1996) improved (??) to

αn = logn+ log logn+ O(1)
n

.

Lupanov (1963) also proved a lower bound

C(n) ≥ (1 + βn)2n

n
where βn = (1 − o(1)) logn

n
. (1.6)

The proof actually gives that the o(1) factor is equal to O(1/ logn).
Redkin (2004) considered the behavior of the Shannon function when restricted

to boolean functions accepting a small number of input vectors. Let C(n,K) denote
the smallest number t such that every boolean function f of n variables such that

|f−1(1)| = K can be computed by a circuit over {∧,∨,¬} of size at most t. Redkin
(2004) proved that, if 2 ≤ K ≤ log2 n−c log2 log2 n holds for some constant c > 1,
then

C(n,K) ∼ 2n .

For the Shannon function M(n) restricted to the class of all monotone boolean
functions of n variables, Ugol’nikov (1976) and Pippenger (1976b) independently

proved that

M(n) ∼ 1
n

(
n

⌊n/2⌋

)
.

This holds for circuits with AND, OR and NOT gates. An important improvement

by Andreev (1988b) shows that the upper bound is actually achieved by monotone
circuits with only AND and OR gates!

1.4.2 Approximation complexity

In a standard setting, a circuit F (x) must compute a given boolean function f(x)
correctly on all input vectors x ∈ {0, 1}n

. We can relax this and only require

that F computes f correctly on some given subset D ⊆ {0, 1}n
of vectors; on

other input vectors the circuit may output arbitrary values, 0 or 1. That is, we are
asking for the smallest size C(f) of a circuit computing a partial boolean function

f : {0, 1}n → {0, 1, ∗} defined on

D = f−1(0) ∪ f−1(1) .
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Let N = |D| be the size of the domain, and N1 = |f−1(1)|. It is clear that C(f) =
O(nN). Actually, we have a much better upper bound:

C(f) ≤ (1 + o(1)) N

log2 N
+ O(n) . (1.7)

For functions with log2 N ∼ n this was (implicitly) proved already by Nechiporuk

(1963, 1965, 1969a) in a series of papers devoted to rectifier networks; Pippenger

(1976) gave an independent proof. Then Sholomov (1969) proved this for all N ≥
n log1+Ω(1) n, and finally Andreev (1988) proved this for arbitrary N . It is also

known that

C(f) ≤ (1 + o(1))
log2

(
N
N1

)
log2 log2

(
N
N1

) + O(n) .

For log2 N1 ∼ n this was (implicitly) proved by Nechiporuk in the above mentioned

papers, and by Pippenger (1976). Andreev et al. (1996) proved this in the case when

(1 + ϵ) logn < logN1 = O(logn) and logN = Ω(n). Finally, Chashkin (2006)

proved this for arbitrary N1.
Counting arguments (similar to those above) show that these upper bounds are

asymptotically tight. The proofs of the upper bounds are, however, non-trivial: it

took more than 40 years to find them!

Let us call a partial boolean function f : D → {0, 1} of n variables dense
if the size N = |D| of its domain satisfies log2 N ∼ n. The proof of (??) for
dense functions uses arguments similar to that we used in the proof of Theorem ??.
Moreover, for dense functions, (??) holds without the additive factorO(n). The proof
of (??) for functions that are not necessarily dense used interesting ideas which we

will sketch right now. We will follow a simplified argument due to Chashkin (2006).

Let f(x) be a partial boolean function which is not dense, that is, for which

log2 N ≪ n holds. If f takes value 1 on fewer thanN/n2
input vectors, then we can

compute f by a DNF using at most n(N/n2) = N/n gates. Thus, the difficult case

is when f is not dense but is “dense enough”. The idea in this case is to express f as

f(x) = h(x) ⊕ g(L(x)), where h accepts only few vectors, g : {0, 1}m → {0, 1} is

a dense partial function, and L : {0, 1}n → {0, 1}m
is an “almost” injective linear

operator. Being linear means that L(x) = Ax over GF(2) for some booleanm× n
matrix A. Both h and L have small circuits, and for g we can use the upper bound

for dense functions.

Say that an operator L : {0, 1}n → {0, 1}m
is almost injective on a subset

D ⊆ {0, 1}n
if L(x) = L(y) for at most 2−m

(|D|
2
)
pairs x ̸= y of distinct vectors

in D.

1.17 Lemma LetD ⊆ {0, 1}n be a set of vectors, andm a positive integer. Then there
exists a linear operator L : {0, 1}n → {0, 1}m which is almost injective on D.

Proof. We will use a simple (but useful) fact about random vectors in GF(2)n
. A

random vector a in GF(2)n
is obtained by flipping n times a fair 0-1 coin. Hence,

Prob[a = x] = 2−n
for each vector x ∈ GF(2)n

. It is easy to show (see Ap-

pendix ??) that Prob[⟨a, x⟩ = ⟨a, y⟩] = 1/2 holds for every two vectors x ̸= y
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in GF(2)n
, where ⟨a, x⟩ =

∑n
i=1 aixi mod 2 is the scalar product of a and x

over GF(2).
Now consider a random operator L(x) = AxwhereA is a randomm×nmatrix

whose rows are random vectors in GF(2)n
. By the previous fact, every pair (x, y)

of vectors x ̸= y in D is not separated by L with probability 2−m
. By the linearity

of expectation, at most a fraction 2−m
of such pairs will not be separated by L. ⊓⊔

Now let f be a partial boolean function of n variables defined on some domain

D ⊆ {0, 1}n
of size N = |D|.

1.18 Lemma If logN ≥ n/3 then C(f) ≤ (1 + o(1))N/ logN .

Proof. Let D0 = {x ∈ D | f(x) = 0} and D1 = {x ∈ D | f(x) = 1}; hence,
D = D0 ∪D1 is the set on which our function f is defined, and N = |D|. Set also
m = ⌈logN + 3 logn⌉.

Lemma ?? gives us a linear operator L : {0, 1}n → {0, 1}m
which is almost

injective on D. Consider a partial boolean function g : {0, 1}m → {0, 1} defined

on L(D) by: g(z) = 0 if z ∈ L(D0), and g(z) = 1 otherwise. If necessary, specify

arbitrary values of g on some vectors outsideL(D) until the domain of g has exactly
N vectors.

And now comes the trick. We can write our function f(x) as

f(x) = h(x) ⊕ g(L(x)) ,

where

h(x) := f(x) ⊕ g(L(x))

is a partial function defined on D. Thus, we only need to show that all three

functions h, g and L can be computed by small circuits.

The operator L(x) is just a set of m ≤ n parity functions, and hence, can be

computed by a trivial circuit of sizeO(n2), which is o(N/n) because logN = Ω(n),
by our assumption.

The function h can be computed by a small circuit just because it accepts at most

N/n3
vectors x ∈ D. Indeed, h(x) = 0 for all x ∈ D0 because then L(x) ∈ L(D0).

Hence, h can accept a vector x ∈ D only if x ∈ D1 and g(L(x)) = 0, that is, if
x ∈ D1 and L(x) = L(y) for some y ∈ D0. Since the operator L is almost injective,

and since 2m ≥ Nn3
, there are at most 2−m

(
N
2
)

≤ N/n3
pairs (y, x) ∈ D0 ×D1

such that L(x) = L(y). Thus, the function h can accept at most N/n3
vectors. By

taking a DNF, this implies that h can be computed by a circuit of size n(N/n3) =
o(N/n).

It remains therefore to compute the function g. Recall that g is a partial function
of m variables defined on N vectors. Since logN ∼ m, the function g is dense,

implying that C(g) ≤ (1 + o(1))N/ logN . ⊓⊔

We can now easily prove (??) for any partial function f . If logN ≥ n/3 then

Lemma ?? gives the desired upper bound (without any additive term). Now suppose

that logN ≤ n/3. In this case we takem := ⌈2 logN⌉.
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Lemma ?? gives us a linear operator L : {0, 1}n → {0, 1}m
which is almost

injective on D. But by our choice of m, the operator L is actually injective on

D, because 2−m
(

N
2
)

≤ 1/2 < 1. Thus, in this case we do not need any “error

correction” function h because now we have that f(x) = g(L(x)) for all x ∈ D,

where g is defined as above using our new operator L. The function g has m
variables and is defined on |L(D)| = |D| = N vectors.

Since m ≤ ⌈2 logN⌉ ≤ 3 logN , we can apply Lemma ?? to g and obtain

C(g) ≤ (1 + o(1))N/ logN . Since C(L) = O(n logN), we obtain (??) with an

additive factor O(n2). One can reduce this factor to O(n) by using the existence

of good linear codes computable by circuits of linear size; see Chashkin (2006) for

details.

1.4.3 The circuit hierarchy theorem

By using the estimates of Shannon and Lupanov, it is not difficult to show that one

can properly increase the number of computed functions by “slightly” increasing the

size of circuits. For a function t : N → N, letCircuit[t] denote the set of all sequences
fn, n = 1, 2, . . . of boolean functions of n variables such that C(fn) ≤ t(n).

1.19 Theorem (Circuit Hierarchy Theorem) If n ≤ t(n) ≤ 2n−2/n then

Circuit[t] ⫋ Circuit[4t] .

Proof. Fix the maximalm ∈ {1, . . . , n} such that t(n) ≤ 2m/m ≤ 2 · t(n). This is
possible: ifm is the largest number with 2m/m ≤ 2 · t(n), then 2m+1/(m+ 1) >
2 ·t(n), which implies t(n) ≤ 2m/m. Consider the setBn,m of all boolean functions

of n variables that depend only onm bits of their inputs. By the Shannon–Lupanov

lower bound, there exists fn ∈ Bn,m such that C(fn) > 2m/m ≥ t(n). On the

other hand, Lupanov’s upper bound yields C(fn) ≤ 2 · 2m/m ≤ 4 · t(n) ⊓⊔

1.20 Remark Theorem ?? implies that ϕ(n, 4t) ≥ ϕ(n, t) + 1; recall that ϕ(n, t) is
the number of boolean functions of n variables computable by circuits of size at

most t. Recently, Chow (2011) gave the following tighter lower bound: there exist

constants c andK > 1 such that for all t(n) ≤ 2n−2/n and all sufficiently large n,

ϕ(n, t+ cn) ≥ K · ϕ(n, t) . (1.8)

That is, when allowing an additional cn gates, the number of computable functions

is multiplied by at least some constant factorK > 1. In particular, if t(n) ≫ n logn,
then for any fixed d, ϕ(n, t) ≥ nd · ϕ(n, t/2) for all sufficiently large n. To prove

(??), Chow sets N = 2n
and lets A ⊆ {0, 1}N

to be the set of all truth tables of

boolean functions f ∈ Bn computable circuits of size at most t.
A truth table is a 0-1 vector a = (a1, . . . , aN ), and it describes the unique

function fa ∈ Bn defined by fa(x) = abin(x) where bin(x) =
∑n

i=1 xi2i−1

is the number whose binary code is vector x ∈ {0, 1}n
. The boundary δ(A) of
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A ⊂ {0, 1}N
is the set of all vectors b ̸∈ A that differ from at least one a ∈ A

in exactly one position. The discrete isoperimetric inequality (see, for example,

Bezrukov (1994)) states that,

k∑
i=0

(
N
i

)
≤ |A| <

k+1∑
i=0

(
N
i

)
implies |δ(A)| ≥

(
N

k+1
)
.

Using this and some simple properties of binomial coefficients, Chow shows that

the boundary δ(A) of the set A of truth tables contains at least ϵ|A| vectors, for
a constant ϵ > 0. Now, if b ∈ δ(A), then there exists a vector a ∈ A such that fb

differs from fa on only one input vector x0. One can thus take a circuit for fa, add

additional cn gates to test the equality x = x0, and obtain a circuit for fb. Thus,

using additional cn gates we can compute at least K · |A| = K · ϕ(n, t) boolean
functions, whereK = (1 + ϵ) > 1.

Chow (2011) uses this result to show that the so-called “natural proofs barrier” in

circuit lower bounds can be broken using properties of boolean functions of lower

density; we shortly discuss the phenomenon of natural proofs in the Epilogue.

1.4.4 Switching networks and formulas

Let us now consider the Shannon function S(n) in the class of switching networks.

The worst-case complexity of switching networks is similar to that of circuits, and

can be lower bounded using the following rough upper bound on the number of

directed graphs with a given number of wires. Recall that multiple wires joining

the same pair of nodes are here allowed.

1.21 Lemma There exist at most (9t)t graphs with t edges.

Proof. Every set of t edges is incident with at most 2t nodes. Using these nodes, at

most r = (2t)2
their pairs (potential edges) can be built. Since x1 + . . .+ xr = t

has

(
r+t−1

t

)
integer solutions xi ≥ 0, and since t! ≥ (t/3)t

(by Stirling’s formula),

the number of graphs with t edges is at most

(
r+t−1

t

)
≤ (r + t− 1)t

t! ≤ 3t(r + t− 1)t

tt
≤ 32tt2t

tt
= 32ttt . ⊓⊔

1.22 Theorem For every constant ϵ > 0 and sufficiently large n,

S(n) ≥ (1 − ϵ)2n

n
.

Proof. If is clear that if a boolean function can be computed by a network with at

most t contacts then it can also be computed using exactly t contacts. By Lemma ??
we know that there are (9t)t

graphs with t edges. Since we only have 2n literals,

there are at most (2n)t
ways to turn each such graph into a switching network
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by assigning literals to edges. Since every switching network computes only one

boolean function, at most (18nt)t
different boolean functions can be computed

by switching networks with at most t contacts. Comparing this number when

t = (1 − ϵ)2n/n with the total number 22n

of all boolean functions, yields the

result. ⊓⊔

Shannon (1949) proved that (1 − ϵ)2n/n < S(n) < 2n+3/n holds for an arbi-

trarily small constant ϵ > 0. Lupanov (1958b) obtained much tighter bounds:(
1 + 2 logn− O(1)

n

)2n

n
≤ S(n) ≤

(
1 + O(1)√

n

)2n

n
.

In the class of formulas over {∧,∨,¬}, that is, fanout-1 circuits constituting

a subclass of switching networks (see Proposition ??), the behavior of Shannon’s
function is somewhat different: for some boolean functions, their formulas are at

least n/ logn times larger than circuits and switching networks.

When counting formulas, we have to count full binary tree, that is, binary trees

where every vertex has either two children or no children. It is well known that the

number of such trees with n+ 1 leaves is exactly the n-th Catalan number:

Cn := 1
n+ 1

(
2n
n

)
= (2n)!

(n+ 1)!n! ∼ 4n

n3/2√
π
.

Let L(f) denote the smallest number of gates in a formula over {∧,∨,¬} com-

puting f , and let L(n) be the corresponding Shannon function.

1.23 Theorem For every constant ϵ > 0 and sufficiently large n,

L(n) ≥ (1 − ϵ) 2n

log2 n
.

Proof. We can assume that all negations are only applied to input gates (leaves).

There are at most 4t
binary trees with t leaves, and for each such tree, there are at

most (2n+ 2)t
possibilities to turn it into a DeMorgan formula: 2n input literals

and two types of gates, AND and OR. Hence, the number of different formulas of

leafsize at most t is at most 4t(2n + 2)t ≤ (9n)t
for n ≥ 8. Since, we have 22n

different boolean functions, the desired lower bound on t follows. ⊓⊔

By using more precise computations, tighter estimates can be proved. Riordan

and Shannon (1942) proved that

L(n) > (1 − δn) 2n

logn where δn = O
( 1

logn

)
.

On the other hand, Lupanov (1960) showed that

L(n) ≤ (1 + γn) 2n

logn where γn = 2 log logn+ O(1)
logn .
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Fig. 1.11 Construction of a nondeterministic branching program for an arbitrary boolean function

on n variables. The program is read-once (along every s-t path, each variable is tested only once),

and is oblivious (on each level, tests on the same variable are made).

Lozhkin (1996) improved this to

γn = O
( 1

logn

)
.

Interestingly, Lupanov (1962) showed (among other things) that L(n) drops down
from 2n/ logn to

L(n) = O(2n/n) ,

if we allow just one of the basis functions AND, OR or NOT to have fanout 2. If we
allow all three basis functions to have fanout 2, then even the asymptotic

L(n) ∼ 2n/n

holds. If only NOT gates are allowed to have fanout 2, then

L(n) ∼ 2n+1/n .

Savický and Woods (1998) gave tight estimates on the number of boolean functions

computable by formulas of a given size. In particular, they proved that, for every

constant k, almost all boolean functions of formula size nk
require circuits of size

at least nk/k.
Nechiporuk (1962) considered the behavior of the Shannon function in cases

when some of the gates are given for free. He proved that the smallest number of

gates that is enough to compute any boolean function ofn variables is asymptotically

equal to:

• 2n/n for formulas over {∨,¬} when ∨-gates are for free;
•

√
2n+1

for circuits over {∨,¬} when ∨-gates are for free;
• 2n/2n for formulas over {⊕,∧} when ⊕-gates are for free;

•

√
2n

for circuits over {⊕,∧} when ⊕-gates are for free,
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Concerning the Shannon functions ⊕BP(n) for parity branching programs and

NBP(n) for nondeterministic branching programs, Nechiporuk (1962) proved that

⊕BP(n) ∼
√

2n+1

and √
2n+1 ≤ NBP(n) ≤ 2

√
2n . (1.9)

The upper bound NBP(n) ≤ 4
√

2n
for an even n is easy to prove. Take a boolean

function f(x1, . . . , xn), and assume that n = 2m is even. Let T1 be a full decision

tree on the firstm variables, and T2 a full decision tree on the remainingm variables.

Turn T2 “on its head”, and reverse the orientation of its wires. Draw a switch

(unlabeled wire) from the leaf of T1 reached by a vector x ∈ {0, 1}m
to the leaf

of T2 reached by a vector y ∈ {0, 1}m
if and only if f(x, y) = 1 (see Fig. ??). We

have |f−1(1)| switches, but they are for free. The number of contacts in the trees

T1 and T2 is smaller than 2 · 2m+1 = 4
√

2n
. Note that the constructed program is

“read-once”: along each s-t path, each variable is tested only once. If the number

of variables is odd, n = 2m + 1, then the above construction gives a program

with at most 2(2m + 2m+1) = 3 · 2m+1 = 3
√

2n+1
contacts. To obtain a better

upper bound 2
√

2n
, one can use more efficient contact schemes constructed by

Lupanov (1958b).

The best known asymptotic bounds on the Shannon function restricted to mono-
tone boolean functions can be found in a survey by Korshunov (2003).

1.4.5 Invariant classes

Let B be the class of all boolean functions. A class Q ⊆ B is invariant if together
with every function f(x1, . . . , xn) in Q it contains

• all subfunctions of f , and
• all function f(xπ(1), . . . , xπ(n)) where π : [n] → [n] is a permutation.

For example, classes of all symmetric, all linear or all monotone functions are

invariant. The class B itself is a trivial invariant class.

Let Q(n) denote the set of all boolean functions f ∈ Q of n variables; the

functions need not depend on all their variables. Denote

Lim(Q) := lim
n→∞

|Q(n)|1/2n

.

1.24 Theorem For every invariant class Q, Lim(Q) exists and lies between 1 and 2.

Proof. Let f(x1, . . . , xn+1) be an arbitrary boolean function in Q depending on

n+ 1 variables. Recurrence (??) yields |Q(n+ 1)| ≤ |Q(n)|2. Hence, the sequence
|Q(n)|1/2n

is non-increasing. If Q ̸= ∅, then

1 = 11/2n

≤ |Q(n)|1/2n

≤ (22n

)1/2n

= 2 .
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Thus Lim(Q) exists and is a number in the interval [1, 2]. ⊓⊔

By Theorem ??, every invariant class Q of boolean functions defines the unique

real number 0 ≤ σ ≤ 1 such that Lim(Q) = 2σ
. This number is an important

parameter of the invariant class characterizing its cardinality. It also characterizes

the maximum circuit complexity of functions in Q. We will therefore denote this

parameter by writing Qσ if σ is the parameter of Q.

For example, if P is the class of all linear boolean functions (parity functions),

then |P (n)| ≤ 2n+1
, implying that Lim(P ) = 1, and hence, σ = 0. The same holds

for the class S of all symmetric boolean functions. IfM is the class of all monotone

boolean functions, then(
n

n/2

)
≤ log2 |M(n)| ≤ (1 + o(1))

(
n

n/2

)
.

The lower bound here is trivial: consider monotone boolean functions whose

minterms have lengthn/2. The upper boundwas proved byKleitman andMarkowsky

(1975) with the o(1) factor being O(logn/n). The number |M(n)| is known as the

Dedekind number , and was considered by many authors. Korshunov (1977, 1981)

proved an asymptotically tight estimate

log2 |M(n)| ∼ (1 + α)
(
n

n/2

)
where α = Θ(n2/2n) .

Since

(
n

n/2
)

= Θ(2n/
√
n), we again have that Lim(M) = 1, and σ = 0. On the

other hand, Lim(B) = (22n)1/2n = 2, and σ = 1.
Do there exist invariant classes Q with σ strictly between 0 and 1? Yablonskii

(1959) showed that, for every real number 0 ≤ σ ≤ 1 there exists an invariant class

Q with Lim(Q) = 2σ
.

1.25 Example As an example let us construct an invariant class with σ = 1
2 . For this,

let Q(n) consist of all boolean functions of the form f(x1, . . . , xn) = lS(x) ∧ g(x)
where lS(x) is the parity function

⊕
i∈S xi or its negation, and g is an arbi-

trary boolean function depending only on variables xi with i ∈ S. It is easy

to see that Q is an invariant class. If we take S = {1, . . . , n}, then lS(x) = 1
for 2n−1

vectors x. Hence, |Q(n)| ≥ 22n−1
. On the other hand, for a fixed

S ⊆ [n], there are at most 22|S|−1 ≤ 22n−1
functions f ∈ Q(n). Since we have

only 2n+1
different linear functions on n variables, |Q(n)| ≤ 2n+122n−1

. Thus

Lim(Q) =
√

2 · limn→∞ 2n/2n =
√

2.

Let LQ(n) denote the maximum, over all functions f ∈ Q(n), of the minimum

size of a DeMorgan circuit computing f . Yablonskii (1959) extended results of

Shannon and Lupanov to all invariant classes.

1.26 Theorem (Yablonskii 1959) LetQ be an invariant class of boolean functions, and
let 0 ≤ σ ≤ 1 be its parameter. Then, for every constant ϵ > 0,
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(1 − ϵ)σ 2n

n
≤ LQ(n) ≤ (1 + o(1))σ 2n

n
.

The lower bound uses a Shannon-type counting argument and the fact thatQ(n)
has about 2σ2n

boolean functions. The upper bound uses a construction similar to

that used by Lupanov (1958).

It is not difficult to verify that σ < 1 for every invariant class Q ̸= B. Indeed,

for some fixed m, there exists a boolean function g(x1, . . . , xm) ̸∈ Q. Since the
sequence |Q(n)|1/2n

is non-increasing, we have that

lim
n→∞

|Q(n)|1/2n

≤ |Q(m)|1/2m

≤ (22m

− 1)1/2m

< 2 .

Now suppose we have an algorithm constructing a sequence F = (fn | n =
1, 2, . . .) of boolean functions. Call such an algorithm honest if, together with the

sequence F , it constructs some invariant class of boolean functions containing F .
Specifying F as an element of an invariant class means that the sequence F is

specified by its properties.

1.27 Theorem (Yablonskii 1959) Every honest algorithm constructing a sequence of
most complex boolean functions must construct all boolean functions.

Proof. Let us assume the opposite. That is, assume that some sequence F = (fn |
n = 1, 2, . . .) of most complex boolean functions is a member of some invariant

class Qσ ̸= B. Then σ < 1, and Theorem ?? implies that every boolean function

gn(x1, . . . , xn) ∈ Q has a DeMorgan circuit of size at most (1 − λ)2n/n for some

constant λ > 0. But the lower bound (??) implies that C(fn) > 2n/n. Comparing

these bounds, we can conclude that the sequence F cannot be contained in any

invariant class Qσ with σ < 1. ⊓⊔

This result was interpreted by Yablonskii as an indication that there (apparently)

is no other way to construct a most-complex sequence of boolean function other

than to do a “brute force search” (or “perebor” in Russian): just try all 22n

boolean

functions.

1.5 So where are the complex functions?

Unfortunately, the results above are not quite satisfactory: we know that almost

all boolean functions are complex, but no specific (or explicit) complex function

is known. This is a strange situation: we know that almost all boolean functions

are complex, but we cannot exhibit any single example of a complex function!

We also face a similar situation in other branches of mathematics. For example, in

combinatorics it is known that a random graph on n vertices is a Ramsey-graph,

that is, has no cliques or independent sets on more than t = 2 logn vertices. But

where are such “mystical” graphs?
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The best known explicit construction of non-bipartite t-Ramsey graphs due to Frankl and

Wilson only achieves a much larger value t about exp(
√

log n log log n). In the bipartite case,

t-Ramsey graphs with t = n1/2
can be obtained from Hadamard matrices: Lindsey’s Lemma

(see Appendix ??) implies that such a matrix can have a monochromatic a × b submatrix only

if ab ≤ n. But even going below t = n1/2
was only recently obtained by Pudlák and Rödl

(2004), Barak et al. (2010), and Ben-Sasson and Zewi (2010). The paper of Barak et al. (2010)

constructs bipartite t-Ramsey graphs with t = nδ
for an arbitrarily small constant δ > 0.

The main goal of boolean complexity theory is to prove lower bounds on the

complexity of computing explicitly given boolean functions in interesting com-

putational models. By “explicitly given” researchers usually mean “belonging to

the class NP”. This is a plausible interpretation since, on the one hand, this class

contains the overwhelming majority of interesting boolean functions, and on the

other hand, it is a sufficiently restricted class in which counting arguments seem

not to apply. The second point is illustrated by a result of Kannan (1981) showing

that already the class Σ2 ∩Π2, next after NP in the complexity hierarchy, contains

boolean functions whose circuit size is Ω(nk) for any fixed k > 0. The proof of
this fact essentially uses counting arguments; we will present it in the Epilogue

(see Theorem ??).

1.5.1 On explicitness

We are not going to introduce the classes of the complexity hierarchy. Instead, we

will use the following simple definitions of “explicitness”. Say that a sequence of

boolean functions gn,m(x, y) of n+m variables is “simple” if there exists a Turing

machine (or any other algorithm) which, given n,m and a vector (x, y), outputs
the value gn,m(x, y) in time polynomial in n+m. Then we can treat a sequence

of boolean functions fn(x) as “explicit” if there exists a sequence gn,m of simple

functions withm = nO(1)
such that

fn(x) = 1 if and only if gn,m(x, y) = 1 for at least one y ∈ {0, 1}m
.

In this case, simple functions correspond to the class P, and explicit functions form

the class NP. For example, the parity function x1 ⊕ · · · ⊕ xn is “very explicit”: to

determine its value, it is enough just to sum up all bits and divide the result by 2. A
classical example of an explicit function (a function in NP) which is not known to

be in P is the Clique function. It has n =
(

v
2
)
variables xu,v , each for one possible

edge {u, v} on a given set V of n vertices. Each 0-1 vector x of length

(
v
2
)
defines a

graph Gx = (V,Ex) in a natural way: {u, v} ∈ Ex iff xu,v = 1. The function itself

is defined by:

CLIQUE(x) = 1 iff the graph Gx contains a clique on

√
n vertices.

In this case, m = n and the graphs Gy encoded by vectors y are k-cliques for
k =

√
n. Since one can test whether a given k-clique in present in Gx in time
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about

(
k
2
)

≤ n, the function is explicit (belongs to NP). Thus a proof that CLIQUE
requires circuits of super-polynomial size would immediately imply that P ̸= NP.

Unfortunately, at the moment we are even not able to prove that CLIQUE
requires, say, 10n AND, OR and NOT gates! The problem here is with NOT gates—

we can already prove that the clique function requires nΩ(
√

n)
gates, if no NOT

gates are allowed; this is a celebrated result of Razborov (1985a) which we will

present in Chapter ??.

1.5.2 Explicit lower bounds

The strongest known lower bounds for non-monotone circuits (with NOT gates)

computing explicit boolean functions of n variables have the form:

• 4n − 4 for circuits over {∧,∨,¬}, and 7n − 7 for circuits over {∧,¬} and

{∨,¬} computing ⊕n(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn; Redkin (1973). These bounds

are tight.

• 5n− o(n) for circuits over the basis with all fanin-2 gates, except the parity

and its negation; Iwama and Morizumi (2002).

• 3n− o(n) for general circuits over the basis with all fanin-2 gates; Blum (1984).

• n3−o(1)
for formulas over {∧,∨,¬}; Håstad (1998).

• Ω(n2/ logn) for general fanin-2 formulas, Ω(n2/ log2 n) for deterministic

branching programs, and Ω(n3/2/ logn) for nondeterministic branching pro-

grams; Nechiporuk (1966).

We have only listed the strongest bounds for unrestricted circuit models we currently

have. The bounds for circuits and formulas were obtained by gradually increasing

previous lower bounds.

A lower bound 2n for general circuits was first proved by Kloss and Maly-

shev (1965), and by Schnorr (1974). Then Paul (1977) proved a 2.5n lower bound,

Stockmayer (1977) gave the same 2.5n lower bound for a larger family of boolean

functions including symmetric functions, Blum (1984) proved the lower bound

3n− o(n). A simpler proof of this lower bound, but for much more complicated

functions, was recently found by Demenkov and Kulikov (2011). They prove such a

bound for any boolean function which is not constant on any affine subspace of

GF(2)n
of dimension o(n). A rather involved construction of such functions was

given earlier by Ben-Sasson and Kopparty (2009).

For circuits over the basis with all fanin-2 gates, except the parity and its negation,
a lower bound of 4nwas obtained earlier by Zwick (1991b) (for a symmetric boolean

function), then Lachish and Raz (2001) proved a 4.5n − o(n) lower bound, and
finally Iwama and Morizumi (2002) extended this bound to 5n− o(n).

For formulas, the first nontrivial lower bound n3/2
was proved by Subbotovskaya

(1961), then a lower bound Ω(n2) was proved by Khrapchenko (1971), and a lower

bound ofΩ(n2.5) by Andreev (1985). This was enlarged toΩ(n2.55) by Impagliazzo
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and Nisan (1993), and to Ω(n2.63) by Paterson and Zwick (1993), and finally to

n3−o(1)
by Håstad (1998).

The boolean functions for which these lower bounds are proved are quite “simple”.

For general circuits, a lower bound 3n− o(n) is achieved by particular symmetric

functions, that is, functions whose value only depends on the number of ones in

the input vector.

The lower bound 5n− o(n) holds for any k-mixed boolean function with k =
n−o(n); a function is k-mixed if for any two different restrictions fixing the same set

of k variables must induce different functions on the remaining n− k variables. We

will construct an explicit k-mixed boolean function for k = n−O(
√
n) in Section ??.

Amano and Tarui (2008) showed that some highly mixed boolean functions can be

computed by circuits of size 5n+ o(1); hence, the property of being mixed alone is

not enough to improve this lower bound.

Almost-quadratic lower bounds for general formulas and branching programs

are achieved by the element distinctness function (see Sections ?? and ?? for the
proofs).

The strongest known lower bounds, up to n3−o(1)
, for DeMorgan formulas are

achieved by the following somewhat artificial function An(x, y) (see Section ??).
The function has n = 2b + bm variables with b = log(n/2) andm = n/(2b). The
last bm variables are divided into b blocks y = (y1, . . . , yb) of length m, and the

value of An is defined by An(x, y) = fx(⊕m(y1), . . . ,⊕m(yb)).

1.6 A 3n lower bound for circuits

Existing lower bounds for general circuits were proved using the so-called “gate-

elimination” argument. The proofs themselves consist of a rather involved case

analysis, and we will not present them here. Instead of that we will demonstrate

the main idea by proving weaker lower bounds.

The gate-elimination argument does the following. Given a circuit for the function

in question, we first argue that some variable1 (or set of variables) must fan out

to several gates. Setting this variable to a constant will eliminate several gates. By

repeatedly applying this process, we conclude that the original circuit must have

had many gates.

To illustrate the basic idea, we apply the gate-elimination argument to threshold

functions

Thn
k (x1, . . . , xn) = 1 if and only if x1 + x2 + · · · + xn ≥ k .

1.28 Theorem Even if all boolean functions in at most two variables are allowed as
gates, the function Thn

2 requires at least 2n− 4 gates.
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Proof. The proof is by induction on n. For n = 2 and n = 3 the bound is trivial.

For the induction step, take an optimal circuit for Thn
2 , and suppose that the

bottom-most gate g acts on variables xi and xj with i ̸= j. This gate has the form
g = φ(xi, xj) for some φ : {0, 1}2 → {0, 1}. Notice that under the four possible
settings of these two variables, the function Thn

2 has three different subfunctions
Thn−2

0 , Thn−2
1 and Thn−2

2 . It follows that either xi or xj fans out to another gate

h, for otherwise our circuit would have only two inequivalent sub-circuits under
the settings of xi and xj . Why? Just because the gate g = φ(xi, xj) can only take

two values, 0 and 1.
Now suppose that it is xj that fans out to h. Setting xj to 0 eliminates the need

of both gates g and h. The resulting circuit computes Thn−1
2 , and by induction, has

at least 2(n− 1) − 4 gates. Adding the two eliminated gates to this bound shows

that the original circuit has at least 2n− 4 gates, as desired. ⊓⊔

Theorem ?? holds for circuits whose gates are any boolean functions in at most

two variables. For circuits over the basis {∧,∨,¬} one can prove a slightly stronger

lower bound. For this, we consider the parity function

⊕n(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn .

1.29 Theorem (Schnorr 1974) The minimal number of AND and OR gates in a circuit
over {∧,∨,¬} computing ⊕n is 3(n− 1).

Proof. The upper bound follows since x⊕ y is equal to (x∧ ¬y) ∨ (¬x∧ y). For the
lower bound we prove the existence of some xi whose replacement by a suitable

constant eliminates 3 gates. This implies the assertion for n = 1 directly and for

n ≥ 3 by induction.

Let g be the first gate of an optimal circuit for ⊕n(x). Its inputs are different
variables xi and xj (see Fig. ??). If xi had fanout 1, that is, if g were the only gate

for which xi is acting as input, then we could replace xj by a constant so that

gate g would be replaced by a constant. This would imply that the output became

independent of the i-th variable xi in contradiction to the definition of parity. Hence,

xi must have fanout at least 2. Let g′
be the other gate to which xi is an input.

We now replace xi by such a constant that g becomes replaced by a constant.

Since under this setting of xi the parity is not replaced by a constant, the gate g
cannot be an output gate. Let h be a successor of g. We only have two possibilities:

either h coincides with g′
(that is, g has no other successors besides g′

) or not.

Case (a): g′ = h. In this case g has fanout 1. We can set xi to a constant so that g′

will become set to a constant. This will eliminate the need for all three gates g, g′

and p.

Case (b): g′ ̸= h. Then we can set xi to a constant so that g will become set to a

constant. This will eliminate the need for all three gates g, g′
and h.

In either case we eliminate at least 3 gates. ⊓⊔
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Fig. 1.12 The two cases in the proof of Theorem ??.

Note that the same argument works if we allow as gates any boolean functions

ϕ(x, y) with the following property: there exist constants a, b ∈ {0, 1} such that

both ϕ(a, y) and ϕ(x, b) are constants. The only two-variable functions that do not

have this property is the parity function x⊕ y and its negation x⊕ y ⊕ 1.

1.7 Graph complexity

As pointed out by Sipser (1992), one of the impediments in the lower bounds area is

a shortage of problems of intermediate difficulty which lend insight into the harder

problems. Most of known problems (boolean functions) are either “easy” (parity,

majority, etc.) or are “very hard” (clique problem, satisfiability of CNFs, and all other

NP-hard problems).

On the other hand, there are fields—like graph theory or matrix theory—with

a much richer spectrum of known objects. It therefore makes sense to look more

carefully at the graph structure of boolean functions: that is, to move from a “bit

level” to a more global one and consider a given boolean function as a matrix or as

a bipartite graph. The concept of graph complexity, as we will describe it below,

was introduced by Pudlák, Rödl and Savický (1988), and was later considered by

Razborov (1988, 1990), Chashkin (1994), Lokam (2003), Jukna (2006, 2010b), Drucker

(2011), and other authors.

A circuit for a given boolean function f generates this function starting from

simplest “generators”—variables and their negations. It applies some boolean oper-

ations like AND and OR to these generators to produce new “more complicated”

functions, then does the same with these functions until f is generated. Note how-

ever that there was nothing special to restrict ourselves to boolean functions—one

can define, say, the complexity of graphs or matrices analogously.

A basic observation connecting graphs and boolean functions is that boolean

functions can be treated as graphs. Namely, every boolean function f(x1, . . . , xm, y1, . . . , ym)
of 2m variables can be viewed as a bipartite n × n graph

* Gf ⊆ V1 × V2 with

n = 2m
, whose vertex-sets V1 = V2 = {0, 1}m

are binary vectors, and (u, v) ∈ Gf

iff f(u, v) = 1. In particular, literals xa
i and ya

j for a ∈ {0, 1} then turn to bicliques
(bipartite complete graphs):

*

Here and in what follows we will often consider graphs as sets of their edges.



1.7 Graph complexity 41

(i) If f = xa
i then Gf = {u ∈ V1 | ui = a} × V2.

(ii) If f = ya
j then Gf = V1 × {v ∈ V2 | vj = a}.

Boolean operations AND and OR turn to set-theoretic operations:

Gf∧g = Gf ∩Gg and Gf∨g = Gf ∪Gg .

Thus, every (non-monotone!) DeMorgan formula (or circuit) for the function f
turns to a formula (circuit) which can use any of 4m bicliques defined above, and

apply the union and intersection operations to produce the entire graph Gf .

We thus can take a “vacation” from boolean functions, and consider the com-

putational complexity of graphs: how many ∪ and ∩ operations do we need to

produce a given bipartite graph G starting from bicliques?

1.30 Remark In the context of arbitrary bipartite graphs, restriction to these special

bicliques (i) and (ii) as generators looks somewhat artificial. And indeed, if we use

only these 4m = 4 logn generators, then the complexity of isomorphic graphs
may be exponentially different. In particular, there would exist a perfect matching

of formula size O(m) = O(logn), namely that corresponding to the equality

function defined by f(x, y) = 1 iff x = y), as well as a perfect matching requiring

Ω(n) formula size; the existence can be shown by comparing the numbermO(t)
of

formulas of size t with the total number n! of perfect matchings.

1.7.1 Clique complexity of graphs

In view of the previous remark, let us allow all 22n
bicliques P × V2 and V1 ×Q

with P ⊆ V1 and Q ⊆ V2 as generators. The bipartite formula complexity, Lbip(G),
of a bipartite n× n graph G ⊆ V1 × V2, is then the minimum number of leaves in

a formula over {∩,∪} which produces the graph G starting from these generators.

By what was said above, we have that every boolean function f of 2m = 2 logn
variables requires non-monotone DeMorgan formulas with at least Lbip(Gf ) leaves.
Thus any explicit bipartite n × n graph G with Lbip(G) = Ω(logK n) would

immediately give us a an explicit boolean function of 2m variables requiring non-

monotone formulas of size Ω(mK). Recall that the best known lower bound for

formulas has the form Ω(m3).
Note however that even if we have “only” to prove poly-logarithmic lower

bounds for graphs, such bounds may be extremely hard to obtain. For example, we

will prove later in Section ?? that, if f is the parity function of 2m variables, then

any non-monotone DeMorgan formula computing f must have at least Ω(m2) =
Ω(log2 n) leaves. But the graph Gf of f is just a union of two bicliques, implying

that Lbip(G) ≤ 4.
Another way to view the concept of bipartite complexity of graphsG ⊆ V1 ×V2

is to associate with subsets P ⊆ V1 and Q ⊆ V2 boolean variables (we call them

meta-variables) zP , zQ : V1 × V2 → {0, 1} interpreted as
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Fig. 1.13 The adjacency matrices of: (i) a complete bipartite graph A × B represented by g =(∨
u∈A

zu

)
∧
(∨

v∈B
zv

)
, (ii) a bipartite graph represented by an OR function g =

∨
v∈A∪B

zv ,

and (iii) a bipartite graph represented by a Parity function g =
⊕

v∈A∪B
zv .

zP (u, v) = 1 iff u ∈ P , and zQ(u, v) = 1 iff v ∈ Q.

Then the set of edges accepted by zP is exactly the biclique P × V2, and similarly

for variables zQ.

1.31 Remark Note that in this case we do not need negated variables: for every P ⊆
V1, the variable zV1\P accepts exactly the same set of edges as the negated variable

¬xP . Thus Lbip(G) is exactly the minimum leafsize of a monotone DeMorgan

formula of these meta-variables which accepts all edges and rejects all nonedges

ofG. Also, the depth of a decision tree for the graphGf , querying themeta-variables,

is exactly the communication complexity of the boolean function f(x, y), a measure

which we will introduce in Chapter ??.

1.7.2 Star complexity of graphs

Now we consider the complexity of graphs when only special bicliques—stars—are

used as generators. A star is a bipartite graph formed by one vertex connected

to all vertices on the other side of the bipartition. In this case the complexity of

a given graph turns into a monotone complexity of monotone boolean functions

“representing” this graph in the following sense.

Let G = (V,E) be an n-vertex graph, and let z = {zv | v ∈ V } be a set of

boolean variables, one for each vertex (not for each subset P ⊆ V , as before). Say

that a boolean function (or a circuit) g(z) represents the graph G if, for every input

a ∈ {0, 1}n
with exactly two 1s in, say, positions u ̸= v, g(a) = 1 iff u and v are

adjacent in G:

f(0, . . . , 0,
u
1, 0, . . . , 0,

v
1, 0, . . . , 0) = 1 if and only if {u, v} ∈ E .

If the graph is bipartite then we only require that this must hold for vertices u and

v from different color classes. Note that in both cases (bipartite or not), on input

vectors with fewer than two 1s as well as on vectors with more than two 1s the
function g can take arbitrary values!
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Another way to treat this concept is to view edges as 2-element sets of vertices,

and boolean functions (or circuits) as accepting/rejecting subsets S ⊆ V of vertices.

Then a boolean function f : 2V → {0, 1} represents a graph if it accepts all edges

and rejects all non-edges. On subsets S with |S| ≠ 2 the function can take arbitrary

values.

Thus a single variable zv represents a complete star around the vertex v, that
is, the graph consisting of all edges connecting v with the remaining vertices. If

we consider bipartite graphs with bipartition V1 ∪ V2, then each single variable xv

with v ∈ Vi represents the star consisting of all edges connecting v with vertices in

V3−i. If A ⊆ V1 and B ⊆ V2, then the boolean function( ∨
u∈A

zu

)
∧
( ∨

v∈B

zv

)
represents the complete bipartite graph A×B (Fig. ??). Note also that every graph

G = (V,E) is represented by

∨
uv∈E zu ∧ zv . But this representation of n-vertex

graphs is not quite compact: the number of gates in them may be as large as Θ(n2).
If we allow unbounded fanin OR gates then already 2n− 1 gates are enough: we

can use the representation ∨
u∈S

zu ∧
( ∨

v:uv∈E

zv

)
,

where S ⊆ V is an arbitrary vertex-cover of G, that is, a set of vertices such that

every edge of G has is endpoint in S.
We have already seen how non-monotone circuit complexity of boolean functions

is related to biclique complexity of graphs. A similar relation is also in the case of

star complexity.

As before, we consider a boolean function f(x, y) of 2m variables as a bipartite

n× n graph Gf ⊆ U × V with color classes U = V = {0, 1}m
of size n = 2m

, in

which two vertices (vectors) x and y are adjacent iff f(x, y) = 1. In the following

lemma, by a “circuit” we mean an arbitrary boolean circuit with literals—variables

and their negations—as inputs.

1.32 Lemma (Magnification Lemma) In every circuit computing f(x, y) it is possible
to replace its input literals by ORs of new variables so that the resulting monotone
circuit represents the graph Gf .

Proof. Any input literal xa
i in a circuit for f(x, y) corresponds to the biclique

Ua
i × V with Ua

i = {u ∈ U | ui = a}. Every such biclique is represented by an

OR

∨
u∈Ua

i
zu of 2m−1 = n/2 new variables. ⊓⊔

Instead of replacing input literals by ORs one can also replace them by any other

boolean functions that compute 0 on the all-0 vector, and compute 1 on any input

vector with exactly one 1. In particular, parity functions also have this property,

as well as any function g(Z) = φ(
∑

w∈S zw) with φ : N → {0, 1}, φ(0) = 0 and

φ(1) = 1 does.
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Fig. 1.14 Having a circuit F computing a boolean function f of 2m variables, we obtain a (mono-

tone) circuit representing the graph Gf by replacing each input literal in F by an appropriate OR

of new variables.

The Magnification Lemma is particularly appealing when dealing with circuits

containing unbounded fanin OR (or unbounded fanin Parity gates) on the next to the

input layer (Fig. ??). In this case the total number of gates in the circuit computing

f is exactly the number of gates in the obtained circuit representing the graph Gf !

Thus if we could prove that some explicit bipartite n×n graph with n = 2m
cannot

be represented by such a circuit of size nϵ
, then this would immediately imply that

the corresponding boolean function f(x, y) in 2m variables cannot be computed

by a (non-monotone!) circuit of size nϵ = 2ϵm
, which is already exponential in

the number of variables of f . We will use Lemma ?? in Section ?? to prove truly

exponential lower bounds for unbounded-fanin depth-3 circuits with parity gates

on the bottom layer.

It is important to note that moderate lower bounds for graphs even in very

weak circuit models (where strong lower bounds for boolean functions are easy to

show) would yield impressive lower bounds for boolean circuits in rather nontrivial

models. To demonstrate this right now, let cnf(G) denote the smallest number of

clauses in a monotone CNF (AND of ORs of variables) representing the graph G.
A bipartite graph isK2,2-free if it does not have a cycle of length 4, that is, if its

adjacency matrix does not have a 2 × 2 all-1 submatrix.

1.33 Research Problem
Does there exist a constant ϵ > 0 such that cnf(G) ≥ Dϵ

for every bipartite

K2,2-free graph G of average degree D?

We will see later in Section ?? that a positive answer would give an explicit

boolean function f of n variables such that any DeMorgan circuit of depth O(logn)
computing f requires ω(n) gates (cf. Research Problem ??). Thus graph complexity

is a promising tool to prove lower bounds for boolean functions. Note, however, that

even small lower bounds for graphs may be very difficult to prove. If, say, n = 2m

and if f(x, y) is the parity function of 2m variables, then any CNF for f must have

at least 22m−1 = n2/2 clauses. But the bipartite n× n graph Gf corresponding to

this function consists of just two complete bipartite subgraphs; hence, Gf can be

represented by an OR of two monotone CNF consisting of just 4 clauses.
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1.8 A constant factor away from P ̸= NP?

Having warned about the difficulties when dealing with the graph complexity, in

this section we sketch a potential (albeit very hard to realize) approach to proving

strong lower bounds on circuit complexity of boolean functions using the graph

complexity.

Recall that a DeMorgan circuit consists of fanin-2 AND and OR gates, and has

all variables as well as their negations as inputs. A monotone circuit is a DeMorgan

circuit without negated variables as inputs.

1.34 Proposition Almost all bipartite n× n graphs require monotone circuits of size
Ω(n2/ logn) to represent them.

Proof. Easy counting (as in the proof of Theorem ??) shows that there are at most

(nt)O(t)
monotone circuits with at most t gates. Since we have 2n2

graphs, and

different graphs require different circuits, the lower bound follows. ⊓⊔

Thus the overwhelming majority of graphs require an almost-quadratic number

of gates to represent. On the other hand, we are now going to show (Corollary ??
below) that any explicit bipartite n× n graph which cannot be represented by a

monotone circuit with fewer than 7n gates would give us an explicit boolean func-

tion f in 2m variables which cannot be computed by a non-monotone(!) DeMorgan

circuit with fewer than 2m
gates. That is, linear lower bounds on the monotone com-

plexity of graphs imply exponential lower bounds on the non-monotone complexity

of boolean functions.

When constructing the circuit for the graph G, as in the Magnification Lemma,

we replace 4m input literals in a circuit for fG by 4m = 4 logn disjunctions of

2n = 2m+1
(new) variables. If we compute these disjunctions separately then

we need aboutmn = n logn fanin-2 OR gates. The disjunctions can, however, be

computedmuchmore efficiently using only aboutnOR gates, if we compute all these

disjunctions simultaneously. This can be shown using the so-called “transposition

principle”.

Let A = (aij) be a boolean p× q matrix. Our goal is to compute the transforma-

tion y = Ax over the boolean semiring. Such a transformation computes p boolean
sums (disjunctions) of q variables x1, . . . , xq :

yi =
q∨

j=1
aijxj =

∨
j:aij=1

xj for i = 1, . . . , p .

Thus, our question reduces to estimating the disjunctive complexity, or(A), of A
defined as the minimum number of fanin-2 OR gates required to simultaneously

compute all these p disjunctions.
By computing all p disjunctions separately, we see that or(A) < pq. However,

in some situations (as in the graph complexity) we have that the number p of

disjunctions (rows) is much smaller than the number q of variables (columns). In
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Fig. 1.15 We replace a node (an OR gate) g of fanin d by d − 1 nodes each of fanin 2. In the former

circuit we have e − v = d − 1, and in the latter e′ − v′ = 2(d − 1) − (d − 1) = d − 1 = e − v.

the context of graph complexity, we have p = 2m and q = 2m
. In such situations,

it would be desirable to somehow “replace” the roles of rows and columns. That is,

it would be desirable to relate the disjunctive complexity of a matrix A with the

disjunctive complexity of the transposed matrix AT
; recall that the transpose of a

matrix A = (aij) is the matrix AT = (bij) with bij = aji.

Transposition Principle If A is a boolean matrix with p rows and q columns, then

or(AT ) = or(A) + p− q .

This principle was independently pointed out by Bordewijk (1956) and Lu-

panov (1956) in the context of rectifier networks. Mitiagin and Sadovskii (1965)

proved the principle for boolean circuits, and Fiduccia (1973) proved it for bilinear

circuits over any commutative semiring.

Proof. Let A = (aij) be a p× q boolean matrix, and take a circuit F with fanin-2
OR gates computing y = Ax. This circuit has q input nodes x1, . . . , xq and p output
nodes y1, . . . , yp. At yi the disjunction ∨j:aij=1xj is computed.

Let α(F ) be the number of gates in F . Since each non-input node in F has fanin

2, we have that α(F ) = e− v+ q, where e is the total number of wires and v is the
total number of nodes (including the q input nodes). Since the circuit F computes

y = Ax and has only OR gates, we have that aij = 1 if and only if there exists a

directed path from the j-th input xj to the i-th output yi.

We now transform F to a circuit F ′
for x = AT y such that the difference e′ − v′

between the numbers of wires and nodes in F ′
does not exceed e − v. First, we

transform F so that no output gate is used as an input to another gate; this can

be achieved by adding nodes of fanin 1. After that we just reverse the orientation
of wires in F , contract all resulting fanin-1 edges, and replace each node of fanin

larger than 2 by a binary tree of OR gates (see Fig. ??). Finally, assign OR gates to

all n input gates of F (now the output gates of F ′
).

It is easy to see that the new circuit F ′
computes AT y: there is a path from yi to

xj in F ′
iff there is a path from xj to yi in F . Moreover, since e′ − v′ ≤ e− v, the

new circuit F ′
has

α(F ′) = e′ − v′ + p ≤ e− v + p = α(F ) + p− q

gates. This shows that or(AT ) ≤ or(A) + p− q, and by symmetry, that or(A) ≤
or(AT ) + q − p. ⊓⊔
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1.35 Corollary Let A be a boolean p × q matrix. Then, for every positive integer s
dividing p,

or(A) ≤ sq + s2p/s − 2p− s .

Proof. The proof is similar to that of Lemma ??. We want to compute a set Ax of p
disjunctions on q variables. Split the transposed q×pmatrixAT

into s submatrices,

each of dimension q × (p/s). By taking a circuit computing all possible disjunction

of p/s variables, we can compute disjunctions in each of these submatrices using at

most 2p/s − p/s− 1 OR gates. By adding q(s− 1) gates to combine the results of

ORs computed on the rows of the submatrices, we obtain that or(AT ) ≤ s2p/s −
p− s+ q(s− 1) and, by the Transposition Principle,

or(A) ≤ or(AT ) + q − p = sq + s2p/s − 2p− s . ⊓⊔

In particular, taking s = 1, we obtain an upper bound or(A) ≤ q + 2p − 2p− 1
which, as shown by Chashkin (1994) is optimal for p ≤ log q. By using a different

argument (without applying the Transposition Principle), Pudlák, Rödl and Savický

(1988) proved a slightly worse upper bound or(A) ≤ q + 2p+1 − p− 2.
Now we are able to give one consequence of the Transposition Principle for non-

monotone circuits. Given a boolean function f2m(x, y) in 2m variables, its graph
is a bipartite n× n graph Gf with n = 2m

whose vertices are vectors in {0, 1}m
,

and two vertices x and y from different parts are adjacent iff f2m(x, y) = 1.

1.36 Corollary If a boolean function f2m can be computed by a non-monotone De-
Morgan circuit of sizeM , then its graph Gf can be represented by a monotone circuit
of sizeM + (6 + o(1))n.

Proof. Let Gf = (V1, V2, E) be the graph of f2m(x, y). By the Magnification

Lemma, each of 2m = 2 logn x-literals in a circuit computing f2m is replaced

by a disjunction on the set {zu | u ∈ V1} of n variables. By Corollary ?? (with
p = 2 logn, q = n and s = 3), all these disjunctions can be simultaneously com-

puted using fewer than 3n+ 3n2/3
fanin-2 OR gates. Since the same also holds for

y-literals, we are done. ⊓⊔

1.37 Research Problem
What is the smallest constant c for which the conclusion of Corollary ?? holds with
M + (6 + o(1))n replaced byM + cn?

By Corollary ??, any bipartite n×n graph requiring, say, at least 7nAND and OR

gates to represent it gives a boolean function of 2m = 2 logn variables requiring

at least Ω(n) = Ω(2m) AND, OR and NOT gates to compute it. It is therefore not

surprising that proving even linear lower bounds cn for explicit graphs may be a

very difficult task. Exercise ?? shows that at least for c = 2 this task is still tractable.

1.38 Research Problem
Exhibit an explicit bipartite n× n graph requiring at least cn AND and OR gates to

represent it, for c > 2.
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Readers interested in this problem might want to consult the paper of Chashkin

(1994) giving a somewhat tighter connection between lower bounds for graphs

and the resulting lower bounds for boolean functions. In particular, he shows that

the constant 6 in Corollary ?? can be replaced by 4, and even by 2 if the graph is

unbalanced.

Exercises

1.1 Let, as before, Dec(A) denote the minimum weight of a decomposition of a

boolean matrix A. Suppose that A does not contain an a× b all-1 submatrix with

a+ b > k. Show that Dec(A) ≥ |A|/k.

1.2 Let sn be the smallest number s such that every boolean function of n variables

can be computed by a DeMorgan formula of leafsize at most s. Show that sn ≤
4 · 2n − 2. Hint: Use the recurrence (??) to show that sn ≤ 4 · 2n − 2, and apply induction on n.

1.3 Letm = ⌈log2(n+ 1)⌉, and consider the function Sumn : {0, 1}n → {0, 1}m

which, given a vector x ∈ {0, 1}n
outputs the binary code of the sum x1 +x2 + · · ·+

xn. Consider circuits where all boolean functions of two variables are allowed as

gates, and letC(f) denote the minimum number of gates in such a circuit computing

f .

(a) Show that C(Sumn) ≤ 5n. Hint: Fig. ??.
(b) Show that C(fn) ≤ 5n+ o(n) for every symmetric function fn of n variables.

Hint: Every boolean function g of m variables has C(g) ≤ 2m/m.

1.4 (Circuits as linear programs) Let F (x) be a circuit over {∧,∨,¬} withm gates.

Show that there is a system L(x, y) of O(m) linear constraints (linear inequalities
with coefficients ±1) withm y-variables such that, for every x ∈ {0, 1}n

, F (x) = 1
iff there is 0-1 vector y such that all constraints in L(x, y) are satisfied.
Hint: Introduce a variable for each gate. For an∧-gate g = u∧v use the constraints 0 ≤ g ≤ u ≤ 1,
0 ≤ g ≤ v ≤ 1, g ≥ u + v − 1. What constraints to take for ¬-gates and for ∨-gates? For the
output gate g add the constraint g = 1. Show that, if the x-variables have values 0 and 1, then all

other variables are forced to have value 0 or 1 equal to the output value of the corresponding gate.

1.5 Write g ≤ h for boolean functions of n variables, if g(x) ≤ h(x) for all

x ∈ {0, 1}n
. Call a boolean function h a neighbor of a boolean function g if either

g⊕ a ≤ h⊕ a⊕ 1 for some a ∈ {0, 1}, or g⊕ xi ≤ g⊕ h for some i ∈ {1, . . . , n}.
Show that:

(a) Constants 0 and 1 are neighbors of all non-constant functions.

(b) Neighbors of the OR gate ∨ are all the two variable boolean functions, except

the parity ⊕ and the function ∨ itself.
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1.6 (Minimal circuits are very unstable) Let F be a circuit over some basis comput-

ing a boolean function f , and assume that F is minimal, that is, no circuit with a

smaller number of gates can compute f . In particular, minimal circuits are “unstable”

with respect to deletion of its gates: the resulting circuit must make an error. The

goal of this exercise is to prove that, in fact, minimal circuits are unstable in a much

stronger sense: we cannot even replace a gate by another one. That is, the size of

the resulting circuit remains the same but, nevertheless, the function computed by

a new circuit differs from that computed by the original one.

Let F be a minimal circuit, v a gate in it of faninm, and h be a boolean function

of m variables. Let Fv→h be the circuit obtained from F as follows: replace the

boolean function g attached to the gate v by h and remove all the gates that become

redundant in the resulting circuit. Prove that, if h is a neighbor of g, then Fv→h ̸= F .

Hint: Since F is minimal, we cannot replace the gate v by a constant a, that is, there must be at

least one vector x ∈ {0, 1}n
such that Fv→a(x) ̸= F (x).

1.7 Let n = 2r
and consider two sequences of variables x = (x1, . . . , xn) and

y = (y1, . . . , yr). Each assignment a ∈ {0, 1}r
to the y-variables gives us a unique

natural number bin(a) = 2r−1a1 + · · · + 2ar−1 + ar + 1 between 1 and n; we call
bin(a) the code of a. The storage access function f(x, y) is a boolean function of

n+ r variables defined by: f(x, y) := xbin(y).
Show that the monomialK = x1x2 · · ·xn is a minterm of f , but still f can be

written as an (r + 1)-DNF. Hint: For the second claim, observe that the value of f(x, y)
depends only on r + 1 bits y1, . . . , yr and xbin(y).

1.8 Let G = ([n], E) be an n-vertex graph, and di be the degree of vertex i in G.
Then G can be represented by a monotone formula F = F1 ∨ · · · ∨ Fn, where

Fi = xi ∧
( ∨

j:{i,j}∈E

xj

)
.

A special property of this formula is that the i-th variable occurs at most di + 1
times. Prove that, if G has no complete stars, then any minimal monotone formula

representing G must have this property.

Hint: Take a minimal formula F for G, and suppose that some variable xi occurs mi > di + 1
times in it. Consider the formula F ′ = Fxi=0 ∨ Fi, where Fxi=0 is the formula obtained from F
by setting to 0 all mi occurrences of the variable xi. Show that F ′

represents G, and compute its

leafsize to get a contradiction with the minimality of F .

1.9 Say that a graph is saturated, if its complement contains no triangles and no

isolated vertices. Show that for every saturated graph G = (V,E), its quadratic
function fG(x) =

∨
uv∈E xuxv is the unique(!) monotone boolean function repre-

senting the graph G.

1.10 Let Gn = Kn−1 + E1 be a complete graph on n − 1 vertices 1, 2 . . . , n− 1
plus one isolated vertex n. Let F (x1, . . . , xn) be an arbitrary monotone circuit with

fanin-2 AND and OR gates representing Gn. Show that Gn cannot be represented
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by a monotone circuit using fewer than 2n − 6 gates. Hint: Show that if n ≥ 3 then

every input gate xi for i = 1, . . . , n − 1 has fanout at least 2.

1.11 Let n = 2m
be a power of 2. Show that Thn

2 can be computed by a monotone

DeMorgan formula with at most n log2 n leaves. Hint: Associate with each index i ∈ [n]
its binary code in {0, 1}m

. For k ∈ [m] and a ∈ {0, 1}, let Fk,a be the OR of all variables

xi such that the binary code of i has a in the k-th position. Show that the monotone formula

F =
∨m

k=1 Fk,0 ∧ Fk,1 computes Thn
2 .

1.12 (Hansel 1964) The goal of this exercise is to show that

S+(Thn
2 ) ≥ 1

2n log2 n .

Let F (x) be a monotone switching network computing Thn
2 with the start node s

and the target node t. Say that F is canonical if it has the following property: if a
node v is joined to s or to t by a contact xi, then no other edge incident with v has
xi as its label.

(a) Suppose that F (x) = 0 for all input vectors x with at most one 1. Show that F
can be made canonical without increasing the number of contacts.

Hint: Assume that some node u is joined to the source node s and to some other node v by

edges with the same label xi. Then v ̸= t (why?). Remove the edge {u, v} and add the edge

{s, v} labeled by xi. Show that the obtained network computes the same function.

(b) Let F be a minimal canonical monotone network computing the threshold-2
function Thn

2 . Show that every node u ̸∈ {s, t} is adjacent with both nodes s
and t. Hint: If we remove a label of any contact in a minimal network, then the new network

must make an error.

(c) Letm be the number of contacts in a network F from (b). Show that Thn
2 (x)

can be written as an OR F1 ∨ F2 ∨ · · · ∨ Ft of ANDs

Fk(x) =
( ∨

i∈Ak

xi

)
∧
( ∨

i∈Bk

xi

)
such that Ak ∩ Bk = ∅ and w ≤ 2m, where w :=

∑t
k=1(|Ak| + |Bk|) is the

total number of occurrences of variables in the formula.

(d) Show that any expression of Thn
2 as in (c) must contain w ≥ n log2 n occur-

rences of variables.

Hint: For a variable xi, let mi be the number of ANDs Fk containing this variable. Show

that w =
∑n

i=1 mi. To lower bound this sum, throw a fair 0-1 coin for each of the ANDs

Fk and remove all occurrences of variables xi with i ∈ Ak from the entire formula if

the outcome is 0; if the outcome is 1, then remove all occurrences of variables xi with

i ∈ Bk . Let X = X1 + · · · + Xn, where Xi is the indicator variable for the event “the

variable xi survives”. Since at most one variable can survive at the end (why?), we have

that E [X] ≤ 1. On the other hand, each variable xi will survive with probability 2−mi

(why?). Now use the linearity of expectation together with the arithmetic-geometric mean

inequality (
∑n

i=1 ai)/n ≥ (
∏n

i=1 ai)1/n
with ai = 2−mi

to obtain the desired lower

bound on

∑n

i=1 mi.
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Appendix: known bounds for symmetric functions

Here we summarize some (not all!) known results concerning bounds on the com-

plexity of symmetric functions in various circuit models. Recall that a boolean func-

tion f(x1, . . . , xn) is symmetric if its value only depends on the sum x1 + · · · + xn.

Examples of symmetric functions are the parity function

⊕n(x) = 1 if and only if x1 + · · · + xn is odd ,

all threshold functions

Thn
k (x) = 1 if and only if x1 + · · · + xn ≥ k ,

as well as the majority function

Majn(x) = 1 if and only if x1 + · · · + xn ≥ ⌈n/2⌉.

Let C(f) and L(f) denote, respectively, the minimum number of gates in a

circuit and in a formula over {∧,∨,¬} computing f . Let also S(f), BP(f) and
NBP(f) denote, respectively, the minimum number of contacts (labeled edges) in a

switching network, in a deterministic and in a nondeterministic branching program

computing f . Subscript “+” denotes the monotone versions of these measures, and

subscript “∗” means that all boolean functions of two variables can be used as gates.

Some relations between these basic measures are summarized in the following

chain of inequalities (we will use f ⪯ g to denote f = O(g)):

C(f)1/3 ⪯ NBP(f) ⪯ S(f) ≤ BP(f) ⪯ L(f) ≤ NBP(f)O(log NBP(f)) .

Proofs are easy and can be found, for example, in Pudlák (1987).

Table 1.1 Upper bounds for any symmetric boolean function fn of n variables:

BP(fn) ≤ cn2/ log2 n where c = 2 + o(1); Lupanov (1965b)
NBP(fn) ⪯ n3/2

Lupanov (1965b)

L(fn) ⪯ n4.93
Khrapchenko (1972)

C∗(fn) ≤ 4.5n+ o(n) Demenkov et al. (2010); this improves a simple upper

bound C∗(fn) ≤ 5n + o(n) which follows from a

construction used by Lupanov (1965); see Exercise ??
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Table 1.2 Bounds for the parity function:

S(⊕n) = 4n− 4 Cardot (1952); apparently, this was the first nontrivial

lower bound at all!

C(⊕n) = 4n− 4 Redkin (1973)

L(⊕n) ≤ 9
8n

2
Yablonskii (1954); see Theorem ?? below

L(⊕n) ≥ n3/2
Subbotovskaya (1961); see Section ?? below

L(⊕n) ≥ n2
Khrapchenko (1971); n is power of 2; see Section ??
below

L(⊕n) ≥ n2 + c Rychkov (1994); c = 3 for odd n ≥ 5, and c = 2 for

even n ≥ 6 which are not powers of 2

Table 1.3 Bounds for threshold functions in non-monotone models:

L(Thn
2 ) ≥ 1

4n log2 n Krichevskii (1964)
a

L(Thn
2 ) ≥ n⌊log2 n⌋ Lozhkin (2005)

L+(Thn
2 ) ≤ n log2 n if n is a power of 2; see Exercise ??

L(Thn
k ) ≥ k(n− k + 1) Khrapchenko (1971); see Section ??

L∗(Majn) = Ω(n lnn) Fisher, Mayer and Paterson (1982)

L∗(Thn
2 ) = Ω(n ln lnn) Pudlák (1984)

L∗(Thn
k ) ⪯ n3.13

Paterson, Pippenger, and Zwick (1992)

L(Majn) ⪯ n4.57
Paterson and Zwick (1993b)

BP(Thn
k ) ⪯ n3/2

Lupanov (1965b)

S(Thn
k ) ⪯ 1

pn ln4 n where p = (ln lnn)2
; Krasulina (1986, 1987)

BP(Thn
k ) ⪯ 1

pn ln3 n where p = (ln lnn)(ln ln lnn); Sinha and Thatha-

char (1997)

a
Krichevskii (1964) actually proved an intriguing structural result: among minimal formulas

computing Thn
2 there is a monotone formula of the form F (x) = ∨t

k=1(∨i∈Skxi
) ∧ (∨i∈Tk

xi),
where Sk ∩ Tk = ∅ for all k = 1, . . . , t; see also Section ??.
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BP(Majn) = Ω(np) where p = ln lnn/ ln ln lnn; Pudlák (1984)

BP(Majn) = Ω(np) where p = lnn/ ln lnn; Babai et al. (1990)
S(Majn) = ω(n) Grinchuk (1987,1989)

NBP(Majn) = ω(n) Razborov (1990b)

Table 1.4 Bounds for threshold functions in monotone models:

NBP+(Thn
k ) = k(n−k+1) Markov (1962); see Theorem ?? above

NBP+(Thn
k ) ⪯ pk(n− k) where p = ln(n − k), if no unlabeled edges (recti-

fiers) are allowed; Halldórsson, Radkhakrishnan and

Subrahmanyam (1993)

NBP+(Thn
k ) = Ω(pkn) where p = ln n

k , if no unlabeled edges (rectifiers) are

allowed; Radhakrishnan (1997)

S+(Thn
2 ) = np+ 2(n− 2p) where p := ⌊log2 n⌋; Krichevskii (1965), Hansel

(1966)

S(Thn
2 ) ≤ 3n− 4 easy exercise, see Fig. ??

S+(Majn) ⪯ n4.99
Dubiner and Zwick (1992)

L+(Majn) ⪯ n5.3
Valiant (1984). As observed by Lozhkin and Semenov

(1988), the proof actually gives O(k4.3n log2 n) for
every k.

L+(Thn
k ) ⪯ k6.3n logn Friedman (1986)

L+(Thn
k ) ⪯ k4.27n logn Boppana (1986)

C(Thn
k ) ≤ kn+ p where p = O(n1−1/k); Dunne (1984)

C(Thn
k ) ⪯ n log k Kochol (1989); the proof is a simple application of

a rather non-trivial result of Ajtai, Komlós and Sze-

merédi (1983) stating that all threshold functions

Thn
k , k = 1, . . . , n, can be simultaneously computed

by a monotone circuit of size O(n logn) and depth

O(logn)



2. Analysis of Boolean Functions

We finish this introductory part with some algebraic properties of boolean functions:
their expression and approximation by polynomials. We will use these properties

later to prove lower bounds for several circuit models. It is, however, convenient to

have all these properties collected at one place. The impatient reader who wishes to

begin proving lower bounds immediately may safely skip this section, and return

later when the properties in question are used.

2.1 Boolean functions as polynomials

Fix a field F, and let x1, . . . , xn be variables taking values in this field. A (multilinear)

monomial is a product XS =
∏

i∈S xi of variables, where S ⊆ [n] = {1, . . . , n};
we assume that X∅ = 1. The degree of this monomial is the cardinality of S. A
multilinear polynomial of n variables is a function p : Fn → F that can be written

as p(x) =
∑

S⊆[n] cSXS for some coefficients cS ∈ F. The degree of p is the degree
of its largest monomial: deg(p) = max{|S| : cS ̸= 0}. Note that if we restrict

attention to the boolean domain {0, 1}n
, then xk

i = xi for all k > 1, so considering
only multilinear monomials is no restriction when dealing with boolean functions.

It is not difficult to see that each boolean function f of n variables can be written

as a polynomial over F of degree at most n. For this, associate with each vector

a = (a1, . . . , an) in {0, 1}n
the following polynomial over F of degree n:

pa(x) =
∏

i:ai=1
xi

∏
j:aj=0

(1 − xj) .

Then pa(a) = 1 while pa(x) = 0 for all x ∈ {0, 1}n \ {a}. Thus, we can write each

boolean function f of n variables as

f(x) =
∑

a∈{0,1}n

f(a) · pa(x) =
∑

a∈f−1(1)

∏
i:ai=1

xi

∏
j:aj=0

(1 − xj) .

54
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By multiplying out via the distributive law, we obtain that

f(x) =
∑

S⊆[n]

cS

∏
i∈S

xi

for some coefficients cS ∈ F. Moreover, this representation is unique (see Exer-

cise ??). For example, take n = 3 and f(x, y, z) = x ∨ y. Then

f = xyz + xy(1 − z) + x(1 − y)z + (1 − x)yz
+ z(1 − y)(1 − z) + (1 − x)y(1 − z)

= x+ y − xy .

The coefficients cS can be computed by the Möbius inversion formula:

cS =
∑
T ⊆S

(−1)|S|−|T |f(T ) , (2.1)

where f(T ) is the value of f on the input where exactly the variables in T are 1.
This can be shown using the fact that for any two sets T ⊆ R,

∑
T ⊆S⊆R

(−1)|S|−|T | =
{

1 if T = R,

0 if T ̸= R
(2.2)

whose proof we leave as an exercise. Using (??), we can prove the correctness of

(??) as follows:

f(R) =
∑

S⊆[n]

cS

∏
i∈S

xi =
∑
S⊆R

cS

=
∑
S⊆R

∑
T ⊆S

(−1)|S|−|T |f(T ) by Eq. ??

=
∑
T ⊆R

f(T )
∑

S:T ⊆S⊆R

(−1)|S|−|T |
double counting

= f(R) by Eq. ??.

2.2 Real degree of boolean functions

We now consider representations of boolean functions by polynomials over the

field of real numbers. We already know that every function f : {0, 1}n → R has

the unique representation as a multilinear polynomial over R.
The real degree, deg(f), of a boolean function f is the degree of the unique

multilinear real polynomial p that represents f in the sense that p(a) = f(a) for
all a ∈ {0, 1}n

. The approximate degree, adeg(f), of a boolean function f is the
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minimum degree of a multilinear real polynomial p that approximates f in the

sense that |p(a) − f(a)| ≤ 1/3 for all a ∈ {0, 1}n
.

The AND of n variables x1, . . . , xn is represented by the polynomial consisting

of just one monomial

∏n
i=1 xi, and the OR is represented by the polynomial 1 −∏n

i=1(1 − xi). Hence, both of these functions have degree n.
There is a handy criterion for determining if we have deg(f) = n. Let even(f)

(resp., odd(f)) denote the number of vectors in f−1(1) with an even (resp., odd)

number of ones. The following result is due to Yaoyun Shi and Andrew Yao (unpub-

lished); see the survey of Buhrman and de Wolf (2002).

2.1 Lemma deg(f) = n if and only if even(f) ̸= odd(f).

Proof. Applying the Möbius inversion formula (??) with S = [n], we get

c[n] =
∑

T ⊆[n]

(−1)n−|T |f(T )

= (−1)n
∑

x∈f−1(1)

(−1)x1+···+xn

= (−1)n(even(f) − odd(f)) .

Since deg(f) = n iff the monomial x1 · · ·xn has nonzero coefficient, the lemma

follows. ⊓⊔

When restricted to the domain {0, 1}n
, multilinear polynomials may be replaced

by univariate polynomials, that is, polynomials of just one variable.

Let Sn denote the set of all n! permutations π : [n] → [n]. Given a vector

x = (x1, . . . , xn), let π(x) = (xπ(1), . . . , xπ(n)). If p : Rn → R is a multivariate

polynomial, then the symmetrization of p is defined as follows:

psym(x) =
∑

π∈Sn
p(π(x))
n! .

Note that psym
is a polynomial of degree at most the degree of p. Symmetrization

can actually lower the degree: if p = x1 − x2, then p
sym = 0.

An important point is that if we are only interested in inputs x ∈ {0, 1}n
, then

psym
turns out to depend only upon x1 + · · · + xn. We can thus represent it as a

univariate polynomial of x1 + · · · + xn.

2.2 Theorem (Minsky–Papert 1988) If p : Rn → R is a multilinear polynomial, then
there exists a univariate polynomial p̃ : R → R of degree at most the degree of p such
that

psym(x1, . . . , xn) = p̃(x1 + · · · + xn) for all x ∈ {0, 1}n.

Proof. Let d be the degree of psym
. Let Pk denote the sum of all

(
n
k

)
products∏

i∈S xi of |S| = k different variables. Since the polynomial psym
is symmetric, it

can be shown by induction that it can be written as
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psym(x) = c0 + c1P1(x) + c2P2(x) + · · · + cdPd(x)

with ci ∈ R. Note that on x ∈ {0, 1}n
with z := x1 + · · · + xn ones, Pk assumes

value

Pk(x) =
(
z

k

)
= z(z − 1) · · · (z − k + 1)

k! ,

which is a polynomial of degree k of z. Therefore the univariate polynomial p̃(z)
defined by

p̃(z) := c0 + c1

(
z

1

)
+ c2

(
z

2

)
+ · · · + cd

(
z

d

)
has the desired property. ⊓⊔

The next result from Approximation Theory gives a lower bound on the degree

of univariate polynomials. The result was shown by Ehlich and Zeller (1964), and

by Rivlin and Cheney (1966).

2.3 Theorem Let p : R → R be a polynomial such that b1 ≤ p(k) ≤ b2 for every
integer 0 ≤ k ≤ n, and its derivative has |p′(ξ)| ≥ c for some real 0 ≤ ξ ≤ n. Then

deg(p) ≥
√

cn

c+ b2 − b1
.

Using these two tools, Nisan and Szegedy (1994) gave a lower bound on the

degree of boolean functions. Let ei ∈ {0, 1}n
denote the boolean vector with exactly

one 1 in the i-th position. Say that f is fully sensitive at 0 if f(0) = 0 and f(ei) = 1
for all i = 1, . . . , n.

2.4 Lemma (Nisan–Szegedy 1994) Let f be a boolean function of n variables. If f is
fully sensitive at 0, then deg(f) ≥

√
n/2 and adeg(f) ≥

√
n/6.

Proof. Let p be the polynomial representing f , and let p̃ be an univariate polynomial

guaranteed by Theorem ??. Since p represents f , for every x ∈ {0, 1}n
we have

that

psym(x) = 1
n!
∑

π∈Sn

p(π(x)) = 1
n!
∑

π∈Sn

f(π(x)) .

Thus, for any boolean x, the value psym(x) lies between 0 and 1, implying that

0 ≤ p̃(k) ≤ 1 for every integer 0 ≤ k ≤ n, and p̃(0) = 0. Moreover, since

π(ei) = eπ(i), our assumption implies that psym(ei) = 1 for all unit vectors ei,

and hence, p̃(1) = 1. Finally, since p̃(0) = 0 and p̃(1) = 1, there must exist a real

number ξ ∈ [0, 1] at which the derivative p̃′(ξ) ≥ 1. Thus, applying Theorem ??with
c = b2 = 1 and b1 = 0 we obtain that deg(p) ≥ deg(psym) ≥ deg(p̃) ≥

√
n/2.

The proof of adeg(f) ≥
√
n/6 is the same. The only difference is that, in this

case we have that −1/3 ≤ p̃(k) ≤ 4/3 instead of 0 ≤ p̃(k) ≤ 1 ⊓⊔

Nisan and Szegedy (1994) also give an example of a fully sensitive function with

degree significantly smaller than n.
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2.5 Lemma There exists an (explicitly given) boolean function f of n variables which
is fully sensitive at 0 and deg(f) = nα for α = log3 2 = 0.631 . . .. Furthermore, the
polynomial of f has at most 2O(nα) monomials.

Proof. Consider the boolean function E3(x, y, z) = 1 iff x+ y + z ∈ {1, 2}. This
function is represented by the following degree-2 multilinear polynomial:

E3(x, y, z) = x+ y + z − xy − xz − yz .

Define a boolean function fm of n = 3m
variables obtained by building a complete

ternarytree of depthm, where the 3m
leaves are distinct variables and each node

is the E3 function of its three children. It is easy to see that flipping any variable

in the input 0 = (0, . . . , 0) flips the function value from 0 to 1, hence, fm is fully

sensitive at 0. On the other hand, form > 1, the representing polynomial for fm is

obtained by substituting independent copies of the fm−1-polynomial in the above

polynomial for f1 = E3. This shows that deg(fm) ≤ 2m = nlog3 2 = n0.631...
, and

the total number of monomials does not exceed 6m = 2O(nα)
. ⊓⊔

2.3 The Fourier transform

Consider the 2n
-dimensional vector space of all functions f : {0, 1}n → R. We

define an inner product in this space by

⟨f, g⟩ := 1
2n

∑
x∈{0,1}n

f(x)g(x) = Ex [f(x) · g(x)] ,

where the latter expectation is taken uniformly over all x ∈ {0, 1}n
. This defines

the L2-norm
∥f∥ :=

√
⟨f, f⟩ =

√
E [f2] .

For each S ⊆ [n] = {1, . . . , n}, define a function χS : {0, 1}n → {−1,+1} by

χS(x) := (−1)
∑

i∈S
xi =

∏
i∈S

(−1)xi =
∏
i∈S

(1 − 2xi) ;

for S = ∅ we set χ∅ = 1. Note that each χS is a multilinear polynomial of degree

|S|, and is the ±1 version of the parity function

⊕
i∈S xi:

χS(x) =
{

−1 if

⊕
i∈S xi = 1,

+1 if

⊕
i∈S xi = 0.

It is easy to see that

⟨χS , χT ⟩ =
{

1 if S = T ,

0 if S ̸= T .
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Indeed,

⟨χS , χT ⟩ = Ex

[∏
i∈S

xi ·
∏
j∈T

xj

]
= Ex

[ ∏
i∈S⊕T

xi

]
,

because x2
i = 1; here S⊕T = (S \T ) ∪ (T \S) is the symmetric difference of sets

S and T . Thus, if S and T are identical, then ⟨χS , χT ⟩ = Ex [χ∅] = Ex [1] = 1. If,
however, S ̸= T then S ⊕ T ̸= ∅, and we obtain:

⟨χS , χT ⟩ =
∏

i∈S⊕T

E [xi] =
∏

i∈S⊕T

[1
2 · (+1) + 1

2 · (−1)
]

= 0 .

Hence the set of all χS is an orthonormal basis (called the Fourier basis) for the space
of all real-valued functions on {0, 1}n

. In particular, every function f : {0, 1}n →
R can be written as a linear combination of these basis functions: there exist

coefficients cS ∈ R such that for every x ∈ {0, 1}n
,

f(x) =
∑

S⊆[n]

cSχS(x) . (2.3)

Of course, there are many different bases for the space of all functions f : {0, 1}n →
R. For example, the 2n

boolean functions ea : {0, 1}n → {0, 1} with ea(x) = 1 iff

x = a is also a basis. What makes the Fourier basis particularly useful is that the

basis functions themselves have a simple computational interpretation, namely as

parity functions: χS(x) = −1 if the number of S-variables having value 1 in the

input x is odd, and χS(x) = +1 if that number is even.

For any f : {0, 1}n → R, viewed as a function f : 2[n] → R, we can define

another function f̂ : 2[n] → R by

f̂(S) := ⟨f, χS⟩ = Ex [f(x) · χS(x)] .

Due to the orthonormality of our basis {χS | S ⊆ [n]}, we have that f̂(S) is exactly
the coefficient cS in the representation (??):

f̂(S) = ⟨f, χS⟩ =
∑

T ⊆[n]

cT ⟨χT , χS⟩ = cS⟨χS , χS⟩ = cS .

Thus, for every function f : {0, 1}n → R, we have that

f(x) =
∑

S⊆[n]

f̂(S)χS(x) .

The linear map f 7→ f̂ is called the Fourier transform. The function f̂ : 2[n] → R is

the Fourier transform of f , and f̂(S) is the Fourier coefficient of f at S. The order

of a Fourier coefficient f̂(S) is the cardinality |S| of the subset S. The degree of a
boolean function f is the maximum order of the nonzero Fourier coefficient, that

is, deg(f) = max{|S| : f̂(S) ̸= 0}. Note that this definition of degree coincides
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with our earlier definition in terms of the polynomial representation of boolean

functions over the reals.

Because the χS form an orthonormal basis, we immediately get the following

equality known as Plancharel’s Identity:

⟨f, g⟩ =
∑
S,T

f̂(S)ĝ(T )⟨χS , χT ⟩ =
∑

S

f̂(S)ĝ(S) = ⟨f̂ , ĝ⟩ .

Taking f = g, we obtain an important identity, known as Parseval’s Identity:

∥f̂∥2 =
∑

S

f̂(S)2 = ⟨f, f⟩ = ∥f∥2 = Ex

[
f(x)2] . (2.4)

In particular, for f : {0, 1}n → {−1, 1}, we have that∑
S⊆[n]

f̂(S)2 = 1 .

The interpretation of Fourier coefficients of boolean functions f : {0, 1}n → {0, 1}
is that they measure the correlation under the uniform distribution between the

function and parities of certain subsets of variables.

• The coefficient f̂(∅) is simply the probability that f takes the value 1.
• If fS(x) =

∑
i∈S xi mod 2 is a parity function with S ̸= ∅, then f̂S(∅) = 1/2

because χ∅(x) = 1 for all x, and fS(x) = 1 for the half of all 2n
vectors x.

Moreover, f̂S(S) = −1/2 because χS(x) = −1 as long as fS(x) ̸= 0. All other
coefficients are 0.

• The first order coefficient f̂({i}) measures the correlation of the function f
with its i-th variable. Let A denote the event f(x) = 1, and B the event xi = 1.
Since χ{i}(x) = −1 if xi = 1, and χ{i}(x) = +1 if xi = 0, we can use the

equality Prob[A ∩B] + Prob[A ∩B] = Prob[B] = 1/2, to obtain that

f̂({i}) = Prob[A ∩B] − Prob[A ∩B]

= 1
2 −

(
Prob[A ∩B] + Prob[A ∩B]

)
= 1

2 − Prob[f(x) = xi] .

There is no correlation if f̂({i}) = 0 and maximum correlation if |f̂({i})| = 1
2 .

The sign of the coefficient indicates if the correlation is actually with the variable

xi (f̂({i}) = − 1
2 ) or with its negation ¬xi (f̂({i}) = 1

2 ).

• The coefficients f̂(S) of higher orders (|S| ≥ 2) measure the correlation of the

function f with the parity function

⊕
i∈S xi:

f̂(S) = 1
2 − Prob[f(x) =

⊕
i∈S

xi] .
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Again, there is no correlation if f̂(S) = 0 and maximum correlation if |f̂(S)| =
1
2 . The sign of the coefficient indicates if the correlation is actually with the

parity (f̂(S) = − 1
2 ) or with its negation (f̂(S) = 1

2 ).

The motivation to consider Fourier transforms in the context of proving lower

bounds on the circuit size of f is that leading Fourier coefficients (those with |S|
large enough) contain useful information about the complexity of the function f
itself (cf. Sections ?? and ??).

2.4 Boolean 0/1 versus Fourier ±1 representation

It is often useful to represent the values false = 0 and true = 1 by false = −1 and

true = +1. This representation of boolean values is called Fourier representation.
Note that ¬x = 1 − x in the standard representation, whereas ¬x = −x in the

Fourier representation. To convert from the standard 0/1 representation to the

Fourier ±1 representation map x 7→ 1 − 2x = (−1)x
. To convert from the Fourier

±1 representation to the standard 0/1 representation map x 7→ (1 − x)/2; this is
possible only in rings where 2 has an inverse, e.g., the reals, the rationals, andZm for

oddm. Thus, every boolean function f : {0, 1}n → {0, 1} can be transformed into

an equivalent function f̃ : {+1,−1}n → {+1,−1} using the following conversion:

f̃(x1, . . . , xn) = 1 − 2 · f
(1 − x1

2 , . . . ,
1 − xn

2

)
.

Hence if the value of xi in f̃ is set to +1, it is set to 0 in f and if xi is set to −1 it is

set to 1 in f .
The advantage of the ±1 representation is that in this case the function χS is

simply the product of the S-variables, and the Fourier representation is simply

an n-variate multilinear polynomial over the reals, with f̂(S) as the coefficient of

the monomial Xs =
∏

i∈S xi. Thus, in the ±1 representation, for every function

f : {0, 1}n → R, we have that

f(x) =
∑

S⊆[n]

f̂(S)XS

with

f̂(S) = ⟨f,XS⟩ = 1
2n

∑
x∈{−1,+1}n

f(x)XS(x) .

Similarly, depending on what is more convenient, we can treat the value of a

boolean function as 0/1-valued or as ±1-valued. An advantage of the latter is that∑
S f̂(S)2 = E

[
f2] = 1 (by Parseval), which allows us to treat the squared Fourier

coefficients as probabilities.
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2.5 Approximating the values 0 and 1

The AND of n variables x1, . . . , xn is represented by the polynomial consisting

of just one monomial

∏n
i=1 xi, and the OR is represented by the polynomial 1 −∏n

i=1(1 − xi). These polynomials correctly compute AND and OR on all input

vectors x, but the degree of these polynomials is n. Fortunately, the degree can be

substantially reduced if we settle for an “imperfect” approximation.

For a boolean function f of n variables, let Degϵ(f) denote the minimum degree

of a multivariate polynomial p : Rn → R such that |f(x) − p(x)| ≤ ϵ for all
x ∈ {0, 1}n

.

Although the OR function orn(x) = x1 ∨ x2 ∨ · · · ∨ xn requires degree-n
polynomial to represent it exactly, it can be approximated by a polynomial of much

smaller degree.

2.6 Lemma (Nisan–Szegedy 1994) For every constant k > 2,

Deg1/k(orn) = O(
√
n ln k) .

Proof. Nisan and Szegedy (1994) proved the lemma for k = 3. The extension to

arbitrary k is due to Hayes and Kutin. We construct a univariate real polynomial

q(z) of degree at most r := c
√
n ln(2k) (for a constant c) such that q(n) = 1 and

|q(z)| ≤ 1/k for 0 ≤ z ≤ n− 1. Then defining

p(x1, . . . , xn) := 1 − q(n− x1 − . . .− xn)

proves the theorem. The polynomial q is essentially a normalized Chebyshev poly-

nomial. The degree-r Chebyshev polynomial Tr is given by

Tr(x) = 1
2(x+

√
x2 − 1)r + 1

2(x−
√
x2 − 1)r .

Define

q(z) := Tr(z/(n− 1))
Tr(n/(n− 1)) .

Clearly, q(n) = 1. We want to select r such that

Tr

( n

n− 1

)
≥ k .

Then, since |Tr(x)| ≤ 1 for −1 ≤ x ≤ 1, we will have |q(z)| ≤ 1/k for every

z ∈ {0, . . . , n− 1}. For x = n/(n− 1) we have

x+
√
x2 − 1 = n

n− 1 +

√
n2

(n− 1)2 − 1 ≥ 1 +
√

2
n− 1 ,

and we get
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Tr

( n

n− 1

)
≥ 1

2

(
1 +

√
2

n− 1

)r

.

The right-hand side quantity is greater than or equal to k if

r ≥ ln(2k)
ln(1 +

√
2/(n− 1))

.

This last inequality is satisfied if r ≥ c
√
n ln(2k) for a suitable constant c. ⊓⊔

2.6 Approximation by low-degree polynomials

In the setting above, we were trying to approximate the values f(x) ∈ {0, 1} of

a given boolean function by the values p(x) of a polynomial on all input vectors
x ∈ {0, 1}n

. In some applications, however, it is desirable to have a low-degree

polynomial p(x) computing the function f correctly on most input vectors. For this

purpose, define the distance between f and p as the number

dist(p, f) = |{x ∈ {0, 1}n : p(x) ̸= f(x)}|

of boolean inputs x on which the polynomial p outputs a wrong value. Let orn(x) =
x1 ∨ x2 ∨ · · · ∨ xn.

2.7 Lemma (Razborov 1987) For every integer r ≥ 1, and every prime power q ≥ 2,
there exists a multivariate polynomial p(x) of n variables and of degree at most
r(q − 1) over GF(q) such that dist(p,orn) ≤ 2n−r .

Proof. Let c = (c1, . . . , cn) be a random vector in GF(q)n
with uniform distri-

bution; hence, c takes each value in GF(q)n
with the same probability q−n

. Let

S ⊆ [n] and assume that S ̸= ∅. We claim that

Prob
[∑

i∈S

ci = 0
]

≤ 1
q
. (2.5)

To show this, pick a position k ∈ S. Then
∑

i∈S ci = 0 implies that the

value ck is uniquely determined by the values of the remaining coordinates:

ck = −
∑

i∈S\{k} ci. Thus, Prob[
∑

i∈S ci = 0] ≤ qn−1/qn = 1/q, as claimed.

Now consider a random polynomial

g(x) = (c1x1 + c2x2 + · · · + cnxn)q−1

of degree q− 1 over GF(q). The only reason to rise the sum to the power of q− 1 is

that we want this polynomial to only take values 0 and 1. This is guaranteed by Fer-
mat’s Little Theorem: aq−1 = 1 for all a ∈ GF(q), a ̸= 0. Since g(0) = 0 = orn(0),
(??) implies that Prob[g(x) ̸= orn(x)] ≤ 1/q for every x ∈ {0, 1}n

. To decrease
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this error probability to q−r
, we just take r independent copies g1(x), . . . , gr(x) of

g(x) and consider the polynomial

p(x) := 1 −
r∏

i=1
(1 − gi(x)) .

Note that p(x) = 0 if and only if gj(x) = 0 for all j = 1, . . . , r. Since each gj(x)
has degree at most q− 1, the degree of p(x) is at most r(q− 1). For x = 0 we have

that p(x) = 1 − 1 = 0 = orn(x). If x ̸= 0, then

Prob[p(x) ̸= orn(x)] = Prob[p(x) = 0] =
r∏

i=1
Prob[gi(x) = 0] ≤ q−r .

Thus, for every fixed vector x ∈ {0, 1}n
we have that Prob[p(x) ̸= orn(x)] ≤ q−r

,

and the expected number of boolean inputs x on which p(x) ̸= orn(x) is at most

2n/qr ≤ 2n−r
. Hence, there must be a choice of the coefficients ci such that the

resulting (non-random) polynomial p(x) differs from orn(x) on at most a 2−r

fraction of all inputs x ∈ {0, 1}n
, as desired. ⊓⊔

Over the field R of real numbers we have the following result.

2.8 Lemma (Aspnes et al. 1994) For every integer r ≥ 1 there exists a real multivari-
ate polynomial p(x) of n variables and of degree O(r logn) such that dist(p,orn) ≤
2n−r . In fact, Prob[p(x) ̸= orn(x)] ≤ 2−r for any probability distribution on
inputs x.

Proof. Assume that n = 2m
is a power of two, and considerm+ 1 random subsets

S0, S1, . . . , Sm of [n] = {1, . . . , n} where each j ∈ [n] is included in Sk with

probability 2−k
; in particular, S0 = [n]. For each k = 0, 1, . . . ,m let qk(x) :=∑

i∈Sk
xi, and consider the random polynomial

q(x) := 1 −
m∏

k=0
(1 − qk(x))

of degree m + 1 = 1 + logn. Fix a vector x ∈ {0, 1}n
. If x = 0, then clearly

q(x) = 0. If x ̸= 0 then Prob[q(x) = 1] ≥ 1/6. To see this, let w = x1 + · · · + xn

be the number of ones in x; hence, 1 ≤ w ≤ n. Take a k for which 2k−1 < w ≤ 2k
.

Then

Prob[qk(x) = 1] = Prob
[ ∑

i∈Sk

xi = 1
]

= Prob[xi = 1 for exactly one i ∈ Sk]
= w · 2−k(1 − 2−k)w−1

≥ 1
2
(
1 − 2−k)2k−1
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≥ 1
2e >

1
6 .

Hence, for each vector x, the random polynomial q(x) agrees with orn(x) with
probability at least 1/6. To increase this probability to 1 − 2−r

, we just apply the

same trick: take 4r independent copies p1, . . . , p4r of the polynomial q(x), and
consider the polynomial

p(x) := 1 −
4r∏

i=1
(1 − pi(x))

of degree 4r(m+ 1) ≤ 5r logn. If x = 0, then we again have that p(x) = 0 with

probability 1. If x ̸= 0 then we have

Prob[p(x) = 1] ≥ Prob[pi(x) = 1 for some i]
= 1 − Prob[pi(x) ̸= 1 for all i]

= 1 − Prob[q(x) ̸= 1]4r ≥ 1 −
(5

6

)4r

≥ 1 − 2−r .

We have therefore constructed a random polynomial p(x) of degree O(r logn)
such that, for each vector x, p(x) ̸= orn(x) with probability at most 2−r

. By

averaging, there must be a realization of p(x) which differs from orn(x) on at

most a 2−r
fraction of all inputs x ∈ {0, 1}n

, as desired. It also follows that

Prob[p(x) ̸= orn(x)] ≤ 2−r
for any probability distribution on inputs x. ⊓⊔

2.7 Sign-approximation

We now consider boolean functions as functions from {−1,+1}n
to {−1,+1},

where a 0/1 bit b is represented as a ±1 bit (−1)b
. In this representation, the

parity function Parityn(x) on the set of variables x = (x1, . . . , xn) is simply the

monomial Parityn(x) =
∏n

i=1 xi.

As before, the set of all real-valued functions on {−1,+1}n
can be thought as a

2n
-dimensional vector space where (f+g)(x) = f(x)+g(x) and (af)(x) = af(x)

for any functions f and g and scalar a. We already know that the set of all monomials

χS(x) =
∏

i∈S xi forms an orthonormal basis of this space. The set of all multilinear

polynomials of degree ≤ k is a subspace of dimension

∑k
i=0
(

n
i

)
.

We are interested in the degree of polynomials p(x) that signum-represents a
given boolean function f in the sense that p(x) · f(x) > 0 for all x ∈ {−1,+1}n

.

The minimum degree of such a polynomial p is called the strong degree of f , and is

denoted by ds(f).
The weak degree, dw(f), is the minimum degree of a polynomial p such that

p ̸≡ 0 and p(x) · f(x) ≥ 0 for all x ∈ {−1,+1}n
. That is, in this case we only

require that sgn(p(x)) = sgn(f(x)) for inputs x where p(x) ̸= 0. Recall that the



66 2 Analysis of Boolean Functions

function sgn(z), defined on the real numbers and called the signum function, is 1
for positive numbers z > 0, is −1 for negative numbers z < 0, and is 0 for z = 0.

The notion of weak degree is useful because for functions f whose weak degree

is large it is possible to give a lower bound on the distance to any low-degree

polynomial approximation. Let Error(f, g) denote the set of all x ∈ {−1,+1}n
for

which sgn(f(x)) ̸= sgn(g(x)).

2.9 Lemma Let p be a degree-k polynomial and f any boolean function of n variables.
If dw(f) > k then

|Error(p, f)| ≥
∆∑

i=0

(
n

i

)
where ∆ := ⌊(dw − k − 1)/2⌋ .

Proof. We need the following auxiliary fact.

2.10 Claim For every set S ⊂ {−1,+1}n
of size |S| <

∑k
i=0
(

n
i

)
there exists a

nonzero polynomial q(x) of degree ≤ 2k that is 0 for all x ∈ S, and is non-negative
elsewhere.

Proof. Any degree k polynomial has

∑k
i=0
(

n
i

)
coefficients (some of which may

be zero), and its value on any particular input is a linear combination of those

coefficients. Thus, if r stands for a degree k polynomial, the constraints r(x) = 0
for all x ∈ S form a homogeneous system of |S| linear equations in

∑k
i=0
(

n
i

)
variables, and have a nontrivial solution r since |S| <

∑k
i=0
(

n
i

)
. Then q = r2

is a

desired nonzero polynomial. ⊓⊔

Now let S := Error(p, f), and suppose that |S| <
∑∆

i=0
(

n
i

)
. Then, by Claim ??,

there exists a nonzero polynomial q of degree ≤ dw(f) − k − 1 which is 0 on

S and non-negative elsewhere. Consider the polynomial pq. Since sgn(pq(x)) =
sgn(p(x)) = sgn(f(x)) for all x ̸∈ S, and since pq(x) = 0 for all x ∈ S, the
polynomial pq weakly represents f . But this polynomial has degree at most dw(f)−
1, contradicting the definition of dw(f). ⊓⊔

2.11 Lemma dw(Parityn) = n.

Proof. Suppose p weakly represents f(x) := Parityn(x) =
∏n

i=1 xi. Consider the

scalar product ⟨p, f⟩ = 2−n
∑

x p(x)f(x). We have that ⟨p, f⟩ > 0, since each term
in

∑
x p(x)f(x) is non-negative and at least one term is nonzero. But the parity

function f is orthogonal to all other monomials. Thus, if p had degree ≤ n− 1, we
would have that ⟨p, f⟩ = 0. ⊓⊔

2.12 Corollary Let p be a polynomial of n variables and of degree k ≤ δ
√
n+ 1 for

some constant 0 < δ < 1/2. Then

|Error(p,Parityn)| ≥ (1/2 − δ)2n .
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Proof. Since dw(Parityn) = n and

(
n

n/2
)

∼ 2n/
√
πn/2, Lemma ?? implies that

|Error(f,Parityn)| ≥
n/2−δ

√
n∑

i=0

(
n

i

)
=

n/2∑
i=0

(
n

i

)
−

n/2∑
i=n/2−δ

√
n+1

(
n

i

)

≥ 2n−1 − δ
√
n

(
n

n/2

)
≥ (1/2 − δ)2n .⊓⊔

Using a well known fact from linear algebra (Stiemke’s Transposition Theorem),

Aspnes et al. (1994) showed that the parity function is central to the connection

between strong and weak degrees.

2.13 Lemma (Aspnes et al. 1994) For any boolean function f of n variables, ds(f) +
dw(f · Parityn) = n.

2.8 Sensitivity and influences

A boolean function f of n variables depends on its i-th variable if there exists at least
one vector x ∈ {0, 1}n

such that f(x⊕ ei) ̸= f(x), where x⊕ ei is x with the i-th
bit flipped. The more such “witnessing” vectors x we have, the more “influential”

this variable is. The influence, Infi(f), of the i-th variable of f is defined as the

fraction of vectors witnessing its importance. Thus, if we introduce the indicator

variable

si(f, x) :=
{

1 if f(x⊕ ei) ̸= f(x)
0 otherwise,

then influence of the i-th variable of f is

Infi(f) = 1
2n

∑
x∈{0,1}n

si(f, x) = Prob[f(x⊕ ei) ̸= f(x)] = Ex [si(f, x)] ,

where the probability is over uniform x ∈ {0, 1}n
; hence, Prob[x] = 2−n

. Thus,

large Infi(f) means that the value of f depends on the i-th variable on many

input vectors. The notion of influence of a variable on a boolean function was

introduced by Ben-Or and Linial (1990). It has since found many applications in

discrete mathematics, theoretical computer science and social choice theory; we

refer the reader to the survey by Kalai and Safra (2006).

For example, if f(x) = x1 ⊕ (x2 ∨ x3 ∨ · · · ∨ xn), then Inf1(f) = 1 because,

for every vector x ∈ {0, 1}n
, flipping its first bit flips the value of f . But the

influence of its second variable (as well as of each remaining variable) is very small:

Inf2(f) ≤ 4/2n
because f(x⊕ e2) ̸= f(x) can only hold if x3 = . . . = xn = 0.

In the definition of the influence we fix a variable and look for how many inputs

x the value f(x) depends on this variable. Similarly, we can fix an input vector
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x ∈ {0, 1}n
and look at how many variables the value f(x) depends on. This leads

to the concept of “sensitivity”.

The sensitivity of f on input x is defined as the number

s(f, x) =
n∑

i=1
si(f, x) = |{i : f(x⊕ ei) ̸= f(x)}|

of Hamming distance-1 neighbors y of x such that f(y) ̸= f(x). For example, if

f(x) = x1 ∨ x2 ∨ · · · ∨ xn, then s(f,0) = n but s(f, x) = 0 for every vector x
with at least two 1s. The sensitivity (or maximum sensitivity) of f is defined as

s(f) = max
x

s(f, x) .

In the literature, s(f) is also called the critical complexity of f . The average sensitivity,
as(f), of f is the expected sensitivity of f on a random assignment:

as(f) := 2−n
∑

x

s(f, x) = Ex [s(f, x)] =
n∑

i=1
Ex [si(f, x)] =

n∑
i=1

Infi(f) . (2.6)

For example, if f(x) = Parity(x) is the parity of n variables, then s(f, x) = n for

every assignment x, implying that as(f) = n. But for some boolean functions the

average sensitivity can be tiny, for example, as(f) = n/2n−1
if f is an OR or an

AND of n variables.

Functions with large average sensitivity require large unbounded-fanin cir-

cuits of constant depth (see Boppana’s theorem in Section ??). By the theorem of

Khrapchenko (Theorem ?? in Section ??), the square as(f)2
of the average sensi-

tivity is a lower bound on the minimum number of leaves in a DeMorgan formula

computing f . High average sensitivity also implies that the function cannot be

approximated by low-degree polynomials (see Lemma ?? below).
All these concepts (influence, sensitivity and average sensitivity) can be defined

in graph-theoretic terms as follows. Every boolean function f ofn variables defines a

bipartite graphGf with parts f−1(0) and f−1(1), where (x, y) ∈ f−1(0)×f−1(1)
is an edge of Gf iff y = x⊕ ei for some i ∈ [n]. An edge (x, y) is an edge in the

i-th direction if y = x⊕ ei. It is easy to see that:

• s(f, x) = degree of vertex x in Gf .

• s(f) = maximum degree of a vertex in Gf .

• as(f) = average degree of Gf .

• Infi(f) = number of edges of Gf in the i-th direction divided by 2n
.

Hence, if |Gf | denotes the number of edges in Gf , then |Gf | ≤ s(f)2n−1
,

because one of the color classes must have at most 2n−1
vertices. On the other

hand, we have the following somewhat counterintuitive lower bound: the smaller

the degree s(f) of the graph Gf is, the more edges we can force into it.

A boolean function f is nondegenerate if it depends on all its variables, that is, if

the graph Gf has at least one edge in each direction.
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Bilder/simon-eps-converted-to.pdf

Fig. 2.1 The set Y of |Y | ≥ n−s neighbors y of β in X0 such that f(y) = 0. Since f(β ⊕ei) = 1,
for at most s − 1 of them we can have f(y ⊕ ei) = 0.

2.14 Theorem (Simon 1983) For every nondegenerate boolean function of n variables,
we have that |Gf | ≥ n2n−2s(f)+1.

Proof. The graph Gf is a subgraph of the n-dimensional binary hypercube Qn.

Recall that Qn is the graph whose vertices are vectors in {0, 1}n
, and two vectors

are adjacent iff they differ in exactly one position. The i-th neighbor of a vertex

x ∈ {0, 1}n
in Qn is the vertex y = x ⊕ ei. Thus, each vertex has exactly n

neighbors in Qn. A neighbor y of x is a proper neighbor if y is a neighbor of x in

the graph Gf ⊆ Qn, that is, if f(y) ̸= f(x). Call an edge {x, y} of Qn colorful if x
and y are proper neighbors, that is, if f(x) ̸= f(y). Our goal is to show that there

must be at least n2n−2s(f)+1
such edges.

For this, fix an arbitrary position i ∈ [n], and split the set of vertices of the

hypercube Qn into two subsets X0 = {x | xi = 0} and X1 = {x | xi = 1}. We

are going to show that at least 2n−2s+1
edges lying between these two set must be

colorful, where s := s(f). Consider the set

V0 = {y ∈ X0 | f(y) = 0 and f(y ⊕ ei) = 1} ⊆ X0 .

Note that V0 is non-empty, because f depends on all variables, and hence, also on

the i-th variable. The key of the whole argument is the following fact.

2.15 Claim Every vertex in V0 has at least n− 2s+ 1 neighbors in V0.

Proof. Fix an arbitrary β ∈ V0, and let Y be the set of all neighbors y of β such

that y ∈ X0 and f(y) = 0. Since β belongs to V0 ⊆ X0, its i-th neighbor β ⊕ ei

belongs to X1 and is a proper neighbor of β, that is, f(β ⊕ ei) = 1 ̸= 0 = f(β).
All remaining n− 1 neighbors β ⊕ ej of β lie in X0 (because βi = 0), and at most

s− 1 of them can be proper (see Fig. ??). Hence, |Y | ≥ (n− 1) − (s− 1) = n− s.
Since vertices y ∈ Y are neighbors of β, all vertices in

Y ⊕ ei := {y ⊕ ei | y ∈ Y } ⊆ X1
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are neighbors of β ⊕ ei. Since (again) at most s − 1 of them can be proper (one

proper neighbor β of β ⊕ ei does not belong to Y ⊕ ei), and since f(β ⊕ ei) = 1,
there must be a subset Y ′ ⊆ Y such that |Y ′| ≥ |Y | − (s − 1) ≥ n − 2s + 1
and f(y ⊕ ei) = 1 for all y ∈ Y ′

. Thus, every y ∈ Y ′
is a neighbor of β such

that f(y) = 0 and f(y ⊕ ei) = 1. Since all these neighbors belong to V0, we are
done. ⊓⊔

Claim ?? implies that every vertex of the subgraph G of Qn induced by V0 has

degree at least d = n− 2s+ 1. Exercise ?? implies that |V0| ≥ 2d = 2n−2s+1
. Thus,

at least 2n−2s+1
of the edges in the i-th direction are colorful. Since this analysis is

true for every fixed position i ∈ [n] (as f depends on all its variables), the theorem

follows. ⊓⊔

Together with a trivial upper bound |Gf | ≤ s(f)2n−1
, Theorem ?? immediately

yields the following general lower bound on the sensitivity.Wegener (1985a) showed

that this lower bound is optimal up to an additive factor O(log logn).
2.16 Corollary If a boolean function f depends on all n variables, then

s(f) ≥ 1
2 log2 n− 1

2 log2 log2 n .

The following lemma relates the average sensitivity of a boolean function to its

Fourier coefficients.

2.17 Lemma (Kahn–Kalai–Linial 1988) For every boolean function f : {0, 1}n →
{0, 1},

as(f) = 4
∑

S⊆[n]

|S|f̂(S)2 .

For boolean functions f : {0, 1}n → {−1,+1} taking values in {−1,+1}
instead of {0, 1} the same equality holds without the multiplicative factor 4 (see

Exercise ??).

Proof. Fix a position i ∈ [n], and consider the difference function gi(x) := f(x) −
f(x⊕ ei). This function takes its values in {−1, 0,+1}. The Fourier coefficients of

g are closely related to those of f :

ĝi(S) =
{

2f̂(S) if i ∈ S,

0 otherwise.

(2.7)

(Moreover, this holds for any function f : {0, 1}n → R, not only for boolean

functions.) To show (??), we use the linearity of expectation to obtain

ĝi(S) = Ex [gi(x) · χS(x)] = Ex [f(x) · χS(x)] − Ex [f(x⊕ ei) · χS(x)] .

Since x ⊕ ei has the same distribution as x, and since χS(x ⊕ ei) = −χS(x) for
i ∈ S, and χS(x⊕ ei) = χS(x) for i ̸∈ S, (??) follows. Now, the Parseval Identity
(??) gives
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∥gi∥2 =
∑

S⊆[n]

ĝi(S)2 = 4
∑

S:i∈S

f̂(S)2 .

On the other hand, Infi(f) = |Xi|/2n
where Xi = {x | f(x) ̸= f(x⊕ ei)}. Since

gi(x) = ±1 for x ∈ Xi, and gi(x) = 0 otherwise, we obtain that

Infi(f) = 2−n|Xi| = 2−n
∑

x

gi(x)2 = ∥gi∥2 = 4
∑

S:i∈S

f̂(S)2 .

Summing this over all i = 1, . . . , n we conclude that

as(f) =
n∑

i=1
Infi(f) = 4

n∑
i=1

∑
S:i∈S

f̂(S)2 = 4
∑

S⊆[n]

|S|f̂(S)2 . ⊓⊔

Using Lemma ??, Kahn, Kalai and Linial (1988) derived the following general

lower bounds on average sensitivity of boolean functions in terms of their density.

2.18 Theorem Let f be a boolean function of n variables, and p be a fraction of input
vectors on which f takes value 1. Assume that p ≤ 1/2. Then

n∑
i=1

Infi(f)2 ≥ 0.2p2 log2 n

n

and
n∑

i=1
Infi(f) ≥ p · log 1

p
.

Consequently there always exists a variablewhose influence is at least 0.2p logn/n.
Moreover, the second bound is tight, and the first is tight up to the constant fac-

tor 0.2.
Average sensitivity can also be used to lower-bound the degree of polynomials

approximation the value of a given boolean function. For a boolean function f of

n variables, let (as before) Degϵ(f) denote the minimum degree of a multivariate

polynomial p : Rn → R such that |f(x) − p(x)| ≤ ϵ for all x ∈ {0, 1}n
.

2.19 Lemma (Shi 2000) For every boolean function f ,

Degϵ(f) ≥ (1 − 2ϵ)2as(f) .

Proof. (Due to de Wolf 2008) The proof is similar to that of Lemma ??. Suppose a
degree-d n-variate real polynomial p : {0, 1}n → [0, 1] approximates f : {0, 1}n →
{0, 1}, in the sense that there is an ϵ ∈ [0, 1/2) such that |f(x) − p(x)| ≤ ϵ for
every x ∈ {0, 1}n

. Let q be the degree-d polynomial 1 − 2p. This has range [−1, 1],
hence, Parseval’s Identity (??) yields∑

S

q̂(S)2 = ⟨q, q⟩ = 2−n
∑

x

g(x)2 ≤ 1 .
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Note that q(x) ∈ [−1,−1 + 2ϵ] if f(x) = 1, and q(x) ∈ [1 − 2ϵ, 1] if f(x) = 0.
Fix a position i ∈ [n], and consider the function g(x) := q(x) − q(x ⊕ ei). Let
Xi := {x | f(x⊕ ei) ̸= f(x)}. Then Infi(f) = |Xi|/2n

and |g(x)| ≥ 2 − 4ϵ > 0
for all x ∈ Xi. So,

Ex

[
g(x)2] = 2−n

∑
x∈{0,1}n

g(x)2 ≥ 2−n
∑

x∈Xi

g(x)2 ≥ 2−n
∑

x∈Xi

(2 − 4ϵ)2

= (2 − 4ϵ)2 · |Xi|/2n = (2 − 4ϵ)2 · Infi(f) .

Using Parseval’s Identity (??) and Eq. (??), we have

(2 − 4ϵ)2Infi(f) ≤ Ex

[
g(x)2] =

∑
S

ĝ(S)2 = 4
∑

S:i∈S

q̂(S)2 .

Dividing by 4 and summing over all i gives the desired lower bound on the degree:

(1 − 2ϵ)2as(f) = (1 − 2ϵ)2
n∑

i=1
Infi(f) ≤

n∑
i=1

∑
S:i∈S

q̂(S)2

=
∑

S

|S|q̂(S)2 ≤ d
∑

S

q̂(S)2 ≤ d .⊓⊔

A polynomial p represents f exactly, if p(x) = f(x) for all x ∈ {0, 1}n
. Let d(f)

denote the minimum degree of a multivariate polynomial representing f exactly.

That is, d(f) = Deg0(f). Together with Eq. (??), Lemma ?? (with ϵ = 0) implies

that

d(f) ≥ as(f) =
n∑

i=1
Infi(f) . (2.8)

Using this, we can show that every boolean function depending on n variables

must have degree at least about logn (cf. Corollary ??).

2.20 Theorem (Nisan–Szegedy 1994) If a boolean function f depends on all its n
variables, then d(f)2d(f) ≥ n, and hence, d(f) ≥ log2 n− O(log logn).

Proof. We need the following simple fact about Reed-Muller codes; in computer

science this fact is known as the Schwartz-Zippel Lemma.

2.21 Claim Let p(x) be a nonzero multilinear polynomial of degree at most d. If we
choose x1, . . . , xn independently at random in {0, 1}, then

Prob[p(x1, . . . , xn) ̸= 0] ≥ 2−d .

Proof. The proof is by induction on the number n of variables. For n = 1, we
just have a linear function of one variable which can have only one zero. For the

induction step, let y := (x1, . . . , xn−1) and write p(x) as

p(x) = xn · g(y) + h(y) ,
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where g has degree at most d− 1. We consider three possible cases.

Case 1: h ≡ 0. In this case p(x) = xn · g(y) ̸≡ 0. Since Prob[xn = 1] = 1/2 and g
has only n− 1 variables, the induction hypothesis yields

Prob[p(x) ̸= 0] = 1
2 · Prob[g(y) ̸= 0] ≥ 1

2 · 2−(d−1) = 2−d .

Case 2: h ̸≡ 0 but g + h ≡ 0. In this case we have that p(x) = p(y, 0) = h(y).
Since h has only n− 1 variables, the induction hypothesis yields Prob[p(x) ̸= 0] =
Prob[h(x) ̸= 0] ≥ 2−d

.

Case 3: h ̸≡ 0 and g+ h ̸≡ 0. Since both polynomials have only n− 1 variables and

both are nonzero, induction hypothesis together with the rule of total probability

yields

Prob[p(x) ̸= 0] = Prob[xn = 0] · Prob[p(x) ̸= 0|xn = 0]
+ Prob[xn = 1] · Prob[p(x) ̸= 0|xn = 1]

= Prob[xn = 0] · Prob[h(x) ̸= 0|xn = 0]
+ Prob[xn = 1] · Prob[g(y) + h(y) ̸= 0|xn = 1]

= 1
2 · Prob[h(y) ̸= 0] + 1

2 · Prob[g(y) + h(y) ̸= 0]

≥ 1
2 · 2−d + 1

2 · 2−d = 2−d .⊓⊔

We can now finish the proof of Theorem ?? as follows. Let p(x) be a multilinear

polynomial of degree d = d(f) exactly representing f . For each i = 1, . . . , n
consider the polynomial of n− 1 variables:

pi(x1, . . . , xi−1, xi+1, . . . , xn) := p(x1, . . . , xi−1, 1, xi+1, . . . , xn)
− p(x1, . . . , xi−1, 0, xi+1, . . . , xn) .

Using this notation, it is clear that

Infi(f) = Prob[pi(x1, . . . , xi−1, xi+1, . . . , xn) ̸= 0] .

Since, by our assumption, f depends on all of its variables, we have that pi ̸≡ 0 for

every i. Thus, Claim ?? implies that Infi(f) ≥ 2−d
for all i = 1, . . . , n. Together

with (??), this implies that

n

2d
≤

n∑
i=1

Infi(f) ≤ d .

Thus d2d ≥ n, and the theorem follows. ⊓⊔

As Nisan and Szegedy observed, the address function shows that this bound is

tight up to the O(log logn) term. This function f(x, y) has n = m+ 2m
variables:
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m variables x1, . . . , xm, and 2m
variables yα indexed by binary stringsα ∈ {0, 1}m

.

On input (x, y) with x ∈ {0, 1}m
and y ∈ {0, 1}2m

, the function outputs the bit

yx. The function depends on all n variables. It is represented by the polynomial

p(x, y) =
∑

α∈{0,1}m

yα

∏
j:αj=1

xj

∏
j:αj=0

(1 − xj)

and hence has degreem ≤ logn.
Finally, let us mention an interesting result of Friedgut (1998) stating that boolean

functions of small average sensitivity do not depend on many variables, and hence,

can be approximated by low-degree polynomials.

2.22 Theorem (Friedgut 1998) For every boolean function f and every ϵ there exists
a boolean function g depending on at most 2O(as(f)/ϵ) variables such that g differs
from f on at most an ϵ fraction of input vectors.

Exercises

2.1 Let p, q : Fn → F be multilinear polynomials of degree at most d. Show that, if

p(x) = q(x) for all x ∈ {0, 1}n
with x1 + · · · + xn ≤ d, then p = q.

Hint: Suppose that the polynomial r(x) = p(x) − q(x) is not identically zero. Let cS

∏
i∈S

xi be

the minimal-degree monomial in r with cS ̸= 0. Show that r(x) ̸= 0 for the characteristic vector

x ∈ {0, 1}n
of S.

2.2 Let f : {−1,+1}n → {−1,+1} be a symmetric boolean function. Let k be

the number of times f changes sign when expressed as a univariate function in

x1 + · · · + xn. Show that ds(f) = dw(f) = k. Hint: Lemma ??.

2.3 Let Qn be the undirected graph whose vertices are vectors {0, 1}n
, and two

vectors are adjacent iff they differ in exactly one position. For a set of vertices

X ⊆ {0, 1}n
, let d(X) denote the minimal number d such that every vertex x ∈ X

has at least d neighbors in X . That is, d(X) is the minimum degree of the induced

subgraph Qn[X] of Qn. Show that for every non-empty X , |X| ≥ 2d(X)
.

Hint: Induction on m = |X|. Base cases m = 1, 2 are trivial. For the induction step, choose a

coordinate i such that both the two sub-cubes that correspond toxi = 0 andxi = 1 have nonempty

subsets X0 and X1 of X . Use the arithmetic-geometric mean inequality (a + b)/2 ≥
√

ab.

2.4 (Due to Shi 2002) For a set X ⊆ {0, 1}n
of vertices of the graph Qn, let e(X)

denote the number of edges of Qn that joint two vertices in X . Show that e(X) ≤
1
2 |X| log2 |X|. Hint: Argue by induction as in Exercise ??, and use the fact that e(X) ≤ e(X0)+
e(X1) + min{|X0|, |X1|}.

2.5 For a setX ⊆ {0, 1}n
of vertices of the graph Qn, let d(X) denote the average

degree of the induced subgraph Qn[X] of Qn, that is, d(X) = (
∑

x∈X dx)/|X|,
where dx is the number of neighbors of x lying in X . Improve Exercise ?? to
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|X| ≥ 2d(X)
. Hint: Combine Exercise ?? with Euler’s theorem stating that the sum of degrees

of all vertices in a graph with m edges is equal to 2m.

2.6 Show that as(f) = |Gf |/2n−1
. Hint: By Euler’s theorem, the sum of degrees in every

graph is equal to 2 times the number of its edges.

2.7 We have defined the average sensitivity as(f) of a boolean function f of n
variables as 2−n

times the sum of s(f, x) over all vectors x ∈ {0, 1}n
. Show that

as(f) = 1
2n−1

∑
x∈f−1(1)

s(f, x) = 1
2n−1

∑
x∈f−1(0)

s(f, x) .

Hint: Exercise ??

2.8 Let f be a boolean function of n variables, and let p = |f−1(1)|/2n
be its

density. Show that as(f) ≥ 2p(1 − p).

2.9 Given a monotone boolean function f : {0, 1}n → {0, 1} and a vector x ∈
{0, 1}n

, say that the i-th bit xi of x is “correct” for f if xi = f(x). Let c(f) denote
the expected number of “correct” bits in a random string x. Show that c(f) =
(n+ as(f))/2.
Hint: Observe that c(f) =

∑n

i=1 Prob[Ai] where Ai is the event “xi = f(x)”. When x is chosen

randomly, there is an Infi(f) chance that xi is influential for f . Use the monotonicity of f to

show that in this case the expected number of correct bits is 1. With probability 1 − Infi(f) the
bit xi is not influential for f ; show that in this case the expected number of correct bits xi is 1/2.
Conclude that Prob[Ai] = 1 · Infi(f) + 1

2 · (1 − Infi(f)).

2.10 Show that as(Majn) = Θ(
√
n). Hint:

(
n

n/2

)
∼ 2n/

√
πn/2.

2.11 Show that the Majority function has the highest average sensitivity among all

monotone boolean functions: for every monotone boolean function f : {0, 1}n →
{0, 1}, as(f) ≤ as(Majn). Hint: Take a ∈ f−1(0) and define fa(x) by: fa(a) = 0 and

fa(x) = f(x) for all x ̸= a. Show that as(fa) ≥ as(f) as long as a has fewer than n/2 ones.

2.12 Let f be a monotone boolean function in n variables. Show that Infi(f) =
2 · f̂({i}) for all i = 1, . . . , n. Hint: Proof of Lemma ??.

2.13 Let f, g : {0, 1}n → R be real-valued functions, S ⊆ [n] and a ∈ {0, 1}n
.

Show that:

(a) χS(x⊕ a) = χS(x) · χS(a).
(b) f(x⊕ a) =

∑
S f̂(S)χS(x⊕ a).

(c) Ex [f(x)g(x⊕ a)] =
∑

S f̂(S)ĝ(S)χS(a). This fact is also known as the cross
correlation lemma.
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2.14 Use Exercise ??(c) to prove the following version of Lemma ?? for a boolean
function f : {0, 1}n → {−1,+1} taking ±1 values (instead of 0/1 values): as(f) =∑

S⊆[n] |S|f̂(S)2
.

Hint: Note that Infi(f) = 1
2 (1 − E [f(x) · f(x ⊕ ei)]). Apply Exercise ??(c) with g = f and

a = ei to get E [f(x) · f(x ⊕ ei)] = 1 − 2
∑

S:i∈S
f̂(S)2

.
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The communication complexity of boolean functions is an information theoretic
measure of their complexity. Besides its own importance, this measure is closely

related to the computational complexity of functions: it corresponds to the smallest

depth of circuits computing them. Thus, this measure can be used to prove circuit

lower bounds. Communication complexity is appealing not only for its elegance

and relation to circuit complexity, but also because its study involves the application

of diverse tools from algebra, combinatorics and other fields of mathematics.

Communication complexity has a comprehensive treatment in an excellent book

by Kushilevitz and Nisan (1997). To avoid intersections, we will mainly concentrate

on results not included in that book (including results obtained after that book was

published).

3.1 Communication protocols and rectangles

The basic (deterministic) model of communication was introduced in the seminal

paper by Yao (1979). We have two players, traditionally called Alice and Bob, who

have to evaluate a given function f(x, y) for every given input (x, y). The function
f itself is known to both players. The complication that makes things interesting

is that Alice holds the first part x of their shared input, while Bob holds another

part y. They do have a two-sided communication channel, but it is something like a

transatlantic phone line or a beam communicator with a spacecraft orbiting Mars.

Communication is expensive, and Alice and Bob are trying to minimize the number

of bits exchanged while computing f(x, y).
A general scenario of a deterministic communication game is the following.

We are given some function f : X × Y → Z or, more generally, some relation

f ⊆ X×Y ×Z . There are two players, Alice and Bob, who wish to evaluate f(x, y)
for all inputs (x, y) ∈ X × Y . In the case when f is an arbitrary relation, their goal

is to find some z ∈ Z such that (x, y, z) ∈ f , if there is one.

79
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au(x)

bv(y) aw(x)

bp(y)

0 1

0 1 10

0 1

Fig. 3.1 A communication tree (protocol). Alice’s functions au, aw do not depend on y, and Bob’s

functions bv, bp do not depend on x. Besides this (independence) there are no other restriction on

these functions—they may be arbitrary!

Both players know the entire function (relation) f . Also, the players are not
adversaries—they help and trust each other.

*
The difficulty, however, is that Alice

only knows x and Bob only knows y. Thus, to evaluate the function, they will need

to communicate with each other. The communication is carried according to some

fixed protocol (which depends only on f ). Each player has unlimited computational

power.We are only concerned with the number of bits that have to be communicated

between them.

Before the game starts, the players agree on a protocol for exchanging messages.

After that, given an input pair (x, y), the protocol dictates to each player what

messages to send at each point, based on her/his input and the messages received

so far. It also dictates when to stop, and how to determine the answer from the

information received. There is no limit on the computational complexity of these

decisions, which are free of charge. The cost of the protocol is the number of bits

they have to exchange on the worst case choice of input pair (x, y). The goal is to
minimize this cost.

More formally, this measure can be defined as follows. A protocol (or a communi-
cation tree) for a communication game is a binary tree T where each internal node

v is labeled either by a function av : X → {0, 1} or by a function bv : Y → {0, 1},
and each leaf is labeled by an element z ∈ Z (see Fig. ??). The value of the protocol
T on input (x, y) is the label of the leaf reached by starting from the root, and

walking on the tree. At each internal node v labeled by av we walk left if av(x) = 0
and right if av(x) = 1. Similarly, at each internal node v labeled by bv we walk left

if bv(y) = 0 and right if bv(y) = 1.
The cost of the protocol on input (x, y) is the length of the path taken on this

input. Then cost of the protocol T itself is its depth, that is, the length of its longest

path. The communication complexity of the relation f , denoted by c(f), is the cost
of the best protocol for this game.

Intuitively, each internal node v labeled by a function av corresponds to a bit sent

by Alice (the bit being av(x)) and each internal node v labeled by bv corresponds

*

These are not “games” in the common sense where each of the players wants to win a game.
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to a bit sent by Bob. Note that the value of each function av only depends on

the part x of input (x, y) seen by Alice and on the results of the tests made (bits

communicated) along the unique path to node v; the most important restriction is

that no av depends on bits y seen by Bob. Similarly for the functions bv .

Since the functions used by the players may be arbitrary, the model seems to be

too powerful to be interesting. But we have one important restriction on how the

players access a given input (x, y): Alice cannot see y and Bob cannot see x. This
gives the most important structural restriction: for every node v in a communication

tree, the set Sv ⊆ X × Y of all inputs reaching this node must be “rectangular”.

3.1 Definition (Rectangles) A combinatorial rectangle or just a rectangle is a subset
R ⊆ X × Y of the form R = R0 ×R1 with R0 ⊆ X and R1 ⊆ Y .

That is, a subset R ⊆ X × Y is a rectangle iff it fulfills the following “cut-and-

paste” condition:

if (x, y), (x′, y′) ∈ R then (x, y′), (x′, y) ∈ R.

We stress that a rectangle need not to be contiguous! That is, even in the case where

X,Y are ordered sets, the sets R0, R1 defining a rectangle need not be intervals.

3.2 Definition (Monochromatic rectangles) Given a relation f ⊆ X × Y × Z , say
that a subset S ⊆ X × Y is monochromatic (relative to f ) if there exists a z ∈ Z
such that (x, y, z) ∈ f for all (x, y) ∈ S.

3.3 Proposition If T is a communication tree for some relation, and v its node then

Sv = {(x, y) ∈ X × Y | input (x, y) reaches node v in T}

is a rectangle. Moreover, if v is a leaf, then the rectangle Sv is monochromatic.

Proof. We will prove by induction on the depth of v that Sv is a rectangle. If v is
the root, then Sv = X × Y , which is a rectangle. Otherwise, let w be the parent of

v and assume, without loss of generality, that v is the left son of w and that in w
Alice speaks, that is, w is labeled by a function aw : X → {0, 1}. Then

Sv = Sw ∩ {(x, y) | aw(x) = 0} .

By the induction hypothesis, Sw = A×B is a rectangle, and thus

Sv = (A ∩ {x | aw(x) = 0}) ×B

which is a rectangle. If v is a leaf, then no further communication is possible. That

is, there must be an answer z ∈ Z which suites all inputs (x, y) ∈ Sv , meaning

that (x, y, z) ∈ f for all (x, y) ∈ Sv . ⊓⊔

By Proposition ??, a communication protocol for a relation f ⊆ X × Y × Z is a

binary tree whose inner nodes are rectangles R ⊆ X × Y :
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• The root is labeled by the whole rectangle X × Y .

• If a node u is labeled by a rectangle R, then the sons of u are labeled by the

corresponding subrectangles of R. Moreover, these subrectangles are obtained

from R by splitting the rows of R (if u is Alice’s node) or by splitting the

columns of R (if u is Bob’s node).

• Leafs are labeled by monochromatic rectangles.

Since at each node, the rows (or columns) of the corresponding submatrix are split

into disjoint parts, the protocol is deterministic: each edge (x, y) ∈ S will reach

precisely one leaf. The depth of a tree is the maximum number of edges from the

root to a leaf. The minimum depth of a communication tree is the communication

complexity, c(f), of the game for the relation f .
Simple as it is, Proposition ?? gives us a handy tool to show that some functions

require many bits of communication.

3.4 Example Consider a boolean function f(x, y) in 2n variables defined by:

f(x, y) = 1 iff x = y. The corresponding relation in this case is F ⊆ X × Y × Z
with X = Y = {0, 1}n

, Z = {0, 1}, and (x, y, a) ∈ F iff f(x, y) = a. Now, every
input in f−1(1) = {(x, x) | x ∈ {0, 1}n} must reach a 1-leaf. On the other hand, if

v is a 1-leaf, then Proposition ?? tells us that the set Sv of inputs (x, y) reaching this
leaf must form a rectangle. Since Sv must lie in f−1(1), we obtain that |Sv| = 1:
had the set Sv contain two inputs (x, x) and (y, y) with x ̸= y, then it would be

forced to contain (x, y), and the protocol would make an error because f(x, y) = 0.
Thus the protocol must have at least |f−1(1)| = 2n

leaves, and hence, must have

depth at least log(2n) = n.

3.2 Protocols and tiling

Let f ⊆ X×Y ×Z be a relation. Recall that a rectangleR ⊆ X×Y ismonochromatic
relative to f (or f -monochromatic) if there exists a z ∈ Z such that (x, y, z) ∈ f
for all (x, y) ∈ R. Communication protocols for f lead to the following complexity

measures:

• Communication complexity c(f) = minimum depth of a communication proto-

col tree for f .
• Number of messages L(f) = minimum number of leaves in a communication

protocol tree for f .
• Tiling number χ(f) = smallest t such that X × Y can be decomposed into t
disjoint f -monochromatic rectangles.

Proposition ?? yields the following lower bounds on the communication complexity:

c(f) ≥ log L(f) ≥ logχ(f) .
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How tight are these bounds? We first show that the lower bound c(f) ≥ log L(f)
is almost tight.

3.5 Lemma (Balancing Protocols) c(f) ≤ 2 log2/3 L(f).

Proof. It suffices to show that given any deterministic protocol tree T for f with

|T | = L leaves, we are able to create a new protocol tree for f of depth at most

2 log2/3 L. We argue by induction on L. The basis case L = 1 is trivial. For the

induction step, apply Lemma ?? to obtain a node v in T such that the number |Tv|
of leaves in the sub-tree rooted at v satisfies

L/3 ≤ |Tv| ≤ 2L/3 .

Both players know T , and hence, they also know the sub-tree Tv . Let Sv ⊆ X × Y
be a rectangle corresponding to the node v. Now, both players decide if (x, y) ∈ Sv ,

by sending one bit each of them. If yes, then they use the protocol sub-tree Tv . If no,

then they use the protocol tree T ′
, where T ′

is the same tree as T , except that the
sub-tree Tv is replaced by a leaf labeled by an empty rectangle; hence, T ′

also has

|T ′| ≤ |T | − |Tv| ≤ L− L/3 = 2L/3

leaves. The new protocol is correct, since in this last case (x, y) ̸∈ Sv implies that

input (x, y) cannot reach node v in the original tree T .
To estimate the cost of the new protocol, let c(L) be the number of bits that

are communicated by the new protocol when the original tree has L leaves. By

construction, we have that c(L) ≤ 2 + c(2L/3), where 2 is the number of bits that

are communicated at the current step and c(2L/3) the number of bits that will be

communicated in the next (recursive) step in the worse case. Also note that c(1) = 0
(at a leaf no communication is necessary). Applying this inequality repeatedly we

get (by setting i = log3/2 L) that

c(L) ≤ 2 + 2 + · · · + 2︸ ︷︷ ︸
i

+c((2/3)iL) = 2 log3/2 L . ⊓⊔

Thus, we always have that c(f) = Θ(log L(f)). That is, when estimating the

smallest depth of a communication protocol we are actually estimating the smallest

number of leaves in such a protocol.

The situation with the tiling number χ(f) is worse: here we only know a

quadratic upper bound c(f) = O(log2 χ(f)). We will obtain this upper bound as a

direct consequence of the following more general result which we will apply several

times later. Its proof idea is essentially due to Aho, Ullman and Yannakakis (1983).

Suppose, we have a collection R of (not-necessarily disjoint) rectangles covering

the entire rectangle X × Y . Suppose also that each rectangle R ∈ R has its label.

The only requirement is that the labeling must be legal in the following sense:

If two rectangles R and S have different labels, then R ∩ S = ∅.
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Fig. 3.2 The rectangle R intersects S in rows, intersects T in columns, and intersects Q in both

rows and columns. We draw rectangles as consecutive blocks of entries only for simplicity: they

need not be consecutive.

That is, overlapping is only allowed for rectangles with the same label.

In the find-a-rectangle game for R, Alice gets an x ∈ X , Bob gets an y ∈ Y , and

their goal is to find a label of a rectangle containing (x, y). Note that the answer
(label) is unique for each point (x, y): if the point belongs to more than one rectangle,

then all these rectangles must have the same label.

Let c(R) denote the deterministic communication complexity of such a game

for R.

3.6 Lemma (Making Coverings Disjoint) c(R) ≤ 2(log |R|)2.

Proof. Say that a rectangle S = S0 × S1 intersects a rectangle R = R0 × R1 in

rows, if S0 ∩ R0 ̸= ∅, and intersects R in columns, if S1 ∩ R1 ̸= ∅ (see Fig. ??).
Note that, S ∩R ̸= ∅ if and only if S intersects R in rows and in columns. Given

a rectangle R, we say that a rectangle R′
is differently labeled if the label of R′

is

different from that of R.

3.7 Claim No rectangle in R can intersect more than half of differently labeled

rectangles in rows and more than half of these rectangles in columns.

Proof. Had this happen for some rectangle R, then R would intersect some other

rectangle of different label, contradicting the legality of our labeling. ⊓⊔

Now set r := ⌈log |R|⌉. The protocol consists of at most r rounds and in each

round at most 1 + r bits are communicated. After each round the current set of

rectangles is updated. Given an input (x, y), the players will be trying to decrease

the number of rectangles in each round by at least one half. Say that a rectangle

R = R0 × R1 in R is Alice’s rectangle if x ∈ R0, and Bob’s rectangle if y ∈ R1.
Thus, the goal of the players is to find a rectangle which is both Alice’s and Bob’s

rectangle.

1. Alice checks whether all here rectangles have the same label. If yes, then the

(unique) label of all these rectangles is a correct answer, and she announces it.

2. Otherwise, Alice tries to find among here rectangles a rectangle which intersects

in rows at most half of the differently labeled rectangles. If such a rectangle R
exists, then Alice sends its name (using r bits) to Bob and they both update R
so that it only contains the rectangles that intersect with R in rows; each of

the remaining rectangles is not an Alice’s rectangle, and hence, cannot contain

(x, y).
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3. If Alice is unable to find such a rectangle then she communicates this to Bob

(using one bit).

4. Now is Bob’s turn. Since Alice failed, Claim ?? ensures that among Bob’s rect-

angles there must be a rectangle which intersects in columns at most half of

the differently labeled rectangles (at least rectangles containing (x, y) must be

such). Bob takes any such rectangleR and sends its name (using r bits) to Alice
and they both update R so that it only contains the rectangles that intersect

with R in columns (other rectangles cannot contain (x, y)). At this point the
round is definitely over since they successfully eliminated at least half of the

rectangles in R labeled differently than R, and we can proceed by induction.

After at most r rounds the players will agree on a rectangle containing (x, y), and
the label of this rectangle is the correct answer. ⊓⊔

3.8 Lemma For every relation f ⊆ X × Y × Z , c(f) ≤ 2(logχ(f))2.

Proof. Let R be an optimal covering of X × Y by |R| = χ(f) disjoint f -
monochromatic rectangles. Since each R ∈ R is monochromatic, there must exist

a z ∈ Z such that (x, y, z) ∈ f for all (x, y) ∈ R. Fix one such z for each rectangle

R ∈ R, and let z be the label of R. Since all rectangles in R are disjoint, this is

a legal labeling in the sense of Lemma ??. Hence, we can apply this lemma and

obtain that, for every input (x, y), the players can find out the (unique) rectangle

containing (x, y) by communicating at most 2(log |R|)2 = 2(logχ(f))2
bits. ⊓⊔

Lemma ?? has the following purely combinatorial consequence about covering

matrices by their submatrices. A submatrix of a matrix is monochromatic if all its
entries have the same value. Suppose we can cover all entries of a given matrix

by t its (possibly overlapping) monochromatic submatrices. How many disjoint
monochromatic submatrices do we need then to cover all entries? Using communi-

cation complexity arguments one can show that tO(log t)
disjoint submatrices are

always enough!

3.9 Lemma If a matrix A can be covered by t (not necessarily disjoint) monochro-
matic submatrices, then A can be decomposed into at most t2 log t pairwise disjoint
monochromatic submatrices.

Proof. Let R be a set of t monochromatic submatrices covering A. Label each such

submatrix by its unique element. This labeling is clearly legal. By Lemma ??, there
is a communication protocol of depth at most c = 2(log t)2

which for every row x
and every column y outputs the entryA[x, y]. Each leaf of the protocol corresponds

to a monochromatic submatrix of A, and we obtain a decomposition of A into at

most 2c = t2 log t
pairwise disjoint monochromatic submatrices. ⊓⊔
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3.3 Games and circuit depth

In this section we will see a surprisingly tight connection between communication

and circuits that has proved very useful in boolean function complexity

Let S = X×Y be a rectangle withX,Y ⊆ {0, 1}n
andX∩Y = ∅. For example,

S could be an “ambient” rectangle S = f−1(1) × f−1(0) of a boolean function f .
The find-a-difference game for a rectangle S = X × Y is the following game:

• Alice gets a vector x ∈ X .

• Bob gets a vector y ∈ Y .

• The goal is to find a position i such that xi ̸= yi.

Let c(S) denote the communication complexity of this game. Note that the find-a-

difference game for S = X×Y is just a game for the relationF ⊆ X×Y ×[n] given
by: (x, y, i) ∈ F iff xi ̸= yi. In particular, for this relation, a rectangleR ⊆ X×Y is

monochromatic if there exists a position i ∈ [n] such that xi ̸= yi for all (x, y) ∈ R.
Thus, every protocol for the find-a-difference game on a rectangle S = X × Y
gives a partition (or tiling) of S into monochromatic rectangles. This motivates the

following purely combinatorial measure of rectangles.

3.10 Definition (Tiling number of rectangles) The tiling number χ(S) of a rect-

angle S is the smallest number t such that S can be decomposed into t disjoint
monochromatic rectangles.

Lemma ?? immediately yields the following connection of this measure with the

communication complexity.

3.11 Lemma For every rectangle S,

logχ(S) ≤ c(S) ≤ 2(logχ(S))2 .

This relation between the communication complexity and the tiling number is a

useful combinatorial tool to prove lower bounds on the communication complexity.

But it is also a handy tool to obtain efficient tiling of rectangles. To give an example,

let us show how one can obtain a decomposition of the rectangle of the parity

function ⊕n = x1 ⊕x2 ⊕· · ·⊕xn into a small number of monochromatic rectangles.

3.12 Proposition χ(⊕n) ≤ 4n2 and c(⊕n) ≤ 2 logn+ 2.

Proof. We will only show that χ(⊕n) ≤ n2
if n is a power of two. The general

case then follows by adding redundant zeros to the strings so that their length is

a power of two. The resulting strings will have length at most 2n, and the upper

bound χ(⊕n) ≤ 4n2
follows.

Consider the communication game for ⊕n. That is, given a pair (x, y) of binary
strings of length n such that x has a odd and y and even number of 1s, the goal of
Alice and Bob is to find an i with xi ̸= yi.

The basic idea is binary search. Bob begins by saying the parity of the left half

of y. Alice then says the parity of the left half of x. If these parities differ, then
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they continue playing on the left half, otherwise they continue playing on the right

half. With each round they halve the size of the playing field, and use two bits of

communication. Thus after logn rounds and 2 logn bits of communication they

determine an i on which x and y differ. This gives a decomposition into 22 log n = n2

disjoint monochromatic rectangles. ⊓⊔

Now we are going to prove one particularly important fact connecting commu-

nication with computation.

For a boolean function f , let D(f) be the minimum depth of a DeMorgan circuit

computing f . Let also c(f) denote the communication complexity of the find-a-

difference game on the rectangle f−1(1) × f−1(0).

3.13 Theorem (Karchmer–Wigderson 1990) For every boolean function f ,

D(f) = c(f) .

We prove lower and upper bounds on D(f) separately. The first claim is just a

reformulation of Rychkov’s lemma in terms of games.

3.14 Claim (Circuit to protocol) c(f) ≤ D(f).

Proof. Wemay assume that Alice and Bob have agreed on a circuit of smallest depth

computing f . Now suppose Alice gets an input x such that f(x) = 1, and Bob gets

an input y such that f(y) = 0. In order to find an i such that xi ̸= yi, the players

use the information provided by the underlying circuit. At OR gates speaks Alice,

and at AND gates speaks Bob.

Suppose the output gate is an AND gate, that is, we can write f = f0 ∧ f1. Then
Bob sends a bit i corresponding to a function fi such that fi(y) = 0; if both f0(y)
and f1(y) output 0, then Bob sends 0. We know that we must have fi(x) = 1. We

can then repeat this step at the gate corresponding to the output gate of fi, where

Bob sends a bit if the gate is an AND gate and Alice sends a bit if the gate is an

OR gate (she sends a bit corresponding to a function which outputs 1). Alice and
Bob repeat this process until they reach a leaf of the circuit. This leaf is labeled by

some variable zi or its negation ¬zi. Hence, xi ̸= yi implying that i is a correct
answer. ⊓⊔

The other direction is more interesting: having a protocol we can build a circuit.

3.15 Claim (Protocol to circuit) D(f) ≤ c(f).

Proof. We will prove a more general claim: For every rectangle S = A×B there

is a boolean function f such that A ⊆ f−1(1), B ⊆ f−1(0) and D(f) ≤ c(S). It
then remains to take S = f−1(1) × f−1(0).

We prove the claim by induction on c = c(S). Suppose c = 0. Then we must

have, for some index i, that xi ̸= yi for all pairs (x, y) ∈ S. Thus we may choose

either f = xi or f = ¬xi according to which function satisfies f(A) = 1 and

f(B) = 0.
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Next, we prove the claim is true for c assuming it is true for c− 1. Consider a
protocol for the communication game on S that uses at most c bits. Let us assume

Alice sends the first bit. Then there is a partition A = A0 ∪ A1, A0 ∩ A1 = ∅,
such that for x ∈ A0, Alice sends the bit 0 and for x ∈ A1, Alice sends the bit
1. After that we are left with two disjoint rectangles A0 × B and A1 × B whose

communication complexity is at most c− 1. Applying our induction hypothesis,

we find there exists a function f0 such that

f0(A0) = 1, f0(B) = 0 and D(f0) ≤ c− 1 ,

and there exists a function f1 such that

f1(A1) = 1, f1(B) = 0 and D(f1) ≤ c− 1 .

We define f = f0 ∨ f1. Then f(A) = 1, f(B) = 0 and

D(f) ≤ 1 + max{D(f0), D(f1)} ≤ c

as desired. Note that, if Bob had sent the first bit, we would have partitioned B and

defined f = f0 ∧ f1. This finishes the proof of the claim, and thus the proof of the

theorem. ⊓⊔

3.16 Remark In fact, c(f) is a lower bound for the parameter “depth times logarithm

of the maximal fanin” of any circuit with unbounded-fanin AND and OR gates. If,

say, f is computed by a circuit of depth d and fanin of every gate is at most S, then
c(f) = O(d logS). This holds because, at each step, one of the players can use

logS bits to tell what of at most S gates feeding into the current gate to choose.

3.3.1 Monotone depth

For monotone circuits we can give a modified version of Theorem ?? that captures, in
a nice way, the restrictions of monotone computations. Recall that a minterm (resp.,

maxterm) of a monotone boolean function f is a minimal set of variables such that, if

we set all these variables to 1 (resp., to 0), f will be 1 (resp., 0) regardless of the other
variables. We will view minterms and maxterms as subsets of [n] = {1, . . . , n}. Let
Min(f) denote the set of all minterms, and Max(f) the set of all maxterms of f .
It is easy to see that every minterm intersects every maxterm. This suggests the

following communication game. Let P,Q ⊆ 2[n]
be two families of sets such that

p ∩ q ̸= ∅ for all p ∈ P and q ∈ Q.

• Alice gets a set p ∈ P .
• Bob gets a set q ∈ Q.

• The goal is to find an element i ∈ p ∩ q = p \ q.
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Note that in a non-monotone game (corresponding to non-monotone circuits) the

goal of the players is to find an element i in a ∩ b or in a ∩ b = a ∪ b. This is that
“or” which makes the analysis of such protocols very difficult.

Let c+(P,Q) denote the communication complexity of this game. For a monotone

boolean function f , let c+(f) := c+(P,Q) with P = Min(f) and Q = Max(f).
Finally, let Depth+(f) be the minimum depth of a monotone DeMorgan formula

computing f . The same argument as in the proof of Theorem ?? gives

3.17 Theorem For every monotone boolean function f ,

Depth+(f) = c+(f) .

Proof. Note that in the base case of Claim ?? (when players reach a leaf of the

circuit), the monotonicity of the circuit (no negated variables) they find an i ∈ [n]
such that xi = 1 and y1 = 0. On the other hand, if a protocol always finds an i
with this property, Claim ?? gives a monotone circuit.

Let x ∈ f−1(1) be the characteristic vector of a subset p ⊆ [n]. Similarly, let

y ∈ f−1(0) be the characteristic vector of the complement of a subset q ⊆ [n], that
is, i ∈ q iff yi = 0. By the above argument, it is clear that the answer of the protocol

will be an element of p ∩ q. The theorem follows by noticing that it is enough to

design a protocol for Min(f),Max(f) because the players can always behave as if

they got p′ ⊆ p and q′ ⊆ q where p′ ∈ Min(f) and q′ ∈ Max(f). ⊓⊔

Exercises

3.1 Let f be a k-CNF formula withm clauses. Show that there exists a one-round

Karchmer-Wigderson protocol for f where Bob sends logm bits and Alice responds

with log k bits.

3.2 Show that for any boolean function f there exists a Karchmer-Wigderson

protocol where at each round Bob sends 2a
bits while Alice responds with a bits

such that the number r of rounds satisfies r ≤ D(f)/a.
Hint: Take the best circuit for f , divide it into stages of depth a each and look at the subcircuits of

each stage. Each one computes a function which depends on at most 2a
wires, and thus can be

represented as a 2a
-CNF formula with at most m = 22a

clauses. Use the previous exercise.

3.3 (Razborov 1990) The game FORMULA is a game of two players Up (upper) and

Lo (lower), Up will try to prove an upper bound for the formula size of a boolean

function; Lo will try to interfere him. A position in this game is a triplet (U, V, t)
where U, V ⊆ {0, 1}n

, U ∩ V = ∅ and t ≥ 1 is an integer. Up begins the game.

He obtains a position (U, V, t), chooses one of the two sets U, V (say, U ), chooses

some representations of U, t of the form

U = U ′ ∪ U ′′ t = t′ + t′′ (t′, t′′ ≥ 1)
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and hands to Lo the two positions (U ′, V, t′) and (U ′′, V, t′′). If Up chooses the set

V, the description of his actions is given in the analogous way.

Lo chooses one of the two positions offered to him and returns it to Up (the

remaining position is thrown out). Then Up moves as above (in the new position)

and so on. The game is over when Up receives a position of the form (U∗, V ∗, 1).
Up wins if U∗ × V ∗

forms a monochromatic rectangle, that is, if there is an i ∈ [n]
such that xi ̸= yi for all x ∈ U∗

and y ∈ V ∗
.

Prove that Up has a winning strategy in a position (U, V, t) iff there exists a

boolean function f : {0, 1}n → {0, 1} such that: f(U) = 0, f(V ) = 1 and f
has a DeMorgan formula of leafsize ≤ t. Hint: Argue by induction on t as in the proof of

Theorem ??.

3.4 (Brodal and Husfeld 1996) Prove that D(f) = O(logn) for every symmetric

boolean function f of n variables. For this, consider the following communication

game: given a pair A,B of subsets of [n] such that |A| ̸= |B|, find an element in

the symmetric difference (A \ B) ∪ (B \ A). Design a communication protocol

with O(logn) bits of communication for this game.

Hint: We already know (Proposition ??) how to design such a protocol if we the parities of |A|
and |B| are different. In the general case, use that fact that the cardinality |A| of a set A can be

communicated using only log |A| bits. Look at restrictions Al,s = A ∩ {l, l + 1, . . . , s − l + 1}
with A1,n = A and do an appropriate binary search, as in Proposition ??.
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We have already seen that communication complexity of relations captures the

depth of circuits. Protocols in this case are trying to solve search problems. In this

chapter we consider the communication complexity of decision problems. That is,

Alice gets a vector x, Bob gets a vector y, and their goal is to compute the value

f(x, y) of a given boolean function f .
In the fixed-partition communication game, the players are given a function f

as well as some partition (x, y) of its variables into two disjoint blocks of equal

size. The concept of the fixed-partition communication complexity was invented

by Yao (1979, 1981). In the best-partition model of communication the players are

allowed to choose a most suitable for this function balanced partition (x, y) of its
input variables. The best-partition communication complexity was introduced by

Lipton and Sedgewick (1981). Even trickier is the communication model where we

have more than two players, each seeing all but a small piece of the input vector.

We will consider this model later in Chapter ??.

4.1 Deterministic communication

It will be convenient to consider a boolean function f(x, y) of 2m variables as a

boolean n× n matrix A with n = 2m
such that A[x, y] = f(x, y). Such a matrix

A is usually referred to as the communication matrix of f . Recall that a primitive
matrix is a 0-1 matrix of rank 1, that is, a boolean matrix consisting of one all-1
submatrix and zeros elsewhere. These are exactly the matrices of the form uvT

for

two boolean vectors u and v. The complement of a boolean matrix A is the boolean

matrix A = J −A, where J is the all-1 matrix. A submatrix is monochromatic if all
its entries are the same. Two submatrices of the same matrix are disjoint if they do

not share a common entry.

The communication game for a given matrix A is as follows: Alice is given as

input a row index x, Bob is given a column index y, and Bob must determine the

value A[x, y].

91
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Fig. 4.1 An example of a communication tree for a boolean function f : X × Y → {0, 1}
represented as a matrix. The communication complexity of this protocol is 4.

By sending bits 0 and 1, the players actually split the rows (if this bit is sent by

Alice) or columns (if this bit is sent by Bob) into two disjoint parts. A communication
protocol (or a communication tree) of a game is a binary tree, each inner node of

which corresponds to a decision made by one of the players at this node. Each node

of the tree is labeled by a submatrix of A so that the following holds (see Fig. ??).

• The root is labeled by the whole matrix A.
• If a node u is labeled by a matrix M , then the sons of u are labeled by the

corresponding submatricesM0 andM1 ofM . Moreover, these submatrices are

obtained fromM by splitting the rows ofM (if u is Alice’s node) or by splitting

the columns ofM (if u is Bob’s node).

• If w is a leaf and R is its label, then R is monochromatic, that is, is either all-0
matrix or all-1 matrix.

Since at each node, the rows (or columns) of the corresponding submatrix are

split into disjoint parts, the protocol is deterministic: each pair (x, y) will reach
precisely one leaf. The depth of a tree is the maximum number of edges from the

root to a leaf. The deterministic communication complexity c(A) of a matrix A is

defined as:

c(A) = the minimum depth of a communication tree for A.

It is clear that for any boolean n× n matrix A (n being a power of two) we have

that c(A) ≤ 1 + logn since using logn bits Alice can just tell Bob the binary code

of her row x, and Bob can announce the answer A[x, y]. Lower bounds on c(A) can
be shown using the rank as well as the “tiling number” of A.
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Fig. 4.2 A decomposition of a 3 × 3 matrix that does not correspond to any protocol.

4.1 Definition (Tiling number of matrices) The tiling number χ(A) of a boolean

matrix A is the smallest number of pairwise disjoint monochromatic submatrices

of A covering all entries of A.

If we are only interested in decomposing s-entries of A for some s ∈ {0, 1} into

disjoint all-s submatrices, then the corresponding measure is denoted by χs(A).
Note that χ(A) = χ0(A) + χ1(A) and χ0(A) = χ1(A).

Since the submatrices occurring on the leaves of any communication tree for A
must be disjoint, we immediately have a basic inequality

c(A) ≥ logχ(A) .

Note however, that unlike arbitrary decompositions of a given matrix A into mono-

chromatic submatrices, decompositions arising from communication protocols have

a special form: they are produced inductively by splitting the resulting submatrices

only row-wise or column-wise. And indeed, there are decompositions that cannot

be produced by any communication protocol, like one depicted in Fig. ??. Thus, c(A)
may be larger than logχ(A). Kushilevitz, Linial and Ostrovsky (1999) exhibited

matrices A with c(A) ≥ (2 − o(1)) logχ(A).
On the other hand, c(A) is the communication complexity of a relation F ⊆

X × Y × Z where X is the set of rows of A, Y is the set of columns of A, and
Z = {0, 1}. The relation itself is given by: (x, y, z) ∈ F iff A[x, y] = z. Thus,
Lemma ?? gives the following upper bound:

c(A) ≤ 2(logχ(A))2 . (4.1)

Observe that χ1(A) is just the least number t such that A can be written as a sum

A =
∑t

i=1 Ri of t primitive matrices Ri = uiv
T
i with ui, vi ∈ {0, 1}n

. This is

reminiscent of another matrix measure—their rank. Recall that a (real) rank of a

matrix A is the least number r such that A =
∑r

i=1 αiRi for some αi ∈ R and

primitive 0-1 matrices Ri. Thus, χ1(A) corresponds to the case when all αi = 1.
This immediately gives us another basic estimate:

c(A) ≥ logχ1(A) ≥ log rk(A) . (4.2)

This bound was first observed by Mehlhorn and Schmidt (1982). Yet another char-

acterization of rank is in terms of scalar products. Namely, rk(A) is the least r such
thatA can be written as a sumA =

∑r
i=1 xiy

T
i for some vectors xi, yi ∈ Rn

. Since
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the coefficients 0 and 1 of characteristic vectors are clearly non-negative, we thus

actually have slightly stronger lower bound

c(A) ≥ logχ(A) ≥ log rk+(A) , (4.3)

where rk+(A) is the non-negative rank introduced by Yannakakis (1991): it is defined
as the least r such thatA can be written as a sumA =

∑r
i=1 xiy

T
i for some vectors

xi, yi ∈ Rr
with xi, yi ≥ 0. It can be shown (Exercise ??) that log rk+(A) is also

an upper bound on the nondeterministic communication complexity. It remains,

however, open whether c(A) is upper bounded by a polynomial in log rk(A); see
Section ?? for a discussion.

The rank lower bound (??) implies that implies that even some of the “simplest”

matrices, like the identity matrix In, have maximal communication complexity

logn. The goal however is to understand what properties of a given matrix A
actually force its communication complexity to be large. Having 1s on the diagonal

and 0s elsewhere is just one of these properties.
The identity matrix In is very sparse: it has only n ones. Using the rank, one

can show that any symmetric matrix with at most n2−ϵ
ones requires an almost

maximal number Ω(logn) bits of communication, as well.

For a matrix A, let |A| denote the number of its nonzero entries. The following

is a “folklore result” rediscovered by many authors.

4.2 Lemma If A is a symmetric n× n boolean matrix with 1s on the diagonal, then

χ(A) ≥ n2

|A|
.

Proof. Let λ1, . . . , λn be the eigenvalues of A. Then their sum t =
∑n

i=1 λi is the

trace of A (sum of diagonal entries of A), and at most r = rk(A) of them are

nonzero. Thus, the Cauchy–Schwarz inequality yields

tr(A2) =
n∑

i=1
λ2

i ≥ r(t/r)2 = t2/r .

Since A is a 0-1 matrix, we also have that tr(A2) = |A|: the i-th diagonal entry of

A2
is the number of 1s in the i-th row of A. This implies rk(A) = r ≥ tr(A)2/|A|,

where tr(A) = n since A has 1s on the diagonal. ⊓⊔

Lower bounds on communication complexity obtained using rank and other

algebraic measures are discussed in a survey by Lee and Shraibman (2009).
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4.2 Nondeterministic communication

For a two-party communication problem specified by a matrix A, one way to view

a nondeterministic communication protocol is as a scheme by which a third party,

Carole, who knows Alice’s input x and Bob’s input y, can convince Alice and Bob

of the value of the matrix entry A[x, y]. Of course, if Carole were trustworthy, she
could simply tell the two players this value.

A more interesting case is when Carole is untrusted and has the goal of convinc-

ing the players that this value equals 1, whether or not this is true. For this purpose,
she announces to both players some binary string, a witness for (or a proof of) the

fact that “A[x, y] = 1”. Having this witness, Alice and Bob verify it independently
and respond with either Yes or No. Alice and Bob agree thatA[x, y] = 1 (and accept

the input (x, y)) if and only if they both replied with Yes. If A[x, y] = 0 then Alice

and Bob must be able to detect that the witness is wrong no matter what Carole

says. The protocol is correct if, for every input (x, y), Alice and Bob accept it if and

only if A[x, y] = 1. The communication complexity of this game is the length of

the witness in the worst case. That is, nc(A) ≤ t iff for every input (x, y) we have
that:

• If A[x, y] = 1 then there exists a witness w ∈ {0, 1}t
on which both Alice and

Bob answer with Yes.

• If A[x, y] = 0 then, for every witness w ∈ {0, 1}t
, at least one player responds

with No.

In other words, if X is the set of rows and Y the set of columns of A, then a

nondeterministic protocol of cost t is a pair of functions a : X × {0, 1}t → {0, 1}
and b : {0, 1}t × Y → {0, 1} such that, for all (x, y) ∈ X × Y ,

A[x, y] = 1 iff a(x,w) ∧ b(w, y) = 1 for some w ∈ {0, 1}t
.

The nondeterministic communication complexity, nc(A), of a matrixA is the smallest

number t for which such functions a and b exist. This measure has a very simple

combinatorial description.

The cover number , Cov(A), of a 0-1 matrix A is the smallest number of all-1
submatrices of A covering all its 1s; this time the matrices in a cover need not be

disjoint. That is, Cov(A) is the least positive integer t such that A can be written

as componentwise OR A =
∨t

i=1 Ri of t primitive matrices R1, . . . , Rt, that is,

boolean matrices of rank 1.

4.3 Proposition For every boolean matrix A, we have that

log Cov(A) ≤ nc(A) ≤ ⌈log Cov(A)⌉ .

Proof. To show nc(A) ≤ ⌈log Cov(A)⌉, suppose that all 1s of A can be covered by

C = Cov(A) all-1 submatrices R1, . . . , RC . Let t = ⌈logC⌉, and let Rw be the

submatrix the binary code of whose index is w ∈ {0, 1}t
. Then define the functions
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a(x,w) and b(w, y) by: a(x,w) = 1 iff x is a row of Rw , and b(w, y) = 1 iff y is a
column of Rw .

To show the converse direction log Cov(A) ≤ nc(A), suppose that desired

functions a(x,w) and b(w, y) with witnesses of length t = nc(A) are given. Then,
for every w ∈ {0, 1}t

, the set Rw = {(x, y) | a(x,w) ∧ b(w, y) = 1} must be an

all-1 submatrix of A, and their union must cover all 1s of A. Since there are only 2t

such rectangles, we can conclude that log Cov(A) ≤ t = nc(A). ⊓⊔

We don’t want to worry about ceilings and floorings, so we adopt the following

definition of the nondeterministic communication complexity:

nc(A) := log2 Cov(A) . (4.4)

4.4 Example Carole can easily convince Alice and Bob that two binary strings x
and y of length n are not equal: using only ⌈logn⌉ + 1 bits she announces (the

binary code of) a position i with xi ̸= yi and the bit xi; Alice checks whether the

bit she received is the i-th bit of the string she can see, and Bob checks whether

yi ̸= xi. If however Carole wants to convince that x = y, then she is forced to send

n bits, just because Cov(In) = 2n
for a 2n × 2n

identity matrix In.

One can show that only sparse matrices can have large nondeterministic com-

munication complexity. For a boolean matrix, let |A| denote the number of its

1-entries. The following lemma is a modification of a probabilistic argument used

by Alon (1986).

4.5 Lemma Let A be a boolean matrix. If every column or every row of A contains at
most d zeros, then Cov(A) = O(d ln |A|).

Proof. We only consider the column case, the row case is the same. To cover the

ones of A we construct an all-1 submatrix B with row set I and column set J
via the following probabilistic procedure: pick every row of A with probability

p = 1/(d+ 1) to get a random subset I of rows, and let J be the set of all columns

of A that have no zeros in the rows of B.

A 1-entry (x, y) of A is covered by B if x was chosen in I and none of (at most

d) rows with a 0 in the y-th column was chosen in I . Hence,

Prob[(x, y) is covered by B] ≥ p(1 − p)d ≥ pe−pd ≥ p/e .

If we apply this procedure t times to get t all-1 submatrices, then the probability that

(x, y) is covered by none of these submatrices does not exceed (1 − p/e)t ≤ e−tp/e
.

Hence, the probability that some 1-entry of A remains uncovered is at most

|A| · e−tp/e = exp(ln |A| − t/(e(d+ 1))) ,

which is < 1 for t > e(d+ 1) ln |A|. ⊓⊔
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4.2.1 Greedy bounds

We now turn to lower bounds on the covering number Cov(A), and hence, on

the nondeterministic communication complexity nc(A) = log Cov(A). Recall that
the covering number Cov(A) of A is the smallest number of its all-1 submatrices

covering all 1-entries ofA. IfA has |A| ones, then a trivial lower bound isCov(A) ≥
|A|/r, where r is the largest number of entries in an all-1 submatrix ofA. This bound,
however, may be very far from the truth. Let, for example, A = (aij) be an upper

triangular n×nmatrix, that is aij = 1 iff i ≤ j. Then |A| = n+(n−1)+ · · ·+1 =
n(n+ 1)/2, but also r ≥ n2/4, and the resulting (trivial) lower bound on Cov(A)
is even smaller than 2.

A much better way to show that Cov(A) must be large is to choose a particular

subset S of “hard to cover” 1-entries in A, and to show that no all-1 submatrix of A
can cover many entries in S. To formalize this, let us define rA(S) as the largest
number of the selected “hard” 1-entries (those in S) that can be covered by an all-1
submatrix of A. This immediately implies that we need Cov(A) ≥ |S|/rA(S) all-1
submatrices of A to cover all entries in S. In the case of the triangular matrix∆, we

can take S to be, say, the set all its n diagonal entries. Then r∆(S) = 1, and a much

more respectful lower bound Cov(∆) ≥ n follows. This motivates the following

measure:

µ(A) = max
S

|S|
rA(S) ,

where the maximum is over all subsets S of 1-entries of A. By what was said above,

we have that Cov(A) ≥ µ(A). Actually, this lower bound is already not very far

from the truth.

4.6 Lemma (Lovász 1975) Cov(A) ≤ µ(A) · ln |A| + 1.

Proof. Let I be the set of all 1-entries of A. Consider a greedy covering of I by

all-1 submatrices R1, . . . , Rt of A. That is, in the i-th step we choose an all-1
submatrix Ri covering the largest number of all yet uncovered entries in I . Let
Bi = I \ (R1 ∪ · · · ∪Ri−1) be the set of entries in I that are left uncovered after

the i-th step. Hence, B0 = I and Bt = ∅. Let bi = |Bi| and ri = rA(Bi). That is,
ri is the maximum number of entries in Bi contained in an all-1 submatrix of A.
Since, by the definition of µ := µ(A), none of the fractions bi/ri can exceed µ, we
have that bi+1 = bi − ri ≤ bi − bi/µ. This yields

bi ≤ b0(1 − 1/µ)i ≤ |A| · e−i/µ .

For i = t− 1, we obtain 1 ≤ bt−1 ≤ |A| · e−(t−1)/µ
, and the desired upper bound

Cov(A) ≤ t ≤ µ ln |A| + 1 follows. ⊓⊔
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4.2.2 Fooling-set bounds

Since any two 1-entries lying on one line (row or column) can be covered by one

all-1 submatrix, a natural choice for a “difficult-to-cover” subset S of 1-entries of A
is to take “independent” entries.

Namely, say that two 1-entries in a matrix are independent if they do not lie in

one row or in one column. The term-rank, trk(A), of A is the largest number of

its pairwise independent 1-entries. The clique number, ω(A), of A is the largest

number r such that A contains an r × r all-1 submatrix. Finally, the line weight,
λ(A), of A is the largest number of 1s in a line (row or column). IfG is the bipartite

graph whose adjacency matrix
*
is A then:

• trk(A) = maximum number of edges in a matching in G.
• ω(A) = maximum r such that G contains a complete r × r graph Kr,r as a

subgraph.

• λ(A) = maximum degree of a vertex in G.

Using these parameters we can lower bound the cover number as follows:

Cov(A) ≥ trk(A)
ω(A) ≥ |A|

λ(A) · ω(A) . (4.5)

The first inequality follows since any r × r all-1 submatrix of A can have at most r
independent 1s. The second inequality is a direct consequence of a classical result

of König-Egervary saying that the term-rank trk(A) of A is exactly the minimum

number of lines (rows and columns) covering all 1s inA; hence, trk(A) ≥ |A|/λ(A).
Although simple, the first lower bound in (??)—known as the fooling set bound—is

one of the main tools for proving lower bounds on the nondeterministic communi-

cation complexity of boolean functions.

For sparse matrices, we have a somewhat better bound. Lemma ?? implies that,

for any symmetric matrixA, the fraction trk(A)2/|A| is a lower bound on the tiling

number χ(A) of A. It can be shown that this fraction is also a lower bound on the

covering number Cov(A).

4.7 Lemma (Jukna–Kulikov 2009) For every nonzero boolean matrix A,

Cov(A) ≥ trk(A)2

|A|
.

Proof. Take a largest set I of |I| = trk(A) independent 1-entries in A, and let

R1, . . . , Rt be a covering of the 1-entries in A by t = Cov(A) all-1 submatrices.

Define a mapping f : I → {1, . . . , t} by f(x, y) = min{i | Ri[x, y] = 1}, and let

Ii = {(x, y) ∈ I | f(x, y) = i}. That is, Ii consists of those independent 1-entries
in I that are covered by the i-th all-1 submatrixRi for the first time. Note that some

*

A boolean m × n matrix A = (aij) is the adjacency matrix of a bipartite m × n graph G =
(L ∪ R, E) with parts L = {u1, . . . , um} and R = {v1, . . . , vn}, if aij = 1 if and only if ui and

vj are adjacent in G.
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of the Ii’s may be empty, so let I1, . . . , Ik be the nonempty ones. Say that an entry

(x, y) is spanned by Ii if (x, y′) ∈ Ii for some column y′
and (x′, y) ∈ Ii for some

row x′
.

Let Si be the submatrix of Ri spanned by Ii. Hence, S1, . . . , Sk are disjoint all-1
submatrices of A covering all 1-entries in I . Moreover, each Si is an ri × ri matrix

with ri = |Ii|. Since the Si’s are disjoint, we have that

r1 + · · · + rk = |I| = trk(A) and r2
1 + · · · + r2

k ≤ |A| .

By the Cauchy–Schwarz inequality,

trk(A)2 = (r1 + · · · + rk)2 ≤ k · (r2
1 + · · · + r2

k) ≤ k · |A| ,

and the desired lower bound t ≥ k ≥ trk(A)2/|A| follows. ⊓⊔

4.8 Remark For all boolean matrices A with |A| < trk(A) · ω(A) ones, Lemma ??
yields somewhat better lower bounds than those given by the fooling set bound

(??). If, for example, an n × n matrix A contains an identity matrix and some

constant number c of r × r all-1 matrices with r =
√
n, then Lemma ?? yields

Cov(A) ≥ n2/(cr2 + n) = Ω(n), whereas the fooling set bound (??) only yields

Cov(A) ≥ n/r =
√
n.

4.3 P = NP ∩ co-NP for fixed-partition games

Having twomodes (deterministic and nondeterministic) and having the (far-fetched)

analogy with the P versus NP question, it is natural to consider the relations

between the corresponding complexity classes. Here for convenience (and added

thrill) we use the common names for the analogs of the complexity classes:

Let P (resp., NP) consist of all boolean functions in 2m variables whose deter-

ministic (resp., nondeterministic) communication complexity is polynomial in

logm.

The complement of a boolean matrix A is the matrix A = A− J , where J is the

all-1 matrix (of the same dimension). Note that in the case of deterministic protocols,
there is no difference what of the two matrices A or A we consider: we always have

that c(A) = c(A), because each deterministic protocol must cover all 0s as well as
all 1s of A. In the case of nondeterministic communication, the situation is different

in two respects:

1. we only need to cover the 1s of A, and
2. the submatrices need not be disjoint.

This is where an asymmetry between nondeterministic protocols forA andA comes

from. And indeed, we have already seen that the nondeterministic communication

complexities of the identity matrix and its complement are exponentially different.
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Butwhat if bothA andA have small nondeterministic communication complexity—

what can be then said about the deterministic communication complexity of A?
This is a version of the famous P versus NP ∩ co-NP question in communication

complexity. To answer questions of this type (in the communication complexity

frame), we now give a general upper bound on the deterministic communication

complexity of a matrix A in terms of the nondeterministic communication com-

plexity of A and A. This shows that P = NP ∩ co-NP holds for the fixed-partition

communication complexity.

4.9 Theorem (Aho–Ullman-Yannakakis 1983) For every boolean matrix A,

c(A) ≤ 2 max{nc(A), nc(A)}2 .

Proof. Let R = R0 ∪ R1 where R0 is a set of |R0| ≤ 2nc(A)
all-0 submatrices

covering all zeros of A, and R1 is a set of |R1| ≤ 2nc(A)
all-1 submatrices covering

all ones of A. Assign label “0” to all rectangles in R0, and label “1” to all rectangles

in R1. It is clear that this is a legal labeling in the sense of Lemma ??, since every
rectangle inR0 must be disjoint from every rectangle inR1. Hence, on a given input
(x, y), the players have only to find out the label of a rectangle containing (x, y).
By Lemma ??, this can be done using at most 2(log |R|)2 ≤ 2 max{nc(A), nc(A)}2

bits of communication. ⊓⊔

Theorem ?? itself cannot be substantially improved. To show this, consider the

k-disjointness matrixDn,k . This is a 0-1 matrix whose rows as well as columns are

labeled by all

∑k
i=0
(

n
i

)
subsets a of [n] of size at most k; the entry in the a-th row

and b-th column is defined by:

Dn,k[a, b] =
{

0 if a ∩ b ̸= ∅,
1 if a ∩ b = ∅.

4.10 Theorem (Razborov 1990) If A = Dn,k with k = logn then both nc(A) and
nc(A) are O(logn), but c(A) = Ω(log2 n).

The theorem is a direct consequence of the following two lemmas. In the first

lemma, rk(A) stands for the rank of A over GF(2).

4.11 Lemma The k-disjointness matrix has full rank, rk(Dn,k) =
∑k

i=0
(

n
i

)
.

Proof. The matrix D = Dn,k has N =
∑k

i=0
(

n
i

)
rows and as many columns. We

must show that the rows of D are linearly independent over GF(2), i.e., that for
any nonzero vector λ = (λI1 , λI2 , . . . , λIN

) in GF(2)N
, indexed by subsets of [n]

of size at most k, we have λTD ̸= 0. For this, consider the following polynomial:

f(x1, . . . , xn) :=
∑

|I|≤k

λI

∏
i∈I

xi.

Since λ ̸= 0, at least one of the coefficients λI is nonzero, and we can find some I0
such that λI0 ̸= 0 and I0 is maximal in that λI = 0 for all I ⊃ I0. Assume w.l.o.g.
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that I0 = {1, . . . , t}, and make in the polynomial f the substitution xi = 1 for all

i ̸∈ I0. After this substitution has been made, a nonzero polynomial over the first t
variables x1, . . . , xt remains such that the term x1x2 · · ·xt is left untouched (here

we use the maximality of I0). Hence, after the substitution we obtain a polynomial

which is 1 for some assignment (a1, . . . , at) to its variables. But this means that the

polynomial f itself takes the value 1 on the assignment b = (a1, . . . , at, 1, . . . , 1).
Hence,

1 = f(b) =
∑

|I|≤k

λI

∏
i∈I

bi.

Let J0 := {i : ai = 0}. Then |J0| ≤ k and, moreover,

∏
i∈I bi = 1 if and only if

I ∩ J0 = ∅, which is equivalent to DI,J0 = 1. Thus,∑
|I|≤k

λIDI,J0 = 1,

meaning that the J0-th coordinate of the vector λT ·D is nonzero. ⊓⊔

The lemma implies that the deterministic communication complexity of disjoint-

ness matrices is large:

c(Dn,k) ≥ log rk(Dn,k) = Ω(k log(n/k)) .

We are now going to show that both the matrix Dn,k and its complement have

small nondeterministic communication complexity.

4.12 Lemma For all 1 ≤ k ≤ n we have that

nc(Dn,k) ≤ logn and nc(Dn,k) = O(k + log logn) .

Proof. The first upper bound is trivial: just guess a point in the intersection of a
and b. To prove the second one, we use the probabilistic argument.

The rows as well as columns ofDn,k are labeled by subsets of [n] of size at most

k. Say that a subset Y ⊆ [n] separates pair (a, b) of two disjoint sets a and b if
a ⊆ Y and b ∩ Y = ∅. Let Y be a random subset of [n] chosen uniformly with

probability 2−n
. Then for a fixed pair (a, b),

Prob[Y does not separate (a, b)] = 1 − Prob[a ⊆ Y and b ∩ Y = ∅]

= 1 − 2n−|a|−|b|

2n
= 1 − 2−|a|−|b| .

Let l := 2k4k lnn, and take l independent copies Y1, . . . ,Yl of Y. Then the proba-

bility that none of them separates a given pair (a, b) is at most(
1 − 2−|a|−|b|

)l

≤
(

1 − 2−2k
)l

< e−l·2−2k

.
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Since there are no more than n2k
pairs (a, b), the probability that at least one of

the pairs (a, b) is left unseparated by all the sets Y1, . . . ,Yl, is smaller than

n2k · e−l·2−2k

= n2k · e−2k ln n = 1 .

So, there must exists a sequence Y1, . . . , Yl of subsets of [n] such thatDn,k[a, b] = 1
iff (a, b) is separated by at least one of these sets. Since the set {(a, b) | a ⊆
Yi, b ∩ Yi = ∅} of all pairs separated by the i-th set Yi corresponds to an all-1
submatrix of Dn,k, this implies Cov(Dn,k) ≤ l, and the desired upper bound

nc(Dn,k) ≤ log l = O(k + log logn) follows. ⊓⊔

4.4 Clique vs. independent set game

Recall that the tiling number of a boolean matrix A is χ(A) = χ0(A) + χ1(A),
where χσ(A) for σ ∈ {0, 1} is the minimum number of pairwise disjoint all-σ
submatrices of A covering all its σ-entries.

By (??) we know that, if all entries of a boolean matrix A can be decomposed

intom disjoint monochromatic submatrices, then c(A) ≤ 2(logm)2
. This implies

that c(A) ≤ 2(logχ(A))2
. But what if we only know that all 1-entries of A can

be decomposed in a small number of disjoint all-1 submatrices—does then c(A) is
small? It turns out that this is indeed the case: we can replace χ(A) in the above

upper bound on c(A) by either χ1(A) or χ0(A).

4.13 Theorem Let σ ∈ {0, 1}. If the σ-entries of a boolean matrix can be decomposed
intom pairwise disjoint all-σ submatrices, then c(A) = O(log2 m).

We will derive the theorem from a more general result about the communication

complexity of the following clique versus independent set game cisG on a given

graph G:

• Alice gets a clique C ⊆ V of G.
• Bob gets an independent set I ⊆ V of G.
• Answer “1” iff C ∩ I = ∅.

Note that we always have that |C ∩ I| ≤ 1.

4.14 Theorem (Yannakakis 1991) The clique versus independent set problem on every
n-vertex graph can be deterministically solved by communicating at most O(log2 n)
bits.

Proof. Given an n-vertex graph G = (V,E) we describe an appropriate communi-

cation protocol for the game cisG. The protocol works in logn rounds, and in each

round at most O(logn) bits are communicated. The idea is to do binary search for

an intersection.

First Alice checks whether her set C contains a vertex of degree < n/2. If it
does then she sends the name of such a vertex v to Bob. Now they both know that



4.4 Clique vs. independent set game 103

Alice’s set is contained among v and vertices adjacent to v, and so the problem is

reduced to one for a graph on at most n/2 vertices.

If Alice does not find such a node, then Bob checks whether his set I contains a
vertex of degree ≥ n/2. If it does then he sends the name of such a vertexw to Alice.

Then they both know that Bob’s set is contained among the vertices nonadjacent to

w (including w), and the problem is again reduced to one for a graph on at most

n/2 vertices.

If no one was successful, they know that every node of Alice’s set has degree at

least n/2 while every vertex of Bob’s set has degree smaller than n/2, and hence
they know that the two sets are disjoint. ⊓⊔

p@plus6p@

Proof of Theorem ??addpunct: Let R1, . . . , Rm be a decomposition of 1-entries of
A intom pairwise disjoint all-1 submatrices. Consider the graph GA onm vertices

1, . . . ,m in which

i and j are adjacent iff Ri and Rj intersect in rows.

Now, given an input (x, y), Alice and Bob transform them to sets

Cx = {i | x labels a row of Ri} and Iy = {i | y labels a column of Ri} .

Note that Cx is a clique in GA. Moreover, since the submatrices R1, . . . , Rm are

disjoint, Iy is an independent set in GA. Further, Cx ∩ Iy ̸= ∅ iff (x, y) is in a 1-
rectangle. Thus, the players can use the protocol for the clique versus independent

game on GA. ⊓⊔

endpefalse
The clique vs. independent sets game cisG is important to understand the power

of linear programming for NP-hard problems. Namely, Yannakakis (1991) showed

that any n-vertex graph G, for which this game requires ω(logn) bits of nondeter-
ministic communication, gives a super-polynomial lower bound for the size of linear

programs expressing Vertex Packing and Traveling Salesman Problem polytopes.

Note that nc(¬cisG) ≤ logn for any n-vertex graph: just guess a vertex in

the intersection. But for the problem cisG itself only graphs G with nc(cisG) =
Ω(logn) are known. Apparently, the highest so far remains the lower bound (2 −
o(1)) log2 n proved by Kushilevitz, Linial and Ostrovsky (1999). The lower bound

log2 n is a trivial one (see Exercise ??).

4.15 Research Problem
Exhibit an n-vertex graph G such that nc(cisG) = ω(logn).

Some partial result towards this problem were recently obtained by Kushilevitz

and Weinreb (2009, 2009a).

4.16 Remark The measure nc(cisG) has an equivalent graph-theoretic formulation.

For a graphG, let q(G) be the smallest number twith the following property: There
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is a sequence S1, . . . , St of subsets of V such that, for every clique C ⊆ V and

every independent set I ⊆ V of G such that C ∩ I = ∅, there is an i such that

C ⊆ Si and I ∩ Si = ∅. It can be shown (see Exercise ??) that

nc(cisG) = log q(G) . (4.6)

4.17 Remark The clique versus independent set game is related to the so-called

Alon-Saks-Seymour Conjecture. The chromatic number of G, which we denote
*
by

chr(G), is the smallest number of colors that are enough to color the vertices of G
in such a way that no adjacent vertices receive the same color. The conjecture states

that, if a graph G can be written as an union ofm edge-disjoint complete bipartite

graphs, then chr(G) ≤ m + 1. In this strong form, the conjecture was recently

disproved by Huang and Sudakov (2011) who showed that chr(G) = Ω(m1.2) for an
infinite sequence of graphs. This yields a lower bound nc(cisG) ≥ 1.2 logn− O(1).

4.5 Communication and rank

There is yet another upper bound, similar in its form to that of Theorem ??. Instead
of Cov(A) it uses the following matrix parameter. Say that a boolean t× t matrix

is triangular if—after a suitable rearrangement of the rows and columns—there are

all 1s in the main diagonal and all 0s everywhere above the main diagonal; entries

below the main diagonal may be arbitrary. For a boolean matrix A, define

∆(A) = max{t | A contains a t× t triangular submatrix} .

4.18 Theorem (Lovász–Saks 1993) For every boolean matrix A,

c(A) ≤ (2 + nc(A)) · log∆(A) ≤ (2 + nc(A)) · min{log rk(A), nc(A)} . (4.7)

Proof. Let r = nc(A), and let A1, . . . , A2r be the all-0 submatrices of A covering

all 0s of A. For every matrix Ai, consider the matrix Ri formed by the rows of A
intersecting Ai, and Ci be the matrix formed by the columns of A intersecting Ai.

Since Ai consists only of 0s, we have that (see Fig. ?? for a proof):

∆(Ri) +∆(Ci) ≤ ∆(A) . (4.8)

The protocol consists of log∆(A) rounds, in each of which atmost 2+r = 2+nc(A)
bits are communicated.

In each round, the players do the following. First, Alice checks whether there

is an index i such that her row intersects Ai and ∆(Ri) ≤ 1
2∆(A). If yes, then

(using 1 + r bits) she sends “1” and the index i of this submatrix to Bob. If not, then

she sends “0”. Now Bob checks whether there is an index i such that his column

*

In the graph-theoretic literature, the chromatic number of a graph is usually denoted by χ(G),
but we already use this symbol for the tiling number.
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Fig. 4.3 Proof of (??): Since Ai = Ri × Ci is an all-0 submatrix, no triangular submatrix of Ri

can share a row or a column with a triangular submatrix of Ci. Permute rows and columns of A
to “glue” these triangular submatrices into a triangular submatrix of A.

intersects Ai and∆(Ci) ≤ 1
2∆(A). If yes, then (using 1 + r bits) he sends “1” and

the index i to Alice. If not, then he sends “0”.
If either Alice or Bob find a suitable index i in this round then, by communicating

at most 2 + r bits, they have restricted the problem to a matrix A′
(= Ri or Ci) for

which∆(A′) ≤ 1
2∆(A). Hence, in this case, the theorem follows by induction.

If both players have sent “0” in this round, then they can finish the protocol: the

answer is “A[x, y] = 1”. Indeed, if there were a 0 in the intersection of Alice’s row

and Bob’s column, then this 0 would belong to some submatrixAi. However, for this

submatrix we have on the one hand∆(Ri) > 1
2∆(A) (since i did not suit Alice), on

the other hand∆(Ci) > 1
2∆(A) since i did not suit Bob. But this contradicts (??).

Thus, we have shown that c(M) ≤ (2 + r) · log∆(A), as desired. To show the

second inequality in (??), it suffices to observe that∆(A) ≤ min{rk(A),Cov(A)}
and nc(A) = log Cov(A). ⊓⊔

Note that the proof of this theorem works not only for the matrix measure∆(A)
but also for any matrix measure µ(A) satisfying (??).

4.6 The log-rank conjecture

We already know that c(A) ≥ log rk(A) holds for any matrix A. But how tight is

this lower bound? Lovász and Saks (1988) made the following conjecture.

4.19 Conjecture (Log-Rank Conjecture) There is a constant c > 0 such that for every
0-1 matrix A,

c(A) ≤ (log rk(A))c .

Here rk(A) is the rank of A over the reals! If we consider rank over finite fields
(instead of the reals), the conjecture does not hold (see Exercise ??).

The area of a matrix is the number of its entries. If mono(A) denotes the maxi-

mum area of a monochromatic submatrix of A, then
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c(A) ≥ logχ(A) ≥ log n2

mono(A) .

Hence, the Log-Rank Conjecture implies the following (seemingly “easier” to

tackle) conjecture stating that every 0-1 matrix of small rank must contain a large

monochromatic submatrix.

4.20 Conjecture (Nisan–Wigderson 1995) There is a constant c > 0 such that for
every boolean n× n matrix A of rank r,

mono(A) ≥ n2

2(log r)c .

In fact, Nisan and Wigderson (1995) showed that this last conjecture is also

equivalent to the Log-Rank Conjecture (see Exercise ??). Moreover, they gave a

support for Conjecture ??: every matrix of small rank must contain a submatrix of

large “discrepancy” (see Theorem ?? below).
Since ∆(A) ≤ rk(A) and nc(A) ≤ log rk+(A) (see Exercise ??), Theorem ??

implies that

c(A) ≤ 2 log rk+(A) · log rk(A) .

Thus the Log-Rank Conjecture is equivalent to the following purely mathematical

question about the relation between the rank of boolean matrices and their non-

negative rank.

4.21 Conjecture (Positive Rank) There is a constant c > 0 such that for every 0-1
matrix A,

log rk+(A) ≤ (log rk(A))c .

It is also known that the Log-Rank Conjecture is equivalent to the a conjecture

stating that chr(G) ≤ 2(ln r)O(1)
for any graph G, where chr(G) is the chromatic

number of G and r = rk(G) is the real rank of the adjacency matrix of G (see

Theorem ?? below). Yet another algebraic analogue of the Log-Rank Conjecture

was found by Valiant (2004).

The existence of so many seemingly unrelated but in fact equivalent formulations

supports the importance of the Log-Rank Conjecture.

4.6.1 Known gaps

For some time it was thought that chr(G) ≤ rk(G). This was conjectured by

van Nuffelen (1976). The first counterexample to van Nuffelen’s conjecture was

obtained by Alon and Seymour (1989). They constructed a graph with chromatic

number 32 and with an adjacency matrix of rank 29. Razborov (1992c) then showed

that the gap between the chromatic number and the rank of the adjacency matrix

can be super-linear, and Raz and Spieker (1995) showed that the gap can even be

super-polynomial. The best result known so far is due to Nisan and Wigderson
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(1995). It gives an infinite family of graphs with rank r and with chromatic number

chr(G) = 2Ω(log r)1+ϵ

for a constant ϵ > 0.

4.22 Theorem (Nisan–Wigderson 1995) There exist explicitly given 0-1 matricesA of
size 2n × 2n such that c(A) = Ω(n), and log rk(A) = O(nα), where α = log3 2 =
0.63 . . ..

The same Ω(n) lower bound applies also to the randomized and to the non-

deterministic communication complexities. The construction is based on boolean

functions with high sensitivity and low degree. Such a function was constructed

by Nisan and Szegedy (1994); see Lemma ??. The lower bound for the communica-

tion complexity relies on the known lower bounds for randomized communication

complexity of disjointness matrices.

Proof. With every boolean function f : {0, 1}n → {0, 1} we associate 2n × 2n

matrix Af as follows:

Af [x, y] := f(x1 · y1, x2 · y2, . . . , xn · yn) .

We will need the following two properties of these matrices. Recall that a boolean

function f is fully sensitive at 0 if f(0) = 0 and f(x) = 1 for every vector with

exactly one 1.

4.23 Claim If f is fully sensitive at 0 then c(Af ) = Ω(n).

The same lower bound holds for the randomized and for the nondeterministic

complexity of Af .

Proof. This is a corollary of a deep result, due to Kalyanasundaram and Schnitger

(1992) and Razborov (1992a), that the randomized (as well as deterministic and

nondeterministic) communication complexity unique disjointness matrix udisjn is

Ω(n); see Theorem ?? and Exercise ??. The matrix udisjn is a partial 2n ×2n
matrix

whose rows and columns are labeled by distinct binary vectors of length n, and

udisjn[x, y] =


1 if

∑n
i=1 xi · yi = 0

0 if

∑n
i=1 xi · yi = 1

∗ otherwise.

Now notice that if f is fully sensitive at 0 then any protocol forAf is also a protocol

for udisjn. ⊓⊔

4.24 Claim If the polynomial of f hasm monomials then rk(Af ) ≤ m.

Proof. Let f(z) =
∑

S λS

∏
i∈S zi be the representation of f as a real polynomial.

By the definition of Af it follows that Af =
∑

S λSBS where the matrix BS is

defined by BS [x, y] :=
∏

i∈S xi · yi. Since each BS has rank 1, the rank of Af is at

most the numberm of all monomials λS

∏
i∈S zi with λS ̸= 0. ⊓⊔
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To finish the proof of Theorem ??, take a boolean function f : {0, 1}n → {0, 1}
constructed in Lemma ??. This function is fully sensitive at 0, and containsm ≤
2O(nα)

monomials, where α = log3 2 ≈ 0.631. By Claim ??, we have that Af has

maximal communication complexity, c(Af ) = Ω(n). On the other hand, Claim ??
implies that log rk(Af ) = O(nα). ⊓⊔

4.6.2 Small rank implies large discrepancy

We now give a result supporting the Log-Rank Conjecture: every matrix of small

rank must contain a submatrix of large “discrepancy”.

The discrepancy of a ±1 matrix is just the absolute value of the sum of its entries.

Hence, small discrepancy means that the matrix is balanced: it has almost the same

number of positive and negative entries. The maximum discrepancy, disc(A), of a
matrix A is the maximum discrepancy of its submatrices. That is,

disc(A) = max |xTAy| = max
∣∣∣ n∑

i,j=1
aijxiyj

∣∣∣, (4.9)

where the maximum is over all 0-1 vectors x and y: each pair of such vectors

corresponds to a submatrix of A determined by the 1-position of x and y. Note that
0 ≤ disc(A) ≤ n2

for every n× n matrix A.
The discrepancy of an a × b matrix does not exceed its area ab, and is equal

to ab if the matrix is monochromatic. Hence, we always have that disc(A) ≥
mono(A). Interestingly, if we replace “maximal area of a monochromatic submatrix”

by “maximal discrepancy of a submatrix”, then the modified Conjecture ?? holds in
a very strong sense!

4.25 Theorem (Nisan–Wigderson 1995) For every n× n ±1 matrix A of rank r,

disc(A) ≥ n2

16r .

Proof. We are given a ±1 matrix A = (aij) of low rank r = rk(A) and wish to find

in it a submatrix of high discrepancy. By the definition (??) of the discrepancy, we
only need to find 0-1 vectors x and y for which xTAy is large. As an intermediate

step we shall consider the set

U = {u ∈ Rn : |ui| ≤ 1 for all i}

of real vectors of small maximumnorm and show that disc(A) can be lower bounded
by the maximum of uTAv over the vectors u, v ∈ U .

4.26 Claim For any u, v ∈ U we have that
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disc(A) ≥ uTAv

4 .

Proof. Letting z = Av, we have uTAv =
∑n

i=1 uizi. Hence,
∑

i∈K uizi ≥
uTAv/2, where K is either the set of coordinates i where both ui and zi are

positive or the set of coordinates in which both are negative. Assume the first case

(the second case is similar by using vector −v instead of v). Then letting x ∈ {0, 1}n

to be the characteristic vector of K and using the fact that |ui| ≤ 1 for all i, we
have

xTAv ≥
n∑

i=1
xizi =

∑
i∈K

uizi ≥ uTAv/2 .

Repeating this argument with z = xTA, we can replace v with a 0-1 vector y
obtaining that xTAy ≥ uTAv/4. Hence, disc(A) ≥ xTAy ≥ uTAv/4, as claimed.

⊓⊔

To finish the proof of the theorem, it is enough by Claim ??, to find two vectors

u, v ∈ U for which uTAv ≥ n2/4r. For this, we will use a relation between spectral
norm, Euclidean norm and the rank of a matrix.

The spectral norm ∥A∥ of a matrix A is the maximum, over all unit vectors x,
of the Euclidean norm ∥Ax∥ of the matrix-vector product Ax. It is well known
that ∥A∥ = max |yTAx| over all real vectors x, y ∈ Rn

whose Euclidean norm

∥x∥ = ∥y∥ = 1. The Frobenius norm ∥A∥F of A = (aij) is just the Euclidean

norm (
∑

i,j a
2
ij)1/2

of A viewed as a vector in Rn2
. For every real matrix A, we

have the following relation of this norm with the spectral norm (see Lemma ?? in
Appendix ?? for the proof):

∥A∥F√
rk(A)

≤ ∥A∥ ≤ ∥A∥F . (4.10)

We will now construct the desired vectors u, v ∈ U with uTAv ≥ n2/4r. We

start with two vectors x, y ∈ Rn
of Euclidean norm ∥x∥ = ∥y∥ = 1 for which

xTAy = ∥A∥. Let p ≥ 1 be a parameter (to be specified later), and consider the

sets of indices

I = {i : |xi| > 1/√p} and J = {j : |yj | > 1/√p} .

Since 1 = ∥x∥2 =
∑n

i=1 x
2
i ≥ |I|/p, we have that |I| ≤ p, and similarly, |J | ≤ p.

Consider the vectors a and b defined by:

ai =
{

0 if i ∈ I ,

xi otherwise

and bj =
{

0 if j ∈ J ,

yj otherwise.

We claim that

aTAb ≥ n√
r

− p . (4.11)
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To show this, consider the matrix B which agrees with A on all entries (i, j) with
i ∈ I and j ∈ J , and has 0s elsewhere. Then

aTAb = xTAy − xTBy .

Since ∥A∥F = n, Eq. (??) yields xTAy ≥ n/
√
r. The same claim also yields xTBy ≤

∥B∥ ≤ W (B) ≤ p, where the last inequality follows sinceB has at most p nonzero
rows and p nonzero columns. So,

aTAb = xTAy − xTBy ≥ n√
r

− p .

Set now p := n/(2
√
r), and consider the vectors u := √

p · a and v := √
p · b. Since

|ai|, |bi| ≤ 1/√p for all i, both vectors u, v belong to U , and we have

uTAv = p · aTAb ≥ p · n√
r

− p2 = n2

4r . ⊓⊔

4.6.3 Rank and chromatic number

As mentioned above, the Log-Rank Conjecture in communication complexity is

equivalent to the following conjecture for graphs. For a graph G, let rk(G) denote
the rank of the adjacency matrix AG ofG. Recall that the chromatic number chr(G)
of G is the smallest number of colors that are enough to color the vertices of G in

such a way that no adjacent vertices receive the same color.

4.27 Conjecture (Chromatic Number Conjecture) There exists a constant c > 0 such
that log chr(G) ≤ (log rk(G))c holds for every graph G.

4.28 Theorem (Lovász–Saks 1988) The log-rank conjecture and the chromatic number
conjecture are equivalent.

This result was only announced in (Lovász and Saks 1988). The proof presented

below was communicated to us by Michael Saks.

Proof. Let, as before, rk(G) denote the real rank of the adjacency matrix AG of G.

The two conjectures we are interested in state, respectively, that for every boolean

matrix A and every graph G:

(a) c(A) is at most poly-logarithmic in rk(A);
(b) log chr(G) is at most poly-logarithmic in rk(G).

To show that (a) ⇒ (b), recall that logχ(AG) ≤ c(AG). So, if c(AG) is poly-

logarithmic in rk(AG), then logχ(AG) is also poly-logarithmic in rk(AG). It is
therefore enough to show that chr(G) ≤ χ0(AG) ≤ χ(AG). For this, letR1, . . . , Rt

be a decomposition of all 0-entries of the adjacency matrix AG of G = (V,E) into
t = χ0(AG) all-0 submatrices. Define the mapping c : V → {1, 2, . . . , t} by letting
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Fig. 4.4 Original n × n matrix A and the n2 × n2
matrix E1 with E1[(i, j), (s, t)] = 1 iff

A[i, t] = 1. Up to a permutation of rows and columns, the all-1 blocks of E1 have the same

distribution in E1 as 1s in the original matrix A. Hence, rk(E1) = rk(A).

c(v) be the unique i such that the diagonal entry (v, v) of AG is covered by Ri. It

is easy to see that each color-class c−1(i) is an independent set in G, implying that

c is a legal coloring of G with t = χ0(AG) colors.
The proof of the other direction (b) ⇒ (a) is less trivial. But it is a direct conse-

quence of the following claim relating the chromatic number of graphs with the

tiling number of boolean matrices.

4.29 Claim For every booleanm× n matrix A there is a graph GA = (V,E) on
|V | = mn vertices such that

chr(GA) = χ(A) and rk(GA) = O(rk(A)2).

Proof. For a graph G, let cl(G) denote its clique decomposition number, that is,

the minimum number of vertex-disjoint cliques covering all vertices of G. Hence,
chr(G) = cl(G), whereG is the complement ofG, that is, two vertices are adjacent

in G iff they are not adjacent in G.
Given a booleanm× n matrix A, consider the graph H = (V,E) whose |V | =

mn vertices are entries (i, j) ∈ [m] × [n] of A. Two entries (i, j) and (k, l) are
joined by an edge if and only if the {i, k}×{j, l} submatrix ofA is monochromatic:(

(i, j), (s, t)
)

∈ E iff A[i, j] = A[s, t] = A[i, t] = A[s, j]. (4.12)

Note that S ⊆ V is a clique in H iff the submatrix of A spanned by S (that is, the

smallest submatrix covering all entries in S) is monochromatic. Hence, if we take

the complement GA := H of H , then chr(GA) = cl(H) = χ(A).
To prove rk(GA) = O(rk(A)2), observe that rk(GA) ≤ rk(H) + 1. Hence, it is

enough to upper-bound rk(H) in terms of rk(A). Recall that edges ofH correspond

to monochromatic s × t submatrices of A with 1 ≤ s, t ≤ 2. Let N = mn, and
consider the adjacency N × N matrixM of H with all diagonal entries set to 1.
We will writeM as the Hadamard (entry-wise) product of few N × N matrices.

For a ∈ {0, 1}, let



112 4 Games on 0-1 Matrices

Ca[(i, j), (s, t)] = 1 iff A[i, j] = a

and

Da[(i, j), (s, t)] = 1 iff A[s, t] = a.

Observe that each row of Ca is either an all-1 (if A[i, j] = a) or an all-0 row (if

A[i, j] = 1 − a). Similarly for columns of Da. Hence, Ca and Da have rank at

most 1. Further, define

Ea[(i, j), (s, t)] = 1 iff A[i, t] = a

and

Fa[(i, j), (s, t)] = 1 iff A[s, j] = a.

The matrices Ea and Fa consist of blocks of all-1 matrices, and the block structures

are given by the matrix A (if a = 1) or by its complement A (if a = 0); see Fig. ??.
So, their rank is equal to rk(A) (if a = 1) or to rk(A) ≤ 1 + rk(A).

Recall that a componentwise product (or Hadamard product) of two matrices

A = (aij) and B = (bij) is the matrix A ◦B = (aij · bij). For such a product we

have that rk(A ◦B) ≤ rk(A) · rk(B) (see Lemma ?? in Appendix ?? for the proof).
Now, by (??), we can write the matrixM as

M = C0 ◦D0 ◦ E0 ◦ F0 + C1 ◦D1 ◦ E1 ◦ F1 ,

implying that rk(M) ≤ (1 + rk(A))2 + rk(A)2
. ⊓⊔

To finish the proof of the implication (b) ⇒ (a), assume (b) and take an arbitrary

boolean matrix A. Take a graph GA guaranteed by Claim ??. By (b), we have that

logχ(A) = log chr(GA) is polylogarithmic in rk(A). Inequality (??) implies that

c(A) must also be polylogarithmic in rk(A). ⊓⊔

4.7 Communication with restricted advice

Recall that Cov(A) ≤ t iff all 1-entries of A can be covered by at most t all-1
submatrices. When doing this, one 1-entry of A may be covered many times. Let

us now consider a version of this measure where the cover frequency is restricted.

This corresponds to nondeterministic communication in which Carole cannot use

one and the same witness for many inputs; this situation is usually referred to as a

nondeterministic communication with a restricted number of advice bits.

Let Covk(A) be the smallest number of all-1 submatrices of A covering all its

1-entries in such a way that no 1-entry of A is covered by more than k of these

submatrices. Let, as before, rk(A) denote the rank of A over the real numbers.

The following lemma is due to Grolmusz and Tardos (2003); a slightly weaker

bound was proved earlier by Karchmer et al. (1994).
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4.30 Lemma For every boolean matrix A and any integer positive integer k, we have
Covk(A) ≥ (k/3) · rk(A)1/k .

Proof. Let R1, . . . , Rt be t = Covk(A) boolean matrices of rank 1 such that

A =
∨t

i=1 Ri and

∑t
i=1 Ri ≤ kJ , where J is the all-1 matrix. For a subset

I ⊆ {1, . . . , t}, let RI be a boolean matrix with RI [x, y] = 1 iff Ri[x, y] = 1
for all i ∈ I . By the inclusion-exclusion formula, we can write the matrix A as a

linear ±1 combination

A =
t∨

i=1
Ri =

∑
I ̸=∅

(−1)|I|+1RI . (4.13)

The condition

∑t
i=1 Ri ≤ kJ implies that RI = 0 for all I of size |I| > k. Hence,

the right hand of (??) has at most

∑k
i=1
(

t
i

)
nonzero terms. The subadditivity of

rank yields

rk(A) ≤
k∑

i=1

(
t

i

)
≤
(et
k

)k

,

from which the desired lower bound on t = Covk(A) follows. ⊓⊔

4.31 Example We show that the lower bound in Lemma ?? is almost tight. Let I be
an identity n× n matrix with n = 2m

for somem divisible by k, and let I = J − I
be its complement. Then rk(I) = n, but we have that Covk(I) ≤ kn1/k

. To see

this, encode the rows and the columns by vectors x ∈ {0, 1}m
; hence, I[x, y] = 1

iff x ̸= y. Split the set [m] into k disjoint subsets S1, . . . , Sk , each of sizem/k. For
every j ∈ [k] and a ∈ {0, 1}m/k

, define the rectangle Rj,a consisting of all pairs

(x, y) such that

the projection of x onto Sj coincides with a and that of y doesn’t .

These k2m/k = kn1/k
rectangles cover all 1s of I , and each pair (x, y) with x ̸= y

appears in at most k of them (since we take only k projections).

Together with Lemma ??, Lemma ?? implies that nondeterministic communica-

tion complexity with a small number k of witnesses cannot be much smaller than

the deterministic communication complexity. Define

nck(A) := log Covk(A) .

4.32 Corollary For any boolean matrix A, nck(A) = Ω(
√
c(A)/k).

Proof. Since c(A) = c(A) and rk(A) ≥ rk(A) − 1, Lemma ?? implies that c(A) is
at most about nc(A) · log∆(A) ≤ nck(A) · log∆(A), and hence, at most about

nck(A) · log rk(A). On the other hand, by Lemma ??, we have that nck(A) must be

at least about (log rk(A))/k. This implies log rk(A) = O(nck(A)/k), and hence,

the desired lower bound on nck(A) follows. ⊓⊔
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4.8 P ̸= NP ∩ co-NP for best-partition games

If f : {0, 1}2n → {0, 1} is a boolean function, then any balanced partition (x, y) of
its variables into two blocks of equal size gives us a communication matrixMf of

f : this is a boolean 2n × 2n
matrix withMf [x, y] = f(x, y). The communication

complexity of this matrix is then referred to as the communication complexity of f
under this (particular) partition. Note however, that different partitions may result

in different communication matrices of the same boolean function f .
The deterministic best-partition communication complexity c∗(f) of f is the

minimum, over all balanced partitions (x, y), of the deterministic communication

complexity ofMf under partition (x, y). Let also nc∗(f) denote the nondeterministic
best-partition communication complexity of f . The best-partition communication

complexity was introduced by Lipton and Sedgewick (1981).

Although historically the best-partition model of communication has received

less attention than the fixed-partition model, the former one has larger applicability.

This model naturally arises when dealing with time-space tradeoffs of VLSI chips;

see, for example, Lengauer (1990). It (also naturally) arises in the context of branching

programs. In fact, most of lower bounds for various restricted models of branching

programs were obtained by proving (more or less explicitly) the corresponding

lower bounds on the communication complexity of different types of best-partition

protocols; see Wegener (2000) for a comprehensive description of such applications.

Recently, Raz and Yehudayoff (2011) applied best-partition complexity to prove

lower bounds for arithmetic circuits.

For many functions, the possibility to choose a suitable partition can drastically reduce the

number of communicated bits. For example, the equality function, defined by f(x, y) = 1
iff xi = yi for all i, has maximal possible communication complexity equal to n (even

nondeterministic), if the players are forced to use this “bad” partition (x, y). If, however,
Alice receives the first half of x and y, and Bob receives the remaining variables, then they

can locally test whether their pieces are equal and tell this the other player. Thus, under this

“good” partition, just two bits of communication are enough!

Theorem ?? implies that P = NP ∩ co-NP in the case of fixed partition games:

if both the function f and its negation ¬f have nondeterministic communication

complexity at most t, then the deterministic communication complexity of f does

not exceed O(t2).
But what about best-partition complexity? The question is important because it

exposes something about the power of lower bound arguments. We can prove a

lower bound on the deterministic communication complexity of a function f by

arguing about either f or ¬f . But if both the function and its negation have low

nondeterministic complexity under some partitions of variables, other arguments

are needed to show that the deterministic communication complexity must be large

for any partition.

It turns out that no analogue of Theorem ?? holds in the best-partition case.

Recall that in the best-partition case the players can choose different (most suitable)

partitions for a function f and its negation ¬f . The following simple function,
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separating P from NP ∩ co-NP in the best-partition model of communication was

used in (Jukna, 2005).

To visualize the effect of the choice of a partition of input variables, we define

our function f as a boolean function of n2
variables, arranged into an n× n matrix

X = (xij). Hence, inputs for f are 0/1 matrices A : X → {0, 1}. We define f(A)
in such a way that a partition of the variables according to columns is suitable for

computing f , and that according to rows is suitable for ¬f . Say that a row/column

of a 0-1 matrix is good if it contains exactly two 1s, and bad otherwise. Define the

function f by:

f(A) = 1 iff at least one row of A is good and all columns of A are bad.

4.33 Theorem Both nc∗(f) and nc∗(¬f) are O(logn), but c∗(f) = Ω(n).

Thus, for the best-partition games, we have P ̸= NP ∩ co-NP.

Proof. We first show that both nc∗(f) and nc∗(¬f) are O(logn). In the protocol

for f Alice takes the first half of columns whereas in the protocol for ¬f she takes

the first half of rows. To compute f(A) for a given matrix A : X → {0, 1}, the
protocol first guesses a row r (a candidate for a good row). Then, using 3 bits, Alice

tells Bob whether all her columns are bad, and whether the first half of the row

r contains none, one, two or more 1s. After that Bob has the whole information

about the value f(A) and can announce the answer. The negation ¬f(A) can be

computed in the same manner by replacing the roles of rows and columns.

Now we show that c∗(f) = Ω(n) by a reduction to the disjointness function

disj(x, y). Recall that this is a boolean function of 2n variables which outputs 1 iff∑n
i=1 xiyi = 0. Since the general disjointness matrix has full rank (see Exercise ??),

the lower bound (??) implies that the deterministic communication complexity of

disj, as well as of ¬disj, under this partition isΩ(n). (In fact, even nondeterministic

and randomized communication complexity of this function is Ω(n), but we will
not use this fact.)

Take an arbitrary deterministic protocol for f . The protocol uses some balanced

partition of the set X of variables into two halves where the first half is seen by

Alice and the second by Bob. Recall that X is arranged into an n× n matrix.

Say that a column is seen by Alice (resp., by Bob) if Alice (resp., Bob) can see all

its entries. A column is mixed if it is seen by none of the two players, that is, if each

player can see at least one of its entries. Letm be the number of mixed columns.

We consider two cases depending on how large this numberm is. In both cases we

describe a “hard” subset of inputs, that is, a subset of input matrices on which the

players need to communicate many bits.

Case 1:m < n/2. In this case each player can see at least one column: if, say, Alice

had seen all n−m non-mixed columns, then she would see more than half of all

entries. Take one column x seen by Alice and another column y seen by Bob, and let

Y be the (n− 3) × 2 submatrix ofX formed by these two columns without the last

three rows. We restrict the protocol to input matrices A : X → {0, 1} defined as

follows. We first set all entries in the last three rows to 1. In this way we ensure that
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all columns of A are already bad. Then we set all remaining entries of X outside Y
to 0. The columns x and y of Y may take arbitrary values. Such a matrix looks like:

x1 y1
...

... 0
xn−4 yn−4

1 · · · 1

 .

In each such matrix all columns are bad and, for n ≥ 3, the last three all-1 rows

are also bad. Thus, given such a matrix, the players must determine whether any

of the remaining rows is good. Since all these rows have 0s outside the columns x
and y, this means that the players must determine whether xi = yi = 1 for some

1 ≤ i < n− 3. That is, they must compute ¬disj(x, y) which requires Ω(n) bits of
communication.

Case 2:m ≥ n/2. Let Y be the n×m submatrix of Y formed by the mixed columns.

Select from the i-th column of Y one entry xi seen by Alice and one entry yi seen

by Bob. Since m ≤ n and we select only 2m entries, there must be a row r with
t ≤ 2 selected entries. Let Y be the n× (m− t) submatrix consisting of the mixed

columns with no selected entries in the row r. We may assume thatm− t is odd
and thatm− t ≤ n− 2 (if not, then just include fewer columns in Y ).

Now restrict the protocol to input matrices A : X → {0, 1} defined as follows.

First we set to 1 some two entries of the row r lying outside Y , and set to 0 all the

remaining entries of r. This ensures that the obtained matrices will already contain

a good row. After that we set all the remaining non-selected entries of X to 0. A
typical matrix looks like: 

1 1
x1 y2

xn−t

x2
y1

y3
x3 yn−t


where r is the first row and all remaining entries are zeros.

Since each obtained matrix A contains a good row (such is the row r) and all

columns outside the submatrix Y are bad (each of them can have a 1 only in the

row r), the players must determine whether all columns of A in Y are also bad.

Since all non-selected entries of Y are set to 0, the players must determine whether

xi + yi ≤ 1 for all i = 1, . . . ,m − t. Hence, the players must decide whether∑m−t
i=1 xiyi = 0, that is, to compute the set-disjointness function disj(x, y), which

again requires Ω(m− t) = Ω(n) bits of communication. ⊓⊔
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4.9 Randomized communication

In a randomized communication protocol, Alice and Bob are allowed to flip a coin.

The coin can be public (seen by both players) or private. Alice and Bob are allowed

to get a wrong result with probability smaller than some (fixed in advance) constant

ϵ < 1/2. That is, a randomized communication protocol P using a string r of

random 0-1 bits is an ϵ-error protocol for a boolean matrixA if, for all entries (x, y),
the probability that P (x, y, r) ̸= A[x, y] does not exceed ϵ. We will assume that the

random string r is public (seen by both players); we will later show that this is not

a restrictive assumption. We will also assume that the coin is fair, that is, each time

0 and 1 come with the same probability 1/2. We assume this only for simplicity of

presentation – most of the results also hold for any probability distribution.

For a boolean matrixA, let cϵ(A) denote the cost of the best randomized protocol

for A that uses a public random string and errs with probability smaller than ϵ.

4.34 Example A standard example of a matrix where randomization is much more

powerful than nondeterminism is the n× n identity matrix In with n = 2m
. That

is, In[x, y] = 1 iff x = y. Since the 1-entries of this matrix cannot be covered by

fewer than 2m
all-1 submatrices, the nondeterministic communication complexity

of In ism. On the other hand, the randomized communication complexity of In is

constant!

Indeed, the players can pick a random string r = (r1, . . . , rm) in {0, 1}m
. Alice

sends the scalar product ⟨r, x⟩, Bob checks whether ⟨r, y⟩ = ⟨r, x⟩ and sends the

answer. Since every nonzero 0-1 vector v ̸= 0 is orthogonal over GF(2) to exactly

half of all vectors, the error probability is ϵ = 1/2: just take v = x⊕ y. To reduce

the error to ϵ < 1/3, just repeat the protocol several times and output the most

frequent answer.

4.9.1 Distributional complexity

Let us now look at how to prove that some matrices are hard for randomized

protocols. Let A be a boolean matrix (a 0-1 matrix) with rows X and columns Y .

The result of a randomized communication protocol of each input (x, y) ∈ X × Y
is a random variable. To lower bound cϵ(A) from below, it is often easier to give a

lower bound on a “dual” measure. Instead of requiring that, on each input (x, y),
the randomized protocol can err with probability at most ϵ, we now consider

deterministic protocols and require that they output correct value everywhere

except an ϵ-fraction of inputs (x, y).
Namely, define the ϵ-error distributional complexity, distrϵ(A) of amatrixA as the

smallest communication complexity of a deterministic protocol P (x, y) computing

A[x, y] correctly on all but at most an ϵ-fraction of all inputs (x, y).

4.35 Proposition cϵ(A) ≥ distrϵ(A).
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Proof. Let P be a randomized protocol for A of cost t = cϵ(A), and let l be the
number of random bits it uses. For every input (x, y), the protocol P must be correct

for at least a (1 − ϵ) fraction of all 2l
choices of these random bits. Hence, there

must be a choice r ∈ {0, 1}l
after which the (deterministic) protocol Pr must be

correct on at least a (1 − ϵ) fraction of all inputs. ⊓⊔

As before, a rectangle is a set of the form R = F ×G with F ⊆ X and G ⊆ Y .

Its area |R| is the total number of entries in it. LetA : X×Y → {0, 1} be a boolean

matrix, and let µ > 0 be its density, that is, the fraction of 1-entries in A.
We already know that, if nc(A) ≤ t, then at least one 1-monochromatic submatrix

occupies at least a fraction µ/2t
of the whole area of A. A similar result also holds

for the randomized communication complexity. We only have to allow submatrices

that are “nearly” 1-monochromatic in that almost all their entries are ones (see

Exercise ?? for a weaker statement).

Fix an arbitrary constant 0 < ϵ ≤ µ/4, where µ is the density of A. Say that a

rectangle R is nearly 1-monochromatic if A[x, y] = 0 for at most a fraction 4ϵ/µ of

the entries (x, y) in R.

4.36 Lemma (Yao 1983) Let A be a booleanm× n matrix of density µ. If cϵ(A) ≤ t
then at least one nearly 1-monochromatic rectangle occupies at least a fraction µ/2t+2

of the whole area of A.

Proof. Since cϵ(A) ≤ t, Proposition ?? implies that there exists a deterministic

protocol P of cost at most t which is correct on all but a ϵ fraction of inputs. The

protocol P decomposes our matrix A into at most p = 2t
rectangles. On all entries

of each of these rectangles the protocol outputs the same answer “0” or “1”. We

concentrate on only those rectangles on which the protocol gives answer “1”. Let
Q = X × Y be the set of all entries of A, and T ⊆ Q the subset of these entries

covered by the rectangles on which the protocol gives answer “1”.
Since A has at least µ|Q| ones, and since ϵ < µ/2, the set T must cover at least

half of ones of A. Indeed, otherwise more than half of the ones of A would be

covered by rectangles giving wrong answer “0”, which would result in more than

1
2µ|Q| ≥ ϵ|Q| errors. Thus, |T | ≥ 1

2µ|Q|.
Now let T ′ ⊆ T be the set of entries covered by nearly 1-monochromatic

rectangles. If the protocol gives answer “1” on a rectangle R, and if this rectangle

is not nearly 1-monochromatic, then R wrongly covers more than
4ϵ
µ |R| zeros

of A. Together with |T | ≥ 1
2µ|Q| and the disjointness of the rectangles, this

already implies that |T ′| ≥ 1
2 |T |; otherwise, T would wrongly cover more than

1
2 · 4ϵ

µ |T | ≥ ϵ|Q| zeros of A. Thus |T ′| ≥ 1
2 |T | ≥ µ

4 |Q| entries of A are covered by

nearly 1-monochromatic rectangles. Since we have at most 2t
such rectangles, at

least one of them must occupy at least a fraction of
µ
4 /2

t = µ/2t+2
of the whole

area |Q|, as claimed. ⊓⊔
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4.10 Lower bound for the disjointness function

To give an explicit lower bound on the randomized communication complexity, let

us consider the disjointness matrix Dn. This is a boolean 2n × 2n
matrix whose

rows and columns are labeled by subsets x ⊆ [n], and

Dn[x, y] = 1 iff x ∩ y = ∅ .

Note that the matrix Dn contains huge identity submatrices. If we take all rows

labeled by subsets x of size |x| = n/2, and columns labeled by complements of

such sets, then we obtain an N ×N identity submatrix IN with N =
(

n
n/2
)
. Thus,

nc(Dn) ≥ logN = n− O(logn) .

But this says nothing about the randomized communication complexity of Dn: we

have already seen (Example ??) that the randomized communication complexity of

the identity matrix is constant. This is why the following theorem is interesting.

4.37 Theorem For every sufficiently small constant ϵ > 0, the ϵ-error randomized
communication complexity of the disjointness matrix Dn is Ω(n).

This result was first proved by Kalyanasundaram and Schnitger (1992); a simpler

proof was then found by Razborov (1992a). In fact, Razborov’s argument works

for the unique disjointness matrix whose (x, y)-entry is 1 if |x ∩ y| = 0, is 0 if

|x ∩ y| = 1, and is arbitrary otherwise (see Exercise ?? for a rough sketch of the

proof). Razborov’s proof is presented in the book by Kushilevitz and Nisan (1997).

Using some ideas from Chakrabarti et al. (2001), Bar-Yossef et al. (2004) gave an

information-theoretic proof.

We will present a simpler and intuitive proof of a weaker (but strong enough

for most applications) bound Ω(
√
n) obtained earlier by Babai, Frankl and Simon

(1986).

Proof. We concentrate on the submatrixA ofDn with row-setX as well as column-

set Y consist of all subsets of [n] of size s =
√
n. The probability that two random

s-element subsets x and y of [n] are disjoint is(
n

s

)(
n− s

s

)(
n

s

)−2
=
(
n− s

s

)(
n

s

)−1
≥
(

1 − s

n

)s

.

Since the sets inX and in Y have size s =
√
n, a random pair (x, y) inQ = X×Y

has probability about 1/e > 1/3 to be disjoint. Thus, matrixA has density µ > 1/3.
Recall that A[x, y] = 1 iff x ∩ y = ∅. Hence, if we set γ := 4ϵ/µ, then a rectangle

F ×G is nearly 1-monochromatic if

|{(x, y) ∈ F ×G : x ∩ y ̸= ∅}| ≤ γ|G× F | . (4.14)
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We will prove the lower bound by showing that there are no large nearly 1-
rectangles. Specifically we will prove that for any rectangle F × G, where at

most a γ fraction of the pairs in F ×G are intersecting, either |F | or |G| is small.

By Lemma ??, it is enough to show that there is a constant c > 0 such that

|F ×G| ≤ |X × Y | · 2−c
√

n
(4.15)

holds for every nearly 1-rectangle. The argument is roughly the following. If F is

small, then we are done. Otherwise, if |F | is large, then there must be a large subset

of F , where the union of these sets spans nearly all of [n]. But if F ×G is nearly

1-monochromatic, this means that any subset y ∈ G must avoid nearly all of [n],
and hence |G| must be small. Now we proceed to the details. It suffices to show that

if |F | ≥ |X| · 2−c
√

n+1
then |G| < |Y | · 2−c

√
n
.

We focus on the set F1 ⊆ F of all rows x ∈ F that intersect with at most a 2γ
fraction of the y in G. Clearly |F1| ≥ |F |/2, for otherwise (??) would not hold.

Since |F1| is still large, we claim that there exists k =
√
n/3 sets x1, . . . , xk in

F1 such that each xp contains at least r =
√
n/2 new points relative to the union

z := x1 ∪ · · · ∪ xp−1 of the previous p− 1 sets. This can be proven by induction.

Since |x| =
√
n for each x ∈ X , we have that |z| < p

√
n ≤ n/3. The number of

x ∈ X satisfying |x ∩ z| > r =
√
n/2 is smaller than

n

(
n/3
r

)(
2n/3
r

)
≤ n

(1
3

)r(2
3

)r
(
n

r

)2
since

(
δn
k

)
≤ δk

(
n
k

)
≤ n

(2
9

)r

22r

(
n

2r

)
= n

(2
√

2
3

)√
n
(
n√
n

)
since r =

√
n/2

<

(
n√
n

)
2−c

√
n

provided 2−c > 2
√

2
3

= |X|2−c
√

n .

Since F1 is large, this implies that |xp ∩ z| <
√
n/2 for some xp ∈ F1, as desired.

Now we have k :=
√
n/3 sets x1, . . . , xk in F1 whose union is of size at least

k
√
n/2 = n/6, and such that each of them intersects with only a few sets in G,

namely each xi intersects with at most a 2γ fraction of the y in G. Let G1 ⊆ G be

the set of all columns y ∈ G that intersect at most l := 4γk of the xi. It is easy to

verify that |G| ≤ 2|G1|. Indeed, if more than a half of the y ∈ G were to intersect

more than 4γk of the xi, then some xi would intersect more than 2γ|G| of the
y ∈ G, contradicting xi ∈ F1.

But this means that G1 (and hence, also G) must be small. There are

(
k
l

)
ways

to select the l of the xi which a set y ∈ G1 is allowed to intersect. Then the union

of the remaining xi’s has size at least
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n/6 − l
√
n = n/6 − 4γn/3 ≥ n/9 ,

as long as γ ≤ 1/24. Since this union must be avoided, we get

|G| ≤ 2|G1| ≤ 2
(
k

l

)(
n− n/9√

n

)
= 2
(
k

4γk

)(
8n/9√
n

)
where, using

(
n
k

)
≤ (en/k)k

and

(
n−r

k

)(
n
k

)−1 ≤ e−kr/n
,(

k

4γk

)
≤
( ek

4γk

)4γk

=
( e

4γ

)4γ
√

n/3
≤ e

√
n/18

provided γ ln(e/4γ) ≤ 1/24, and(
8n/9√
n

)
=
(
n− n/9√

n

)
≤ e−

√
n/9
(
n√
n

)
.

Hence, |G| is at most |Y | =
(

n√
n

)
times e−

√
n/18+1 ≤ 2−c

√
n
, as desired. ⊓⊔

4.38 Remark Beame and Lawry (1992) exhibited a boolean function f such that

both f and ¬f have small nondeterministic communication complexity whereas

the randomized communication complexity of f is large:

cϵ(f) = Ω
(
max{nc(f), nc(¬f)}2) .

4.39 Remark In Theorem ?? we required the error probability ϵ to be a sufficiently

small positive constant. Actually, the same lower bound Ω(n) also holds for, say,
ϵ = 1/3. This can be shown using a general technique called amplification. Namely,

assume that Alice and Bob have at their disposal a protocol of cost t that achieves
ϵ = 1/3. They can repeat it independently 1000 times and output at the end the

most frequent answer. Then, by Chernoff bounds, the error probability of this

repeated protocol of cost only 1000 · t will not exceed 10−10
.

4.40 Remark Håstad and Wigderson (2007) observed that the lower bound of The-

orem ?? extends to submatrices of Dn as well: for every k < n/2, the random-

ized communication complexity of the submatrix Dn,k of Dn, corresponding to

k-element subsets of [n], is Ω(k). They also proved that this lower bound is tight.

4.11 Unbounded error communication and sign-rank

So far we have considered randomized protocols where the error probability is

bounded by some fixed constant ϵ < 1/2. In an unbounded-error model of commu-

nication the error probability is not bounded by some constant given in advance.

Instead of that it is only required that, for every input (x, y), the protocol outputs a
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correct value with probability strictly larger than 1/2, for example, with probability

at least 1/2 + 2−n
. Let R(A) denote the smallest cost of such a protocol for a

matrix A.
An important restriction in unbounded-error communication model is that the

random sources for both players must be private. This requirement is important

because using public randomness we would have that R(A) ≤ 1 for every(!)

matrix A. Here is a communication protocol.

• The two players agree on an n-bit segment r of the public random coins.

• Alice compares her input x with r. If x = r, she sends Bob the bit 1, otherwise
she sends him the bit 0.

• If Bob receives 1, he outputs A[r, y]. Otherwise, he outputs the result of a

random unbiased coin flip.

Bob outputs the correct output with probability at least

2−n · 1 + (1 − 2−n) · 1
2 = 1

2 + 2−(n+1) >
1
2 .

Therefore it is essential that the randomness source must be private.

Paturi and Simon (1986) established a surprisingly tight relation between R(A)
and the “sign rank” ofA. In what follows, letA = (aij) denote anm×n±1 matrix.

The function sgn(x), defined on the real numbers and called the signum function or

sign function, is 1 for positive numbers x > 0, is −1 for negative numbers x < 0,
and is 0 for x = 0. The signum rank, signrk(A), of A is the smallest possible rank

over the reals of a matrix B = (bij) such that sgn(bij) = aij for all i, j. Thus, the
signum rank of A measures the robustness of the rank of A under sign-preserving

changes; note that every entry is allowed to be changed!

4.41 Theorem (Paturi–Simon 1986) If signrk(A) = r > 1 then

log2 r ≤ R(A) ≤ log2 r + 1 .

Due to this surprisingly tight connection, there were many attempts to find

explicit matrices of high signum rank. In general, the signum rank of a matrix can

be vastly smaller than its rank (see Example ??). Thus, bounding the signum rank

from below is a considerable challenge.

That most of n × n ±1 matrices have signum rank Θ(n) was first shown by

Alon, Frankl and Rödl (1985). Since then, finding an explicit matrix with signum

rank more than logarithmic remained a challenge. Then, Forster (2002) achieved

a breakthrough by proving that any n× n Hadamard matrix has signum rank at

least Ω(
√
n).

In this section we sketch this result. For this, we first recall that the (real) rank of

a given real matrixA is the smallest number r such thatB can be written as a matrix

of scalar products of vectors in Rr
. More precisely, an r-dimensional realization of

a matrix A = (aij) is a pair of sets X = {x1, . . . , xm} and Y = {y1, . . . , yn} of

vectors in Rr
such that
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aij = ⟨xi, yj⟩ = xT
i yj (scalar product).

If we relax this condition to

aij = sgn(⟨xi, yj⟩)

then we arrive to the concept of r-dimensional arrangement of A. From Linear

Algebra we know that rk(A) ≤ r iff A has an r-dimensional realization. Using this,

one can easily show that signrk(A) ≤ r iff A has an r-dimensional arrangement.

Recall that the spectral norm ∥A∥ of a matrix A is the maximum, over all unit

vectors x, of the Euclidean norm ∥Ax∥ of the vector Ax. A vector x is a unit vector
if its Euclidean norm ∥x∥ =

√
x2

1 + · · · + x2
n equals 1.

4.42 Theorem (Forster 2002) For everym× n ±1 matrix A we have

signrk(A) ≥
√
mn

∥A∥
.

Proof. Let r = signrk(A), and let xi, yj ∈ Rr
be the corresponding vectors in an

r-dimensional arrangement ofA. We can assume that these vectors are unit vectors,

and both the xi and the yi are in general position, that is, any r of them are linearly

independent. The technical crux of Forster’s argument is the fact (which we will

not prove here) that the xi can be assumed to be “nicely balanced” in the sense that

they satisfy

m∑
i=1

xix
T
i = m

r
Ir (4.16)

where Ir is the r × r identity matrix. (Recall the difference between the vector-

products xT · y and x · yT
: the first is a number whereas the second is a matrixM

with entriesM [i, j] = xiyj .)

We will derive the theorem by giving upper and lower bounds on the quantity

∆ :=
n∑

j=1

( m∑
i=1

|⟨xi, yj⟩|
)2
.

For a fixed column j we have:

m∑
i=1

|⟨xi, yj⟩| ≥
m∑

i=1
⟨xi, yj⟩2

since xi, yj are unit vectors

=
m∑

i=1
yT

j xix
T
i yj since ⟨xi, yj⟩ = xT

i yj = yT
j xi

= yT
j

( m∑
i=1

xix
T
i

)
yj

= m

r
yT

j Iryj = m

r
by (??)
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It follows that ∆ ≥ n(m/r)2
. We will next show that ∆ ≤ m∥A∥. Combining

these two bounds, we obtain that r ≥ mn/∥A∥ and the theorem is proved.

Since the vectors xi and yj form arrangement of A = (aij), we have that

|⟨xi, yj⟩| = aij · ⟨xi, yj⟩. Hence, for any fixed column j,

m∑
i=1

|⟨xi, yj⟩| =
m∑

i=1
aij · ⟨xi, yj⟩ =

〈
yj ,

m∑
i=1

aijxi

〉
≤
∥∥∥ m∑

i=1
aijxi

∥∥∥ ,
by the Cauchy-Schwartz inequality |⟨x, y⟩| ≤ ∥x∥ · ∥y∥, since yj is a unit vector.

Thus,

∆ ≤
n∑

j=1

∥∥∥ m∑
i=1

aijxi

∥∥∥2
=

n∑
j=1

( m∑
k=1

akjx
T
k

)( m∑
l=1

aljxl

)
=

m∑
k,l=1

(xT
k xl)

n∑
j=1

akjalj =
m∑

k,l=1
⟨xk, xl⟩ ·AAT [k, l] .

A symmetricm×m matrix P is positive semi-definite matrix if all its eigenvalues

are non-negative. Equivalent definitions are: (i) zTPz ≥ 0 for all z ∈ Rm
, (ii) P is

a Gramian matrix of some set of vectors v1, . . . , vn, that is, P [i, j] = ⟨vi, vj⟩, and
(iii) P = AAT

for some matrix A. Of interest for us will be the following property

of positive semi-definite matrices, known as Fejer’s theorem:

A matrix P is positive semi-definite if and only if ⟨P,Q⟩ ≥ 0 for all positive

semi-definite matrices Q.

Here ⟨P,Q⟩ is the scalar product of matrices P and Q when looked as vectors of

length m2
. Now, the matrices P [k, l] := ⟨xk, xl⟩ and Q = ∥A∥2Im − AAT

are

positive semi-definite. By Fejer’s Theorem, we have that

m∑
k,l=1

P [k, l] ·Q[k, l] =
m∑

k,l=1
⟨xk, xl⟩ · (∥A∥2Im[k, l] −AAT [k, l]) ≥ 0 .

Using this, the desired upper bound on∆ follows:

∆ ≤
m∑

k,l=1
⟨xk, xl⟩∥A∥2Im[k, l] = ∥A∥2

m∑
k=1

⟨xk, xk⟩ = ∥A∥2m. ⊓⊔

A Hadamard matrix is an n× n ±1 matrixH such thatHTH = nIn, where In

is the n× n identity matrix (with ones on the diagonal and zeros elsewhere).

4.43 Corollary For every n× n Hadamard matrix H , signrk(H) ≥
√
n.

Proof. By theorem ??, it is enough to verify that H has spectral norm ∥H∥ ≤
√
n.

Recall that ∥H∥ is the maximum, over all unit vectors x, of the Euclidean norm

∥Hx∥ of the matrix-vector product Hx. On the other hand, for every unit vector x
we have that
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∥Hx∥2 = ⟨Hx,Hx⟩ = ⟨x, (HTH)x⟩ = ⟨x, (nIn)x⟩ = n⟨x, x⟩ = n .⊓⊔

The inner product function is a boolean function of 2m variables defined by

IPm(x, y) =
∑m

i=1 xiyi mod 2. Since the 2m × 2m ±1 matrixM of this functions

with entriesM [x, y] = (−1)IPm(x,y)
is a Hadamard matrix, Corollary ?? implies

thatM has signum rank at least 2m/2
. Together with Theorem ??, this implies that

the randomized unbounded error communication complexity of the inner product

function is Ω(m).
Recently, Razborov and Sherstov (2010) proved an important extension of

Forster’s result. Namely, they have exhibited a boolean function fm(x, y) of

n = 2m3
variables which can be computed by depth-3 circuits of size O(n) and

such that its ±1 matrixM withM [x, y] = (−1)fm(x,y)
has signum rank 2Ω(n1/3)

.

The sets of variables x and y of this function are looked at as arranged intom×m2

matrices, and the function itself is defined by:

fm(x, y) =
m∧

i=1

m2∨
j=1

xij ∧ yij .

One ingredient in their proof is the following generalization of Theorem ??. They
consider a more general notion of signum rank. For anm×n real matrixA = (aij),
define its signum rank, signrk(A), as the minimum rank of a matrixB = (bij) such
that aijbij > 0 for all i, j with aij ̸= 0. That is, this time the matrix A may contain

zero entries, and these entries may be arbitrarily manipulated.

4.44 Theorem (Razborov–Sherstov 2010) Let A be a realm× n matrix such that all
but h of its entries have absolute value at least γ. Then

signrk(A) ≥ γmn

∥A∥
√
mn+ γh

.

Note that, if A is a ±1 matrix, then γ = 1 and h = 0.
Finally, note that if one takes an AND as a top gate, then the function fm(x, y)

can be computed in depth three with O(n) gates. In Section ?? we will show that

the situation changes drastically if we require the top gate be an OR gate: then an

exponential number of gates is necessary.

4.12 Private vs. public randomness

In randomized protocols the players are allowed to use an additional information,

namely the result r of random coin flips. A subtle question arises: how do players

access this information? There are two possibilities:

• Public randomness: the coins are flipped by a third player, and the result is seen

by both players (with no additional communication).
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• Private randomness: the players must flip their coins privately; hence, some

additional communication about the results of these flips may be necessary.

Example ?? shows that using public randomness the communication complexity

of the identity matrix In can be reduced to a constant. If the random strings r are

private (a much more realistic situation), the protocol is less trivial. Still, also in this

case it is enough to communicate O(log logn) bits.
Alice picks a random prime number p between 1 andm2

, and sends 4 logm bits

encoding p as well as x mod p to Bob. He checks whether y mod p = x mod p,
and sends the answer to Alice. If x = y the result is always correct. If x ̸= y the
protocol may err. The protocol errs when Alice picks a prime number p such that p
divides |x−y|. Since |x−y| < 2m

, there are at most log 2m = m such “bad” primes

numbers. On the other hand, the number of prime numbers in the interval 1, . . . , k
is at least k/ ln k. Hence, Alice is choosing her number p with equal probability

from a collection of at leastΩ(m2/ lnm2) numbers. Therefore the error probability,

that is, the probability to pick one of at mostm “bad” primes is ϵ ≤ (lnm2)/m → 0.

We have completely ignored the subtle issue on how to choose a random prime number. But

in the communication complexity the players are considered to be “superior beings”, capable

of performing any computation on their own data—only communication between the players

is costly.

We have just seen that randomized protocols with private random bits have

harder to do. Still, Newman (1991) proved that any randomized communication

protocol with public random bits can be simulated by a protocol with private random

bits at the cost of relatively small increase of the number of communicated bits.

Let cpriv
ϵ (A) denote the complexity of the best randomized protocol for A that uses

private random strings and errs with probability smaller than ϵ.

4.45 Theorem (Newman 1991) For every boolean n × n matrix A and for every
constant ϵ < 1/2,

cpriv
2ϵ (A) ≤ cϵ(A) + O(log logn) .

A similar argument to reduce the number of random bits was subsequently used

by several authors, including Canetti and Goldreich (1993), Fleischer, Jung, and

Mehlhorn (1995), and Sauerhoff (1999). Although the main trick is quite simple, it is

usually hidden behind the technical details of a particular model of computation.

Since the trick may be of independent interest, it makes sense to formulate it as

a purely combinatorial lemma about the average density of 0-1 matrices. By a

row-density of a boolean matrix H we will mean the maximum fraction of ones in

each of its rows.

4.46 Lemma Let logm = o(
√
n),m > 4, and let 0 ≤ p < 1 and c > 0 be constants.

Let H be a booleanm× n matrix of row-density at most p. Then there is anm× l
submatrix H ′ of H with l = O(logm/c2) columns and row-density at most p+ c.

Proof. Select l = ⌈logm/c2⌉ columns uniformly at random. Since two of the

selected columns may coincide with probability at most 1/n, and since we have

only

(
l
2
)

= o(n) pairs of selected columns, with probability 1 − o(1) all the selected
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columns are distinct. Next, fix a row x ofH , and consider the 0-1 random variables

X1, . . . , Xl whereXj is the value of the bit of x in the j-th selected column; hence,

Prob[Xi = 1] ≤ p for all j = 1, . . . , l. By Chernoff’s inequality, the average

density (
∑
Xi)/l of ones in the selected columns can exceed p+ δ with probability

at most 2e−2c2t ≤ 2/m2
. Since we have only m rows, with probability at least

1 − 2/m > 1/2, all the rows of the selected submatrix will have density at most

p+ c. ⊓⊔

p@plus6p@

Proof of Theorem ??addpunct: Let P be an ϵ-error communication protocol for A
using t public random bits. Let H be a boolean matrix whose m = n2

rows cor-

respond to inputs (x, y), 2t
columns corresponding to values r ∈ {0, 1}t

of the

random string, and H[(x, y), r] = 1 iff P (x, y, r) ̸= A[x, y]. The matrix has row-

density p ≤ ϵ. Taking c = ϵ, Lemma ?? gives us l = O(logn/c2) strings r1, . . . , rl

in {0, 1}t
such that, for every input (x, y), the protocol P errs, that is, outputs

value P (x, y, ri) ̸= A[x, y] for at most an ϵ + c = 2ϵ fraction for the ri. Hence,

by choosing an index i ∈ {1, . . . , l} uniformly at random, we obtain a 2ϵ-error
communication protocol P ′

for A using only log l = O(log logn) public random
bits. Now, in the private randomness model of communication Alice can just flip

that many random coins by herself, send the result of these flips to Bob, and then

the two payers can proceed as in P ′
. ⊓⊔

endpefalse

Exercises

4.1 There is a tree T with n nodes, known to both players. Alice has subtree TA

and Bob has subtree TB . They wan to decide whether the subtrees have a common

point. Show that O(logn) bits of communication are enough. Hint: Alice chooses a
vertex x in her subtree and sends it to Bob. If x is not in Bob’s subtree, he chooses the point y of

TB closest to x and sends it to Alice.

4.2 (Non-negative rank) A real matrix is non-negative if all its entries are non-

negative. Recall that the non-negative rank of a non-negative n × n matrix A is

the smallest number r such that A can be written as a product A = B · C of

a non-negative n × r matrix B and a non-negative r × n matrix C . Show that

nc(A) ≤ log rk+(A) holds for every boolean matrix A. Hint: Note that Cov(A) ≤ t

holds if and only if there exist boolean matrices B1, . . . , Bt of rank 1 such that the (x, y)-entry
of the matrix B =

∑t

i=1 Bi is 0 iff A[x, y] = 0.

4.3 (Threshold matrices) LetA be a boolean n×nmatrix whose rows and columns

are subsets of [r] = {1, . . . , r}, and whose entries are defined by: A[x, y] = 1 iff

|x∩y| ≥ k. Show that either (i)A contains an all-1 submatrix with at least n2/4
(

r
k

)2

entries, or (ii) A contains an all-0 submatrix with at least n2/4 entries.
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Hint: Let α = 1/2
(

r
k

)
and call a subset S ⊆ [r] row-popular (resp., column-popular) if S is

contained in at least αn subsets corresponding to rows (resp., to columns) of A. Look at what

happens if at least one k-element subset of [r] is both row-popular and column-popular, at what

happens when this is not the case.

4.4 (Clique vs. independent set game) Prove the equality (??).

Hint: To prove log q(G) ≤ nc(cisG), take a matrix A whose rows correspond to cliques and

columns to independent sets of G. Take a covering R1, . . . , Rt of ones of A by all-1 submatrices of

A. Let Si be the union of all vertices appearing in at least one clique corresponding to the rows of

Ri, and let Ti be the union of all vertices appearing in at least one independent set corresponding

to the columns of Ri. Show that Si ∩ Ti = ∅.

4.5 Prove that nc(cisG) ≥ logn for every graph G on n vertices. Hint: Consider each
single vertex as a clique as well as an independent set.

4.6 (Intersection dimension) For a boolean matrix A, define its intersection dimen-
sion, Int(A), as the smallest number d with the following property: the rows and

columns x of A can be labeled by subsets f(x) ⊆ {1, . . . , d} such that A[x, y] = 1
iff f(x) ∩ f(y) ̸= ∅. Show that Cov(A) = Int(A).

Hint: Let A =
∨d

i=1 Bi be a covering of all 1-entries of A by boolean matrices of rank 1. Each Bi

consists of an Ii × Ji submatrix of 1s, and 0s outside this submatrix. Assign to each row x of A
the set f(x) = {i | x ∈ Ii} and to each column y the set f(y) = {i | y ∈ Ji}.

4.7 (Generalized covering number) For a boolean matrix A, let Cov&(A) be the

smallest number t such that A can be written as a componentwise AND A =∧t
i=1 Ai of t boolean matrices such that Cov(Ai) ≤ t for all i. Show that boolean

n× n matrices A with Cov&(A) = Ω(
√
n) exist. Hint: Exercise ??.

4.8 Research Problem. Exhibit an explicit boolean n × n matrix A with

Cov&(A) = nΩ(1)
.

Comment: This would resolve at least two old problems in circuit complexity: give an explicit

boolean function f2m in 2m = 2 log n variables requiring: (i) depth-3 circuits of size 2Ω(m)
, and

(ii) a superlinear number of fanin-2 gates in any log-depth circuit. Why this is so will be sketched

later in Section ??.

4.9 Research Problem. Say that a boolean matrix is square-free if it does not
contain any 2 × 2 zero submatrix. If B is a boolean square-free n× n matrix with

at least dn zeros, does then Cov(B) = dΩ(1)
?

Comment: A positive answer would resolve Problem ?? because explicit square-free matricesAwith

d = Ω(
√

n) zeros in each row and each column are known: such are, for example, complements

of adjacency matrices of dense graphs without 4-cycles (see Examples ?? and ??). Since adding
new 1s cannot destroy the square-freeness, this would imply that Cov&(A) = dΩ(1)

.

4.10 Let L : N2 → N be a function such that L(x, 0) = L(0, y) = 1 and L(x, y) ≤
L(x, y/2) + L(x − x/K, y). Show that L(x, y) ≤ KO(log y)

. Hint: Use induction or

show that L(x, y) is at most the number of binary strings of length ≤ K + log x with ≤ K ones

and ≤ log x zeros .
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4.11 (Conjecture ?? implies Log-Rank Conjecture) Suppose that Conjecture ?? is
true. That is, assume that there exists a constant c > 0 such that every boolean

matrix of aream and rank r contains a monochromatic submatrix of area at least

m/2(log r)c

. Use this to show that c(M) = O((log r)c+1) for every boolean ma-

trixM , where r = rk(M).
Hint: Let A be a largest monochromatic submatrix of M . Up to permutation of rows and columns

the matrix M has the form M =
[

A B
C D

]
. Assume that rk(B) ≤ rk(C). Use rk(B) + rk(C) ≤

M + 1 to show that rk(A|B) ≤ 2 + rk(M)/2. In the communication protocol let Alice send a bit

saying if her input belongs to the rows of A or not. Then continue recursively with a protocol for

the submatrix [A|B], or for the submatrix [C|D], according to the bit communicated. If L(m, r)
denotes the number of leaves of this protocol, starting from a matrix of area at most m and rank at

most r, then L(m, r) ≤ L(m, 2 + r/2) + L(m − δm, r) where δ = 2−(log r)c

. Use Exercise ??
to show that L(m, r) is at most exponential in O((log r)c+1).

4.12 (Quadratic forms) Let B be anm×m matrix over GF(2) of rank r, and let A
be a boolean n× n matrix with n = 2m

whose rows and columns correspond to

vectors in GF(2)m
. The entries of A are defined by A[x, y] = yTBx over GF(2).

Show that, if s + t > 2m − r, then the matrix A has no monochromatic 2s × 2t

submatrix.

Hint: Let X be a set of |X| ≥ 2s
rows and Y a set of |Y | ≥ 2t

columns of A, and suppose

that A is monochromatic on X × Y . We can assume that A[x, y] = 0 for all (x, y) ∈ X × Y
(why?). Let H be the subspace generated by X , and G the subspace generated by Y . Argue that

the subspaces BH and G are orthogonal, hence, dim(BH) + dim(G) ≤ m. Combine this with

dim(BH) ≥ dim(H)−(m−r) to deduce that dim(H)+dim(G) ≤ 2m−r. Use s+t > 2m−r
to get a contradiction.

4.13 (Lower bounds via discrepancy) The maximum discrepancy, disc(A), of a
boolean matrix A is the maximum discrepancy of its ±1 version A′

defined by

A′[x, y] = (−1)A[x,y]
. That is, disc(A) is the maximum, over all submatrices B of

A, of the absolute value of the difference between the number of 1s and the number

of 0s in B. Prove that matrices of small discrepancy have large distributional, and

hence, also randomized communication complexity: for every boolean n×nmatrix

A and for every constant 0 ≤ ϵ < 1/2,

distrϵ(A) ≥ log (1 − 2ϵ)n2

disc(A) .

Hint: Fix a deterministic protocol P (x, y) of cost c = distrϵ(A) which correctly computes A on

all but an ϵ-fraction of inputs. Let B be a ±1 matrix of errors: B[x, y] = +1 if P (x, y) = A[x, y],
and B[x, y] = −1 otherwise. Show that the discrepancy of this matrix (the absolute value of the

sum of all its entries) is at least (1 − ϵ)n2 − ϵn2 = (1 − 2ϵ)n2
. The protocol P decomposes A

(and hence, also B) into t = 2c
submatrices R1, . . . , Rt such that the discrepancy of B is at most

the sum of the discrepancies of these matrices.

4.14 (Discrepancy and spectral norm) Let A be an n× n matrix with real entries,

and ∥A∥ its spectral norm, that is, ∥A∥ = max |uTAv| over all real vectors u, v ∈
Rn

with ∥u∥ = ∥v∥ = 1. Show that disc(A) ≤ ∥A∥ · n.
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Hint: Consider an S × T submatrix of A of maximal discrepancy. Show that |χT
S AχT | ≤

∥A∥
√

|S||T |, where χS is the characteristic vector of the set S ⊆ [n].

4.15 (Discrepancy and eigenvalues) Let A be an n × n ±1-matrix. Suppose that

A is symmetric (AT = A), and let λ be the largest eigenvalue of A. Show that

disc(B) ≤ λ
√
ab for every a× b submatrix B of A.

Hint: If x and y are characteristic 0-1 vectors of the rows and columns of B, then disc(B) =
|xT Ay|. Take an orthonormal basis v⃗1, . . . , v⃗n forRn

corresponding to the eigenvaluesλ1, . . . , λn

of A, write x and y as linear combinations x =
∑

i
αiv⃗i and y =

∑
i
βiv⃗i of these basis vectors,

and show that |xT Ay| = |
∑

i
αiβiλi| ≤ λ|

∑
i
αiβi|. Observe that

∑
i
α2

i = ∥x∥2 = a and∑
i
β2

i = ∥y∥2 = b, and apply the Cauchy–Schwarz inequality to derive the desired upper bound
on disc(B).

4.16 (Inner product function) Let Sm be a 2m × 2m
Sylvester matrix. Its rows and

columns are labeled by vectors in GF(2)m
, and the entries of Sm are the scalar

products of these vectors over GF(2). Hence, the function corresponding to this

matrix is the inner product function over GF(2). Show that disc(Sm) ≤ 2m/2
, and

hence, that cϵ(Sm) = Ω(m) for any constant ϵ > 0. Hint: Use Lindsey’s Lemma.

4.17 (Log-Rank Conjecture) Use the Sylvester matrix Sm to conclude that if we

consider rank over finite fields (instead of the reals) the gap between c(Sm) and
log rk(Sm) may be exponential.

4.18 (The greater-than function) Consider the following GTn(x, y): Alice gets a
non-negativem-bit integer x, Bob gets a non-negativem-bit integer y, and their

goal is to decide whether x ≥ y. Show that c1/m(GTn) = O(log2 m).
Hint: Let the players recursively examine segments of their strings until they find the lexico-

graphically first bit in which they differ—this bit determines whether x ≥ y. Alice can randomly

select a prime number p ≤ m3
, compute x′ mod p where x′

is the first half of x, and send p
and x′ mod p to Bob; this can be done using O(log m) bits. If x′ mod p ̸= y′ mod p, then x′

is

different from y′
, and the players can continue on the first half of their strings. Otherwise the

players assume that x′ = y′
, and they continue on the second half of their strings. The players err

in this later case when x′ ̸= y′
but x′ mod p = y′ mod p. Estimate the probability of this error,

keeping in mind that there are Θ(n/ ln n) primes p ≤ n.

4.19 (Almost monochromatic rectangles) Let A : X × Y → {0, 1} be a boolean

matrix of area m = |X| · |Y |. Suppose that cϵ(A) ≤ t. Show that there exists a

submatrix B of A of area at least m/2t+1
and bit a ∈ {0, 1} such that at least a

1 − 2ϵ fraction of the entries in B are equal to a.

Hint: Call a submatrix large if its area is at least m/2t+1
, and small otherwise. Take a deterministic

protocol P of cost t = cϵ(A) which is correct on all but a ϵ fraction of inputs. The protocol P
decomposes A into at most 2t

rectangles. Argue that more than half of the entries of A must

belong to large rectangles. Recall that at most an ϵ fraction of the entries (x, y) of A do not satisfy

P (x, y) = A[x, y]. Even if these entries are in large rectangles, their fraction in the set of all

entries of large rectangles is at most 2ϵ (since more than half of the entries of A belong to large

submatrices).
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4.20 (Disjointness matrix) Let Dn be the 2n × 2n
disjointness matrix. Its rows and

columns are labeled by subsets x ⊆ [n], and Dn[x, y] = 1 iff x ∩ y = ∅. Let T0
(resp., T1) be the set of all pairs (x, y) of subsets of [n] such that |x ∩ y| = 1 (resp.,

|x ∩ y| = 0). Note that Dn[x, y] = 0 for all (x, y) ∈ T0, and Dn[x, y] = 1 for all

(x, y) ∈ T1. For a ∈ {0, 1} and a rectangle R, let µa(R) = |R ∩ Ta|/|Ta| be the
fraction of elements of Ta in R. Razborov (1992a) proved that µ1(R) is not much

smaller than µ0(R), unless µ0(R) is negligible:
For every rectangle R in Dn, if µ0(R) > 2−n/100

then µ1(R) > µ0(R)/100.
This implies that µ1(R) > µ0(R)/100 − 2−n/100

. Use this fact to show that

cϵ(Dn) = Ω(n) for every constant ϵ < 1/200.
Hint: Let t = cϵ(Dn), and take a deterministic protocol P of cost t = cϵ(Dn) which is correct on

all but an ϵ fraction of inputs. Argue as in Exercise ?? to show that P outputs the right answer

for all but a 2ϵ fraction of inputs in T0 and all but a 2ϵ fraction of inputs in T1. The protocol P
decomposes A into at most 2t

rectangles. Let R1, . . . , Rm be the rectangles where P (x, y) = 0.
Then

∑m

i=1 µ0(Ri) ≥ 1 − 2ϵ (why?). Use the fact above to show that

∑m

i=1 µ1(Ri) ≥ (1 −
2ϵ)/100 − 2t−n/100

. What happens if (say) t < n/200?

4.21 (Rank versus sign-rank) Let A be an n × n ±1 matrix of the greater-than

function, that is, A[i, j] = 1 if i ≤ j, and A[i, j] = −1 if i > j. Show that

rk(A) ≥ n− 1 but signrk(A) ≤ 2. Hint: Consider the matrix B with B[i, j] = 2(j − i) + 1.

4.22 (Randomization and seminorms) Let Φ be a measure assigning every real ma-

trix a real number. Call such a measure seminorm if for any two non-negative

matrices A,B of the same dimension and any real number c ≥ 0 we have that

Φ(A+ B) ≤ Φ(A) + Φ(B) and Φ(cA) ≤ cΦ(A). A seminorm Φ is normalized if,

for every boolean matrix A, Φ(A) does not exceed the tiling number χ(A) of A. An
ϵ-approximator of A is a matrix B such that |A[x, y] −B[x, y]| ≤ ϵ for all entries
(x, y). Define

Φϵ(A) := min{Φ(B) | B is an ϵ-approximator of A} .

Show that, for every normalized seminorm Φ, cϵ(A) ≥ logΦϵ(A).
Hint: Let P be a randomized ϵ-error communication protocol for A of cost cϵ(A). If we fix the
random string r used by P to some r, then what we get is a deterministic protocol; let Ar be

a boolean matrix of answers of this protocol, and let pr = Prob[r = r]. Consider the convex
combinationAP :=

∑
r

prAr .What are the entries of this matrix? Show thatΦϵ(A) ≤ Φ(AP ) ≤∑
r

prΦ(Ar) ≤
∑

r
prχ(Ar) ≤

∑
r

pr2c(Ar) ≤ 2cϵ(A)
.

4.23 Let A : X × Y → {0, 1} be a boolean n × n matrix, and suppose that all

entries ofA can be covered bym not-necessarily disjoint monochromatic rectangles

R1, . . . , Rm. Thus, both nc(A) and nc(A) are at most logm. For every row x ∈ X
define the vector ax ∈ {0, 1}m

by ax(i) = 1 iff x ∈ Ri. Consider the monotone

boolean function f : {0, 1}m → {0, 1} by: f(x) = 1 iff z ≥ ax for some x ∈ X .

Show that Depth+(f) ≥ c(A).
Hint: Take a communication protocol for the Karchmer-Wigderson game on the function f . Given
x′ ∈ f−1(1) and y′ ∈ f−1(0), the goal is to find a position i such that x′

i ̸= y′
i. Use this protocol
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to design a deterministic communication protocol for the matrix A, where Alice gets a row x ∈ X ,

and Bob a column y ∈ Y . Let Alice to construct x′ ∈ {0, 1}m
by assigning x′

i = 1 iff the row x
belongs to Ri, and let Bob to construct y′ ∈ {0, 1}m

by assigning y′
i = 0 iff the column y belongs

to Ri.



5. Multi-Party Games

The rich mathematical theory of 2-party communication naturally invites us to con-

sider scenarios involving k > 2 players. In the simplest case, we have some function

f(x) whose input x is decomposed into k equally-sized parts x = (x1, . . . , xk).
There are k players who wish to collaboratively evaluate a given function f on

every input x. Each player has unlimited computational power and full knowledge

of the function. As in the case of two players, the players are not adversaries—they

help and trust each other. Depending on what parts of the input x each player can

see, there are two main models of communication:

• Number-in-hand model: the i-th player can only see xi.

• Number-on-forehead model: the i-th player can see all the xj except xi.

Players can communicate by writing bits 0 and 1 on a blackboard. The blackboard

is seen by all players. The game starts with the empty blackboard. For each string

on the blackboard, the protocol either gives the value of the output (in that case

the protocol is over), or specifies which player writes the next bit and what that

bit should be as a function of the inputs this player knows (and the string on the

board). During the computation on one input the blackboard is never erased, players

simply append their messages. The objective is to compute the function with as

small amount of communication as possible.

The communication complexity of a k-party game for f is the minimal number

c such that on every input x the players can decide whether f(x) = 1 or not,

by writing at most c bits on the blackboard. Put differently, the communication

complexity is the minimal number of bits written on the blackboard on the worst-

case input. For simplicity, we will only consider deterministic protocols.

Note that for k = 2 (two players) there is no difference between these twomodels.

The difference comes when we have k ≥ 3 players. In this case the second model

seems to be (and actually is) more difficult to analyze because players share some

common information. For example, the first two players both can then see all inputs

x3, . . . , xk. Moreover, if the number k of players increases, the communication

complexity in the “number-in-hand” model can only increase (the pieces of input

each player can see are smaller and smaller), whereas it can only decrease in the

133
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“number-on-forehead” model (the pieces of seen input are larger and larger). This

is why the first model attracted much less attention. Still, the model becomes

interesting if instead of computing a given function f exactly, the players are only

required to approximate its values. In particular, this model has found applications

in so-called combinatorial auctions; see Nisan (2002).

5.1 The “number-in-hand” model

The disjointness problem is, given a sequence a = (a1, . . . , ak) of subsets ai ⊆ [n], to
decide whether the ai are pairwise disjoint. In the approximate disjointness problem
Disjn the k players are only required to distinguish between the following two

extreme cases:

• Answer “input is positive” if ai ∩ aj = ∅ for all i ̸= j.
• Answer “input is negative” if a1 ∩ · · · ∩ ak ̸= ∅.
• If neither of these two events happens, then any answer is legal.

5.1 Lemma In the “number-in-hand” model, the approximate disjointness problem
Disjn requires Ω(n/k) bits of communication.

Proof. (Due to Jaikumar Radhakrishnan and Venkatesh Srinivasan) Any c-bit com-

munication protocol for the approximate disjointness problem partitions the space of

inputs into at most 2c
“boxes”, where a box is a Cartesian product S1 ×S2 ×· · ·×Sk

with Si ⊆ 2[n]
for each i. Each box must be labeled with an answer, and thus the

boxes must be “monochromatic” in the following sense: no box can contain both a

positive instance and a negative instance. (There are no restrictions on instances

that are neither negative nor positive.)

We will show that there are exactly (k+ 1)n
positive instances, but any box that

does not contain a negative instance can contain at most kn
positive instances. It

then follows that there must be at least

(k + 1)n/kn = (1 + 1/k)n ≈ en/k

boxes to cover all positive instances and thus the number of communicated bits

must be at least the logarithm Ω(n/k) of this number, giving the desired lower

bound.

To count the number of positive instances, note that any partition of the n items

in [n] between k players, leaving some items “unlocated”, corresponds to a mapping

g : [n] → [k+1], implying that the number of positive instances is exactly (k+1)n
.

Now consider a box S = S1 × S2 × · · · × Sk that does not contain any negative

instance. Note that for each item x ∈ [n] there must be a player i = ix such that

x ̸∈ a for all a ∈ Si. This holds because otherwise there would be, in each Si, a set

ai ∈ Si containing x, and we would have that a1 ∩ · · · ∩ ak ⊇ {x} ≠ ∅, a negative
instance in the box S.
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We can now obtain an upper bound on the number of positive instances in S
by noting that any such instance corresponds to a partition of the n items among

k players and “unlocated”, but now with an additional restriction that each item

x ∈ [n] can not be in the block given to the ix-th player. Thus each item has only k
(instead of k + 1) possible locations for it, and the number of such partitions is at

most nk
. ⊓⊔

The same lower bound for randomized protocols was obtained by Chakrabarti

et al. (2003), and Gronemeier (2009).

5.2 The approximate set packing problem

The set packing problem is, given a collection A of subsets of [n] = {1, . . . , n}, to
find the largest packing—that is, the largest collection of pairwise disjoint sets in A.
The packing number of A, is the largest number of sets of A in a packing of [n].

The set packing communication problem is as follows: we have k players each

holding a collection Ai of subsets of [n], and the players are looking for the largest

packing in the union A = A1 ∪ · · · ∪Ak of their collections. The goal of players is

to approximate the packing number of A to within a given multiplicative factor λ.

5.2 Proposition In the “number-in-hand” model, there is a k-player protocol approxi-
mating the packing number within a factor of λ = min{k,

√
n} and using O(kn2)

bits of communication.

Proof. Getting an approximation factor k is easy by just picking the single player

with the largest packing in her collection. If k >
√
n, we can do better by using the

following simple greedy protocol: at each stage each player announces the smallest

set ai ∈ Ai which is disjoint from all previously chosen sets; this requires n bits of

communication from each of k players. The smallest such set is chosen to be in the

packing. This is repeated until no more disjoint sets exist; hence, the protocol ends

after at most n stages. It remains to verify that this packing is by at most a factor of√
n smaller than the number of sets in an optimal packing.

Let a1, . . . , at be the sets in A chosen by our protocol. The collections

Bi = {a ∈ A | a ∩ ai ̸= ∅ and a ∩ aj = ∅ for all i = 1, . . . , j − 1}

form a partition of the whole collection A. Since all sets in Bi contain an element

of ai, the maximum number of disjoint sets in Bi is at most the cardinality |ai|
of ai. On the other hand, since ai is the smallest member of A which is disjoint

from all a1, . . . , ai−1, every member of Bi is of size at least |ai|, so the maximum

number of disjoint sets in Bi is also at most ⌊n/|ai|⌋. Thus, the optimal solution

can contain at most

min{|ai|, ⌊n/|ai|⌋} ≤ max
x∈N

min{x, ⌊n/x⌋} = ⌊
√
n⌋
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sets from each Bi. ⊓⊔

On the other hand we have the following lower bound.

5.3 Theorem (Nisan 2002) Any k-player protocol for approximating the packing
number to within a factor smaller than k requires 2Ω(n/k2) bits of communication.

In particular, as long as k ≤ n1/2−ϵ
for ϵ > 0, the communication complexity is

exponential in n.

Proof. We have k players, each holding a collectionAi of subsets of [n]. It is enough
to prove a lower bound on the communication complexity needed in order to

distinguish between the case where the packing number is 1 and the case where it

is k. That is, to distinguish the case where there exist k disjoint sets ai ∈ Ai, and

the case where any two sets ai ∈ Ai and aj ∈ Aj intersect (packing number is 1).
Now suppose that ℓ bits of communication are enough to distinguish these two

cases. We will show that then the approximate disjointness problem DisjN for

N = eΩ(n/k2)
can also be solved using at most ℓ bits of communication. Together

with Lemma ?? this will immediately yield the desired lower bound ℓ = Ω(N/k)
The reduction uses a collection of partitions A = {as | s = 1, . . . , N}, where

each as
is a partition as = (as

1, . . . , a
s
k) of [n] into k disjoint blocks. Say that such

a collection A of partitions is cross-intersecting if

as
i ∩ ar

j ̸= ∅ for all 1 ≤ i ̸= j ≤ k and 1 ≤ s ̸= r ≤ N ,

that is, if different blocks from different partitions have non-empty intersection.

5.4 Claim A cross-intersecting collection of N = en/(2k2)/k partitions exists.

Proof. Consider a random function f : [n] → [k] where Prob[f(x) = i] = 1/k for

every x ∈ [n] and i ∈ [k]. Let f1, . . . , fN be independent copies of f . Each function

fs gives us a partition as = (as
1, . . . , a

s
k) of [n] with

as
i = {x | fs(x) = i} .

Now fix 1 ≤ i ̸= j ≤ k and two indices of partitions 1 ≤ s ̸= r ≤ N . For every

fixed x ∈ [n], the probability that fs(x) ̸= i or fr(x) ̸= j is 1 − 1/k2
. Since

as
i ∩ ar

j = ∅ holds if and only if this happens for all n elements x, we obtain that

Prob[as
i ∩ ar

j = ∅] = (1 − 1/k2)n < e−n/k2
.

Since there are at most k2N2
such choices of indices, we get that the desired set of

partitions exist, as long as k2N2 ≤ en/k2
. ⊓⊔

We now describe the reduction of the approximate disjointness problemDisjN to

the problem of distinguishing whether the packing number is 1 of k. Fix a collection
A of partitions guaranteed by Claim ??. Player i, who gets as input a set bi ⊆ [N ] in
the problem DisjN , constructs the collection Ai = {as

i | s ∈ bi} of subsets of [n].
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That is, the i-th player takes the i-th block as
i from each partition as ∈ A with

s ∈ bi.

Now, if there exists s ∈
⋂k

i=1 bi, then a k-packing exists: as
1 ∈ A1, . . . a

s
k ∈ Ak .

On the other hand, if bi ∩ bj = ∅ for all i ̸= j, then for any two sets as
i ∈ Ai and

ar
j ∈ Aj , we have that s ̸= r, and thus as

i ∩ ar
j ̸= ∅, meaning that the packing

number is 1. ⊓⊔

5.3 Application: streaming algorithms

Let x = (x1, . . . , xm) ∈ [n]m be a string of lengthm with elements in the range

1 to n. Suppose we want to compute f(x) for some function f , butm is huge, so

that it is impractical to try to store all of x. In a streaming algorithm we assume

that we see the input x one symbol at a time with no knowledge of what future

symbols will be. The question then is how many bits must be kept in memory in

order to successfully compute f(x). An ultimate goal is to compute f(x) using
only O(logn+ logm) bits of memory. The field of streaming algorithms was first

formalized and popularized in a paper by Alon, Matias, and Szegedy (1999).

5.5 Example Let x ∈ [n]n−1
be a string of length n− 1, and assume that x contains

every element in [n] except for the number p ∈ [n]. Let f(x) = p, that is, f outputs

the unique missing element p. A streaming algorithm to compute f(x) can maintain

a sum Tk =
∑k

i=1 xi. At the end of the stream, it outputs f(x) = n(n+1)
2 − Tn−1.

This algorithms uses O(logn) memory.

The replication number of an element i ∈ [n] in a string x is the number ri =
|{j ∈ [m] | xj = i}| of occurrences of symbol i in the string. The d-th frequency
moment of the string S is defined as

fd(x) = rd
1 + rd

2 + · · · + rd
n .

In particular, f0(x) is the number of distinct symbols in the string, and f1(x) is the
lengthm of the string. For d ≥ 2, fd(x) gives useful statistical information about

the string.

5.6 Theorem For d ≥ 3, any deterministic streaming algorithm computing fd requires
memory with Ω(n1−2/d) bits.

Proof. Fix d ≥ 3 and let k = n1/d
. Suppose there exists a streaming algorithm

A to compute fd using C bits of memory. Our goal is to show that there exists a

k-party “number-in-hand” communication protocol which solves the approximate

disjointness problem Disjn using at most Ck = Cn1/d
bits of communication.

Together with Lemma ??, this will imply that Cn1/d = Ω(n/k), and hence, C =
Ω(n1−2/d).

Let x = (a1, . . . , ak) be an input to Disjn with ai ⊆ [n]. We can assume that

| ∪i ai| ≥ 2, for otherwise O(logn) bits of communication are enough. The players
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look at x as a stream and run A on it. Whenever player i finishes running A on

the portion of S corresponding to ai, he writes the state of the algorithm on the

blackboard using C bits. At the end of the algorithm the players have computed

fd(x) using Ck = Cn1/k
bits of communication. This is sufficient to approximate

Disjn: if ai ∩aj = ∅ for all i ̸= j, then ri ≤ 1 for all i, and hence, fd(x) ≤ n. On the
other hand, if there is an element p ∈ [n] contained in all sets ai, then r

d
x ≥ kd = n,

and we have that fd(x) ≥ n+ 1 (because | ∪i ai| ≥ 2). ⊓⊔

5.4 The “number-on-forehead” model

The number-on-forehead model of multi-party communication games was intro-

duced by Chandra, Furst and Lipton (1983). The model is related to many other

important problems in circuit complexity, and is much more difficult to deal with

than the previous one. Recall that in this model the information seen by players

on a given input x = (x1, . . . , xk) can overlap: the i-th player has access to all the

xj except xi. Recall also that each xi is an element from some (fixed in advance)

n-element setXi. Thus, we have two parameters: the size n = |Xi| of a domain for

each players, and the number k of players.

We can imagine the situation as k players sitting around the table, where each one
is holding a number to his/her forehead for the others to see. Thus, all players know

the function f , but their access to the input string (x1, x2, . . . , xk) is restricted: the
first player sees the string (∗, x2, . . . , xk), the second sees (x1, ∗, x3, . . . , xk), . . .,
the k-th player sees (x1, . . . , xk−1, ∗) (Fig. ??).

Let ck(f) denote the minimum communication complexity of f in this “number-

on-forehead” model. That is, ck(f) is the minimal number t such that on every

input

x ∈ X := X1 × · · · ×Xk

the players can determine the value f(x) by writing at most t bits on the blackboard.
It is clear that

ck(f) ≤ logn+ 1 for any f .

Namely, the first player can write the binary code of x2, and the second player

can announce the result. But what about the lower bounds? The twist is that (for

k ≥ 3) the players share some inputs, and (at least potentially) can use this overlap

to encode the information in some wicked and nontrivial way (see Exercises ?? and
??).

Still, we know that the access of each player is restricted: the i-th player cannot

distinguish inputs differing only in the i-th coordinate. This leads to the following

concept.

A combinatorial star, or just a star in X around a vector x = (x1, . . . , xk) is a
set S of k vectors of the form:

x1 = (x′
1, x2, . . . , xk), x2 = (x1, x

′
2, . . . , xk), . . . , xk = (x1, x2, . . . , x

′
k) ,
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p1(x2, x3)

p2(x1, x3) p3(x1, x2)

p2(x1, x3)

0 1

0 1 10

0 1

Fig. 5.1 A communication tree (protocol) for a function f(x1, x2, x3). Each function pi attached

to a node may depend on the sequence of bits until this node, but cannot depend on xi. Different

nodes can be labeled by different functions of the same i-th player. Their independence on the

i-th position is the only restriction.

where for each i, x′
i ̸= xi and xi, x

′
i ∈ Xi. The vector x is a center of this star.

Hence, each star contains exactly k vectors, and there are exactly (n − 1)k
stars

around each vector x.
Say that a subset T ⊆ X of X = X1 × · · · × Xk is closed if, for every star

Sx ⊆ X around a vector x ∈ X , Sx ⊆ T implies x ∈ T .
We have the following analogue of Proposition ??.

5.7 Proposition Every set T ⊆ X of vectors reaching a leaf of a k-party communica-
tion protocol is closed.

Proof. Take a k-party protocol of the communication game for f . Color each vector

x ∈ X by the string, which is written on the blackboard at the end of communication

between the players on the input x. It is enough to show that each color class T is

a closed set.

To show this, let S = {x1, . . . , xk} be a star around some vector x, and assume

that S ⊆ T . We have to show that then x ∈ T as well. At each step, the player that

needs to send the next message, say the i-th player, cannot distinguish between

the input x = (x1, . . . , xi, . . . , xk) and xi = (x1, . . . , x
′
i, . . . , xk), because he does

not see the i-th part of the input. Thus, the player will send the same message in

both cases. Hence the whole communication on the center x is the same as on all

elements of the star, as desired. ⊓⊔

Unlike the definition of a rectangle, the definition of a closed set T ⊆ X is only

implicit: if T contains a star then it must also contain its center. It is clear that all

sets A ⊆ X of the form A = A1 × · · · ×Ak with Ai ⊆ Xi are closed. Actually, for

k = 2 all closed sets have this form. (Show this!) But for k ≥ 3 not every closed set

has this form. A simple counterexample is a set T consisting of one star together

with its center. Still, we can give a more explicit definition of closed sets in terms of

so-called “cylinders”.

A subset Ti ⊆ X is a cylinder in the i-th dimension if membership in Ti does

not depend on the i-th coordinate. That is,
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(x1, . . . , xi, . . . , xk) ∈ Ti implies (x1, . . . , x
′
i, . . . , xk) ∈ Ti for all x

′
i ∈ Xi.

A subset T ⊆ X is a cylinder intersection if it is an intersection

T = T1 ∩ T2 ∩ · · · ∩ Tk ,

where Ti is a cylinder in the i-th dimension.

Note that in the case of two players (k = 2), cylinder intersections are exactly
rectangles, that is, subsets T ⊆ X1 ×X2 of the form T = A1 ×A2 with Ai ⊆ Xi.

In this case, a cylinder in dimensions i = 1, 2 are sets of the form T1 = A1 ×X2
and T2 = X1 × A2; hence, T1 ∩ T2 = A1 × A2. But this nice structure is lost

when we go to games with k ≥ 3 players. In this case the structure of cylinder

intersections is more complicated; still, we have the following useful result:

5.8 Proposition A set T ⊆ X is closed iff it is a cylinder intersection.

Proof. The “only if” direction (⇒) is simple. Let T = ∩k
i=1Ti where Ti is a cylinder

in the i-th dimension. If S = {x1, . . . , xk} is a star around some vector x ∈ X , and

if S ⊆ T , then xi ∈ T ⊆ Ti and hence x ∈ Ti for all i = 1, . . . , k, implying that

x ∈ T , as desired.
For the “if” direction (⇐), take an arbitrary subset T ⊆ X and assume that

T contains the center of every star it contains. For every i = 1, . . . , k, let Ti be

the set of all strings x ∈ X such that x coincides with at least one string xi ∈ T
in all but perhaps the i-th coordinate. By its definition, the set Ti is a cylinder

in the i-th dimension. Hence, the set T ′ = ∩k
i=1Ti is a cylinder intersection. If a

vector x belongs to T , then it also belongs to all the Ti, by their definition. This

shows T ⊆ T ′
. To show that T ′ ⊆ T , take a vector x ∈ T ′

. Then x ∈ Ti for all

i = 1, . . . , k. But x ∈ Ti implies that there must be a vector xi ∈ T from which x
differs in exactly the i-th coordinate. The vectors x1, . . . , xk

form a star around x
and are contained in T . Hence, vector x must belong to T as well. ⊓⊔

Define the k-tiling number χk(f) of f : X → R as the smallest number t such
that the set X can be decomposed into t f -monochromatic cylinder intersections.

Propositions ?? and ?? immediately yield the following general lower bound.

5.9 Lemma ck(f) ≥ logχk(f).

Since in the “number-on-forehead” model players share common information

(for k ≥ 3 players), proving lower bounds in this model is a difficult task. Actually,

it was even not immediately clear whether the number ck(f) of communicated bits

must grow with growing size n = |Xi| of the domain for each player. That it must

grow was first shown by Chandra, Furst and Lipton (1983). They considered the

following hyperplane problem. The players get a sequence (x1, . . . , xk) of numbers

in [n] = {1, . . . , n} and must decide whether x1 + · · ·+xn = n. Using some results

from Ramsey theory, they proved that, for any fixed number k ≥ 2 of players, the

number of communicated bits in the hyperplane problem must go to infinity as n
goes to infinity. Using one of the basic results of Ramsey theory—the Hales–Jewett

theorem—Tesson (2003) obtained a similar result for the partition problem: players



5.5 The discrepancy bound 141

obtain a sequence (x1, . . . , xk) of subsets xi ⊆ [n], and the goal is to decide whether
the xi form a partition of [n]. Much stronger, almost optimal lower bounds of the

form Ω(logn) for any fixed number k of players were, however, obtained using

discrepancy arguments.

5.5 The discrepancy bound

The (relative) discrepancy of a function f : X → {−1, 1} on a set T ⊆ X is the

absolute value of the sum of the values of f on points in T , divided by the total

number |X| of points:

discT (f) = 1
|X|

∣∣∣∣∣∑
x∈T

f(x)

∣∣∣∣∣ .
Thus, large discrepancy means that one value is taken significantly more often

than the other one. We have that 0 ≤ discT (f) ≤ 1 with discT (f) = |T |/|X|
iff f is constant on T . The discrepancy of the function f itself is the maximum

disc(f) = maxT discT (f) over all cylinder intersections T ⊆ X .

Intuitively, a function f has small discrepancy if it is “balanced enough” on all

cylinder intersections. It turns out that such functions must have large multi-party

communication complexity.

5.10 Proposition For every f : X → {−1, 1},

ck(f) ≥ log 1
disc(f) .

Proof. By Lemma ??, it is enough to show that χk(f) ≥ 1/disc(f). To do this, let

T ⊆ X be a cylinder intersection. Then T is f -monochromatic iff discT (f) =
|T |/|X|, implying that |T | ≤ |X| · disc(f). Thus, at least |X|/(|X| · disc(f)) =
1/disc(f) f -monochromatic cylinder intersections T are necessary even to cover

(not only to decompose) the whole set X . ⊓⊔

In fact, the logarithm of ϵ/disc(f) is also a lower bound on the randomized
k-party communication complexity with error-probability ϵ, if the random string is

public.

However, this fact alone does not give immediate lower bounds for the multi-

party communication complexity, because disc(f) is very difficult to estimate.

Fortunately, the discrepancy can be bounded from above using the following more

tractable measure.

A k-dimensional cube is defined to be a multi-setD = {a1, b1} × · · · × {ak, bk},
where ai, bi ∈ Xi (not necessarily distinct) for all i. Being a multi-set means that

one element can occur several times. Thus, for example, the cube D = {a1, a1} ×
· · · × {ak, ak} has 2k

elements.
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Given a function f : X → {−1, 1} and a cube D ⊆ X , define the sign of f on

D to be the value

f(D) =
∏
x∈D

f(x) .

Hence, f(D) = 1 if and only if f(x) = −1 for an even number of vectors x ∈ D.

We choose a cube D at random according to the uniform distribution. This can be

done by choosing ai, bi ∈ Xi for each i according to the uniform distribution. Let

E(f) := E [f(D)] = E
[ ∏

x∈D

f(x)
]

be the expected value of the sign of a random cube D. To stress the fact that the

expectation is taken over a particular random object (this time, over D) we will

also write ED [f(D)] instead of E [f(D)].

5.11 Example The difference between the measures disc(f) and E(f) can best

be seen in the case when k = 2. In this case X = X1 × X2 is just a grid, and

each function f : X → {−1, 1} is just a ±1 matrix Mf . Cylinder intersections

T ⊆ X in this case correspond to submatrices ofMf , and discT (f) is the sum of

all entries in T divided by |X|. Thus, to determine disc(f) we must consider all
submatrices ofMf . In contrast, to determine E(f) it is enough to only consider all

s× t submatrices with 1 ≤ s, t ≤ 2.

The following result was first proved in Chung (1990) and generalizes a similar

result from Babai, Nisan and Szegedy (1992). An elegant and relatively simple proof

presented below was found by Raz (2000).

5.12 Theorem For every f : X → {−1, 1}, E(f) ≥ disc(f)2k

. Hence,

ck(f) ≥ 1
2k

log 1
E(f) .

The theorem is very useful because E(f) is a much simpler object than disc(f).
For many functions f , it is relatively easy to compute E(f) exactly; we will demon-

strate this in the next sections.

Proof. (Due to Raz 2000) We will only prove the theorem for k = 2; the general
case is similar. So letX = X1 ×X2 and f : X → {−1, 1} be a given function. Our

goal is to show that E(f) ≥ disc(f)4
. To do this, pick at random (uniformly and

independently) an element x ∈ X .

5.13 Claim For all functions h : X → {−1, 1}, E(h) ≥ (Ex [h(x)])4
.

Proof. We will use two well-known facts about the mean value of random variables:

E
[
ξ2] ≥ E [ξ]2 for any random variable ξ (5.1)

and
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E [ξ · ξ′] = E [ξ] · E [ξ′] if ξ and ξ′
are independent. (5.2)

The first one is a consequence of the Cauchy–Schwarz inequality, and the second is

a basic property of expectation.

Now take a random 2-dimensional cube D = {a, a′} × {b, b′}. Then

E(h) = ED [h(D)] = ED

[ ∏
x∈D

h(x)
]

= Ea,a′Eb,b′ [h(a, b) · h(a, b′) · h(a′, b) · h(a′, b′)]

= Ea,a′

[
(Eb [h(a, b) · h(a′, b)])2

]
by (??)

≥ (Ea,a′Eb [h(a, b) · h(a′, b)])2
by (??)

=
(
EaEb

[
h(a, b)2])2 Prob[a′] = Prob[a]

=
(

Ea (Eb [h(a, b)])2
)2

by (??)

≥ (Ea,b [h(a, b)])4
by (??).⊓⊔

5.14 Claim There exists h such that

∣∣Ex [h(x)]
∣∣ ≥ disc(f) and E(h) = E(f).

Proof. Let T = A×B be a cylinder intersection (a submatrix ofX , since k = 2) for
which disc(f) is attained. We prove the existence of h by the probabilistic method.

The idea is to define a random function g : X1 × X2 → {−1, 1} such that the

expected value E [g(x)] = Eg [g(x)] is the characteristic function of T . For this,
define g to be the product g(x) = g1(x) · g2(x) of two random functions, whose

values are defined on the points x = (a, b) ∈ X1 ×X2 by:

g1(a, b) =
{

1 if a ∈ A;

set randomly to ±1 otherwise

and

g2(a, b) =
{

1 if b ∈ B;

set randomly to ±1 otherwise.

These function have the property that g1 depends only on the rows and g2 only

on the columns of the grid X1 × X2. That is, g1(a, b) = g1(a, b′) and g2(a, b) =
g2(a′, b) for all a, a′ ∈ X1 and b, b′ ∈ X2. Hence, for x ∈ T , g(x) = 1 with

probability 1, while for x ̸∈ T , g(x) = 1 with probability 1/2 and g(x) = −1 with

probability 1/2; this holds because the functions g1, g2 are independent of each

other, and x ̸∈ T iff x ̸∈ A × X2 or x ̸∈ X1 × B. Thus, the expectation E [g(x)]
takes the value 1 on all x ∈ T , and takes the value 1

2 + (− 1
2 ) = 0 on all x ̸∈ T , that

is, E [g(x)] is the characteristic function of the set T :

E [g(x)] =
{

1 if x ∈ T ;

0 if x ̸∈ T .
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Now let x be a random vector uniformly distributed in X = X1 ×X2. Then

discT (f) =
∣∣Ex [f(x) · Eg [g(x)]]

∣∣ =
∣∣ExEg [f(x) · g(x)]

∣∣
=
∣∣EgEx [f(x) · g(x)]

∣∣ .
So there exists some choice of g = g1 · g2 such that

|Ex [f(x) · g(x)]| ≥ discT (f)

and we can take h(x) := f(x) · g(x). Then
∣∣Ex [h(x)]

∣∣ ≥ disc(f). Moreover,

E(h) = E(f) because g1 is constant on the rows and g2 is constant on the columns

so the product g(D) =
∏

x∈D g(x) cancels to 1. ⊓⊔

Claims ?? and ?? imply that E(f) = E(h) ≥ (Ex [h(x)])4 ≥ disc(f)4
. This

completes the proof of Theorem ?? in case k = 2. To extend it for arbitrary k, just
repeat the argument k times. ⊓⊔

5.6 Generalized inner product

Say that a 0-1 matrix A is odd if the number of its all-1 rows is odd. Note that, if

the matrix has only two columns, then it is odd iff the scalar (or inner) product

of these columns over GF(2) is 1. For this reason, the boolean function which

decides whether a given input matrix is odd is called the “generalized inner product”

function. We will assume that input matrices have n rows and k columns.

That is, the generalized inner product function gip(x) is a boolean function of kn
variables, arranged in an n× k matrix x = (xij), and is defined by:

gipn,k(x) =
n⊕

i=1

k∧
j=1

xij .

We consider k-party communication games for gip(x), where the j-th player can

see all but the j-th column of the input matrix x. The following lower bound was

first proved by Babai, Nisan, and Szegedy (1992). Similar lower bounds for other

explicit functions were obtained by Chung (1990). Note that in this case the size

of the domain for each player is |Xi| = 2n
, not n. Hence, n+ 1 is a trivial upper

bound on the number of communicated bits for any number k of players.

5.15 Theorem The k-party communication complexity of gipn,k is Ω(n4−k).

It can be shown (see Exercise ??) that this lower bound is almost optimal:

ck(gip) = O(kn/2k).

Proof. Since we want our function to have range {−1, 1}, we will consider the

function
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f(x) = (−1)gip(x) =
n∏

i=1
(−1)xi1xi2···xik . (5.3)

By Theorem ??, it is enough to prove that E(f) ≤ 2−Ω(n2−k)
. In fact we will prove

that

E(f) =
(

1 − 1
2k

)n

. (5.4)

In our case, the function f is a mapping f : X1 ×X2 × · · ·Xk → {−1, 1}, where
the elements of each setXj are column vectors of length n. Hence, a cubeD in our

case is specified by two boolean n× k matrices A = (aij) and B = (bij). The cube
D consists of all 2k n-by-k matrices, the j-th column in each of which is either the

j-th column of A or the j-th column of B. By (??), we have (with xij ∈ {aij , bij})
that

f(D) =
∏
x∈D

f(x) =
∏
x∈D

n∏
i=1

(−1)xi1xi2···xik =
n∏

i=1

∏
x∈D

(−1)xi1xi2···xik

=
n∏

i=1
(−1)(ai1+bi1)(ai2+bi2)···(aik+bik) .

Note that the exponent (ai1 + bi1)(ai2 + bi2) · · · (aik + bik) is even if aij = bij for

at least one 1 ≤ j ≤ k, and is equal to 1 in the unique case when aij ̸= bij for all

j = 1, . . . , k, that is, when the i-th row of B is complementary to the i-th row of

A. Thus,

f(D) = −1 iff the number of complementary rows in A and B is odd.

Now, E(f) is the average of the above quantity over all choices of matricesA andB.

We fix the matrix A and show that the expectation over all matrices B is precisely

the right-hand side of (??). Let a⃗1, . . . , a⃗n be the rows of A and b⃗1, . . . , b⃗n be the

rows of B. Then f(D) =
∏n

i=1 g(⃗bi), where

g(⃗bi) := (−1)(ai1+bi1)(ai2+bi2)···(aik+bik) =
{

+1 if b⃗i ̸= a⃗i ⊕ 1,
−1 if b⃗i = a⃗i ⊕ 1.

Thus, for every fixed matrix A, we obtain

EB

[ n∏
i=1

g(⃗bi)
]

=
n∏

i=1
Eb⃗i

[g(⃗bi)] by (??)

=
n∏

i=1

1
2k

∑
b⃗i

g(⃗bi) =
n∏

i=1

1
2k

(
2k − 1

)
=
(

1 − 1
2k

)n

. ⊓⊔

5.16 Remark Similar in form to gipn,k is the (generalized) disjointness function
disj(x). This function also has kn variables arranged into an n×kmatrix x = (xij),
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and is defined by:

disj(x) =
n∨

i=1

k∧
j=1

xij .

That is, given a boolean n × k matrix x, disj(x) = 1 iff it has an all-1 row. If

we interpret columns as characteristic vectors of subsets of [n], then the function

accepts a sequence of k subsets if and only if their intersection is non-empty. The

discrepancy argument fails for this function because disj is constant on huge cylin-

der intersections. Using different arguments, Tesson (2002) and Beame et al. (2006)

were able to prove a lower bound Ω((logn)/k) for disj(x), even for randomized

protocols. Lee and Shraibman (2009) and Chattopadhyay and Ada (2008) proved that

disj(x) requires Ω(n1/(k+1)/22k ) bits of communication in randomized k-party
protocols. More applications of algebraic methods in communication complexity

can be found in a survey by Lee and Shraibman (2007).

5.7 Matrix multiplication

Let X = X1 × · · ·Xk, where each Xi is the set of all n × n matrices over the

field GF(2); hence, the domain Xi for each player has size |Xi| = 2n2
. For x1 ∈

X1, . . . , xk ∈ Xk, denote by x1 · · ·xk the product of x1, . . . , xk as matrices over

GF(2). Let F (x1, . . . , xk) be a boolean function whose value is the element in the

first row and the first column of the product x1 · · ·xk .

5.17 Theorem (Raz 2000) ck(F ) = Ω(n/2k).

The theorem is a direct consequence of Theorem ?? and the following lemma.

Define the function f : X → {−1, 1} by

f(x1, . . . , xk) = (−1)F (x1,...,xk) = 1 − 2F (x1, . . . , xk) .

5.18 Lemma E(f) ≤ (k − 1)2−n.

Proof. For every cube D = {a1, b1} × · · · × {ak, bk},

f(D) =
∏
x∈D

f(x) =
∏
x∈D

(−1)F (x) = (−1)
⊕

x∈D
F (x)

.

Since F is linear in each variable,

f(D) = (−1)F (a1⊕b1,...,ak⊕bk) = 1 − 2F (a1 ⊕ b1, . . . , ak ⊕ bk),

where ai ⊕ bi denotes the sum of matrices ai and bi over GF(2). If we choose D
at random according to the uniform distribution, then (a1 ⊕ b1, . . . , ak ⊕ bk) is a
random vector x = (x1, . . . , xk) uniformly distributed over X . Therefore,
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E(f) = ED [f(D)] = E [1 − 2F (a1 ⊕ b1, . . . , ak ⊕ bk)]
= Ex [1 − 2F (x)] = Ex [f(x)] .

To estimate the expectation Ex [f(x)], where x = (x1, . . . , xk) is uniformly dis-

tributed overX sequence of n×nmatrices, letEd denote the event that the first row

of the matrix x1 · · ·xd contains only 0s. Define pd = Prob[Ed]. Since p1 is deter-

mined by x1 and since x1 is uniformly distributed, we have p1 = Prob[E1] = 2−n .
Clearly we also have Prob[Ed+1|Ed] = 1. On the other hand, since xd+1 is uni-

formly distributed, Prob[Ed+1|¬Ed] = 2−n
. Therefore, for all 1 ≤ d < k,

pd+1 = Prob[Ed+1|Ed] · Prob[Ed] + Prob[Ed+1|¬Ed] · Prob[¬Ed]
= pd + (1 − pd) · 2−n ≤ pd + 2−n,

implying that pd ≤ d · 2−n
for all d = 1, . . . , k.

If Ek−1 occurs then F (x1, . . . , xk) is always 0, and hence, f(x1, . . . , xk) is

always 1. If Ek−1 does not occur then, since the first column of xk is uniformly

distributed, the value F (x1, . . . , xk) is uniformly distributed over {0, 1}, and hence,
f(x1, . . . , xk) is uniformly distributed over {−1, 1}. Therefore,

E(f) = Ex [f(x)] = Prob[Ek−1] = pk−1 ≤ (k − 1) · 2−n . ⊓⊔

5.19 Remark We have seen that some “simple” functions (like gip or disj) have

large multi-party communication complexity. On the other hand, Chattopadhyay et

al. (2007) showed that there exist boolean functions of arbitrarily large circuit

complexity which can be computed with constant(!) communication by k players

for k ≥ 3.

5.20 Remark Note that lower bounds on the multi-party communication complexity

given above are only non-trivial if the number k of players is much smaller than

logn. To prove good lower bounds for k ≥ logn players is a long-standing problems

whose solution would have great consequences in circuit complexity; see Section ??
for some of these consequences.

5.8 Best-partition k-party communication

Let f : {0, 1}n → {0, 1} be a boolean function on n = km variables. The “number-

on-forehead” communication protocols workwith a fixed partition x = (x1, . . . , xk)
of the input vector x ∈ {0, 1}n

into k blocks xi ∈ {0, 1}m
.

We now consider the situation where, given a function f , the players are allowed
to choose the balanced partition of input variables that is best-suited for computing

f . (We say that a partition of a finite set into k disjoint blocks is balanced if the

sizes of blocks differ by at most one.) Let c∗
k(f) denote the smallest possible k-party

communication complexity of f over all balanced partitions of its input vector.
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Bilder/matching1-eps-converted-to.pdf

Fig. 5.2 A 4-matching on n = 16 vertices. The matching is an induced matching if no other

hyperedge lies in the set of these 16 vertices.

Recall that the generalized inner product function gipm,k is a boolean function

of n = km variables which takes a booleanm×k matrix x as its input, and outputs

1 iff the number of all-1 rows in it is odd:

gipm,k(x) =
n⊕

i=1

k∧
j=1

xij .

We have already shown in Section ?? that, if we split the input matrix in such a way

that the i-th player can see all its columns but the i-th one, then

ck(gipm,k) = Ω(n/k4k) . (5.5)

On the other hand, the best-partition communication complexity of this function is

very small: for every k ≥ 2 we have that c∗
k(gipm,k) ≤ 2. To see this, split the rows

of the inputm× k matrix x intom/k blocks and give to the i-th player all but the

i-th block of these rows. Then the first player can write the parity of the number of

all-1 rows she can see, and the second player can announce the answer.

So, what boolean functions have large k-party communication complexity under

the best-partition of their inputs? To answer this question we use a graph-theoretic

approach.

Let H be a hypergraph on an n-vertex set V = V (H), that is, a family of

subsets e ⊆ V ; the members ofH are called hyperedges. Thus, graphs are special
hypergraphs with each hyperedge containing just two vertices. Associate with each

vertex v ∈ V a boolean variable xv and consider the following boolean function of

these variables:

gipH(x) =
⊕
e∈H

∧
v∈e

xv .

A k-matching is a hypergraph consisting of pairwise disjoint hyperedges, each of

size k. Note that, ifM is a k-matching, then (up to renaming of variables),

gipM (x) = gipm,k(x) . (5.6)

We have however just shown that for such hypergraphs, c∗
k(gipM ) ≤ 2. But what

if for some hypergraph H we could show that H contains an induced k-matching

on sufficiently many vertices, for any balanced partition of vertices into k parts? It

turns out that this is enough to force c∗
k(gipH) to be large.
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Let us formalize our terms. First, a k-partition of a set V of n vertices is its

partition V1 ∪ · · · ∪ Vk into k disjoint blocks Vi, each of size n/k. Given such a

partition, say that a k-matchingM is consistent with it if every edge e ofM has

exactly one vertex in each of the blocks, that is, if |e ∩ Vi| = 1 for all i = 1, . . . , k.
Let V (M) = ∪e∈Me be the set of vertices incident to at least one hyperedge ofM .

We say that M is an induced matching in a hypergraph H on V if for every

hyperedge e ∈ H , e ⊆ V (H) implies e ∈ M . That is, no hyperedge e ∈ H \ M
can be covered by hyperedges ofM . It is easy to see that then the function gipM

is a subfunction of gipH , and hence, the communication complexity of gipH is

lower bounded by the communication complexity of gipM : just set xv = 0 for all

v ̸∈ V (M). We fix this observation as

5.21 Proposition Let H be a hypergraph. Suppose that for every k-partition of its
vertex-set, there exists an induced k-matching withm hyperedges which is consistent
with that partition. Then

c∗
k(gipH) = Ω

( m

k4k

)
.

We will construct the desired hypergraphs H starting from (ordinary) “well-

mixed” graphs G = (V,E). Namely, call a graph s-mixed if, for any pair of disjoint

s-element subsets of vertices, there is at least one edge between these sets. A k-star
of a graph G is a set of its k vertices such that at least one of them is adjacent to all

of the remaining k − 1 of these vertices.

5.22 Theorem (Hayes 2001) Let G be an s-mixed regular graph of degree d ≥ 2 on n
vertices. Let 2 ≤ k ≤ min{d, n/s} and let H be the hypergraph whose hyperedges
are all k-stars of G. Then

c∗
k(gipH) = Ω

(n− sk

dk24k

)
.

Proof. Say that an n-vertex graph G = (V,E) is s-starry if for any 2 ≤ k ≤ n/s
and for any pairwise disjoint sets S1, . . . , Sk, each of size |Si| ≥ s, there exist

vertices v1 ∈ S1, . . . , vk ∈ Sk such that {v1, . . . , vk} forms a k-star of G. Note
that every s-starry graph is also s-mixed, since we can let k = 2. Interestingly, the
converse is also true:

5.23 Claim Every s-mixed graph is s-starry.

Proof. LetG be an s-mixed graph, and let S1, . . . , Sk be pairwise disjoint subsets of

its vertices each of size |Si| ≥ s. For i ∈ {1, . . . , k}, let Ti be the set of all vertices

v ∈ V \ Si that are not adjacent to any vertex in Si. Since |Si| ≥ s and since G is

s-mixed, we have that |Ti| ≤ s− 1. Hence, the set T =
⋃k

i=1 Ti can have at most

|T | ≤ (s− 1)k < sk ≤
k∑

i=1
|Si| =

∣∣∣ k⋃
i=1

Si

∣∣∣
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vertices. Thus, there must exist a vertex v ∈ (∪k
i=1Si) \ T . That is, v belongs to

some Si and does not belong to T . By the definition of T , v ∈ Si and v ̸∈ T means

that v must be connected by an edge with at least one vertex in each of the sets Sj ,

j ̸= i. But then v is a center of the desired star. ⊓⊔

Now let G be a graph satisfying the conditions of Theorem ??, and let H be the

hypergraph of its k-stars. To finish the proof of Theorem ??, it is enough to prove that
this hypergraph satisfies the conditions of Proposition ?? withm ≥ (n− sk)/dk.

To prove this, let V = V1 ∪ · · · ∪ Vk be an arbitrary balanced partition of the

set V into k blocks. Hence, |Vj | ≥ n/k ≥ s for all j. We construct the desired

k-matching M ⊆ H recursively. Initially, let M be empty. In each stage, apply

Claim ?? to find a k-star e = {v1, . . . , vk} with vertices in each set of the partition.

Add this set toM . Delete the k vertices v1, . . . , vk and all their neighbors from G.
Repeat the procedure restricting the given partition to the remaining vertices of G.

After i stages, at most id vertices have been removed from each block Vj , which

means that each block in the partition (of the remaining vertices) has size at least

n/k − id. Since G is s-mixed, Claim ?? will apply as long as n/k − id ≥ s. Thus,
the algorithm will run for at least i ≥ (n− sk)/(dk) stages. LetM = {e1, . . . , em}
be the constructed k-matching. Since m ≥ (n − sk)/(dk), it is enough to show

thatM is an induced matching of H .

To show this, observe that, by the construction, no two vertices u ∈ ei and v ∈ ej

for i < j can be adjacent in G: when a hyperedge is added toM , all its neighbors

in G are removed from the further consideration. Assume now thatM is not an

induced matching. Then there exists a k-star e ofG such that e ⊆ V (M) =
⋃m

i=1 ei,

but e ̸∈ M . Let u ∈ e be its vertex adjacent (in G) to all the remaining k − 1
vertices of e. Since e ⊆ V (M), the vertex u must lie in some hyperedge ei of our

matching. Moreover, e ̸∈ M implies that some other vertex v ∈ e must lie in some

other hyperedge ej of the matching. Since u and v are adjacent in G, we obtain a

contradiction with the observation we just made. ⊓⊔

Thus, what we need are explicit graphs satisfying the following two conditions:

• the graph must have small degree, but

• any two moderately large subsets of vertices must be joined by an edge.

Graphs with these properties are known as expander graphs. By the ExpanderMixing

Lemma (see Appendix ?? for its proof), if G is a d-regular graph on n vertices and

if s > λn/d, where λ is the second largest eigenvalue of the adjacency matrix of G,

then G is s-mixed. Important examples of such graphs are the Ramanujan graphs
RG(n, q) (see Appendix ??). These are (q + 1)-regular graphs with the property

that λ ≤ 2√
q. Since 2n/√q > 2√

qn/(q+ 1), we have that the Ramanujan graphs

are well-mixed.

5.24 Corollary Ramanujan graphs RG(n, q) are s-mixed for s = 2n/√q.

Explicit constructions of Ramanujan graphs on n vertices for every prime q ≡
1 mod 4 and infinitely many values of n were given in Margulis (1973), Lubotzky,
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Phillips and Sarnak (1988); these were later extended to the case where q is an
arbitrary prime power in Morgenstern (1994) and Jordan and Livné (1997).

Let q be a prime number lying between 16k2
and 32k2

. Then the Ramanujan

graph RG(n, q) has degree d = q + 1 and (by Corollary ??) is s-mixed for s =
2n/√q ≤ n/2k. Using such graphs, Theorem ?? yields the following

5.25 Corollary IfH is the hypergraph of k-stars in the Ramanujan graph RG(n, q),
then c∗

k(gipH) = Ω(n/k44k).

It can be shown that, this bound is tight with respect to the number k of players:

for any balanced partition of n vertices into k + 1 parts, we have that ck(gipH) ≤
k + 1 (Exercise ??). Thus, for every constant k ≥ 2 there is an explicit boolean

function f = gipH such that c∗
k(f) = Ω(n) but c∗

k+1(f) = O(1).

Exercises

5.1 The set cover communication problem is as follows: we have k players each

holding a collection Ai of subsets of [n] = {1, . . . , n}, and the players are looking

for the smallest covering of [n] using the sets in their collections. That is, the goal is

to find the smallest number r of subsets a1, . . . , ar of [n] such that each aj belongs

to at least oneAi, and a1 ∪· · ·∪ar = [n]. Show that O(kn2) bits of communication

are enough to construct a covering using at most lnn+ 1 times larger number of

sets than an optimal covering algorithm would do. Hint: Use a greedy protocol, as in the

proof of Lemma ??.

5.2 Three players want to compute the following boolean function f(x, y, z) in
3m variables. Inputs x, y, z are vectors in {0, 1}m

, and the function is defined by:

f(x, y, z) =
⊕m

i=1 Maj(xi, yi, zi). Prove that c3(f) ≤ 3.
Hint: Show that the following protocol is correct. Each player counts the number of i’s such that

she can determine that Maj(xi, yi, zi) = 1 by examining the bits available to her. She writes the

parity of this number on the blackboard, and the final answer is the parity of the three written

bits.

5.3 Research Problem. Three players want to compute the following boolean

function f(x, y, z) in 3m variables. Inputs x, y, z are vectors in {0, 1}m
, and the

function is defined by: f(x, y, z) = 1 iff there exists an index i ∈ [m] such that

xi = yi = zi = 1. Does c3(f) = ω(log3 m)? Comment: As shown by Beame, Pitassi and

Segerlind (2007), this would imply super-polynomial lower bounds for some cutting plane proof

systems.

5.4 Given an operator f : {0, 1}2n → {0, 1}n
, consider the boolean function

gf (x, y, j) whose value is the value fj(x, y) of the j-th component of f . Consider
the 3-party communication game for gf , where Alice gets (x, j), Bob gets (y, j) and
Charlie gets (x, y). Prove the following: if f can be computed by a circuit of depth
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O(lnn) using O(n) fanin-2 gates, then O(n/ log logn) bits of communication are

enough.

Hint: Use Valiant’s lemma (Lemma ??). Take an input (x, y, j) for gf . Seeing the entire input (x, y)
of f , Charlie can compute the values of removed wires. Alice and Bob both know j. The value
fj(x, y) can be computed from the values of the removed wires and from the values of at most nϵ

input variables. Alice and Bob can just write down these nϵ
values.

5.5 Consider the following k-party communication game. Input is a boolean n× k
matrix A, and the i-th player can see all A except its i-th column. Suppose that the

players a priori know that some string v = (0, . . . , 0, 1, . . . , 1) with the first 1 in

position t + 1, does not appear among the rows of A. Show that the players can

decide if the number of all-1 rows is even or odd by communicating only t bits.

Hint: Let yi denote the number of rows of A of the form (0, . . . , 0, 1, . . . , 1), where the first 1
occurs in position i. For every i = 1, . . . , t, the i-th player announces the parity of the number

of rows of the form (0, . . . , 0, ∗, 1, . . . , 1), where the ∗ is at place i. Observe that this number is

yi +yi+1. Subsequently, each player privately computes the mod 2 sum of all numbers announced.

The result is (y1 + yt+1) mod 2, where yt+1 = 0.

5.6 (Grolmusz 1994) Prove that ck(gip) = O(kn/2k).
Hint: Use the previous protocol to show that (without any assumption) k-players can decide if

the number of all-1 rows in a given boolean n × k matrix is even or odd by communicating only

O(kn/2k) bits. To do this, divide the matrix A into blocks with at most 2k−1 − 1 rows in each.

For each block there will be a string v′
of length k − 1 such that neither (0, v′) nor (1, v′) occurs

among the rows in that block. Using k bits the first player can make the string (0, v′) known to

all players, and we are in the situation of the previous exercise.

Comment: Using similar arguments, Grolmusz (1999) proved the following general upper bound.

The L1-norm of a function f : {−1, 1}n → {−1, 1} is the sum

L1(f) :=
∑

S⊆[n]

|f̂(S)| = 2−n
∑

S⊆[n]

∣∣∣∑
x

f(x)
∏
i∈S

xi

∣∣∣
of the absolute values of its Fourier coefficients f̂(S). If L1(f) = M then ck(f) is at most about

k22−knM log(nM). In particular, for k about log M , ck(f) is at most about (log(nM))3
.

5.7 Consider the following multiparty game with a referee. As before, we have

an n × k 0-1 matrix A, and the i-th player can see all A except its i-th column.

The restriction is that now the players do not communicate with each other but

simultaneously write their messages on the blackboard. Using only this information

(and without seeing the matrix A), an additional player (the referee) must compute

the string P (A) = (x1, . . . , xn), where xi is the sum modulo 2 of the number of

1′
s in the i-th row of A. Let N be the maximal number of bits which any player is

allowed to write on any input matrix. Prove that N ≥ n/k.

Hint: For a matrix A, let f(A) be the string (p1, . . . , pk), where pi ∈ {0, 1}N
is the string written

by the i-th player on input A. For each possible answer x = (x1, . . . , xn) of the referee, fix a

matrix Ax for which P (Ax) = x. Argue that f(Ax) ̸= f(Ay) for all x ̸= y.
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5.8 Let H be a hypergraph on n vertices, and 2 ≤ k ≤ n be a divisor of n Suppose

that |e| ≤ k − 1 for all e ∈ H . Show that for any balanced partition of the input

into k parts, there is a k-party communication protocol evaluating gipH using at

most k bits of communication.

Hint: Given a partition of n vertices into k blocks, each e ∈ H must lie outside at least one of

these blocks.

5.9 Let us consider simultaneous messages n-party protocols for the parity function
f(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn in which an additional player (the referee) just outputs

the majority of the answers of players. Consider the following strategy for players:

Each player looks around at everybody else. If a player sees as many 0’s as 1’s,
she sends a value 0. Otherwise, she assumes that the bit on her forehead is the

same as the majority of the bits she sees; she then she sends a value consistent

with this assumption.

Show that this strategy has a success probability 1 − 1
θ(

√
n) , that is, will correctly

compute the parity for all 2n
but a fraction 1/θ(

√
n) of input vectors.

5.10 (The card-flipping game, due to J. Edmonds and R. Impagliazzo) Suppose that

we have two 0-1 vectors u = (u1, . . . , un) and v = (v1, . . . , vn) of length n. We

want to decide whether u = v, but our access to the bits is very limited: at any

moment we can see at most one bit of each pair of the bits ui and vi. We can imagine

the corresponding bits to be written on two sides of a card, so that we can see all

the cards, but only one side of each card. A probe consists in flipping of one or

more of the cards. After every probe we can write down some information but the

memory is not reusable: after the next probe we have to use new memory (that

is, we cannot wipe it out). Moreover, this is the only memory for us: seeing the

information written here (but not the cards themselves), we ask to flip some of

the cards; seeing the actual values of the cards and using the current information

from the memory, we either give an answer or we write some additional bits of

information in the memory; after that the cards are closed for us, and we make the

next probe. Suppose we are charged for every bit of memory that we use as well

as for the number of probes. The goal is to decide if both sides of all cards are the

same using as little of memory and as few probes as possible.

Of course, n bits of memory are always enough: simply write u in the memory,

and flip all the cards to see v.

(a) Let n = r2
for some r ≥ 1. Show that it is possible to test the equality of two

vectors in {0, 1}n
using only r + 1 probes and writing down only r bits in the

memory.

Hint: Split the given vectors u and v into r pieces of length r: u = (u1, . . . , ur) and

v = (v1, . . . , vr). During the i-th probe flip the cards of the i-th piece; compute the vector

wi := u1 ⊕ · · · ⊕ ui−1 ⊕ vi ⊕ ui+1 ⊕ · · · ⊕ ur
and just test if the obtained vector wi

coincides with the vector w0 := u1 ⊕ · · · ⊕ ur
(written in the memory).

(b) Improve this to O(logn) probes at each of which only O(logn) bits written
in the memory. Hint: (Due to Pudlák and Sgall 1997) Think of u and v as 0-1 vectors in
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real vector space Rn
. Compute (a square of) the Euclidean distance ∥u − v∥2 = ⟨u, u⟩ +

⟨v, v⟩ − 2⟨u, v⟩ of u and v, and check if it is 0.
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6. Formulas

Although for general non-monotone circuits no super-linear lower bounds are

known, the situation for formulas is somewhat better: here we are able to prove

quadratic and even super-quadratic lower bounds. These bounds are achieved using

remarkably diverse arguments: counting, random restrictions, set covering and

graph entropy.

6.1 Size versus depth

If not stated otherwise, by a formula we will mean a DeMorgan formula, that is,

a formula with fanin-2 AND and OR gates whose inputs are variables and their

negations. By L(f) we denote the minimal leafsize and by D(f) the minimal depth

of a DeMorgan formula computing a given boolean function f .
Since the underlying graph of a DeMorgan formula is a binary tree, any formula

of depth d can have at most 2d
leaves. This implies that, for every boolean function f ,

D(f) ≥ log2 L(f) .

A natural question is: can formulas be balanced? More precisely: does there exist

a constant c such that every formula of leafsize L can be transformed into an

equivalent formula of depth at most c log2 L?
The question was first affirmatively answered by Khrapchenko: boolean formulas

over any finite complete basis can be balanced; see Yablonskii and Kozyrev (1968,

p. 5). For the formulas over the basis {∧,∨,¬}, this result was independently
proved by Spira (1971) with c < 3.42, and by Brent, Kuck and Maruyama (1973)

with c < 2.47. The constant c was then improved
*
to c < 2.16 by Preparata and

*

The results of Brent, Kuck and Maruyama (1973) and Preparata and Muller (1975) actually hold

for formulas over any commutative ring with the multiplicative identity, not only for boolean

formulas.
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Muller (1975), to c ≤ 2 by Barak and Shamir (1976), then to c ≤ 1.82 by Preparata

and Muller (1976), and finally to c ≤ 1.73 by Khrapchenko (1978).

All these improvements of the constant c were obtained by going deeper and

deeper in the actual structure of a given formula. But the main idea is the same:

choose a particular subformula Y , balance it, then balance the rest of the formula,

and finally combine these balanced formulas to obtain a balanced version of the

original formula. We will demonstrate this idea with a proof for c = 1.82.

6.1 Lemma (Formula Balancing Lemma) For every boolean function f ,

D(f) ≤ 1.82 log2 L(f) .

Proof. First, observe that it is enough to considermonotone formulas, that is, formu-

las over the basis {∧,∨}. Indeed, if we replace all leaves labeled by a negated variable
¬xi (i = 1, . . . , n) in a DeMorgan formula F (x) by a new variable yi, then we

obtain a monotone formula F ′(x, y) with the property that F (x) = F ′(x,¬x). We

then can replace the y-variables in a balanced equivalent of F ′
by the corresponding

negations of x-variables to obtain a balanced formula for F (x).
So we only need to show that every monotone formula with m leaves can be

transformed into an equivalent monotone formula of depth at most c log2 m. To

warm-up, we first prove this with a worse constant c = 3; this argument is due to

Brent, Kuck and Maruyama (1973).

We argue by induction onm. The claim is trivially true form = 2. Now assume

that the claim holds for all formulas with fewer than m leaves, and prove it for

formulas with m leaves. Take an arbitrary monotone formula F with m leaves.

By walking from the output-gate of F we can find a subformula Y such that Y
has ≥ m/2 leaves but its left as right subformulas each have < m/2 leaves. Now

replace the subformula Y of F by constants 0 and 1, and let F0 and F1 be the

resulting formulas. The key observation is that, due to the monotonicity, F1(x) = 0
implies F0(x) = 0. Thus the following formula

F1 Y

∧F0

∨

(6.1)

is equivalent to F . The formulas F0 and F1 as well as the left and right subformulas

of Y each have at mostm/2 leaves. By the induction hypothesis, F0 and F1 can

be replaced by formulas of depth at most 3 log2(m/2), and the formula Y can be

replaced by a formula of depth at most 1 + 3 log2(m/2). Thus, the resulting entire

formula is equivalent to F and has depth at most 2 + 1 + 3 log2(m/2) = 3 log2 m,

as desired.

To improve the constant c to 1.82, we must choose the subformulas F0 and F1
more carefully. The point is that we can take the larger of these subformulas to

be the last subformula in the constructed formula. The formula F (x1, . . . , xn) has
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the form F = H(Y, x) where x = (x1, . . . , xn) and H(y, x) is some monotone

formula of n+ 1 variables. Now look at the path from Y to the root of F :

H1 Y

∗1H2

∗2Ht

∗t

Then F can be written as

H(Y, x) = Ht ∗t (Ht−1 ∗t−1 (. . . (H2 ∗2 (H1 ∗1 Y ))))

where each ∗i is either ∧ or ∨. Let H∧
be the AND of all Hi feeding into ∧-gates,

and H∨
be the OR of all Hi feeding into ∨-gates:

H∧ :=
∧

i:∗i=∧
Hi and H∨ :=

∨
i:∗i=∨

Hi .

We set H∧ = 1 if there are no ∧-gates, and set H∨ = 0 if there are no ∨-gates
along the path. It can be verified that

H∧ ∨H(0, x) = H(1, x) , (6.2)

H∨ ∧H(1, x) = H(0, x) . (6.3)

For this, take a vector x ∈ {0, 1}n
. If H(1, x) = 0 then H(0, y) = 0 by the

monotonicity ofH , andH∧(x) = 0 because otherwiseH would output 1 on input

(1, x). On the other hand, if H(1, x) = 1 but H(0, x) = 0, then H depends on its

first input Y . Since neither H∧
not H∨

depend on this input, H∧(x) = 1 must

hold. This proves (??); (??) follows by a dual argument.

The equalities (??) and (??) imply that

H(Y, x) = (Y ∧H∧(x)) ∨H(0, x) , (6.4)

H(Y, x) = (Y ∨H∨(x)) ∧H(1, x) . (6.5)

After these preparations, we construct the desired balanced formula by induction

on the leafsizem = L(F ) of a given formula F . Let a > 1 be a parameter satisfying

the following two inequalities:

1 − 1
a3 ≤ 1

a
and

1
2

(
1 − 1

a3

)
≤ 1
a2 . (6.6)

Our goal is to show that F can be transformed into an equivalent formula of depth

at most loga m. Assume that L(H∧) ≤ L(H∨). (The case when L(H∧) > L(H∨)
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is treated similarly by using (??) instead of (??).) As before, we can find a subformula

Y of F such that Y has > m/a3
leaves but its left as well as right subformula has

≤ m/a3
leaves. By (??), the formula

H∧(x) Y

∧H(0, x)

∨

is equivalent to F . By (??),

L(H(0, x)) ≤ L(H) ≤ m
(

1 − 1
a3

)
≤ m

a
, (6.7)

L(H∧)) ≤ 1
2L(H) ≤ m

2

(
1 − 1

a3

)
≤ m

a2 . (6.8)

By the induction hypothesis,

• H(0, x) has an equivalent formula of depth ≤ loga(m/a) = loga m− 1;
• H∧

has an equivalent formula of depth ≤ loga(m/a2) = loga m− 2;
• Y has an equivalent formula of depth ≤ loga(m/a3) + 1 = loga m− 2.

Thus, the entire formula has depth at most loga m, as desired. It remains to choose

the parameter a > 1 satisfying (??) (the larger a is, the better upper bound we

obtain). In particular, we can take a = 1.465. This results in the upper bound on

the depth of the form c log2 m where c = 1/ log2 a = 1.82. ⊓⊔

When reducing the depth of a formula withm leaves, the leafsizem′
of the new

formula increases. The reduction above (for the case c = 3) leads tom′ = O(mα)
with α about 2. Bshouty et al. (1991) showed thatm′

can be made smaller at the cost

of a somewhat larger depth: for every k ≥ 2, every DeMorgan formulawithm leaves

can be transformed to an equivalent formula of depth at most (3k ln 2) log2 m ≈
2.08k log2 m and of leafsize at most mα

, where α = 1 + (1 + log2(k − 1))−1
. A

simpler proof was later found by Bonet and Buss (1994).

Lemma ?? states that formulas can be balanced: D(f) = Θ(log L(f)). Nothing
similar is known for circuits. Let C(f) denote the minimum number of gates in a

circuit over the basis {∧,∨,¬} computing f . It can be easily shown that D(f) =
Ω(log C(f)). But the best upper bound on depth in terms of circuit size is

D(f) = O(C(f)/ log C(f)) . (6.9)

This was first proved by Paterson and Valiant (1976), and later proved by Dy-

mond and Tompa (1985) using another method. For functions whose circuits are of

exponential size, this is essentially a tight bound. However, for functions that

can be computed by subexponential-size circuits, there is still a large gap be-

tween log C(f) and C(f)/ log C(f). In the class of layered circuits a better bound
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D(f) = O(
√

C(f) log C(f)) was recently proved by Gál and Jang (2011). A circuit

is layered if its set of gates can be partitioned into subsets called layers, such that

every wire in the circuit is between adjacent layers.

Let D(n) = max D(f) where the maximum is over all boolean functions of n
variables. By considering DNFs or CNFs (depending on whether |f−1(1)| ≤ 2n−1

or not), we see that D(n) ≤ n+ log2 n. McColl and Paterson (1977) improved this

to D(n) ≤ n+ 1, then Gashkov (1978) improved this to D(n) ≤ n− log2 log2 n+
2 + o(1), and finally, Lozhkin (1983) improved this to

D(n) ≤ n− ⌊log2 log2 n− o(1)⌋ ,

which is already optimal up to the o(1) factor. The optimality follows from D(f) ≥
log2 L(f) together with the fact (Theorem ??) that most boolean functions require

formulas of leafsize at least (1 − ϵ)2n/ log2 n
Lozhkin (1981) has also proved the following interesting result: if a boolean

function f can be computed by a depth-d DeMorgan formula using unbounded
fanin AND and OR gates and having S leaves, then

D(f) ≤ d− 1 + ⌈log2 S⌉ .

Note that a trivial upper bound, obtained by simulating each gate by a tree, is only

D(f) = O(d logS). A similar result was independently proved by Hoover, Klawe

and Pippenger (1984). They consider a dual question of reducing the fanout of gates,

not their fanin. What they proved is the following. Take an arbitrary fanin-2 circuit

with n inputs andm outputs. Let S be the size andD the depth of that circuit. Then

there is an equivalent fanin-2 circuit of fanout-2 whose size is at most 3S − 2n and

depth is at most 2D + logm.

The original proofs of these results were somewhat involved. Gashkov (2007)

observed that the proof idea in both papers is actually based on the following simple

fact which may be of independent interest. Let q ≥ 2 be an integer. A q-ary tree T
is a rooted tree, each node of which has at most q children.

6.2 Theorem Every tree with S leaves and depth d can be transformed into a q-ary
tree with S leaves and depth D satisfying qD ≤ qdS.

Proof. A well-known (and easy to prove) result of Kraft (1949) and McMillan (1956)

states that a q-ary tree with m leaves at depths ℓ1, . . . , ℓm exist if and only if∑m
i=1 q

−ℓi ≤ 1. We will need the following “weighted” version of this fact. Let T
be a q-ary tree with t leaves weighted by natural numbers w1, . . . , wt. Let li be the
depth of the i-th leaf. Define the weighted depth of T as max{ℓ1 +w1, . . . , ℓt +wt}.

6.3 Claim It is possible to transform T into a weighted q-ary tree with the same

number of leaves and weighted depth D satisfying qD < q
∑t

i=1 q
wi
.

Proof. SetD := ⌈logq

∑t
i=1 q

wi⌉; hence,
∑t

i=1 q
wi ≤ qD < q

∑t
i=1 q

wi
. Consider

the full q-ary tree T ′
of depth D. Let w1 ≥ . . . ≥ wt. First declare any node v1 of

T ′
at depth D − w1 = ℓ1 a leaf, remove all of its descendants, and give v1 weight
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w1. This removes qD−ℓ1 = qw1
leaves of T ′

from being considered for the rest of

the remaining leaves. In the next iteration choose any node v2 from the remaining

tree at depthD−w2 = ℓ2, not on the path to v1, remove all of its descendants, and

give it weight w2. This removes a qD−ℓ2 = qw2
leaves of T ′

from being considered

for the rest of the remaining leaves. Since

∑t
i=1 q

wi ≤ qD
, we can continue this

for t iterations, thus a desired tree with t leaves can be constructed. ⊓⊔

We now prove the theorem by induction on d. The case d = 1 follows from

Claim ?? with all wi = 0. Now let d ≥ 2, and suppose that the theorem holds

for all trees of depth at most d − 1. Let v1, . . . , vm be the children of the root,

and T1, . . . , Tm subtrees of T rooted in these children. Let Si be the number of

leaves in Ti, and di the depth of Ti. By the induction hypothesis, each Ti can be

transformed into a q-ary tree of depth wi such that qwi ≤ qd−1Si. By Claim ??.
the entire tree T can be transformed into a q-ary tree with S leaves and depth D
satisfying qD ≤ q

∑m
i=1 q

wi ≤ qd
∑m

i=1 Si = qdS. ⊓⊔

Earlier, Lozhkin (1976) considered the behavior of the Shannon function D(n)
of the depth of circuits over arbitrary bases (including infinite ones) in the case

where some of the basis functions are assumed to have zero delay, that is, do not

contribute to the depth of a circuit. He proved that, depending on what basis we

take and what gates have zero delay, only one of the following three situations

can occur: either D(n) = α, or D(n) ∼ β log2 n, or D(n) ∼ γn. Here α, β and γ
are non-negative constants depending only on the used basis and on the delays

assigned to its functions; the dependence is explicitly given.

6.2 A quadratic lower bound for universal functions

In order to prove super-linear lower bounds for formulas, one can use the idea of

“universal functions”, going back to Nechiporuk (1966).

Let n = 2r
and consider two sequences of variables z = (z1, . . . , zr) and

y = (y1, . . . , yn). Each assignment a ∈ {0, 1}r
to the z-variables gives us a unique

natural number bin(a) = 2r−1a1 + · · · + 2ar−1 + ar + 1 between 1 and n; we call
bin(a) the code of a. Consider the boolean function on r + n variables defined by:

Un(z, y) := ybin(z) .

That is, given two vectors z ∈ {0, 1}r
and y ∈ {0, 1}n

, we just compute the code

i = bin(z) of z, and output the i-th bit yi of y. This function is also known as

multiplexer or a storage access function, and is “universal” in the following sense.

6.4 Proposition For every boolean function h(z1, . . . , zr) there is an assignment
b ∈ {0, 1}n such that Un(z, b) = h(z).

Proof. For each a ∈ {0, 1}r
replace the variable ybin(a) by the constant h(a). ⊓⊔
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By Theorem ??, we know that boolean functions h(z1, . . . , zr) requiring DeMor-

gan formulas with L(h) ≥ 2r−1/ log r = n/2 log logn leaves exist. Thus, the func-

tion Un(z, y) also requires so many z-leaves. Of course, this lower bound is trivial

because Un depends on all its y-variables, and hence, requires at least n leaves. One

can, however, boost the complexity of Un(z, y) by considering boolean functions

of 2n variables of the form f(x, y) = Un(g(x), y), where g : {0, 1}n → {0, 1}k
is

some easily computable boolean operator. For this, take a set x of n variables, and

arrange them into a r ×m matrix

x =


x11 x12 · · · x1m

x21 x22 · · · x2m

· · ·
xr1 xr2 · · · xrm


wherem = n/r; we assume that n is divisible by r = log2 n. If we take a boolean
function φ(u1, . . . , um) ofm variables, and apply it to the rows of x, then we obtain
r bits zi = φ(xi1, xi2, . . . , xim), i = 1, . . . , r. The universal function induced by φ
is the following boolean function of 2n variables:

Uφ
n (x, y) := Un(z1, . . . , zr, y) where zi = φ(xi1, xi2, . . . , xim) .

We call φ the generating function of Uφ
n (x, y).

Our goal is now to exhibit a boolean function requiring about n2
leaves in any

binary formula, that is, in a formula where all 24 = 16 boolean functions in two

variables are allowed as gates. For this purpose, we take as generating function φ
the OR of variables:

or(u1, . . . , um) = u1 ∨ u2 ∨ · · · ∨ um .

Note that the resulting boolean function Uor

n (x, y) of 2n variables is explicitly

given. The function first computes the ORs zi = xi1 ∨ · · · ∨ xim of variables

along the rows of x, then computes the code i = bin(z) of the resulting vector

z = (z1, . . . , zr), and finally outputs the i-th bit yi of y.

6.5 Theorem Every binary formula computing Uor

n must have at least n2−o(1) leaves.

Proof. LetF (x, y) be a binary formula computingUor

n (x, y). Fix a boolean function
h(z1, . . . , zr) of r variables requiring the largest binary formula. By Theorem ??,
we know that any such formula must have at least

c2r

log r = cn

log logn (6.10)

leaves, for a constant c > 0. By Proposition ??, there is an assignment b ∈ {0, 1}n
to

the y-variables of Un(z, y) such that Un(z, b) = h(z). Thus, the boolean function



164 6 Formulas

f(x) := Uor

n (x, b) = h
( m∨

j=1
x1j ,

m∨
j=1

x2j , . . . ,

m∨
j=1

xrj

)
of n variables is a subfunction of Uor

n (x, y); recall thatm = n/r = n/ logn.
In each row of the matrix x of variables, mark a variable which appears as a

leaf of F the smallest number of times (when compared to the remaining variables

of that row). Set all non-marked variables in x to 0. After this setting we obtain a

formula F ′
on r marked variables such that F ′

computes h. Since we have fixed
only the “most popular” variables of each row of x, the number of leaves in F must

be at leastm times larger than the number L(F ′) of leaves in the obtained formula

F ′
. Together with (??), this implies that the number of leaves in the formula F (x, b),

and hence also in the original formula F (x, y), must be at least

m · L(F ′) ≥ m · cn

log logn = cn2

logn log logn . ⊓⊔

6.6 Remark Note that the same argument works for the universal function Uφ
n (x, y)

induced by any(!) boolean function φ depending on all itsm variables. Recall that a

boolean function φ(u1, . . . , um) depends on its i-th variable if there are constants

a1, . . . , ai−1, ai+1, . . . , am in {0, 1} such that the subfunctionφ(a1, . . . , ai−1, ui, ai+1, . . . , am)
is either ui or¬ui. Having a boolean functionφwhich depends on all itsm variables,

we can replace the unmarked variables by the corresponding constants. What we

obtain may (apparently) not be the function h(x1, . . . , xr) itself but some function

of the form h′(x1, . . . , xr) = h(x1 ⊕ σ1, . . . , xr ⊕ σr) where σi ∈ {0, 1}. This,
however, does not matter because h′

still requires c2r/ log r leaves.

6.7 Remark In the definition of the universal function Un(z, y) of r + n variables

with n = 2r
we used binary representation of positions i of vector y. One can also

use other encodings of boolean functions. Recall that an elementary conjunction of r
variables z = (z1, . . . , zr) is a boolean function of the formK(z) = za1

1 za2
2 · · · zan

n ,

where a1, . . . , ar ∈ {0, 1}, zσ
i = 1 if ai = σ, and zσ

i = 0 otherwise. Since each

such conjunction accepts exactly one vector a = (a1, . . . , an), every boolean

function f(z) of r variables can be represented as an OR of at most 2r
elementary

conjunctions. Thus, if K1, . . . ,Kn are all n = 2r
elementary conjunctions of

variables z, then the boolean function

Vn(z, y) =
n∨

i=1
yi ∧Ki(z)

is also universal in the sense of Proposition ??. In particular, if we take this function

instead of Un(z, y) and use the OR as the generating function φ, then the same

argument as in the prof of Theorem ?? yields that resulting function V or

n (x, y)
of 2n variables also requires n2−o(1)

leaves in any binary formula. Note that the

function V or

n can be computed by a DeMorgan formula with O(n) unbounded
fanin AND and OR gates.
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6.3 The effect of random restrictions

The quadratic lower bound, given in Theorem ??, is not quite satisfying because

it only holds for some specially designed boolean functions. In fact, this lower

bound does not give much more information about the power of formulas than the

counting lower bounds we derived in Section ??. In particular, such a counting-based
argument says nothing about the complexity of other boolean functions.

As early as 1961, Bella Abramovna Subbotovskaya, a student of Oleg Borisovitch

Lupanov, found a more subtle lower bounds argument for DeMorgan formulas.

Given a formula F computing some function f , her idea was to set randomly some

of the variables to constants and show that this restriction reduces the size of F con-

siderably whereas the resulting subfunction of f is not much easier. Subbotovskaya

was actually the inventor of the “method of random restrictions”, one of the most

powerful tools for proving lower bounds.

6.8 Lemma (Subbotovskaya 1961) For every boolean function f of n variables, it is
possible to fix one of its variables such that the resulting boolean function f ′ of n− 1
variables satisfies

L(f ′) ≤
(

1 − 1
n

)3/2
· L(f) .

Proof. Let F be a minimal DeMorgan formula which computes f(x1, . . . , xn) and
has s = L(f) leaves (input gates). Since f has only n variables, at least one variable

xi must appear at least s/n times as a leaf, that is, at least s/n leaves are labeled by

xi or ¬xi. Thus if we set xi to a constant c ∈ {0, 1}, what we obtain is a formula

of n − 1 variables with at most s − s/n = (1 − 1/n)s leaves. But this is not the
whole truth: when setting a variable to a constant we can expect to “kill off” not

only the variable itself but also some other leaves labeled by other variables.

To show this, say that a subformula G of F is a neighbor of a leaf z, if z ∧G or

z ∨G is a subformula of F .

6.9 Claim If z ∈ {xi,¬xi} is a leaf of F , then the neighbor of z does not contain
the variable xi.

Proof. Let F be a minimal non-constant formula, z ∈ {xi,¬xi} one of its leaves,

and G the neighbor of z in F . Hence, H = z ∧G (or H = z ∨G) is a subformula

of F . For the sake of contradiction, assume that G contains a leaf z′ ∈ {xi,¬xi}.
Replace this leaf by that constant c ∈ {0, 1} for which the literal z get value 1. That
is, replace the leaf z′

by 1 if z = xi, and by 0 if z = ¬xi. (If H = z ∨G, then we

set z′
so that the literal z gets value 0.)

After this setting, the resulting subformula G′
has one leaf fewer than G, but

the resulting subformula H ′ = xi ∧ G′
computes the same boolean function as

xi ∧G. To see this, take an input vector a ∈ {0, 1}n
. If ai = c then z(a) = 1 and

G′(a) = G(a), implying that H ′(a) = H(a). If ai = c ⊕ 1 then z(a) = 0, and
we again have that H ′(a) = 0 = H(a). Thus, we obtained a formula F ′

which
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computes the same boolean function as the original formula F but has one leaf

fewer. This contradicts the minimality of F . ⊓⊔

Take now a variable xi which appears t ≥ s/n times as a leaf of F . Let z1, . . . , zt

be the leaves labeled by xi or ¬xi. By Claim ??, for every i = 1, . . . , t there is a
constant ci ∈ {0, 1} such that, after setting xi = ci, the neighbor Gi of zi will

disappear from F , thereby erasing at least one more leaf which is not among the

leaves z1, . . . , zt. Let c ∈ {0, 1} be the constant which appears most often in the

sequence c1, . . . , ct. If we set xi = c, then all the leaves z1, . . . , zt will disappear

from the formula, and at least t/2 additional leaves will disappear because of these

secondary effects. In total, we thus eliminate at least t+ t/2 ≥ 3s/2n leaves, and

the resulting formula has at most

s− 3s
2n = s ·

(
1 − 3

2n

)
≤ s ·

(
1 − 1

n

)3/2

leaves, as claimed. ⊓⊔

6.10 Theorem (Subbotovskaya 1961) For every boolean function f of n variables and
for every integer 1 ≤ k ≤ n, it is possible to fix n− k variables such that the resulting
boolean function f ′ of k variables satisfies

L(f ′) ≤
(k
n

)3/2
L(f) .

Proof. Let s = L(f). By applying Lemma ?? n− k times, we obtain a formula of k
variables with at most

s ·
(

1 − 1
n

)3/2(
1 − 1

n− 1

)3/2
· · ·
(

1 − 1
k + 1

)3/2
= s ·

(k
n

)3/2

leaves. ⊓⊔

6.11 Example (Parity function) Let f = x1 ⊕ x2 ⊕ · · · ⊕ xn. If we fix all but one

variables of f , we obtain a boolean function f ′
(a variable or its negation) requiring

formula of leafsize 1. Thus, we can apply Theorem ?? with k = 1 and obtain that

1 ≤ L(f ′) ≤
( 1
n

)3/2
L(f) ,

which gives the lower bound L(f) ≥ n3/2
.

In order to prove larger lower bounds, it is useful to restate Subbotovskaya’s

argument in probabilistic terms. Let f be a boolean function, andX = {x1, . . . , xn}
the set of its variables. A partial assignment (or restriction) is a function ρ : X →
{0, 1, ∗}, where we understand ∗ to mean that the corresponding variable is unas-

signed. Each such partial assignment ρ yields a restriction (or a subfunction) fρ of

f in a natural way: fρ = f(ρ(x1), . . . , ρ(xn)) . Note that fρ is a function of the

variables xi for which ρ(xi) = ∗. For example, if
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f = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x3)

and ρ(x1) = 1, ρ(x2) = ρ(x3) = ∗, then fρ = x2.
Let Rk be the set of all partial assignments which leave exactly k variables

unassigned. What we will be interested in is the random restrictions fρ that results

from choosing a random partial assignment from Rk . The probability distribution

of restrictions in Rk we will use is the following: randomly assign k variables to be

∗, and assign all other variables to be 0 or 1 randomly and independently.

Theorem ?? states that, for every boolean function f , there exists a restriction
ρ ∈ Rk such that L(fρ) ≤ (k/n)3/2L(f). We now show that, in fact, this happens

for at least a 3/4 fraction of all restrictions in Rk .

6.12 Lemma Let f be a boolean function of n variables, and let ρ be a random
restriction from Rk . Then, with probability at least 3/4,

L(fρ) ≤ 4
(k
n

)3/2
L(f) .

Proof. The argument is actually the same as in the proof of Theorem ??. Let F be

an optimal DeMorgan formula for the function f of size s = L(f). Construct the
restriction ρ in n− k stages as follows: At any stage, choose a variable randomly

from the remaining ones, and assign it 0 or 1 randomly. We analyze the effect of

this restriction to the formula F , stage-by-stage.
Suppose the first stage chooses the variable xi. When this variable is set to

a constant, then all the leaves labeled by the literals xi and ¬xi will disappear

from the formula F . By averaging, the expected number of such literals is s/n.
Since xi is assigned 0 or 1 randomly with equal probability 1/2, we can expect (by

Claim ??) at least s/2n additional leaves to disappear. In total, we thus expect at

least s/n + s/2n = 3s/2n leaves to disappear in the first stage, yielding a new

formula with expected size at most s− 3s/2n ≤ s(1 − 1/n)3/2
. Subsequent stages

of the restriction can be analyzed in the same way. After each stage the number of

variables decrements by one. Hence, after n− k stages, the expected leafsize of the

final formula is at most s(k/n)3/2
. By Markov’s inequality, the probability that the

random variable L(fρ) is more than 4 times its expected value is smaller than 1/4,
which completes the proof. ⊓⊔

Subbotovskaya’s result can be stated for more general probability distributions.

Suppose that p is a real number between 0 and 1. A p-random restriction indepen-

dently assigns each variable xi the value 0 or 1 with equal probabilities (1 − p)/2,
and with the remaining probability p keeps xi unfixed. Thus, the distributions we

have considered above correspond to p = k/n. What will be the expected formula

size of the induced function when we apply a random restriction? The obvious

answer is that this size will be at most pL.
What Subbotovskaya actually shows is that formulas shrink more. Namely, she

establishes an upper bound O(p3/2L) on the expected formula size of the induced

function. Her work and the subsequent result of Andreev (Theorem ?? below)
motivated consideration of the shrinkage exponent Γ of DeMorgan formulas. This
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number Γ is defined as a largest number such that, if a boolean function f has a

DeMorgan formula of size L, then the expected formula size of the induced function

is O(pΓL).
Impagliazzo and Nisan (1993) showed that Γ ≥ 1.55, then Paterson and Zwick

(1993) showed Γ ≥ 1.63, and finally Håstad (1998) proved that Γ = 2.

6.13 Theorem (Håstad 1998) If we apply a p-random restriction to a DeMorgan of
leafsize L, then the expected remaining leafsize is at most O(p2L).

6.4 A cubic lower bound

Andreev (1987a) was the first to prove a super-quadratic lower bound for DeMorgan

formulas. His idea was to combine the method of Subbotovskaya with Nechiporuk’s

method of universal functions (discussed in Section ??) For this purpose, Andreev
considered the universal function generated by the parity function:

⊕(u1, . . . , um) = u1 ⊕ u2 ⊕ · · · ⊕ um .

The resulting function is then a boolean function U⊕
n (x, y) of 2n variables, where

n = 2r
is a power of 2. The first variable x are arranged into an r ×m matrix

x =


x11 x12 · · · x1m

x21 x22 · · · x2m

· · ·
xr1 xr2 · · · xrm


where m = n/r; we assume that n is divisible by r = log2 n. The function first

computes the parities zi = xi1 ⊕ · · · ⊕ xim of variables along the rows of x, then
computes the code i = bin(z) of the resulting vector z = (z1, . . . , zr), and finally

outputs the i-th bit yi of y.

6.14 Theorem (Andreev 1987a) L(U⊕
n ) ≥ n5/2−o(1).

Proof. Fix a boolean function h(z1, . . . , zr) of r variables requiring the largest

DeMorgan formula. By Theorem ??, we know that any such formula must have at

least

2r−1

log r = n

2 log logn (6.11)

leaves. Note that, if we replace some variable zi in h by their negations, the resulting

boolean function will require this number of leaves. By Proposition ??, there is an
assignment b ∈ {0, 1}n

to the y-variables of Un(z, y) such that Un(z, b) = h(z).
Thus, the boolean function

f(x) := U⊕
n (x, b) = h

( m⊕
j=1

x1j ,

m⊕
j=1

x2j , . . . ,

m⊕
j=1

xrj

)
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of n variables is a subfunction of U⊕
n (x, y). Recall that x = (xij) is an r×mmatrix

of boolean variables for r = log2 n and m = n/r. Let ρ be a random restriction

from Rk on the x-variables where k = ⌈r ln(4r)⌉. Our first goal is to show that,

with a large probability, at least one variable in each row of x will remain unfixed

by ρ:

Prob[ρ assigns an ∗ to each row of x] ≥ 3
4 . (6.12)

To show this, observe that the restriction ρ assigns an ∗ to each single variable with

probability

(
n−1
k−1
)/(

n
k

)
= k

n . By the union bound, the probability that some of r
rows will get no ∗ is at most

r ·
(

1 − k

n

)m

≤ r · e− km
n ≤ r · e− ln(4r) = 1/4 .

On the other hand, Lemma ?? implies that

Prob[ L(fρ) ≤ 4
(

k
n

)3/2
L(f) ] ≥ 3

4 . (6.13)

Some restriction ρ will thus satisfy both conditions (??) and (??). Fix such a re-

striction ρ. By (??), the function h is a subfunction of fρ, whereas by (??), L(fρ)
is at least 4(k/n)3/2

times smaller than L(f). Recalling that k = ⌈r ln(4r)⌉ =
O(logn log logn) and using (??), for such a restriction ρ we obtain

L(U⊕
n ) ≥ L(f) ≥ 1

4

(n
k

)3/2
L(fρ)

≥ 1
4

(n
k

)3/2
L(h)

≥ 1
4

(n
k

)3/2 n

2 log logn
≥ n5/2−o(1) .⊓⊔

The proof of Theorem ?? actually gives the lower bound

L(U⊕
n ) = Ω(nΓ +1−o(1)) ,

where Γ is the shrinking exponent of DeMorgan formulas. Andreev used Sub-

botovskaya’s lower bound Γ ≥ 3/2. Using Håstad’s improvement Γ ≥ 2 (see

Theorem ??), we immediately obtain a larger lower bound for Andreev’s function.

6.15 Theorem (Håstad 1998) L(U⊕
n ) ≥ n3−o(1).
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6.5 Nechiporuk’s theorem

Nechiporuk (1966) found another argument which works for binary formulas where

all 24 = 16 boolean functions in two variables are allowed as gates. Let LB(f)
denote the minimum leafsize of a binary formula computing f .

A subfunction of a boolean function f(X) on Y ⊆ X is a function obtained from

f by setting all the variables of X \ Y to constants.

6.16 Theorem (Nechiporuk 1966) Let f be a boolean function on a variable setX , let
Y1, Y2, . . . , Ym be disjoint subsets of X , and let si be the number of distinct subfunc-
tions of f on Yi. Then

LB(f) ≥ 1
4

m∑
i=1

log si .

Proof. Let F be an optimal binary formula for f and let li be the number of leaves

labeled by variables in Yi. It is sufficient to prove that li ≥ (1/4) log si. Let Li

be the set of all leaves in F labeled by variables from Yi. Consider the subtree Ti

consisting of all these leaves and all paths from these leaves to the output of F .
Each node of Ti has in-degree 0, 1 or 2. LetWi be the set of nodes of in-degree 2.
Since |Wi| ≤ li − 1, it is enough to lower-bound the number |Wi| of such nodes in

terms of the number si of different Yi-subfunctions of f .
Let Pi be the set of all paths in Ti starting from a leaf in Li or a node inWi and

ending in a node inWi or at the root of Ti and containing no node inWi as inner

node. There are at most |Wi| + 1 different end-points of paths in Pi. Moreover, at

most two of these path can end in the same node v. These paths can be found by

starting in v and going backwards until a node inWi or a leaf is reached. Hence

|Pi| ≤ 2(|Wi| + 1) . (6.14)

Assignments to the variables outside Yi must lead to si different subformulas. Fix

such an assignment α. If we remove from F all gates that are evaluated to a constant

0 or 1 by α, then what we obtain is precisely the tree Ti. That is, the subfunction

F (Yi, α) is computed by the gates of Ti whose fanin-1 gates correspond to fanin-2
gates of F with one of the input gates replaced by a constant. So, if p is a path in

Pi, and h is a function computed at the first gate of p (after an assignment α) then
the function computed at the last edge of p is 0, 1, h or ¬h. Thus, under different
assignments α at most 4|Pi|

subfunctions can be computed, implying that si ≤ 4|Pi|
.

Together with (??), this implies that |Wi| ≥ (1/4) log si − 1. Since |Wi| ≤ li − 1,
this gives the desired lower bound li ≥ (1/4) log si on the number of leaves labeled

by variables in Yi. ⊓⊔

Recall that the element distinctness function EDn is a boolean function of n =
2m logm variables divided into m consecutive blocks with 2 logm variables in

each of them. Each of these blocks encode a number in [m2]. The function accepts

an input x ∈ {0, 1}n
iff all these numbers are distinct.
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By considering

(
m
2
)
subformulas, each testing the distinctness of one pair of

blocks, we see that EDn can be computed by a DeMorgan formula with about(
m
2
)

logm = O(n2/ logn) leaves. On the other hand, we have already shown

that EDn has 2Ω(n)
subfunctions on each of these m = Ω(n/ logn) blocks (see

Lemma ??). Thus, Nechiporuk’s theorem immediately yields

6.17 Theorem A minimal binary formula computing EDn has Θ(n2/ logn) leaves.

Thus, Nechiporuk’s theorem can be used to prove almost quadratic lower bounds.

6.18 Remark Unfortunately, the theorem is inherently unable to give a lower bound

larger than Θ(n2/ logn). To see this, take an arbitrary partition Y1, . . . , Ym of the

setX of n variables of a boolean function. Let ti := |Yi| and let si be the number of

subfunctions of f on Yi. Then log si ≤ min{n− ti, 2ti}. Assume w.l.o.g. that only

the first k of the block-lengths t1, . . . , tm are larger than logn. Since the blocks are
disjoint, this implies that k < n/ logn, and the contribution of the first k blocks is

k∑
i=1

log si ≤
k∑

i=1
(n− ti) ≤ n2/ logn .

Each of the remainingm− k blocks can contribute at most log si ≤ 2ti ≤ n. Since
the function x 7→ 2x

is convex, the sum along these blocks is maximized when

as many of the ti as possible are near to their upper bound logn, that is, when
m− k = O(n/ logn). Thus, the total contribution of the remaining blocks is also

at mostmn = O(n2/ logn).

6.19 Remark Nechiporuk’s theorem has no analogue for circuits. Namely, Uhlig

(1991) showed that there exist boolean functions f of n variables such that f has

about 3n
subfunctions, but f can be computed by a circuit of depth logn using at

most 2n fanin-2 boolean functions as gates (cf. Exercise ??). Interestingly, earlier
Uhlig (1974) showed that, for every γ ∈ [0, 1], the class of all boolean functions

with at least γ3n
subfunctions contains functions requiring circuits of size cγ2n/n.

6.6 Lower bounds for symmetric functions

Recall that a boolean function f(x1, . . . , xn) is symmetric if its value only depends

on the number |x| = x1 + x2 + · · · + xn of 1s in the input vector. Thus, every such

function is specified by boolean vector v = (v0, v1, . . . , vn) in {0, 1}n+1
such that

f(x) = 1 iff v|x| = 1; the vector v is the characteristic vector of f . If f is a symmetric

boolean function, then f can have at most n − |Y | + 1 distinct subfunctions on

any set Y of variables. Thus, Nechiporuk’s method cannot yield superlinear lower

bounds for symmetric functions. Khrapchenko’s method, which we will present in

the next section, can yield even quadratic lower bounds for symmetric functions,

but it only works for DeMorgan formulas.
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Fig. 6.1 After setting to 0 all variables in Y , the function f(X) turns to a homogeneous function

f ′(Y ). The function f ′(Y ) has the same values in all odd levels, and has the same values in all

even levels, except perhaps the zero-level. Here a is the boolean vector with ones in position in Y ,

and zeros elsewhere.

Superlinear lower bounds LΩ(f) = Ω(nα(n)) for formulas over an arbitrary
finite complete basis Ω computing symmetric functions f were proved by Hodes

and Specker (1968). Here α(n) is a very slowly growing function, slower than a

k-fold logarithm of n, for every k. Their method was applied by Khrapchenko

(1976) and Paterson (1976), who proved superlinear lower bounds for all symmetric

boolean functions of n variables, except for 16 functions which can be computed

with linear-size formulas. The 16 exceptional functions have the form f(x) =
α0 ⊕ α1P (x) ⊕ α2K(x) ⊕ α3K(x), where the coefficients αi take values 0 and 1,
P (x) = x1 ⊕ · · · ⊕ xn,K(x) = x1 ∧ · · · ∧ xn, andK(x) = x1 ∧ · · · ∧ xn.

Pudlák (1984b) substantially enhanced their method to prove that LΩ(f) ≥
cΩn log logn holds for all symmetric boolean functions of n variables, with an

exception of only 16 functions described above; here cΩ > 0 is a constant depending

only on the basis Ω.

Pudlák’s argument is based on the following structural property of boolean

functions computable by small formulas. Say that a symmetric boolean function f
is homogeneous if its characteristic vector v has the same values in all odd positions,

and has the same values in all even position, except possibly in position 0. That
is, when ignoring the all-0 vector, such a function is either a constant function, or

the parity function, or the negation of the parity function. In other words, every

homogeneous function has the forms f(x) = α0 ⊕ α1P (x) ⊕ α2K(x).
A boolean function f(X) of n variables is r-homogeneous if there exists a subset

Y ⊆ X of |Y | = n− r variables such that the subfunction of f obtained by setting

to 0 all variables in Y is a homogeneous symmetric boolean function of r variables
(see Fig ??).

6.20 Theorem (Pudlák 1984b) Let f(X) be a boolean function of n variables. If f is
not r-homogeneous for some integer r ≥ 3, then

LΩ(f) ≥ cΩn(log logn− log r) .
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The proof uses Ramsey-type arguments and is sketched, for example, in the book

by Dunne (1988). To see how this theorem works, let us consider the threshold-

2 function Thn
2 and take r = 3. If we set to 0 any n − 3 variables, then the

obtained symmetric subfunction Th3
2 is not homogeneous. Theorem ?? implies that

LΩ(Thn
2 ) ≥ cΩn log logn.

Yet another lower bounds argument for the formula size of symmetric boolean

functions was proposed by Fisher, Mayer and Paterson (1982). Their argument

works only for binary formulas (over the basis containing all boolean function of

two variables) but the resulting lower bounds are stronger, up to Ω(n logn).
To state their result, call a subfunction of a boolean function f balanced if

n1 − n0 ∈ {0, 1}, where n1 is the number of variables replaced by ones, and n0 is

the number of variables replaced by zeros . Let a(f) denote the maximum number

d such that the set of all balanced subfunctions of f contains a parity function of d
variables or its negation.

6.21 Theorem (Fisher–Mayer–Paterson 1982) There is a constant c > 0 such that
for every boolean function f of n variables,

LB(f) ≥ cn log n

a(f) .

The proof can also be found in the book by Dunne (1988). We will only prove an

important consequence of this theorem, giving us a simple lower-bounds criterion.

Say that a boolean function f ism-separated if there exists a constant a ∈ {0, 1}
such that f(x) = a for all input vectors x with exactlym ones, and f(x) = a⊕ 1
for all input vectors x with exactlym+ 2 ones.

6.22 Theorem There is a constant c > 0 such that for every 0 ≤ m ≤ n − 2 and
everym-separated boolean function f of n variables, LB(f) is at least the minimum
of cn logm and cn log(n−m).

Proof. We can assume w.l.o.g. thatm ≤ ⌊n/2⌋. Since f ism-separated, we know

that f takes some fixed value a ∈ {0, 1} on all inputs with exactly m ones, and

takes value a⊕ 1 on all inputs with exactlym+ 2 ones.

We first prove the assertion form = ⌊n/2⌋. It is sufficient to prove that a(f) ≤ 2.
Let us consider an arbitrary balanced subfunction f ′

of f on three variables. That is,

f ′
is obtained from f by setting some n−3 variables to constants 0 and 1. Moreover,

⌈(n− 3)/2⌉ variables have been replaced by ones, and ⌊(n− 3)/2⌋ variables have

been replaced by zeros . Sincem− ⌈(n− 3)/2⌉ = 1, we have that f ′(1, 0, 0) = a
but f ′(1, 1, 1) = a⊕ 1. Thus, f ′

can be neither the parity of three variables nor its

negation, and Theorem ?? implies that LB(f) ≥ cn log(n/2) ≥ cn logm.

We now consider the case whenm < ⌊n/2⌋. Let F be an optimal formula for f ,
and let ri be “replication” of the i-variable in F , that is, the number of leaves of F
labeled by xi. Hence, F has L(F ) =

∑n
i=1 ri leaves. Set to zero n−2m variables of

the largest replication, and let F ′
be the resulting subformula of 2m variables. Since

the function f wasm-separated, its subfunction computed by F ′
ism-separated

as well. By what we just proved above, F ′
must have at least c(2m) logm leaves.
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Thus, there must be a variable xi such that at least c logm leaves of F ′
(and hence,

also of F ) are labeled by xi. But then we must also have that rj ≥ c logm for all

n− 2m variables xj which we replaced by zeros. Thus,

LB(f) = L(F ) ≥ (n− 2m)c logm+ c(2m) logm = cn logm. ⊓⊔

Theorem ?? yields superlinear lower bounds LB(f) = Ω(n logn) for every
symmetric boolean function f of n variables whose characteristic vector v =
(v0, v1, . . . , vn) has a positionm such that vm ̸= vm+2 and bothm and n−m are

at least nΩ(1)
. In particular, we have such a lower bound for the majority function

Majn, as well as for every counting function Modn
k (x) = 1 iff x1 + · · · + xn ≡

0 mod k, as long as k > 2 and k is not too large.

6.7 Formulas and rectangles

For DeMorgan formulas, that is, for formulas over the basis {∧,∨,¬}, we have yet
another lower bounds argument, due to Khrapchenko (1971). He used this argument

to prove an n2
lower bound for the parity function. Later, Rychkov (1985) observed

that the essence of Khrapchenko’s argument is more general: it reduces the lower

bounds problem for DeMorgan formulas to a combinatorial problem about the

covering of rectangles by monochromatic subrectangles.

We have already arrived to the concept of “rectangles” and “monochromatic

rectangles” in Chapter ?? when dealing with the communication complexity of

relations, see Definitions ?? and ??. Since we will use these concepts extensively, let
us recall them.

An n-dimensional combinatorial rectangle, or just a rectangle, is a Cartesian

product R = A × B of two disjoint subsets A and B of vectors in {0, 1}n
. A

subrectangle of R is a subset S ⊆ R which itself forms a rectangle.

A boolean function f : {0, 1}n → {0, 1} separates a rectangleA×B if f(A) = 1
and f(B) = 0, that is, if f(a) = 1 for all a ∈ A and f(b) = 0 for all b ∈ B.

Rectangles separated by a boolean variable xi or by its negation ¬xi are called

monochromatic. That is, a rectangle R is monochromatic, if there exists an index i
such that

ai ̸= bi for all edges (a, b) ∈ R.

Rectangles separated by non-negated variables xi are called positively monochro-
matic. For such rectangles we additionally have that

ai = 1 and bi = 0 for all edges (a, b) ∈ R.

For example, ifA = {000} andB = {100, 010, 001} then the rectangleA×B is not
monochromatic, whereas ifA = {001, 111} andB = {000, 110} then the rectangle

A×B is monochromatic, and even positively monochromatic: it is separated by

x3.
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The tiling number χ(R) of a rectangle R is the smallest number t such that R
can be decomposed into t disjoint monochromatic rectangles. The tiling number

χ(f) of a boolean function is the tiling number of the rectangle f−1(1) × f−1(0).
The monotone tiling numbers, where only positively monochromatic rectangles

are allowed in decompositions, are denoted by χ+(R) and χ+(f). In general, these

two numbers may not be defined: the simplest example is the function such that

f(0) = 1 and f(1) = 0. But if f is a monotone boolean function f , then f(a) = 1
and f(b) = 0 implies that there must be an i for which ai = 1 and bi = 0. Hence,
χ+(f) is well-defined for all monotone boolean functions.

Recall that any n-dimensional rectangle R can be covered by at most 2n
monochromatic rectangles, if we do not insist on their disjointness. For this, it
is enough to take the 2n rectangles

Mi,a = {(x, y) ∈ R | xi = a, yi = 1 − a} (a = 0, 1 and i = 1, . . . , n)

called canonical monochromatic rectangles. Thus, it is the disjointness constraint
which makes the tiling number χ(R) nontrivial.

The following lemma reduces the (computational) problem of proving a lower

bound on the formula size to a (combinatorial) problem about decomposition of

rectangles.

Let L(f) be the smallest leafsize of a DeMorgan formula computing f . A formula

is monotone if it has no negated variables as input literals. If f is a monotone boolean

function, thenL+(f) denotes the smallest leafsize of a monotone DeMorgan formula

computing f .

6.23 Lemma (Rychkov 1985) For every boolean function f and for every monotone
boolean function g, L(f) ≥ χ(f) and L+(g) ≥ χ+(g).

Proof. We prove the first inequality by induction on L(f). If L(f) = 1 then f is

just a single variable xi or its negation. In this case R itself is a monochromatic

rectangle.

For the induction step, let t = L(f) and assume that the theorem holds for all

boolean functions g with L(g) ≤ t− 1. Take a minimal formula for f , and assume

that its last gate is an And gate (the case of an Or gate is similar). Then f = f0 ∧ f1
for some boolean functions f0 and f1 such that L(f0) + L(f1) = L(f).

Suppose that f separates a rectangle R = A × B, that is, f(A) = 1 and

f(B) = 0. Consider the set B0 = {b ∈ B | f0(b) = 0}. Then f0 separates the

rectangle R0 = A×B0, and f1 separates the rectangle R1 = A× (B1 \B0). By
the induction hypothesis, χ(Ri) ≤ L(fi) for both i = 0, 1. Hence,

χ(R) ≤ χ(R0) + χ(R1) ≤ L(f0) + L(f1) = L(f) .

The proof of the lemma in the monotone case is the same with the basis case

replaced by L+(g) = 1. In this caseR itself is a positively monochromatic rectangle.

The induction step is the same. ⊓⊔

It is not known whether some polynomial inverse of Rychkov’s lemma holds.
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6.24 Research Problem
Does L(f) ≤ χ(f)O(1)

?

What we know is only a “quasi-polynomial” inverse

L(f) ≤ χ(f)2 log χ(f)

which is a direct consequence of Lemma ??. Still, since boolean functions with

L(f) = Ω(2n/ logn) exist (see Theorem ??), the latter inequality implies that

boolean functions f of n variables such that χ(f) ≥ 2(1−o(1))
√

n
exist. Hence, in

principle, the tiling number can also achieve super-polynomial lower bounds on

the formula size.

6.25 Remark Khrapchenko (1971) himself considered not formulas but an equivalent

model of π-schemes (see Proposition ??). These are switching networks of a special

parallel-serial structure. A path in a π-scheme is a set P of contacts in a simple path

from the source to the target node. A cut is a setC of contacts such that the removal

of C cuts off all paths, and no proper subset of C does this. Khrapchenko observed

that π-schemes (unlike general switching networks) have the following special

property: |P ∩C| = 1 for every path P and every cut C (we leave the proof of this

observation as an exercise). Now, with every vector x ∈ f−1(1) we can associate

one path, all contacts of which accept x, and with every vector y ∈ f−1(0) we can
associate one cut, all contacts of which reject y. By the observation above, every

pair (x, y) ∈ f−1(1) × f−1(0) will be associated with exactly one contact in the

scheme, and the set of pairs associated with a single contact form a monochromatic

rectangle. In this way we obtain a partition of f−1(1)×f−1(0) into monochromatic

rectangles whose number is exactly the number of contacts in the scheme.

6.8 Khrapchenko’s theorem

As early as 1971, Khrapchenko suggested one way to prove lower bounds on the

tiling number. Define the set

A⊗B = {(a, b) | a ∈ A and b ∈ B and a ∼ b} ,

where a ∼ b means that inputs a and b differ on exactly one bit. The main property

of the set A⊗B is accumulated in the following

6.26 Lemma No monochromatic s× t rectangle can cover more than
√
st elements of

A⊗B.

Proof. Let S × T be a monochromatic s × t subrectangle of A × B. Since the

rectangle is monochromatic, each element of S differs from each element in T in

one particular position j, whereas (a, b) is in A⊗B only if a and b differ in exactly

one position. Hence, for any given a ∈ S, the only possible b ∈ T for which a ∼ b
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is one which differs from a exactly in position j. As a result, we have that S × T
can cover at most min{|S|, |T |} = min{s, t} ≤

√
st entries of A⊗B. ⊓⊔

Intuitively, if A ⊗ B is large, then every formula separating A and B should

be large, since the formula must distinguish many pairs of adjacent inputs. The

following theorem says just how large.

6.27 Theorem (Khrapchenko 1971) If a boolean function f separates a rectangle
A×B, then

L(f) ≥ |A⊗B|2

|A| · |B|
.

Viewing A⊗B as the set of edges of a bipartite graph with parts A and B, the

theorem states that the leafsize of any formula separating A and B must be at least

the product of the average degrees of these two parts.

Proof. Suppose we have a decomposition ofA×B into rmonochromatic rectangles

of dimensions si × ti, i = 1, . . . , r. Let ci be the number of elements of A ⊗ B
in the i-th of these rectangles. By Lemma ??, we know that c2

i ≤ siti. Since the
rectangles are disjoint and cover the whole rectangle A × B, we also have that

|A ⊗ B| =
∑r

i=1 ci and |A × B| =
∑r

i=1 aibi. Applying the Cauchy–Schwarz

inequality (
∑
xiyi)2 ≤ (

∑
x2

i ) · (
∑
y2

i ) with xi = ci and yi = 1, we obtain

|A⊗B|2 =
( r∑

i=1
ci

)2
≤ r

r∑
i=1

c2
i ≤ r ·

r∑
i=1

aibi = r · |A×B| . ⊓⊔

Khrapchenko’s theorem can be used to show that some explicit boolean func-

tions require formulas of quadratic size. Consider, for example, the parity function

⊕n(x) = x1 ⊕· · ·⊕xn and threshold-k functions Thn
k (x) = 1 iff x1 + · · ·+xn ≥ k.

6.28 Theorem L(⊕n) ≥ n2.

Proof. Let A be the set of all vectors with an odd number of ones, and B the set

of all vectors with an even number of ones. Then |A| = |B| = 2n−1
, whereas

|A⊗B| = n2n−1
. Hence,

L(⊕n) ≥ n222(n−1)

22(n−1) = n2 . ⊓⊔

This lower bound is almost optimal. Let pn denote the largest power of 2 not

exceeding n, that is, pn = 2⌊log2 n⌋
.

6.29 Theorem (Yablonskii 1954) For every n ≥ 2,

L(⊕n) ≤ 3npn − 2p2
n ≤ 9

8n
2 .

In particular, L(⊕n) = n2
if n = 2k

is a power of 2.
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Proof. Let λ(n) = L(⊕n) denote the smallest leafsize of a DeMorgan formula

computing ⊕n(x) = x1 ⊕x2 ⊕· · ·⊕xn. Write n as n = 2m +k where 0 ≤ k < 2m
.

Then pn = 2m
and

3npn − 2p2
n = p2

n + 3kpn = 22m + 3k2m .

So, it is enough to show that λ(n) ≤ 22m + 3k2m
. We do this by induction on n =

2m +k. Basis cases n = 1, 2 are trivial. For the induction step, we use that fact that a

parity f = g⊕h of two functions can be computed as f = (g∧¬h)∨(¬g∧h). Thus,
L(f) ≤ 2L(g) + 2L(g). Since ⌊n/2⌋ = 2m−1 + ⌊k/2⌋ and ⌈n/2⌉ = 2m−1 + ⌈k/2⌉,
we obtain

λ(n) ≤ 2
(
λ(⌊n/2⌋) + λ(⌈n/2⌉)

)
= 2
(

22(m−1) + 3⌊k/2⌋2m−1 + 22(m−1) + 3⌈k/2⌉2m−1
)

= 22m + 3k2m = 3npn − 2p2
n .

It remains to show that 3npn − 2p2
n ≤ (9/8)n2

:

9
8n

2 − (3npn − 2p2
n) = 9n2 − 24npn + 16p2

n

8 = (3n− 4pn)2

8 ≥ 0 . ⊓⊔

6.30 Remark It is conjectured that the upper bound given in Theorem ?? is optimal.

Zdobnov (1987) confirmed this conjecture in the class of so-called null-path-free
formulas. When viewed as a parallel-serial network (see Proposition ??), the restric-
tion is that no s-t path contains edges labeled by a variable and by its negation. In

other words, if F ∧G is a subformula, and if F contains a leaf labeled by xi, then

G cannot contain a leaf labeled by ¬xi. Note that the formula constructed in the

proof of Theorem ?? is null-path-free. Zdobnov shows that this formula is also an

optimal one in this class of formulas. For unrestricted formulas, Rychkov (1994)

showed a lower bound L(⊕n) ≥ n2 + 3 for odd n ≥ 5, and L(⊕n) ≥ n2 + 2 for

even n ≥ 6 which are not powers of 2.

6.31 Theorem L(Thn
k ) ≥ k(n− k + 1).

Proof. Let A be the set of all vectors a ∈ {0, 1}n
with exactly k − 1 ones, and B

the set of all vectors b ∈ {0, 1}n
with exactly k ones. Then every element of A

is at Hamming distance 1 from exactly n− k + 1 elements of B. Similarly every

element of B is at Hamming distance 1 from exactly k elements of A. It follows
that |A⊗B| = (n− k + 1)|A| = k|B|, and we obtain

L(Thn
k ) ≥ (n− k + 1)|A| · k|B|

|A||B|
= k(n− k + 1) . ⊓⊔

A nice application of communication complexity is the following depth ana-

logue of Khrapchenko’s theorem (Theorem ??). Since we always have that D(f) ≥
log L(f), the theorem itself is a direct consequence of Khrapchenko’s theorem. We
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give here an alternative information-theoretic proof which is interesting in its own

right.

6.32 Theorem (Karchmer–Wigderson 1990) Let f be a boolean function,A ⊆ f−1(0)
and B ⊆ f−1(1). Then

D(f) ≥ log |A⊗B|2

|A||B|
.

Proof. By Theorem ??, it is enough to prove the corresponding lower bound on

the number of communicated bits in the “find a difference” game on the rectangle

A×B: Alice gets a ∈ A, Bob gets b ∈ B, and their goal is to find a position i ∈ [n]
such that ai ̸= bi.

We again consider Y := A⊗B as a bipartite graph with parts A and B. For a

node a, letN(a) denote the set of its neighbors in this graph. Hence d(a) = |N(a)|
is the degree of a in Y . Then |Y |/|A| and |Y |/|B| are average degrees of nodes in
A and B, respectively. We claim that the number of bits Alice sends is at least the

logarithm of the average degree of nodes in B (similarly with Bob). Intuitively, this

is so because

• even if Alice knows b ∈ B, she needs log d(b) bits to tell Bob which a ∈ N(b)
she has.

That is, Alice needs to tell Bob in which bit, out of d(b) possible bits, her vector a
differs from b. Thus, if A(a, b) and B(a, b) are the numbers of bits sent by Alice

and Bob on input (a, b) ∈ A×B, then

A(a, b) ≥ log d(b) and B(a, b) ≥ log d(a) . (6.15)

Now take (a,b) uniformly at random from Y , and let C(a,b) be the number of bits

communicated on this input. The expectation of this random variable (the average

number of bits communicated on this input) is

E [C(a,b)] = 1
|Y |

∑
(a,b)∈Y

(A(a, b) +B(a, b))

= 1
|Y |

∑
b∈B

∑
a∈N(b)

A(a, b) + 1
|Y |

∑
a∈A

∑
b∈N(a)

B(a, b)

≥ 1
|Y |

∑
b∈B

d(b) log d(b) + 1
|Y |

∑
a∈A

d(a) log d(a) by (??).

Since

∑
b∈B d(b) = |Y | and since f(x) = x log x is a convex function, Jensen’s

inequality

∑
λbf(xb) ≥ f(

∑
λbxb) with λb = 1/|B| and xb = d(b) yields

1
|Y |

∑
b∈B

d(b) log d(b) ≥ log |Y |
|B|

,

and the desired lower bound follows:
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E [C(a,b)] ≥ log |Y |
|B|

+ log |Y |
|A|

= log |Y |2

|A||B|
.⊓⊔

6.9 Complexity is not convex

Khrapchenko’s measure (see Theorem ??) is of the form

µ(R) := |Y |2

|R|
= |R| · φ

( |Y |
|R|

)
(6.16)

where φ(x) = x2
, and Y is the set of all pairs of vectors (x, y) ∈ R differing in

exactly one bit. Exercise ?? shows that this measure cannot yield larger than Ω(n2)
lower bounds. All subsequent attempts to modify his measure with the goal of

braking the “n2
barrier” have failed so far. So, what is bad about this measure?

Perhaps larger lower bounds can be obtained by taking other subsets Y of special

entries and/or using some other functions φ(x) instead of x2
?

The answer, given by Hrubes et al. (2010), is somewhat disappointing. Namely,

it turns out that the reason for the failure of Khrapchenko-type measures is much

deeper than expected: for every choice of the set Y of special entries and for every
convex function φ(x), the resulting measure is convex, and convex measures cannot

yield super-quadratic lower bounds! To show this, we first define what is meant

under a “convex” rectangle measure.

Recall that a rectangle of dimension n is a set S of the form S = A× B with

A,B ⊆ {0, 1}n
and A ∩ B = ∅. A subset R ⊆ S is a subrectangle of S if R itself

forms a rectangle. A rectangle function on S is a mapping µ that assigns to each

subrectangle R of S a real number µ(R). Such a function is a rectangle measure if
it is:

• Subadditive: µ(R) ≤ µ(R1) + µ(R2), for every rectangle R ∈ R and for each

of its partitions into disjoint union of rectangles R1, R2 ∈ R.

• Normalized: µ(M) ≤ 1 for every monochromatic rectangleM .

Rychkov’s lemma (Lemma ??) can then be restated as:

6.33 Lemma Let f be a boolean function and R = A × B be a rectangle with
A ⊆ f−1(1) and B ⊆ f−1(0). Then for every rectangle measure µ we have that
L(f) ≥ µ(R).

Thus, every rectangle measure gives a lower bound on formula size. The most

restricted class of rectangle measures is that of additive ones. Such measures must

satisfy µ(R) =
∑

e∈R µ(e). By letting µ(e) := |Y |2/|R|2 for all e ∈ R, we see that
Khrapchenko’s measure (??) is additive, and it cannot break the “n2

barrier”, that is,

cannot yield super-quadratic lower bounds on formula size. We now will identify a

much larger class of “bad” measures.

Let S be a rectangle, R1, . . . , Rt its subrectangles, and r1, . . . , rm weights from

[0, 1]. We say that the rectangles R1, . . . , Rm with the weights r1, . . . , rm form
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a fractional partition of the rectangle S if

∑
i:e∈Ri

ri = 1 for all e ∈ S. We will

shorten this condition as S =
∑t

i=1 ri · Ri. Notice that if all ri ∈ {0, 1} then a

fractional partition is a partition.

A rectangle function is convex if, for every rectangle S and every fractional

partition S =
∑

i riRi,

µ(S) ≤
t∑

i=1
ri · µ(Ri) . (6.17)

A fractional partition number , π(S), of a rectangle S is the minimum

π(S) = min
t∑

i=1
ri

over all fractional partitions R1, . . . , Rt, r1, . . . , rt of S where each rectangle Ri is

monochromatic. It is easy to see that π(S) is a rectangle measure. It is not difficult

to show that the fractional partition number π is the largest convex measure.

6.34 Proposition The measure π(S) is convex, and for every convex measure µ,
µ(S) ≤ π(S) for all rectangles S.

Proof. First we will show that π(S) is convex. Let S =
∑

j∈J rjRj be a fractional

partition of S and, for every j, let Rj =
∑

i∈Ij
sijMij be a fractional partition

of Rj such thatMij are monochromatic and π(Rj) =
∑

i sij . Then, clearly, S =∑
ij rjsijMij is a fractional partition of R into monochromatic rectangles. Hence

π(S) ≤
∑

ij

rjsij =
∑

j

rjπ(Rj) .

Now we will show the second part. Let µ be a convex measure. Let S =
∑

i riMi

be a fractional partition ofS intomonochromatic rectangles such thatπ(S) =
∑

i ri.

Using convexity and normality of µ we get

µ(S) ≤
∑

i

riµ(Mi) ≤
∑

i

ri = π(S) . ⊓⊔

The following is an analogue of Khrapchenko’s theorem using the fractional

partition number.

6.35 Theorem (Karchmer–Kushilevitz–Nisan 1995) Let R be a rectangle, and Y the
set of all pairs of vectors (x, y) ∈ R differing in exactly one bit. Then π(R) ≥
|Y |2/4|R|.

Proof. Applying the duality theorem for linear programs, one can write the frac-

tional partition number as π(R) = maxw

∑
e∈S w(e) , where the maximum is

over all functions w : R → R satisfying the constraints

∑
e∈M w(e) ≤ 1 for

all monochromatic rectangles M ⊆ R. Hence, in order to prove a lower bound
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π(R) ≥ t it is enough to find at least one weight function w : R → R such that∑
e∈R w(e) ≥ t and the weight of each monochromatic rectangle does not exceed 1.
We define the weight w(e) of each edge e ∈ R by:

w(e) =
{

p−1
if e ∈ Y ,

−p−2
otherwise,

where p > 0 is a parameter to be specified soon. Since only entries of Y have

positive weights, the heaviest monochromatic rectanglesM are the square ones

with exactly one entry from Y in each row and column. IfM is such a k× k square

rectangle, then∑
e∈M

w(e) = k

p
− k(k − 1)

p2 ≤ k

p

(
1 − k − 1

p

)
≤ 1 .

Indeed, if k ≥ p+ 1 then the expression in the parenthesis is at most 0, and if k ≤ p
then both terms are at most 1. Hence, w is a legal weight function, and we obtain

π(R) ≥
∑
e∈R

w(e) = |Y |
p

− |R| − |Y |
p2 = |Y |

p

(
1 − |R| − |Y |

p|Y |

)
.

For p = 2|R|/|Y |, the expression in the parenthesis is at least 1/2, and we obtain

π(R) ≥ |Y |2/4|R|. ⊓⊔

Hence, one can obtain quadratic lower bounds using the fractional partition

number, as well. We now show that this is actually the best we can get using any
convex rectangle measure.

Karchmer, Kushilevitz and Nisan (1995) proved that π(S) ≤ 4n2
holds for

every n-dimensional rectangle S. Together with Proposition ??, this implies that

µ(S) ≤ 4n2
holds for every convex rectangle measure µ. Using similar arguments,

this upper bound can be improved to an almost optimal one.

6.36 Theorem (Hrubes et al. 2010) If a rectangle measure µ is convex then, for every
n-dimensional rectangle S, µ(S) ≤ 9

8 (n2 + n)

Proof. Following Karchmer, Kushilevitz and Nisan (1995), associate with each subset

I ⊆ [n] = {1, . . . , n} the following two I-parity rectangles:

SI = {x | ⊕i∈Ixi = 0} × {y | ⊕i∈Iyi = 1} ,
TI = {x | ⊕i∈Ixi = 1} × {y | ⊕i∈Iyi = 0} .

Note that monochromatic rectangles correspond to the case when |I| = 1. There
are exactly 2n+1

parity rectangles.

6.37 Claim Every edge (x, y) ∈ {0, 1}n × {0, 1}n
such that x ̸= y belongs to 2n−1

parity rectangles.
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Proof. For I ⊆ [n], let vI ∈ {0, 1}n
be its incidence vector. If x ̸= y, then x⊕ y is

not a zero vector. Since each nonzero vector is orthogonal over GF(2) to exactly

half of the vectors in {0, 1}n
, this implies that precisely 2n−1

of the vectors vI are

non-orthogonal to x⊕ y. This means that (x, y) belongs to precisely 2n−1
of the

sets SI ∪ TI . Since SI ∩ TI = ∅, we are done. ⊓⊔

6.38 Claim Let µ be a rectangle measure. Then for every I ⊆ [n], both µ(SI) and
µ(TI) are at most

9
8 |I|2.

Proof. A parity rectangle SI can be viewed as a rectangle corresponding to the

parity function, and TI as a rectangle corresponding to the negation parity function

in |I| variables. We already know (see Theorem ??) that the parity ofm variables

can be computed by a DeMorgan formula of size
9
8m. Since µ is a lower bound

to the formula size (see Lemma ??), the desired upper bound on µ(SI) and µ(TI)
follows. ⊓⊔

Now let S be an n-dimensional rectangle. Let R be the set of all parity rectan-

gles SI ∩ S and TI ∩ S restricted to S. Let also Ri ⊆ R be the set of all parity

rectangles corresponding to subsets I ⊆ [n] of size |I| = i. For counting reasons,
we shall understand R as a multi-set, elements of R corresponding to different

parity rectangles are considered as different. Under this provision, R has size 2n+1

and, by Claim ??, every edge in S is contained in exactly 2n−1
elements of R.

Hence R forms a fractional partition of S with each rectangle R ∈ R of weight

rR = 2−(n−1)
. By Claim ??, we know that µ(R) ≤ ci2 for every R ∈ Ri, where

c = 9/8. The convexity of µ implies that

µ(S) ≤
∑
R∈R

rR · µ(R) = 2−(n−1)
∑
R∈R

µ(R) = 2−(n−1)
n∑

i=0

∑
R∈Ri

µ(R)

≤ 2−(n−1)
n∑

i=1
2
(
n

i

)
ci2 = 2−(n−1)2c

n∑
i=1

(
n

i

)
i2

= 2−(n−2)c

n∑
i=1

(
n

i

)
i2 .

The identity

(
n
k

)
· k = n ·

(
n−1
k−1
)
gives

n∑
i=1

(
n

i

)
i2 = n ·

n∑
i=1

(
n− 1
i− 1

)
i = n ·

n∑
i=1

(
n− 1
i− 1

)
+ n ·

n∑
i=1

(
n− 1
i− 1

)
(i− 1)

= n ·
n∑

i=1

(
n− 1
i− 1

)
+ n ·

n∑
i=2

(
n− 1
i− 1

)
(i− 1)

= n ·
n∑

i=1

(
n− 1
i− 1

)
+ n(n− 1) ·

n∑
i=2

(
n− 2
i− 2

)
= n2n−1 + n(n− 1)2n−2 = (n2 + n)2n−2 .
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Thus, µ(S) ≤ 2−(n−2)c(n2 + n)2n−2 = c(n2 + n) = 9
8 (n2 + n). ⊓⊔

We now show that many Khrapchenko-like measures (??) are convex, and hence,
cannot yield super-quadratic lower bounds. This observation was made in Hrubes et

al. (2010).

6.39 Theorem Let s(R) be an additive rectangle function such that s(R) > 0 for
every non-empty rectangleR. Let φ : R → R be a convex function. Then the rectangle
function

µ(R) := s(R) · φ
(w(R)
s(R)

)
,

is convex if either w(R) is additive, or w(R) is convex and φ is nondecreasing.

Proof. To prove the first claim, assume that both w(R) and s(R) are additive,

and let R1, . . . , Rm, r1 . . . , rm be a fractional partition of R. Set si = s(Ri) and
wi = w(Ri). By Exercise ??, we have thatw(R) =

∑
i ri ·wi and s(R) =

∑
i ri ·si.

For a real convex function φ, numbers xi in its domain, and positive weights ai,

Jensen’s inequality states that

φ
(∑ aixi∑

ai

)
≤
∑
aiφ(xi)∑
ai

. (6.18)

Applying this we obtain (where the sums are over all i with ri > 0):

µ(R) = s(R) · φ
(w(R)
s(R)

)
=
(∑

i

risi

)
· φ
(∑

i riwi∑
i risi

)
Exercise ??

≤
∑

i

risi · φ
(wi

si

)
(??) with ai = risi and xi = wi/si

=
∑

i

riµ(Ri) .

If w(R) is convex and φ is nondecreasing, then we can replace the second equality

by inequality, and the desired inequality µ(R) ≤
∑

i ri · µ(Ri) still holds. ⊓⊔

6.10 Complexity is not submodular

In order to prove that some boolean function f requires large formulas, one tries to

find some clever “combinatorial” measure µ on the set of all boolean functions satis-

fying two conditions: µ(f) is a lower bound on the size of any formula computing f ,
and µ(f) can be nontrivially bounded from below at some explicit boolean functions
f . One class of such measures, proposed by Mike Paterson, is the following.
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Let Bn be the set of all boolean function of n variables. A formal complexity
measure of boolean functions is a mapping µ : Bn → R which assigns positive

values to each boolean function. The requirements are that µ is normalized, that is,
assigns each literal a value ≤ 1, and is subadditive, that is, for all f, g ∈ Bn:

µ(f ∨ g) ≤ µ(f) + µ(g); (6.19)

µ(f ∧ g) ≤ µ(f) + µ(g). (6.20)

Note that the minimal formula size L(f) itself is a formal measure. Moreover, by

induction on formula size it is easy to show that L(f) ≥ µ(f) for every formal

complexity measure µ. It can also be shown (see Exercise ??) that Khrapchenko’s
measure is a formal complexity measure.

In order to understand what measures are “good” (can lead to large lower bounds)

it is important to understand what measures are “bad”. We have already seen that

convex measures are bad. There is another class of bad measures—submodular ones.

A formal complexity measure µ : Bn → R is submodular if it is normalized and

for all f, g ∈ Bn,

µ(f ∧ g) + µ(f ∨ g) ≤ µ(f) + µ(g). (6.21)

Note that this condition is stronger than both (??) and (??). The following result

shows that submodular measures cannot even yield super-linear lower bounds.

6.40 Theorem (Razborov 1992b) If µ is a submodular measure on Bn, then µ(f) ≤
4(n+ 1) for each f ∈ Bn.

Proof. Let gn be a random boolean function of n variables x1, . . . , xn. That is, we

choose gn randomly and uniformly from Bn. We are going to prove by induction

on n that

E [µ(gn)] ≤ n+ 1 . (6.22)

Given a variable xi, set x
1
i := xi and x

0
i := ¬xi.

Base: n = 1. Here we have µ(g(x1)) ≤ 2 for any g(x1). This follows from the

normalization condition if g is a variable x1 or its negation ¬x1. By the subadditivity
we also have

µ(0) + µ(1) = µ(x1 ∧ ¬x1) + µ(x1 ∨ ¬x1) ≤ µ(x1) + µ(¬x1) ≤ 2

which proves µ(g(x1)) ≤ 2 in the remaining case when g is a constant.
Inductive step: Assume that (??) is already proved for n. Let the symbol ≈ mean

that two random functions have the same distribution. Note that

gn+1 ≈
(
g0

n ∧ x0
n+1
)

∨
(
g1

n ∧ x1
n+1
)
, (6.23)

where g0
n and g1

n are two independent copies of gn. By duality,

gn+1 ≈
(
g0

n ∨ x0
n+1
)

∧
(
g1

n ∨ x1
n+1
)
. (6.24)
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By the linearity of expectation, we obtain from (??) and (??) (remember that the

latter is a consequence of the submodularity condition) that

E
[
µ(gn+1)

]
≤ E

[
µ
(
g0

n ∧ x0
n+1
)]

+ E
[
µ
(
g1

n ∧ x1
n+1
)]

(6.25)

and similarly from (??) and (??),

E
[
µ(gn+1)

]
≤ E

[
µ
(
g0

n ∨ x0
n+1
)]

+ E
[
µ
(
g1

n ∨ x1
n+1
)]
. (6.26)

Summing (??), (??) and applying consecutively (??), normalization of µ, and the

inductive assumption, we obtain

2 · E
[
µ(gn+1)

]
≤ E

[
µ
(
g0

n ∧ x0
n+1
)]

+ E
[
µ
(
g0

n ∨ x0
n+1
)]

+
E
[
µ
(
g1

n ∧ x1
n+1
)]

+ E
[
µ
(
g1

n ∨ x1
n+1
)]

≤ E
[
µ(g0

n)
]

+ µ(x0
n+1) + E

[
µ(g1

n)
]

+ µ(x1
n+1)

≤ 2 · E [µ(gn)] + 2 ≤ 2d+ 4.

This completes the proof of (??). But this inequality only says that the expected

value of µ(gn) does not exceed n+ 1 for a random function gn, whereas our goal

is to give an upper bound on µ(fn) for each function fn. So, we must somehow

“de-randomize” this result. To achieve this goal, observe that every function fn ∈ Fn

can be expressed in the form

fn = (gn ∧ (gn ⊕ fn ⊕ 1)) ∨ ((gn ⊕ 1) ∧ (gn ⊕ fn). (6.27)

But gn ≈ gn ⊕ fn ⊕ 1 ≈ gn ⊕ 1 ≈ gn ⊕ fn. So, applying to (??) the inequalities
(??) and (??), averaging the result over gn and applying (??), we obtain µ(fn) =
E [µ(fn)] ≤ 4 · E [µ(gn)] ≤ 4n+ 4, as desired. ⊓⊔

6.11 The drag-along principle

Suppose we want to prove that a boolean function f has high complexity, say,

requires large DeMorgan formulas over ∧,∨,¬. If the function is indeed hard, then

it should have some specific properties forcing its formulas be large, that is, forcing

every small formula to make an error.

It turns out that formal complexity measures cannot capture any specific proper-

ties of boolean functions. When using such measures, every lower bound for a given

function f must also prove that many other unrelated functions have large complex-

ity. Thus, we cannot use any special properties of our function! Namely, Razborov

and Rudich (1997) proved the following fact; the name “drag-along principle” was

suggested by Lipton (2010).
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6.41 Theorem (The Drag-Along Principle) Suppose µ is a formal complexity measure
and there exists a function f ∈ Bn such that µ(f) > s. Then, for at least 1/4 of all g
in Bn, µ(g) > s/4.

Proof. Let g be any function in Bn. Define f = h⊕ g where h = f ⊕ g. Then,

µ(f) ≤ µ(g) + µ(¬g) + µ(h) + µ(¬h) . (6.28)

This follows from (??) and (??) and the definition of parity,

f = (f ⊕ g) ⊕ g = h⊕ g = (h ∧ g) ∨ (¬h ∧ ¬g) .

By way of contradiction assume that the set G = {g ∈ Bn | µ(g) < s/4} contains

more than 3/4 of all function inBn. If we pick the above function g randomly inBn

with probability |Bn|−1
, then ¬g, h,¬h are also random elements of Bn (though

not independent) each with the same probability. Using the trivial union bound we

have

Prob[one or more of h,¬h, g,¬g is not in G] < 4 · 1
4 = 1 .

Thus, there must be at least one choice for g such that all four functions h,¬h, g,¬g
belong to G, that is, have measure < s/4. By (??), this implies that µ(f) < s, which
is a contradiction. ⊓⊔

Theorem ?? above shows that for any lower bound proof for formulas based

on some formal complexity measure µ(f), essentially the same lower bound auto-

matically applies to almost all boolean functions. The important “natural proofs”

concept, discussed in the Epilogue, reveals a possible barrier facing attempts to

prove lower bounds of this type.

6.12 Bounds based on graph measures

In view of graph complexity—the concept we have introduced in Section ??—it
is important to have lower-bound arguments for monotone boolean functions

f that only explore the structure of the set of length-2 minterms of f . In this

section we present one approach in this direction. It was suggested by Newman and

Wigderson (1995). In its current form, the method cannot yield lower bounds larger

than n logn. (The reason is the “monotonicity” condition of the graph measures

used.) Still, the approach is applicable to functions for which other arguments fail,

and has the potential to be extended to other graph measures.

LetKn =
([n]

2
)
be the set of all unordered pairs of members of [n] = {1, . . . , n},

that is, the set of all edges of a complete graph on [n]. Each subset E ⊆ Kn gives

us a graph on these vertices.

Let µ be a measure which assigns to each such graph E a non-negative real

number µ(E). Say that such a measure µ is a good graph measure if
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• µ(∅) = 0;
• µ is subadditive: µ(E ∪ F ) ≤ µ(E) + µ(F );
• µ is monotone: E ⊆ F implies µ(E) ≤ µ(F );
• µ respects cliques: ifE forms a complete bipartite graph onm (out of n) vertices,
then µ(E) ≤ m/n.

With every monotone boolean function f(x1, . . . , xn) such that f(0) = 0 we

associate the graphEf ⊆ Kn where vertices i and j are adjacent * iff f(ei +ej) = 1
and f(ei) = f(ej) = 0, as well as set Vf ⊆ [n] of vertices i ∈ [n] such that

f(ei) = 1. Note that the edges of Ef correspond to monotone length-2 minterms

of f : vertices i and j are adjacent in Ef iff xixj is a minterm of f . Similarly, Vf

corresponds to monotone length-1 minterms: vertex i belongs to Vf iff xi is a

minterm of f . For example, if f(x) = Thn
2 (x) is the threshold-2 function of n

variables, then Ef = Kn and Vf = ∅.

6.42 Lemma (Newman–Wigderson 1995) For every monotone boolean function f of
n variables, and every good graph measure µ, we have that L+(f) ≥ n · µ(Ef ).

In fact, we will prove a slightly stronger bound L+(f) ≥ n · µ(Ef ) + |Vf |. But,
for simplicity, we will ignore the last term |Vf | since it never exceeds n, and we are

interested in lower bounds that are super-linear in n.

Proof. Define the following cost function c(f) of boolean functions f of n variables:

c(f) := µ(Ef ) + |Vf |
n

.

If f = xi is a variable (a leaf of a formula), then Ef = ∅ and we get c(xi) = 1/n.
Moreover, the monotonicity of µ implies that the cost function is monotone with

respect to inclusion: if Vg ⊆ Vh and Eg ⊆ Eh, then c(g) ≤ c(f).

6.43 Claim c(g ∨ h) ≤ c(g) + c(h) and c(g ∧ h) ≤ c(g) + c(h).

Note that this claim already implies the theorem since the cost of every leaf

in a formula is 1/n and, by Claim ??, the cost of the output function does not

exceed the sum of the costs of all the leaves. Thus c(f) ≤ L+(f)/n, implying that

L+(f) ≥ n · c(f) ≥ n · µ(Ef ) + |Vf |. So, it remains to prove the claim.

Case 1: f = g ∨ h. Then Vf = Vg ∪ Vh and Ef = Eg ∪ Eh. The subadditivity of µ
yields

c(f) = µ(Eg ∪ Eh) + |Vg ∪ Vh|
n

≤ µ(Eg) + µ(Eh) + |Vg|
n

+ |Vh|
n

= c(g) + c(h) .

Case 2: f = g ∧ h. Denote A = Vg and B = Vh. Since Vf = A ∩B and

*

Here and throughout, ei is a 0-1 vector with exactly one 1 in the i-th position.
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Ef = (Eg ∩ Eh) ∪KA,B ⊆ Eg ∪ Eh ∪KA,B ,

whereKA,B := (A \B) × (B \A), we get:

c(f) ≤ µ(Eg ∪ Eh ∪KA,B) + |A ∩B|
n

(monotonicity of µ)

≤ µ(Ef ) + µ(Ef ) + µ(KA,B) + |A ∩B|
n

(subadditivity of µ)

≤ µ(Eg) + µ(Eh) + |A \B| + |B \A|
n

+ |A ∩B|
n

(µ respects cliques)

= µ(Eg) + µ(Eh) + |A|
n

+ |B|
n

= c(g) + c(h) .

This completes the proof of the claim, and thus the proof of the lemma. ⊓⊔

To extend this lemma to non-monotone formulas, we need the following result.

Say that a boolean function f rejects singletons if f rejects all inputs with at most

one 1. Note that in any DNF formula of such a function each monomial must have

at least two non-negated variables.

6.44 Lemma (Krichevskii 1964) Let f be a boolean function which rejects singletons.
Then there exists a monotone boolean function φf on the same variables such that:

(a) φf rejects singletons;
(b) φf (ei + ej) ≥ f(ei + ej) for all i ̸= j, and
(c) L(f) ≥ L+(φf ).

Proof. The proof is by induction on the leafsize L(f). For L(f) = 2 the claim is

true since in this case f must be an AND of two variables. Now let F be an optimal

formula for f . If F = G∨H , whereG andH are optimal formulas for g and h, then
by induction there are φg and φh satisfying all three conditions (a)-(c). It is easy to

see that then the function φf = φg ∨ φh also satisfies these three conditions.

The case when F = G ∧H is less trivial. The problem is that both formulas G
andH may accept singletons, even if their AND rejects them: ifG(ei) = H(ej) = 1
andG(ej) = H(ei) = 0 thenF (ei) = F (ej) = 0. To overcome this obstacle, define

Ig = {i ∈ [n] | g(ei) = 1 and xi appears in G} ,

and define Ih similarly. Since F rejects singletons, these two sets must be disjoint.

Let G0 be the subformula of G obtained by setting to 0 all variables xi with i ∈ Ig ,

and let H0 be defined similarly. Consider the formula F ′ = G′ ∧H ′
, where

G′ = G0 ∨
∨

i∈Ig

xi and H ′ = H0 ∨
∨

i∈Ih

xi .

Note that the leafsize of F ′
is at most that of F , since all leaves corresponding to

variables xi with i ∈ Ig appear in G, and are set to 0 in G0; similarly with H and

H0.
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Since Ig ∩ Ih = ∅, the formula F ′
must reject singletons. Further, we claim that

F ′(ei + ej) = 1 as long as F (ei + ej) = 1. To show this, suppose that F accepts

the input ei + ej . Then bothG andH must accept it. If i or j belongs to Ig , thenG
′

accepts this vector as well. If {i, j} ∩ Ig = ∅, then G0(ei + ej) = G(ei + ej) = 1,
since ei + ej has only zeros in all bits in Ig . So, G

′
must accept this vector in both

cases. Since the same argument also holds for H ′
, we are done.

Now,G0 andH0 are formulas of some boolean functions g0 and h0 that meet the

requirement of the lemma. So, by induction, there are monotone boolean functions

φg0 and φh0 with monotone formulas G+ andH+ as required. By plugging these

monotone formulas into F ′
we get a monotone formula F+ for φf that satisfies all

three conditions (a)-(c). ⊓⊔

Now we can extend Lemma ?? to non-monotone formulas.

6.45 Theorem For every boolean function f of n variables which rejects singletons,
and every good graph measure µ, we have L(f) ≥ n · µ(Ef ).

Proof. By Krichevskii’s lemma there is a monotone boolean function g = φf for

which L(f) ≥ L+(g). From Lemma ?? we get L+(g) ≥ nµ(Eg) + |Vg|. Since
g(a) ≥ f(a) for all inputs a with at most two 1s, the monotonicity of µ implies the

result. ⊓⊔

6.13 Lower bounds via graph entropy

In order to use Theorem ?? we have to define some good measure of graphs. For

this purpose, Newman and Wigderson (1995) used the measure of graph entropy

introduced by Körner (1973).

Let E be a graph on |V | = n vertices. The graph entropy H(E) of E is the

minimum

H(E) = 1
n

· min
Y

∑
v∈V

log 1
Prob[v ∈ Y ] = − 1

n
· min

Y

∑
v∈V

log Prob[v ∈ Y ]

taken over all (arbitrarily distributed) random variables Y over independent sets

in E. If E = ∅, then we set H(E) = 0.
6.46 Lemma Graph entropy is a good graph measure.

We have to show that the graph entropy is monotone, subadditive and respects

cliques.

6.47 Claim (Monotonicity) If F ⊆ E are graphs on the same set of vertices, then

H(F ) ≤ H(E).

Proof. Let Y be the random variable taking values in independent sets of E, which

attains the minimum in the definition of the entropy H(E). Since an independent

set in E is also an independent set in F , we have
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H(F ) ≤ − 1
n

∑
v∈V

log Prob[v ∈ Y ] = H(E) . ⊓⊔

6.48 Claim (Subadditivity) If E and F are graphs on the same set of vertices, then

H(E ∪ F ) ≤ H(E) +H(F ).

Proof. Let Y1, Y2 be random variables taking values in independent sets of E and

F , respectively, which attain the minimum in the definition of entropy. We can

assume that Y1, Y2 are independent. Also note that Y1 ∩ Y2 is a random variable

taking values in independent sets of E ∪ F . We therefore have

H(E) +H(F ) = − 1
n

∑
v∈V

log Prob[v ∈ Y1] − 1
n

∑
v∈V

log Prob[v ∈ Y2]

= − 1
n

∑
v∈V

log(Prob[v ∈ Y1] · Prob[v ∈ Y2])

= − 1
n

∑
v∈V

log Prob[v ∈ Y1 ∩ Y2]

≥ H(E ∪ F ) .⊓⊔

6.49 Claim (Respecting cliques) If E is a bipartite graph withm (out of n) vertices,
then H(E) ≤ m/n.

Proof. Let A,B ⊆ V be the parts of E; hence, |A ∪ B| = m and |V | = n. By the

monotonicity, we can assume that E is a complete bipartite graph, E = A × B.

Define a random independent set Y by letting Prob[Y = A] = Prob[Y = B] =
1/2 and Prob[Y = C] = 0 for all remaining independent sets. Then

H(E) ≤ − 1
n

∑
v∈V

log Prob[v ∈ Y ]

= − 1
n

∑
v∈A∪B

log Prob[v ∈ Y ]

= − 1
n

∑
v∈A∪B

−1

= |A ∪B|
n

= m

n
.

This completes the proof of Claim ??, and thus of Lemma ??. ⊓⊔

Together with Theorem ?? we obtain the following general lower bound on the

formula size in terms of graph entropy.

6.50 Corollary For every boolean function f of n variables which rejects singletons,
we have that L(f) ≥ n · logH(Ef ).
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Graph entropyH(E) can be lower-bounded in terms of the independence num-

ber α(E) of a graph E, that is, the maximum number of vertices in E no two of

which are adjacent.

6.51 Proposition For every graph E on n vertices, we have that

H(E) ≥ log n

α(E) .

Proof. Let Y be a random independent set in E which attains the minimum in

the definition of the entropy H(E). For a vertex v, let pv := Prob[v ∈ Y ]. Then∑n
v=1 pv is the expected value of |Y |, and hence, cannot exceed α(E). On the other

hand, since log x is a concave function, we can apply Jensen’s inequality and obtain

H(E) = −
n∑

v=1

1
n

log pv ≥ − log
( n∑

v=1

1
n
pv

)
≥ − log α(E)

n
= log n

α(E) .⊓⊔

6.52 Corollary For every boolean function f of n variables which rejects singletons,
we have that

L(f) ≥ n · log n

α(Ef ) .

Let f = Thn
2 be the threshold-2 function of n variables. Then Ef = Kn and

Vf = ∅. If n is even, then we can cover all edges in Kn by t ≤ ⌈logn⌉ bipartite

complete graphs Ai × Bi with Ai ∩ Bi = ∅ and |Ai| = |Bi| = n/2. So, Thn
2 can

be computed by a monotone DeMorgan formula

t∨
i=1

( ∨
j∈Ai

xj

)
∧
( ∨

k∈Bi

xk

)
of leafsize at most n⌈logn⌉.

6.53 Theorem (Krichevskii 1964, Hansel 1964) Every DeMorgan formula computing
Thn

2 must have at least n logn leaves.

Proof. For f = Thn
2 we have Ef = Kn and Vf = ∅. The only independent sets in

Kn are sets consisting of just one vertex; hence, α(Ef ) = 1, By Corollary ??, we
obtain that L(f) ≥ n logn, as desired. ⊓⊔

6.54 Remark Lupanov (1965) proved that for any k, 2 ≤ k ≤ n, the threshold-k
function Thn

k can be computed by a DeMorgan circuit with O(n) gates. This shows
a logarithmic gap between circuit and formula complexity of some functions.

As another example, consider the following boolean function fn in n =
(

m
2
)

variables corresponding to the edges ofKm. Each assignment a ∈ {0, 1}n
to these
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variables specifies a graph Ga ⊆ Km. The values of the function fn are defined by:

fn(a) = 1 iff the graph Ga has a vertex of degree at least 2.

6.55 Theorem Every DeMorgan formula computing fn must have at least Ω(n lnn)
leaves.

Proof. Let f = fn. Note that the graph Ef in this case is a line graph L = L(Km)
ofKm, that is, the graph whose vertices are the edges ofKm and two vertices are

connected iff they have a common endpoint inKm. Since independent sets in L are

matchings inKm, we have that the maximum size α(L) of an independent set in L
is α(L) ≤ m/2 = O(

√
n). By Corollary ??, we obtain that L(f) = Ω(n logn), as

desired. ⊓⊔

The bad news is that good graph measures µ cannot yield lower bounds on the

formula size larger than Ω(n logn). Indeed, the upper bound L+(Thn
2 ) ≤ 2n logn

together with the lower bound L(Thn
2 ) ≥ n · µ(Kn), given by Theorem ??, implies

that µ(Kn) ≤ 2 logn must hold for any good graph measure µ. The main reason

for this failure is the monotonicity condition: one of the “simplest” graphs—the

complete graphKn—has the largest measure.

6.14 Formula size, rank and affine dimension

The approach of Khrapchenko and Rychkov can be used in the graph-theoretic

setting as well. Recall that the bipartite complexity, Lbip(G), of a bipartite n × n
graph G ⊆ V1 × V2 is the minimum number of leaves in a formula over {∩,∪}
which produces the graph G using any of the complete bipartite graphs P × V2
and V1 ×Q with P ⊆ V1 and Q ⊆ V2 as inputs.

We already know (see Section ??) that if we encode the vertices of G by binary

vectors of lengthm = logn, and define the adjacency boolean function fG of 2m
variables by fG(u, v) = 1 iff (u, v) ∈ G, then L(f) ≥ Lbip(G). Thus, any lower

bound Lbip(G) = Ω(logK n) for K > 3 would improve the best known lower

bound Ω(m3) for non-monotone formula size.

Given a bipartite graph G ⊆ V1 × V2, letX be the set of its edges, and Y the set

of its nonedges (non-adjacent pairs of vertices from different parts). Consider the

rectangle X × Y ; its elements are (edge, nonedge) pairs. Consider the collection

C = C1 ∪ C2 of canonical rectangles in X × Y , where

C1 := {(P × V2) × (P × V2) | P ⊆ V1} ,
C2 := {(V1 ×Q) × (V1 ×Q) | Q ⊆ V2} . (6.29)

Note that every entry (x, y) ∈ X × Y lies in at least one of these rectangles just

because x and y cannot share a common endpoint in both parts V1 and V2. Say
that a rectangle R ⊆ X × Y is monochromatic if there is a canonical rectangle
containing all elements of R.
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Define the edge-nonedge tiling number , χ(G), of the graph G as the minimum

number of pairwise disjoint monochromatic rectangles covering all entries ofX×Y .

6.56 Lemma Lbip(G) ≥ χ(G).

Proof. Another way to look at the concept of bipartite complexity of graphs G ⊆
V1 × V2 is to associate boolean variables zP , zQ : V1 × V2 → {0, 1} with subsets

P ⊆ V1 and Q ⊆ V2 interpreted as zP (u, v) = 1 iff u ∈ P , and zQ(u, v) = 1
iff v ∈ Q. Then the set of edges accepted by zP is exactly the biclique P × V2,
and similarly for variables zQ. Thus, Lbip(G) is exactly the minimum leafsize of a

monotone DeMorgan formula of these variables which accepts all edges and rejects

all nonedges of G.
Arguing as in the proof of Rychkov’s lemma, we obtain that Lbip(G) is at least

the minimum number µ(G) of pairwise disjoint rectangles R such that: (i) their

union covers all entries of the rectangle X × Y , and (ii) each of the rectangles R
is separated by one of the variables zP (or zQ), that is, zP (x) = 1 and zP (y) = 0
for all (x, y) ∈ R. To show that µ(G) ≥ χ(G), it remains to observe that each of

the rectangles R separated by a variable zP (or zQ) is monochromatic, that is, is

contained in at least one rectangle from C = C1 ∪ C2.
Indeed, if x = (u, v) is an edge, y = (u′, v′) a nonedge of G, then zP (x) = 1

implies that x = (u, v) belongs to P × V2, and zP (y) = 0 implies that y = (u′, v′)
belongs to P × V2. Therefore, every entry (x, y) of the rectangle X × Y separated

by a variable zP belongs to the rectangle (P × V2) × (P × V2) from C1; similarly

for entries separated by variables zQ. ⊓⊔

6.57 Research Problem
Exhibit an explicit bipartite n× n graph G with χ(G) = Ω(logK n).

By Lemma ??, this would give a lower bound Ω(mK) for the non-monotone

formula size of an explicit boolean function in 2m variables. Unfortunately, no

explicit graphs even with χ(G) = Ω(log1+ϵ n) for ϵ > 0 are known.

The edge-nonedge tiling number χ(G) of a bipartite graph G can be lower

bounded by the minimum rank of a special partial matrix associated with G, as
well as by so-called “affine dimension” of G.

6.14.1 Affine dimension and formulas

LetW be a vector space of dimension d over some field F. An affine representation
of a graph G associates an affine space Sv ⊆ W with every vertex v in such

a way that two vertices u and v are adjacent in G iff Su ∩ Sv ̸= ∅. The affine
dimension, adimF(G), of G is the minimum d such that G has a d-dimensional

affine representation.

A partial matrix over F is a usual matrix with the exception that some entries

can be left empty (marked by ∗) without placing into them any elements of the

underlying field F. An extension of such a matrix is a fully defined matrix obtained
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by filling the unspecified entries by some elements of F. The rank of a partial matrix

is the minimum rank of its extension.

Given a bipartite graph G ⊆ V1 × V2, we can associate with it the following

partial edge-nonedge matrix AG whose rows correspond to edges x and columns to

nonedges y of G. Fix any two elements a1 ̸= a2 of F, and define the entries of AG

by:

AG[x, y] =


a1 if x and y share a vertex in V1;

a2 if x and y share a vertex in V2;

∗ if x ∩ y = ∅.

6.58 Theorem (Razborov 1990) For every bipartite graph G,

Lbip(G) ≥ χ(G) ≥ rk(AG) ≥ adimF(G) .

Proof. The first inequality is Lemma ??. To prove the second inequality χ(G) ≥
rk(AG), let X be the set of all edges, and Y the set of all nonedges of G. Take a
partition R of X × Y into |R| = χ(G) monochromatic rectangles. Thus, each

rectangle R ∈ R lies entirely in some rectangle of the collection C = C1 ∪ C2 of

canonical rectangles defined by (??). Split R into two collections R = R1 ∪ R2,
where R1 = {R ∈ R | R ⊆ C for some C ∈ C1} and R2 = R \ R1.

We want to fill in the ∗-entries of AG so that the resulting full matrix B satisfies

rk(B) ≤ |R|. Rectangles in R partition the entire set of entries. Take a non-∗ entry

(x, y); hence, x and y have a common vertex v. Let R ∈ R be the unique rectangle

containing (x, y). If R ∈ R1, then R ⊆ C for some C ∈ C1, meaning that v ∈ V2
and hence AG[x, y] = a2. Similarly, if R ∈ R2 then AG[x, y] = a1. Thus, for
every rectangle R ∈ R, all non-∗ entries of AG lying in R have the same value;

this common value is a1 if R ∈ R2, and is a2 if R ∈ R1. We can therefore fill all

∗-entries of every R ∈ Ri by the corresponding to R value. In other words, if JR

denotes a boolean matrix with JR[x, y] = 1 for (x, y) ∈ R, and JR[x, y] = 0 for

(x, y) ̸∈ R, then the matrix

B := a1
∑

R∈R2

JR + a2
∑

R∈R1

JR

is an extension of AG. By subadditivity of rank, we have that rk(AG) ≤ rk(B) ≤
|R| = χ(G), as desired. This completes the proof of χ(G) ≥ rk(AG).

Now we prove the last inequality rk(AG) ≥ adimF(G). LetA be an extension of

the partial edge-nonedge matrix AG such that rk(A) = rk(AG). Let ax be the row

of A corresponding to edge x of G. Assign to each vertex v of G an affine space Sv

spanned by all rows ax with v ∈ x, that is, Sv is the set of all affine combinations of

these rows. If two vertices u and v are adjacent, then the spaces Su and Sv contain

the vector auv , and hence Su ∩ Sv ̸= ∅.
Now suppose that u and v are not adjacent, and consider the y-th column of

A, where y = uv. Since v ∈ V2, all rows ax with v ∈ x must have a2 in the y-th
position (in the partial matrix AG, and hence also in its extension A), implying that

their affine combination (with coefficients summing up to 1) must also have a2 in
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that position. Thus, all vectors in Sv have a2 in the y-th position. But u ∈ V1 implies

that all vectors in Su must have a1 in the y-th position. Thus, Su ∩ Sv = ∅. We

have therefore constructed an affine representation of G of dimension rk(A). ⊓⊔

6.14.2 Projective dimension and branching programs

Another measure of a graph’s dimensionality, called the “projective dimension”,

was introduced by Pudlák and Rödl (1992). LetW be a vector space of dimension d
over some field F. A projective representation of a graph G associates a vector space

Sv ⊆ W with every vertex v in such a way that two vertices u and v are adjacent
in G iff Su ∩ Sv ̸= {0}. (Note that 0 belongs to every vector space.) The projective
dimension, pdimF(G), of G is the minimum d such that G has a d-dimensional

projective representation.

This definition could be restated using representation by subspaces of the pro-
jective space of dimension d− 1; adjacent vertices would then correspond to non-

disjoint subspaces of PG(F, d− 1).
Pudlák and Rödl (1992) showed that pdimF(G) is a lower bound on the size of

branching programs computing the graphG in the following sense. At each node the

program may test any of variables xP and xQ, as defined in the proof of Lemma ??.
Thus, given a pair of vertices (u, v) ∈ V1 ×V2, we have that xP (u, v) = 1 iff u ∈ P ,

and xQ(u, v) = 1 iff v ∈ Q. In this way, every pair (u, v) defines the unique path
in the program. The program computes a given bipartite n× n graph G ⊆ V1 × V2
if, for every two vertices u ∈ V1 and v ∈ V2, u and v are adjacent in G iff the

unique path followed by the pair (u, v) in the program ends in a 1-leaf. The size of
a program is the total number of nodes in it.

Let BP(G) denote the minimum size of a deterministic branching program com-

puting the graph G. For a boolean function f , let also BP(f) denote the minimum

size of a standard deterministic branching program which computes f by testing

its variables. Just like in the case of formulas, we have that BP(f2m) ≥ BP(G),
where f2m : {0, 1}2m → {0, 1} is the adjacency function of G with m = logn.
Thus, any lower bound BP(G) = Ω(logK n) would give us a lower bound Ω(mK)
for the branching program size of an explicit boolean function fG in 2m variables.

Recall that the best known lower bound is BP(f2m) = Ω(m2/ log2 m) proved by

Nechiporuk (1966) by counting subfunctions.

On the other hand, Pudlák and Rödl (1992) showed that BP(G) ≥ pdimF(G).
Unfortunately, no lower bounds larger than pdimF(G) = Ω(logn) for explicit

graphs G are known. The situation with affine dimension is even worse: here

even logarithmic lower bounds are not known. The good news, however, is that

graphs with high projective (and affine) dimensions exist. Let pdimF(n) denote the
maximum of pdimF(G) over all bipartite n× n graphs G.

If the underlying field F has a finite number q of elements, then there are at most∑d
i=0
(

qd

i

)
≤ qd2

possibilities to assign a vector space Sv ⊆ Fd
of dimension ≤ d to

each of the 2n vertices. Thus, there are at most q2d2n
different projective realizations
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of a graph. On the other hand, we have 2n2
graphs in total. By comparing these

bounds, we obtain that pdimF(n) = Ω(
√
n).

As shown by Pudlák and Rödl (1992), a comparable lower bound adimF(n) =
Ω(
√
n/ logn) also holds for the infinite fieldF = R of real numbers. They have also

shown that adimF(G) ≤ pdimF(G)2
for every field, and adimF(G) ≤ pdimF(G)−

1 if the field is infinite. A partial inverse pdimF(G) ≤ adimF(G)O(adimF(G))
for

finite fields was shown by Razborov (1990). This does not hold for infinite fields

because, say, a complement M of a perfect matching has adimF(M) = 2 and

pdimF(M) = Ω(logn) over the field R. The lower bound pdimF(M) = Ω(logn)
over any field F is a direct consequence of the following result due to Lovász (1977):

if U1, . . . , Un are r-dimensional and V1, . . . , Vn s-dimensional subspaces of a linear

space over F such that Ui ∩ Vi = {0} and Ui ∩ Vj ̸= {0} whenever i < j, then
n ≤

(
r+s

r

)
.

Exercises

6.1 (Due to Augustinovich 1980) LetK1, . . . ,Kp be all p = 2k
possible monomials

in variables x1, . . . , xk . Let z1, . . . , zp be new variables, and consider the boolean

function φ(x1, . . . , xk, z1, . . . , zp) :=
∨p

j=1 Kj ∧ zj . Note that any boolean func-

tion of variables x1, . . . , xk is a subfunction of φ, that is, can be obtained from φ
by setting its z-variables to constants 0 and 1. Now replace each variable xi in φ
by an AND x1

i ∧ x2
i ∧ · · · ∧ xm

i ofm = 2k/k new variables. Let f be the resulting

boolean function of n = km + p = 2k+1
variables. Let cj(f) be the number of

distinct subfunctions of f of the variables in Yi = {xi
1, x

i
2, . . . , x

i
k} obtained by

fixing the remaining variables to constants in all possible ways. Show that:

(a) log ci(f) ≥ 2k = n/2 for all i = 1, . . . ,m. Hint: Fix an i, 1 ≤ i ≤ m, and set to 1 all

variables xj
l different from xi

1, xi
2, . . . , xi

k . Show that every boolean function with variables

xi
1, xi

2, . . . , xi
k is a subfunction of the obtained function f i

n.

(b) f can be computed by a circuit of size O(n). Hint: Construct a circuit computing all

ANDs of new variables, and take its outputs as inputs to a circuit computing all monomials Kj .

6.2 Show that Khrapchenko’s theorem cannot yield larger than quadratic lower

bounds. Hint: Each vector in {0, 1}n
has only n neighbors, that is, vectors y with dist(x, y) = 1.

6.3 Suppose that f can be represented by an s-CNF and by a t-DNF. Show that

then Khrapchenko’s theorem cannot yield a lower bound larger than st.

6.4 LetR = A×B be a rectangle with A,B ⊆ {0, 1}n
, A∩B = ∅, and |A| ≥ |B|.

Let Q = (qa,b) be the boolean “distance-1” matrix of this rectangle with qa,b = 1
iff a and b differ in exactly one bit. Let sb denote the number of ones in the b-th
column of Q; hence, sb ≤ n. In these terms, the Khrapchenko measure is



198 6 Formulas

µ(R) = 1
|A| · |B|

(∑
b∈B

sb

)2
.

Koutsoupias (1993) proposed the following measure

ν(R) := 1
|A|

∑
b∈B

s2
b .

Show that ν(R) ≥ µ(R) with an equality iff all the sb’s are equal, and that ν(R) is
a convex measure. Hint: Cauchy–Schwarz inequality and Theorem ??.

6.5 The spectral norm of A is can be defined as

∥A∥ = max
x,y ̸=0

|xTAy|
∥x∥∥y∥

,

where ∥x∥2 = (
∑

i x
2
i )1/2

is the Euclidean norm of x. Associate with every matrix

A the following rectangle measure proposed by Laplante, Lee and Szegedy (2006):

µA(R) = ∥AR∥2

maxM ∥AM ∥2 ,

where AR denotes the restriction of A to the rectangle R obtained by setting to 0
all entries outsideR, and the maximum is over all monochromatic subrectanglesM
of R. Prove that this rectangle measure is convex. Hint: Show that the rectangle function

s(R) = ∥xR∥2 · ∥yR∥2
is additive, and use Theorem ??.

6.6 (Due to Mike Paterson) Let A = f−1(0) and B = f−1(1). Prove that the

Khrapchenko measure

µ(f) = |A⊗B|2

|A| · |B|
,

is a formal complexity measure (see Section ??).

Hint: Argue by induction as in the proof of Rychkov’s lemma (Lemma ??). In the induction step

use the inequality

c2
1

a1 · b
+ c2

2
a2 · b

≥ (c1 + c2)2

(a1 + a2) · b

which can be checked by a cross-multiplication.

6.7 (Zwick 1991) The unweighted size of a formula is the number of occurrences

of variables in it. If the variables x1, . . . , xn are assigned non-negative costs

c1, . . . , cn ∈ R then the weighted size of the formula is the sum of the costs of all

occurrences of variables in the formula. Let Lc(f) denote the smallest weighted size

of a DeMorgan formula computing f . For vectors a, b ∈ {0, 1}n
, let c(a, b) = √

ci

if a and b differ in exactly the i-th bit, and c(a, b) = 0 otherwise. For A ⊆ f−1(0)
and B ⊆ f−1(1), define c(A,B) =

∑
a∈A

∑
b∈B c(a, b). Show that, for every

weighting c1, . . . , cn ∈ R,



6.14 Formula size, rank and affine dimension 199

Lc(f) ≥ c(A,B)2

|A| · |B|
.

Hint: Induction. If the formula is a variable xi or its negation ¬xi, then c(A, B) is at most |A|√ci

as well as at most |B|√ci. In the induction step use the hint to Exercise ??.

6.8 Show that, if µ is an additive rectangle function then, for every fractional

partition R =
∑

i ri ·Ri, we have that µ(R) =
∑t

i=1 ri · µ(Ri).

6.9 Show that any linear combination of convex rectangle functions is a convex

rectangle function.

6.10 Let a(R) and b(R) be arbitrary additive non-negative rectangle functions, and
consider the rectangle function µ(R) = f(a(R))/g(b(R)), where f, g : R → R
are non-decreasing, and f is sub-multiplicative in that f(x · y) ≤ f(x) · f(y). Show
that, if µ is normalized then, for every n-dimensional rectangle R, we have that
µ(R) ≤ f(2n). Hint: Consider a covering of R by 2n (overlapping) monochromatic rectangles.

6.11 Consider rectangle measures of the form µ(R) = w(R)k/|R|k−1
, wherew(R)

is an arbitrary subadditive rectangle function: if R = R1 ∪ · · · ∪Rt is a partition

of R, then w(R) ≤ w(R1) + · · · + w(Rt). Recall that Khrapchenko’s measure

has this form with k = 2 and w(R) being the number of pairs (x, y) ∈ R with

dist(x, y) = 1. The goal of this exercise is to show that, for k > 2, such measures

fail badly: they cannot yield even non-constant lower bounds! Namely, let Sn be the

rectangle of the parity function of n variables. Show that, for every constant k > 2
there is a constant c = ck (depending on k, but not on n) such that µ(Sn) ≤ c.

Hint: Consider the following decomposition of Sn. For 1 ≤ i < n, σ ∈ {0, 1} and a string

u ∈ {0, 1}i
, let Ri

u,σ be the rectangle consisting of all pairs (x, y) such that xi+1 = σ, yi+1 =
1 − σ and xj = yj = uj for all j = 1, . . . , i. Use the normalization condition µ(Ri

u,σ) ≤ 1 and

geometric series to show that the sum of µ-measures of these rectangles is constant.

6.12 (Rank-measures are not convex) Given an n× n matrix A (over some field),

associate with it the following measure for n-dimensional rectangles:

µA(R) = rk(AR)
maxM rk(AM ) , (6.30)

where AR is the restriction of A to the rectangle R (obtained by setting to 0 all

entries outside R), and the maximum is over all monochromatic sub-rectangles of

R. If rk(AR) = 0 then we set µA(R) = 0. Subadditivity of rank implies that these

measures are subadditive.

Let n be even. Take a rectangle R = X × Y with X = {x1, . . . , xn} and

Y = {y1, . . . , yn} where xi = ei, yi = ei +ei+1 and ei ∈ {0, 1}n+1
is the i-th unit

vector. Let A be the complement of the n× n unit matrix. We define the fractional

partition of the rectangleR as follows. For every i ∈ [n] we take the size-1 rectangle

Ri = {(xi, yi)} and give it weight ri = 1. To cover the rest of the rectangle R, we
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use rectangles RI = {(xi, yj) | i ∈ I, j ̸∈ I} for all I ⊆ [n] of size |I| = n/2, and
give them weight rI = (4 − 4/n)

(
n

n/2
)−1

. Show that:

(a) This is indeed a fractional partition of R.

(b) The right-hand of the convexity inequality (??) is ≤ 4, but the right-hand is

µA(R) ≥ (n− 1)/2.



7. Monotone Formulas

We have seen that proving lower bound for general circuits is a very difficult task.

Thus it is natural to try to obtain large lower bounds for a more restricted class

of circuits, the class of monotone circuits. Monotone circuits consist only of AND

and OR gates and have no NOT gates. Of course, such circuits cannot compute all

boolean functions. What they compute are monotone functions, that is, functions
f such that f(x) = 1 implies that f(y) = 1 for all vectors y obtained from x by

flipping some of the 0s of x to 1s.
In this chapter we present two general arguments —a rank argument and a game

theoretic argument—that allow us to prove super-polynomial lower bounds on

monotone formula size. Recall that a formula is a circuit whose underlying graph is

a tree; the leafsize of a formula is the number of leaves in its underlying tree.

7.1 The rank argument

For a monotone boolean function f , let L+(f) denote the minimum leafsize of a

monotone formula for f consisting of fanin-2 AND and OR gates. By results of

Khrapchenko and Rychkov, we already know that L+(f) ≥ χ+(f), where χ+(f)
is the monotone tiling number of f defined as the minimum number of pairwise

disjoint positively monochromatic rectangles covering all edges of the rectangle

Sf = f−1(1) × f−1(0).
Recall that a rectangleA×B ismonochromatic if there is a literal z (a variable xi

or its negation ¬xi) such that z(a) = 1 for all a ∈ A, and z(b) = 0 for all b ∈ B. A

rectangle A×B is positively monochromatic if it is separated by a variable xi, that

is, if there exists an index i such that ai = 1 and bi = 0 for all a ∈ A and b ∈ B.

One approach to lower-bound the tiling number of f is to choose appropriate

subsets of vectors A ⊆ f−1(1) and B ⊆ f−1(0), to choose an appropriate matrix

M : A×B → F of large rank over some field F, and to show that the submatrix

MR ofM , corresponding to any positively monochromatic subrectangle R, has
rank at most some given number r. Since rectangles in each decomposition must

201
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be pairwise disjoint, the subadditivity of rank implies that

L+(f) ≥ χ+(f) ≥ rk(M)
r

. (7.1)

The proof of this last conclusion is simple. Given a decomposition A × B =
R1 ∪ · · · ∪ Rt into t pairwise disjoint monochromatic rectangles, let Mi be the

matrixM with all entries outside Ri set to 0. Since the Ri are disjoint, we have

thatM = M1 + · · · +Mt. By our assumption, we also have that rk(Mi) ≤ r for
all i. The subadditivity of rank gives rk(M) ≤

∑t
i=1 rk(Mi) ≤ t · r, from which

t ≥ rk(M)/r follows.
Of course, we have a similar lower bound for non-monotone formulas as well:

if every submatrix corresponding to a monochromatic (not necessarily positively

monochromatic) subrectangle R has rank at most r, then L(f) ≥ rk(M)/r. Unfor-
tunately, in this case the measure rk(M)/r is submodular, and we already know

(see Theorem ??) that submodular measures cannot yield even super-linear lower

bounds. Still, we will now show that in the monotone case the rank argument can
yield strong lower bounds.

7.2 Lower bounds for quadratic functions

The quadratic function of an n-vertex graph G = ([n], E) is a monotone boolean

function

fG(x1, . . . , xn) =
∨

{i,j}∈E

xixj . (7.2)

It is often more convenient to consider boolean functions f(x1, . . . , xn) as set-

theoretic predicates f : 2[n] → {0, 1}. In this case we say that f accepts a set

a ⊆ {1, . . . , n} if and only if f accepts its characteristic vector va ∈ {0, 1}n
with

va(i) = 1 if and only if i ∈ a. Hence, the quadratic function of a graph G is the

unique monotone boolean function fG such that, for every set of vertices I , we
have that

fG(I) = 0 if and only if I is an independent set in G.

Representation (??) shows that L+(fG) ≤ 2|E| for any graph G = (V,E), but for
some graphs this trivial upper bound may be very far from the truth.

7.1 Example Let G = ([n], E) be a complete bipartite graph with E = S × T ,
S ∩ T = ∅ and |S| = |T | = n/2. Then |E| = n2/4, but fG can be computed by a

monotone formula

F (x1, . . . , xn) =
( ∨

i∈S

xi

)
∧
( ∨

j∈T

xj

)
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Fig. 7.1 The cases when y ∈ V (left) and when y ∈ E (right).

of leafsize |S| + |T | = n.

So, a natural question is: what quadratic functions require monotone formulas

of super-linear size? It turns out that such are dense graphs without triangles and

without 4-cycles, that is, dense graphs that do not contain cycles with three or four

vertices; this was shown in (Jukna, 2006).

7.2 Theorem If G = (V,E) is a triangle-free graph without 4-cycles, then L+(fG) ≥
|E|.

Proof. We consider vertices as one-element and edges as two-element sets. For a

vertex y ∈ V , let Iy be the set of its neighbors. For an edge y ∈ E, let Iy be the set

of all its proper neighbors; that is, v ∈ Iy precisely when v ̸∈ y and v is adjacent
with an endpoint of y. Let I = {Iy | y ∈ V ∪ E}. Since G has no triangles and

no 4-cycles, the sets in I are independent sets, and must be rejected by f . We will

concentrate on only these independent sets.

LetM be a boolean matrix of the rectangle E × I defined as follows. The rows

are labeled by edges and columns by edges and vertices of G; a column labeled by

y corresponds to the independent set Iy . The entries are defined by:

M [x, y] =
{

1 if x ∩ y ̸= ∅,
0 if x ∩ y = ∅.

7.3 Claim If R is a positively monochromatic rectangle, then rk(MR) = 1.

Proof. Let R = S×T . Since R is positively monochromatic, there must be a vertex

v ∈ V such that all edges x ∈ S and all edges or vertices y ∈ T ,

v ∈ x and v ̸∈ Iy for all x ∈ S and y ∈ T . (7.3)

Thus, for each y ∈ T , we have two possible cases: either v is in y or not.

Case 1: v ∈ y. Since v ∈ x for all x ∈ S, in this case we have that x ∩ y ⊇ {v} ≠ ∅,
implying thatMR[x, y] = 1 for all x ∈ S. That is, in this case the y-th column of

MR is the all-1 column.

Case 2: v ̸∈ y. We claim that in this case the y-th column ofMR must be the all-0
column. To show this, assume that MR[x, y] = 1 for some edge x ∈ S. Then
x∩y ̸= ∅, implying that x and y must share a common vertex u ∈ x∩y (see Fig. ??).
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Moreover, u ̸= v since v ̸∈ y. Together with v ∈ x, this implies that y = {u, v}.
But then v ∈ Iy , a contradiction with (??). ⊓⊔

By (??), it remains to show that the entire matrixM has full row-rank |E| over
GF(2). For this, take an arbitrary subset ∅ ≠ F ⊆ E of edges. We have to show

that the columns of the submatrixM ′
ofM corresponding to the rows labeled by

edges in F cannot sum up to the all-0 column over GF(2).
If F is not an even factor, that is, if the number of edges in F containing some

vertex v is odd, then the column of v inM ′
has an odd number of 1s, and we are

done.

So, we may assume that F is an even factor. Take an arbitrary edge y = uv ∈ F ,

and let H ⊆ F be the set of edges in F incident to at least one endpoint of y.
Since both vertices u and v have even degree (in F ), the edge y has a nonempty

intersection with an odd number of edges in F : one intersection with itself and an

even number of intersections with the edges in H \ {y}. Thus, the y-th column of

M ′
contains an odd number of 1s, as desired. ⊓⊔

Explicit constructions of dense triangle-free graphs without 4-cycles are known.

7.4 Example (Point-line incidence graph) For a prime power q, a projective plane
PG(2, q) has n = q2 + q + 1 points and n subsets of points (called lines). Every

point lies in q + 1 lines, every line has q + 1 points, any two points lie on a unique

line, and any two lines meet is the unique point. Here is a PG(2, 2), known as the

Fano plane (with 7 lines and 3 points on a line):

Bilder/Fig12_1-eps-converted-to.pdf

Now, if we put points on the left side and lines on the right, and joint a point x with

a line L by an edge if and only if x ∈ L, then the resulting bipartite n× n graph

will have (q+ 1)n = Θ(n3/2) edges and contain no 4-cycles. The graph clearly has

no triangles, since it is bipartite.

7.5 Example (Sum-product graph) Let p be a prime number and take a bipartite

n× n graph with vertices in both its parts being pairs (a, b) of elements of a finite

field Zp; hence, n = p2
. We define a graph G on these vertices, where (a, b) and

(c, d) are joined by an edge if and only if ac = b+ d (all operations modulo p). For
each vertex (a, b), its neighbors are all pairs (x, ax − b) with x ∈ Zp. Thus, the

graph is p-regular, and has n = np = p3 = n3/2
edges. Finally, the graph cannot

have 4-cycles, because every system of two equations ax = b+ y and cx = d+ y
has at most one solution.

If G is any of these two constructed graphs, then Theorem ?? implies that any

monotone formula computing its quadratic function must have an almost maximal

number Ω(n3/2) of leaves.
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The quadratic function fG(x) of a graph G represents this graph: it accepts

all its edges, and rejects all its non-edges (see Section ??). If we could show that

any monotone boolean function f representing a bipartite n× n graph G requires

L+(f) = Ω(n logk n), then the Magnification Lemma would give us an explicit

boolean function of 2m = 2 logn variables requiring non-monotone(!) formulas of

leafsize Ω(mk). Unfortunately, this argument does not work here: it was important

that the function fG rejects all sufficiently large independent sets, not just non-

edges. Actually, for a large class of graphs G (so-called saturated graphs), we have

that fG is the only(!) monotone boolean function representing G (see Exercise ??).
Unfortunately, the argument above does not work for saturated graphs either.

7.3 A super-polynomial size lower bound

Let f : 2[n] → {0, 1} be a monotone boolean function, A ⊆ 2[n]
some subset of

its 1-terms and B ⊆ 2[n]
some subset of its 0-terms. We thus have f(a) = 1 for

all a ∈ A, and f(b) = 0 for all b ∈ B; here b = [n] \ b is the complement of b. In
particular, the pair of families A,B is cross-intersecting: a ∩ b ̸= ∅ for all a ∈ A
and b ∈ B. Indeed, if a ∩ b = ∅ then a ⊆ b, the monotonicity of f together with

f(a) = 1 would imply that f(b) = 1, a contradiction.
In order to apply the rank argument to lower-bound the monotone formula size

of f , we have to associate the rectangle A×B with an appropriate matrixM of

large rank so that each its submatrix, corresponding to a positively monochromatic

subrectangleR, has small rank. Recall thatR is positively monochromatic if there is

an i ∈ [n] such that i ∈ a∩ b for all (a, b) ∈ R. In general, the choice of a matrixM
is not an easy task. But things are easier if the families A and B have the following

“local intersection” property.

7.6 Definition (Local intersection) A pair A,B of families is locally intersecting if

every set b ∈ B can be divided into two nonempty parts b = b0 ∪ b1 such that every

a ∈ A has a nonempty intersection with exactly one of these parts.

The disjointness matrix of such a pair A,B is an |A| by |B| matrix DA,B , with

its rows indexed by sets a ∈ A and its columns indexed by sets b ∈ B, such that

the entries of D = DA,B are defined by

D[a, b] =
{

0 if a ∩ b0 ̸= ∅,
1 if a ∩ b1 ̸= ∅.

For a 0-1 matrixM , let rk(M) denote its rank over GF(2).

7.7 Lemma (Gál–Pudlák 2003) Let f be a monotone boolean function, A some set of
its 1-terms and B some set of its 0-terms. If the pair A,B is locally intersecting, then
L+(f) ≥ rk(DA,B).
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Proof. We are going to apply the rank lower bound (??). For this purpose, we take
the matrixM = DA,B . By (??), it is enough to show that rk(MR) ≤ 1 for every

positively monochromatic subrectangle R = A′ × B′
of A × B. We know that

f(a) = 1 for all a ∈ A′
and f(b) = 0 for all b ∈ B′

. Since the rectangle R is

positively monochromatic, there must exist an i ∈ [n] such that

i ∈ a \ b = a ∩ b for all a ∈ A′
and b ∈ B′

.

Since the pair A,B is locally intersecting, we know that each b ∈ B′
is divided into

two nonempty parts b = b0 ∪ b1 such that each a ∈ A′
intersects exactly one of

these parts. Depending on which of these two parts our element i lies in, we divide
the set B′

into two sets B′
0 := {b ∈ B′ | i ∈ b0} and B′

1 := {b ∈ B′ | i ∈ b1}.
Then the submatrix of MR, corresponding to the rectangle A′ × B′

0 is an all-0
matrix, and that corresponding to the rectangle A′ ×B′

1 is an all-1 matrix. Thus,

the submatrixMR has rank at most 1, as desired. ⊓⊔

7.3.1 Rank of disjointness matrices

In order to get a large lower bound on the formula size, it is therefore enough

to find an explicit locally intersecting pair A,B of families and to show that its

intersection matrix has large rank. The starting point when doing this is the fact

that disjointness matrices of some single families have large rank.

Let A be a family of subsets of [n], and let T : A → 2[n]
be a mapping which

associates with each member a ∈ A a subset T (a) ⊆ a such that T (a) ̸⊆ a′
for

all a′ ∈ A, a′ ̸= a. If such a mapping T exists, then we call it a contractor of A. In
particular, if A is an antichain, that is, if no member of A is a subset of another

member of A, then the trivial mapping T (a) = a is a contractor of A, but there
may also be other contractors as well.

7.8 Definition Given an antichain A and its contractor T , the disjointness matrix of

A is a boolean matrix DA whose rows are labeled by members of A and columns

are labeled by all subsets b ⊆ T (a) for all a ∈ A. That is, for every a ∈ A and for

every b ⊆ T (a) there is a column labeled by b. The entry in the a-th row and b-th
column is defined by: DA[a, b] = 1 if and only if a ∩ b = ∅.

Formally the matrix DA also depends on the contractor T : different contractors
T may yield different matrices DA. However, we suppress this for notational con-

venience: for us it will only be important that all resulting matrices DA have full

row-rank.

7.9 Lemma For every antichain A, and for each of its disjointness matrices DA, we
have that rk(DA) = |A|.

Proof. The general disjointness matrix Dm is a boolean 2m ×2m
matrix whose rows

and columns are labeled by the subsets a of a fixedm-element set, and the (a, b)-th
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entry is 1 if and only if a ∩ b = ∅. It is not difficult to show that this matrix has full

rank over any field, rk(Dm) = 2m
(see Exercise ??).

Take now a disjointness matrix DA of A corresponding to some contractor T
of A. Our goal is to show that all its rows are linearly independent. Fix an a ∈ A
and letMa be the submatrix of DA consisting of the columns indexed by subsets

b ⊆ T (a), and each label a′
of M replaced by a′ ∩ T (a). Since, by definition of

DA, every subset of T (a) appears as a column of DA, the rows ofMa are rows of

the general disjointness matrix Dm withm = |T (a)|, some of them repeated. We

already know that Dm has full rank. Since T (a) ⊆ a, the row with index a is 1 in

the column indexed by the empty set, and 0 in every other column ofMa. But the

row indexed by a occurs inMa only once, because T (a) ̸⊆ a′
for all a′ ∈ A, a′ ̸= a.

This implies that this row cannot be a linear combination of other rows in Ma:

since the matrixMa has full rank, all its distinct rows must be linearly independent.

Thus, the a-th row of the entire matrixDA cannot be a linear combination of others,

either. ⊓⊔

7.3.2 A lower bound for Paley functions

We will consider boolean functions defined by bipartite graphs. Say that a bipartite

n× n graph G = (U ∪ V,E) is k-separated if for every two disjoint subsets X,Y
of U of size at most k there exists a vertex v ∈ V such that every vertex u ∈ X is

connected with v and no vertex u ∈ Y is connected with v.
For a bipartite graph satisfying this condition we define A to be the family of

sets a ⊆ U ∪ V such that |a ∩ U | = k and a ∩ V is the set of all vertices that are

joined to every vertex of a ∩ U , that is, maximal complete bipartite graphs with

the part in U of size k. Associate with each vertex i ∈ U ∪ V a boolean variable xi,

and consider the monotone boolean function

fG,k(x) =
∨

a∈A

∧
i∈a

xi .

Let, as before, L+(f) denote the smallest leafsize of a monotone formula comput-

ing f . Note that, for every graph G on 2n vertices, and for every 1 ≤ k ≤ n, we
have that

L+(fG,k) ≤ 2n
(
n

k

)
.

7.10 Theorem If the graph G is k-separated, then L+(fG,k) ≥
(

n
k

)
.

Proof. Let f = fG,k. Define B to be the family of sets b = b0 ∪ b1 such that

b0 ⊆ U , |b0| ≤ k and b1 consists of all vertices of V that have no neighbors in b0
(Fig. ??). Since each a ∈ A induces a complete bipartite graph and b = b0 ∪ b1
an empty graph, a cannot intersect both b0 and b1. Moreover, the condition that

the underlying graph is k-separated guarantees that a ∩ b0 = ∅ if and only if
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Fig. 7.2 Each a shares a common vertex with each b = b0 ∪ b1, but only in one of the parts U
and V .

a ∩ b1 ̸= ∅. That is, the pair of families A,B is locally intersecting (and hence, also

cross-intersecting). Moreover, this pair must be separated by f : if we had f(b) = 1
for some b ∈ B then, by the definition of f , some set a would lie in the complement

of b, implying that a ∩ b = ∅, and contradicting the cross-intersection property of

A,B. Thus, Lemma ?? implies that every monotone formula separating the pair

A,B, and hence, any such formula computing fG must have size at least rk(DA,B).
To lower bound the rank ofDA,B , relabel each row a ∈ A ofDA,B by a′ := a∩U

(a k-element subset of U ), and column b ∈ B of DA,B by b′ := b0 (an at most

k-element subset of U ), and letM be the resulting matrix; this matrix differs from

DA,B only in labelings of rows and columns—the entries remain the same. Since b0
ranges over all at most k-element subsets of U , and since we have:

DA,B [a, b] = 1 iff a ∩ b1 ̸= ∅ iff a ∩ b0 = ∅ iff a′ ∩ b′ = ∅,

the matrixM is the disjointness matrix DA′ of the family A′
of all sets a′ = a ∩ U

with a ∈ A. (The contractor in this case is a trivial one T (a′) = a′
.) By Lemma ??,

rk(DA,B) = rk(DA′) = |A′| =
(

n
k

)
and we are done. ⊓⊔

Paley graphs give an example of explicit bipartite k-separated graphs for k =
Ω(logn). Let n be an odd prime congruent to 1 modulo 4. A Paley graph is a

bipartite graph G = (U ∪ V,E) with parts U = V = GF(n) where two nodes,

i ∈ U and j ∈ V , are joined by an edge if and only if i− j is a nonzero square in

GF(n), that is, if i − j = z2 mod n for some z ∈ GF(n), z ̸= 0. The condition
n ≡ 1 mod 4 is to ensure that −1 is a square in the field, making the resulting

graph undirected.

Let G be a bipartite n× n Paley graph. Define the Paley function of 2n variables

by:

Paleyn(x) := fG,k(x) where k := ⌊(logn)/3⌋ . (7.4)

7.11 Theorem L+(Paleyn) = nΘ(log n).

Proof. Let G = (U ∪ V,E) be a bipartite n × n Paley graph with n sufficiently

large. Given two disjoint sets of nodes A,B ⊆ U of size |A| = |B| = k, let
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v(A,B) denote the number of nodes in V joined to each node of A and to no

node of B. Based on a deep theorem of Weil (1948) regarding sums of quadratic

characters χ(x) = x(n−1)/2
over GF(n), Graham and Spencer (1971), and Bollobás

and Thomason (1981) proved that

|v(A,B) − 2−kn| ≤ k
√
n .

This implies that v(A,B) > 0 as long as k2k <
√
n. Thus,G is k-separated as long

as k2k <
√
n, and in particular, is k-separated for k := ⌊(logn)/3⌋. The desired

lower bound for Paleyn now follows from Theorem ??. ⊓⊔

Finally, we show that Lemma ?? cannot yield larger than nΩ(log n)
lower bounds.

7.12 Lemma If A,B ⊆ 2[n] is a locally intersecting pair, then the rank of the disjoint-
ness matrix DA,B does not exceed nO(log n).

Proof. We will use the following fact (Lemma ?? proved in the first chapter): if

a boolean matrix can be covered by t (not necessarily disjoint) monochromatic

submatrices, then the matrix can be decomposed into at most t2 log t
monochromatic

submatrices, and hence, has rank at most t2 log t
.

Let D = DA,B be the intersection matrix of the pair (A,B). Since the pair

is locally intersecting, every set b ∈ B can be divided into two nonempty parts

b = b0 ∪ b1 so that every a ∈ A has a nonempty intersection with exactly one of

these parts. Moreover,D[a, b] = α if and only if a∩ bα ̸= ∅, α ∈ {0, 1}. Thus, each
matrixMi,α consisting of all pairs (a, b) with i ∈ a ∩ bα is monochromatic (is an

all-α submatrix), and their union covers all entries of D. Since we only have 2n
such submatrices, Lemma ?? yields the desired upper bound on the rank of D. ⊓⊔

7.4 A log2 n depth lower bound for connectivity

We already know (Proposition ??) that switching networks are not weaker than

DeMorgan formulas. In this section we will show thatmonotone switching networks
can be even exponentially more powerful than monotone formulas. To show this,

we consider directed graphs on n+2 vertices with two special vertices s (the source)
and t (the target). There is one boolean variable xe for each potential edge e. Each
assignment α of values 0 and 1 to these variables defines a directed graph Gα. The

st-connectivity problem is a monotone boolean function defined by:

stconn(α) = 1 iff Gα contains a path from s to t.

Note that this function is indeed monotone: if we add edges we cannot disconnect

an existing path from s to t.
It can be shown (Exercises ?? and ??) that stconn can be computed by a mono-

tone nondeterministic branching program of size O(n2) as well as by a monotone

DeMorgan circuit of depth O(log2 n).
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Wewill use the communication complexity approach to show that any monotone

circuit solving this problem must have depth Ω(log2 n), and hence, any monotone

DeMorgan formulamust have super-polynomial leafsizenΩ(log n)
. This lower bound

was first proved by Karchmer andWigderson (1990); a simpler proof was then found

by Grigni and Sipser (1995).

The corresponding communication game for stconn is the following one: Alice

gets a graph G with s-t path, Bob gets a graph H with no s-t paths, and their goal

is to find an edge which is present in G but is absent in H .

Note that this is a monotone game: an edge which is present in H but absent in

G is not a correct answer. Since we are interested in proving lower bounds on the

communication complexity of this game, we can restrict our attention to special

inputs. Thus, the game stconn corresponding to the st-connectivity problem is the

following one:

• Alice gets a directed path p from s to t.
• Bob gets a coloring c of vertices by the colors 0 and 1 such that c(s) = 0 and

c(t) = 1.
• Find an edge (u, v) ∈ p such that c(u) = 0 and c(v) = 1.

Note that the path p must have at least one such edge (u, v) because it starts in the

node s colored 0 and ends in the node t colored 1.
Let c(stconn) denote the communication complexity of this last game. Note

that every protocol for the original game can be used to solve this (restricted) game:

given a coloring c, Bob converts it into a graph H in which u and v are adjacent if
and only if c(u) = c(v).

So as it is, the game stconn is no longer “symmetric” since the players receive

objects of different types: Alice receives paths and Bob colorings. Still, it is possible

to reduce this game to a symmetric one.

7.4.1 Reduction to the fork game

Let [m]k be a grid consisting of all strings a = (a1, . . . , ak) with ai ∈ [m] =
{1, . . . ,m}. Given two paths (strings) a and b in [m]k, say that i ∈ [k] is a fork
position of a, b if either i = 1 and a1 ̸= b1, or i > 0 and ai−1 = bi−1 but ai ̸= bi.

Note that any two distinct strings must have at least one fork position: either they

differ in the first coordinate, or there must be a coordinate where they differ “for

the first time”. We will be interested in the following symmetric games fork(S) on
subsets S ⊆ [m]k .

• Alice gets a string a ∈ S and Bob gets a string b ∈ S.
• Find a fork position i of a and b, if ak ̸= bk .

• If ak = bk then i = k + 1 is also a legal answer.
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Bilder/fork4-eps-converted-to.pdf

Fig. 7.3 Alice extends her string a = (a1, . . . , ak) to an s-t path (s, a1, . . . , ak, t), and Bob turns
his string b = (b1, . . . , bk) into a 2-coloring by assigning color “0” to vertices s, b1, . . . , bk and

color “1” to all remaining vertices.

If, for example, a = (1, 2, 4, 3, 4) and b = (3, 2, 2, 5, 4) then i = 1, i = 3 and

i = 6 are legal answers, and players can output any of them. In particular, if a = b
then i = k + 1 is the only legal answer.

Let c(forkm,k) denote the communication complexity of the fork game on the

whole set S = [m]k .
We can relate this game to the previous (s-t connectivity) game. When doing

this, we restrict our attention to graphs on n = mk vertices, where only edges

connecting nodes from adjacent levels are allowed.

7.13 Lemma c(forkm,k) ≤ c(stconn).

Proof. Suppose we have a protocol Π for stconn. We will show that this protocol

can be used for the game forkm,k . To use the protocolΠ , the players must convert

their inputs a = (a1, . . . , ak) and b = (b1, . . . , bk) for the fork game to inputs for

the s-t connectivity game.

Alice converts her input (a1, . . . , ak) into a path p = (u0, u1, . . . , uk, uk+1)
where u0 = s, uk+1 = t, and ui = ai for 1 ≤ i ≤ k. Bob converts his input

(b1, . . . , bk) into a coloring c by assigning color 0 to all vertices s, b1, . . . , bk, and

assigning color 1 to the remaining vertices; hence, c(s) = 0 and c(t) = 1 (see Fig. ??).
The players now can use the protocol Π for stconn to find an edge (ui−1, ui) in
p such that c(ui−1) = 0 and c(ui) = 1. This means that ui−1 is in the path

(s, b1, . . . , bk) and ui is not. We claim that i is a valid answer for the fork game on

the pair a, b.
If i = 1 then ui−1 = u0 = s and u1 = a1. Therefore, c(s) = 0 and c(a1) = 1 ̸=

0 = c(b1), implying that a1 ̸= b1 (no vertex can receive two colors).

Now let 1 < i ≤ k. Recall that, for each j = 1, . . . , k, the coloring c assigns
color 0 to exactly one vertex in the j-th layer, namely to the vertex bi. Hence,

the fact that c(ai−1) = c(ui−1) = 0 means that ai−1 = bi−1, and the fact that

c(ai) = c(ui) = 1 ̸= 0 = c(bi) means that ai ̸= bi.

Finally, let i = k + 1. Then ui−1 = ak and ui = t. Since c(ak) = c(ui−1) = 0
and since only the vertex bk on the k-th layer can receive color 0, this implies

ak = bk. Since, in this case, i = k + 1 is a legal answer for the game, we are

done. ⊓⊔
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7.4.2 Lower bound for the fork game

Let c(forkn) denote the communication complexity of the game fork(S) on S =
[m]m for m =

√
n. By Lemma ?? and Exercise ?? we know that c(forkn) =

O(log2 n). We will show that this upper bound is almost optimal.

7.14 Theorem (Grigni–Sipser 1995) c(forkn) = Ω(log2 n).

Proof. Call a two-player protocol an (α, k)-protocol if it is a protocol for the game

fork(S) on some subset S ⊆ [m]k such that |S| ≥ αmk
. Denote by c(α, k) the

minimum communication complexity of an (α, k)-protocol. That is, if c(α, k) ≤ c
then there exists a subset S ⊆ [m]k of |S| ≥ αmk

strings and a protocol Π
of communication complexity c such that Π works correctly on S. In particular,

c(1, k) = c(forkm,k).
We start with two simple claims.

7.15 Claim For any k ≥ 1 and any α > 1/m, c(α, k) > 0.

Proof. Suppose that c(α, k) = 0. Thus, there exists a subset of strings S ⊆ [m]k
such that |S| ≥ αmk > mk−1

and the players must know the unique answer

i ∈ {1, . . . , k, k+ 1} for all input pairs a, b ∈ S without any communication. Since

|S| is strictly larger thanmk−1
, there must be two strings a, b ∈ S with ak ̸= bk.

Hence, on this input pair (a, b) the answer must be some i ≤ k. But on input pair

(a, a) the only legal answer is i = k + 1, a contradiction. ⊓⊔

7.16 Claim If k ≥ 1 and c(α, k) > 0 then c(α, k) ≥ 1 + c(α/2, k).

Proof. Let c = c(α, k). Thus, there exists a subset S ⊆ [m]k such that |S| ≥ αmk

and there is a protocol Π such that for all a, b ∈ S, the protocol correctly solves

the game on these inputs with c bits of communication. Assume w.l.o.g. that Alice

speaks first (the case when Bob speaks first is similar). Hence Alice sends either 0
or 1. After this (first) bit is communicated, the set S is split into two parts S0 and

S1. Assume w.l.o.g. that |S0| ≥ |S1|. Let Π0 be the rest of the protocol Π , after

assuming that the first bit send by Alice was 0. That is, Π0 works exactly like Π ,

but without sending the first bit, and continuing as if the value of the first bit was 0.
The communication complexity of Π0 is at most c− 1. Obviously, Π0 must work

correctly on S0, because Π does this on the whole set S = S0 ∪ S1. Hence, Π0 is

an (α/2, k)-protocol, implying that c(α/2, k) ≤ c− 1 = c(α, k) − 1. ⊓⊔

Starting with α = 1 and applying Claim ?? t = (logm)/2 times, we obtain

that c(1, k) ≥ c(α, k) + t with α = 1/
√
m. Since α > 1/m, Claim ?? yields

c(forkm,k) = c(1, k) = Ω(logm). This lower bound is, however, too weak. What

we claim in Theorem ?? is that the actual lower bound is about log k times larger.

7.17 Remark (Amplification) The reason why Claims ?? and ?? alone cannot yield
larger lower bounds is that, when compared to the entire “universe” [m]k, the
density of the sets S (on which a protocol is still correct) drops very quickly. In such
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situations it is usually helpful to take a projection SI of S onto some subset I ⊆ [k]
and to work in the smaller universe [m]I . The hope is that the relative density of

SI within [m]I will be much larger than that of S within the whole universe [m]k .
This trick is usually called the “amplification” of density.

The point here is the following. Split the set [k] of positions into two equal-sized
parts [k] = I ∪ J . Since |S| ≤ |SI | · |SJ |, at least one set of projections, say, SI

must have |SI | ≥ |S|1/2
strings. Hence, if µ(S) = |S|/mk

is the relative density

of the original set S, and µ(SI) = |SI |/mk/2
the relative density of its projection,

then µ(SI) ≥ |S|1/2/mk/2 =
√
µ(S), which is at least twice(!) larger than µ(S),

if µ(S) ≤ 1/4.

We now turn to the amplification step: given an (α, k)-protocol with k ≥ 2
and α not too small, we convert it into a (

√
α/2, k/2)-protocol. Thus α may be

amplified greatly while k is only cut in half. By amplifying α, after every about

log k steps, we may keep α > 1/m until k reaches 1, showing the protocol must

have a path of length at least logm times log k.
We will need the following combinatorial fact about dense matrices. Say that

a boolean vector or a boolean matrix is α-dense if at least an α-fraction of all its

entries are 1s.

7.18 Lemma If A is 2α-dense then

(a) there exists a row which is
√
α-dense, or

(b) at least a fraction
√
α of the rows are α-dense.

Proof. Let A be a boolean M × N matrix, and suppose that neither case holds.

We calculate the density of the entire matrix. Since (b) does not hold, fewer than√
αM of the rows are α-dense. Since (a) does not hold, each of these rows has fewer

than

√
αN 1s; hence, the fraction of 1s in α-dense rows is strictly smaller than

(
√
α)(

√
α) = α. We have at mostM rows which are not α-dense, and each of them

has fewer than αN ones. Hence, the fraction of 1s in these rows is also smaller

than α. Thus, the total fraction of 1s in the matrix is less than 2α, contradicting the
2α-density of A. ⊓⊔

7.19 Lemma (Amplification) For every k ≥ 2 and α ≥ 16/m,

c(α, k) ≥ c(
√
α/2, k/2) .

Proof. We are given an (α, k)-protocol working correctly on some set S ⊆ [m]k of

|S| ≥ αmk
strings (paths). Consider a bipartite graph G = (U ∪ V, S) with parts

U and V , where U consists of allmk/2
possible strings on the first k/2 levels, and

V consists of all mk/2
possible strings on the last k/2 levels. We connect u ∈ U

and v ∈ V if their concatenation u ◦ v is a string in S; in this case we say that

v is an extension of u. Hence, G is a bipartite graph with parts of size mk/2
and

|S| ≥ αmk
edges. When applied to the adjacency matrix of G, Lemma ?? implies

that at least one of the following two must hold:

(a) Some string u0 ∈ U has at least

√
α
2m

k/2
extensions.
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k/2

w

v a

X

wX(a)

wY (b)

Y

b

u0

k/2 k/2 k/2

Fig. 7.4 Two cases for constructing a protocol for strings of length k/2.

(b) There is an U ′ ⊆ U such that |U ′| ≥
√

α
2m

k/2
and each u ∈ U ′

has at least

α
2m

k/2
extensions.

In both cases (a) and (b), we show how to construct a (
√
α/2, k/2)-protocol.

Case (a): In this case, we have one string u0 on the left that has many extensions v
on the right such that u0 ◦ v ∈ S (see Fig. ??). Thus we can recover a (

√
α/2, k/2)-

protocol as follows: let V ′ ⊆ V be the set of all extensions of u0. Given two strings

v, w ∈ V ′
, the players can play the S′

-game on these inputs by following the

S-protocol for the pair of strings u0 ◦ v and u0 ◦w. Since these strings are identical
on the first k/2 coordinates, the answer i must be either k + 1 or a point on the

last k/2 coordinates where the paths v and w diverge.

Case (b): In this case, we take a random partition of the km/2 nodes in the right

k/2 levels. More precisely, takem/2 nodes at random from each of the right k/2
levels, and call their union X ; call the set of remaining km/4 right nodes Y . Say

that a string u ∈ U is good if it has an extension vX(u) lying entirely in X and

another extension vY (u) lying entirely in Y .

7.20 Claim The expected number of good strings in U ′
is at least 0.9|U ′|.

Proof. We can construct a subset of X as follows. Takem/2 uniformly distributed

paths p1, . . . , pm/2 of the right k/2 layers, color their vertices red and let X be

the union of these vertices. The paths are not necessarily vertex disjoint and some

layers may have fewer thanm/2 vertices. To correct the situation, we randomly

color additional vertices red in each layer to ensure that all layers have exactlym/2
red vertices. Finally, we color all remaining vertices blue.

Now take a path u ∈ U ′
. By (b) we know that each red path pi is an extension of

u with probability at least α/2. That is, pi is not and extension of u with probability

at most 1 − α/2. Since α ≥ 12/m, the union bound implies that the probability

that none ofm/2 red paths is an extension of u does not exceed

(1 − α/2)m/2 ≤ (1 − 6/m)m/2 ≤ e−3 < 0.05 .

Since the red and blue vertices are identically distributed, the same also holds for

blue paths. Therefore, each u ∈ U ′
is good with probability at least 1−2·0, 05 = 0.9,

implying that the expected fraction of good strings in U ′
is at least 0.9. ⊓⊔
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This yields a (
√
α/2, k/2)-protocol as follows. Let U ′′ ⊆ U ′

be the set of all

good strings in U ′
. By Claim ?? and since 0.9/

√
2 > 0.5, the density of the set U ′′

within [m]k/2
is at least 0.9

√
α/2 ≥

√
α/2, as desired. Given strings a, b ∈ U ′′

,

the players follow the S-protocol on the inputs a ◦ vX(a) and b ◦ vY (b). Since the
S-protocol is correct on these strings, and since they share no vertices in the right

k/2 levels, the protocol must return an answer i in the first k/2 levels, hence the

answer is in fact valid for a and b.
This completes the proof of Lemma ??. ⊓⊔

Now we can finish the proof of Theorem ?? as follows.
Letm = k =

√
n. By r := ⌊log(

√
m/8)⌋ = Θ(logn) applications of Claim ??

and one application of Lemma ??, we obtain that

c(2/
√
m, k) ≥ c(16/m, k) + r ≥ c(2/

√
m, k/2) + r .

Applying the last inequality s := ⌊log k⌋ = Ω(logn) times, we obtain

c(2/
√
m, k) ≥ c(2/

√
m, 1) + r · s ≥ r · s .

Hence, c(forkm,k) = c(1, k) ≥ c(2/
√
m, k) ≥ r · s = Ω(log2 n). ⊓⊔

7.5 An n1/6 depth lower bound for clique function

The clique function fn = CLIQUE(n, k) has
(

n
2
)
variables xij , one for each po-

tential edge in a graph on a fixed set V = {1, 2, . . . , n} of n vertices; the function

outputs 1 if and only if the associated graph contains a clique (complete subgraph)

on some k vertices. The clique function is monotone because setting more edges to

1 can only increase the size of the largest clique. The corresponding to this function

monotone Karchmer-Wigderson game is the following clique-coloring game:

• Alice gets a clique q ⊆ V on k vertices.

• Bob gets a coloring c : V → {1, . . . , k − 1}.
• The goal is to find an edge {u, v} ⊆ q such that c(u) = c(v).

Since no clique on k vertices can be properly (that is, in a 1-1 manner) colored by

k− 1 colors, at least one edge of Alice’s clique q must be left monochromatic under

Bob’s coloring; the goal is to find such an edge. Thus, if a leaf of a communication

protocol for this game is reached by some set Q× C of clique/coloring pairs, then

there must be an edge {u, v} such that

{u, v} ⊆ q for all q ∈ Q, and c(u) = c(v) for all c ∈ C . (7.5)

That is, the edge must belong to all cliques in Q and be monochromatic under all

colorings in C . In order to force a long path in a communication tree, our strategy

is to achieve that the following invariant holds:
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(*) If an edge is monochromatic in all colorings c ∈ C , then at least one of its two

endpoints lies in none of the cliques q ∈ Q.

It is clear that, if Q× C ̸= ∅ and the invariant (*) holds, then (??) cannot hold, and
hence, the node cannot be a leaf.

In a round the players are allowed to send one bit each rather than only one of

them sending a bit. Since we are interested in the number of rounds rather than the

number of bits transferred, this can only make life easier for them. Each bit that

Alice or Bob sends decreases the set of possible cliques or colorings.

7.21 Remark As in the case of the fork game above, it will be convenient to work

with densities of sets in a given universe, rather than with their actual cardinalities

(cf. Remark ??). Namely, if A is a subset of some given universe B, then its density

in B is the fraction µ(A) = |A|/|B|. This definition is useful when we want to

describe how much is known about some element x ∈ B. Suppose that we know

that x ∈ A ⊆ B. Suppose further that we know the structure of B but that the

structure of A is unknown or very complicated. Then the amount of information

we (this time, the players) have about x is given by the structure of B and µ(A).
The smaller µ(A) is the more we know about x.

7.22 Example To illustrate the usefulness of dealing with densities instead of cardi-

nalities, let B be the family of all |B| =
(

n
k

)
k-element subsets of [n]. Each element

x ∈ [n] appears in a

(
n−1
k−1
)(

n
k

)−1 = k/n fraction of sets in B. Take a sub-family

A ⊆ B, and say that an element x is “popular” for A if it appears at least twice as
often as the average element, that is, if the familyAx ⊆ A of all sets inA containing

x has density

|Ax|
|B|

= µ(Ax) ≥ 2k
n

· µ(A) = 2k
n

· |A|
|B|

relative to the underlying set B. Now remove the element x from all sets, and

consider the resulting families A′
and B′

of subsets of the smaller set [n] \ {x}. We

only know that |A′| = |Ax| ≥ 2k
n |A|. But A′

is a subset of a smaller underlying
family B′

and, relative to this (new) underlying family, has density at least twice
larger than that of the original family A:

µ(A′) = |A′|
|B′|

= |Ax|(
n−1
k−1
) = n

k
· |Ax|(

n
k

) ≥ n

k
· 2k
n

· |A|
|B|

= 2 · µ(A) .

7.23 Theorem (Goldmann–Håstad 1992) Let 3 ≤ k ≤ (n/2)2/3 and t ≤
√
k/4.

Then every monotone DeMorgan circuit computing the clique function CLIQUE(n, k)
must have depth at least t.

Note that, in terms of the total number N =
(

n
2
)
of variables, the depth

is Ω(N1/6).
The proof uses an adversary argument. Given a communication protocol tree

for the clique-coloring game, our goal is to show that it must have a long path. To

analyze the behavior of the protocol, Qt will denote the set of cliques that remain
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after round t,Ct the set of colorings that remain after round t,Mt the set of vertices

that belong to all cliques in Qt (“fixed” vertices), Lt the set of vertices that belong

to none of the cliques in Qt (“forbidden” vertices),mt = |Mt| and lt = |Lt|.
All these sets are known to both players. Recalling Remark ?? we consider Qt

and Ct as subsets of smaller universes so that their relative densities may (and will)

increase:

• Qt is a subset of all cliques q \Mt such thatMt ⊆ q ⊆ V \ Lt.

• Ct is a subset of all colorings of V \ Lt.

This is because both players already know that Alice’s clique must contain Mt,

and a monochromatic edge they are looking for cannot have an endpoint in Lt.

Thus,mt and µ(Qt) tells us how much Bob knows about Alice’s clique after round

t. Similarly, lt and µ(Ct) measure what Alice knows about the Bob’s coloring.

At the beginning (t = 0) we haveMt = Lt = ∅. The t-th round proceeds in two

sub-rounds: first speaks Alice, then Bob.

Sub-round 1: Alice sends one bit, that is, she splits the current set of cliques Qt−1
into two parts, and let Q be the larger of these parts. We now fix some additional

vertices (add them toM ). On average, a vertex appears in a k/n fraction of k-cliques
on n vertices. Say that a vertex v ∈ V \M is “popular” if it appears at least twice
as often as the average vertex, that is, if

µ({q ∈ Q | v ∈ q}) ≥ 2k
n

· µ(Q) .

We fix such a vertex (add it toM ), remove all cliques that do not contain v, and look
for a new popular vertex in the shrunken set of cliques. Each time when we find a

popular vertex, the density of the new set of cliques increases by at least factor two

since this set is now a subset of a smaller set (cf. Example ??). We proceed in this

way until no popular vertices exist. IfMt is the new (extended) set of fixed vertices,

we set

Q′
t := {q ∈ Q | q ⊇ Mt} and C ′

t := {c ∈ Ct−1 | c is 1-1 onMt} .

Thus, the desired edge cannot lie inMt.

Sub-round 2: Bob sends one bit, that is, he splits the current set of colorings into

two parts. In particular, he splits the set C ′
t into two parts, and let C be the larger

of these parts. We now remove some additional vertices, that is, add them to L. On
average, one pair u ̸= v of vertices is left monochromatic by a fraction 1/(k − 1)
of all colorings. Say that a pair u ̸= v is “popular” if it is left monochromatic by the

colorings in C at least twice as often as the average pair of vertices, that is, if

µ({c ∈ C | c(u) = c(v)}) ≥ 2
k − 1 · µ(C) .

Since c is 1-1 on Mt, at least one of u or v must lie outside Mt. We add this

endpoint to the current set L of “forbidden” vertices, and restrict C to colorings
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with c(u) = c(v). Again, the density µ(C) increases by at least the factor two since

the domain V \ L of colorings is now smaller. We repeat this step until no desired

edges can be found, and let

Ct := {c ∈ C | c(u) = c(v) for all popular pairs u ̸= v} .

Let Lt be the resulting set of “forbidden” vertices, and set

Qt := {q ∈ Q′
t | q ∩ Lt = ∅} .

Thus, the desired edge cannot have an endpoint in Lt.

When the t-th round is over, the resulting set of inputs is the setQt ×Ct, where

all cliques q ∈ Qt satisfyMt ⊆ q ⊆ V \Lt, and all colorings c ∈ Ct are 1-1 onMt

and leave all popular edges (that is, edges touched byLt) monochromatic. Moreover,

if an edge is monochromatic in all colorings c ∈ Ct, then at least one of its two

endpoints must lie in Lt, and hence, is in none of the cliques q ∈ Qt. Thus, the set

of inputs Qt × Ct satisfies our invariant (*). It remains therefore to show that, if

the number t of rounds is small enough, then this set is still non-empty.

Recall that the set Qt ×Ct is constructed from Qt−1 ×Ct−1 in two sub-rounds:

Qt−1 × Ct−1 7→ Q′
t × C ′

t 7→ Qt × Ct .

7.24 Lemma Suppose that 3 ≤ k ≤ (n/2)2/3 and t ≤
√
k/4. Then

µ(C ′
t) ≥ 1

2µ(Ct−1) ifmt ≤ 2t; (7.6)

µ(Qt) ≥ 1
2µ(Q′

t) if lt ≤ 2t. (7.7)

Proof. To prove the first inequality (??), recall thatC ′
t consists of all colorings inCt−1

that are 1-1 onMt. By the definition ofLt−1, for every edge e ⊆ V \Lt−1 the relative
density of all colorings in Ct−1 leaving e monochromatic is < 2µ(Ct−1)/(k − 1).
SinceMt ⊆ V \ Lt−1, the same must hold for all edges e ⊆ Mt as well. Since we

only have

(
mt

2
)
edges e ⊆ Mt, the density of the set of colorings in Ct−1 leaving at

least one edge inMt monochromatic is at most(
mt

2

)
2µ(Ct−1)
k − 1 ≤ 4t2

k − 1 µ(Ct−1) ≤ 1
2 µ(Ct−1) .

To prove the second inequality (??), recall that, by the definition ofQ′
t, the density of

cliques in Q′
t containing any fixed vertex v ̸∈ Mt must be smaller than 2k/n times

the density µ(Q′
t) of the set Q′

t itself. Since Lt ∩Mt = ∅, we have the same bound

for all v ∈ Lt. The set Qt was obtained from Q′
t by removing all cliques containing

a vertex in Lt. Hence, the density of removed cliques is at most (2k/n)µ(Q′
t) times

|Lt| = lt. By our assumptions k ≤ (n/2)2/3
and lt = |Lt| ≤ 2t ≤

√
k/2, we have

that the density of removed cliques does not exceed
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2klt
n

µ(Q′
t) ≤ k

√
k

n
µ(Q′

t) = k3/2

n
µ(Q′

t) ≤ 1
2 µ(Q′

t) . ⊓⊔

We can now show that, if the number t of rounds is not too large, then both sets

Qt and Ct have a nontrivial density.

7.25 Lemma Let k ≤ (n/2)2/3. Then for every t ≤
√
k/4 we have that

µ(Qt) ≥ 2mt−2t and µ(Ct) ≥ 2lt−2t .

Proof. Since we have µ(Q0) = µ(C0) = 1 andm0 = l0 = 0, the lemma holds for

t = 0 (at the beginning of the game). Now assume that the lemma holds for the

first t − 1 rounds. First we give explicit lower bounds on µ(Q′
t) and µ(C ′

t). The
number of new vertices fixed in round t ismt −mt−1. Since after fixing each of

these vertices the density µ(Q′
t) increases by a factor at least two, the induction

hypothesis yields

µ(Q′
t) ≥ 1

22mt−mt−1µ(Qt−1) = 2mt−2t+1 . (7.8)

Since the density µ(Q′
t) cannot exceed 1, we obtain thatmt ≤ 2t−1 < 2t. With this

upper bound onmt, (??) yields µ(C ′
t) ≥ µ(Ct−1)/2. Together with the induction

hypothesis, we obtain that

µ(C ′
t) ≥ 2lt−1−2t+1 . (7.9)

The sets Qt and Ct we finally determined in the second part of round t, where Bob
(the “color player”) sends one bit. The bounds obtained for µ(Q′

t) and µ(C ′
t) allow

us to finish the proof. Since after the removal of all colorings c with c(u) ̸= c(v)
for a popular pair u ̸= v the density µ(C ′

t) increases by a factor at least two, the

lower bound (??) implies

µ(Ct) ≥ 1
22lt−lt−1µ(C ′

t) ≥ 1
22lt−lt−12lt−1−2t+1 = 2lt−2t .

Since µ(Ct) ≤ 1 we have that lt ≤ 2t. Thus, we can apply (??) and obtain that

µ(Qt) ≥ µ(Q′
t)/2. Together with (??) this gives the second desired lower bound

µ(Qt) ≥ 1
2µ(Q′

t) ≥ 2mt−2t . ⊓⊔

After all these preparations we are now ready to finish the proof of Theorem ??
itself.

p@plus6p@

Proof of Theorem ??addpunct: Take an arbitrary communication protocol for the

monotone Karchmer-Wigderson game corresponding to CLIQUE(n, k). Run this

protocol for t =
√
k/4 rounds. The adversary’s strategy gives us sets Qt, Ct,Mt

and Lt. Since t ≤
√
k/4, Lemma ?? ensures that the sets Qt and Ct are both non-
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empty (their densities are not zero). So take some pair (q, c) ∈ Qt × Ct. We have

that q ∩ Lt = ∅.
If t rounds were sufficient, Alice would know an edge {u, v} ⊆ q which is

monochromatic under all colorings in Ct, including the coloring c. But then, by the

definition of the set Lt of “forbidden vertices”, at least one of the vertices u and v
must lie in Lt, contradicting q ∩ Lt = ∅. ⊓⊔

endpefalse

7.6 An n1/2 depth lower bound for matching

Let Matchn(x) be a monotone boolean function of

(
n
2
)
variables encoding the

edges of a graph Gx on n = 3m vertices. The function computes 1 if and only if

the graph Gx contains anm-matching, that is, a set ofm vertex disjoint edges.

7.26 Theorem (Raz–Wigderson 1992) Every monotone circuit computingMatchn(x)
must have depth at least Ω(n).

Note that, in terms of the total number N =
(

n
2
)
of variables, the depth

is Ω(N1/2).

Proof. Every m-matching p is clearly a 1-term (in fact, a minterm) of Matchn.

What are 0-terms? For a subset q ofm− 1 vertices, let cq be the complete graph on

the remaining 2m+ 1 vertices. It is not difficult to see that the complement of cq

can contain nom-matching. Hence, the graphs cq are 0-terms of Matchn.

In a monotone version of Karchmer-Wigderson game for Matchn, Alice (holding

a minterm p) and Bob (holding a 0-term cq) must find an edge e ∈ p ∩ cp. It will be

convenient to give Bob not graphs cq but rather the sets q themselves; then e ∈ p∩cq

if and only if e ∈ p and e∩ q = ∅. Hence, the monotone Karchmer-Wigderson game

for Matchn must solve the following “find edge” problem:

FEm: Alice gets an m-matching p and Bob gets an (m − 1)-element set q of

vertices. The goal is to find an edge e ∈ p such that e ∩ q = ∅.

Let c+(FEm) be the deterministic communication complexity of this game. By

Theorem ??, it is enough to show that c+(FEm) = Ω(n).
The game FEm corresponds to a search problem: find a desired edge. Our proof

strategy is first to reduce this problem to a decision problem: given two subsets

of [m] decide whether they are disjoint. Since this last problem has randomized

communication complexity at leastΩ(m), we will be done. To construct the desired
reduction, we consider several intermediate decision problems.

Mm: Alice gets anm-matching p and Bob gets anm-element set q′
of vertices.

Is there an edge e such that e ∈ p and e ∩ q′ = ∅?
distm: Alice gets x ∈ {0, 1, 2}m

and Bob gets y ∈ {0, 1, 2}m
.

Is xi ̸= yi for all i = 1, . . . , n?
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Fig. 7.5 Alice’s vector x = (2, 0, 1, 2) and Bob’s vector y = (1, 2, 0, 2). From the i-th triple, Alice

chooses the edge e = {0, 1, 2} \ {xi}, and Bob chooses the vertex yi.

disjm: Alice gets x ∈ {0, 1}m
and Bob gets y ∈ {0, 1}m

.

Is xi ∧ yi = 0 for all i = 1, . . . ,m?

Through a series of reductions we will show (by ignoring multiplicative constants)

that

Ω(m) (a)= c1/3(disjm)
(b)
≤ c1/3(distm)

(c)
≤ c1/3(Mm)

(d)
≤ c+(FEm) .

The lower bound (a) is due to Kalyanasundaram and Schnitger (1992). A proof of a

weaker lower bound of Ω(
√
n) is given in Section ??. We use randomized protocols

because we will need randomness in the last reduction (d).

Proof of (b): c1/3(disjm) ≤ c1/3(distm). Transform an input (x, y) ∈ {0, 1}2m

for disjm into an input (x, y′) ∈ {0, 1, 2}2m
for distm by setting y′

i = 1 if yi = 1,
and y′

i = 2 if yi = 0. Then ∃i xi = yi = 1 if and only if ∃i xi = y′
i.

Proof of (c): c1/3(distm) ≤ c1/3(Mm). Since each randomized protocol for a

function f is also a randomized protocol for its negation ¬f , it is enough to reduce

distm to ¬Mm. For this, we need to encode inputs for distm as inputs for Mm.

To do this, split all n = 3m vertices into m vertex-disjoint triples, and number

the three vertices in each triple by 0, 1, 2. Given a vector x ∈ {0, 1, 2}m
, Alice

chooses from the i-th triple the edge e = {0, 1, 2} \ {xi}. Similarly, given a vector

y ∈ {0, 1, 2}m
, Bob chooses from the i-th triple the vertex yi. Since the triples are

vertex-disjoint, Alice obtains an m-matching px, and Bob obtains an m-element

set q′
y of vertices. It remains to observe that an edge e with e ∈ px and e ∩ q′

y = ∅
exists if and only if xi = yi for some i ∈ [m] (see Fig. ??).

Proof of (d): c1/3(Mm) ≤ c+(FEm). This is the only nontrivial reduction. In

both games Mm and FEm Alice gets anm-matching p. In the game Mm Bob gets

anm-element set q′
of vertices, and the goal is to decide whether some edge of p

does not touch the set q′
. If we pick a vertex v ∈ q′

and remove it from q′
to obtain

the (m− 1)-set q = q′ \ {v}, then each protocol for FEm will definitely find an

edge e ∈ p such that e ∩ q = ∅. If we are lucky and the removed vertex v is not
an endpoint of the found edge e, then we know the answer: the edge e is disjoint
from q′

. But if v ∈ e, then the answer e of the protocol FEm(p, q) is useless. The
idea therefore is to introduce randomness in the protocol for FEm to make the

probability of this “bad” event small.

Having a protocol P for FEm, we construct a randomized protocol for Mm as

follows.
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Fig. 7.6 In the situation on the left the gamble is correct: e ∩ q′ = ∅. In the situation on the right

the gamble is wrong since e′ ∩q′ = ∅, although e∩q′ ̸= ∅. But the error probability is then ≤ 1/2
since, in this case, the protocol will not choose e with probability at least 1/|{e, e′}| = 1/2.

• Given an m-matching p (for Alice) and an m-element set q′
of vertices (for

Bob), Bob chooses a random vertex v ∈ q′
and defines q := q′ \ {v}.

• Alice and Bob flip coins publicly and choose a random permutation π : [n] → [n]
on the set of vertices of the graph. Then they execute the protocol P on π(p)
and π(q). If e1, . . . , ek ∈ p were the edges in p which do not intersect q, then
P returns each edge from {e1, . . . , ek} with equal probability. Note that k ≥ 1
since |q| ≤ m− 1.

• The players eventually agree on an edge e such that e ∈ p and e ∩ q = ∅. Bob
checks whether v ∈ e and reports this to Alice.

• If v ̸∈ e then e∩ q′ = ∅, and the players know that the answer is “1”. Otherwise
they gamble on “0”.

It remains to show that the gamble can only be wrong with probability at most

1/2. Let E be the set of all edges in p that contain no endpoint in q′
. The gamble is

wrong if E ̸= ∅ and v ∈ e. But the protocol outputs each edge in E ∪ {e} with the

same probability 1/|E ∪ {e}| ≤ 1/2. In particular, it will pick the edge e (and not

some edge e′
in E) with such a probability (see Fig. ??). Since vertex v cannot be

an endpoint of more than one edge of the matching p, the probability of error is at

most 1/2. To decrease the error probability, just repeat the protocol twice.

This completes the reductions, and thus the proof of Theorem ??. ⊓⊔

Theorem ??, together with the Formula Balancing Lemma (Lemma ??), gives an
exponential lower bound on the monotone size of DeMorgan formulas. Recall that

Matchn is a monotone boolean function of

(
n
2
)

= Θ(n2) variables.

7.27 Corollary Every monotone formula for Matchn must have size 2Ω(n).

Borodin et al. (1982) observed that a randomized algorithm for matching, pro-

posed by Lovász (1979b), can be implemented by non-monotone circuits of depth

O(log2 n). Together with the lower bound Ω(n) on the monotone depth, this gives

an exponential gap between the depth of monotone and non-monotone circuits,

just like Theorem ?? gave such a gap for the size of circuits.
Yet another consequence of Theorem ?? is for switching networks. Such a net-

work is monotone if it has no negated variables as contacts.
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7.28 Corollary Every monotone switching network for Matchn must have 2Ω(
√

n)

contacts.

Proof. Every switching network with s contacts can be simulated by a DeMorgan

circuit of depth O(log2 s). We leave this as an exercise. (Hint: binary search.) ⊓⊔

Finally, the proof of Theorem ?? also gives a stronger than Theorem ?? depth
lower bound for the clique function.

7.29 Corollary For every k ≤ n/2, every monotone DeMorgan circuit computing the
clique function CLIQUE(n, k) must have depth at least Ω(k).

Proof. Consider graphs on a fixed set V of |V | = n = 3m vertices. Observe that

every set cq ⊆ V of |cq| = 2m+ 1 vertices is a minterm, and everym-matching

is a maxterm of CLIQUE(n, 2m+ 1). Hence, a protocol for the “find edge” game

FEm is in fact a protocol for CLIQUE(n, 2m + 1), with the names of players

switched. Theorem ?? gives an Ω(n) depth lower bound for CLIQUE(n, 2m+ 1).
By restricting the inputs to graphs containing a fixed clique of an appropriate size,

this also gives lower bounds Ω(k) for detecting k-cliques. ⊓⊔

Exercises

7.1 The general disjointness matrix Dn is a 2n × 2n 0-1 matrix whose rows and

columns are labeled by the subsets of an n-element set, and the (a, b)-th entry is 1
if and only if a ∩ b = ∅. Prove that this matrix has full rank over any field, i.e., that

rk(Dn) = 2n
.

Hint: Use the induction on n together with the following recursive construction of Dn:

D1 =
(

1 1
1 0

)
, Dn =

(
Dn−1 Dn−1
Dn−1 0

)
7.2 Show that stconn can be computed by a monotone nondeterministic branching

program of size O(n2). Hint: Take one contact for each potential edge.

7.3 Prove that c(stconm) = O(log2 n). Hint: Use binary search; in fact one of the players

may do most of the talking, with the other player communicating only O(log n) bits overall.

7.4 Say that a string x ∈ [m]k is a limit for a subset S ⊆ [m]k of strings if x ∈ S
and for every position i = 1, . . . , k there is a string y ∈ S such that x ̸= y and

xi = yi. Prove: if S ⊆ [m]k and |S| > km then S has a limit for itself. Hint: What

does it mean that S does not have a limit for itself?

7.5 The definition of the fork game is somewhat artificial in that the players need

not necessarily output a fork position, even when a ̸= b (note that then at least

one fork position must exist). Instead, they are also allowed to answer “k + 1”,
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if ak = bk. It makes therefore sense to look at what happens if we consider the

following modified fork game:

• Alice gets a string a ∈ S and Bob gets a string b ∈ S.
• Find a fork position i of a and b, if there is one.

That is, the only difference from the original fork game is the following: if ak = bk

but a ̸= b, then “i = k+ 1” is no longer a legal answer. In this case the players must

output some other position i ≤ k (such a fork position exists since a ̸= b). Prove
that the modified fork game on [m]k has communication complexity Ω(k · logm).
Hint: Assume that d bits of communication are enough, where 2d < mk/(km). Use the previous
exercise to get a contradiction.

7.6 (Johan Håstad) Let A1, . . . , Ak be finite sets (alphabets), and H be some set

of strings (a1, . . . , ak) with ai ∈ Ai. On average, each letter of Ai appears in the

i-th position of di = |H|/|Ai| such strings. Let Bi ⊆ Ai be the set of all letters

a ∈ Ai that appear in the i-th position of at least di/2k of the strings in H . Let

B = B1 × · · · ×Bk . Prove that |B| ≥ |H|/2.
Hint: It might be simpler to prove that |H \ B| < |H|/2 using the fact that no letter a ∈ Ai \ Bi

can appear in more than di/2k of the strings. Thus, the number of strings not containing a letter

from Bi in the i-th position cannot exceed |H|/2k.

7.7 Prove the following analogue of Lemma ??: In any 2α-dense matrix either a√
α-fraction of its rows or a

√
α-fraction of its columns (or both) are (α/2)-dense.

Hint: Argue directly or solve Exercise ?? and apply it for k = 2.



8. Span Programs

In 1993 Karchmer and Wigderson introduced an interesting linear algebraic model

for computing boolean functions—the span program. A span program is just a

matrix over some field with rows labeled by literals. (In this chapter we will only

work over the field GF(2), but the results hold for any field.) The span program

accepts an input assignment if and only if the all-1 vector can be obtained as a

linear combination of the rows whose labels are satisfied by the input. The size of

the span program is the number of rows in the matrix. A span program is monotone
if only positive literals are used as labels of the rows, that is, negated variables are

not allowed.

The model turns out to be quite strong: classical models for computing boolean

functions—like switching networks or DeMorgan formulas—can be simulated by

span programs without any increase in size. Moreover, the size of span programs

lower bounds the size of parity branching programs—a model where no larger than

n3/2/ logn lower bounds are known even in the simplest, read-once case (along

each s-t path, each variable can be tested at most once). It is therefore not surprising

that proving lower bounds on the size of span programs is a hard task, even in the

monotone case.

In this chapter we will show how this task can be solved using linear algebra

arguments.

8.1 The model

First we describe the model more precisely. Let F be a field. A span program over

F is a linear algebraic model that computes a boolean function f(x1, . . . , xn) as
follows. Literals are variables x1

i = xi and their negations x0
i = ¬xi. Fix a vector

space W over F with a nonzero vector w ∈ W , and associate with each of 2n
literals xσ

i a subspaceXσ
i ofW . Any truth assignment a ∈ {0, 1}n

to the variables

makes exactly n literals “true”. We demand that the n associated subspaces span

the fixed vector w if and only if f(a) = 1. The size measure for this model is the

225
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sum of dimensions of the 2n subspaces. In a monotone span program we do not

allow negated variables.

It is convenient to consider a span program as a matrix M over F with its

rows labeled by 2n literals; one literal may label several rows. If only positive

literals x1, . . . , xn are used, then the program is called monotone. The size of a span
programM is the number of rows in it. For an input a = (a1, . . . , an) ∈ {0, 1}n

,

letMa denote the submatrix ofM obtained by keeping those rows whose labels

are satisfied by a. That is,Ma contains rows labeled by those xi for which ai = 1
and by those ¬xi for which ai = 0.

The program M accepts the input a if the all-1 vector 1 (or any other, fixed

in advance target vector) belongs to the span of the rows ofMa. A span program

computes a boolean function f if it accepts exactly those inputs a where f(a) = 1.
That is,

f(a) = 1 if and only if 1 ∈ Span(Ma) . (8.1)

In what follows we will work over the field F = GF(2). In this case there is the

following equivalent definition of the acceptance condition (??). Say that a vector v
is odd if the number of 1s in it is odd. Then

f(a) = 0 iff there exists an odd vector v such thatMa · v = 0. (8.2)

That is, a vector a is rejected if and only if some odd vector v (vector with an

odd number of 1s) is orthogonal to all rows ofMa. This follows from the simple

observation that 1 ∈ Span(Ma) if and only if all vectors in Span(Ma)⊥
are even;

here, as customary, V ⊥
is the orthogonal complement of V , and is defined as the

set of vectors orthogonal to every vector in V ; Span(V ) is the set of all linear

combinations of vectors in V .

8.1 Remark Note also that the number of columns is not counted as a part of the

size. It is always possible to restrict the matrix of a span program to a set of linearly

independent columns without changing the function computed by the program,

therefore it is not necessary to use more columns than rows. However, it is usually

easier to design a span program with a large number of columns, many of which

may be linearly dependent.

LetM be a span program computing f over GF(2). Such a program is canonical
if the columns ofM are in one-to-one correspondence with the vectors in f−1(0),
and for every b ∈ f−1(0), the column corresponding to b inMb is an all-0 column.

8.2 Lemma Every span program can be converted to a canonical span program of the
same size and computing the same function.

Proof. Take a vector b ∈ f−1(0). By (??), there is an odd vector r = rb for which

Mb · rb = 0. Define the column corresponding to b in a new span program N to be

M · rb. Doing this for all b ∈ f−1(0) defines the program N and guarantees that it

rejects every b ∈ f−1(0). To see thatM ′
accepts all ones of f , fix an a ∈ f−1(1),
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s

a

b

t

x

y

¬y

y

z

label s a b t edge

x 1 1 0 0 {s, a}
y 0 1 0 1 {a, t}
y 1 0 1 0 {s, b}
z 0 0 1 1 {b, t}

¬y 0 1 1 0 {a, b}
v0 1 0 0 1

Fig. 8.1 A switching network for the threshold-2 function Th3
2(x, y, z) in three variables (which

outputs 1 if and only if x + y + z ≥ 2) and the corresponding span program.

and let va be such that vT
a Ma = 1. But since rb is odd for every column b ∈ f−1(0),

we have that vT
a Na = vT

a Marb = ⟨1, rb⟩ = 1. ⊓⊔

8.2 The power of span programs

Together with Proposition ??, the following fact shows that span programs are not

weaker than DeMorgan formulas.

8.3 Proposition If a boolean function can be computed by a switching network of size
S then it can also be computed by a span program of size at most S. The same holds
for their monotone versions.

Proof. Let G = ([n], E) be a switching network for a function f , with s, t ∈ [n] its
special vertices. Take the standard basis {ei | i ∈ [n]} of the n-dimensional space

over GF(2), that is, ei is a binary vector of length n with exactly one 1 in the i-th
coordinate.

The span programM is constructed as follows. For every edge {i, j} in E add

the row ei ⊕ ej = ei + ej toM and label this row by the label of this edge (see

Fig. ??). It is easy to see that there is an s-t path in G, all whose labeled edges are

switched on by an input vector a, if and only if the rows ofMa span the target

vector v := es ⊕ et. Therefore,M computes f , and its size is |E|. ⊓⊔

Proposition ?? shows that span programs are not weaker than switching net-

works, and hence, than DeMorgan formulas and deterministic branching programs.

What span programs capture is the size of parity branching programs. These are

switching networks with the “parity-mode”: an input a is accepted if and only if

the number of s-t paths consistent with a is odd (see Section ??). Namely, if SP(f)
denotes the complexity of a boolean function in the class of span programs, and

⊕BP(f) in the class of parity branching programs, then SP(f) ≤ 2 · ⊕BP(f) and
⊕BP(f) ≤ SP(f)O(1)

; see Karchmer–Wigderson (1993) for details.
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8.3 Power of monotone span programs

We will exhibit a monotone boolean function f of n variables such that f can be

computed by a monotone span program of linear size, but any monotone circuit for

f requires nΩ(log n)
gates.

A spanning subgraph of a graph G = (V,E) is a graph G′ = (V, F ) where

F ⊆ E; the set of vertices remains the same. A (connected) component of a graph
is a maximal set of its vertices such that there is a path between any two of them. A

graph is connected if it consists of just one component. The degree dF (i) of a vertex
i is the number of edges of F which are incident to i. An odd factor in a graph is a

spanning subgraph with all degrees odd.

8.4 Lemma If a graph is connected then it has an odd factor if and only if the number
of its vertices is even.

Proof. Suppose that G has an odd factor G′ = (V, F ). Hence, all degrees dF (i) are
odd. By Euler’s theorem, the sum

∑
i∈V dF (i) equals 2|F | and is even. Thus, the

number |V | of summands must be even, as claimed.

For the other direction, suppose that the graphG = (V,E) is connected and has
an even number of vertices, say V = {x1, . . . , x2m}. For every i = 1, . . . ,m, fix

any one path Pi = (Vi, Ei) connecting xi to xi+m. Let F be the set of those edges

from E which appear in an odd number of the sets E1, . . . , Em.

We claim that the subgraph (V, F ) is the desired odd factor. Indeed, observe that
if a vertex x appears in a path Pi then either dEi

(x) is even or dEi
(x) = 1, and

this last event happens if and only if x is a leaf of this path, that is, if x = xi or

x = xi+m. Since each vertex x ∈ V is a leaf of exactly one of the paths P1, . . . , Pm,

we have that the sum of degreesD(x) :=
∑m

i=1 dEi(x) is odd. It remains to observe

that, by the definition of F , this sum D(x) is congruent modulo 2 to the degree

dF (x) of x in the graph (V, F ). ⊓⊔

The odd factor function has n = m2
variables encoding a booleanm×m matrix

representing a bipartite graph withm vertices in each part; the graph is accepted if

it has an odd factor.

8.5 Lemma Every monotone circuit computing the odd factor function requires
nΩ(log n) gates.

Proof. We use a theorem of Razborov stating that any monotone circuit computing

the perfect matching function for bipartite n× n graphs requires nΩ(log n)
gates

(see Theorem ?? in the next chapter). The proof of this theorem shows that such

number of gates is necessary in any monotone circuit which: (i) accepts every

perfect matching, and (ii) rejects a constant fraction of all unbalanced 2-colorings
of vertices; each 2-coloring is identified with the graph of all monochromatic edges.

Every perfect matching is an odd factor, and should be accepted. On the other

hand, an odd 2-coloring (in which each color occupies an odd number of vertices)

has two odd components, and thus must be rejected: by Lemma ??, none of them
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can have an odd factor. As odd 2-colorings constitute half of all 2-colorings we are
done. ⊓⊔

It is therefore somewhat surprising that the odd factor function can be computed

by a very small monotone span program.

8.6 Theorem (Babai–Gál–Wigderson 1999) The odd factor function can be computed
by a monotone span program of linear size.

Proof. We construct the desired span program for the odd factor function onn = m2

variables as follows. Let V = V1 ∪ V2 be the vertex set with |V1| = |V2| = m,

and let X = {xi,j} with i ∈ V1 and j ∈ V2 be the corresponding set of boolean

variables (one for each potential edge). Take the standard basis {ei | i ∈ V } of the

2m-dimensional space over GF(2), that is, ei is a binary vector of length 2m with

exactly one 1 in the i-th coordinate. LetM be them2
by 2mmatrix whose rows are

vectors ei + ej labeled by the corresponding variables xi,j . We claim that this span

program computes the odd factor function. To verify this we have to show that

the all-1 vector 1 = (1, . . . , 1) is a sum over GF(2) of vectors of the form ei + ej

precisely when the corresponding edges {i, j} form an odd factor.

Take an arbitrary graphE ⊆ V1×V2 (viewed as a set of edges). Then the program
M accepts E if and only if there exists a subset F ⊆ E such that

∑
{i,j}∈F (ei +

ej) = 1 mod 2. Since for each vector i ∈ V , the vector ei occurs exactly dF (i)
times in this sum, this happens if and only if

∑
i∈V dF (i)ei = 1 mod 2. That is,

the programM accepts a graph E if and only if there exists a subgraph F ⊆ E in

which all vertices have odd degrees. Thus,M accepts exactly graphs containing

odd factors as claimed. ⊓⊔

We have seen that, for some monotone boolean functions, their monotone span

program size is exponentially smaller than their monotone circuits size. The con-

verse direction remains open.

8.7 Research Problem
Do there exist functions admitting polynomial-size monotone circuits which require

super-polynomial size monotone span programs?

8.4 Threshold functions

A curious thing about the model of monotone span programs is that it uses non-

monotone operations (linear algebra over a field) to compute monotone functions.

Karchmer and Wigderson (1993) detected yet another curious property unique to

this model: except the trivial AND and OR, all threshold functions have almost the

same complexity! Recall that a k-threshold function Thn
k (x1, . . . , xn) outputs 1 if

and only if x1 + · · · + xn ≥ k.

8.8 Lemma Any monotone span program computing Thn
2 over the field GF(2) has

size at least n logn.
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Proof. LetM be a monotone span program for Thn
2 . Let t be the number of columns

inM , and R the set of all odd vectors in GF(2)t
. Clearly |R| = 2t−1

. LetXi be the

span of the rows ofM labeled by the i-th variable, and let di = dim(X)i. Recall

thatM rejects an input a if and only if at least one vector from R is orthogonal

to all the vectors from those sets Xi for which ai = 1. For every i = 1, . . . , n, let
Ri := R ∩ (Xi)⊥

. SinceM rejects vectors of weight one, 1 ̸∈ Xi, and so for every

i, |Ri| = 2t−di−1
(see Exercise ??).

We now claim that Ri ∩Rj = ∅. To see this, observe that for every pair i ̸= j
we must have vector 1 in the span of Xi ∪Xj (asM accepts the vector with 1s in
positions i and j). Therefore, for some vectors ui ∈ Xi and uj ∈ Xj , ui ⊕ uj = 1.
If there is a vector r ∈ Ri ∩ Rj , then ⟨r,1⟩ = 1 while ⟨r, ui⟩ = ⟨r, uj⟩ = 0, a
contradiction.

The previous two paragraphs imply that

n∑
i=1

2t−di−1 =
n∑

i=1
|Ri| =

∣∣∣ n⋃
i=1

Ri

∣∣∣ ≤ |R| = 2t−1,

and hence,

∑n
i=1 2−di ≤ 1. Jensen’s inequality states that, if 0 ≤ λi ≤ 1,∑n

i=1 λi = 1 and f is convex, then f(
∑n

i=1 λixi) ≤
∑n

i=1 λif(xi). Applying
this inequality with λi = 1/n and f(di) = 2−di

we obtain

1
n

≥ 1
n

∑
i

2−di =
∑

i

λif(di) ≥ f
(∑

i

λidi

)
= 2−(

∑
i

di)/n,

implying that the matrixM must have at least

∑
i di ≥ n logn rows. ⊓⊔

8.9 Lemma Let F be a field with more than n+ 1 elements. Then, for any 1 ≤ k ≤ n,
the function Thn

k can be computed by a monotone span program over F of size n.

Proof. Since the fieldF hasmore thann elements, we can find a set {v0, v1, . . . , vn} ⊂
Fk

of n+ 1 vectors in general position, that is, any k of these vectors are linearly

independent (see Exercise ??). Moreover, we may assume w.l.o.g. that v0 = 1 (the

all-1 vector). This suggests the following span programM over F:M is an n× k
matrix whose i-th row (1 ≤ i ≤ n) is vi and is labeled by xi. It is now straightfor-

ward to check that for any input a ∈ {0, 1}n
, the vector 1 is spanned by the rows of

Ma if and only if |a| ≥ k. Indeed, if |a| ≥ k then the vectors {vi | ai = 1} contain

a basis for Fk
(because some k of them are linearly independent), thus vector 1 is a

linear combination of them. If |a| ≤ k− 1 then all the vectors {v0} ∪ {vi | ai = 1}
are linearly independent, and hence, v0 = 1 cannot be a linear combination of

{vi | ai = 1}. ⊓⊔

Taking F = GF(2l) with l the smallest integer > logn (which corresponds to a

binary encoding of the field elements), it is possible to reduce the constructed span

program over F to a program over the field GF(2) of sizeO(n logn); see Karchmer

and Wigderson (1993) for details.
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8.5 The weakness of monotone span programs

Lower bounds of order nΩ(log n/ log log n)
on the size of monotone span programs

were first obtained by Babai et al. (1996) and Babai, Gál, and Wigderson (1999) for

explicit boolean functions defined by bipartite graphs with certain properties. Then,

using a different property of the underlying bipartite graphs, Gál (2001) simplified

and improved these bounds to nΩ(log n)
. All these proofs were based on a general

combinatorial lower bound for such programs, found earlier by Beimel, Gál, and

Paterson (1996); we will present this lower bound in Section ??.
In this section we will give a different and simpler argument due to Gál and

Púdlak (2003). We saw their rank argument in Section ?? for monotone formulas.

Recall that a pair (A,B) of families of sets is locally intersecting if every set b ∈ B
can be divided in two nonempty parts b = b0 ∪ b1 so that every a ∈ A has a

nonempty intersection with exactly one of these parts. The disjointness matrix of

such a pair (A,B) is an |A| by |B| matrix DA,B , with rows indexed by sets a ∈ A
and columns indexed by sets b ∈ B. The entries of D = DA,B are defined by

D[a, b] =
{

0 if a ∩ b0 ̸= ∅,
1 if a ∩ b1 ̸= ∅.

The following lemma extends a general lower bound for monotone formulas

(given in Lemma ??) to monotone span programs.

8.10 Lemma (Gál–Pudlák 2003) Let f be a monotone boolean function, and let A,B
be sets of 1-terms and 0-terms of f respectively. If the pair A,B is locally intersecting,
then any monotone span program over GF(2) separating this pair must have size at
least rk(DA,B).

Proof. LetM be a monotone span program separating (A,B). Let r be the number

of rows and c the number of columns inM . The idea is to show that the disjointness

matrix D = DA,B of A,B is a matrix of scalar products of vectors of dimension at

most r. This will yield rk(D) ≤ r, as desired.
For every a ∈ A, let va ∈ GF(2)r

be a vector witnessing the fact that a must be

accepted, which means that

vT
a ·M = 1 ,

where 1 is the all-1 vector and va is a vector which is nonzero only in coordinates

corresponding to elements of a, that is, va(i) ̸= 0 implies i ∈ a.
Let b = b0 ∪ b1 ∈ B. Since the complement b of b cannot be accepted, no

linear combination of the rows ofMb can give 1; recall thatMb contains rows of

M labeled by those variables xi for which i ∈ b. Hence, by the dual acceptance

condition (??), for each b ∈ B there is a vector ub in GF(2)c
such that

⟨1, ub⟩ = 1 andMb · ub = 0.
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Let wb be the vector in GF(2)r
obtained from the vectorMub by replacing to 0 all

its elements, corresponding to the rows labeled by elements of b0:

Mub =
b︷ ︸︸ ︷

0 . . . 0
b0︷ ︸︸ ︷

∗ . . . ∗
b1︷ ︸︸ ︷

∗ . . . ∗
wb = 0 . . . 0 0 . . . 0 ∗ . . . ∗

Note that wb(i) ̸= 0 only if i ∈ b1. We claim that D[a, b] = ⟨va, wb⟩. Indeed, if
a ∩ b0 ̸= ∅ then a ∩ b1 = ∅, and hence, the vectors va and wb have no element on

which they both are nonzero, thus ⟨va, wb⟩ = 0. If a ∩ b1 ̸= ∅ then a ∩ b0 = ∅, and
hence, ⟨va, wb⟩ = ⟨va,Mub⟩, implying that

⟨va, wb⟩ = ⟨va,Mub⟩ = ⟨vT
a M,ub⟩ = ⟨1, ub⟩ = 1 .

This shows thatD is a matrix of scalar products of vectors of dimension r, implying

that rk(D) ≤ r. ⊓⊔

Thus, the Paley function Paleyn defined by Eq. (??) in Section ?? requires mono-

tone span programs of super-polynomial size.

8.11 Corollary Every monotone span program computing Paleyn must have size
nΩ(log n).

In the next chapter we will show that some explicit monotone boolean functions

(the perfect matching function and some clique-like functions) require monotone
circuits of super-polynomial size whereas their non-monotone circuit size is poly-
nomial. The existence of such a gap between monotone and non-monotone span

programs remains open.

8.12 Research Problem
Do there exist monotone functions that have span programs of polynomial size but

require monotone span programs of super-polynomial size?

8.6 Self-avoiding families

Let A be a family of subsets of [n]. Given a subset y ⊆ [n], define its spread as the

union

S(y) :=
⋃

a∈A,a∩y ̸=∅

a

of all members of A that “touch” the set y. Call the family A self-avoiding if it is

possible to associate a subset T (a) ⊆ a with each set a ∈ A such that:

• T is a contractor of A, that is, no other set in the family A contains T (a) as a
subset.
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• For every a ∈ A and every subset y ⊆ T (a), the set S(y) \ y contains no

member of A.

In particular, the first condition implies that no member of A can be a subset of an

another member.

8.13 Theorem (Beimel–Gál–Paterson 1996) Every monotone span program comput-
ing a monotone boolean function with the minterms forming a self-avoiding family
has size at least the number of minterms.

Using this theorem, they were able to prove the first nontrivial lower bound for

monotone span programs. Namely, they proved that any such program detecting the

presence of a clique on 6 vertices in a given n-vertex graph must have size Ω(n5).
Applying Theorem ?? for explicit boolean functions defined by bipartite graphs with
certain properties, Babai et al. (1996) and Babai, Gál, andWigderson (1999) obtained a

super-polynomial lower bound of nΩ(log n/ log log n)
. Then, using a different property

of the underlying bipartite graphs, Gál (2001) simplified and improved these bounds

to nΩ(log n)
.

Their proofs actually give a lower bound for every monotone span program

that accepts all sets a ∈ A and rejects all sets of the form [n] \ S(y) for y ⊆ T (a),
a ∈ A. We shall now show that this can also be derived using the rank criterion,

thus proving that this criterion is at least as general as the method of self-avoiding

families

8.14 Lemma For every self-avoiding family A there is a family B such that the pair
(A,B) is locally intersecting and rk(DA,B) = |A|.

Proof. Given a self-avoiding familyA, we construct a locally intersecting pair (A,B)
as follows: for every a ∈ A, include in B all pairs (b1, b2) (more precisely, all sets

b = b1 ∪ b2) such that b1 ⊆ T (a) and b2 = [n] \ S(b1). Observe that DA,B is just

the disjointness matrix of A corresponding to the contractor T (see Definition ??).
Thus, Lemma ?? implies that rk(DA,B) = rk(DA) = |A|. So, it remains to show

that the pair (A,B) is locally intersecting.

To show this, take an arbitrary set a′
in A and b = b1 ∪ b2 in B. Our goal is to

show that a′
has a nonempty intersection with exactly one of the parts b1 and b2. If

a′ ∩ b1 ̸= ∅, then a′ ⊆ S(b1), hence a′ ∩ b2 = ∅. Thus a′
intersects at most one of

the sets. If a′ ∩ b1 = ∅, then a′ ∩ b2 ̸= ∅, because otherwise we would have that

a′ ⊆ S(b1) \ b1 contradicting the definition of A. Thus a′
intersects at least one of

the sets. ⊓⊔

Babai, Gál and Wigderson (1999) asked whether self-avoiding families of expo-
nential size exist. Lemmas ?? and ?? give a negative answer: |A| ≤ nO(log n)

for

every self-avoiding family of subsets of [n].
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8.7 Characterization of span program size

Let f be a boolean function ofn variables, and consider the rectangleSf = f−1(1)×
f−1(0). Recall that a subrectangleR ⊆ Sf ismonochromatic if there exists a position
i ∈ [n] such that ai ̸= bi for all (a, b) ∈ R, that is, there exists a value σ ∈ {0, 1}
such that ai = σ and bi = 1 − σ for all (a, b) ∈ R. Note that every monochromatic

rectangle is a subrectangle of at least one of 2n canonical rectangles:

Rσ,i := {(a, b) ∈ Sf | a(i) = σ, b(i) = 1 − σ} .

Fix a field F, and consider matrices A : Sf → F over F whose rows are labeled by

vectors in f−1(1), and columns by vectors in f−1(0). Say that such a matrix A is

monochromatic if there is a canonical rectangle Rσ,i containing all nonzero entries

of A.
Define the algebraic tiling number χF(f) of f as the smallest number t such that

there exist t monochromatic matrices of rank-1 summing up (over F) to the all-1
matrix 1.

Recall that the tiling number χ(f) is the smallest number of pairwise disjoint

monochromatic rectangles covering the entire ambient rectangle Sf . With each

rectangle in such a decomposition we can associate a 0-1 matrix of rank 1. Since the
rectangles are disjoint and cover all entries of Sf , the sum of these matrices over

any field F is the all-1 matrix. This shows that χF(f) ≤ χ(f) holds in any field F.
We already know (see Lemma ??) that χ(f) is a lower bound for the formula size

L(f) of f , but no converse better than L(f) ≤ χ(f)2 log χ(f)
is known so far. This is

why the following tight(!) characterization of the span program size is particularly

interesting.

8.15 Theorem (Gál 2001) For every boolean function f and every field F,

SPF(f) = χF(f) .

The same also holds for monotone span programs and monotone algebraic tiling

number, where only n canonical rectangles R1,i, i = 1, . . . , n are used.

We will prove the upper and lower bounds on χF(f) separately. For definiteness,
we restrict our attention to the field F = GF(2), but the argument works for every

field. LetM be a span program with s rowsm1, . . . ,ms computing f over GF(2).
The rows are labeled by literals z1, . . . , zs, with each zj being a variable xi or its

negation ¬xi, so that for every input vector a ∈ {0, 1}n
, f(a) = 1 if and only if

the set of rows {mj | zj(a) = 1} spans the all-1 vector 1 (we use 1 as the target

vector.)

By Lemma ??, we can assume that our programM is canonical: the columns

ofM are in one-to-one correspondence with the vectors in f−1(0), and for every

b ∈ f−1(0), the column corresponding to b inMb is an all-0 column. In other words,

for every b ∈ f−1(0) there is a column vb ∈ Fs
ofM with nonzero entries only

at rows whose label take the value 0 on b. On the other hand, sinceM computes

f , for every a ∈ f−1(1) there is a vector ua ∈ Fs
with nonzero entries only at
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rows whose label take the value 1 on a, such that uT
aM = 1. Thus, a canonical

span program of size s gives us sets of vectors U = {ua ∈ Fs | a ∈ f−1(1)} and

V = {vb ∈ Fs | b ∈ f−1(0)} such that

⟨ua, vb⟩ = 1 for every (a, b) ∈ f−1(1) × f−1(0), (8.3)

and for every position j ∈ [s],

ua(j) ̸= 0 ⇒ zj(a) = 1 and vb(j) ̸= 0 ⇒ zj(b) = 0 . (8.4)

8.16 Claim χF(f) ≤ SPF(f).

Proof. For every σ ∈ {0, 1} and 1 ≤ i ≤ n, let Jσ,i := {j ∈ [s] : zj = xσ
i } be the

set of positions corresponding to rows ofM labeled by the literal xσ
i . Thus,∑

σ,i

|Jσ,i| = s (= SPF(f)) . (8.5)

Let Qσ,i be the matrix over the ambient rectangle f−1(1) × f−1(0) whose (a, b)-
entry is the scalar product of vectors ua and vb restricted to the positions in Jσ,i,

that is,

Qσ,i[a, b] =
∑

j∈Jσ,i

ua(j) · vb(j) .

By (??), all nonzero entries of Qσ,i lie in the canonical rectangle Rσ,i. Clearly, the

rank of each matrix Qσ,i is at most |Jσ,i|. Hence, we can write each matrix Qσ,i

as a sum of at most |Jσ,i| rank-1 matrices, all nonzero entries of each of which lie

in Rσ,i. Thus, each of these rank-1 matrices is monochromatic. By (??), the matrix

Q :=
∑

σ,i Qσ,i is a sum of at most s = SPF(f) monochromatic matrices of rank-1.
It remains therefore to verify thatQ = 1. But this follows directly from (??), because
the sets Jσ,i form a partition of the entire set [s] of coordinates of the vectors ua

and vb, and the scalar product of these vectors is equal to 1. ⊓⊔

8.17 Claim SPF(f) ≤ χF(f).

Proof. Let A1, . . . , At be t = χF(f) monochromatic |f−1(1)| × |f−1(0)| matrices

of rank-1 that sum up to the all-1 matrix 1. We will construct a canonical span

program of size t computing f . In fact, we will construct sets of vectors {ua ∈ Ft |
a ∈ f−1(1)} and {vb ∈ Ft | b ∈ f−1(0)} satisfying (??) and (??). Then we can take

the vectors vb as columns of our canonical span program for f .
We know that each of the matricesA1, . . . , At has rank 1, and all nonzero entries

of each Aj are contained in one of 2n canonical monochromatic rectangles Rσ,i.

Now, collect together the rank-1 matrices contained in Rσ,i (resolve ambiguities

arbitrarily, but uniquely) and add them up to form a matrixQσ,i. Clearly, rk(Qσ,i) is
at most the number of these rank-1 matrices. Write Qσ,i as a product Qσ,i = Sσ,i ·
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Tσ,i where Sσ,i (resp., Tσ,i) has rk(Qσ,i) columns (resp., rows). For a ∈ f−1(1), let
ua be the concatenation of the a-th rows of Sσ,i for all σ, i. Similarly, for b ∈ f−1(0),
let vb be the concatenation of the b-th columns of Tσ,i for all σ, i. Note that ua and

vb are vectors in Fs
with s ≤

∑
σ,i rk(Aσ,i) ≤

∑t
i=1 rk(Ai) = t. So, it remains

to verify that these vectors satisfy the conditions (??) and (??). The first condition
(??) follows from the fact that

∑
σ,i Qσ,i =

∑t
i=1 Ai = 1. The second condition

(??) follows from the fact that all nonzero entries of every matrix Qσ,i lie in the

canonical monochromatic rectangle Rσ,i. ⊓⊔

8.8 Monotone span programs and secret sharing

Monotone span programs capture in an elegant way secret sharing schemes in the

information theoretic model. Informally, a secret sharing scheme for a monotone

function f prescribes a way for a “sender” having a secret s ∈ F to assign n strings

(“pieces of secret”) si ∈ Fdi
satisfying the following. Let a ⊆ [n] be a subset

of (indexes of) the pieces, and denote by f(a) the function f evaluated on the

characteristic vector of a. Then if f(a) = 1 the pieces {si | i ∈ a} determine the

secret s, while if f(a) = 0 these pieces give no information whatsoever about s.
The size of such scheme is

∑n
i=1 di. Let mSP(f) denote the minimum size of a

monotone span program computing f .

8.18 Theorem (Karchmer–Wigderson 1993) For every prime p, every monotone func-
tion has a secret sharing scheme over GF(p) of size mSP(f).

Thus, mSP(f) is an upper bound on the size of secret sharing schemes. Beimel

and Chor (1994) showed that mSP(f) is also a lower bound for so-called “linear”

secret sharing schemes.

Proof. Fix a prime p, set F = GF(p) and letM be a monotone span program for a

monotone function f . Let di be the number of rows inM labeled xi, andMi the

submatrix ofM consisting of these rows. Let t be the number of columns inM .

Let s ∈ F be the secret, and let W = {w ∈ Ft | ⟨w,1⟩ = s}. Let w ∈ W be

chosen uniformly at random, and define the “random pieces” qi ∈ Fdi
for every

i ∈ [n] by qi := Miw. Further, for any subset a ⊆ [n] let qa := Maw, whereMa is

the matrix associated with the characteristic vector of a. Note that qa is just the

concatenation of the vectors {qi | i ∈ a}. The theorem follows from the following

two claims:

(a) If f(a) = 1 then s can be efficiently determined from qa.

(b) If f(a) = 0 then for every r ∈ F, Prob[s = r|qa] = 1/p.

To prove (a), assume that f(a) = 1. Then, by definition, there is a vector v such that

vTMa = 1. Then s = ⟨w,1⟩ = vTMaw = ⟨v, qa⟩. To prove (b), assume f(a) = 0.
By (??), there exists a vector z ∈ Ft

such thatMaz = 0 but ⟨z,1⟩ ≠ 0. Then for any

q, we can associate with anyw such thatMaw = q, p vectorswj := w+jz, j ∈ Zp.
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Note thatMawj = q as well, but the values ⟨wj ,1⟩ are all distinct and exhaust

GF(p). This breaks up the probability space {w | Maw = q} into p equiprobable
classes, each giving s a different value, which concludes the proof of the second

claim (b), and thus the proof of the theorem. ⊓⊔

Exercises

8.1 Let V ⊆ GF(2)n
be a linear space and y ∈ GF(2)n

be a vector. Assume that

y ̸∈ V ⊥
. Show that v · y = 0 for precisely one-half of the vectors v in V . Hint: Split

V into V0 and V1 according to whether v · y = 0 or v · y = 1. Take x ∈ V such that x · y = 1;
hence x ∈ V1. Then, show that x + V0 ⊆ V1, x + V1 ⊆ V0, |x + V0| = |V0| and |x + V1| = |V1|.

8.2 TheVandermondematrix is then×nmatrixXn whose i-th row is (1, xi, x
2
i , . . . , x

n−1
i ).

Prove that det(Xn) =
∏

1≤i<j≤n(xj − xi). Hint: Argue by induction on n. Multiply each

column by x1 and subtract it from the next column on the right starting from the right-hand side.

This yields det(Xn) = (xn − x1) · · · (x2 − x1) det(Xn−1).

8.3 Let F be a field with more than n + 1 elements. Let a0, a1, . . . , an be dis-

tinct nonzero elements of F. For each 0 ≤ i ≤ n define the vector vi :=
(a0

i , a
1
i , . . . , a

k−1
i ). Show that any k, the vi are linearly independent over F. Hint:

det(A) ̸= 0 implies rk(A) = n.

8.4 (Subfunctions) Let f(x1, . . . , xn) be a boolean function, and g its subfunction
obtained by setting the variable x1 to 1. Let M be a canonical span program

computing f . Let U1 ⊆ f−1(0) be the subset of vectors whose first coordinate

(corresponding to x1) is 1. Remove fromM all rows labeled by x1 and ¬x1, and
all columns corresponding to vectors in f−1(0) \ U1. Show that the resulting span

program computes g.

8.5 (Due to Serge Fehr) Let f : 2[n] → {0, 1} be a non-constant monotone boolean

function. Recall that the dual of f is a monotone boolean function f∗ : 2[n] → {0, 1}
defined by f∗(a) = 1 − f(a). LetM be a monotone s × t (s ≥ t) span program

over GF(2) which computes f using the target vector e1 = (1, 0, . . . , 0). Let v0 be

a solution of the system of linear equations xTM = e1 and w1, . . . , ws−t a basis

of the linear space {w | wTM = 0}. LetM∗
be the s × (s − t + 1) matrix with

columns v0, w1, . . . , ws−t, and e
∗
1 = (1, 0, . . . , 0) ∈ GF(2)s−t+1

. Show that:

(a) f(a) = 0 if and only if there exists a vector u such that Ma · u = 0 and

⟨u, e1⟩ = 1.
(b) Every solution x of xTM = e1 is a linear combination of the columns ofM∗

in which the first column, v0, occurs exactly once.

(c) M∗
computes f∗

. Hint: If f(a) = 1 then there exists a vector v such that vT M = e1 and

v(i) = 0 for all i ∈ a. Use (b) to conclude that v = M∗u for some vector u with u(1) = 1.
Show that M∗

a u = 0 and ⟨u, e∗
1⟩ = 1, and use (a) to show that a is not accepted by M∗

.

For the other direction, assume that the complement a of some set a is not accepted by M∗
.
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Take a vector u guaranteed by (a), and set b := M∗u. Show that b(i) = 0 for all i ∈ a and

bT M = MT M∗u = Eu = e1.

8.6 (Beimel–Gál–Paterson 1996) Let L1, . . . , Ln be subsets of [n] such that |Li ∩
Lj | ≤ 1 for all i ̸= j. LetA be the family of all 2-element subsets a = {xi, yj} of the

(2n)-element set X = {x1, . . . , xn, y1, . . . , yn} such that j ∈ Li. By Example ??,
explicit families of this form with Ω(n3/2) members exist. Prove that the family A
is self-avoiding. Hint: Define T (a) := a.

8.7 Research Problem. Let k be the minimal number for which the following

holds: there exist n colorings c1, . . . , cn of the n-cube {0, 1}n
in k colors such

that for every triple of vectors x, y, z there exists a coordinate i on which not all

three vectors agree, and the three colors ci(x), ci(y), ci(z) are distinct. Bound the

smallest number k of colors for which such a good collection of colorings c1, . . . , cn

exists.

Comment: This problem is connected with proving lower bounds on the size of non-monotone
span programs, see Wigderson (1993).

8.8 (Wigderson 1993) Consider the version of the problem abovewhere we addition-

ally require that the colorings ci are monotone, that is, x < y implies ci(x) ≤ ci(y).
Prove that in this case k = Ω(n).

The goal of the next exercises is to show that we cannot replace the acceptance

condition “accept vector a if and only if the rows ofMa span vector 1” of span
programs by “accept vector a if and only if the rows ofMa are linearly dependent”.

This is because in that case very simple boolean functions require programs of

exponential size. A monotone dependency program over a field F is given by a

matrixM over F with its rows labeled by variables x1, . . . , xn. For an input a =
(a1, . . . , an) ∈ {0, 1}n

, let (as before)Ma denote the submatrix ofM obtained by

keeping those rows whose labels are satisfied by a. The programM accepts the
input a if and only if the rows ofMa are linearly dependent (over F). A program

computes a boolean function f if it accepts exactly those inputs a where f(a) = 1.
The size of a dependency program is again the number of rows in it.

Comment: Beimel and Gál (1999) showed that the minimum size of a dependency program for f
is polynomially related to the minimum size of an arithmetic branching program computing ¬f .
Such branching programs are just extension of parity branching programs from GF(2) to any

field F.

8.9 Suppose that a boolean function f ̸≡ 1 is computed by a monotone dependency

program M of size smaller than the number of minterms of f . Prove that then

there exists a set of minterms A, |A| ≥ 2, such that for any nontrivial partition

A = A0 ∪A1, the set S(A0, A1) :=
(⋃

a∈A0
a
)

∩
(⋃

b∈A1
b
)
contains at least one

minterm of f .

Hint: For every minterm a of f choose some linear dependence va of the rows of M , that is, va is

a vector such that va · M = 0, and va has nonzero coordinates only at rows labeled by variables

in a. The vectors va are linearly dependent (why?). Let A be a minimal set of minterms such
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that {va | a ∈ A} are linearly dependent. Thus,

∑
a∈A

αava = 0 for some coefficients αa ̸= 0.
Observe that for any nontrivial partition A = A0 ∪ A1,

v :=
∑

a∈A0

αava = −
∑

a∈A1

αava ̸= 0 .

Let b be the set of variables labeling the rows of M corresponding to nonzero coordinates of v.
This set lies in S(A0, A1) and contains at least one minterm of f .

8.10 (Pudlák–Sgall 1998) Use Exercise ?? to show that the function f = (x1 ∨x2)∧
(x3 ∨ x4) ∧ · · · ∧ (x2n−1 ∨ x2n) cannot be computed by a monotone dependency

program of size smaller than 2n
. Show that this function has a small monotone

span program.

Hint: Each minterm a of f has precisely one variable from each of the sets {x2i−1, x2i}, i =
1, . . . , n. Hence, there are 2n

minterms. Suppose that f has a program of size smaller than 2n
,

and let A be the set of minterms guaranteed by Exercise ??. Pick i such that both sets of minterms

A0 = {a ∈ A | x2i−1 ̸∈ a} and A1 = {a ∈ A | x2i ̸∈ a} are non-empty (why is this possible?).

By Exercise ??, the set S(A0, A1) must contain at least one minterm b of f . But, by the definition

of A0 and A1, this minterm can contain neither x2i−1 nor x2i, a contradiction.



9. Monotone Circuits

We now consider monotone circuits, that is, circuits with fanin-2 AND and OR

gates. As monotone formulas, such circuits can only compute monotone boolean

functions. Recall that a boolean function f is monotone if f(x) ≤ f(y) as long as
xi ≤ yi for all i. The difference from formulas is that now the fan-outs of gates may

be arbitrary, not just 1. That is, a result computed at some gate can be used many

times with no need to recompute it again and again. This additional feature makes

the lower bounds problem more difficult.

Until 1985, the largest known lower bound on the size of such circuits for an

explicit boolean function of n variables was only 4n (Tiekenheinrich 1984). A

breakthrough was achieved in 1985 when two mathematicians from Lomonosov

University in Moscow—Andreev (1985) and Razborov (1985a)—almost simultane-

ously proved super-polynomial lower bounds for monotone circuits.

In this chapter we present Razborov’s method of approximations as well as

another, simpler argument yielding exponential lower bounds even for circuits with

monotone real-valued functions as gates.

As in the entire book, here our focus is on proving lower bounds. A compre-

hensive exposition of known upper bounds for monotone circuits and monotone

switching networks can be found in a survey by Korshunov (2003).

9.1 Large cliques are hard to detect

We will first demonstrate Razborov’s method of approximations for the case of

monotone circuits computing the clique function. Later, in Section ??, we describe
his method in its full generality, and apply it to the perfect matching function.

The clique function fn = CLIQUE(n, k) has
(

n
2
)
variables xij , one for each

potential edge in a graph on n vertices [n] = {1, . . . , n}; the function outputs 1 iff

the associated graph contains a clique (complete subgraph) on some k vertices. The

clique function is monotone because setting more edges to 1 can only increase the

size of the largest clique.

240
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9.1 Theorem (Razborov 1985a, Alon–Boppana 1987) For 3 ≤ k ≤ n1/4, the mono-
tone circuit complexity of CLIQUE(n, k) is nΩ(

√
k).

We will analyze the behavior of circuits for fn on two types of input graphs:

• Positive graphs are k-cliques, that is, graphs consisting of a clique on some k
vertices and n− k isolated vertices; we have

(
n
k

)
such graphs and they all must

be accepted by fn.

• Negative graphs are (k − 1)-cocliques formed by assigning each vertex a color

from the set {1, 2, . . . , k−1}, and putting edges between those pairs of vertices

with different colors; we have (k − 1)n
such graphs and they must be rejected

by fn. (Different colorings can lead to the same graph, but we will consider

them as different for counting purposes.)

The main goal of Razborov’s method is to show that, if a circuit is “too small”,

then it must make a lot of errors, that is, must either reject most of positive graphs

or accept most of negative graphs. Circuits can be amorphous, so analyzing their

behavior directly is difficult. Instead, every monotone circuit will be approximated
by another monotone circuit of a very special type—namely, a short DNF that is

tailor-made to represent collections of cliques.

Now we define these DNFs, our so-called “approximators”. For a subset X of

vertices, the clique indicator of X is the monotone boolean function ⌈X⌉ of

(
n
2
)

variables such that ⌈X⌉(E) = 1 if and only if the graph E contains a clique on the

vertices X . Note that ⌈X⌉ is just a monomial

⌈X⌉ =
∧

i,j∈X;i<j

xij

depending on only

(|X|
2
)
variables.

An (m, l)-approximator is an OR of at mostm clique indicators, whose underly-

ing vertex-sets each have cardinality at most l:

A =
r∨

t=1
⌈Xt⌉ =

r∨
t=1

∧
i ̸=j∈Xt

xij (r ≤ m, |Xt| ≤ l) .

Here l ≥ 2 and m ≥ 2 are parameters depending only on values of k and n; the
values of these parameters will be fixed later.

The main combinatorial tool used in the proof of Theorem ?? is the well-known
Sunflower Lemma discovered by Erdős and Rado (1960). A sunflower with p petals
and a core T is a collection of sets S1, . . . , Sp such that Si ∩ Sj = E for all i ̸= j.
In other words, each element belongs either to none, or to exactly one, or to all of
the Si (Fig. ??). Note that a family of pairwise disjoint sets is a sunflower (with an

empty core).

Sunflower Lemma Let F be family of non-empty sets each of size at most l. If
|F| > l!(p− 1)l then F contains a sunflower with p petals.
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Fig. 9.1 A sunflower with 8 petals.

In particular, every graph with at least 2(p− 1)2 + 1 edges must have p vertex-
disjoint edges of a star with p edges.

Proof. We proceed by induction on l. For l = 1, we have more than p− 1 points

(disjoint 1-element sets), so any p of them form a sunflower with p petals (and

an empty core). Now let l ≥ 2, and take a maximal family S = {S1, . . . , St} of

pairwise disjoint members of F .

If t ≥ p, these sets form a sunflower with t ≥ p petals (and empty core), and we

are done.

Assume that t ≤ p − 1, and let S = S1 ∪ · · · ∪ St. Then |S| ≤ l(p − 1). By
the maximality of S , the set S intersects every member of F . By the pigeonhole

principle, some point x ∈ S must be contained in at least

|F|
|S|

>
l!(p− 1)l

l(p− 1) = (l − 1)!(p− 1)l−1

members of F . Let us delete x from these sets and consider the family

Fx := {F \ {x} : F ∈ F , x ∈ F} .

By the induction hypothesis, this family contains a sunflower with p petals. Adding
x to the members of this sunflower, we get the desired sunflower in the original

family F . ⊓⊔

9.1.1 Construction of the approximated circuit

Given a monotone circuit F for the clique function fn, we will construct the

approximator for F in a “bottom-up” manner, starting from the input variables. An

input variable is of the form xij , where i and j are different vertices; it is equivalent
to the clique indicator ⌈{i, j}⌉ = xij .

Suppose at some internal node of the circuit, say at anOR gate, the two subcircuits

feeding into this gate already have their (m, l)-approximators A =
∨r

i=1⌈Xi⌉ and

B =
∨s

i=1⌈Yi⌉, where r and s are at mostm. We could approximate this OR gate

by just A ∨B, but this could potentially give us a (2m, l)-approximator, while we

want to stay at (m, l).



9.1 Large cliques are hard to detect 243

At this place the Sunflower Lemma comes to our rescue. To apply the Sunflower

Lemma to the present situation, consider the family

F = {X1, . . . , Xr, Y1, . . . , Ys}

and set

m := l!(p− 1)l .

If r + s > m then some p of the sets in F form a sunflower. We then replace these

p sets by their core; this operation is called a plucking. Repeatedly perform such

pluckings until no more are possible. The entire procedure is called the plucking
procedure. Since the number of vertex sets decreases with each plucking, after at

most |F| = r + s ≤ 2m pluckings we will obtain an (m, l)-approximator for our

OR gate, which we denote by A ⊔B.

If the gate was an AND gate (not an OR gate) then forming the AND of the

two approximators A =
∨r

i=1⌈Xi⌉ and B =
∨s

i=1⌈Yi⌉ yields the expression∨r
i=1
∨s

j=1(⌈Xi⌉ ∧ ⌈Yi⌉). Two reasons why this expression itself might not be an

(m, l)-approximator are that the terms ⌈Xi⌉ ∧ ⌈Yi⌉ might not be clique indicators

and that there can be as many asm2
terms.

To overcome these difficulties, apply the following three steps:

1. replace the term ⌈Xi⌉ ∧ ⌈Yi⌉ by the clique indicator ⌈Xi ∪ Yi⌉;
2. erase those clique indicators ⌈Xi ∪ Yi⌉ for which |Xi ∪ Yj | ≥ l + 1;
3. apply the plucking procedure (described above for OR gates) to the remaining

clique indicators; there will be at mostm2
pluckings.

These three steps guarantee that an (m, l)-approximator is formed; we denote it

by A ⊓B. (Note an “asymmetry” in the argument: AND gates need more work to

approximate than OR gates.)

9.1.2 Bounding errors of approximation

Now fix a monotone circuit F computing fn = CLIQUE(n, k), and let F ′
be the

approximated circuit, that is, an (m, l)-approximator of the last gate of F . We will

show that

1. Every approximator (including F ′
) must make a lot of errors, that is, disagree

with fn on many negative and positive graphs.

2. If size(F ) is small, then F ′
cannot make too many errors.

This will already imply that size(F ) must be large.

9.2 Lemma Every approximator either rejects all graphs or wrongly accepts at least a
fraction 1 − l2/(k − 1) of all (k − 1)n negative graphs.

Proof. Let A =
∨r

i=1⌈Xi⌉ an (m, l)-approximator, and assume that A accepts at

least one graph. ThenA ≥ ⌈X1⌉. A negative graph is rejected by the clique indicator
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⌈X1⌉ iff its associated coloring assigns some two vertices of X1 the same color.

We have

(|X1|
2
)
pairs of vertices in X1, and for each such pair at most (k − 1)n−1

colorings assign the same color. Thus, at most

(|X1|
2
)
(k − 1)n−1 ≤

(
l
2
)
(k − 1)n−1

negative graphs can be rejected by ⌈X1⌉, and hence, by the approximator A. ⊓⊔

Thus, every approximator (including F ′
) must make a lot of errors. We are now

going to show that, if size(F ) is small, then the number of errors cannot be large,

implying that size(F ) must be large.

9.3 Lemma The number of positive graphs wrongly rejected by F ′ is at most size(F ) ·
m2(n−l−1

k−l−1
)
.

Proof. We shall consider the errors introduced by the approximator of a single gate,

and then apply the union bound to get the claimed upper bound on the total number

of errors.

If g is an OR gate and A,B are the approximators of subcircuits feeding into this

gate, then our construction of the approximator A ⊔B for g involves taking an OR

A∨B (which does not introduce any errors) and then repeatedly plucking until we

get down our number of clique indicators. Each plucking replaces a clique indicator

⌈Xi⌉ by some ⌈X⌉ with X ⊆ Xi which can accept only more graphs. Hence, on

positive graphs, A ⊔B produces no errors at all.

Now suppose that g is an AND gate. The first step in the transformation from

A∧B toA⊓B is to replace ⌈Xi⌉∧⌈Yj⌉ by ⌈Xi ∪Yj⌉. These two functions behave
identically on positive graphs (cliques). The second step is to erase those clique

indicators ⌈Xi ∪ Yj⌉ for which |Xi ∪ Yj | ≥ l + 1. For each such clique indicator,

at most N :=
(

n−l−1
k−l−1

)
of the positive graphs are lost. Since there are at mostm2

such clique indicators, at most m2N positive graphs are lost in the second step.

The third and final step, applying the plucking procedure, only enlarges the class of

accepted graphs, as noted in the previous paragraph. Summing up the three steps,

at mostm2N positive graphs can be lost by approximating one AND gate. Since

we have at most size(F ) such gates, the lemma is proved. ⊓⊔

9.4 Lemma The number of negative graphs wrongly accepted byF ′ is at most size(F )·
m2l2p(k − 1)n−p.

Proof. Again, we shall analyze the errors introduced at each gate.

If g is an OR gate and A,B are the approximators of subcircuits feeding into

this gate, then our construction of the approximator A ⊔B for g involves taking
an OR A ∨B (which does not introduce any errors) and then performing at most

2m pluckings until we get down our number of clique indicators.

Each plucking will be shown to accept only a few additional negative graphs.

Color the vertices randomly, with all (k− 1)n
possible colorings equally likely, and

let G be the associated negative graph. Let Z1, . . . , Zp be the petals of a sunflower

with core Z . What is the probability that ⌈Z⌉ accepts G, but none of the functions

⌈Z1⌉, . . . , ⌈Zp⌉ acceptG? This event occurs iff the vertices ofZ are assigned distinct

colors (called a proper coloring, or PC), but every petal Zi has two vertices colored

the same. We have
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Prob[Z is PC and Z1, . . . , Zp are not PC]
≤ Prob[Z1, . . . , Zp are not PC|Z is PC]

=
p∏

i=1
Prob[Zi is not PC|Z is PC]

≤
p∏

i=1
Prob[Zi is not PC]

≤
(
l

2

)p

· (k − 1)−p ≤ l2p(k − 1)−p .

The first inequality holds by the definition of the conditional probability. The second

line holds because the sets Zi \Z are disjoint and hence the events are independent.

The third line holds because the event “Zi is not a clique” is less likely to happen

given the fact that Z ⊆ Zi is a clique. The fourth line holds because Zi is not

properly colored iff two vertices of Zi get the same color.

Thus to the class of wrongly accepted negative graphs each plucking adds at most

l2p(k − 1)n−p
new graphs. There are at most 2m pluckings, so the total number of

negative graphs wrongly accepted when approximating the gate OR g is at most

2ml2p(k − 1)n−p
.

Next consider the case when g is an AND gate. In the transformation fromA∧B
toA⊓B, the first step introduces no new violations, since ⌈Xi⌉∧⌈Yj⌉ ≥ ⌈Xi ∪Yj⌉.
Only the third step, the plucking procedure, introduces new violations. This step

was analyzed above; the only difference is that there can bem2
pluckings instead

of just 2m. This settles the case of AND gates, thus completing the proof. ⊓⊔

Proof of Theorem ?? Set l = ⌊
√
k − 1/2⌋ and p = Θ(

√
k logn); recall that m =

l!(p− 1)l ≤ (pl)l
. Let F be a monotone circuit that computes CLIQUE(n, k). By

Lemma ??, the approximator F ′
of F is either identically 0 or outputs 1 on at least

a (1 − l2/(k − 1)) ≥ 1
2 fraction of all (k − 1)n

negative graphs. If the former case

holds, then apply Lemma ?? to obtain

size(F ) ·m2 ·
(
n− l − 1
k − l − 1

)
≥
(
n

k

)
.

Since

(
n
k

)
/
(

n−x
k−x

)
≥ (n/k)x

, simple calculation show that in this case size(F ) is
nΩ(

√
k)
. If the later case holds then apply Lemma ?? to obtain

size(F ) ·m2 · 2−p · (k − 1)n ≥ 1
2(k − 1)n .

Since 2p = nΩ(
√

k)
, in this case we again have that size(F ) is nΩ(

√
k)
. ⊓⊔

9.5 Remark Recently, Rossman (2010) gave lower bounds for the Clique function

that apply to finding small cliques in random graphs. Let G(n, p) denote a random
graph on n vertices in which each edge appears at random and independently with
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probability p. Let k be a fixed natural number. It is well known that p := n−2/(k−1)

is a threshold for appearance of k-cliques. Rossman showed that, for every constant

k, no monotone circuit of size smaller than O(nk/4) can correctly compute (with

high probability) the Clique function on G(n, p) and on G(n, 2p) simultaneously.

9.2 Very large cliques are easy to detect

By Theorem ??, we known that there exists a constant c > 0 such that every

monotone circuit computing the clique function CLIQUE(n, k) requires at least
nc

√
k
gates. Moreover, it can be shown (see Theorem ?? below) that already for

k = 3 at least Ω(n3/ log4 n) gates are necessary. In fact, Alon and Boppana (1987)

showed that Razborov’s lower bound can be improved to Ω((n/ log2 n)k) for any
constant k ≥ 3, and for growing k we need at least 2Ω(

√
k)

gates, as long as

k ≤ (n/ logn)2/3/4. Thus, small cliques are hard to detect.

By a simple padding argument, this implies that even detecting cliques of size

n − k requires a super-polynomial number of gates, as long as k ≤ n/2 grows

faster than log3 n.

9.6 Proposition For k ≤ n/2, every monotone circuit for CLIQUE(n, n−k) requires
2Ω(k1/3) gates.

Proof. Fix the integer m with m − s = k where s = ⌊(m/ logm)2/3/4⌋; hence
s = Ω(k2/3). Then CLIQUE(m, s) is a sub-function of (that is, can be obtained by

setting to 1 some variables in) CLIQUE(n, n− k): just consider only the n-vertex
graphs containing a fixed clique on n−m vertices connected to all the remaining

vertices (the rest may be arbitrary). On the other hand, according to the lower bound

of Alon and Boppana (mentioned above) the function CLIQUE(m, s), and hence,

also the function CLIQUE(n, n−k) requires monotone circuits of size exponential

in Ω(
√
s) = Ω(k1/3). ⊓⊔

But what is the complexity of CLIQUE(n, n − k) when k is very small,

say, constant—can this function then be computed by a monotone circuit us-

ing substantially fewer than nk
gates? Somewhat surprisingly, for every(!) con-

stant k, the CLIQUE(n, n − k) function can be computed by a monotone cir-

cuit of size O(n2 logn). Moreover, the number of gates is polynomial, as long

as k = O(
√

logn). Recall that CLIQUE(n, k) requires Ω(nk/ log2k n) for ev-

ery constant k, and that already for k = ω(log3 n), any monotone circuit for

CLIQUE(n, n− k) requires a super-polynomial number of gates.

9.7 Theorem (Andreev–Jukna 2008) For every constant k, the functionCLIQUE(n, n−
k) can be computed by a monotone DeMorgan formula containing at most O(n2 logn)
gates. The number of gates remains polynomial in n as long as k = O(

√
logn).

In this Section we will prove Theorem ??. To do this, we need some preparations.

First, instead of constructing a small formula for the Clique function, it will be
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convenient to construct a small formula for the dual function. Recall that the

dual of a boolean function f(x1, . . . , xn) is the boolean function f∗(x1, . . . , xn) =
¬f(¬x1, . . . ,¬xn). If f is monotone, then its dual f∗

is also monotone. For example,

(x ∨ y)∗ = ¬(¬x ∨ ¬y) = x ∧ y ;
(x ∧ y)∗ = ¬(¬x ∧ ¬y) = x ∨ y .

In particular, the dual of CLIQUE(n, n − k) accepts a given graph G on n
vertices iff G has no independent set with n− k vertices, which is equivalent to

τ(G) ≥ k + 1, where τ(G) ist the vertex-cover number of G. Recall that a vertex
cover in a graph G is a set of its vertices containing at least one endpoint of each

edge; τ(G) is the minimum size of such a set. Hence, the dual of CLIQUE(n, n−k)
is a monotone boolean function VC(n, k) of

(
n
2
)
boolean variables representing

the edges of an undirected graph G on n vertices, whose value is 1 iff G does not

have a vertex-cover of cardinality k.
We will construct a monotone formula for VC(n, k). Replacing OR gates by AND

gates (and vice versa) in this formula yields amonotone formula forCLIQUE(n, n−
k), thus proving Theorem ??.

9.2.1 Properties of τ -critical graphs

A graph is τ -critical if removing any of its edges reduces the vertex-cover number.

We will need some properties of such graphs.

9.8 Theorem (Hajnal 1965) In a τ -critical graph without isolated vertices every inde-
pendent set S has at least |S| neighbors.

Proof. LetG = (V,E) be a τ -critical graph without isolated vertices. ThenG is also

α-critical in that removing of any its edge increases its independence number α(G),
that is, the maximum size of an independent set in G. An independent set T is

maximal if |T | = α(G).
Let us first show that every vertex belongs to at least one maximal independent

set but not to all such sets. For this, take a vertex x and an edge e = {x, y}. Remove

e from G. Since G is α-critical, the resulting graph has an independent set T of

size α(G) + 1. Since T was not independent in G, x, y ∈ T . Then T \ {x} is an

independent set in G of size |T \ {x}| = α(G), that is, is a maximal independent

set avoiding the vertex x, and T \ {y} is a maximal independent set containing x.
Hence, ifX is an arbitrary independent set inG, then the intersection ofX with

all maximal independent sets in G is empty. It remains therefore to show that, if

Y is an arbitrary independent set, and S is an intersection of Y with an arbitrary

number of maximal independent sets, then

|N(Y )| − |N(S)| ≥ |Y | − |S|,
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whereN(Y ) is the set of all neighbors of Y , that is, the set of all vertices adjacent to

at least one vertex in Y . Since an intersection of independent sets is an independent

set, it is enough to prove the claim for the case when T is a maximal independent

set and S = Y ∩ T . Since clearly N(S) ⊆ N(Y ) − T , we have

|N(Y )| − |N(S)| ≥ |N(Y ) ∩ T |
= |T | − |S| − |T \ (Y \N(Y ))|
= α(G) − |S| + |Y | − |(T ∪ Y ) \N(Y )|
≥ |Y | − |S|,

where the last inequality holds because the set (T ∪Y )−N(Y ) is independent. ⊓⊔

In our construction of a small circuit for the Vertex Cover function, the following

consequence of this theorem will be important.

9.9 Corollary Every τ -critical graph G has at most 2τ(G) non-isolated vertices.

Proof. Let G = (V,E) be an arbitrary τ -critical graph, and let U ⊆ V be the set

of non-isolated vertices of G. The induced subgraph G′ = (U,E) has no isolated

vertices and is still τ -critical with τ(G′) = τ(G). Let S ⊆ U be an arbitrary vertex-

cover of G′
with |S| = τ(G). The complement T = U − S is an independent set.

By Hajnal’s theorem, the set T must have at least |T | neighbors. Since all these
neighbors must lie in S, the desired upper bound |U | = |S| + |T | ≤ 2|S| ≤ 2τ(G)
on the total number of non-isolated vertices of G follows. ⊓⊔

Finally, we will need a fact stating that τ -critical graphs cannot have too many

edges. We will derive this fact from the following more general result.

9.10 Theorem (Bollobás 1965) Let A1, . . . , Am and B1,. . ., Bm be two sequences of
sets such that Ai ∩Bj = ∅ if and only if i = j. Then

m∑
i=1

(
|Ai| + |Bi|

|Ai|

)−1
≤ 1 . (9.1)

Proof. Let X be the union of all sets Ai ∪Bi. If A and B are disjoint subsets of X
then we say that a permutation (x1, x2, . . . , xn) of X separates the pair (A,B) if
no element of B precedes an element of A, that is, if xk ∈ A and xl ∈ B imply

k < l.
Each of the n! permutations can separate at most one of the pairs (Ai, Bi),

i = 1, . . . ,m. Indeed, suppose that (x1, x2, . . . , xn) separates two pairs (Ai, Bi)
and (Aj , Bj)with i ̸= j, and assume thatmax{k | xk ∈ Ai} ≤ max{k | xk ∈ Aj}.
Since the permutation separates the pair (Aj , Bj),

min{l | xl ∈ Bj} > max{k | xk ∈ Aj} ≥ max{k | xk ∈ Ai}

which implies that Ai ∩Bj = ∅, contradicting the assumption.
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Wenow estimate the number of permutations separating one fixed pair. If |A| = a
and |B| = b and A and B are disjoint then the pair (A,B) is separated by exactly(

n

a+ b

)
a!b!(n− a− b)! = n!

(
a+ b

a

)−1

permutations. Here

(
n

a+b

)
counts the number of choices for the positions of A ∪B

in the permutation; having chosen these positions, A has to occupy the first a
places, giving a! choices for the order of A, and b! choices for the order of B; the

remaining elements can be chosen in (n− a− b)! ways.
Since no permutation can separate two different pairs (Ai, Bi), summing up

over allm pairs we get all permutations at most once

m∑
i=1

n!
(
ai + bi

ai

)−1
≤ n!

and the desired bound (??) follows. ⊓⊔

9.11 Theorem (Erdős–Hajnal–Moon 1964) Every τ -critical graph H has at most(
τ(H)+1

2
)
edges.

Proof. Let H be a τ -critical graph with τ(H) = t, and let E = {e1, . . . , em} be

the edges of H . Since H is critical, E \ {ei} has a (t− 1)-element vertex-cover Si.

Then ei ∩ Si = ∅ while ej ∩ Si ̸= ∅, if j ̸= i. We can therefore apply Theorem ??
and obtain thatm ≤

(2+(t−1)
2

)
=
(

t+1
2
)
, as desired. ⊓⊔

Proof of Theorem ??

We consider graphs on vertex-set [n] = {1, . . . , n}. We have a setX of

(
n
2
)
boolean

variables xe corresponding to edges. Each graphG = ([n], E) is specified by setting
the values 0 and 1 to these variables: E = {e | xe = 1}. The function VC(n, k)
accepts G iff τ(G) ≥ k + 1.

Let Crit(n, k) denote the set of all τ -critical graphs on [n] = {1, . . . , n} with

τ(H) = k + 1. Observe that graphs in Crit(n, k) are exactly the minterms of

VC(n, k), that is, the smallest with respect to the number of edges graphs accepted

by VC(n, k).
Given a family F of functions f : [n] → [r], let ΦF (X) be the OR over all graphs

H ∈ Crit(r, k) and all functions f ∈ F of the following monotone formulas

Kf,H(X) =
∧

{a,b}∈E(H)

∨
e∈f−1(a)×f−1(b)

xe.
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The formula ΦF accepts a given graph G = ([n], E) iff there exists a graph H ∈
Crit(r, k) and a function f ∈ F such that for each edge {a, b} ofH there is at least

one edge in G between f−1(a) and f−1(b).
A family F of functions f : [n] → [r] is s-perfect if for every subset S ⊆ [n] of

size |S| = s there is an f ∈ F such that |f(S)| = |S|. That is, for every s-element

subset of [n] at least one function in F is one-to-one when restricted to this subset.

Such families are also known in the literature as (n, r, s)-perfect hash families.

9.12 Lemma If F is an (n, r, s)-perfect hash family with s = 2(k + 1) and r ≥ s,
then the formula ΦF computes VC(n, k).

Proof. Since the formula is monotone, it is enough to show that:

(a) τ(G) ≥ k + 1 for every graph G accepted by ΦF , and

(b) ΦF accepts all graphs from Crit(n, k).

To show (a), suppose that ΦF accepts some graph G. Then this graph must be

accepted by some sub-formulaKf,H with f ∈ F and H ∈ Crit(r, k). That is, for
every edge {a, b} in H there must be an edge in G joining some vertex i ∈ f−1(a)
with some vertex j ∈ f−1(b). Hence, if a set S covers the edge {i, j}, that is, if
S ∩ {i, j} ≠ ∅, then the set f(S) must cover the edge {a, b}. This means that, for

any vertex-cover S in G, the set f(S) is a vertex-cover in H . Taking a minimal

vertex-cover S in G we obtain τ(G) = |S| ≥ |f(S)| ≥ τ(H) = k + 1.
To show (b), take an arbitrary graphG = ([n], E) in Crit(n, k), and let U be the

set of its non-isolated vertices. By Corollary ??, |U | ≤ 2τ(G) = 2(k+1) ≤ s. By the
definition of F , some function f : [n] → [r] must be one-to-one on U . For i, j ∈ U
join a = f(i) and b = f(j) by an edge iff {i, j} ∈ E. Since G ∈ Crit(n, k) and f
is one-to-one on all non-isolated vertices of G, the resulting graph H belongs to

Crit(r, k). Moreover, for every edge {a, b} of H , the pair e = {i, j} with f(i) = a
and f(j) = b is an edge ofG, implying that xe = 1. This means that the sub-formula

Kf,H of ΦF , and hence, the formula ΦF itself must accept G. ⊓⊔

Let us now estimate the number of gates in the formula ΦF . Using a simple

counting argument, Mehlhorn (1982) shows that (n, r, s)-perfect hash families F

of size |F | ≤ ses2/r logn exist for all 2 ≤ s ≤ r ≤ n. In our case we can take

r = s = 2(k + 1). Hence, |F | = O(logn) for every constant k.
If we allow unbounded fanin, then each sub-formula Kf,H contributes just

one AND gate. Hence, ΦF has at most |Crit(r, k)| + |F | unbounded-fanin AND

gates. The fanin of each AND gate is actually bounded by the number of edges in

the corresponding graph H ∈ Crit(r, k) which, by Theorem ??, does not exceed
l :=

(
k+2

2
)

= O(1). Hence, |Crit(r, k)| does not exceed
(

r2

l

)
= O(1). Thus, for

every constant k, we have only O(|F |) = O(logn) fanin-2 AND gates in ΦF .

Each of these gates takes at most O(n2) fanin-2 OR gates as inputs. Thus, the total

size of our formula ΦF is O(n2 logn), as desired. For growing k, the upper bound
has the form O(kCk2

n2 logn) for a constant C , which is polynomial as long as

k = O(
√

logn).
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We thus constructed a monotone formula ΦF for the vertex cover function

VC(n, k). Since this function is the dual function of the clique functionCLIQUE(n, n−
k), we can just replace OR gates by AND gates (and vice versa) in this formula to

obtain a monotone formula for CLIQUE(n, n − k). This completes the proof of

Theorem ??. ⊓⊔

9.13 Remark Observe that the formula ΦF for VC(n, k) is multilinear, that is, inputs

to each its AND gate are computed from disjoint sets of variables. On the other

hand, Krieger (2007) shows that every monotone multilinear circuit for the dual

function CLIQUE(n, n− k) requires at least
(

n
k

)
gates. This gives an example of a

boolean function, whose dual requires much larger multilinear circuits than the

function itself.

9.14 Remark Using explicit perfect hash families we can obtain explicit circuits.

For fixed values of r and s, infinite classes of (n, r, s)-perfect hash families F of

size |F | = O(logn) were constructed by Wang and Xing (2001) using algebraic

curves over finite fields. With this construction Theorem ?? gives explicit monotone

formulas.

The construction in Wang and Xing (2001) is almost optimal: the family has only

a logarithmic in n number of functions. The construction is somewhat involved. On

the other hand, perfect hash families of poly-logarithmic size can be constructed

very easily.

Let s ≥ 1 be a fixed integer and r = 2s
. LetM = {ma,i} be an n×bmatrix with

b = ⌈logn⌉ columns whose rows are distinct 0-1 vectors of length b. Let h1, . . . , hb

be the family of functions hi : [n] → {0, 1} determined by the columns of M ;

hence, hi(a) = ma,i. Let also g : {0, 1}s → [r] be defined by g(x) =
∑s

i=1 xi2i−1
.

By Bondy’s theorem (Bondy 1972), the projections of any set of s+ 1 distinct

binary vectors on some set of s coordinates must all be distinct. Hence, for any

set a1, . . . , as+1 of s + 1 rows there exist s columns hi1 , . . . , his
such that all

s+ 1 vectors (hi1(aj), . . . , his(aj)), j = 1, . . . , s+ 1 are distinct. Therefore, the

function f(x) = g(hi1(x), . . . , his(x)) takes different values on all s + 1 points

a1, . . . , as+1. Thus, taking the superposition of g with

(
b
s

)
≤ logs n s-tuples of

functions h1, . . . , hb, we obtain a family F of |F | ≤ logs n functions f : [n] → [r]
which is (s+ 1)-perfect.

9.3 The monotone switching lemma

In Razborov’s method of approximations one only uses DNFs to approximate gates.

In this way, OR gates can be easily approximated: an OR of DNFs is a DNF, and

we only need to keep its small enough. The case of AND gates is, however, more

complicated. So, a natural idea to try to approximate by both DNFs and CNFs.

When appropriately realized, this idea leads to a general, and relatively simple

lower-bounds criterion for monotone circuits. Due to the symmetry between DNFs
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and CNFs, this criterion is often much easier to apply and yields exponential lower

bounds for many functions, including the clique function.

Still, there are functions—like the perfect matching function—for which the criterion seems

to fail. This is why we will discuss Razborov’s method later in Section ?? in full detail: unlike

the general criterion, which we are going to present now, Razborov’s method is much more

subtle, tailor made for the specific function one deals with and can be applied in situations

where the general criterion fails to produce strong lower bounds. Yet another reason to

include Razborov’s proof for the perfect matching function is that this function belongs to P,

and the proof was never treated in a book.

Our goal is to show that, if a monotone boolean function can be computed by a

small monotone circuit, then it can be approximated by small monotone CNFs and

DNFs. Thus, in order to prove that a function requires large circuits it is enough to

show that it does not have a small CNF/DNF approximation. The proof of this will

be based on the “monotone switching lemma” allowing us to switch between CNFs

and DNFs, and vice versa.

By a monotone k-CNF (conjunctive normal form) we will mean an And of an

arbitrary number of monotone clauses, each being an Or of at most k variables.

Dually, a monotone k-DNF is an Or of an arbitrary number of monomials, each

being an And of at most k variables. In an exact k-CNF all clauses must have exactly
k distinct variables; exact k-DNFs are defined similarly. For two boolean functions

f and g of the same set of variables, we write f ≤ g if f(x) ≤ g(x) for all input
vectors x. For a CNF/DNFC wewill denote by |C| the number of clauses/monomials

in it.

The following lemma was first proved in (Jukna, 1999) in terms of so-called

“finite limits”, a notion suggested by Sipser (1985); we will also use this notion later

(in Section ??) to prove lower bounds for depth-3 circuits. In terms of DNFs and

CNFs the lemma was then proved by Berg and Ulfberg (1999). Later, a similar lemma

was used by Harnik and Raz (2000) to improve the numerically strongest known

lower bound 2Ω(n1/3/ log n)
of Andreev (1987b) to 2Ω((n/ log n)1/3)

. The idea of the

lemma itself was also implicit in the work of Haken (1995).

9.15 Lemma (Monotone Switching Lemma) For every (s − 1)-CNF fc there is an
(r − 1)-DNF fd and an exact r-DNF D such that

fd ≤ fc ≤ fd ∨D and |D| ≤ (s− 1)r . (9.2)

Dually, for every (r − 1)-DNF fd there is an (s− 1)-CNF fc and an exact s-CNF C
such that

fc ∧ C ≤ fd ≤ fc and |C| ≤ (r − 1)s . (9.3)

Proof. We prove the first claim (the second is dual). Let fc = q1 ∧ · · · ∧ ql be an

(s− 1)-CNF; hence, each clause qi has |qi| ≤ s− 1 variables. It will be convenient

to identify clauses and monomials with the sets of indices of their variables. We say

that a monomial p pierces a clause qi if p ∩ qi ̸= ∅.
We associate with fc the following “transversal” tree T of fan-out at most s− 1

(see Fig. ??).
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Fig. 9.2 Two DNF-trees of the same 3-CNF fc = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x4).
The second tree is obtained by parsing the clauses of fc in the reverse order.

The first node of T corresponds to the first clause q1, and the outgoing |q1| edges
are labeled by the variables from q1. Suppose we have reached a node v, and let p
be the monomial consisting of the labels of edges from the root to v. If p pierces
all the clauses of fc, then v is a leaf. Otherwise, let qi be the first clause such that

p ∩ qi = ∅. Then the node v has |qi| outgoing edges labeled by the variables in qi.

Note that the resulting tree T depends on what ordering of clauses of fc we fix,
that is, in which order we parse the clauses (see Fig ??). Still, for any such tree we

have that, for every assignment x ∈ {0, 1}n
, fc(x) = 1 if and only if x is consistent

with at least one path from the root to a leaf of T . This holds because fc(x) = 1 iff

the set Sx = {i | xi = 1} intersects all clauses q1, . . . , ql.

Some paths in T may be longer than r − 1. So, we now cut off these long paths.

Namely, let fd be the OR of all paths of length at most r − 1 ending in leafs, and

D be the OR of all paths of length exactly r. Observe that for every assignment

x ∈ {0, 1}n
:

• fd(x) = 1 implies fc(x) = 1, and
• fc(x) = 1 implies fd(x) = 1 or D(x) = 1.

Thus, fd ≤ fc ≤ fd ∨D. Finally, we also have that |D| ≤ (s− 1)r
, because every

node of T has fan-out at most s− 1. ⊓⊔

Most important in the Switching Lemma is that the exact DNFs and CNFs

correcting possible errors contain only (s − 1)r
monomials instead of all

(
n
r

)
possible monomials, and only (r − 1)s

clauses instead of all

(
n
s

)
possible clauses.

9.4 The lower-bounds criterion

We now give a general lower-bounds criterion for monotone circuits.

9.16 Definition Let f be a monotone boolean function of n variables. We say that

f is t-simple if for every pair of integers 2 ≤ r, s ≤ n there exists an exact s-CNF
C , an exact r-DNF D, and a subset I ⊆ [n] of size |I| ≤ s− 1 such that
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(a) |C| ≤ t · (r − 1)s
and |D| ≤ t · (s− 1)r

, and

(b) either C ≤ f or f ≤ D ∨
∨

i∈I xi (or both) hold.

9.17 Theorem If a monotone boolean function can be computed by a monotone circuit
of size t, then f is t-simple.

Proof. Let F (x1, . . . , xn) be a monotone boolean function, and suppose that F can

be computed by a monotone circuit of size t. Our goal is to show that the function

F is t-simple. To do this, fix an arbitrary pair of integer parameters 2 ≤ s, r ≤ n.
Let f = g ∗ h be a gate in our circuit. That is, f is a function computed at

some node of the circuit, and g and h are functions computed at its inputs. By an

approximator of this gate we will mean a pair (fc, fd), where fc is an (s− 1)-CNF
(a left approximator of f ) and fd is an (r − 1)-DNF (a right approximator of f )
such that fd ≤ fc.

We say that such an approximator fc, fd of f introduces a new error on input

x ∈ {0, 1}n
if the approximators of g and of h did not make an error on x, but the

approximator of f does. That is, gc(x) = gd(x) = g(x) and hc(x) = hd(x) = h(x),
but either fc(x) ̸= f(x) or fd(x) ̸= f(x).

We define approximators inductively as follows.

Case 1: f is an input variable, say, f = xi. In this case we take fc = fd := xi. It is

clear that this approximator introduces no errors.

Case 2: f is an And gate, f = g ∧ h. In this case we take fc := gc ∧ hc as the

left approximator of f ; hence, fc introduces no new errors. To define the right

approximator of f we use Lemma ?? to convert fc into an (r − 1)-DNF fd; hence,
fd ≤ fc. Let Ef be the set of inputs on which fd introduces a new error, that is,

Ef := {x | f(x) = fc(x) = 1 but fd(x) = 0} .

By Lemma ??, all these errors can be “corrected” by adding a relatively small exact

r-DNF: there is an exact r-DNF D such that |D| ≤ (s− 1)r
and D(x) = 1 for all

x ∈ Ef .

Case 3: f is an Or gate, f = g∨h. This case is dual to Case 2. We take fd := gd∨hd
as the right approximator of f ; hence, fd introduces no new errors. To define the

left approximator of f we use Lemma ?? to convert fd into an (s − 1)-CNF fc;
hence, fd ≤ fc. Let Ef be the set of inputs on which fc introduces a new error,

that is,

Ef := {x | f(x) = fd(x) = 0 but fc(x) = 1} .

By Lemma ??, all these errors can be “corrected” by adding a relatively small exact

s-CNF: there is an exact s-CNF C such that |C| ≤ (r − 1)s
and C(x) = 0 for all

x ∈ Ef .

Proceeding in this way we will reach the last gate of our circuit computing the

given function F . Let (F c, Fd) be its approximator, and letE be the set of all inputs

x ∈ {0, 1}n
on which F differs from at least one of the functions F c

or Fd
. Since

at input gates (= variables) no error was made, for every such input x ∈ E, the
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corresponding error must be introduced at some intermediate gate. That is, for

every x ∈ E there is a gate f such that x ∈ Ef (approximator of f introduces an

error on x for the first time). But we have shown that, for each gate, all these errors

can be corrected by adding an exact s-CNF of size at most (r − 1)s
or an exact

r-DNF of size at most (s− 1)r
. Since we have only t gates, all such errors x ∈ E

can be corrected by adding an exact s-CNF C of size at most t · (r − 1)s
and an

exact r-DNF D of size at most t · (s − 1)r
, that is, for all inputs x ∈ {0, 1}n

, we

have

C(x) ∧ F c(x) ≤ F (x) ≤ Fd(x) ∨D(x) ,

where Fd ≤ F c
. This already implies that the function F is t-simple. Indeed, if

the CNF F c
is empty (that is, if F c ≡ 1) then C ≤ F , and we are done. Otherwise,

F c
must contain some clause q of length at most s − 1, say, q =

∨
i∈I xi for

some I ⊆ [n] of size |I| ≤ s − 1. Since clearly F c ≤ q, the condition Fd ≤ F c

implies F ≤ Fd ∨D ≤ F c ∨D ≤ q ∨D, as desired. This completes the proof of

Theorem ??. ⊓⊔

In applications, boolean functions f are usually defined as set-theoretic predi-

cates. In this case we say that f accepts a set S ⊆ {1, . . . , n} and write f(S) = 1
if and only if f accepts its incidence vector. Let S = {1, . . . , n} \ S denote the

complement of S. We say that a set S is a

• positive input for f if f(S) = 1;
• negative input for f if f(S) = 0.

Put differently, a positive (negative) input is a set of variables which, if assigned

the value 1 (0), forces the function to take the value 1 (0) regardless of the values
assigned to the remaining variables. The minimal (under set inclusion) positive

inputs for f are called minterms of f . Similarly, the maximal negative inputs for f
are called maxterms of f .

Note that one and the same set S can be both a positive and a negative input!

For example, if f(x1, x2, x3) outputs 1 iff x1 + x2 + x3 ≥ 2, then S = {1, 2} is

both positive and negative input for f , because f(1, 1, x3) = 1 and f(0, 0, x3) = 0.
To re-formulate the definition of t-simplicity (Definition ??) in terms of posi-

tive/negative inputs, note that if C is a CNF, then C ≤ f means that every negative

input of f must contain at least one clause of C (looked at as set of indices of

its variables). Similarly, f ≤ D ∨
∨

i∈I xi means that every positive input must

either intersect the set I or contain at least one monomial of D. Thus, if F1 (F0)
is a family of positive (negative) inputs of f , and #k(F) denotes the maximum

number of members of F containing a fixed k-element set, then Theorem ?? gives
the following more explicit lower bound.

9.18 Theorem For every integers 2 ≤ r, s ≤ n, every monotone circuit computing f
must have size at least the minimum of

|F1| − (s− 1) · #1(F1)
(s− 1)r · #r(F1) and

|F0|
(r − 1)s · #s(F0) .
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That is, a monotone boolean function requires large monotone circuits if its

positive as well as negative inputs are “scattered” well enough.

9.5 Explicit lower bounds

In order to show that a given boolean function cannot be computed by a monotone

circuit of size at most t, it is enough, by Theorem ??, to show that the function

is not t-simple for at least one(!) choice of parameters s and r. In this section we

demonstrate how this can be used to derive strong lower bounds for concrete

boolean functions.

9.5.1 Detecting triangles

We begin with the simplest example, yielding a polynomial lower bound. We will

also present more “respectable” applications leading to exponential lower bounds,

but this special case already demonstrates the common way of reasoning fairly

well.

Let us consider a monotone boolean function ∆n, whose input is an undirected

graph on n vertices, represented by v =
(

n
2
)
variables, one for each possible edge.

The value of the function is 1 if and only if the graph contains a triangle (three

incident vertices). Clearly, there is a monotone circuit of size O(n3) computing this

function: just test whether any of

(
n
3
)
triangles is present in the graph. Thus, the

following theorem is tight, up to a poly-logarithmic factor.

9.19 Theorem Any monotone circuit, detecting whether a given n-vertex graph is
triangle-free, must have Ω(n3/ log4 n) gates.

Proof. Let t be the minimal number for which∆n is t-simple. By Theorem ??, it is
enough to show that t = Ω(n3/ log4 n). For this proof, we take s := ⌊5 log2 n⌋ and
r := 2. According to the definition of t-simplicity, we have only two possibilities.

Case 1: Every positive input for ∆n either intersects a fixed set I of s edges, or
contains at least one of L ≤ tsr = ts2 2-element sets of edges R1, . . . , RL.

As positive inputs for∆n we take all triangles, that is, graphs on n vertices with

exactly one triangle; we have

(
n
3
)
such graphs. At most s(n− 2) of them will have

an edge in I . Each of the remaining triangles must contain one of ts2
given pairs of

edges Ri. Since two edges can lie in at most one triangle, we conclude that, in this

case,

t ≥
(

n
3
)

− s(n− 2)
s2 = Ω(n3/ log4 n) .

Case 2: Every negative input for∆n contains at least one of t(r − 1)s = t sets of
edges S1, . . . , St, each of size |Si| = s.
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In this case we consider the graphs E = E1 ∪ E2 consisting of two disjoint

non-empty cliquesE1 andE2 (we consider graphs as sets of their edges). Each such

graph E is a negative input for ∆n, because its complement is a bipartite graph,

and hence, has no triangles. The number of such graphs is a half of the number

2n
of all binary strings of length n excluding the all-0 and all1 strings. Hence, we

have 2n−1 − 1 such graphs, and each of them must contain at least one of the sets

S1, . . . , St. Every of these sets of edges Si is incident to at least

√
2s vertices, and

if E ⊇ Si then all these vertices must belong to one of the cliques E1 or E2. Thus,

at most 2n−
√

2s − 1 of our negative inputs E can contain one fixed set Si, implying

that, in this case,

t ≥ 2n−1 − 1
2n−

√
2s − 1

≥ 2
√

2s−1 ≥ 23 log n ≥ n3 .

Thus, in both cases, t = Ω(n3/ log4 n), and we are done. ⊓⊔

9.5.2 Graphs of polynomials

Our next example is the following monotone boolean function introduced by An-

dreev (1985). Let q ≥ 2 be a prime power, and set d := ⌊(q/ ln q)1/2/2⌋. Consider
boolean q × q matrices A = (ai,j). Given such a matrix A, we are interested in

whether it contains a graph of a polynomial h : GF(q) → GF(q), that is, whether
ai,h(i) = 1 for all rows i ∈ GF(q).

Let fn be a monotone boolean function of n = q2
variables such that fn(A) = 1

iff A contains a graph of at least one polynomial over GF(q) of degree at most

d− 1. That is,
fn(X) =

∨
h

∧
i∈GF(q)

xi,h(i) ,

where h ranges over all polynomials over GF(q) of degree at most d− 1. Since we
have at most qd

such polynomials, the function fn can be computed by a monotone

boolean circuit of size at most qd+1
, which is at most nO(d) = 2O(n1/4√

ln n)
. We

will now show that this trivial upper bound is almost optimal.

9.20 Theorem Any monotone circuit computing the function fn has size at least
2Ω(n1/4√

ln n).

Proof. Take a minimal t for which the function fn is t-simple. Since n = q2
and (by

our choice) d = Θ(n1/4
√

lnn), it is enough by Theorem ?? to show that t ≥ qΩ(d)
.

For this proof, we take s := ⌊d ln q⌋ and r := d, and consider input matrices as

bipartite q × q graphs. In the proof we will use the well-known fact that no two

distinct polynomials of degree at most d− 1 can coincide on d points. According to
the definition of t-simplicity, we have only two possibilities.
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Case 1: Every positive input for fn either intersects a fixed set I of at most s edges,
or contains at least one of L ≤ tsr r-element sets of edges R1, . . . , RL.

Graphs of polynomials of degree at most d− 1 are positive inputs for fn. Each

set of l (1 ≤ l ≤ d) edges is contained in either 0 or precisely qd−l
of such graphs.

Hence, at most sqd−1
of these graphs can contain an edge in I , and at most qd−r

of

them can contain any of the given graphs Ri. Therefore, in this case we have

t ≥ qd − sqd−1

sr · qd−r
=
(q
s

)Ω(r)
= qΩ(d) .

Case 2: Every negative input for fn contains at least one ofK ≤ trs s-element sets

of edges S1, . . . , SK .

Let E be a random bipartite graph, with each edge appearing in E independently

with probability γ := (2d ln q)/q. Since there are only qd
polynomials of degree at

most d− 1, the probability that the complement of E will contain the graph of at

least one of them does not exceed qd(1 − γ)q ≤ q−d
, by our choice of γ. Hence,

with probability at least 1 − q−d
, the graph E is a negative input for f . On the other

hand, each of the sets Si is contained in E with probability γ|Si| = γs
. Thus, in this

case,

t ≥ 1 − q−d

rsγs
=
( q

2d2 ln q

)Ω(s)
= 2Ω(s) = qΩ(d) ,

where the third inequality holds for all d ≤ (q/ ln q)1/2/2.
We have proved that the function f can be t-simple only if t ≥ qΩ(d)

. By

Theorem ??, this function cannot be computed by monotone circuits of size smaller

than qΩ(d)
. ⊓⊔

9.6 Circuits with real-valued gates

We now consider monotone circuits where, besides boolean AND and OR gates,

one may use arbitrary monotone real-valued functions φ : R2 → R as gates. Such

a function φ is monotone if φ(x1, x2) ≤ φ(y1, y2) whenever x1 ≤ y1 and x2 ≤ y2.
The corresponding circuits are called monotone real circuit.

First lower bounds for monotone circuits with real-valued gates were proved by

Pudlák (1997), via an extension of Razborov’s argument, and by Haken and Cook

(1999), via an extension of the “bottleneck counting” argument of Haken (1995).

As in boolean circuits, inputs for such circuits are also binary strings x ∈ {0, 1}n
;

the output must also be a binary bit 0 or 1. But at each intermediate gate any

monotone function f : {0, 1}n → R may be computed. Hence, unlike in boolean

case, here we have uncountable number of possible gates φ : R2 → R, and one may

expect that at least some monotone boolean functions can be computed much more

efficiently by such circuits. Exercise ?? shows that this intuition is correct: so-called

“slice functions” can be computed by a very small monotone circuit with real-valued
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gates, but easy counting shows that most slice functions cannot be computed by

boolean circuits of polynomial size, even if NOT gates are allowed! Thus, monotone

real circuits may be even exponentially more powerful than circuits over {∧,∨,¬}.
It is therefore somewhat surprising that the (simple) criterion for boolean cir-

cuits (Theorem ??) remains true also for circuits with real-valued gates. The only

difference from the boolean case is that now in the definition of t-simplicity we

take slightly larger CNFs and DNFs, which does not greatly change the asymptotic

values of the resulting lower bounds.

We say that a monotone boolean function f is weakly t-simple if the conditions
in Definition ?? hold with (a) replaced by

(a’) |C| ≤ t · (2r)s+1
and |D| ≤ t · (2s)r+1

That is, the only difference from the definition of t-simplicity is a slightly larger

upper bound on the number of clauses in C and monomials in D.

9.21 Theorem (Criterion for Real Circuits) Let f be a monotone boolean function. If
f can be computed by a monotone real circuit of size t then f is weakly t-simple.

Proof. The theorem was first proved in (Jukna, 1999) using finite limits. A much

simpler proof, which we present below, is due to Avi Wigderson. The argument

is similar to that in the boolean case (Theorem ??). We only have to show how to

construct the approximators for real-valued gates. The idea is to consider thresholds
of real gates and approximate the thresholded values. For a real-valued function

f : {0, 1}n → R and a real number a, let fa denote the boolean function that

outputs 1 if f(x) ≥ a, and outputs 0 otherwise.

Now let φ : R2 → R be a gate at which the function f(x) is computed, and let

g(x) and h(x) be functions g, h : {0, 1}n → R computed at the inputs of this gate.

A simple (but crucial) observation is that then

φ
(
g(x), h(x)

)
≥ a ⇐⇒ ∃b, c : g(x) ≥ b, h(x) ≥ c and φ(b, c) ≥ a .

The (⇒) direction is trivial: just take b = g(x) and c = h(x). The other direction
(⇐) follows from the monotonicity of φ: φ(g(x), h(x)) ≥ φ(b, c) ≥ a.

Together with the fact that fa(x) = 1 iff φ(g(x), h(x)) ≥ a, this allows us to
express each threshold function fa of a gate f = φ(g, h) from the thresholds of its

input gates as:

fa =
∨

φ(b,c)≥a

(gb ∧ hc) (9.4)

as well as

fa =
∧

φ(b,c)<a

(gb ∨ hc) . (9.5)

It is convenient to think these expressions as an infinite AND and an infinite OR,

respectively. However, since the number of settings x ∈ {0, 1}n
for input variables

is finite, the real gates take only finite number of possible values, and we therefore

only need finite expressions.
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Fix a pair 1 ≤ s, r < n of integer parameters. As before, every threshold fa is

approximated by two functions: an s-CNF fca (left approximator) and an r-DNF fda
(right approximator). The approximators for the thresholds of the input variables

are 0, 1, or the variable itself, depending on the value of the threshold; they can

always be represented by at most one literal and thus never fail.

Now let f = φ(g, h) be an intermediate gate with two input gates g and h, and
suppose that, for all (finitely many!) reals b, c, the left and right approximators for

threshold functions gb and hc of its input gates are already constructed.

To construct the left approximator fca of fa from the approximators of its two

input gates g and h, we first consider the representation

fa =
∨

φ(b,c)≥a

(gdb ∧ hdc ) .

Since the monomials in the r-DNFs gdb and hdc have length at most r, all the subex-
pressions gdb ∧ hdc can be turned into a single 2r-DNF Da such that

Da(x) = 1 iff fa(x) = 1 iff f(x) ≥ a . (9.6)

After that we use the same procedure as before (that is, Lemma ??) to convert this

DNF into an s-CNF fca . This can be done for each (of the finitely many) threshold

values a, and we only need to ensure that the number of errors introduced when

approximating the whole gate f does not depend on this number of thresholds.

When forming the s-CNF fca , we introduce errors as we throw away clauses

that become longer than s. We want to count the number of inputs x ∈ {0, 1}n

such that fa(x) = 0 while fca (x) = 1 for some a, that is, the union over a of the
errors introduced in a gate by fca . To do this, let us list in the increasing order

a1 < a2 < . . . < aN all the N ≤ 2n
possible values f(x) the gate f can output

when the input vector x ranges over {0, 1}n
. Hence,

D := Da1 ∨Da2 ∨ · · · ∨DaN

is a 2r-DNF, and this DNF makes no error on x, that is, D(x) = f(x). By (??), we
have that

Da1 ≥ Da2 ≥ · · · ≥ DaN
.

That is, every monomial of Dai+1 contains at least one monomial of Dai . Hence, if

t(D) denotes the family of all transversals of D, that is, the family of all subsets of

variables, each of which intersects all the monomials of D, then

t(Da1) ⊆ t(Da2) ⊆ · · · ⊆ t(DaN
) ,

implying that t(D) = t(DaN
). This means that all the clauses (=transversals),

which we throw away (because they are longer than s) when forming an s-CNF fc

from the DNF D, are precisely those clauses, which we would throw away when

converting the 2r-DNF DaN
into an s-CNF. Thus, by Lemma ??, all the errors that

may appear during the construction of the left approximator fc, can be corrected
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by an exact (s+ 1)-CNF C of size |C| ≤ (2r)s+1
. That is, for every input x such

that f(x) = 0 but fc(x) = 1, we have that C(x) = 0.
A dual argument can be used to bound the number of errors introduced when

constructing the right approximator fd. Note that we cannot use the DNF (??) for
this purpose sinceD is a 2r-DNF, not an r-DNF. But we can argue as above by using

the expression (??) instead of (??). Then all the introduced errors can be corrected

by an exact (r+ 1)-DNFD of size |D| ≤ (2s)r+1
. The rest of the proof is the same

as that of Theorem ??. ⊓⊔

Since the definitions of t-simple functions and of weakly t-simple function are

almost the same, Theorem ?? allows us to extend lower bounds for the monotone

boolean circuits (we proved above) to the monotone real circuits. For example, the

same argument as in the proof of Theorem ?? yields

9.22 Theorem Any monotone real circuit computing the polynomial function fn has
size at least 2Ω(n1/4√

ln n).

Lower bounds for monotone real circuits have found intriguing applications in

proof complexity. In particular, Pudlák (1997) used such bounds to prove the first

exponential lower bound on the length of so-called “cutting plane proofs”, a proof

system for solving integer programming problems. We will describe this result in

Chapter ??.
The extension of the lower-bounds criterion from monotone boolean circuits

to monotone real circuits shows the power of the criterion. On the other hand,

monotonicity is crucial here.

9.23 Proposition Any boolean function of n variables can be computed using n− 1
real monotone fanin-2 gates and one non-monotone unary gate.

Proof. For an input vector x ∈ {0, 1}n
, let bin(x) =

∑n
i=1 xi2i−1

be the number

whose binary code is x. It is easy to see that bin(x) can be computed by a circuit

C(x) using n− 1 real fanin-2 gates of the form g(u, v) = u+ 2v. This can be done

via the recurrence:

bin(x) = x1 + 2 · bin(x′) = g(x1,bin(x′)) ,

where x′ = (x2, . . . , xn). These gates are monotone.

Now, every boolean function f defines the unique set of numbers

Lf = {bin(x) | f(x) = 1} .

Hence, in order to compute f , it is enough to attach the (non-monotone) output

gate testing whether C(x) ∈ Lf . ⊓⊔
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9.7 Criterion for graph properties

Fix a set V of |V | = n vertices, and let

(
n
2
)
be the set of all potential edges e = {u, v}

with u ̸= v ∈ V on these vertices. Assign a boolean variable xe to each potential

edge e. Then every 0-1 vector x of length

(
n
2
)
defines the graph Sx = {e | xe = 1};

we consider graphs as sets S ⊆
(

n
2
)
of their edges. Thus, every boolean function f

of

(
n
2
)
variables defines some property of n-vertex graphs.

An example of a graph property is the clique function fn = CLIQUE(n, k)
we have considered in Sections ?? and ??. If applied directly, the symmetric lower-

bounds criterion (Theorem ??) cannot yield strong lower bounds for this function.

In this case, we can take as positive inputs of fn the family F of all

(
n
k

)
cliques on

k vertices. But then we would only have that #r(F) ≤
(n−

√
r

k−
√

r

)
because some sets

S of |S| = r edges may touch at most

√
r vertices, with the worst case of S being

a clique. Hence, the fraction

|F|
sr · #r(F) ≥

(
n
k

)
sr
(n−

√
r

k−
√

r

) ≈ n
√

r

sr
=
( n

s
√

r

)√
r

in this case is too small: we cannot take s and r large enough. The reason for this

failure is that, so far, we only used a trivial measure of “length” for clauses and

monomials–the total number of variables in them. But in the case of graph properties,

variables xe correspond to edges. Thus, clauses and monomials correspond in this

case to graphs (sets of edges). Say a clause c =
∨

e∈S xe corresponds to the graph

S. We therefore have more flexibility to define an appropriate notion of “length”

of a monomial than just as the number of variables in it. We can, say, define the

“length” of a graph S as the number v(S) of vertices touched by (incident with)

the edges in S, or as the number κ(S) of connected components in S, or somehow

else. It makes therefore sense to extend the lower-bounds criterion for the case of

different length measures. We will now show that this can be done quite easily.

By a legal length measurewewill mean any non-negative measure µ(S) of graphs
satisfying the following conditions for some non-negative constants c, d:

µ(S) ≤ µ(S ∪ {e}) ≤ µ(S) + c and |S| ≤ µ(S)d .

Parameter c tells us how much the measure of a graph can increase when one edge

is added, and d tells us how much smaller can the measure of a graph be when

compared to the total number of edges in it. For simplicity of exposition, we will

only consider length measures with c = d = 2. For arbitrary c and d the arguments

are the same, although the bounds we get are slightly worse.

Note that the length measure µ(S) = |S| (the total number of edges) we have

considered in the previous sections has all these properties. The measure µ(S) =
the number of vertices touched by the edges in S also has these properties. If we

could use µ(S) instead of |S|, then only at most

(
n−r
k−r

)
of k-cliques would contain

a fixed graph S with µ(S) = r, and the fraction
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|F|
sr · #r(F) ≥

(
n
k

)
sr
(

n−r
k−r

) ≈
(n
s

)r

would then already be large enough. We have therefore only to show that our lower

bounds criteria can be extended to the case of arbitrary legal length measures.

Now, when some length measure of graphs is fixed, we can define the notions

of k-CNF and of exact k-CNF in a similar way. By a k-CNF relative to µ we will

now mean a monotone CNF each whose clause has µ-length at most k. In an exact
k-CNF relative to µwe require that all clauses have µ-length at least k; and similarly

for DNFs.

It is not difficult to verify that the Monotone Switching Lemma remains true for

any pair of length measures for clauses and for monomials. The only difference is

that now we have slightly worse upper bounds on |D| and |C|, namely |D| ≤ s4r

and |C| ≤ r4s
.

Proof sketch. Argue as in the proof of Lemma ??. Regardless of which lengthmeasure

for clauses we use, each clause of length s will have at most s2
variables. Construct

the “transversal tree” T in the same manner. Having a length measure µ for mono-

mials, we now define DNFs fd and D in the same way with the words “monomial

of length” replaced by “monomial of µ-length”. This time we say that a monomial

p pierces a clause qi if there exists a variable x in qi such that µ(p ∪ {x}) = µ(p).
Namely, the DNF fd now consists of all paths of µ-length smaller than r, and the

DNF D consists of all paths whose µ-length reached the threshold r for the first
time, that is, D consists of all paths p such that µ(p) ≥ r but µ(p′) < r, where
p′

is the path p without its last edge. Since adding one edge can only increase the

measure by an additive factor 2, every monomial inD has length (not just µ-length)
at most 2r. Since every node of T has fan-out at most s2

, this gives the desired

upper bound |D| ≤ (s2)2r = s4r
on the total number of monomials in D. ⊓⊔

Thus, in the case of graph properties f we have a more flexible lower-bounds

criterion allowing us to choose different length measures for positive inputs (graphs

accepted by f ) and negative inputs (graphs whose complements are rejected by f ).
Let η be some length measure for negative inputs, and µ be some length measure

for positive inputs.

9.24 Definition (Approximators) By an (r, s)-approximator of f of size t we will
mean a triple (R,S, I) where *

• I is a graph of η-length ≤ s;
• R is a family of |R| ≤ t(2s)4r

graphs of µ-length ≥ r, and
• S is a family of |S| ≤ t(2r)4s

graphs of η-length ≥ s

such that at least one of the following two conditions holds:

1. Every positive input of f either intersects the graph I or contains at least one
of the graphs in R.

*

We take (2r)4r
instead of just r4s

in order to cover also the real-valued case.
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2. Every negative input of f contains at least one of the graphs in S .

9.25 Theorem If a monotone boolean function can be computed by a monotone real
circuit of size t, then it has an (r, s)-approximator of size t for any 1 ≤ r, s ≤ n− 1
and for every pair of length measures.

The proof of this theorem is the same as that of Theorem ??: just use the modified

version of the Monotone Switching Lemma. We leave a detailed proof as an exercise.

9.8 Clique-like problems

We consider graphs on a fixed set V of |V | = n vertices. We havem =
(

n
2
)
boolean

variables, one for each potential edge. Then each boolean function f : {0, 1}m →
{0, 1} describes some graph property. A prominent NP-complete graph property

is a monotone boolean function CLIQUE(n, k) which accepts a given graph on n
vertices iff it contains a k-clique, that is, a subgraph on k vertices whose all vertices

are pairwise adjacent. Instead of proving a lower bound on this function we will do

this for a much larger class of “clique-like” functions.

An a-coclique is formed by assigning each vertex a color from the set {1, 2, . . . , a},
and putting edges between those pairs of vertices with different colors. Note that

no such graph can have an (a+ 1)-clique.
Let 2 ≤ a < b ≤ m be integers. An (a, b)-clique function is a monotone boolean

function f such that, for every graph G onm vertices,

f(G) =


0 if G is an a-coclique;

1 if G is a b-clique;

any value otherwise.

Hence, CLIQUE(n, k) is an (a, b)-clique function with a = k − 1 and b = k.

9.26 Theorem (Jukna 1999) Let 32 ≤ a < b ≤ n/32, and let f be an (a, b)-clique
function. Then the minimal number of gates in a monotone real circuit computing f is
exponential in min{a, n/b}1/4.

Proof. Let f be an (a, b)-clique function. We are going to apply the refined version

of the lower-bounds criterion (Theorem ??). To do this, we must first choose ap-

propriate length measure µ for positive inputs an a length measure η for negative
inputs.

What to take as positive inputs and how to measure their length is clear. All

b-cliques are positive inputs for f . A natural measure for a clique S is to take

µ(S) := the number of vertices touched by the edges in S .

It is clear that µ(S) is a legal length measure:
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µ(S ∪ {e}) ≤ µ(S) + µ({e}) = µ(S) + 2 and |S| ≤
(
µ(S)

2

)
< µ(S)2 .

Our choice of negative inputs is also clear: we take all complements of a-cocliques.
Each such complement Gh is defined by a coloring h of vertices in a colors: two
vertices u and v are adjacent in Gh iff h(u) = h(v). But what should we take as a

length measure η(S) of such graphs in this case?

Having a graph S of a given η-measure η(S) = s, we want that as few as

possible a-colorings h can color the edges of S monochromatically, that is, color

both endpoints of each edge e ∈ S by the same color. If S is a tree with s vertices,
then we could take the same measure η(S) = µ(S) = the number of vertices

touched by the edges in S. Now, Gh ⊇ S implies that h must assign the same color

to all s = η(S) vertices of S, and we can have at most a · an−s = an−s+1
such

colorings. Thus, if S is a connected graph then we could take η(S) be the maximum

number of edges in its spanning tree. For general (not necessarily connected) graphs

we can do the same, and consider the measure:

η(S) = maximum number of edges in a forest F ⊆ S.

Since every tree with m edges has m + 1 vertices, η(S) is just the number of

vertices minus the number of connected components in S. But is η a legal length
measure? The first condition η(S) ≤ η(S ∪ {e}) ≤ η(S) + c clearly holds with

c = 1. But does the second condition |S| ≤ η(S)2
hold? To show that it does, letm

be the number of vertices touched by edges in S, and suppose that S consists of

k connected components, the i-th of which hasmi vertices. We may assume that

mi ≥ 2 for all i. Then (mi − 1)2 ≥
(

mi

2
)
holds for all i, and we obtain that

η(S)2 =
[ k∑

i=1
(mi − 1)

]2
≥

k∑
i=1

(mi − 1)2 ≥
k∑

i=1

(
mi

2

)
≥ |S| .

Thus, both measures µ(S) and η(S) are legal length measures. By Theorem ?? it
remains to choose parameters r, s and to show that our function f can have an

(r, s)-approximator of size t only if t is large enough. For this purpose, we set (with
foresight):

r := ⌊(a/32)1/4⌋ and s := ⌊(n/32b)1/4⌋ .

According to Definition ?? we have only two possibilities, depending on what of

the two of its items holds.

Case 1: (Positive inputs) There exist a set I of |I| ≤ s2
edges and a family

Q1, . . . , QL of L ≤ t(2s)4r r-cliques such that every b-clique must either intersect

the set I or contain at least one of the cliques Qi.

At least

(
n
b

)
− s2(n−2

b−2
)

≥ 1
2
(

n
b

)
of b-cliques must avoid a fixed set I of |I| ≤ s2

edges. Each of these b-cliques must contain at least one of r-cliques Qi. Since only(
n−r
b−r

)
of b-cliques can contain one clique Qi, and we only have L ≤ t(2s)4r

of the

Qi, in this case we have the lower bound
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t ≥
1
2
(

n
b

)
(2s)4r

(
n−r
b−r

) =
( n

16s4b

)Ω(r)
= 2Ω(a1/4) .

Case 2: (Negative inputs) Recall that negative inputs are graphs Gh corresponding

to colorings h of vertices in a colors; two vertices u and v are adjacent in Gh

iff h(u) = h(v). Recall also that η(S) is the maximum number |F | of edges in a

spanning forest F ⊆ S. Thus, in the second case of Definition ?? there must be

a family F of |F| ≤ t(2r)4s
forests with |F | ≥ s edges in each F ∈ F such that

every graph Gh contains at least one of these forests. That is, for every coloring h,
there must be at least one forest F ∈ F such that h(u) = h(v) for all edges of F .

Fix one forest F ∈ F , and let T1, . . . , Td be all its connected components

(trees). All vertices in each of these trees must receive the same color. Since each

tree Ti has |Ti| + 1 vertices, the total number of vertices in the forest F is m =∑d
i=1(|Ti| + 1) = |F | + d ≥ s+ d. There are ad

ways for the coloring h to color

the trees Ti, and at most an−m ≤ an−(s+d)
ways to color the remaining n − m

vertices. Thus, the number of graphs Gh containing one fixed forest F ∈ F does

not exceed adan−(s+d) = an−s
. Since we only have |F| ≤ t(2r)4s

forests in F , in

this case we have the lower bound

t ≥ an

(2r)4san−s
=
( a

16r4

)s

= 2(n/b)1/4
. ⊓⊔

As mentioned above, the class of clique-like functions includes some NP-
complete problems, like CLIQUE(n, k). But the class of (a, b)-clique functions

is much larger—so large that it also includes some graph properties computable by

non-monotone circuits of polynomial size!

A graph function is a function φ assigning each graph G a real number φ(G).
Such a function φ is clique-like if

ω(G) ≤ φ(G) ≤ χ(G) ,

where ω(G) is the clique number, that is, the maximum number of vertices in a

complete subgraph of G, and χ(G) is the chromatic number, that is, the smallest

number of colors which is enough to color the vertices of G so that no adjacent

vertices receive the same color.

Although we always have that ω(G) ≤ χ(G), the gap between these two

quantities can be quite large: results of Erdős (1967) imply that the maximum

of χ(G)/ω(G) over all n-vertex graphs G has the order Θ(n/ log2 n). So, at least
potentially, the class of clique-like functions is large enough. And indeed, Tardos

(1987) observed that this class includes not only NP-complete problems (like the

clique function) but also some problems from P.
9.27 Lemma (Tardos 1987) There exists an explicit monotone clique-like graph func-
tion φ which is computable in polynomial time.

Proof. In his seminal paper on Shannon-capacity of graphs Lovász (1979a) intro-

duced the capacity ϑ(G). The function φ′(G) := ϑ(G), where G denotes the
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complement of G, is a monotone clique-like function. Grötschel, Lovász and Schri-

jver (1981) gave a polynomial time approximation algorithm for ϑ. That is, given a

graph G and a rational number ϵ > 0 the algorithm computes, in polynomial time,

a function g(G, ϵ) such that

ϑ(G) ≤ g(G, ϵ) ≤ ϑ(G) + ϵ .

Now, for any 0 < ϵ < 1/2 the function ⌊g(G, ϵ)⌋ is a polynomial time computable

clique-like function. This function might not be monotone. Let us therefore consider

the monotone function

φ(G) = ⌊g(G,n−2) + e(G) · n−2⌋ ,

where n is the number of vertices and e(G) the number of edges in G. This is the
desired monotone clique-like function computable in polynomial time. ⊓⊔

Fix k to be the square root of the number n of vertices, and let fϕ denote the

monotone boolean function of

(
n
2
)
boolean variables encoding the edges of a graph

on n vertices, whose values are defined by

fϕ(G) = 1 iff φ(G) ≥ k .

Observe that fϕ(G) = 1 if ω(G) ≥ k, and fϕ(G) = 0 if χ(G) ≤ k − 1. Thus, fϕ

is a (k − 1, k)-clique function. Theorem ?? and Lemma ?? immediately yield the

following tradeoff between monotone real and non-monotone boolean circuits.

9.28 Theorem For every clique-like graph function φ, the boolean function fϕ can be
computed by a non-monotone boolean circuit of polynomial size, but any monotone
real circuit requires 2Ω(n1/8) gates.

Thus, there are explicit monotone boolean functions, whose boolean non-

monotone circuits are exponentially smaller than their monotone real circuits.

We will use this theorem later in Section ?? to prove exponential lower bounds for

widely used proof system—cutting plane proofs.

But what about the other direction: can every non-monotone boolean circuit

computing a monotone boolean function be transformed into a monotone real

circuit without an exponential blow-up in size? Using counting arguments one can

give a negative answer (see Exercises ??-??).

9.9 What about circuits with NOT gates?

As we mentioned at the very beginning, no non-linear lower bounds are known for

circuits using NOT gates. So, what is missing in the arguments we described in this

and the previous chapters?

A possible answer is that the arguments are just too general! In order to show

that no circuit with t gates can compute a given boolean function f , we have
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to show that no such circuit C can separate the set f−1(0) from f−1(1), that is,
reject all vectors in f−1(0) and accept all vectors in f−1(1). Current arguments for

monotone circuits (and formulas) do much more: there are relatively small subsets

A ⊆ f−1(0) and B ⊆ f−1(1) (sets of particular negative and positive inputs) such

that every monotone circuit separating A from B must be large.

To be more specific, let A be the set of all complete (k − 1)-partite graphs on
n vertices, and B be the set of all k-cliques. Hence, for any k-clique function f ,
members of A are negative inputs and members of B are positive inputs for f . We

have shown that any monotone circuit separating A from B must have exponential

size.

On the other hand, A can be separated from B by a small circuit if we allow

just one NOT gate be used at the top of the circuit! Indeed, each graph in A has at

least K = Ω(n) edges, whereas each graph in B (a k-clique) has only
(

k
2
)
edges,

which is smaller than K for k = o(
√
n). Hence, if g = ¬ThK is the negation of

the threshold-K function, then g(a) = 0 for all a ∈ A, and g(b) = 1 for all b ∈ B.

Since threshold functions have small monotone circuits (at most quadratic in the

number of input variables), the resulting circuit is also small, separates A from B,

and has only one NOT gate.

That is, it is not hard to separate the pair A,B by a monotone circuit—it is only

hard to do this separation in the “right” direction: reject all a ∈ A, and accept all

b ∈ B. This motivates the following definition.

Let f be a monotone boolean function. Say that a pair A,B with A ⊆ f−1(0)
and B ⊆ f−1(1) is r-hard if every monotone circuit separating a 2−r

fraction of A
from a 2−r

fraction of B (either in a “right” or in a “wrong” direction) must have

super-polynomial size.

Exercise ?? shows that any r-hard pairA,B requires a super-polynomial number

of gates in any circuit that separates A from B and uses up to r NOT gates. In the

next chapter we will show that r = ⌈log(n + 1)⌉ is a critical number of allowed

NOT gates: having an r-hard pair for such an r would imply a super-polynomial

lower bound for general non-monotone circuits! The best result known today is that

the clique function produces an r-hard pair for r about log logn; this was shown
by Amano and Maruoka (2005).

9.29 Research Problem
Exhibit an explicit pair A,B of disjoint subsets of {0, 1}n

which is r-hard for

r ≫ log logn.

9.10 Razborov’s method of approximations

To describe the Method of Approximations in its full generality, it will again be

convenient to look at boolean functions f : {0, 1}X → {0, 1} as computing set-

theoretic predicates f : 2X → {0, 1}. In this way we get a 1-to-1 correspondence

between boolean functions f and families A(f) = {S ⊆ X | f(S) = 1} of subsets
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of X with the properties A(f ∨ g) = A(f) ∪A(g) and A(f ∧ g) = A(f) ∩A(g).
If f is monotone, then A(f) is monotone with respect to set inclusion: if E ∈ A(f)
and E ⊆ F then F ∈ A(f).

Every family F ⊆ 2X
can be extended to a monotone family ⌜F⌝ defined by

⌜F⌝ :=
⋃

F ∈F
⌜F⌝ , where ⌜F⌝ := {E ⊆ X | F ⊆ E} .

In particular, if F = ∅ is the empty set, then ⌜F⌝ = 2X
, whereas ⌜F⌝ = ∅ (empty

family), if F = ∅. The reason to consider monotone families is that we only consider

monotone boolean functions f , and for them we have that ⌜A(f)⌝ = A(f).
Thus, each monotone circuit for a monotone boolean function f starts with the

basic monotone families A(x1), . . . , A(xn), A(1) = 2X , A(0) = ∅ corresponding

to input variables and the two constant functions, applies set-theoretic union (∪)
and intersection (∩) operations to them, and finally produces the family A(f). The
idea is now to approximate the operations ∪ and ∩ by some other set-theoretic

operations ⊔ and ⊓. This leads to the following definition.

A collection M ⊆ 2X
of monotone families with two operations ⊔ (join) and ⊓

(meet) is a legitimate lattice if it satisfies the following two conditions:

• Families A(x1), . . . , A(xn), A(1), A(0) belong to M.

• M is a lattice with respect to set inclusion, that is, M,N ⊆ M ⊔ N and

M ⊓N ⊆ M,N for allM,N ∈ M.

Note that the second condition implies that

M ∪N ⊆ M ⊔N and M ⊓N ⊆ M ∩N .

Thus, if we replace the gates ∪ and ∩ in our circuit by the lattice operations ⊔ and

⊓, then some elementM ∈ M instead of the target familyA(f) could be computed.

To capture the errors arising at each gate, define:

δ−(M,N) := (M ⊔N) \ (M ∪N),
δ+(M,N) := (M ∩N) \ (M ⊓N) .

Define the distance ρ(f,M) of a boolean function f from a latticeM as the smallest

number t for which there exist elementsM,Mi, Ni (1 ≤ i ≤ t) of the lattice M
such that

M \A(f) ⊆ δ−(M1, N1) ∪ · · · ∪ δ−(Mt, Nt) ,
A(f) \M ⊆ δ+(M1, N1) ∪ · · · ∪ δ+(Mt, Nt) .

The proof of the following theorem is by easy induction on the number of gates,

and we leave it as an exercise.

9.30 Theorem For every legitimate latticeM, every monotone boolean circuit com-
puting f requires at least ρ(f,M) gates.
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In order to apply this theorem for a given monotone boolean function f , we have
to define an appropriate legitimate lattice M and show that f has a large distance

from this lattice.

If we take M to be a trivial lattice consisting of all monotone families, then

ρ(f,M) = 0 for any monotone boolean function. So, in order to have a nontrivial

distance, one has to consider some nontrivial lattices. For this, we need to achieve

the following two goals:

1. Every familyM ∈ M must differ from A(f) in many members.

2. The “error-families” δ−(Mi, Ni) and δ+(Mi, Ni) must be relatively small.

Crucial here is the second goal. Razborov achieves this goal by ensuring that each

family in M has relatively few minimal (w.r.t. set-inclusion) members. This, in

turn, is achieved by introducing a clever “closure” operation, and by applying this

operation when the union of two families in M has too many minimal members.

9.10.1 Construction of legitimate lattices

Let r ≥ 2 a fixed integer. Say that sets F1, . . . , Fr imply a set F0, and write

F1, . . . , Fr ⊢ F0, if Fi ∩ Fj ⊆ F0 for all 1 ≤ i < j ≤ r. We write F ⊢ F if there

exist not necessarily distinct members F1, . . . , Fr of F such that F1, . . . , Fr ⊢ F .
A general construction of legitimate lattices is as follows.

1. Fix an appropriate “ambient” family P ⊆ 2X
. In the case of the clique function

a natural choice is the family of all cliques on ≤ s vertices, whereas in the case

of the perfect matching function such is the family of all matchings with ≤ s
edges; s is a parameter.

2. Say that a family F ⊆ P is r-closed (or just closed) if F ⊢ F and F ∈ P implies

F ∈ F .

3. Define M = {⌜A⌝ | A ⊆ P and A is r-closed}.
Since the intersection of closed families is also closed, there is the smallest closed

family containing A, which we will denote by A⋆
.

9.31 Lemma For every familyP ⊆ 2X ,M is a legitimate lattice with lattice operations
given by

⌜A⌝ ⊓ ⌜B⌝ = ⌜A ∩ B⌝ and ⌜A⌝ ⊔ ⌜B⌝ = ⌜(A ∪ B)⋆⌝ .

Proof. First note that the condition (a) in the definition of a legitimate lattice is

fulfilled: we have A(xi) = ⌜{xi}⌝ A(1) = ⌜P⌝ and A(0) = ⌜∅⌝.
Let A denote the set of all r-closed families A ⊆ P . As the partially ordered with

respect to the set-inclusion set, the set A is a lattice with inf(A1,A2) = A1 ∩ A2
(intersection of two closed families is closed) and sup(A1,A2) = (A1 ∪ A2)∗

. The

mapping ⌜⌝ : A → M is a homomorphism of partially ordered under set-inclusion

sets. So, to finish the proof of the lemma, it is enough to show that this mapping is

in fact an isomorphism. That is, to show that ⌜A1⌝ ⊆ ⌜A2⌝ implies A1 ⊆ A2.
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To show this, let ⌜A1⌝ ⊆ ⌜A2⌝ and E1 ∈ A1. Then E1 ∈ ⌜A1⌝, and hence,

E1 ∈ ⌜A2⌝. That is, there must exist a set E2 ∈ A2 such that E2 ⊆ E1. But then
E2, . . . , E2 ⊢ E1, implying that E1 ∈ A2, since A2 is r-closed. We have therefore

shown that ⌜A1⌝ ⊆ ⌜A2⌝ implies A1 ⊆ A2, as desired. ⊓⊔

The main property of closed families is that they cannot have too many minimal
members with respect to set-inclusion.

A set family F is an antichain if for no distinct A,B in F do we have A ⊂ B.

For a family F , let min(F) denote the antichain consisting of all smallest members

of F with respect to set-inclusion.

9.32 Lemma If F is r-closed and |F | ≤ s for all F ∈ F , then | min(F)| ≤ s!rs.

Proof. Assume that | min(F)| > s!rs
. Then the Sunflower Lemma (applied with

l = s and p = r + 1) gives us r + 1 sets F0, F1, . . . , Fr in min(F) forming a

sunflower. Since F is an antichain, the core E of this sunflower is a proper subset

of each of the Fi, and hence, also E ⊂ F0. But Fi ∩ Fj = E for all 1 ≤ i < j ≤ r
implies that F1, . . . , Fr ⊢ E, and hence, E must be a member of F since F is

r-closed. This contradicts our assumption that F0 ∈ min(F). ⊓⊔

9.11 A lower bound for perfect matching

The perfect matching function is a monotone boolean function fm ofm2
variables.

Inputs for this function are subsetsE ⊆ Km,m of edges of a fixed complete bipartite

m × m graph Km,m, and fm(E) = 1 iff E contains a perfect matching, that is,

a set of m vertex-disjoint edges. Taking a boolean variable xi,j for each edge of

Km,m, the function can be written as

fm =
∨

σ∈Sm

m∧
i=1

xi,σ(i) ,

where Sm is the set of all m! permutations of 1, 2, . . . ,m. The function fm is

also known as a logical permanent of a boolean m × m matrix, the adjacency

matrix of E. Hopcroft and Karp (1973) showed that this sequence of functions

(fm | m = 1, 2, . . .) can be computed by a deterministic Turing machine in time

O(m5/2). Hence, fm can be computed by a non-monotone circuit using onlyO(m5)
gates. But what about monotone circuits for this function?

Using his Method of Approximations, Razborov (1985b) was able to prove a

super-polynomial lower boundmΩ(log m)
also for this function. Fu (1998) showed

that, after an appropriate modification, Razborov’s proof works also for monotone

real circuits.

The lattice Mm with large distance ρ(fm,Mm) from fm will depend on two

parameters r and swhichwewill set later. Namely, letMm be the lattice constructed

as above when starting with the ambient family P = Pers, where
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Pers = {E ⊆ Km,m | E is a matching and |E| ≤ s}

is the set of all matchings with up to s edges. That is, each element ofM ∈ Mm

is produced by taking an r-closed collection A ⊆ Pers of matchings, each with

≤ s edges, and including in Mm the monotone family M = ⌜A⌝ of all graphs

(not just matchings) containing at least one matching in A. In particular, minimal

(under inclusion) members of each M are matchings of size at most s, that is,
min(M) ⊆ Pers.

Our goal is to prove that, for appropriately chosen parameters r and s, we have
ρ(fm,Mm) = mΩ(log m)

.

It will be convenient to use probabilistic language. Let E+ be a random graph

taking its values in the set of allm! perfect matchings with equal probability 1/m!.
It is clear that

Prob[fm(E+) = 1] = 1 .

Let h be a random 2-coloring assigning each vertex ofKm,m a value 0 or 1 indepen-

dently with probability 1/2. This coloring defines a random graph E− = {(u, v) |
h(u) = h(v)}.

9.33 Lemma
Prob[fm(E−) = 0] ≥ 1 − 2√

m
.

Proof. Let U and V be the two parts ofKm,m; hence, |U | = |V | = m. The graph

E− has a perfect matching iff

∑
u∈U h(u) =

∑
v∈V h(v). Hence,

Prob[fm(E−) = 1] = Prob
[∑

u∈U

h(u) =
∑
v∈V

h(v)
]

=
m∑

j=0
Prob

[∑
u∈U

h(u) = j
]

· Prob
[∑

v∈V

h(v) = j
]

≤ max
0≤j≤m

Prob
[∑

v∈V

h(v) = j
]

≤
(
m

m/2

)
· 2−m ≤ 2√

m
.⊓⊔

In order to show that the distance ρ(fm,Mm) is large, it is enough to show that,

for every two membersM1,M2 of the lattice Mm, the probabilities Prob[E+ ∈
δ+(M1,M2)] and Prob[E− ∈ δ−(M1,M2)] are small.

9.11.1 Error-probability on accepted inputs

The case of E+ is relatively simple. Recall that E+ is a random perfect matching.

9.34 Lemma For anyM1,M2 ∈ Mm we have that

Prob[E+ ∈ δ+(M1,M2)] ≤ (s!rs)2 · (m− s− 1)
m! .



9.11 A lower bound for perfect matching 273

Proof. LetM1 = ⌜A1⌝ andM2 = ⌜A2⌝. Since for any family F and any two sets

A,B we have that ⌜min(F)⌝ = ⌜F⌝ and ⌜A⌝ ∩ ⌜B⌝ = ⌜A ∪B⌝, the error-set

δ+(M1,M2) = (M1 ∩M2) \ (M1 ⊓M2) = (⌜A1⌝ ∩ ⌜A2⌝) \ (⌜A1 ∩ A2⌝)

is the union of sets ⌜E1 ∪ E2⌝ \ (⌜A1 ∩ A2⌝) over all E1 ∈ min(A1) and E2 ∈
min(A2). Fix any two such sets E1 and E2, and let E = E1 ∪ E2. Our goal is to
upper-bound the probability Prob[E+ ∈ ⌜E⌝] = Prob[E ⊆ E+]. We have three

possibilities.

Case 1: E is not a matching. In this case Prob[E ⊆ E+] = 0.

Case 2: E is a matching and |E| ≤ s, that is, E ∈ Pers. Since A1 is closed, E1 ∈ A1
and E ∈ Pers implies that E = E1 ∪ E2 ∈ A1. Similarly, E ∈ A2. Hence
E ∈ A1 ∩ A2, implying that ⌜E1 ∪ E2⌝ \ (⌜A1 ∩ A2⌝) = ∅.

Case 3: E is a matching but |E| ≥ s+ 1. In this case

Prob[E ⊆ E+] = (m− |E|)!
m! ≤ (m− s− 1)!

m! .

Since, by Lemma ??, | min(A1)| · | min(A1)| ≤ (s!rs)2
, we are done. ⊓⊔

9.11.2 Error-probability on rejected inputs

To upper bound the probability Prob[E− ∈ δ−(M1,M2)] requires more work. The

problem is that the events e1 ∈ E− and e2 ∈ E− for edges e1, e2 are not necessarily
independent. Still, the following lemma shows that the events are independent if

the edges come from a fixed forest. Recall that a forest is a graph without cycles.

9.35 Lemma Let E = {(u1, v1), . . . , (up, vp)} ⊆ Km,m be a forest. Then the events
(ui, vi) ∈ E− are independent, and each happens with probability 1/2.

Proof. It is enough to show that, for any subset K ⊆ {1, . . . , p} of indices, the

event

(ui, vi) ∈ E− for all i ∈ K , and (uj , vj) ̸∈ E− for all j ̸∈ K

happens with probability 2−p
. By the definition of E−, this event is equivalent to the

event that the values h(ui),h(vi) satisfy the following system of linear equations

over GF(2):
h(ui) + h(vi) = χK + 1 i = 1, . . . , p , (9.7)

where h(ui),h(vi) are treated as variables, and χK is the characteristic function of

the setK . SinceE is a forest, the left-hand side of this system is linearly independent

(see Exercise ??). Thus, the system has exactly 22m−p
solutions, as desired. ⊓⊔

9.36 Lemma Let F ⊆ Pers be a set of |F| = r pairwise disjoint matchings. Then
there exits a subset F0 ⊆ F of |F0| ≥

√
r/s matchings such that ∪F0 is a forest.
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Proof. Choose F0 ⊆ F such that ∪F0 is a forest and |F0| is maximal. It is enough

to show that |F0| ≥
√
r/s.

To show this, assume that |F0| <
√
r/s, and let E0 = ∪F0; hence, |E0| <

√
r.

Let U0 ⊆ U and V0 ⊆ V be the sets of vertices incident with at least one edge ofE0.
Then |U0| <

√
r and |V0| <

√
r. Since F contains |F| = r > |U0 × V0| matchings,

at least one of these matchings E1 must have no edge in U0 × V0 (every edge can

belong to at most one matching in F , since these matchings are disjoint). Since E1
is a matching and E0 is a forest lying in U0 × V0, the graph E0 ∪ E1 is a forest as

well. But E1 ∩E0 = ∅ implies that E1 ̸∈ F0, a contradiction with the maximality

of |F0|. ⊓⊔

Now we are able to upper-bound Prob[E− ∈ δ−(M1,M2)]. Note that the num-

ber of matchings in Pers is

|Pers| ≤
s∑

i=0

(
m

i

)2
· i! ≤ ms

s∑
i=0

(
m

i

)
≤ m2s .

9.37 Lemma For anyM1,M2 ∈ Mm we have that

Prob[E− ∈ δ−(M1,M2)] ≤ (1 − 2−s)
√

r/s ·m2s .

Proof. Let M1 = ⌜A1⌝, M2 = ⌜A2⌝ and A3 = A1 ∪ A2. Then δ−(M1,M2) =
⌜A⋆

3⌝ \ ⌜A3⌝, where A⋆
3 is the closure of A3. Hence, there is a sequence of families

A3,A4, . . . ,Ap = A⋆
3 such that Ai+1 = Ai ∪ {Ei} with Ai ⊢ Ei and Ei ̸∈ Ai.

Hence, δ−(M1,M2) is the union of all sets ⌜Ei⌝ \ ⌜Ai⌝, i = 3, . . . , p − 1. Since
p ≤ |Pers| ≤ m2s

, it remains to show that A ⊆ Pers and A ⊢ E0 implies that

Prob[E− ∈ ⌜E0⌝ \ ⌜A⌝] ≤ (1 − 2−s)
√

r/s . (9.8)

To prove this, let E1, . . . , Er be matchings in A such that E1, . . . , Er ⊢ E0. Hence,
the sets E∗

i := Ei \ E0 must be disjoint. If at least one of these sets is empty,

then ⌜E0⌝ ⊆ ⌜A⌝, and the inequality (??) trivially holds. Otherwise, we can use

Lemma ?? to choose a subset F0 ⊆ {E∗
1 , . . . , E

∗
r } such that ∪F0 is a forest and

|F0| ≥
√
r/s. Then

Prob[E− ∈ ⌜E0⌝ \ ⌜A⌝] ≤ Prob[E0 ⊆ E− and Ei ̸⊆ E− for all i = 1, . . . , r ]
≤ Prob[E∗

i ̸⊆ E− for all i = 1, . . . , r ]
≤ Prob[E∗ ̸⊆ E− for all E∗ ∈ F0 ] .

By Lemma ??, all events E∗ ̸⊆ E− for E∗ ∈ F0 are independent, and

Prob[E∗ ⊆ E−] = 2−|E∗| ≥ 2−s .

Therefore,
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Prob[E∗ ̸⊆ E− for all E∗ ∈ F0 ] =
∏

E∗∈F0

Prob[E∗ ̸⊆ E−] ≤ (1 − 2−s)
√

r/s .

This finishes the proof of (??), and thus of the lemma. ⊓⊔

9.38 Theorem (Razborov 1985b) Every monotone circuit computing the perfect match-
ing function fm must havemΩ(log m) gates.

Proof. By Theorem ??, it is enough to show that ρ(fm,Mm) = mΩ(log m)
. For the

proof we assume thatm is sufficiently large, and set the parameters r and s to

s := ⌊(logm)/8⌋ and r := ⌊m1/4(logm)8⌋ .

LetM,Mi, Ni (1 ≤ i ≤ t) be elements of the latticeMm such that

M \A(fm) ⊆
t⋃

i=1
δ−(Mi, Ni), (9.9)

A(fm) \M ⊆
t⋃

i=1
δ+(Mi, Ni) . (9.10)

We consider two cases;M = ∅ andM ̸= ∅.

Case 1: M = ∅. In this case, (??) implies that the entire set A(fm) must lie in

the union of error-sets δ+(Mi, Ni), i = 1, . . . , t. Since E+ lies in A(fm) with

probability 1, the sum of probabilities Prob[E+ ∈ δ+(Mi, Ni)] must be at least 1
as well. Together with Lemma ??, this implies that (for sufficiently largem)

t ≥ m!
(m− s− 1)!(s!rs)2 ≥ (m/2)s · (sr)−2s

=
( m

2r2s2

)s

≥
( 32m
m1/2(logm)18

)(log m)/8

= mΩ(log m) .

Case 2:M ̸= ∅. By the construction ofMm, there exists a matching E ∈ Pers for

which ⌜E⌝ ⊆ M . Together with (??), this implies that

⌜E⌝ ⊆ A(fm) ∪ δ−(M1, N1) ∪ · · · ∪ δ−(Mt, Nt) .

We have

Prob[E− ∈ ⌜E⌝] = 2−|E| ≥ 2−s
by Lemma ??

Prob[E− ∈ A(fm)] ≤ 2m−1/2
by Lemma ??

Prob[E− ∈ δ−(Mi, Ni)] ≤ (1 − 2−s)
√

r/s ·m2s
by Lemma ??
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This implies that

t ≥ (2−s − 2m−1/2)(1 − 2−s)−
√

r/sm−2s

≥ 1
8m

−1/8 · exp
(2−s

√
r

s

)
·m−2s

≥ 1
8m

− 1
8 − 1

4 log m exp
(8m−1/8 ·m1/8 · (logm)4

logm

)
= mΩ(log3 m) .⊓⊔

9.39 Research Problem
Can the lower boundmΩ(log m)

for perfect matching be improved to 2Ω(mϵ)
for a

constant ϵ > 0?

Exercises

9.1 A partial b–(n, k, λ) design is a familyF of k-element subsets of {1, . . . , n} such
that any b-element set is contained in at most λ of its members. We can associate

with each such design F a monotone boolean function fF such that fF (S) = 1 if

and only if S ⊇ F for at least one F ∈ F . Assume that ln |F| < k − 1 and that

each element belongs to at most N members of F . Use Theorem ?? to show that

for every integer a ≥ 2, every monotone circuit computing fF has size at least

L := min
{1

2

( k

2b ln |F|

)a

,
|F| − a ·N
λ · ab

}
.

Hint: Take r = a, s = b and show that under this choice of parameters, the function fF can be

t-simple only if t ≥ L. When doing this, note that the members of F are positive inputs for fF .

To handle the case of negative inputs, take a random subset T in which each element appears

independently with probability p = (1 + ln |F|)/k, and show that T is not a negative input for

fF with probability at most |F|(1 − p)k ≤ e−1
.

9.2 Derive Theorem ?? from the previous exercise.

Hint: Observe that the family of all qd
graphs of polynomials of degree at most d − 1 over GF(q)

forms a partial b–(n, k, λ) design with parameters n = q2
, k = q and λ = qd−b

.

9.3 Andreev (1987b) showed how, for any prime power q ≥ 2 and d ≤ q, to
construct an explicit family F of subsets of {1, . . . , n} which, for every b ≤ d+ 1,
forms a partial b–(n, k, λ) design with parameters n = q3

, k = q2
, λ = q2d+1−b

and |F| = q2d+1
. Use Exercise ?? to show that the corresponding boolean function

fD requires monotone circuits of size exponential in Ω(n1/3−o(1)).

9.4 A boolean function f(x1, . . . , xn) is a k-slice function if f(x) = 0 for all x with

|x| < k, and f(x) = 1 for all x with |x| > k, where |x| = x1 + · · · +xn. Show that
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some slice functions require DeMorgan circuits of size 2Ω(n)
. Hint: Take k = n/2 and

argue as in the proof of Theorem ??.

9.5 (Rosenbloom 1997) Given a vector x = (x1, . . . , xn) in {0, 1}n
, associate with

it the following two integers h+(x) := |x|2n + b(x) and h−(x) := |x|2n − b(x),
where |x| = x1 + · · ·+xn and b(x) =

∑n
i=1 xi2i−1

. Prove that for any two vectors

x ̸= y,

1. if |x| < |y|, then h+(x) < h+(y) and h−(x) < h−(y);
2. if |x| = |y|, then h+(x) ≤ h+(y) if and only if h−(x) ≥ h−(y).

9.6 Let f(x1, . . . , xn) be a k-slice function, 0 ≤ k ≤ n. Use the previous exercise
to show that f can be computed by a circuit with O(n) monotone real-valued

functions as gates.

Hint: As the last gate take a monotone function φ : R2 → {0, 1} such that

φ(h+(x), h−(x)) = f(x)

for all inputs x of weight |x| = k.

9.7 Let f be a boolean function and suppose that it can be computed by a circuit of

size t with at most r negations. Show that for any A ⊆ f−1(0) and B ⊆ f−1(1),
there is a monotone boolean function g such that g can be computed by a monotone

circuit of size at most t and either g or its negation ¬g rejects a 2−r
fraction of

inputs from A and accepts a 2−r
fraction of inputs from B.

Hint: Argue by induction on r. If r ≥ 1, then consider the first negation gate and the function

g which is computed at the gate immediately before this negation gate. Let ϵ ∈ {0, 1} be such

that g(a) = ϵ for at least one half of the inputs a ∈ A. If also one half of the inputs b ∈ B have

g(b) = ϵ ⊕ 1, then either g or ¬g has the property stated in the lemma. If this is not the case, try

to apply the induction hypothesis.

9.8 Let G be a graph with n vertices andm edges, and letM be itsm × n edge-

vertex adjacency 0-1 matrix. That is, there is a 1 in the i-th row and j-th column iff

the j-th vertex is an endpoint of the i-th edge. Show that the rows ofM are linearly

independent over GF(2) if and only if G is a forest.

Hint: In any non-empty forest there are at least two vertices of degree 1. If some subset of rows

sums up to zero, then the subgraph formed by the corresponding edges must have minimum

degree at least 2.

9.9 A set A ⊆ {0, 1}n
of vectors is Downward Closed if x ∈ A and y ≤ x implies

y ∈ A. Similarly, a set is Upward Closed if x ∈ A and x ≤ y implies y ∈ A.
Note that, if a boolean function f : {0, 1}n → {0, 1} is monotone, then f−1(0) is
Downward Closed and f−1(1) is Upward Closed. Prove the following result due to

Kleitman (1966): if A,B are Downward Closed subsets of {0, 1}n
, then

|A ∩B| ≥ |A| · |B|
2n

.



278 9 Monotone Circuits

Hint: Apply induction on n, the case n = 0 being trivial. For a ∈ {0, 1}, set ca = |Aa| and
da = |Ba|, where Aa = {(x1, . . . , xn−1) | (x1, . . . , xn−1, a) ∈ A}. Apply induction to show

that |A ∩ B| ≥ (c0d0 + c1d1)/2n−1
and use the equality c0d0 + c1d1 = (c0 + c1)(d0 + d1) +

(c0 − c1)(d0 − d1) together with A1 ⊆ A0 and B1 ⊆ B0.

9.10 Show that Kleitman’s theorem (Exercise ??) implies the following: Let A,B be

upward closed and C downward closed subsets of {0, 1}n
. Then

|A ∩B| ≥ |A| · |B|
2n

and |A ∩ C| ≤ |A| · |C|
2n

.

Hint: For the first inequality, apply Kleitman’s theorem to the complements of A and B. For the

second inequality, take B := {0, 1}n \ C , and apply the first inequality to the pair A, B to get

|A| − |A ∩ C| = |A ∩ B| ≥ 2−n|A|(2n − |C|).

9.11 Let f : 2[n] → {0, 1} be a monotone boolean function, and let F be the

family of all subsets S ⊆ [n] that are both positive and negative inputs of f , that is
f(S) = 1 and f(S) = 0. Show that |F| ≤ |f−1(0)| · |f−1(1)|/2n

.

9.12 (Flower Lemma, Håstad et al. 1995) A blocking set of a family F is a set which

intersects all themembers ofF ; theminimumnumber of elements in a blocking set is

the blocking number of F and is denoted by τ(F); if ∅ ∈ F then we set τ(F) = 0. A
restriction of a family F onto a set Y is the family FY := {S \ Y | S ∈ F , S ⊇ Y }.
A flower with k petals and a core Y is a family F such that τ(FY ) ≥ k. Note that
every sunflower is a flower with the same number of petals, but not every flower is

a sunflower (give an example). Prove the following “flower lemma”:

Let F be a family of sets each of cardinality s, and k ≥ 1 and integer. If

|F| > (k − 1)s
then F contains a flower with k petals.

Hint: Induction on s. If τ(F) ≥ k then the family F itself is a flower with at least (k −1)s +1 ≥ k
petals (and an empty core). Otherwise, some set of size k − 1 intersects all the members of F , and

hence, at least |F|/(k − 1) of the members must contain some point x.

9.13 Let f be a monotone boolean function of n variables, and suppose that all its

maxterms have length at most t. Show that then for every s = 1, . . . , n the function

f has at most ts minterms of length s.

Hint: Let F be the family of all minterms of f of length s. Every maxterm must intersect all the

minterms in F . Assume that |F| > ts
and apply the Flower Lemma to get a contradiction with

the previous sentence.

9.14 Use Exercise ?? to give an alternate proof of the Monotone Switching Lemma.



10. The Mystery of Negations

The main difficulty in proving nontrivial lower bounds on the size of circuits using

AND, OR and NOT is the presence of NOT gates—we already know how to prove

even exponential lower bounds for monotone functions if no NOT gates are allowed.

The effect of such gates on circuit size remains to a large extent a mystery. It is

therefore worth describing what we actually know about this mystery. Among the

basic questions concerning the role of NOT gates are the following:

1. For what monotone boolean functions are NOT gates useless, that is, do not

lead to much more efficient circuits?

2. Given a function f , what is the minimum numberM(f) of NOT gates in a

circuit computing f? Note thatM(f) = 0 if f is monotone.

3. Given a circuit, to what extent can we decrease the number of NOT gates in it

without a substantial increase in circuit size? In particular, how much can the size

of a circuit increase when trying to compute f using the smallest possible number

M(f) of NOT gates?

4. Suppose that a function f of n variables can be computed by a circuit of size

polynomial of n, but every circuit with M(f) negations computing f requires

super-polynomial size. What, then, is the minimal number of negations sufficient to

compute f in polynomial size? In other words, how many NOT gates do we need

in order to achieve super-polynomial savings in circuit size?

In this chapter we answer these questions.

10.1 When are NOT gates useless?

Let us consider circuits with AND, OR and NOT gates. Recall that such a circuit is

a DeMorgan circuit if NOT gates are only applied to input variables. A circuit is

monotone if it has no negated inputs.

As we have already mentioned, current methods are not able to prove lower

bounds larger than 5n for general circuits. On the other hand, we know how to

prove even exponential lower bounds for monotone circuits where we have no NOT

279
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Fig. 10.1 A k-slice function. For inputs with < k ones it takes value 0, for inputs with > k ones it

takes value 1, and is only non-trivial on inputs with exactly k ones.

gates at all. Even better, there is a large class of monotone boolean functions for

which NOT gates are almost useless, that is, monotone circuits for such functions are

almost as efficient as non-monotone ones. These are the so-called “slice functions”.

10.1.1 Slice functions

A boolean function f(x) is a k-slice function if f(x) = 0when |x| < k, and f(x) = 1
when |x| > k; here and throughout, |x| = x1 + . . .+ xn is the number of 1s in x
(see Fig. ??). Note that slice functions are monotone! They are, however, nontrivial

only on the k-th slice of the binary n-cube {0, 1}n
. Note also that, for every boolean

function f , the function g defined by

g = f ∧ Thk ∨ Thk+1

is a k-slice function. Here, as before, Thk(x) is the threshold-k function which

accepts a given vector x iff |x| ≥ k. An important property of slice functions is

that NOT gates are almost useless when computing them. This is because we can

replace each negated input in a circuit for a k-slice function f by a small monotone

circuit computing a threshold function. The idea, due to Berkowitz (1982), is to

consider threshold functions Thk(x− xi) where

x− xi := (x1, . . . , xi−1, xi+1, . . . , xn)

is the vector x with its i-th component removed. A simple (but crucial) observation

is that, for all input vectors x ∈ {0, 1}n
with exactly k ones, Thk(x − xi) is the

negation of the i-th bit xi:

Thk(x− xi) = ¬xi for all vectors x with |x| = k. (10.1)
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Indeed, if x1 + · · ·+xn = k, then x1 + · · ·+xi−1 +xi+1 + · · ·+xn ≥ k if and only
if xi = 0. It is known that all these n threshold functions Thk(x−xi), i = 1, . . . , n
can be simultaneously computed by a monotone circuit of size O(n log2 n). This
was proved by Mike Paterson (unpublished), Wegener (1985), and Valiant (1986).

Hence, if we replace all n negated inputs in a (non-monotone) circuit

f(x1, . . . , xn) = F (x1, . . . , xn,¬x1, . . . ,¬xn)

for a k-slice function f by outputs of this circuit, we obtain a monotone circuit

F+(x1, . . . , xn) = F (x1, . . . , xn,Thk(x− x1), . . . ,Thk(x− xn)) .

It is not difficult to verify that F+ also computes f . That F+(x) = F (x) for all
inputs x with |x| = k ones follows from (??). To show that the same holds for all

remaining input vectors, observe that

F (x, 0, . . . , 0) ≤ F (x,¬x1, . . . ,¬xn) ≤ F (x, 1, . . . , 1) .

This holds because the circuit F itself is monotone, that is, has only AND and OR

gates (negations are only on inputs). Since f is a k-slice function, |x| < k implies

f(x) = 0 independent of whether xi = 0 or xi = 1. Hence, on such input vectors,

F+(x1, . . . , xn) = F (x1, . . . , xn, 0, . . . , 0) ≤ f(x1, . . . , xn) = 0 .

The case of input vectors with more than k ones is dual.

What we have just proved is the following:

10.1 Theorem If f is a slice function of n variables, then any non-monotone DeMorgan
circuit for f can be transformed to a monotone circuit by adding at most O(n log2 n)
gates.

Thus, any lower bound ω(n log2 n) on the monotone(!) complexity of a slice

function would yield superlinear lower bound on their non-monotone complexity.

Unfortunately, existing methods for monotone circuits (and formulas) do not work

for slice functions. The obstacle is that either the set of positive or the set of

negative inputs of a slice function is not “scattered” well enough. For the lower-

bounds criterion (Theorem ??) to work, we need that the number of positive (as

well as negative) inputs of f containing a fixed r-element set is relatively small.

Now, if f is a k-slice function with, say, k ≤ n/2, then the only interesting negative

inputs are (n− k)-element sets, corresponding to the vectors on the k-th slice of

the n-cube on which the function takes value 0. But then up to 2(n−k)−r ≥ 2n/2−r

such inputs may share r common elements.

When trying to understand the monotone complexity of k-slice functions, it
is important to first understand the case k = 2. This leads to so-called “graph

complexity”, a notion we have already described in Section ?? and which we will

apply in Section ?? for depth-3 circuits.
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10.1.2 Negated inputs as new variables

There is yet another bridge between monotone and non-monotone complexities.

Namely, Lipton (2010) observed that it is possible to slightly modify any boolean

function f of n variables to obtain amonotone boolean function gf of 2n variables so

that C(f) ≥ C+(gf ) − 4n, where C(f) is the minimum size of a DeMorgan circuit

computing f , and C+(gf ) the minimum size of a monotone circuit computing gf .

To show this, let f(x) be any boolean function of n variables. Take a set y of new n
variables and define a boolean function gf (x, y) by

gf (x, y) := [f(x) ∧ α(x, y)] ∨ β(x, y) ,

where

α(x, y) =
n∧

i=1
(xi ∨ yi) and β(x, y) =

n∨
i=1

(xi ∧ yi) .

That is, α(x, y) = 1 iff x ∨ y = 1 and β(x, y) = 1 iff x ∧ y ̸= 0 (component-wise

OR and AND).

10.2 Claim For any boolean function f , gf is a monotone function.

Proof. If g(x, y) = gf (x, y) is not monotone, there must be vectors a, b so that

g(a, b) = 1 and changing some bit from 0 to 1 makes g = 0. Clearly, β(a, b) = 0;
otherwise, after the change β would still output 1. Since g(a, b) = 1 it must be

the case that α(a, b) = 1. But then after the change β must be equal to 1, a
contradiction. ⊓⊔

10.3 Claim For any boolean function f ,

gf (x1, . . . , xn,¬x1, . . . ,¬xn) = f(x1, . . . , xn) .

Proof. Let y be the vector y = (¬x1, . . . ,¬xn). Then, by definition, α(x, y) = 1
and β(x, y) = 0. ⊓⊔

10.4 Theorem (Lipton 2010, Theorem 11.1) For any boolean function f of n variables,
C(f) ≤ C+(gf ) ≤ C(f) + 4n.

Proof. The first inequalityC(f) ≤ C+(gf ) follows fromClaim ??. Now suppose that

f has a circuit F (x1, . . . , xn,¬x1, . . . ,¬xn) of size L. This is a monotone circuit

with fanin-2 AND and OR gates; inputs are variables and their negations. Replace

the negated inputs ¬x1, . . . ,¬xn by new variables y = (y1, . . . , yn), extend the

circuit by adding an ANDwith a circuit monotone computing α(x, y) and adding an
ORwith a circuit monotone computing β(x, y). LetF ′(x, y) the resulting monotone

circuit:

F ′(x, y) = [F (x, y) ∧ α(x, y)] ∨ β(x, y) .

It is clear that F ′
has size at most L+ 4n. We claim that F ′

is the desired monotone

circuit, that is, gf (x, y) = F ′(x, y).
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Suppose that F ′
is different from gf for some values of the inputs x and y. Then,

clearly, β(x, y) = 0; otherwise, they would agree. Also α(x, y) must equal 1; again,
if not, the two values could not disagree. We now claim that for each k, xk = ¬yk .

Suppose that this was false. Then, let xk = yk for some k. Clearly, the common

value cannot be 1 since β = 0. Also the common value cannot be 0 since α = 1.
This proves that for each k, xk = ¬yk . But then

f(x) = F (x1, . . . , xn,¬x1, . . . ,¬xn) = F ′(x, y) .

Since, by Claim ??,

f(x) = gf (x1, . . . , xn,¬x1, . . . ,¬xn) = gf (x, y) ,

we have that gf (x, y) = F ′(x, y). This is a contradiction with our assumption that

gf and F ′
differ on input (x, y). ⊓⊔

10.2 Markov’s theorem

We now consider circuits over {∧,∨,¬} that are not necessarily DeMorgan circuits.

That is, now inputs of NOT gates may be arbitrary gates, not just input variables.

The inversion complexity, I(f), of a boolean function f is the minimum number of

NOT gates in any such circuit that computes f . It is clear that I(f) ≤ n for every

boolean function f of n variables: just take a DeMorgan circuit.

More than 50 years ago, Markov (1957) made an amazing observation that every
boolean (and even multi-output) function of n variables can be computed by a

circuit with only about logn negations! Moreover, this number of negations is in

general necessary! To state and prove this classical result, we need a concept of the

“decrease” of functions.

For two binary vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) we write, as

before, x ≤ y if xi ≤ yi for all i. We also write x < y if x ≤ y and xi < yi

for at least one i. A boolean function f : {0, 1}n → {0, 1} is monotone if x ≤ y
implies f(x) ≤ f(y). A chain in the binary n-cube is an increasing sequence

Y = {y1 < y2 < . . . < yk} of vectors in {0, 1}n
. Note that no chain can contain

more than n+ 1 vectors. A typical chain of this length consists of vectors 1i0n−i
,

i = 0, 1, . . . , n.
Given such a chain, we look at how many times our boolean function f changes

its value from 1 to 0 along this chain, and call this number the decrease of f on

this chain. That is, we count how many times the following event happens along

the chain: x < y but f(x) > f(y). Formally, say that i is a jump position (or a

jump-down position) of f along a chain Y = {y1 < y2 < . . . < yk}, if f(yi) = 1
and f(yi+1) = 0. The number of all jump-down positions is the decrease dY (f) of f
on the chain Y . The decrease d(f) of f is the maximum of dY (f) over all chains Y .

Note that we only count the jump-down positions from 1 to 0: those j for which
f(yj) = 0 and f(yj+1) = 1 (the jump-up positions) do not contribute to dY (f). In
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particular, we have that d(f) ≤ n/2 for every boolean function f of n variables,

and d(f) = 0 for all monotone functions.

10.5 Theorem (Markov 1957) For every boolean function f ,

d(f) = 2I(f) − 1 .

That is, the minimum number I(f) of negations that are enough to compute f
is equal(!) to the length of the binary code of d(f), I(f) = ⌈log(d(f) + 1)⌉.

10.6 Remark The same result also holds for circuit computing sets F of boolean

functions. We can view each subset F of |F | = m functions as an operator F :
{0, 1}n → {0, 1}m

. In this case, the decrease of F along a chain Y = {y1 < y2 <
. . . < yk} is the number vectors yi

such that F (yi) ̸≤ F (yi+1).

We prove the lower and upper bounds on I(f) separately.

10.7 Lemma (Upper bound) d(f) ≤ 2I(f) − 1.

Proof. We use induction on I(f). The basis case I(f) = 0 is obvious because then

f is monotone, and d(f) = 0. For the induction step, assume that d(g) ≤ 2I(g) − 1
holds for all boolean functions with I(g) ≤ I(f)−1. In any circuit for f (containing

at least one negation) there is a NOT gate whose input does not depend on the

outputs of any other NOT gates. So, f may be decomposed as f(x) = g(¬h(x), x),
where I(g) = I(f) − 1 and I(h) = 0 (h is a monotone function).

Fix a chain Y = {y1 < y2 < . . . < yk} for which dY (f) = d(f). By mono-

tonicity of h, there is an 1 ≤ l ≤ k such that h outputs 0 on all vectors in

Y0 := {y1 < y2 < . . . < yl}, and outputs 1 on all remaining vectors in Y1 := Y \Y0.
Now let gi(x) := g(¬i, x) for i = 0, 1. Then I(gi) ≤ I(g) ≤ I(f) − 1, so by the

induction hypothesis, dX(gi) ≤ 2I(gi) − 1 for every chain X . In particular,

dY0(f) = dY0(g0) ≤ 2I(g0) − 1 ≤ 2I(f)−1 − 1 ,
dY1(f) = dY1(g1) ≤ 2I(g1) − 1 ≤ 2I(f)−1 − 1 .

It follows that d(f) = dY (f) ≤ dY0(f) + dY1(f) + 1 ≤ 2I(f) − 1. ⊓⊔

10.8 Lemma (Lower bound) d(f) ≥ 2I(f) − 1.

Proof. We have to prove that I(f) ≤ M(f) whereM(f) := ⌈log(d(f) + 1)⌉ is the
length of the binary code of d(f). We will do this by induction onM(f). The base
caseM(f) = 0 is again obvious, because then d(f) = 0, so f is monotone and

I(f) = 0.
For the induction step, suppose I(g) ≤ M(g) holds for all boolean functions g

such thatM(g) ≤ M(f) − 1. Let S be the set of all vectors x ∈ {0, 1}n
such that

dY (f) < 2M(f)−1
for every chain Y starting with x:

S = {x | dY (f) < 2M(f)−1
for any chain Y starting in x} .
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Fig. 10.2 Chain Y0 ends in x, and chain Y1 starts with x.

Note that the set S is upwards closed: if x ∈ S and x ≤ y, then y ∈ S. This holds
because each chain starting in y can be extended to a chain starting in x.

10.9 Claim For every chain Y ending in a vector outside the set S we also have

dY (f) < 2M(f)−1
.

Proof. Assume that there is a chain Y0 ending in a vector x ̸∈ S and such that

dY0(f) ≥ 2M(f)−1
(Fig. ??). The fact that x does not belong to S means that there

must be a chain Y1 starting in x for which dY1(f) ≥ 2M(f)−1
. But then the decrease

dY0∪Y1(f) of f on the combined chain Y0 ∪ Y1 is

dY0∪Y1(f) = dY0(f) + dY1(f) ≥ 2M(f) = 2⌈log(d(f)+1)⌉ > d(f),

contradicting the definition of d(f). ⊓⊔

Consider now two functions f0 and f1 defined as follows:

f0(x) =
{
f(x) if x ∈ S,

0 if x ̸∈ S,
and f1(x) =

{
1 if x ∈ S,

f(x) if x ̸∈ S.
(10.2)

10.10 Claim Both d(f0) and d(f1) are strictly smaller than 2M(f)−1
.

Proof. We show this for f0 (the argument for f1 is similar). Let Y be a chain for

which dY (f0) = d(f0). Let x be a vector which Y starts in and y be a vector which
Y ends in. If x ∈ S or y ̸∈ S, then d(f0) < 2M(f)−1

by Claim ?? and definition

of S. So, assume that x ̸∈ S and y ∈ S. Since the set S is upwards closed, some

initial part Y0 of the chain Y lies outside S and the remaining part Y1 lies in S. By
the definition of the function f0, it is constant 0 on Y0, and coincides with f on

Y1. By the definition of the set S, we have that the decrease of f0 on Y1 is smaller

than 2M(f)−1 − 1. Since f0(z) = 0 for all z ∈ Y0, there cannot be any additional

jump-down of f0 along the entire chain Y = Y0 ∪ Y1. ⊓⊔

Hence,
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M(fi) = ⌈log(d(fi) + 1)⌉ ≤ ⌈log 2M(f)−1⌉ = M(f) − 1.

By the induction hypothesis, I(fi) ≤ M(fi) ≤ M(f) − 1 for both i = 0, 1. It
therefore remains to show that

I(f) ≤ 1 + max
{
I(f0), I(f1)

}
. (10.3)

For this, we need one auxiliary result. A connector of two boolean functions f0(x)
and f1(x) of n variables is a boolean function g of n + 2 variables such that

g(0, 1, x) = f0(x) and g(1, 0, x) = f1(x).

10.11 Claim Every pair of functions f0(x), f1(x) has a connector g such that

I(g) ≤ max
{
I(f0), I(f1)

}
.

Proof. We argue by induction on r := max
{
I(f0), I(f1)

}
. If r = 0 then both

functions fi are monotone, and we can take

g(u, v, x) = (u ∧ f1) ∨ (v ∧ f0) .

For the induction step, let Ci(x) be a circuit with I(fi) negations computing fi(x).
Replacing the first NOT gate in Ci by a new variable ξ we obtain a circuit C ′

i(ξ, x)
on n+ 1 variables which contains one NOT gate fewer. Let f ′

i(ξ, x) be the function
computed by this circuit; hence, I(f ′

i) ≤ r − 1. Moreover, if hi(x) is the monotone

function computed immediately before the first NOT gate in Ci, then

f0(x) = f ′
0(¬h0(x), x) and f1(x) = f ′

1(¬h1(x), x) . (10.4)

By the induction hypothesis, there is a boolean function g′(u, v, ξ, x) (the connector
of the pair f ′

0, f
′
1) such that I(g′) ≤ max

{
I(f ′

0), I(f ′
1)
}

≤ r − 1,

g′(0, 1, ξ, x) = f ′
0(ξ, x) and g′(1, 0, ξ, x) = f ′

1(ξ, x) .

We now replace the variable ξ in g′(u, v, ξ, x) by the function

Z(u, v, x) := ¬
(
(u ∧ h1(x)) ∨ (v ∧ h0(x))

)
.

Since Z(0, 1, x) = ¬h0(x) and Z(1, 0, x) = ¬h1(x), (??) implies that the obtained

function g(u, v, x) is a connector of f0 and f1. Since the functions h0 and h1 are

monotone, we have I(g) ≤ 1 + I(g′) ≤ r, as desired. ⊓⊔

We now can complete the proof of Lemma ?? as follows. Let χS(x) be the

characteristic function of S, that is, χS(x) = 1 for x ∈ S, and χS(x) = 0 for x ̸∈ S.
Let g be a connector of f0 and f1 guaranteed by Claim ??. By the definition of the

functions f0 and f1, we then have that our original function f(x) can be computed

as

f(x) = g
(
¬χS(x), χS(x), x

)
.
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Indeed, if x ∈ S then f(x) = f0(x) = g(0, 1, x) = g
(
¬χS(x), χS(x), x

)
, and

similarly for all vectors x ̸∈ S. Since the set S is upwards closed, its characteristic

function χS(x) is monotone, and hence, requires no NOT gates. Thus, Claim ??
implies

I(f) ≤ 1 + I(g) ≤ 1 + max
{
I(f0), I(f1)

}
.

This completes the proof of (??), and thus the proof of Lemma ??. ⊓⊔

10.12 Remark (Nondeterministic circuits) A nondeterministic circuit is a circuit

C(x, y) whose input variables are partitioned into two groups: “actual” inputs

x1, . . . , xn, and “guess” inputs y1, . . . , ym. A circuit computes a boolean function

f(x) in a natural way: f(x) = 1 iff C(x, y) = 1 for at least one y ∈ {0, 1}m
.

Let I(f,m) denote the minimum number r such that f can be computed by a

nondeterministic circuit over {∧,∨,¬} with r negations and at most m guess

inputs. Nondeterministic circuits were (apparently) first introduced by Karchmer

and Wigderson (1993b), where several tight combinatorial characterizations of such
circuits are presented. Morizumi (2009b) extended Markov’s theorem by showing

(see Exercises ?? and ??) that

I(f,m) = ⌈log2(d(f)/2m + 1)⌉ .

10.13 Remark (Symmetric functions) For circuits computing symmetric boolean

functions, Tanaka, Nishino and Beals (1996) established the following structural

result. Let f be a symmetric boolean function of n variables. Suppose that d(f) = m,

where m = 2r − 1 for some integer r. For a ∈ {0, 1}n
, let df (a) denote the

maximum decrease of f along a chain ending in a; note that this number depends

only on the number of ones in a. Consider an arbitrary circuit G = (g1, g2, . . . , gt)
computing f and using r negations. For i = 1, . . . , r, let hi be the boolean function

computed at the input of the i-th NOT gate. Then, for every a ∈ {0, 1}n
, the 0-1

sequence (h1(a), . . . , hr(a)) is the binary representation of df (a).

10.3 Formulas require exponentially more NOT gates

We now consider formulas, that is, circuits with AND, OR and NOT gates whose

fanout in a circuit is 1. The only difference from the general circuits (over the same

basis) considered in the previous section is that now the underlying graph of a

circuit is a tree, not an arbitrary directed acyclic graph. It is intuitive that requiring

fanin 1 should restrict the power of circuits. And indeed, we will now show that

the minimal number of NOT gates in formulas must be exponentially larger than

in circuits.

Define the inversion complexity, IF (f), of a boolean function f in the class of

formulas as the minimum number of NOT gates contained in a formula computing f .
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By Markov’s theorem, the minimum number of NOT gates in a circuit for f is

about
* log d(f), where d(f) is the decrease of f . In the case of formulas we have:

10.14 Theorem (Nechiporuk 1962) For every boolean function f , we have

IF (f) = d(f) .

This result was apparently not known in the West, and it was independently

proved by Morizumi (2009). We again prove the lower and upper bounds on IF (f)
separately.

10.15 Lemma (Lower bound) IF (f) ≥ d(f).

Proof. Let C be a formula computing f , and let IF (C) be the number of NOT gates

in it. Fix a chain Y = {y1 < y2 < . . . < yk} for which dY (f) = d(f). Our goal
is to show that dY (f) ≤ IF (C). This follows by induction on the leafsize of C
using the following three inequalities: dY (f ∧ g) ≤ dY (f) + dY (g), dY (f ∨ g) ≤
dY (f) + dY (g) and dY (¬f) ≤ dY (f) + 1.

The first two inequalities are trivial because every jump-down position of f ∧ g
as well as for f ∨ g must be a jump-down position of at least one of the functions

f and g. To see the third inequality, observe that each jump-down position for

¬f is a jump-up position for f . Hence, dY (¬f) − dY (f) = f(yk) − f(y1), and
dY (¬f) ≤ dY (f) + 1 follows. ⊓⊔

10.16 Lemma (Upper bound) IF (f) ≤ d(f).

Proof. The original proof by Nechiporuk (1962) is somewhat complicated because

he describes an explicit formula. But, as observed by Morizumi 2009, one can also

argue by induction on d(f), as in the proof of Lemma ??. The base case d(f) = 0 is

trivial, since then f is monotone and IF (f) = 0.
For the induction step, suppose that d(f) ≥ 1, and IF (f ′) ≤ d(f ′) for all boolean

functions f ′
such that d(f ′) ≤ d(f) − 1. Let S be the set of all vectors x ∈ {0, 1}n

such that dY (f) = 0 for every chain Y starting with x:

S = {x | dY (f) = 0 for any chain Y starting in x} .

Note that the set S is upwards closed: if x ∈ S and x ≤ y then y ∈ S. This holds
because each chain starting in y can be extended to a chain starting in x.

As in the proof of Markov’s theorem, consider two functions f0 and f1 defined

by Eq. (??). Let also χS be the characteristic function of the set S itself, that is,

χS(x) = 1 for x ∈ S, and χS(x) = 0 for x ̸∈ S. It is easy to see that

f = f0 ∨ (f1 ∧ ¬χS) .

10.17 Claim d(f0) = d(χS) = 0 and d(f1) ≤ d(f) − 1.

*

As before, all logarithms are to the basis of two.
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Proof. Since the set S is upwards closed, its characteristic function χS is monotone,

implying that d(χS) = 0. That d(f0) = 0 follows from the fact that f0 cannot take

value 1 on a chain Y until Y enters the set S.
To show that d(f1) ≤ d(f) − 1, assume that d(f1) ≥ d(f). Since we only

count the number of changes of values of f on a chain from 1 to 0 (not from 0
to 1), the maximum d(f1) = maxX dX(f1) is achieved on a chain X ending in a

vector y such that f1(y) = 0. Since dY (f) = 0 for all chains Y starting with some

vector in S, there must be a chain X which ends in some vector y ̸∈ S and for

which dX(f1) ≥ d(f) holds. On the other hand, the fact that y is not in S implies

that there must be a chain Y starting in y such that dY (f) ≥ 1. But then for the

combined chain X ∪ Y we have that dX∪Y (f) = dX(f) + dY (f) ≥ d(f) + 1,
contradicting the definition of d(f). ⊓⊔

By Claim ?? and the induction hypothesis, we have that IF (f0) = 0, IF (χS) = 0
and IF (f1) ≤ d(f) − 1. Hence, the desired upper bound follows:

IF (f) ≤ IF (f0) + IF (f1) + IF (χS) + 1 ≤ d(f) . ⊓⊔

10.4 Fischer’s theorem

According to Markov’s theorem, every boolean function of n variables can be

computed by a circuit with at mostM(n) = ⌈log(n + 1)⌉ NOT gates. The next

important step was made by Fischer (1974): restricting the number of negations to

M(n) entails only a polynomial blowup in circuit size!

10.18 Theorem (Fischer 1974) If a function on n variables can be computed by a
circuit over {∧,∨,¬} of size t, then it can be computed by a circuit of size at most
2t+ O(n2 log2 n) using at most ⌈log(n+ 1)⌉ NOT gates.

Proof. It is easy to show that every circuit of size t can be transformed to a circuit

of size at most 2t such that all negations are placed only on the input variables.

Hence, it is enough to show how to compute the (multi-output) function

invn(x1, . . . , xn) := (¬x1, . . . ,¬xn)

by a circuit of sizeO(n2 log2 n) usingM(n) := ⌈log(n+1)⌉ negations; the function
invn is also known as an inverter .

We already know (see Eq. (??)) that, on inputs x ∈ {0, 1}n
with exactly k ones,

the negation ¬xi of its i-th bit can be computed as ¬xi = Thk(x− xi), where

Thk(x− xi) := Thk(x1, . . . , xi−1, xi+1, . . . , xn) .

Using this observation, we can also simulate the behavior of ¬xi on all inputs. For
each i = 1, 2, . . . , n consider the function
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fi(x) :=
n∧

k=1
(¬Thk(x) ∨ Thk(x− xi)) .

10.19 Claim For any x ∈ {0, 1}n
and any 1 ≤ i ≤ n, we have that fi(x) = ¬xi.

Proof. Take an arbitrary vector a ∈ {0, 1}n
. If ¬xi(a) = 1 then ai = 0, implying

that in this case Thk(a) = Thk(a− ai) for all k = 1, . . . , n, and hence, fi(a) = 1.
If ¬xi(a) = 0 then ai = 1. So, for k = |a|, we then have Thk(a) = 1 and

Thk(a− ai) = 0, implying that fi(a) = 0. ⊓⊔

It can be shown (wewill not do this) that all the functionsThk(x) andThk(x−xi)
(0 ≤ k ≤ n, 1 ≤ i ≤ n) can be computed by amonotone circuit of size O(n2 log2 n).
Hence, it remains to compute the function

¬T (x) :=
(
¬Th1(x),¬Th2(x), . . . ,¬Thn(x)

)
using at mostM(n) = ⌈log(n+ 1)⌉ negations. To do this, we first take a monotone

circuit C1(x) computing the function

T (x) :=
(
Th1(x),Th2(x), . . . ,Thn(x)

)
.

Observe that the outputs of this circuit belong to the set Asort of all inputs y ∈
{0, 1}n

whose bits are sorted in decreasing order y1 ≥ y2 ≥ . . . ≥ yn. That is,

Asort consists of n + 1 strings of the form 1i0n−i
, i = 0, 1, . . . , n. Using only

M(n) negations it is possible to construct a circuit C2(y) of size O(n) which

computes invn(y) correctly on all inputs in Asort (Exercise ??). Thus, the circuit
C(x) = C2(C1(x)) computes ¬T (x), as desired. ⊓⊔

10.20 Remark The additive term O(n2 log2 n) in Theorem ?? has been subsequently

improved. Namely, Tanaka and Nishino (1994) proved that invn can be computed

by a circuit with r = ⌈log2(n+ 1)⌉ NOT gates and using at most O(n log2 n) gates
in total; the depth of the constructed circuit is O(log2 n). Later, Beals et al. (1998)
improved the size to O(n logn); the depth of their circuit is O(logn). By increasing
the depth to O(log1+o(1) n) and allowing O(log1+o(1) n) negations, Morizumi and

Suzuki (2010) were able to reduce the size to O(n).

10.5 How many negations are enough to prove P ̸= NP?

In order to prove the well known conjecture that P ̸= NP, it would be enough to

prove that some functions f : {0, 1}n → {0, 1}n
in NP cannot be computed by

circuits of polynomial (in n) size. By the results of Markov and Fischer, it would be

enough to prove a “weaker” result. Namely, let
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P
(r)

= class of all sequences of functions f : {0, 1}n → {0, 1}n
computable by

polynomial-size circuits with at most r NOT gates.

Let CLIQUE be the monotone boolean function of

(
n
2
)
variables which accepts a

given input graph onn vertices iff it contains a clique on n/2 vertices (see Section ??).
Since P ̸= NP if CLIQUE ̸∈ P, Markov–Fischer results imply that:

If CLIQUE ̸∈ P
(r)

for r = ⌈log(n+ 1)⌉, then P ̸= NP.

The breakthrough result of Razborov (1985a), see Theorem ??, states that

CLIQUE ̸∈ P
(r)

for r = 0.

Amano and Maruoka (2005) showed that essentially the same argument yields a

stronger result:

CLIQUE ̸∈ P
(r)

even for r = (1/6) log logn.

At first glance, this development looks like a promising way to prove that P ̸= NP:
just extend the bound to circuits with a larger and larger number r of allowed
NOT gates. But how large must the number r of allowed NOT gates be in order to

yield the conclusion P ̸= NP? This question motivates the following parameter for

functions f :
R(f) = min{r | f ̸∈ P

(r)
implies f ̸∈ P} .

By the results of Markov and Fischer, for any f , we have that

0 ≤ R(f) ≤ ⌈log(n+ 1)⌉

holds for every function f of n variables. This parameter is most interesting for

monotone functions since they need no NOT gates at all, if we don’t care about

the circuit size. We already know that R(f) = 0 for a large class of monotone

boolean functions f , namely for slice functions. But no specific slice function f
with f ̸∈ P

(0)
is known.

On the other hand, if it were the case that R(f) ≤ (1/6) log logn for every

monotone function f , then we would already have that CLIQUE ̸∈ P, and hence,

that P ̸= NP. Unfortunately, it was shown in (Jukna, 2004) that there are monotone

functions f in P for which R(f) is near to Markov’s logn-border.

10.21 Theorem There is an explicit monotone function f : {0, 1}n → {0, 1}n such
that f ∈ P but f ̸∈ P

(r) unless r ≥ logn− O(log logn).

Proof. The proof idea is to take a monotone boolean function g : {0, 1}n → {0, 1}
which is feasible (that is, belongs to P), and consider a monotone multi-output

function f : {0, 1}kn → {0, 1}k
computing k = 2r

copies of g on disjoint sets of
variables. We call such a function f a k-fold extension of g. We then show that, if

g requires monotone circuits of exponential size, then f requires circuits of super-

polynomial size, even if up to r NOT gates are allowed.
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10.22 Claim Let f be a monotone boolean function, and k be a power of 2. If the
k-fold extension of f can be computed by a circuit with log k NOT gates, then f
can be computed by a monotone circuit of the same size.

Proof. It is enough to prove the lemma for k = 2 (we can then iterate the argument).

Thus, take a circuit with one NOT gate computing two copies f0 = f(Y0) and
f1 = f(Y1) of the monotone function f(X) on disjoint sets of variables. Let g be
the monotone(!) boolean function computed at the input to the (unique) NOT gate.

We have only two possibilities: either some minterm of g lies entirely in Y1, or
not. In the first case we assign the constant 1 to all the variables in Y1, whereas in
the second case we assign the constant 0 to all the variables in Y0. As the function
g is monotone, in both cases it turns into a constant function (1 in the first case,

and 0 in the second), and the subsequent NOT gate can be eliminated. But since

Y0 ∩Y1 = ∅, the setting Yϵ 7→ ϵ does not affect the function f1−ϵ. Hence, we obtain

a circuit which contains no NOT gates and computes either f0 or f1, and hence,

also f(X) after renaming the input variables. ⊓⊔

To finish the proof of Theorem ??, we will make use of an explicit monotone

boolean clique-like function Tm in m variables considered by Tardos (1987). In

Section ?? we have shown (see Theorem ??) that this function is feasible—can be

computed by a non-monotone circuit of sizemO(1)
—but every monotone circuit

computing it requires size is exponential in Ω(m1/16).
Let n = km where k = 2r

and r = ⌊logn − 32 log logn⌋; hence, k is about

n/(logn)32
. Consider the k-fold extension fn of Tm. Then fn can be computed by

a (non-monotone) circuit of size at most k ·mO(1)
, which is, of course, polynomial

in n. Hence, fn ∈ P. On the other hand, Claim ?? and Theorem ?? imply that

every circuit with at most r NOT gates computing fn must have size exponential

in m1/16 ≈ (n/k)1/16 = (logn)32/16 = (logn)2
. Thus, fn ̸∈ P

(r)
unless r ≥

logn− 32 log logn. ⊓⊔

The definition of Tardos’ function Tm is somewhat complicated. Much more

explicit is the logical permanent function fm(x) =
∨

σ∈Sm

∧m
i=1 xi,σ(i) of m2

variables, where Sm is the set of allm! permutations of 1, 2, . . . ,m. This function

also belongs to P, but requires monotone circuits of sizemΩ(log m)
(see Theorem ??).

For the k-fold extensions fn of this function the same argument yields R(fn) =
Ω(logn).

The message of Theorem ?? is that, in the context of the P vs. NP problem, it is

important to understand the role of NOT gates when their number r is very close

indeed to the Markov–Fisher upper bound of logn.
The function fn in Theorem ?? has many output bits. It would be interesting to

prove a similar result for a boolean (that is, single output) function.

10.23 Research Problem
Find an explicit sequence of monotone boolean (one-output) functions fn such that

R(fn) = Ω(logn).
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Exercises

10.1 Show that I(invn) = ⌈log2(n+ 1)⌉.

10.2 Show that I(¬⊕n) = ⌊log2(n+ 1)⌋, where ⊕n(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn.

10.3 Let n = 2r − 1, and consider the set Asort of all n + 1 vectors x ∈ {0, 1}n

whose bits are sorted in decreasing order x1 ≥ x2 ≥ . . . ≥ xn. Construct a circuit

Cn of size O(n) which has at most r NOT gates and computes the inverter invn(x)
for all inputs x ∈ Asort.

Hint: Let x = (x1, . . . , xn) ∈ Asort. Take the middle bit xm (m = n/2) and show that the

output of Cn can be obtained from the output of Cn/2 and the output of ¬xm. For this, observe

that ¬xm = 1 implies ¬xj = ¬xm for all j > m, whereas ¬xm = 0 implies ¬xj = ¬xm for all

j < m.

10.4 Let, as before, I(f,m) denote the minimum number r such that f can be

computed by a nondeterministic circuit over {∧,∨,¬} with r negations and at most

m guess inputs (see Remark ??). Prove that

I(f,m) ≥ ⌈log2(d(f)/2m + 1)⌉ .

Hint: Induction on m, the basis case being Markov’s theorem. For the induction step, let C(x, y)
be a nondeterministic circuit with m guess bits y = (y1, . . . , ym) and r negations computing f .
Take a chain X = {x1 < x2 < . . . , xk} with dX(f) = d(f), and let I ⊆ {1, . . . , k} be the

set of jump-down positions of f along this chain. For each i ∈ I there must exist a setting

yi ∈ {0, 1}m
of values to the guess bits such that C(xi, yi) = 1, whereas C(xi+1, y) = 0 for all

settings y. Look at the last, m-th position yi
m of vectors yi

, i ∈ I . If yi
m = 0 for at least half of

these vectors, then fix the last guess bit of C(x, y) to 0; otherwise, fix it to 1. Let f ′
be a boolean

function computed by the resulting nondeterministic circuit with m − 1 guessing bits. Argue that

d(f ′) ≥ df ′ (X) ≥ ⌈d(f)/2⌉, and use the induction hypothesis.

10.5 Prove that I(f,m) ≤ max{I(f) −m, 0} + 1 ≤ ⌈log2(d(f)/2m + 1)⌉ + 1.
Hint: By Markov’s theorem, there is a deterministic circuit C which computes f and contains

I(f) NOT gates N1, . . . , NI(f). Let ik and ok be the input and the output of Nk , respectively.

Let z be the output of C . Use m nondeterministic guess inputs y1, . . . , ym to guess the outputs

of the first m NOT gates and one additional NOT gate to guarantee correctness of the guess.

Compute z ∧ (∧m
k=1(ik ∨ ok)) ∧ (¬ ∨m

k=1 (ik ∨ ok)) as the output of the new (nondeterministic)

circuit. Show that C′(x, y) ̸= 0 only if ik = ¬yk for all k = 1, . . . , m. In this case, z = f since

ok = yk = ¬ik for all k.

Chapter Notes

Besides the results described above, the question about the power of NOT gates was

considered by many authors. In particular, Okolnishnikova (1982) and Ajtai and

Gurevich (1987) showed that there exists monotone functions that can be computed

by polynomial-size, constant-depth circuits with unbounded-fanin gates, but cannot
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be computed by monotone, polynomial-size, constant depth circuits. Moreover, it

was shown by Santha and Wilson (1993) that in the class of constant-depth circuits

we need much more than ⌈log(n+ 1)⌉ negations: there is a (multi-output) function

computable in constant depth that cannot be computed in constant depth with

o(n/ log1+ϵ n) negations. (Note that this result does not contradict with theMarkov–

Fischer upper bound: their simulation requires logarithmic depth.) Another line

of research was to restrict the use of NOT gates. For circuits of logarithmic depth,

a lower bound R(f) = Ω(n) was proved by Raz and Wigderson (1989) under the

restriction that all the negations are placed on the input variables: there is an explicit

monotone function (corresponding to the connectivity problem for graphs) that can

be computed by polynomial-size, depth O(log2 n) circuits, but cannot be computed

by polynomial-size, depth k logn circuits using only o(n/2k) negated variables.



Part IV

Bounded Depth Circuits





11. Depth-3 Circuits

We consider boolean circuits with unbounded-fanin AND and OR gates. Inputs are

variables and their negations. Conjunctive and disjunctive normal forms are such

circuits of depth two, and exponential lower bounds for them are easy to prove. For

example, any depth-2 circuit computing the parity function x1 ⊕x2 ⊕· · ·⊕xn must

have 2n−1
gates. The situation with depth-3 circuits is muchmore complicated—this

is the first nontrivial case.

11.1 Why is depth 3 interesting?

A Π3 circuit is a circuit of depth 3 whose gates are arranged in three layers: AND

gate at the top of the circuit (this is the output gate), OR gates on the next (middle)

layer, and AND gates on the bottom (next to the inputs) layer (see Fig. ??). Inputs
are variables and their negations. As before, a circuit is a formula if each its gate

has fanout at most 1. Thus, Π3 formulas are just ANDs of DNFs. A Σ3 circuit is
defined dually by interchanging the OR and AND gates. Thus, a Σ3 formula is just

an OR of DNFs. The size of a circuit is the total number of gates in it.

There are several methods for proving strong lower bounds for depth-3 circuits,

and even for depth-d circuits with an arbitrary constant d. We will discuss these

methods in this and the next chapter. For depth d the obtained lower bounds are

exponential inn1/(d−1)
; for depth 3 this is exponential in

√
n. However, these results

do not solve the problem completely, because most boolean functions require much

larger circuits.

Namely, let Cd(n) be the Shannon function for depth-d circuits, that is, the

smallest number t such that every boolean function can be computed by a depth-d
circuit containing t gates. Let also Ld(n) be the Shannon function for depth-d
formulas; here all gates have fanout at most 1, and we count the leaves, not the

gates. It can be easily shown that L2(n) = n2n
(see Exercise ??). Lupanov (1961,

1977) proved that, for boolean functions of maximal circuit complexity, depth-3
circuits are already as powerful as circuits of any fixed depth: for d ≥ 3 we have

297
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∧

∨

∧

x1 x2

∧

x1 x2

∧

x3 x4

∧

x3 x4

∨

∧

x1 x2

∧

x1 x2

∧

x3 x4

∧

x3 x4

Fig. 11.1 A Π3 formula for Parity x1 ⊕ x2 ⊕ x3 ⊕ x4 of n = 4 variables.

Ld(n) ∼ L3(n) ∼ 2n/ logn and Cd(n) ∼ C3(n) ∼ 2n/n .

Thus, there exist boolean functions that require far more than 2
√

n
gates in depth-d

circuits, and it would be interesting to exhibit an explicit function requiring more

than this number of gates.

Even to find an explicit boolean function f of n variables such that any depth-3
circuit for f requires 2g(n)

gates, for some g(n) = ω(n/ log logn), is an important

open problem. Namely, this would give the first super-linear lower bound on the

size of log-depth circuits with NOT and fanin-2 AND and OR gates, thus resolving

an old problem in circuit complexity. We explain this implication next.

A binary circuit is a circuit in which all boolean functions of at most two vari-

ables can be used as gates. Let NC1
lin denote

*
the set of all boolean functions

fn(x1, . . . , xn) for which there exist constants c1, c2 > 0 such that fn can be

computed by a binary circuit of depth c1 logn and size c2n.
Fix an arbitrarily small constant ϵ > 0, and let Σ3(fn) denote the smallest

number t such that fn can be written as a sum of t CNFs each with at most 2nϵ

clauses. Note that the top gate is now a sum gate (over the reals), not just an OR

gate. Thus, what we obtain is a restricted version of a Σ3 circuit: the circuit is a

formula (all gates have fanout 1) and, for every input vector, at most one AND gate

on the middle layer is allowed to output 1. FormallyΣ3(fn) depends on ϵ; however,
we suppress this for notational convenience.

An important consequence of Lemma ?? is that any log-depth circuit of linear

size can be reduced to a Σ3 circuit of moderate fanin of middle layer gates and not

too large fanin of the top gate.

11.1 Lemma (Valiant 1983) If fn ∈ NC1
lin then logΣ3(fn) = O(n/ log logn).

Proof. The idea is to decompose a given circuit into subcircuits of depth d ≤ ϵ logn;
by Lemma ??, this can be done by removing a relatively small number of wires.

*

Usually, the nonuniform class NCk
denotes the class of all boolean functions computable by

binary circuits of depth d = O(logk n) and polynomial size. Thus, superscript “1” tells us that we
are dealing with log-depth circuits, and subscript “lin” tells that we only allow linear size. The

acronym “NC” stands for “Nick’s Class” and was suggested by Stephen Cook after Nick Pippenger

for his research on circuits with polylogarithmic depth and polynomial size.
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Since each gate has fanin at most 2, each subcircuit can depend on at most 2d = nϵ

its inputs. We can thus write each subcircuit as a CNF with at most 2nϵ

clauses. It

then remains to combine these CNFs into a depth-3 formula computing the original

function.

To be more precise, take a circuit C of depth c1 logn with c2n fanin-2 gates.

Hence, the circuit has at most S ≤ 2c2n wires. We are going to apply Lemma ??
which states the following. Let d = 2k

and 1 ≤ r ≤ k be integers. In any directed

graph with S edges and depth d it is possible to remove rS/k edges so that the

depth of the resulting graph does not exceed d/2r
.

Now apply this lemma with k about log(c1 logn) and r about log(c1/ϵ) (a

constant). This gives us a set E with |E| ≤ Sr/k = O(n/ log logn) wires whose
removal leaves us with a circuit of depth at most d = 2−r · c1 logn = ϵ logn.

Take a set of new variables y = (ye | e ∈ E), one for each cut wire. For each

such wire e = (u, v) ∈ E, letCe be the subcircuit ofC whose output gate is u. Each
subcircuit Ce depends on some x-variables (inputs of the original circuit) and some

y-variables (variables attached to removed wires). Moreover, each subcircuit Ce

depends on at most 2d = nϵ
variables because each of these subcircuits has depth

at most ϵ logn, and each gate has fanin at most 2. Hence, the test ye = Ce(x, y)
can be written as a CNF ϕe(x, y) with at most 22d = 2nϵ

clauses. Consider the CNF

ψ(x, y) = ϕ0(x, y) ∧
∧

e∈E

ϕe(x, y) ,

where ϕ0 is the CNF of the last subcircuit, rooted in the output gate of the whole

circuit. The CNF ψ has (|E| + 1)2nϵ

clauses, and for every assignment α = (αe |
e ∈ E) in {0, 1}|E|

, we have that ψ(x, α) = 1 iff C(x) = 1 and the computation

of C on input x is consistent with the values assigned to cut wires by α. Since the
computation of C on a given vector x cannot be consistent with two assignments

α1 ̸= α2, the function computed by our circuit C can be written as a sum C(x) =∑
α ψ(x, α), over allα ∈ {0, 1}|E|

, of s = 2|E|
CNFs, eachwith atmost (|E|+1)2nϵ

clauses. ⊓⊔

11.2 Research Problem
Exhibit an explicit boolean function of n variables requiring depth-3 circuits of size

2ω(n/ log log n)
.

The best we can do so far are lower bounds of the form 2Ω(
√

n)
. The only known

strongly exponential lower bounds were obtained by Paturi, Saks and Zane (2000)

under the restriction that the bottom OR gates have fanin 2, that is, when the circuit

is just an OR of 2-CNFs. Currently known lower-bound techniques seem incapable

of providing a lower bound better than 2min{k,n/k}
on the number of gates, where

k is the bottom fanin.
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11.2 An easy lower bound for Parity

A binary vector is odd if it has an odd number of 1s; otherwise the vector is even.
A parity function is a boolean function x1 ⊕ x2 ⊕ · · · ⊕ xn which accepts all odd

vectors and rejects all even vectors. Recall that a formula is a circuit in which all

gates have fanout at most 1. The top fanin is the fanin of the output gate.

11.3 Theorem (Tsai 2001) Every Π3 formula of top fanin t computing x1 ⊕ x2 ⊕
· · · ⊕ xn requires at least t2(n−1)/t AND gates on the bottom layer.

Proof. Let si be the fanin of the i-th OR gate on the middle layer. The ANDs

at bottom layer can be labeled with (i, j) for 1 ≤ i ≤ t and 1 ≤ j ≤ si (see

Fig. ??). Let hi,j denote the (i, j)-th AND. Then the circuit computes the function∧t
i=1
∨si

j=1 hi,j . By the distributive rule x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), this is an
OR of ANDs of the form H = h1,j1 ∧ h2,j2 ∧ · · · ∧ ht,jt . We call these “big” ANDs

H the monomials produced by the circuit. We claim that: each monomial H accepts
at most one odd vector. To show this, say that a variable xi is seen by a gate, if either

xi or xi is an input to this gate.

Case 1: Each of n variables is seen by at least one of h1,j1 , h2,j2 , . . . , ht,jt
. In this

case,H is a (possibly inconsistent) product of all n variables, and hence, can accept

at most one vector.

Case 2: Some variable xi is seen by none of the gates h1,j1 , h2,j2 , . . . , ht,jt
. We

claim that in this case H−1(1) = ∅. Indeed, if the set H−1(1) of accepted inputs

is nonempty, that is, if the monomial H contains no variable together with its

negation, then H−1(1) must contain a pair of two vectors that only differ in the

i-th position. But this is impossible, since one of these two vectors must be even,

and the circuit would wrongly accept it.

Hence, we have s1s2 · · · st monomials H , and each of them can accept at most

one odd vector. Since we have 2n−1
odd vectors, this implies s1s2 · · · st ≥ 2n−1

.

Since our circuit is a formula, the total number of AND gates on the bottom layer is

s1 + · · · + st. Using the arithmetic-geometric mean inequality, we can conclude

that s1 + · · · + st ≥ t(s1s2 · · · st)1/t ≥ t2(n−1)/t
. ⊓⊔

11.3 The method of finite limits

The above argument only gives nontrivial lower bounds for circuits with small top

fanin, much smaller than n. We now describe another, less-trivial argument which

works for circuits with arbitrary top fanin. This approach, suggested by Håstad,

Jukna and Pudlák (1995), is based on so-called “finite limits”.

11.4 Definition (Finite limits) A vector y ∈ {0, 1}n
is a k-limit for a set of vectors

B ⊆ {0, 1}n
if for every k-element subset S ⊆ {1, . . . , n} of positions there exists

a vector x ∈ B such that
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y ̸= x but yi = xi for all i ∈ S.

This concept, suggested by Sipser (1985), captures the following “information

bottleneck”: if y does not belong toB but is a k-limit forB then the fact that y ̸∈ B
cannot be detected by looking at k or fewer bits of y. If a k-limit y for B satisfies

the stronger condition

y ̸= x and y ≤ x but yi = xi for all i ∈ S,

then we call y a lower k-limit for B.

The following lemma reduces the lower bounds problem for depth-3 circuits to a

purely combinatorial problem about finite limits. We say that a circuit C separates
a pair A,B ⊆ {0, 1}n

, A ∩B = ∅ if

C(x) =
{

1 for x ∈ A,

0 for x ∈ B.

We also say that a circuit has bottom neg-fanin k if each gate on the bottom (next to

the inputs) level at most k negated input-variables as inputs; the total number of

inputs to the gate may be arbitrary.

11.5 Lemma (Limits and circuit size) If every 1/ℓ fraction of vectors inB has a lower
k-limit in A, then every Π3 circuit of bottom neg-fanin k separating (A,B) must
have top fanin larger than ℓ.

Proof. Suppose, for the sake of contradiction, that (A,B) can still be separated by

aΠ3 circuit of bottom neg-fanin and top fanin ℓ. Since the last (top) gate is an AND

gate, some of the OR gates g on the middle layer must separate a pair (A,B′) for
some B′ ⊆ B of size |B′| ≥ |B|/ℓ. By our assumption, the set A must contain a

vector a which is a lower k-limit for the set B′
. Hence,

g(a) = 1, but g(b) = 0 for all b ∈ B′
.

To obtain the desired contradiction, we will show that the gate g, and hence, the

whole circuit C , is forced to (incorrectly) reject the limit a.
Take an arbitrary AND gate h on the bottom layer feeding in g, and let S be the

corresponding set of negated input variables to h:

h(x) =
∧
i∈S

xi ∧
∧
j∈T

xj .

Since |S| ≤ k and since a is a lower k-limit for B′
, we know that there must exist

a vector b = bS in B′
such that a ≤ b and ai = bi for all i ∈ S. Since g is an OR

gate and since g must reject all vectors in B′
, we also know that h(b) = 0. If some

negated variable feeding into h computes 0 on b, then it does the same on a (since
a coincides with b on all positions in S), and hence h(a) = 0. Otherwise, the 0
is produced on b by some non-negated variable. Since a ≤ b, this variable must
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produce 0 on a as well, and hence h(a) = 0. Since this holds for every AND gate h
feeding into the OR gate g, this implies that the gate g must (incorrectly) reject a, a
contradiction ⊓⊔

In order to show that a given boolean function f cannot be computed by aΠ3
circuit with fewer than ℓ gates, we can now argue as follows.

1. Assume that f can be computed by such a circuit.

2. Assign some variables of f to constants in order to reduce the bottom fanin of

the circuit to k.
3. Choose appropriate subsetsA ⊆ f−1(1) andB ⊆ f−1(0), and show that every

subset B′ ⊆ B of size |B′| ≥ |B|/ℓ has a lower k-limit y ∈ A.
4. Apply Lemma ?? to get a contradiction.

The bottom fanin can be reduced using the following simple fact.

11.6 Proposition Let F be a family of subsets of [n], each of cardinality more than k.
If

|F| ≤
( n
m

)k/2
(11.1)

then some subset T of [n] of size |T | = n−m intersects all members of F .

Proof. We construct the desired set T via the following “greedy” procedure. Since

each set in F has more than k elements, and since we only have n elements in

total, at least one element x1 must belong to at least k/n fraction of sets in F .

Include such an element x1 in T , remove all sets from F containing x1 (hence, at

most a (1 − k/n) fraction of sets in F remains), and repeat the procedure with the

remaining sub-family of F , etc. Our goal is to show that, if the number |F| of sets
in the original family F satisfied (??), then after n−m steps all the sets of F will

be removed.

The sub-family resulting after n−m steps has at most α|F| sets, where

α =
(

1 − k

n

)(
1 − k

n− 1

)
· · ·
(

1 − k

m+ 1

)
.

Using the estimate 1 + x ≤ ex
and known estimatesHn = lnn+ γn on harmonic

series Hn = 1 + 1/2 + /3 + · · · + 1/n with
1
2 < γn <

2
3 , we obtain that

α ≤ exp
(

− k

n
− k

n− 1 − · · · − k

m+ 1

)
= e−k(Hn−Hm) ≤ e−k(ln n−ln m−1/6)

≤
( n

2m

)−k

≤
( n
m

)−k/2
.

Thus, after n−m steps no sets will remain, as desired. ⊓⊔
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Given a Π3 circuit we will want to set a small subset of the variables to 1 so

that the resulting circuit has neg-fanin k. We will use Proposition ?? to find which

variables to set to 1.
The next task—forcing a k-limit—depends on which boolean function we are

dealing with. To demonstrate how this can be done, let us consider the Majority

function Majn(x1, . . . , xn), which accepts an input vector x iff it contains at least

as many 1s as 0s.

11.4 A lower bound for Majority

To handle the case of the majority function, we need the following “limit lemma”

for threshold functions.

11.7 Lemma LetB ⊆ {0, 1}n be a set of vectors, each with exactly r ones. If |B| > kr

then there is a lower k-limit y for B with fewer than r ones.

Proof. We use induction on the number r of ones in vectors of B. If r = 1 and

|B| ≥ k + 1 then 0 = (0, . . . , 0) is the desired k-limit for B. Suppose now that

the lemma holds for all r′ ≤ r − 1 and prove it for r. So, take a set B of |B| > kr

vectors each with r ones. If 0 is a k-limit for B, then we are done.

Otherwise, by the definition of a k-limit, there must be a set of k coordinates

such that every vector in B has at least one 1 among these coordinates. Hence, at

least a 1/k fraction of vectors in B must have a 1 in some, say i-th, coordinate.
Replace in all these vectors the i-th 1 by 0, and let B′

be the resulting set of vectors.

Since each vector in B has exactly r − 1 ones and we have |B′| ≥ |B|/k > kr−1

vectors in total, the induction hypothesis gives us a vector y with fewer than r − 1
ones which is a lower k-limit for B′

. The i-th coordinate of y is 0. Replacing this
coordinate by 1 we obtain a vector y′

with at most r − 1 ones; y′
is the desired

lower k-limit for B. ⊓⊔

11.8 Theorem (Håstad–Jukna–Pudlák 1995) Any depth-3 circuit computing the ma-
jority function Majn has size at least 2Ω(

√
n).

Proof. Let ℓ be the minimal size of a depth-3 circuit computing ¬Majn, the negation
of majority, and hence, the minimal size of a depth-3 circuit computing Majn itself.

Since ¬Majn is self-dual (that is, complementing the output and all inputs does not

change the function), we can w.l.o.g. assume that we have a Π3 circuit.

Let k ≤ n and r ≤ n/2 be parameters (to be specified later). Setm := n/2 + r
and assume that the size ℓ of our circuit satisfies the inequality

ℓ ≤
( n
m

)k/2
. (11.2)

For each bottom AND gate that has ≥ k + 1 negated variables, that set of variables

will be a set in the family F . Since there are at most ℓ such gates, |F| ≤ ℓ. Hence, by
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Proposition ??, there will be |T | = n−m variables that intersect all the members

of F . If we set all the variables in T to 1, this will kill off (evaluate to 0) all bottom
AND gates that had ≥ k + 1 negated variables. So, the resulting Π3 circuit has

bottom neg-fanin at most k (that is, at most k negated variables enter each bottom

AND gate). This circuit computes a boolean function f : {0, 1}m → {0, 1} of m
variables such that f(x) = 1 iff x has fewer than n/2 − (n−m) = r ones. Hence,
the new circuit separates the pair (A,B) of sets

A = {all vectors in {0, 1}m
with fewer than r ones}

and

B = {all vectors in {0, 1}m
with precisely r ones} .

Since the new circuit has size at most ℓ and its bottom neg-fanin is at most k,
Lemma ?? implies that no 1/ℓ fraction of vectors in B can have a lower k-limit in

A. Together with Lemma ??, this implies that |B|/ℓ =
(

m
r

)
/ℓ cannot be larger than

kr
. Hence,

ℓ ≥
(
m

r

)
· k−r ≥

(m
kr

)r

.

By our assumption (??), this lower bound holds for any parameters k, r andm =
n/2 + r satisfying (m

kr

)r

≤
( n
m

)k/2
. (11.3)

To ensure this, we can take, say, k = 2
√
m and r =

√
m/4. Under this choice, (??)

is fulfilled, and we obtain the desired lower bound

ℓ ≥
(m
kr

)r

= 2Ω(r) = 2Ω(
√

n) . ⊓⊔

11.9 Remark It would be interesting to extend the lower bounds argument based on

finite limits to circuits of larger depths. For this, however, we need stronger “limit

lemmas” than, say, Lemma ??. To see the difficulty, recall that in the case of depth-3
circuits it was enough to show (see Lemma ??) that every sufficiently large subset

B of f−1(1) has a k-limit in the entire set f−1(0) of rejected input vectors. In the

case of depth-4 circuits we need a stronger statement that every sufficiently large

subset B of f−1(1) has a k-limit in every sufficiently large subset A of f−1(0).

11.5 NP ̸= co-NP for depth-3 circuits

In this section we will exhibit a boolean function f of n variables such that f has a

Σ3 circuit of size O(n) but its complement ¬f requires Σ3 circuits of size 2Ω(
√

n)
.

Since Σ3 circuits have an OR gate on the top, they constitute a nondeterministic

model of computation: guess a CNF and evaluate it. For an added thrill, we can

consider the “depth-3 version” of the class NP to consist of all boolean functions
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computable by Σ3 circuits of polynomial size. In these terms, we are going to prove

that NP ̸= co-NP in the class of depth-3 circuits.

Note that we cannot take the majority function Majn for this purpose just

because it is self-dual:

¬Majn(¬x1, . . . ,¬xn) = Majn(x1, . . . , xn) .

Hence, by Theorem ??, both Majn and ¬Majn require Σ3 circuits of exponential

size. We therefore must use another function.

So, let fs,m be the boolean function with n = 2sm variables defined by

fs,m(x, y) =
s∨

i=1

m∧
j=1

(¬xi,j ∨ ¬yi,j) . (11.4)

This is an important function, known as the Iterated Disjointness function. function.
The function takes two sequences x = (x1, . . . , xs) and y = (y1, . . . , ys) of subsets
of [m] = {1, . . . ,m}, and accepts the pair (x, y) iff xi ∩ yi = ∅ for at least one

i ∈ [s].
It is clear (from its definition) that fs,m can be computed by a Σ3 circuit of size

1 + s(m+ 1) = O(n). We shall show that for s = m =
√
n, this function requires

Π3 circuits of size 2Ω(
√

n)
, implying that any Σ3 circuit for its negation ¬fs,m

requires this size.

11.10 Theorem (Håstad–Jukna–Pudlák 1995)AnyΠ3 circuit computing S√
n,

√
n has

size at least 2Ω(
√

n).

By a result of Klawe et al. (1984), the function S√
n,

√
n has Π3 circuits of size

2O(
√

n)
, thus the bound is optimal.

We first prove a lower bound for the subfunction gs,m(x) = fs,m(x, 1) of

fs,m(x, y) obtained by setting all y-variables to 1.

11.11 Claim If gs,m(x) =
∨s

i=1
∧m

j=1 ¬xi,j is computed by a Π3 circuit of size ℓ
and bottom neg-fanin k, then ℓ ≥ (m/k)s

.

Proof. Any circuit for gs,m must separate the pair (A,B) where A ⊆ {0, 1}sm

is the set of all vectors with at most s − 1 ones and B is the set of ms
vectors

with exactly s ones killing all ANDs in f . Now assume that ℓ < (m/k)s
. Then, by

Lemma ??, no subset B′ ⊆ B of size |B′| ≥ |B|/ℓ > ms/(m/k)s = ks
can have a

lower k-limit in A, a contradiction with Lemma ??. ⊓⊔

The theorem now follows from the following claim by taking s = m =
√
n and

k =
√
n/2.

11.12 Claim For any k ≤ sm, any Π3 circuit computing fs,m has size at least

min
{

2k, (m/k)s
}
.
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Proof. Take a Π3 circuit computing fs,m(x, y); let ℓ be its size, and assume that

ℓ ≤ 2k
. We claim that then there exists a setting of constants to variables such that

the resulting circuit has bottom fanin k and computes fs,m. Together with Claim ??,
this claim implies that either ℓ ≥ 2k

or ℓ ≥ (m/k)s
, and we are done. So it remains

to prove the claim.

The most natural way is to randomly set one variable from each pair xi,j , yi,j to

1. Any such setting will leave us with a circuit computing gs,m. It remains therefore

to show that at least one of such settings will leave no bottom AND gate with more

than k negated inputs.

If a bottom AND gate contains both xi,j and yi,j negatively for some i, j then it

is always reduced to 0. Otherwise, such an AND gate with > k negated inputs is

not reduced to 0 with probability ≤ 2−(k+1)
. Since we have at most ℓ ≤ 2k

such

AND gates, the probability that some of them will not be reduced to 0 does not

exceed ℓ · 2−(k+1) ≤ 1/2. This, in particular, means that such a setting of constants

exists. ⊓⊔

11.13 Remark Note that every Π3 circuit is also a Σ4 circuit (with the top OR

gate missing). The tradeoff between Σ3 and Σ4 circuits was proved earlier by

Håstad (1989), who gave a lower bound 2Ω(n1/6/
√

log n)
for the size of Σ3 circuits

computing a function which has a Σ4 circuit of size O(n). A tradeoff between Σ3
andΠ3 formulas was established by Shumilina (1987) using the threshold-2 function

Thn
2 . This function has aΣ3 formula of leafsize (number of input literals) O(n logn)

(see Exercise ??), but requiresΠ3 formulas of leafsize Ω(n3/2). Actually, Shumilina

(1987) established an exact complexity of Thn
2 in the class ofΠ3 formulas. Namely,

the minimum leafsize of a Π3 formula computing Thn
2 is 2n(k − 1) +m(n− k2)

if n ≤ km, and is 2n(m − 1) − k(m2 − n) if n ≥ km, where k = ⌊
√
n⌋ and

m = ⌈
√
n⌉.

11.14 Remark Recently, Razborov and Sherstov (2010) showed that the Iterated

Disjointness function (??) is hard in yet another respect: if A = (ax,y) in an n× n
±1 matrix with n = m3

and ax,y = 1 − 2 · fm,m2(x, y), then A has signum rank

2Ω(n1/3)
(cf. Section ??). Recall that the signum rank of a real matrix A with no

zero entries is the least rank of a matrix B = (bx,y) such that ax,y · bx,y > 0
for all x, y. This result resolved an old problem about the power of probabilistic

unbounded-error communication complexity; we have already mentioned this in

Section ??.

The strongest known lower bounds for depth-3 circuits computing explicit

boolean functions of n variables have the form 2Ω(
√

n)
. We have seen how such a

lower bound can be derived for the majority function. To break this “square root

barrier” is an important open problem. It is especially interesting in view of possible

consequences for log-depth circuits (see Lemma ??).

11.15 Research Problem
Prove an explicit lower bound 2ω(

√
n)

for Σ3 circuits.
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To get such lower bounds, one could try to use the graph-theoretic approach

introduced in Section ??.

11.6 Graph theoretic lower bounds

The idea of graph complexity (introduced in Section ??) is to reduce the lower

bounds problem for boolean functions to that for bipartite graphs. Given a graph

G = (V,E), we associate a boolean variable xv with each of its vertices v ∈ V . A

boolean circuit F (x) of these variables represents the graph G if it accepts all edges

and rejects all non-edges. On other subsets of vertices the circuit F may output

arbitrary values. That is, we only require that

the function F acts correctly on input vectors with exactly two ones!

On inputs x ∈ {0, 1}|V |
with

∑
v∈V xv ̸= 2 the function may output any value

in {0, 1}. Only if x contains exactly two 1s in, say, positions u and v, the circuit must

output F (x) = 1 if and only if u and v are adjacent in G. In particular, every graph

G = (V,E) on |V | = n vertices can be represented by the following monotone Σ3
formula with at most 2n gates:

F (x) =
∨

u∈S

xu ∧
( ∨

v:uv∈E

xv

)
, (11.5)

where S ⊆ V is an arbitrary vertex-cover of G, that is, a set of vertices such that

every edge of G has is endpoint in S.
As already mentioned in Section ??, our motivation to consider graph represen-

tation is that even moderate lower bounds for the monotone complexity of graphs

imply strong lower bounds for the non-monotone circuit complexity of boolean

functions.

If G is a bipartite n × n graph with n = 2m
, then we can identify its vertices

with vectors in {0, 1}m
and consider the characteristic function fG of G defined by:

fG(u, v) = 1 iff u and v are adjacent in G.
Now fix an arbitrary modelM of circuits. A bottom gate is a gate whose inputs

are only literals (variables and their negations). We only require that bottom gates

are either ORs or Parities of their inputs; the remaining (non-bottom) gates may be

arbitrary, depending on the circuit model one deals with. For a boolean function

f and a graph G, let LM(f) denote the smallest size of a circuit inM computing

f , and L+
M(G) the smallest size of a positive circuit in M representing G; being

positive here means having no negated literals as inputs.

The Magnification Lemma (Lemma ?? in Section ??) immediately yields:

11.16 Proposition For every bipartite graph G, LM(fG) ≥ L+
M(G).

Thus, any lower bound L+
M(G) ≥ nα

for an n× n graph G immediately gives a

lower bound LM(fG) ≥ 2αm
for its characteristic function fG; recall that fG has
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only 2m variables. Hence, any lower bound LM(G) ≥ nα
for an explicit graph G

with α = ω(ln lnn/ lnn) would give us a super-polynomial lower bound for an

explicit boolean function!

To start with, let us consider the simplest model—that of CNFs. Each such circuit

is an AND of ORs of input literals. In the case of graphs, we only need to consider

monotone CNFs

F (x) =
( ∨

v∈S1

xv

)
∧
( ∨

v∈S2

xv

)
∧ · · · ∧

( ∨
v∈Sr

xv

)
.

Such a CNF rejects a pair {u, v} of vertices iff at least one of the complements Ii =
Si covers this pair, that is, contains both endpoints u and v. Hence, F represents a

graph G iff I1, . . . , Ir are independent sets of G whose union covers all non-edges

of G. Thus, if cnf(G) denotes the minimum number of clauses in a monotone CNF

representing the graph G, and if AG is the adjacency matrix of G, then

cnf(G) = Cov(AG) , (11.6)

where A is the complement of A, and Cov(A) is the smallest number of all-1
submatrices ofA covering all its ones. This immediately yields strong lower bounds

for many explicit graphs. For example, if G is a (bipartite) complement of an n-
to-n matching, then AG is an identity matrix, implying that cnf(G) ≥ n. By
Proposition ??, this implies that the boolean function f(x, y) of 2m variables,

defined by f(x, y) = 1 iff x ̸= y, requires CNFs with at least 2m
clauses.

Of course, such a lower bound for CNFs is far from being interesting: we already

know that, say, the parity of 2m variables needs even 22m−1
clauses. Still, strong

lower bounds for CNF-size of graphs could imply impressive lower bounds for

boolean functions, if we could prove such bounds for graph properties.
To illustrate this, let us consider bipartite K2,2-free graphs, that is, bipartite

graphs without 4-cycles. It is conjectured that K2,2-freeness of graphs makes

them hard for CNFs. The following problem is just Problem ?? (in the Exercises of

Chapter ??) re-stated in graph-theoretic terms.

11.17 Research Problem
If G is aK2,2-free graph of average degree D, does then cnf(G) ≥ DΩ(1)

?

Together with Proposition ??, a positive answer to this problem would resolve

Problem ??. Let us see why this is true.

As we have already mentioned in Section ??, explicit constructions of dense
graphs Gn without 4-cycles are known (see Examples ?? and ??). These graphs

are d-regular bipartite n× n graphs with d = Θ(
√
n). Now suppose that Gn can

be represented by a monotone Σ3 circuit of size s. Then some subgraph H of Gn

with at least ϵn3/2/s edges can be represented by a monotone CNF with at most

s clauses. The graph H is still K2,2-free and has average degree D ≥ ϵ
√
n/s. A

positive answer to Problem ?? would imply that s ≥ Dδ ≥ (ϵ
√
n/s)δ

, from which

a lower bound s ≥ (ϵ
√
n)δ/2 = nΩ(1)

on the size s follows.
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Thus, an affirmative answer to Problem ?? would resolve Problem ??, and hence,

give us an explicit boolean function of m variables that cannot be computed by

DeMorgan circuits whose depth is logarithmic in m and size is linear in m. To

exhibit such a boolean function has been an open problem in circuit complexity for

more than 30 years.

Note that K2,2-freeness in Problem ?? is not crucial: one can consider any

hereditary property of graphs, that is, a property which cannot be destroyed by

removing edges.

Finally, let us mention that graphs of small degree have small circuits, and hence,

are “bad candidates” for a strong lower bound. Namely, we have already proved in

Section ?? (see Lemma ??) that Cov(A) = O(d ln |A|) for every boolean matrix A,
where |A| is the total number of ones in A, and d is the maximal number of zeros in

a line (row or column) of B. Thus, (??) implies that cnf(G) = O(d logn) for every
bipartite n× n graph G of maximum degree d.

11.7 Depth-2 circuits and Ramsey graphs

The problem with using the graph-theoretic approach in boolean function complex-

ity is that “combinatorially complicated” graphs are not necessarily “computation-

ally complicated”. To illustrate this, let us consider Ramsey-type graphs.

A graph over vertex set V is said to be a t-Ramsey graph if for every S ⊆ V
satisfying |S| = t, the graph induced by S is neither empty, nor complete. A

bipartite graph over vertex sets L and R, |L| = |R| = n, is said to be a t-Ramsey
graph if for every S ⊆ L and T ⊆ R satisfying |S| = |T | = t, the bipartite graph
induced by S and T is neither empty, nor complete. That is, neither the graph nor

its complement contains a complete bipartite t × t graph Kt,t. We call a graph

(bipartite or not) just a Ramsey graph if it is t-Ramsey for t = 2 logn.
A celebrated result of Erdős from 1947 shows that non-bipartite Ramsey graphs

exist. Irving (1978) proved that bipartite t-Ramsey graphs exist already for t =
O(logn/ log logn). But constructing explicit Ramsey graphs is a notoriously hard

problem.

The best known explicit construction of non-bipartite t-Ramsey graphs due to

Frankl and Wilson only achieves t = exp(
√

logn log logn). In the bipartite case,

even going from t = n1/2
to t = nδ

for an arbitrary constant δ > 0 was only

recently obtained by Pudlák and Rödl (2004), Barak et al. (2010), and Ben-Sasson and

Zewi (2010). Moreover, these constructions are not explicit in the way that would

satisfy Erdős. The constructions are algorithmic: when given a pair of vertices, the

algorithm runs in time polynomial in the length of its input and answers whether

this pair is an edge of the constructed graph.

In view of these difficulties to construct Ramsey graphs, such graphs might be a

promising place to look for explicit functions that require large circuits, but alas,

they are not: there exist bipartite Ramsey n× n graphs that can be represented as a

Parity of just 2 logn ORs of variables.
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To show this, we consider depth-2 circuits whose output gate is a parity gate

and bottom (next to the inputs) gates are OR gates; inputs are variables (no negated

inputs are allowed). Such a circuit has the form

F (x) =
r⊕

i=1

∨
v∈Ii

xv (11.7)

Let r(G) denote the smallest number r of OR gates in such a circuit representing the

graph G. By letting Su = {i | u ∈ Ii}, we see that vertices u and v are adjacent in
G iff r−|Su ∩Sv| is odd. Thus, the adjacency matrixAG ofG can be represented as

a boolean matrix of scalar products of vectors of length r over GF(2). This implies

that

r(G) is at least the rank of AG over GF(2) minus 1.

The Sylvester graph is a bipartitem×m graph Hm withm = 2r
whose vertices

are vectors in GF(2)r
. Two vertices are adjacent inHm iff their scalar product over

GF(2) is equal to 1. Note thatHm can be represented by a very small circuit of the

form (??): r(Hm) ≤ r = logm. We will show that, nevertheless, Hm contains a

large induced subgraph that is Ramsey.

11.18 Theorem There exist bipartite n × n Ramsey graphs H such that r(H) ≤
2 logn.

Proof. Let F = GF(2) and r be a sufficiently large even integer. With every subset

S ⊆ Fr
we associate a bipartite graph HS ⊆ S × S such that two vertices u ∈ S

and v ∈ S are adjacent if and only if ⟨u, v⟩ = 1, where ⟨u, v⟩ is the scalar product
over F. Thus, Hm = HS with S = Fr

andm = 2r
.

We are now going to show thatHm contains an induced n×n subgraphHS with

n =
√
mwhich is a Ramsey graph. The fact thatHS is an induced subgraph implies

that (??) is also a representation of HS : just set to 0 all variables xv with v ̸∈ S.
Thus, r(HS) ≤ r(Hm) ≤ logm = 2 logn. To prove that such a subgraph exists,

we first establish one Ramsey type property of graphs HS for arbitrary subsets

S ⊆ Fr
.

11.19 Lemma (Pudlák–Rödl 2004) Suppose every vector space V ⊆ Fr of dimension
⌊(r + 1)/2⌋ intersects S in fewer than t elements. Then neither HS nor the bipartite
complement HS containsKt,t.

Proof. The proof is based on the observation that any copy of Kt,t in HS would

give us a pair of subsets X and Y of S of size t such that ⟨u, v⟩ = 1 for all u ∈ X
and v ∈ Y . Viewing the vectors in X as the rows of the coefficient matrix and

the vectors in Y as unknowns, we obtain that the sum dim(X ′) + dim(Y ′) of the
dimensions of vector spaces X ′

and Y ′
, spanned by X and by Y , cannot exceed

r + 1. Hence, at least one of these dimensions is at most (r + 1)/2, implying that

either |X ′ ∩ S| < t or |Y ′ ∩ S| < t. However, this is impossible because both X ′

and Y ′
contain subsets X and Y of S of size t. ⊓⊔
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It remains therefore to show that a subset S ⊆ Fr
of size |S| = 2r/2 =

√
m sat-

isfying the condition of Lemma ?? exists. We show this by probabilistic arguments.

Let m = 2r
and let SS ⊆ Fr

be a random subset where each vector u ∈ Fr
is

included in SS independently with probability p = 21−r/2 = 2/
√
m. By Chernoff’s

inequality, |SS| ≥ pm/2 = 2r/2
with probability at least 1 − e−Ω(pm) = 1 − o(1).

Now let V ⊆ Fr
be a subspace of Fr

of dimension ⌊(r+1)/2⌋ = r/2 (remember

that r is even). Then |V | = 2r/2 =
√
m and we may expect p|V | = 2 elements

in |SS ∩ V |. By Chernoff’s inequality, Prob[|SS ∩ V | ≥ 2c] ≤ 2−2c
holds for any

c > 2e. The number of vector spaces in Fr
of dimension r/2 does not exceed(

r
r/2
)

≤ 2r/
√
r. We can therefore take c = r/2 and conclude that the set SS

intersects some r/2-dimensional vector space V in 2c = r or more elements with

probability at most 2r−(log r)/2−r = r−1/2 = o(1). Hence, with probability 1−o(1)
the set SS has cardinality at least 2r/2

and |SS ∩ V | < r for every r/2-dimensional

vector space V . Fix such a set S′
and take an arbitrary subset S ⊆ S′

of cardinality

|S| = 2r/2
. By Lemma ??, neither HS nor HS contains a copy ofKr,r . ⊓⊔

Wehave seen that some “combinatorially complicated” graphs can be represented

by very small circuits, even in depth 2. On the other hand, some “combinatorially

simple” graphs require large circuits of this type (??). This follows from our observa-

tion above that r(G) is just the rank of the adjacency matrix AG of G over GF(2).
In particular, ifM is an n-matching (a set of n vertex-disjoint edges), then AM is a

permutation matrix with exactly one 1 in each row and column. Since AM has full

rank, we obtain that r(M) ≥ n− 1.

11.20 Remark Arora, Steurer and Wigderson (2009) considered a related question,

albeit one outside the graph complexity frameworkwe’ve been considering. Suppose

the characteristic function fG of a graph G has “low” circuit complexity. What

can then be said about the properties of the graph G itself? Let AC0
be the family

of all graphs G on n vertices (n = 1, 2, . . .) whose characteristic functions fG

can be computed by a constant-depth circuit with a polynomial (in the number of

variables of fG) number of NOT and unbounded-fanin AND and OR gates. They

observed that Håstad’s theorem (Theorem ?? in the next chapter) implies that none
of the graphs in AC0

is t-Ramsey for t smaller than exp(logn/poly(log logn)).
On the other hand, they show that AC0

contains good expanders, and that many

algorithmic problems on AC0
-graphs are no easier to solve than on general graphs.

11.8 Depth-3 circuits and signum rank

In this section we consider Σ3 formulas, that is, Σ3 circuits with fanout-1 gates.

By the size of such a formula we will now mean the number of OR gates on the

bottom (next to the inputs) level. We already know that every bipartite n×n graph

can be represented by a Σ3 formula of size n using formula (??). Our goal is to
relate the size of Σ3 formulas representing bipartite graphs to the signum rank
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of their adjacency matrices. Recall that the signum rank, signrk(A), of a boolean
matrix A is the minimum rank, rk(M), of a real matrixM such thatM [x, y] < 0
if A[x, y] = 0, andM [x, y] > 0 if A[x, y] = 1.

11.21 Theorem (Lokam 2003) LetG be a bipartiten×n graph, andA its 0-1 adjacency
matrix. If G can be represented by a monotone Σ3 formula of size S, then

signrk(A) ≤ 2O(S1/3 log5/3 S) .

Recall that an OR of variables represents a union of stars, that is, the bipartite

complement of a complete bipartite graph. Adjacency matrices of complete bipartite

graphs are primitive matrices, that is, boolean matrices of rank 1. Hence, if a graph
G can be represented by a monotoneΣ3 formula of size S, then its adjacency matrix

A can be written as

A =
t∨

i=1

di∧
j=1

Rij , (11.8)

where d1 + · · · +dt ≤ S andRij = J −Rij are complements of primitive matrices

Rij ; as usually, J stands for the all-1 matrix, and boolean operations on matrices

are computed component-wise. Our goal is to upper-bound the signum rank of such

matrices A in terms of S. For this, we need one result concerning representations

of boolean functions by real polynomials.

11.22 Lemma If a boolean matrixH =
∨d

i=1 Ri is an OR of d primitive matrices then,
for every k > 2, there exists a real matrixM such that |M [x, y] −H[x, y]| ≤ 1/k
for all entries (x, y), and

rk(M) ≤ dO(
√

d log k) .

Proof. Let f(z1, . . . , zd) =
∨d

i=1 zi. By Lemma ??, there exists a real polynomial

p(z1, . . . , zd) of degree r ≤ c
√
n ln k approximating f(z) with the factor 1/k, that

is, |p(z)−f(z)| ≤ 1/k for all z ∈ {0, 1}d
. Syntactically substitute the matrixRi for

zi in this polynomial, but interpret the product zi·zj as an entry-wise productRi◦Rj

of matrices. Thus, a monomial zi1zi2 · · · zit
is replaced by the rank-1 boolean matrix

Ri1 ◦Ri2 ◦· · ·◦Rit . Thematrix obtained by computing the polynomial p(R1, . . . , Rd)
in this way gives us the desired matrixM . SinceM is a linear combination of rank-

1 matrices, one for each of at most m =
∑r

i=0
(

d
i

)
≤ (ed/r)r ≤ dO(r)

possible

monomials of p, it follows that the rank ofM is at most the number m of these

monomials, as desired. ⊓⊔

Now let A be a boolean matrix of the form (??), and let d = maxi di.

11.23 Lemma There exist real n× n matrices B and C of ranks

rk(B) ≤ exp(
√
d log d log t) and rk(C) ≤

∏t
i=1 di

such that

(i) B[x, y] ≤ −1/6 if A[x, y] = 0, and B[x, y] ≥ +1/6 if A[x, y] = 1;
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(ii) C[x, y] ≥ 1 if A[x, y] = 0, and C[x, y] = 0 if A[x, y] = 1.

Proof. The matrix A is an OR A =
∨t

i=1 Ai of t matrices, each of which has the

form Ai =
∧d

j=1 Rij . Since Ai =
∨di

j=1 Rij , we can apply Lemma ?? with k = 3t
to each matrix Ai and obtain a real matrixMi that approximates Ai with the factor

1/(3t). Since Ai = J − Ai, the matrix Ni = J − Mi approximates Ai with the

same factor. Consider now the matrix

B = N1 + · · · +Nt − 1
2 · J .

Let us verify that this matrix has the desired property (i).

• If A[x, y] = 0 then Ai[x, y] = 0 for all i; hence, |Ni[x, y]| ≤ 1/(3t) for all
i = 1, . . . , t, implying that B[x, y] ≤ 1/3 − 1/2 = −1/6.

• If A[x, y] = 1 then Ai[x, y] = 1 for at least one i; for this i, we have that

Ni[x, y] ≥ 1 − 1/(3t). Since Ni[x, y] ≥ −1/(3t) for all i, we obtain that

B[x, y] ≥ 1 −
∑t

i=1(1/3t) − 1/2 = 1/6.

Hence, B satisfies (i). Since Ni = J − Mi and rk(Mi) ≤ O(
√
di log di), the

subadditivity of rank yields rk(B) ≤ exp(
√
d log d log t).

To construct the matrixC , recall (again) that our matrixA is an ORA =
∨t

i=1 Ai

of t matrices, each of which has the form Ai =
∧di

j=1 Rij . Define Ci =
∑di

j=1 Rij ,

and let C be the component-wise product of the matrices C1, . . . , Ct, that is,

C[x, y] =
t∏

i=1

di∑
j=1

Rij [x, y] .

If A[x, y] = 0 then ∀i ∃j : Rij [x, y] = 1, implying that C[x, y] ≥ 1. If A[x, y] = 1
then ∃i ∀j : Rij [x, y] = 0, implying that C[x, y] = 0. Hence, C satisfies (ii). Since

the rank of a component-wise product of two matrices does not exceed the product

of their ranks, we obtain that rk(C) ≤
∏t

i=1 rk(Ci) ≤
∏t

i=1 di. ⊓⊔

p@plus6p@

Proof of Theorem ??addpunct: Wewant to upper-bound the signum rank of a boolean

matrix A of the form

A =
t∨

i=1

di∧
j=1

Rij ,

where d1 + · · · + dt ≤ S. Some of the fanins di may be small, some may be

large. Large ANDs are “bad” because then our upper bound on the rank, given by

Lemma ?? is “too large”. The good news, however, is that we cannot have too many

large ANDs since the total sum

∑t
i=1 di is upper bounded by S. We therefore take

a threshold D (to be specified later) and split these ANDs into “small” and “large”

subsets I = {i | di ≤ D} and J = {i | di > D}. Consider the corresponding
matrices
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As =
∨
i∈I

di∧
j=1

Rij and Al =
∨
i∈J

di∧
j=1

Rij .

We first apply Lemma ?? to As to get a matrix B such that

As[x, y] = 1 ⇒ B[x, y] ≥ 1/6, and As[x, y] = 0 ⇒ B[x, y] ≤ −1/6. (11.9)

Furthermore, we have that rk(B) ≤ exp(
√
D logD log t).

We then apply Lemma ?? to Al to get a matrix C such that

Al[x, y] = 1 ⇒ C[x, y] = 0, and Al[x, y] = 0 ⇒ C[x, y] ≥ 1. (11.10)

Since

∑t
i=1 di ≤ S, we have that |J | ≤

∑t
i=1 di/D ≤ S/D. Using the arithmetic-

geometric mean inequality

(∏n
i=1 xi

)1/n ≤ 1
n

∑n
i=1 xi we can estimate the rank

of C as follows:

rk(C) ≤
∏
i∈J

di by Lemma ??

≤
( 1

|J |
∑
i∈J

di

)|J|
arithmetic-geometric mean inequality

≤ exp(|J | logS)
≤ exp((S/D) logS) since |J | ≤ S/D.

Now define the matrixM by

M [x, y] = B[x, y] · C[x, y] + 1
12 .

Using (??) and (??), it is easy to verify thatM [x, y] ≤ −1/12 if A[x, y] = 0, and
M [x, y] ≥ 1/12 if A[x, y] = 1. Thus, signrk(A) ≤ rk(M). Since the rank of a

component-wise product of two matrices does not exceed the product of their ranks,

we obtain that rk(M) ≤ rk(B) · rk(C) + 1, which is at most exponential in

√
D logD log t+ S

D
logS .

By setting D = (S/ logS)2/3
, this is at most exponential in S1/3 log5/3 S, as

desired. ⊓⊔

endpefalse
The adjacency matrix A of the Sylvester n× n graph Hn is a Hadamard matrix,

and we already know (see Corollary ??) that its signum rank is at least Ω(
√
n).

Together with Theorem ??, this implies

11.24 Corollary Every monotone Σ3 formula representing the Sylvester graph Sn

must have size at least log3−o(1) n.
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Thus, using the signum rank one can derive nontrivial lower bounds on the

depth-3 representation complexity of graphs. The result of Razborov and Sherstov

(2008) mentioned in Remark ?? implies, however, that the signum rank alone cannot

lead to lower bounds substantially larger than Ω(log3 n).

11.9 Depth-3 circuits with parity gates

In this section we will use graph-theoretic arguments to prove truly exponential

lower bounds for modified Σ3 circuits, where all gates on the bottom level are

Parity gates (not OR gates). A lower bound for a boolean function f of n variables

is truly exponential if it has the form 2cn
for a constant c > 0.

AΣ⊕
3 circuit is aΣ3 circuits with the OR gates on the bottom (next to the inputs)

layer replaced by Parity gates. Hence, at each AND gate on the middle layer the

characteristic function of some affine subspace over GF(2) is computed. The fanin

of the top OR gate tells us how many affine subspaces lying within f−1(1) do we

need to cover the whole set f−1(1).
Let Σ⊕

3 (G) denote the smallest top fanin of a Σ⊕
3 representing the graph G.

For a boolean function f , let Σ⊕
3 (f) denote the smallest top fanin of a Σ⊕

3 circuit

computing f . Note thatΣ⊕
3 (G) ≤ n for every bipartiten×n graphG = (V1∪V2, E)

because G can be represented by a formula of the form

F (x) =
∨

u∈V1

xu ∧
( ⊕

v∈V2:uv∈E

xv

)
.

Our starting point is the following immediate consequence of Proposition ??:
For every bipartite graph G, Σ⊕

3 (fG) ≥ Σ⊕
3 (G). Hence, if Σ⊕

3 (G) ≥ nϵ
, then

Σ⊕
3 (fG) ≥ 2ϵm

, and we have a truly exponential lower bound for fG; recall that

fG is a boolean function of 2m variables.

We are going to prove a general lower bound: any dense graph without large

complete subgraphs requires large top fanin ofΣ⊕
3 circuits. This immediately yields

exponential lower bounds for many explicit boolean functions.

A graph isKa,b-free if it does not contain a complete a× b subgraph. For a graph
G, by |G| we will denote the number of edges in it. It turns out that every dense

enough graph without large complete subgraphs requires large Σ⊕
3 circuits; this

was observed in (Jukna, 2006).

11.25 Theorem If an n× n graph G isKa,b-free, then every Σ⊕
3 circuit representing

G must have top fanin at least |G|/(a+ b)n.

To prove the theorem, we first give a combinatorial characterization of the top

fanin of Σ⊕
3 circuits representing bipartite graphs (Lemma ??), and then a general

lower bound on this characteristics (Lemma ??).
A fat matching is a union of vertex-disjoint bipartite cliques (these cliques need

not to cover all vertices). Note that a matching (a set of vertex-disjoint edges) is
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Bilder/fat-eps-converted-to.pdf

Fig. 11.2 (a) An adjacency matrix of a fat matching, (b) the adjacency matrix of a graph represented

by an OR gate g =
∨

v∈A∪B
xv , and (c) the adjacency matrix of a graph represented by a Parity

gate g =
⊕

v∈A∪B
xv .

also a fat matching. A fat covering of a graph G is a family of fat matchings such

that each of these fat matchings is a subgraph of G and every edge of G is an edge

of at least one member of the family. Let fat(G) denote the minimum number of

fat matchings in a fat covering of G.
Theorem ?? is a direct consequence of the following two lemmas.

11.26 Lemma For every bipartite graph G, fat(G) = Σ⊕
3 (G).

Proof. Let U and V be the color classes ofG, and let g =
⊕

v∈A∪B xv with A ⊆ U

and B ⊆ V be a gate on the bottom level of a Σ⊕
3 circuit representing G. Since g

is a parity gate, it accepts a pair uv of vertices u ∈ U , v ∈ V iff either u ∈ A and

v ̸∈ B, or u ̸∈ A and v ∈ B. Thus, g represents a fat matching (A×B) ∪ (A×B)
where A = U \A and B = V \B (see Fig ??(c)). Since the intersection of two fat

matchings is again a fat matching (show this!), each AND gate on the middle level

represents a fat matching. Hence, if the circuit has top fanin s, then the OR gate on

the top represents a union of these s fat matchings, implying that s ≥ fat(G).
To showΣ⊕

3 (G) ≤ fat(G), letM = A1 ×B1 ∪ · · · ∪Ar ×Br be a fat matching.

LetA be the union of theAi, andB the union of theBi. We claim that the following

AND of Parity gates representsM :

F =
⊕
u∈A

xu ∧
⊕
v∈B

xv ∧
⊕

w∈A1∪B1

xw ∧ · · · ∧
⊕

w∈Ar∪Br

xw .

Indeed, if a pair e = uv of vertices belongs toM , say, u ∈ A1 and v ∈ B1, then
the first three sums accept uv because u ∈ A1 and v ̸∈ B1. Moreover, the mutual

disjointness of the Ai as well as of the Bi implies that u ̸∈ Ai and v ∈ B1 ⊆ Bi for

all i = 2, . . . , r. Hence, each of the last sums accepts the pair uv as well. To prove

the other direction, suppose that a pair uv of vertices is accepted by F . The last r
sums ensure that, for each i = 1, . . . , r, one of the following must hold: (a) u ∈ Ai

and v ∈ Bi; (b) u ̸∈ Ai and v ̸∈ Bi. The first two sums of F ensure that (b) cannot

happen for all i. Hence, (a) must happen for some i, implying that uv belongs to
M . ⊓⊔

11.27 Lemma Let G be a bipartite n× n graph. If G isKa,b-free then fat(G) is a at
least |G|/(a+ b)n.
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Proof. Let H =
⋃t

i=1 Ai × Bi be a fat matching, and suppose that H ⊆ G. By
the definition of a fat matching, the sets A1, . . . , At, as well as the sets B1, . . . , Bt

are mutually disjoint. Moreover, since G contains no copy of Ka,b, we have that

|Ai| < a or |Bi| < b for all i. Hence, if we set I = {i : |Ai| < a}, then

|H| =
t∑

i=1
|Ai ×Bi| =

t∑
i=1

|Ai| · |Bi| ≤
∑
i∈I

a · |Bi| +
∑
i ̸∈I

|Ai| · b ≤ (a+ b)n.

Thus, no fat matching H ⊆ G can cover more than (a+ b)n edges of G, implying

that we need at least |G|/(a+ b)n fat matchings to cover all edges of G. ⊓⊔

There are many explicit bipartite graphs which are dense enough and do not

have large complete bipartite subgraphs. By Theorem ?? and Proposition ??, each
of these graphs G immediately give us an explicit boolean function fG requiring

Σ⊕
3 circuits of truly exponential size.

To give an example, consider the disjointness function. This is a boolean function

DISJ 2m in 2m variables such that

DISJ 2m(y1, . . . , ym, z1, . . . , zm) = 1 if and only if

m∑
i=1

yizi = 0 .

Note that this function has a trivial Π2 circuit (a CNF) of size O(m).

11.28 Theorem Every Σ⊕
3 circuit for DISJ 2m has top fanin at least 20.08m.

Proof. The graphGf of the function f = DISJ 2m is a bipartite graphGm ⊆ U×V
where U and V consist of all n = 2m

subsets of [m] = {1, . . . ,m}, and uv ∈ Gm

iff u ∩ v = ∅. The graph Gm can contain a complete bipartite a × b subgraph
A×B ̸= ∅ only if a ≤ 2k

and b ≤ 2m−k
for some 0 ≤ k ≤ m, because then( ⋃

u∈A

xu

)
∩
( ⋃

v∈B

xv

)
= ∅ .

In particular, Gm can contain a copy of Ka,a only if a ≤ 2m/2 =
√
n. Since Gm

has

|Gm| =
∑
u∈U

d(u) =
∑
u∈U

2m−|u| =
m∑

i=0

(
m

i

)
2m−i = 3m ≥ n1.58

edges, Theorem ?? yields that any Σ⊕
3 circuit representing Gm—and hence, any

Σ⊕
3 circuit computing DISJ 2m—must have top fanin at least

|Gm|
2an ≥ n1.58

n1.5 = n0.08 = 20.08m . ⊓⊔
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Bilder/discrim-eps-converted-to.pdf

Fig. 11.3 Schematic description of discriminators: ∆F (A) is large in case (a), and ∆F (A) = 0 in

case (b).

We now consider a generalization of Σ⊕
3 circuits, where we allow to use an

arbitrary threshold gate, instead of an OR gate, on the top. To analyze such circuits,

we will use the so-called “discriminator lemma” for threshold gates.

Let F be a family of subsets of a finite setX . A family F1, . . . , Ft of members of

F is a threshold cover of a given setA ⊆ X , if there exists a number 0 ≤ k ≤ t such
that, for every x ∈ X , we have that x ∈ A if and only if x belongs to at least k of

the Fi. Let thrF (A) denote the minimum number t of members of F in a threshold

cover of A.
To lower bound thrF (A) the following measure turns out to be useful:

∆F (A) = max
F ∈F

∆F (A) ,

where

∆F (A) =
∣∣∣∣ |A ∩ F |

|A|
− |A ∩ F |

|A|

∣∣∣∣ .
If∆F (A) is small, this means that every member F of F is split between the set A
and its complement A in a “balanced” manner: the portion of F ∩A in A is almost

the same as the portion of F ∩A in A (see Fig. ??). The following lemma is a special

case of a more general lemma proved by Hajnal et al. (1993); see the next section.

11.29 Lemma (Discriminator Lemma) thrF (A) ≥ 1/∆F (A) .

Proof. Let F1, . . . , Ft ∈ F be a threshold-k covering of A, that is, x ∈ A iff x
belongs to at least k of the Fi’s. Our goal is to show that ∆F (A) ≥ 1/t.

Since every element ofA belongs to at least k of the setsA∩Fi, the average size

of these sets must be at least k. Since no element of A belongs to more than k − 1
of the sets A ∩ Fi, the average size of these sets must be at most k − 1. Hence,

1 ≤
t∑

i=1

|A ∩ Fi|
|A|

−
t∑

i=1

|A ∩ Fi|
|A|

≤ t · max
1≤i≤t

∣∣∣∣ |A ∩ Fi|
|A|

− |A ∩ Fi|
|A|

∣∣∣∣ .⊓⊔
Now we are able to prove strong lower bounds on the size of Σ⊕

3 circuits with

an arbitrary threshold gate on the top.
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A Hadamard matrix of order n is an n× n matrix with entries ±1 and with row

vectors mutually orthogonal over the reals. A graph associated with a Hadamard

matrixM (or just a Hadamard graph) of order n is a bipartite n× n graph where

two vertices u and v are adjacent if and only ifM [u, v] = +1.

11.30 Theorem Any Σ⊕
3 circuit which has an arbitrary threshold gate on the top and

represents an n× n Hadamard graph must have top fanin Ω(
√
n).

Proof. Let A be an n × n Hadamard graph. Take an arbitrary Σ⊕
3 circuit which

has an arbitrary threshold gate on the top and represents A. Let s be the fanin
of this threshold gate, and let F be the set of all fat matchings participating in

the representation. Then, by Lemma ??, s ≥ thrF (A). To prove s = Ω(
√
n) it is

enough, by Lemma ??, to show that for every fat matching F =
⋃ℓ

i=1 Si ×Ri,∣∣∣∣ |A ∩ F |
|A|

− |A ∩ F |
|A|

∣∣∣∣ = O(n−1/2) .

Since both the graph A and its bipartite complement A have Θ(n2) edges, it is
enough to show that

∣∣|A ∩ F | − |A ∩ F |
∣∣ ≤ n3/2 . By Lindsey’s Lemma (see

Appendix ?? for the proof), the absolute value of the sum of all entries in any a× b
submatrix of an n× n Hadamard matrix does not exceed

√
abn. Thus, the absolute

value of the difference

|A ∩ (Si ×Ri)| − |A ∩ (Si ×Ri)|

does not exceed

√
sirin, where si = |Si| and ri = |Ri|. Since both sums

∑ℓ
i=1 si

and

∑ℓ
i=1 ri are at most n, we obtain

∣∣∣|A ∩ F | − |A ∩ F |
∣∣∣ =

∣∣∣ ℓ∑
i=1

|A ∩ (Si ×Ri)| −
ℓ∑

i=1
|A ∩ (Si ×Ri)|

∣∣∣
≤

ℓ∑
i=1

√
sirin ≤

√
n

ℓ∑
i=1

si + ri

2 ≤ n3/2 .⊓⊔

Recall that the inner product function is a boolean function of 2m variables

defined by

IPm(x1, . . . , xm, y1, . . . , ym) =
m∑

i=1
xiyi mod 2 .

Since the graph Gf of f = IP2m is a Hadamard n × n graph with n = 2m
,

Theorem ?? immediately yields

11.31 Corollary Any Σ⊕
3 circuit which has an arbitrary threshold gate on the top and

computes IP2m must have top fanin Ω(2m/2).
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11.10 Threshold circuits

A boolean function f(x1, . . . , xn) is a real threshold function if there exist real

numbers w0, w1, . . . , wn such that for every x ∈ {0, 1}n
, f(x) = 1 if and only if

w1x1 + · · · + wnxn ≥ w0. The absolute values |wi| are called weights. Since some

finite amount of precision is always sufficient, it is easy to see that we can assume

that the weights are integers. LetW (n) be the smallest numberW such that every

possible real threshold function of n variables can be realized using integer weights

of magnitude ≤ W . It is well-known (see, for example, Muroga (1971)) that

W (n) ≤ 2
1
2 n log n−n(1+o(1)) .

Since, as shown by Yajima and Ibaraki (1965), and by Smith (1966), there are at least

2n(n−1)/2
distinct real threshold functions, we also have that W (n) = 2Ω(n)

. A

much tighter lower bound

W (n) ≥ 2
1
2 n log n−n(2+o(1))

on the weight was obtained by Håstad (1994) when n is a power of 2, and by Alon

and Vũ (1997) for arbitrary n.
A threshold circuit is a circuit using arbitrary real threshold functions as gates.

For a boolean function f(x1, . . . , xn), let T(f) denote the smallest number of gates,

and Tw(f) the smallest sum of weights in a threshold circuit computing f . Let also
T(n) and Tw(n) denote the corresponding Shannon functions. Zacharova (1963)

proved that

Tw(n) ∼ 2n

n
.

By improving earlier estimates of Nechiporuk (1964, 1965), Lupanov (1973) estab-

lished the asymptotic for the number of gates:

T(n) ∼ 2
√

2n

n
.

In the class of partially defined functions that are defined on N input vectors, he

also proved that for N → ∞,

T(n,N) ∼ 2

√
N

logN .

Finally, for the Shannon function S(n) restricted to symmetric boolean functions,

he proved that

S(n) ∼ 2
√

n

logn .
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x1 x2 · · · xn

g1 g2

g3

−1
−1

−1
1 1

1

−1 −1

Fig. 11.4 A general form of a threshold circuit of size 3 computing any of the functions fk(x) = 1
iff x1 + · · · + xn = k, for a given integer 0 < k < n. The first gate g1(x) outputs 1 iff

(−1)x1 + · · · (−1)xn ≥ −k + 1, and the second g2(x) outputs 1 iff x1 + · · · + xn ≥ k + 1. The
last gate g3(y1, y2) outputs 1 iff −y1 − y2 ≥ 0, that is, iff y1 = y2 = 0.

The lower bound here follows from the lower bound on T(n) because every boolean
function f(x1, . . . , xn) of n variables can be considered as a symmetric boolean

function F of 2n − 1 variables: just assign weight 2i−1
to xi; then

f(x) = F ( x1︸︷︷︸
20

, x2, x2︸ ︷︷ ︸
21

, x3, x3, x3, x3︸ ︷︷ ︸
22

, . . . , xn, . . . , xn︸ ︷︷ ︸
2n−1

) .

This map from inputs in {0, 1}n
to integers {0, . . . , 2n − 1} is clearly injective. So,

if any symmetric function of 2n
variables can be computed usingM gates, then

any boolean function of n variables can be computed usingM gates. This implies

that T(n) ≤ S(2n).
To show the upper bound, take a threshold circuit C(x) = y computing the

binary representation y ∈ {0, 1}m
of the sum

∑n
i=1 xi, withm = ⌈log2(n+ 1)⌉.

Since one can design such a circuit with onlym gates (see Exercise ??), this implies

S(n) ≤ m+ T(m).

11.10.1 General threshold circuits

The problem of proving explicit lower bounds for threshold circuits is even harder

than, say, for DeMorgan circuits. In the latter model any boolean function essentially

depending on all its n variables requires at least n − 1 gates. For example, if we

define the exact-k function by Exn
k (x) = 1 iff x1 + · · · + xn = k, then this function

depends on all its variables but, as shown in Fig. ??, this function can be computed

by a threshold circuit using only three gates! Thus, even proving non-constant

lower bounds on T(f) is a non-trivial task.
In the case of unrestricted threshold circuits the strongest remains the lower

bound T(IPn) ≥ n/2 proved by Gröger and Turán (1991) for the inner product

function IPn(x, y) = x1y1 + · · · + xnyn mod 2.
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In the proof of this bound, by a rectangle we will mean a Cartesian product

R = X × Y of two subsets of vectors X,Y ⊆ {0, 1}n
; its dimension is dim(R) =

min{|X|, |Y |}. A boolean function on such a rectangle is a mapping f : X × Y →
{0, 1}. A function f(x, y) is monochromatic on a subset S ⊆ X × Y if it takes the

same value on all inputs (x, y) ∈ S.
The weakness of real threshold functions is captured by the following lemma.

11.32 Lemma Let f(x, y) be a boolean function on a rectangle of dimension d. If f is
a real threshold function, then it is monochromatic on a subrectangle of dimension at
least ⌊d/2⌋.

Proof. Let f : X × Y → {0, 1} where X,Y ⊆ {0, 1}n
and d = |X| ≤ |Y |. If f is

a real threshold function then there exist real numbers a1, . . . , an, b1, . . . , bn and

c such that, for every (x, y) ∈ X × Y , f(x, y) = 1 if and only if a · x+ b · y ≥ c,
where a · x =

∑n
i=1 aixi and b · y =

∑n
i=1 biyi.

Order the elements of X according to the value of a · x, and elements in Y
according to the value of b ·y, resolving ties arbitrarily. Let 1 ≤ t ≤ d be the smallest

number such that the t-th elements xt ∈ X and yt ∈ Y satisfy a · xt + b · yt < c .
Then f(x, y) is constant 0 on the rectangle {x1, . . . , xt} × {y1, . . . , yt}, and is

constant 1 on the rectangle {xt+1, . . . , xd} × {yt+1, . . . , yd}. Since one of these
rectangles must have dimension at least ⌊d/2⌋ , we are done. ⊓⊔

For a boolean function f : X × Y → {0, 1}, let mono(f) denote the maximal

dimension of a subrectangle X ′ × Y ′ ⊆ X × Y on which f takes the same value.

11.33 Theorem (Gröger–Turán 1991) If f(x, y) is a boolean function of 2n variables,
then any threshold circuit computing f must have at least n− log mono(f) gates.

Proof. Let g1, g2, . . . , gt be a threshold circuit computing f . By Lemma ??, there
is a rectangle R1 ⊆ {0, 1}n × {0, 1}n

of dimension 2n−1
such that the function

computed at the first gate g1 takes the same value c1 ∈ {0, 1} on all inputs (x, y) ∈
R1. Replace the gate g1 by the constant c1. The resulting circuit still computes f
correctly on all inputs in R1. The first gate in this new circuit is the gate g2 of the

original circuit one of which input is apparently set to the constant c1. In any case,

this is a real threshold function on R1, and Lemma ?? again gives us a rectangle

R2 ⊆ R1 of dimension 2n−2
such that the function computed at the first gate g2

takes the same value c2 ∈ {0, 1} on all inputs (x, y) ∈ R2.
Arguing in this way, we obtain that the original circuit must output the same

value on some rectangle Rt of dimension 2n−t
. This implies that mono(f) ≥ 2n−t

,

from which the desired lower bound t ≥ n− log mono(f) on the number of gates

follows. ⊓⊔

11.34 Corollary T(IPn) ≥ n/2.

Proof. Consider a 2n × 2n
matrix H defined by H[x, y] = (−1)IPn(x,y)

. For every

x ̸= 0, we have that IPn(x, y) = 1 for exactly half of vectors y. Hence, H is a

Hadamard matrix (every two rows are orthogonal over the reals). By Lindsey’s

Lemma (see Appendix ?? for the proof), H can contain an k × k monochromatic
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submatrix only if k2 ≤
√
k · k · 2n

, that is, only if k ≤ 2n/2
. Thus, mono(IPn) ≤

2n/2
, and it remains to apply Theorem ??. ⊓⊔

11.35 Remark Impagliazzo, Paturi and Saks (1997) considered the question of how

the number of wires in threshold circuits depends on their depth. Let Wd(f) denote
the smallest number of wires in a general threshold circuit of depth d computing f .
For the parity function ⊕n(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn, they proved a lower bound

Wd(⊕n) ≥ n1+θ(d)
where θ(d) = c(1+

√
2)−d

and c > 0 is a constant independent
on n and d. They also proved that any depth-d threshold circuit computing ⊕n(x)
must have at least (n/2)1/2(d−1)

gates. Similar results for threshold circuits with

polynomially bounded weights were proved earlier by Paturi and Saks (1994).

11.10.2 Threshold circuits of depth two

Super-polynomial lower bounds are only known for depth-2 and depth-3 threshold

circuits under various additional restrictions. The weight of a threshold circuit

C(x) of n variables is the maximal absolute value of weights occurring in gates

of C . We say that C is a bounded-weight circuit if its weight is at most some

polynomial in n. A circuit is unweighted if each its weight is either 0 or 1. Note
that unweighted threshold circuits are just unbounded fanin circuits with (boolean)

threshold functions as gates.

Goldmann, Håstad and Razborov (1992) proved that any threshold circuit of

depth d can be simulated by a bounded-weight circuit of depth d+ 1 with only a

polynomial increase of size. But, so far, no exponential lower bound is known for

depth-3 circuits, even for unweighted circuits. Even threshold circuits of depth 2
are hard to deal with: here exponential lower bounds are only known when weights

are bounded.

It can be shown (see Exercise ??) that the inner product function IPn can be

computed by an unweighted threshold circuit of depth 3 using O(n) gates. In the

class of depth-2 threshold circuits, exponential lower bounds for IPn are known

when either the weights of the top (output) gate or the weights of the bottom (next

to the inputs) gates are bounded. In the first case the proof is based on so-called

“Discriminator Lemma”, and is based on known lower bounds on the signum rank

in the second case.

Let f(x) be a boolean function of n variables, and A,B ⊆ {0, 1}n
be disjoint

sets. Let PA, (resp. PB) denote the uniform probability distribution on A (resp. B).

Hence, PA(f(x) = 1) = |{x ∈ A | f(x) = 1}|/|A|, and similarly for PB . Then f
is an ϵ-discriminator for A and B if

|PA(f(x) = 1) − PB(f(x) = 1)| ≥ ϵ .

In particular, f is a 1-discriminator for A and B if f separates these two sets in

that f(a) ̸= f(b) for all (a, b) ∈ A×B. If A = g−1(1) and B = g−1(0) for some
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boolean function g, and if |A| = |B|, then f being an ϵ-discriminator for A and B
means that f coincides with g on a fraction (1 + ϵ)/2 of all inputs.

A threshold combination of boolean functions f1, . . . , fm : {0, 1}n → {0, 1} of

total weight α is a boolean function of the form

Tm
α (x) = 1 if and only if

m∑
i=1

aifi(x) ≥ a0

where a0, a1, . . . , am are integers, and

∑m
i=1 |ai| = α.

The following lemma is an extension of Lemma ?? to threshold gates with

arbitrary weights.

Discriminator Lemma If a threshold combination of f1, . . . , fm of total weight accepts
all vectors in A and rejects all vectors in B, then some fi is a (1/α)-discriminator for
A and B.

Proof. Let the random variable fA
i (x) (resp. fB

i (x)) be the output of fi when x is dis-
tributed uniformly onA (resp.B). Then

∑m
i=1 aif

A
i (x) ≥ a0 and

∑m
i=1 aif

B
i (x) ≤

a0 − 1. Taking expectations and rearranging, we obtain

1 ≤
n∑

i=1
ai(E

[
fA

i (x)
]

− E
[
fB

i (x)
]
)

≤ α · max
1≤i≤m

|PA(fi(x) = 1) − PB(fi(x) = 1)| .⊓⊔

11.36 Theorem (Hajnal et al. 1993) If the weights of the top gate in a threshold circuit
of depth 2 computing IPn are at most 2o(n1/3), then the top gate must have fanin at
least 2Ω(n1/3).

Proof. Take a depth-2 threshold circuit computing IPn(x, y). Assume that all

weights of the top (output) gate are at most 2o(n1/3)
. Let m be the fanin of the

output gate. Our goal is to show thatm ≥ 2Ω(n1/3)
.

Let α be the sum of weights of the output gates; hence, α ≤ m · 2o(n1/3)
. By

the Discriminator Lemma, some of the bottom gates f(x, y) must be a (1/α)-
discriminator for

A = {(x, y) | IPn(x, y) = 1} and B = {(x, y) | IPn(x, y) = 0}.

The gate f is of the form

f(x, y) = 1 if and only if

n∑
i=1

aixi +
n∑

i=1
biyi ≥ c

for some integers ai, bi and c. The 2n × 2n
matrix H with H[x, y] = (−1)IPn(x,y)

is a Hadamard matrix. By Lindsey’s Lemma (see Appendix ?? for the proof), the
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Fig. 11.5 The N × N matrix of f(x, y) with N = 2n
is divided into N2/3

consecutive squares of

size N2/3 × N2/3
. There are at most 2 · N1/3

squares containing both a 0 and a 1. The 1-entries
not in these squares can be covered by N1/3

rectangles of height N2/3
and width ≤ N .

absolute value of the sum of all entries in any a×b submatrix of anN×N Hadamard

matrix does not exceed

√
abN .

Now consider the set F = {(x, y) | f(x, y) = 1} of inputs accepted by the

gate f . We will view this set as a 2n × 2n
matrix where the rows are indexed by

vectors x in increasing order of

∑n
i=1 aixi, and columns are indexed by vectors y

in increasing order of

∑n
i=1 biyi; the entry (x, y) of the matrix is f(x, y). In this

matrix every entry either to the right of, or below an entry which is 1, is also equal

1.
Divide the matrix into 22n/3

consecutive squares of size 22n/3 × 22n/3
(Fig. ??).

There are at most 2 · 2n/3
squares containing both a 0 and a 1. The 1-entries not

in these squares can be covered by at most 2n/3
rectangles of height 22n/3

and

width ≤ 2n
. Thus, using the Lindsey Lemma, the absolute value of the difference

|A ∩ F | − |B ∩ F | does not exceed

2 · 2n/3 · 24n/3 + 2n/3 ·
√

22n/3 · 2n · 2n = 3 · 25n/3 .

In our case the sets A and B are of about the same size: |A| = 22n−1 − 2n−1
and

|B| = 22n−1 + 2n−1
. Hence, the bottom gate f can be an ϵ-discriminator for A and

B only if ϵ ≤ 2−Ω(n1/3)
. Thus, 1/α ≤ 2−Ω(n1/3)

. Together with α ≤ m · 2o(n1/3)
,

this gives the desired lower boundm ≥ 2Ω(n1/3)
on the faninm of the top gate. ⊓⊔

The theorem was generalized and extended by Krause (1996), and Krause and

Waack (1995). The case of depth-2 threshold circuits with unrestricted weights of

the top gate was considered by Krause and Pudlák (1997). They proved that the

lower bound for IPn given in Theorem ?? also holds in this case, if only modular

gates MODm for odd integersm ≥ 3 are used at the bottom level. Such gates are

defined by:

MODm(x1, . . . , xn) = 1 if and only if x1 + . . .+ xn = 0 mod m.
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Forster et al. (2001) considered real threshold circuits when the weights of the

top gate are arbitrary and bottom gates are threshold functions with bounded but

exponentially large weights.

11.37 Theorem (Forster et al. 2001) If the weights of the bottom gates of a threshold
circuit of depth 2 computing IPn do not exceed 2n/3, then the top gate must have
fanin at least 2Ω(n).

Proof. We will view boolean functions f(x, y) of 2n variables as boolean 2n × 2n

matrices of their values. By the rank, rk(f), of a boolean function f(x, y) we will
mean the real rank of its matrix. In particular, the matrix of IPn is (the boolean

version of) a 2n × 2n
Hadamard matrix H2n . By the result of Forster (2002), we

know that this matrix has signum rank at least 2n/2
(see Corollary ??). Thus, to

prove the theorem, it is enough to show that every depth-2 threshold circuit of

small top-fanin and bounded weight of bottom gates has small signum rank. We

first show that small-weight threshold functions (that is, our bottom gates) have

small rank.

11.38 Claim If f(x, y) is a real threshold function with integer weights not exceed-

ingW , then rk(f) ≤ 2nW + 1.

Since f(x, y) is a real threshold function with integer weights not exceedingW ,

there are integers ai, bi and c of absolute value at mostW such that

f(x, y) = 1 if and only if

n∑
i=1

aixi +
n∑

i=1
biyi ≥ c .

Let F be the 2n × 2n
matrix of f(x, y). For each integer u between −nW and

nW , let Fu be the submatrix of F formed by all rows x with

∑n
i=1 axi = u.

Since these submatrices are disjoint, and each of them has rank at most 1, the
subadditivity of rank implies that the rank of F is at most the number 2nW + 1 of

these submatrices. ⊓⊔

Since, by the assumption of the theorem, all bottom gates have weightsW ≤
2n/3

, and since the matrix of IPn has signum rank at least 2n/2
, the theorem follows

directly from the following claim.

11.39 Claim If a boolean function f(x, y) is computed by a depth-2 threshold

circuit with top-fanin s, then f has signum rank at most O(snW ) whereW is the

maximum weight of a bottom gate.

Proof. Let the top gate have weights w1, . . . , ws and threshold w0. Hence,

f(x, y) = 1 if and only if

∑s
i=1 wifi(x, y) − w0 ≥ 0 ,

where fi(x, y) is a threshold function computed at the i-th bottom gate. Hence, if

F, F1, . . . , Fs are the corresponding 2n × 2n
matrices, then the value of F only

depends on the signum of the matrix



11.10 Threshold circuits 327

M = w1F1 + · · · + wsFs − w0J ,

where J is the all-1 2n × 2n
matrix. By Claim ??, rk(Fi) ≤ 2nW + 1 for all

i = 1, . . . , s. Thus, the signum rank of F does not exceed

rk(M) ≤ 1 +
s∑

i=1
rk(Fi) ≤ 1 + s(2nW + 1) = O(snW ) ,

as claimed. ⊓⊔

11.40 Research Problem
Prove an exponential lower bound for unrestricted depth-2 threshold circuits.

11.10.3 Threshold circuits of depth three

In the case of depth 3, even the power of unweighted threshold circuits remains

unclear. In view of the fact that we do not have lower bounds for unbounded weight

threshold circuits of depth-2, this is not surprising: Goldmann, Razborov and Håstad

(1992) proved that every depth-d circuit with unbounded weights can be simulated

by a depth-(d+ 1) circuit consisting of majority gates—the increase in size is only

polynomial; see the survey of Razborov (1992d) for more information. Note that

such (majority) circuits constitute a subclass of unweighted threshold circuits.

Unweighted threshold circuits of depth 3 are also important due to the following

impressive result of Yao (1990). He showed that every boolean function in ACC0
is

computable by depth-3 threshold circuits of “moderate” size and with only AND

gates on the bottom level. An ACC circuit (an alternating circuit with counting

gates) of depth-d is a circuit formed by d alternating levels of unbounded-fanin

AND and OR and arbitrary modular functions MODm as gates. The class ACC0

consists of all (sequences of) boolean functions computable by constant-depth ACC
circuits of size polynomial in the number of variables; we will consider such circuits

in the next chapter.

11.41 Theorem (Yao 1990) If f ∈ ACC0 and f has n variables, then f can be
computed by an unweighted depth-3 threshold circuit of size 2(log n)O(1)

and AND
gates of fanin at most (logn)O(1) at the bottom.

We omit the somewhat technical proof of this important result.

Unfortunately, so far we cannot prove large lower bounds for unweighted thresh-

old circuits of depth 3. We only can do this under additional restrictions of the

circuit structure. Below we will prove the largest known lower bound for depth-

3 threshold circuits with AND gates on the bottom. Unfortunately, the bound is

“only” super-polynomial, and does not imply lower bounds for constant-depth ACC
circuits.

Recall that the generalized inner product function is defined as
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GIPn,s(x) =
n⊕

i=1

s∧
j=1

xij .

Håstad and Goldmann (1991) combined Lemma ?? with the Discriminator Lemma

to prove the following lower bound for depth-3 threshold circuits with restricted

bottom fanin.

11.42 Theorem (Håstad–Goldmann 1991) Any depth-3 threshold circuit which com-
putes GIPn,s and has bottom fanin at most r < s, must be of size exp(Ω(n/r4r)).

In particular, any depth-3 threshold circuit which computes GIPn,log n and has

bottom fanin at most (logn)/3, must be of size exp(nΩ(1)). Now consider the

following boolean function

fn(x) =
n⊕

i=1

log n∧
j=1

n⊕
k=1

xijk .

11.43 Theorem (Razborov–Wigderson 1993) Any unweighted threshold circuit of
depth-3 which computes fn(x) and has unbounded-fanin AND gates at the bottom,
must be of size nΩ(log n).

Proof. LetC be an unweighted depth-3 threshold circuit computing fn(x). Suppose
that C has only AND gates on the bottom (next to the inputs) level. The strategy of

the proof is to hit C with a random restriction in order to reduce the bottom fanin.

Then we apply Theorem ?? to the resulting sub-circuit.

Set p := (2 lnn)/n. Let ρ be the random restriction which assigns each variable

independently to ∗ with probability p, and to 0, 1 with probabilities (1−p)/2. Given
a boolean function g of n variables and a restriction ρ, we will denote by gρ the

function we get by doing the substitutions prescribed by ρ.
LetK be a monomial, that is, a conjunction of literals. Denote by |K| the number

of literals inK . We are going to show that for eachK we have

Prob[|Kρ| ≥ 1
3 logn] ≤ n−Ω(log n) . (11.11)

To show this, consider two cases.

Case 1: |K| ≤ (logn)2
. In this case we have

Prob[|Kρ| ≥ 1
3 logn] ≤

(
(logn)2

1
3 logn

)
· p

1
3 log n ≤ O(p logn)(log n)/3 ≤ n−Ω(log n) .

Case 2: |K| ≥ (logn)2
. In this case we have

Prob[|Kρ| ≥ 1
3 logn] ≤ Prob[Kρ ̸≡ 0] =

(
1 + p

2

)|K|

≤ n−Ω(log n) .
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Now, when we have (??), the reduction to Theorem ?? becomes easy. Namely, if

our original circuit C had size at most nϵ log n
for a sufficiently small ϵ > 0 then,

by (??), the probability that Cρ has an AND gate on the bottom level of fanin

larger than
1
3 logn would tend to 0. On the other hand, we have n logn sums

g(x) =
⊕n

k=1 xijk in fn, and the probability that some of them will be evaluated

by ρ to a constant, is also at most

(1 − p)nn logn ≤ e−pnn logn = e−2 ln nn logn = logn
n

→ 0 .

So there exists an assignment ρ such that both of these events happen. That is,

after this assignment ρ we are left with a depth-3 threshold circuit C ′
which has

bottom fanin at most
1
3 logn and computes a subfunction f ′

n of fn where none of

the sums g(x) is set to a constant. By setting (if necessary) some more variables

to constants, we will obtain a circuit of bottom fanin at most
1
3 logn computing

GIPn,log n. By Theorem ??, this is only possible if size(C ′), and hence also size(C),
is at least exp(nΩ(1)), contradicting our assumption that size(C) ≤ nϵ log n

. ⊓⊔

The reason why Theorem ?? does not imply large lower bounds for ACC circuits
*

is that Yao’s reduction (mentioned above) requires much larger lower bounds,

namely bounds of the form exp((logn)α) for α → ∞.

In Theorem ?? bottom gates are required to be AND gates. But, as mentioned by

Razborov and Wigderson (1993), Johan Håstad observed that the same argument

actually gives super-polynomial lower bounds also for unweighted depth-3 circuits

whose bottom gates are arbitrary boolean functions of restricted fanin. The restric-

tion is that, if the computed function has N variables, then the fanin of bottom

gates cannot exceed N1−ϵ
, for an arbitrarily small but fixed constant ϵ > 0. To

see this, fix a constant ϵ > 0. Let n = N ϵ/2
, m = N/n logn, and consider the

following function of N variables:

fN (x) =
n⊕

i=1

log n∧
j=1

m⊕
k=1

xijk .

11.44 Theorem Any unweighted depth-3 threshold circuit which computes fN and has
fanin at most s at the bottom must be of size at least the minimum of (m/s)Ω(log n)

and 2nΩ(1)
.

Proof. We follow the proof of Theorem ?? with p := (2 lnn)/m. The same analysis

as in Case 1 shows that for any function of at most s variables, the probability that

fρ depends on at least (logn)/3 variables does not exceed (s/m)Ω(log n)
. The rest

is the same. ⊓⊔

*

And can not imply since, by its definition, the function fn itself can be computed by a small

ACC circuit of depth 3.
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Thus, any unweighted depth-3 threshold circuit computing fN and having fanin

at most N1−ϵ
at the bottom, must be of size NΩ(log N)

.

Exercises

11.1 Show that every boolean function of n variables can be written as a DNF with

at most n2n−1
literals, and that boolean functions requiring this number of literals

exist. Hint: For the upper bound use induction on n, and use the parity function for the lower

bound.

11.2 For a bipartite graph G, let (as before) cnf(G) denote the smallest number

of clauses in a monotone CNF representing G. Define the intersection dimension
int(G) ofG as the smallest number r for which it is possible to assign each vertex v
a subset Sv ⊆ {1, . . . , r} such that u and v are adjacent inG iff Su ∩Sv = ∅. Prove
that cnf(G) = int(G). Hint: Given a monotone CNF C1 ∧ · · · ∧ Cr , let Su = {i | xu ̸∈ Ci}.

11.3 Show that a bipartite graph can be represented by a monotone Σ3 circuit with

top fanin s and middle fanin r iff it is possible to assign each vertex v a boolean
s× r matrix Av such that u and v are adjacent in G iff the product-matrix Au ·AT

v .

(over the reals) has at least one 0 on the diagonal. Hint: Previous exercise.

11.4 Show that almost all bipartite n× n graphs require monotone Σ3 circuits of

size Ω(
√
n). Hint: Previous exercise.

11.5 Research Problem. Prove or disprove: there exists a bipartite 2m×2m
graph

G such that G can be represented by a monotone Σ3 circuit of size 2polylog(m)
, but

its bipartite complementG cannot be represented by a monotoneΣ3 circuit of such

size.

Comment: Note that here G need not be explicit—a mere existence would be enough! This would

separate the second level of the communication complexity hierarchy introduced by Babai, Frankl

and Simon (1986), and thus solve an old problem in communication complexity.

11.6 (Khasin 1969) Let n = kr and consider colorings of c : [n] → [k] of the set
[n] = {1, . . . , n} by k colors. Say that such a coloring is balanced if each color is

used for the same number r of points. Given a k-element set of points, say that

it is differently colored if no two of its points get the same color. Prove that there

exist ℓ = O(kek logn) balanced colorings such that every k-element subset of [n]
is differently colored by at least one of them.

Hint: Consider independent copies c1, . . . , cℓ of a balanced coloring c selected at random from

the set of all n!/(r!)k
such colorings. Show that for every k-element subset S of [n], c colors S

differently with probability p = rk ·
(

n
k

)−1
. Use the union bound to show that, with probability

at least 1 −
(

n
k

)
(1 − p)ℓ

, every k-element subset S will be colored differently by at least one of

c1, . . . , cℓ. Recall that r = n/k and show that this probability is nonzero for ℓ = O(kek log n)
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11.7 Consider the k-threshold functionThn
k (x1, . . . , xn)which outputs 1 if and only

if x1 + · · · + xn ≥ k. Use the previous exercise to show that Thn
k can be computed

by a monotone Σ3 formula of size O(kekn logn). Hint: Each balanced k-coloring c of

{1, . . . , n} gives us a CNF formula Fc =
∧k

i=1

∨
c(j)=i

xj . Use the previous exercise to combine

them into an Or-And-Or formula for Thn
k .

11.8 (Parity decision trees) A ⊕-decision tree of n variables x1, . . . , xn is a binary

tree whose internal nodes are labeled by subsets S ⊆ [n] and whose leaves have

labels from {0, 1}. If a node has label S then the test performed at that node is to

examine the parity

⊕
i∈S xi. If the result is 0, one descends into the left subtree,

whereas if the result is 1, one descends into the right subtree. The label of the leaf

so reached is the value of the function (on that particular input). Let DISJ 2n(x, y)
be a boolean function of 2n variables defined by DISJ 2n(x, y) = 1 iff xiyi = 0 for

all i = 1, . . . , n. Show that any ⊕-decision tree for DISJ 2n requires 2Ω(n)
leaves.

Hint: Transform the decision tree into a Σ⊕
3 circuit.

11.9 Let m = ⌈log2(n + 1)⌉, and consider the function Sumn,m : {0, 1}n →
{0, 1}m

which, given a vector x ∈ {0, 1}n
outputs the binary code of the sum

x1 + x2 + · · · + xn. Show that T(Sumn,m) = m. Hint: Let y = Sumn(x). Then ym = 1
iff x1 + · · · + xn ≥ 2n−1

. Also ym−1 = 1 iff x1 + · · · + xn − ym2n−1 ≥ 2n−2
, etc.

11.10 Show that every symmetric boolean function of n variables can be computed

by an unweighted depth-2 threshold circuit using 2n + 3 gates. Hint: Let f be a

symmetric boolean function defined by S = {s1, . . . , sk} ⊆ {0, 1, . . . , n}, that is, f(x) = 1
iff

∑n

i=1 xi ∈ S. As an output gate take the threshold function Th2k
k+1. As its inputs take the

outputs of Thn
si

(x) and Thn
≤si

(x) for i = 1, . . . , k; here Thn
≤si

(x) outputs 1 iff

∑n

i=1 xi ≤ si.

11.11 Recall that the inner product function is a boolean function of 2n variables

defined by IPn(x, y) =
∑n

i=1 xiyi mod 2. Show that this function can be computed

by an unweighted threshold circuit of depth 3 using O(n) gates. Hint: Exercise ??.
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We now consider circuits of depth d ≥ 3. Out of attempts to prove lower bounds

for such circuits, two powerful methods emerged.

The first is a “depth reduction” argument: One tries to reduce the depth one layer

at a time, until a circuit of depth 2 (or depth 1) remains. The key is the so-called

Switching Lemma, which allows us to replace CNFs on the first two layers by DNFs,

thus reducing the depth by 1. This is achieved by randomly setting some variables

to constants. If the total number of gates in a circuit is not large enough and the

initial circuit depth is small enough, then we will end with a circuit computing a

constant function, although a fair number of variables were not set to constants.

For functions like the Parity function, this yields the desired contradiction.

The second major tool is a version of Razborov’s Method of Approximations,

which we have already seen applied to monotone circuits. Given a bounded-depth

circuit for a boolean function f(x), one uses this circuit to construct a polynomial

p(x) of low degree which differs from f(x) on relatively few inputs, if the circuit

does not have too many gates. This immediately implies a lower bound on the

circuit size of any boolean function, like the Majority function, which cannot be

approximated well by low-degree polynomials.

12.1 Håstad’s switching lemma

Recall that a boolean function is a t-CNF function if it can be written as an AND of

an arbitrary number of clauses, each being an OR of at most t literals (variables and
negated variables). Dually, a boolean function is an s-DNF if it can be written as an

OR of an arbitrary number of monomials, each being an AND of at most s literals.
In the “depth reduction” argument, an important step is to be able to transform

t-CNF into s-DNF, with s as small as possible. If we just multiply the clauses we

can get very long monomials, much longer than s. So the function itself may not be

an s-DNF. In this case, we can try to assign constants 0 and 1 to some variables and

“kill off” all long monomials (that is, evaluate them to 0). If we set some variable xi,

332
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say, to 1, then two things will happen: the literal ¬xi gets value 0 and disappears

from all clauses, and all clauses containing the literal xi disappear (they get value

1).
Of course, if we set all variables to constants, then we would be done: no mono-

mials at all would remain. The question becomes interesting if we must leave some

fairly large number of variables unassigned. This question is answered by the

so-called switching lemma.

Recall that a restriction is a map ρ of the set of variablesX = {x1, . . . , xn} to the

set {0, 1, ∗}. The restriction ρ can be applied to a function f(x1, . . . , xn), then we

get the function fρ (called a subfunction of f ) where the variables are set according
to ρ, and ρ(xi) = ∗ means that xi is left unassigned. Note that fρ is a function of

the variables xi for which ρ(xi) = ∗. We can then apply another restriction π of

the remaining variables to obtain a subfunction fρπ of fρ, etc.

Suppose that p is a real number between 0 and 1. A p-random restriction assigns

each variable xi a value in {0, 1, ∗} independently with probabilities

Prob[ρ(xi) = ∗] = p

and

Prob[ρ(xi) = 0] = Prob[ρ(xi) = 1] = 1 − p

2 .

Thus, on average, such a restriction leaves a p fraction of variables unassigned. We

will sometimes abbreviate the notation and write Prob[∗] rather than Prob[ρ(xi) =
∗]. Note that the probability that more than s variables remain unassigned does not

exceed

(
n
s

)
ps ≤ (epn/s)s

. This, in particular, is an upper bound on the probability

that fρ cannot be written as an s-CNF.
The Switching Lemma is a substantial improvement of this trivial observation: if

f is a t-CNF, then fρ will not be an s-DNFwith probability at most (8pt)s
. Important

here is that this “error probability” does not depend on the total number of variables.

In fact, we have an even stronger statement (see Exercise ?? for why this statement

is stronger): fρ will have a minterm longer than s with at most this probability.

Recall that a minterm of a boolean function f is a minimal (under inclusion) subset

of its variables such that the function can be converted into the constant-1 function

by fixing these variables to constants 0 and 1 is some way. Let min(f) denote the
length of the longest minterm of f .

Switching Lemma Let f be a t-CNF, and let ρ be a p-random restriction. Then
Prob[min(fρ) > s] ≤ (8pt)s.

This version
*
of the Switching Lemma is due to Håstad (1986, 1989). Somewhat

weaker versions of this lemma were proved earlier by Ajtai (1983), Furst, Saxe, and

Sipser (1984), and Yao (1985). All these proofs used probabilistic arguments. A novel,

non-probabilistic proof was later found by Razborov (1995), and we present it in

the next section. Actually, his argument also yields an upper bound Prob[D(fρ) >

*

With a smaller constant 5 instead of 8.
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s] ≤ (8pt)s
, whereD(f) is the minimum depth of a decision tree computing f ; see,

for example, a survey of Beame (1994) for details.

12.2 Razborov’s proof of the switching lemma

Throughout this section, let s and ℓ be integers with 1 ≤ s ≤ ℓ ≤ n, where n is

the total number of variables. We denote by Rℓ
the set of all restrictions leaving

exactly ℓ variables unassigned. Hence,

|Rℓ| =
(
n

ℓ

)
2n−ℓ .

Recall that a minterm of f is a restriction ρ : [n] → {0, 1, ∗} such that fρ ≡ 1 and

which is minimal in the sense that unspecifying any single value ρ(i) ∈ {0, 1}
already violates this property. The support of ρ is the set of all bits i with ρ(i) ̸= ∗,
and the length of ρ is the size of its support. Let min(f) be the length of the longest

minterm of f , and let

Badf (ℓ, s) :=
{
ρ ∈ Rℓ | min(fρ) > s

}
.

In particular, Badf (ℓ, s) contains all restrictions ρ ∈ Rℓ
for which fρ cannot be

written as an s-DNF.

12.1 Lemma (Razborov 1995) If f is a t-CNF then

|Badf (ℓ, s)| ≤ |Rℓ−s| · (2t)s .

Before giving the proof this lemma, let us show that it indeed implies the Switch-

ing Lemma. To see this, take a random restriction ρ in Rℓ
for ℓ = pn, where n is the

total number of variables. Then, by this lemma, for every p ≤ 1/2, the probability
that fρ cannot be written as an s-DNF is at most

|Badf (ℓ, s)|
|Rℓ|

≤
(

n
ℓ−s

)
2n−ℓ+s(2t)s(
n
ℓ

)
2n−ℓ

≤
( ℓ

n− ℓ

)s

(4t)s =
( 4tp

1 − p

)s

≤ (8pt)s .

Proof of Lemma ??. A cute idea of this proof (which itself is relatively simple) is to

use the following “coding principle”:

In order to prove that some set A cannot be very large, try to construct a

mapping Code : A → B of A to some set B which is a priori known to be

small, and give a way to retrieve each element a ∈ A from its code Code(a).
Then Code is injective, implying that |A| ≤ |B|.

Let F be a t-CNF formula for f . Fix an order of its clauses and fix an order of literals

in each clause. We want to upper-bound the number |Badf (ℓ, s)| of restrictions
ρ ∈ Rℓ

that are “bad” for f , that is, for which the subfunction fρ contains a minterm
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of length > s. Our goal is to use the underlying CNF formula F to construct an

encoding

Code : Badf (ℓ, s) → Rℓ−s × S with S ⊆ {0, 1}ts+s
and |S| ≤ (2t)s

such that, knowing the formula F , we can reconstruct a restriction ρ from Code(ρ).
By the coding principle, we will be then done.

To construct the desired encoding, fix a bad restriction ρ ∈ Badf (ℓ, s). We

know that the subfunction fρ must contain a minterm π′
of length s′ ≥ s+ 1. By

unspecifying an arbitrary subset of s′ − s variables, we truncate π′
to π so that

π has length exactly s. After ρ is applied to F , some clauses get the value 1 and

disappear, while some literals get the value 0 and disappear from the remaining

clauses. Moreover, ρ cannot set any clause to 0, for otherwise we would have fρ ≡ 0.
Further, we have that fρπ cannot be constant because π′

was a minterm of fρ.

Consider the first clause C1 of F which is not set to 1 by ρ but is set to 1 by ρπ.
Let π1 be the portion of π that assigns values to variables in C1. Let also π1 be the

uniquely determined restriction which has the same support as π1 and does not set
the clause C1 to 1. That is, π1 evaluates all the literals “touched” by π1 to 0.

Define the string a⃗1 ∈ {0, 1}t
based on the fixed ordering of the variables in

clause C1 by letting the j-th component of a⃗1 be 1 if and only if the j-th variable in

C1 is set by π1 (and hence, also by π1). That is, a⃗1 is just the characteristic vector

of the (common) support of restrictions π1 and π1. Note that there must be at least

one 1 in a⃗1 (the support of π1 cannot be empty). Here is a typical example:

C1 = x3 ∨ ¬x4 ∨ x6 ∨ x7 ∨ x12
π1 = ∗ 1 ∗ 1 0
π1 = ∗ 1 ∗ 0 0
a⃗1 = 0 1 0 1 1

The main property of the string a⃗1 is that knowing C1 and a⃗1 we can reconstruct
π1: string a⃗1 tells us what literals of C1 must be set by the restriction π1, and the

property that C1 does not evaluate to 1 allows us to infer the restriction itself.

Now, if π1 ̸= π, we repeat the above argument with π \ π1 in place of π, ρπ1 in

place of ρ and find a clause C2 which is the first clause not set to 1 by ρπ1. Based on
this we generate π2, π2 and a⃗2 as before. Continuing in this way we get a sequence

of clauses C1, C2, . . .. Each Ci contains some variable that was not in Cj for j < i,
so we must stop after we have identifiedm ≤ s clauses. Hence, π = π1π2 . . . πm.

Let b⃗ ∈ {0, 1}s
be a vector that indicates for each variable set by π (which are

the same as those set by π = π1π2 . . . πm) whether it is set to the same value to

which π sets it. (Recall that πi must set at least one literal of Ci to 1 and may set

some of them to 0, whereas πi sets all these literals to 0.) We encode the restriction

ρ by the string

Code(ρ) :=
〈
ρπ1π2 . . . πm, a⃗1, . . . , a⃗m, b⃗

〉
.
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Our goal is to show that: (1) the mapping ρ 7→ Code(ρ) is injective, and (2) its range
is not too large. To achieve the first goal, it is enough to show how to reconstruct ρ
uniquely, given Code(ρ).

First note that it is easy to reconstruct π1. Identify the first clause of F which is

not set to 1 by ρπ1π2 . . . πm. Since none of the πi sets a clause to 1, this must be

clause C1. Now use a⃗1 to identify the variables of C1 that are set by π1, and use

b⃗ to identify how π1 would set these variables. Thus we have reconstructed the

sub-restrictions π1 and π1. Knowing these sub-restrictions and the entire restriction
ρπ1π2 . . . πm we can reconstruct the restriction ρπ1π2 . . . πm.

Now we can identify C2: it is the first clause of F which is not set to 1 by

ρπ1π2 . . . πm. Then we use a⃗2 to identify the variables of C2 set by π2, and use

b⃗ to identify how π2 would set these variables. Continuing in this way, we can

reconstruct the restriction π1π2 . . . πm and thus the original restriction ρ.
To finish the proof of the lemma, it is enough to upper-bound the range of the

mapping Code. First, observe that restrictions ρπ1π2 . . . πm belong to Rℓ−s
. Hence,

the number of such restrictions does not exceed |Rℓ−s|. The number of strings

b⃗ ∈ {0, 1}s
is clearly at most 2s

. Finally, each (⃗a1, . . . , a⃗m) is a string in {0, 1}mt

with the property that each substring a⃗j ∈ {0, 1}t
has at least one 1 and the total

number of 1s in all a⃗j is s. The number of such strings (⃗a1, . . . , a⃗m) with ki ones

in a⃗i is
m∏

i=1

(
t

ki

)
≤

m∏
i=1

tki = t
∑m

i=1
ki = ts .

The number of positive integers k1, . . . , km such that k1 + · · ·+km = s is
(

s−1
m−1

)
≤

2s
(show this!). Thus the range of Code(ρ) does not exceed |Rℓ−s| × (2t)s

, as

desired. ⊓⊔

12.3 Parity and Majority are not in AC0

An alternating circuit of depth d, or an AC circuit, is a circuit formed by d alter-
nating levels of unbounded-fanin AND and OR gates; inputs are variables and

their negations. The class
* AC0

consists of all (sequences of) boolean functions

computable by constant-depth alternating circuits of size polynomial in the number

of variables. We will now use the Switching Lemma to show that the parity function

Parityn(x) = x1 + x2 + · · · + xn mod 2

cannot be computed by such circuits of polynomial size; that is,

Parityn ̸∈ AC0 .

*

Usually, ACk
denotes the class of all boolean functions computable by AC circuits of depth

d = O(logk n). Thus, superscript “0” tells us that we are dealing with constant-depth circuits.
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It can be shown that, for every d ≥ 2, the parity function can be computed by

depth-(d+ 1) circuits of size 2O(n1/d)
(see Exercise ??). In particular, if we allow

circuit depth to be about logn/ log logn then Parityn(x) can be computed using

only O(n2/ logn) gates.
Theorem ?? below shows that the upper bound 2O(n1/d)

is almost optimal. The

theorem itself is a direct consequence of a fact that every function in AC0
can be

reduced to a constant function by setting relatively few variables to constants.

Let R(f) denote the minimal number r such that f can be made constant by

fixing r variables to constants 0 and 1. The larger R(f) is, the more “robust” the

function is. For example, R(f) = 1 if f is an OR or an AND of literals, whereas

R(f) = n if f is the parity of n variables.

The following theorem states that functions computable by small circuits of

constant depth are not robust enough.

12.2 Theorem If a boolean function f ofn variables can be computed by a depth-(d+1)
alternating circuit of size S, then

R(f) ≤ n− n

cd(logS)d−1 + 2 logS ,

where cd > 0 is a constant depending only on d.

This gives the following lower bound on the size S:

2 logS ≥ n

cd(logS)d−1 − (n−R(f)) . (12.1)

Proof. Fix a depth-(d+ 1) circuit of size S computing f . Our first goal is to reduce

the fanin of gates on the first (next to the inputs) layer. Suppose that they are OR

gates (a symmetric argument applies if they are AND gates).

We think of each OR gate on the bottom layer as a 1-DNF.We apply the Switching

Lemma with t = 1, s = 2 logS and Prob[∗] = p := 1/16, and deduce that after a

random restriction each of the these 1-DNFs becomes an s-CNF (in fact, a single

clause of length ≤ s) with probability at least

1 − (8pt)s = 1 − 2−s = 1 − S−2 .

Since we have at most S of the 1-DNFs, this in particular implies that there is a

restriction that makes all these 1-DNFs expressible as an OR of at most s input
literals. We apply such a restriction, and what we obtain is a circuit of depth d+ 1
such that each bottom gate has fanin at most k := 2 logS and the circuit still

computes a subfunction of f on n1 = n/32 variables.

We now apply the Switching Lemma to the first two bottom layers of the obtained

circuit with Prob[∗] = q := 1/(16k) and both s and t equal to k. We get that, for

each AND gate on layer 2, after the restriction the gate can be replaced by a k-DNF
with probability at least

1 − (8qk)k = 1 − 2−k = 1 − S−2 .
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Fig. 12.1 After the Switching Lemma is applied to the CNFs computed at the first two levels (from

the bottom), the levels 2 and 3 can be collapsed into one level.

Hence, there is a restriction for which this is true for all the (at most) S gates at

layer 2. We apply this restriction, replace each layer-2 gate with a k-DNF, and use

associativity to collapse the OR gate of each DNF into an OR gates of the second

layer of the original circuit. In this way we collapse layer 2 with layer 3 (see Fig. ??).
Now we have a circuit of depth d that computes a subfunction of f on

qn1 = n

162k
= n

ck
(c = 256)

variables, and such that every bottom gate has fanin at most k.
If we repeat the same argument another d − 2 times, we will eventually end

up with a circuit of depth 2 such that the fanin of the bottom gates is at most

k = 2 logS and the circuit computes a subfunction of f on

m := n

(ck)d−1 = n

cd(logS)d−1

variables, where cd is a constant depending only on d. Every k-DNF (as well as

every k-CNF) can be evaluated to a constant 1 (resp., constant 0) by setting at most

k = 2 logS variables to constants.We therefore have that the original function f can
be made constant by fixing n−m+k variables of f implying thatR(f) < n−m+k,
as desired. ⊓⊔

Since R(Parityn) = n, (??) immediately yields the following lower bound for

the parity function.

12.3 Theorem (Håstad 1986) Any depth-(d + 1) alternating circuit computing the
parity of n variables requires 2Ω(n1/d) gates.

12.4 Remark (Majority function) Theorem ?? can be used to show that other “simple”

boolean functions require large constant-depth circuits as well. For this, it is enough

to show how, from a depth-d circuit for f , we can construct a circuit of almost the
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same size and depth computing the parity function Parityn(x). To illustrate this,
let us consider the majority function Majn(x) of an even number n of variables.

Note that, when directly applied, the lower bound (??) will only give a constant

lower bound on for Majn, becauseR(Majn) ≤ n/2. To obtain a larger lower bound,
we take an arbitrary depth-d circuit computing Majn. Let S be its size. Having such

a circuit, we can compute all functions

E
n/2
k (x) := Thn/2

k (x) ∧ ¬Thn/2
k+1(x)

for all odd k ≤ n/2 using depth-d circuits of size O(nS). Now, Parityn/2(x) is
just an OR of these functions, implying that Parityn/2 can be computed by a depth-

(d+ 1) circuit of size O(nS). Thus, Theorem ?? implies that Majn requires depth-d

circuits of size S = 2Ω(n1/d)
.

12.5 Remark We know that the majority function does not belong to AC0
. This

function outputs value 1 on all inputs of weight n/2, and outputs value 0 on inputs

of weight smaller than n/2; the weight of a binary vector is the number of ones in

it. But what if we will only require that the circuit outputs 0 on inputs of “small”

weight, and outputs 1 on inputs of “large” weight; on other inputs the circuit can

output any value. It turns out that this relaxed problem is actually much easier.

A 1/4-approximate selector is any boolean functionwhose value is 0 if the number

of ones in the input is at most n/4, 1 if the number of ones is at least 3n/4, and can
be either 0 or 1 otherwise. Such a function provides a rough estimate of the number

of ones and is extremely useful in parallel computation. It was shown by Ajtai

(1983), and Ajtai and Ben-Or (1984) that there exist polynomial-size, constant-depth

circuits that compute a 1/4-approximate selector function.

12.6 Remark By Theorem ??, any polynomial-size circuit of constant depth can be

made to output a constant by fixing n− n/polylog(n) inputs. That is,

f ∈ AC0
implies R(f) ≤ n− n

polylog(n) .

This yields a superpolynomial size lower bound for a constant depth circuit comput-

ing any function that cannot be made constant by setting n− n/polylog(n) input
bits. However, it does not say anything about functions which can be made constant

by setting this many bits. Can one prove at least super-linear lower bounds for such

functions? Motivated by this question, Chaudhuri and Radhakrishnan (1996) used a

direct combinatorial argument to prove that if a boolean function f of n variables

can be computed by a depth-k alternating circuit of size S, then

S = Ω(R(f)1+ 1
4k ) .

Now, if f is any 1/4-approximate selector, then R(f) ≥ n/4, and we obtain a

super-linear lower bound S = Ω(n1+1/4k ) on the size S of any depth-k circuit



340 12 Large-Depth Circuits

computing f . They also proved that a 1/4-approximate selectors computable by a

depth-k circuit of size S = Ω(n1+1/2k ) exist.

Using similar arguments as in the proof of Theorem ??, the following general

lower bound for bounded-depth circuits can be derived.

Let C(f) denote the minimum number k such that f can be written as a k-DNF
and as a k-CNF. The number C(f) is also known as the certificate complexity of f .

12.7 Theorem Let f be a boolean function computable by a depth-d circuit of size S,
and let ρ be a p-random restriction with p = 16−dk−d+1. Then

Prob[C(fρ) > k] ≤ S · 2−k .

Proof. (Due to Linial, Mansour and Nisan 1993) We view the restriction ρ as ob-

tained by first having a restriction with Prob[∗] = 1/16, and then d−1 consecutive

restrictions each with Prob[∗] = 1/(16k).
With high probability, after the first restriction, at the bottom level of the circuit

all fanins are at most k. To see this, consider two cases for each gate at the bottom

level of the original circuit.

Case 1: The original fanin is ≥ 2k. In this case, the probability that the gate was

not eliminated by ρ, that is, that no input to this gate got assigned a 0 if this

is an AND gate, or no input got assigned a 1 if this is an OR gate is at most

((1 + p)/2)2k < (0.6)2k < 2−k
.

Case 2: The original fanin is ≤ 2k. In this case, the probability that at least k inputs

got assigned a ∗ is at most

(2k
k

)
pk ≤ (2e)k(1/16)k < 2−k

.

Thus the probability of failure at the first stage is at mostm12−k
, wherem1 is

the number of gates at the bottom level.

We now apply d− 2 more restrictions with Prob[∗] = 1/(16k). After each of

these, we use the Switching Lemma (with t = k) to convert the lower two levels

from CNF to DNF (or vice versa), and collapse the second and third levels (from

the bottom) to one level, reducing the depth by one. For each gate at distance two

from the inputs, the probability that it has a minterm (respectively, maxterm) of

size larger than k is bounded by (8pk)s = 2−k
. The probability that some of these

gates has a minterm (respectively, maxterm) of size larger than k is no more than

mi2−k
, wheremi is the number of gates of level i of the original circuit.

After these d− 2 stages we are left with a CNF (or DNF) formula of bottom fanin

at most k. We now apply the last restriction with Prob[∗] = 1/(16k) and, by the

Switching Lemma, get a function fρ with min(fρ) ≤ k. The probability of failure

at this stage is at most (8pk)k = 2−k
.

To compute the total probability of failure, we observe that each gate of the

original circuit contributed a 2−k
probability of failure exactly once. ⊓⊔
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12.3.1 Majority of AC0 circuits

Aspnes, Beigel, Furst and Rudich (1994) proved that the parity function remains

hard to compute by shallow circuits, even if a majority gate is allowed as an output

gate. By an output-majority circuit we will mean an unbounded fanin circuit over

{∧,∨,¬} whose last (output) gate is a majority gate Maj; recall that this function
outputs 1 iff at least half of its inputs are 1s.

12.8 Theorem (Aspnes et al. 1994) Every majority-output circuit of depth d+ 1 for
Parityn(x) requires size at least 2Ω(n1/4d).

Proof. We first show that AC-circuits of small depth and small size can be approxi-

mated well enough by low-degree polynomials. To spare parenthesis, we will often

say that a function g(n) “is at most about” h(n) if g(n) = O(h(n)).

12.9 Claim For any ϵ > 0 and any boolean function f computed by an AC-circuit

of depth d and size S, there exists a real multivariate polynomial of degree at most

about ((log(S/ϵ) logS)d
which computes f for all but at most ϵ2n

input vectors.

Proof. Set r := ⌊log(S/ϵ)⌋. Consider the distribution of the inputs of each gate

when the inputs of the circuit are chosen uniformly at random. By Lemma ??, usingS
as an upper bound on the number of inputs to a gate g, there exists some polynomial

of degree atmost about r logS which computes the value of the gatewith probability

at least 1 − 2−r ≥ 1 − ϵ/S when the inputs to the circuit are generated uniformly.

The composition of these polynomials is a polynomial of degree at most about

(r logS)d
which computes f with probability at least 1 − S(ϵ/S) = 1 − ϵ, that is,

which computes f for all but at most ϵ2n
inputs. ⊓⊔

We now add a majority gate on the top of the circuit and obtain the following

analog of Claim ??. Recall from Section ?? that a real polynomial p(x) signum-
represents a given boolean function f(x) if p(x) > 0 for all x ∈ f−1(1), and
p(x) < 0 for all x ∈ f−1(0).

12.10 Claim For any ϵ > 0 and any boolean function computed by a majority-

output circuit of depth d+ 1 and size S, there exists a real multivariate polynomial

of degree at most about ((log(S2/ϵ) logS)d
which signum-represents f for all but

at most ϵ2n
input vectors.

Proof. Suppose that the majority gate has k inputs; hence, k ≤ S. For the subcircuit
generating the i-th input, use Claim ?? to obtain a polynomial pi of degree at most

about (log(kS/ϵ) logS)d
which computes that input for all but ϵ2n/k inputs. Then∑k

i=1 pi − k/2 is a polynomial of degree at most about (log(S2/ϵ) logS)d
which

signum-represents f for all but at most ϵ2n
inputs. ⊓⊔

We now turn to the actual proof of Theorem ??. Suppose the size of the circuit is
S. Then by Claim ?? (applied with, say, ϵ = 1/4), there exists a real polynomial p
of degree k at most about (log(4S2) logS)d = (logS)2d

which signum-represents



342 12 Large-Depth Circuits

Parity(x) for all but at most 2n/4 input vectors. But by Corollary ?? the degree of
p must be k = Ω(

√
n), and thus logS = Ω(n1/4d). ⊓⊔

12.11 Remark Recently, there was an interesting development concerning the size

of constant-depth circuits computing the clique function CLIQUE(n, k). Recall
that this function has

(
n
2
)
variables xij , one for each potential edge in a graph on a

fixed set of n vertices; the function outputs 1 iff the associated graph contains a

clique (complete subgraph) on some k vertices. It is easy to see that this function

can be computed by a depth-2 circuit (a monotone DNF) of size

(
n
k

)
≤ nk

. Ross-

man (2008) showed that, for every fixed integer k, any depth-d circuit computing

CLIQUE(n, k) must have cdn
k/4

gates. Note that only the multiplicative constant

in the lower bound depends on the circuit depth.

12.3.2 Parity is even hard to approximate

We have seen that shallow circuits of small size cannot compute the parity function

Parity(x) exactly. But perhaps such circuits can at least approximate this function?
Note that a trivial circuit, which outputs 0 on all input vectors, agrees withParity(x)
on a 1/2 fraction of all 2n

inputs. It turns out that this is almost the best shallow

circuits can do.

12.12 Theorem (Håstad 1986) Every alternating depth-d circuit of size S ≤ 2o(n1/d)

can agree with Parity(x) on at most a 1/2 + 1/S fraction of input vectors.

Proof. We follow the simplified proof due to Klivans and Vadhan as described in

the survey of Viola (2009). Let F (x) be a depth-d circuit over {∧,∨,¬} of size

S ≤ 2o(n1/d)
, and suppose that it agrees with Parity(x) on more than a 1/2 + 1/S

fraction of input vectors. Hence,

Prob[F (x) = Parity(x)] ≥ 1
2 + 1

S
,

where x is a random vector uniformly distributed in {0, 1}n
. We will use F (x)

to design a majority-output circuit of depth d and size 2o(n1/d)
which computes

Parity(x) on all inputs, contradicting Theorem ??. For this purpose, associate with
each vector a ∈ {0, 1}n

the circuit

Fa(x) := F (a⊕ x) ⊕ Parity(a) .

Each circuit Fa has the same depth and size as the original circuit F . Moreover, for

any fixed x ∈ {0, 1}n
, we have that

Fa(x) ⊕ Parity(x) = F (a⊕ x) ⊕ Parity(a) ⊕ Parity(x)
= F (a⊕ x) ⊕ Parity(a⊕ x) .
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Thus for every fixed x ∈ {0, 1}n
, we have that

Prob[Fa(x) = Parity(x)] ≥ 1
2 + ϵ with ϵ = 1

S
,

where this time a is a random vector uniformly distributed in {0, 1}n
. Now pick

m := nS2
independent copies a1, . . . , am of a, and consider the (random) output-

majority circuit

F (x) := Maj(Fa1(x), . . . , Fam
(x)) .

By the Threshold Trick (Lemma ??; see also the proof of Theorem ??), the probability
that this circuit makes an error on at least one of all 2n

possible inputs is at most

2ne−2ϵ2m = 2ne−2n ≪ 1. Therefore, there must be a setting of the random inputs

which gives the correct answer for all inputs. The obtained circuit is no longer

probabilistic, and its size is at mostmS + 1, which is polynomial in S, the size of
the original circuit F . ⊓⊔

12.4 Constant-depth circuits and average sensitivity

We will call two boolean vectors (assignments) x, y ∈ {0, 1}n neighbors and write

x ∼ y, if x and y differ in exactly one position. The sensitivity, s(f, x), of a boolean
function f on an assignment x ∈ {0, 1}n

is the number of neighbors of x on which

f takes different value than f(x):

s(f, x) =
∣∣{y : y ∼ x and f(y) ̸= f(x)

∣∣
Sensitivity is an important measure of boolean functions: as shown by Khrapchenko

(1971), high sensitivity implies large formula size (see Theorem ??). Namely, if we

set for a ∈ {0, 1},
da(f) := 1

|f−1(a)|
∑

x∈f−1(a)

s(f, x) ,

then Theorem ?? implies that every DeMorgan formula computing f must have at

least d0(f) · d1(f) leaves.
We are now going to show that high “average sensitivity” forces large circuits of

constant depth as well. The average sensitivity, as(f), of f is the expected sensitivity

of f on a random assignment:

as(f) := 2−n
∑

x

s(f, x) .

For example, if f(x) = Parity(x) is the parity of n variables, then s(f, x) = n for

every assignment x, implying that as(f) = n. We have already seen that Parity(x)
requires constant-depth circuits of exponential size. It turns out that any boolean

function of large average sensitivity requires large constant-depth circuits.
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12.13 Theorem (Boppana 1997) For every boolean function f , every depth-d circuit
computing f must have a number of gates that is exponential in as(f)1/(d−1).

A somewhat weaker lower bound 2Ω(as(f)1/d)
was proved earlier by Linial,

Mansour and Nisan (1993) using Fourier transforms of boolean functions. Actually,

they proved a more general result: for every t ≥ 0, every depth-d circuit computing

f requires at least

2Ω(t1/d)
∑

S⊆[n]:|S|>t

f̂(S)2

gates, where f̂(S) is the S-th Fourier coefficient of f .
As an immediate consequence, we obtain that all functions in AC0

have small

average sensitivity.

12.14 Corollary If a boolean function f can be computed by an alternating depth-d
circuit of size S, then as(f) = O(logd−1 S).

We split the proof of Theorem ?? into a sequence of lemmas, each of which might

be of independent interest. We first show that depth-2 circuits have low average

sensitivity.

12.15 Lemma If f is a k-DNF or a k-CNF function, then as(f) ≤ 2k.

Proof. Let f be a k-DNF function. (The k-CNF case is dual.) Take an assignment x
for which f(x) = 1. Then there must be a monomialM of length at most k such

thatM(x) = 1. Hence,

s(f, x) = |{y | x ∼ y, f(y) = 0}| ≤ |{y | x ∼ y,M(y) = 0}| ≤ k .

Since |f−1(1)| ≤ 2n
, Exercise ?? yields

as(f) = 1
2n−1

∑
x∈f−1(1)

s(f, x) ≤ k

2n−1 2n = 2k .⊓⊔

LetQn be the n-dimensional binary hypercube. Recall that this is a graph whose

vertices are vectors in {0, 1}n
. Two vectors x, y ∈ {0, 1}n

are adjacent in Qn,

written as x ∼ y, if x and y differ in exactly one position. This is a regular graph of

degree n with 2n
vertices and n2n−1

edges. A random edge is a random variable

(x, y) that is uniformly distributed over the set Qn of all edges.

12.16 Lemma If (x, y) is a random edge in Qn, then

as(f) = n · Prob[f(x) ̸= f(y)] .

Proof. Every boolean function f of n variables defines a bipartite graph Gf with

parts f−1(0) and f−1(1), where (x, y) ∈ f−1(0) × f−1(1) is an edge of Gf iff

y = x⊕ei for some i ∈ [n]. Every vertex ofQn has degreen. By Euler’s theorem, the

sum of degrees of all vertices in any graph is equal to two times the number of edges.
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Thus, there are n2n/2 = n2n−1
edges in Qn. By Exercise ??, as(f) = |Gf |/2n−1

.

Hence, (x, y) belongs to Gf with probability

Prob[f(x) ̸= f(y)] = |Gf |/n2n−1 = (as(f)2n−1)/n2n−1 = as(f)/n . ⊓⊔

12.17 Lemma (Sensitivity of restrictions) If f is a boolean function, and ρ is a p-
random restriction, then E[as(fρ)] = p · as(f).

Proof. Let x ∼ y be a random edge of Qn, independent of ρ. Let i be the unique
position for which xi ̸= yi. Let ρx denote the assignment in {0, 1}n

whose j-th
position (j = 1, . . . , n) is xj if ρ assigns ∗ to this position (that is, ρj = ∗), and
otherwise is the bit 0 or 1 assigned by ρ to that position (that is, ρj = 0 or ρj = 1).
If for example, x = (1, 1, 0, 1, 1) and ρ = (0, ∗, 1, ∗, 0) then ρx = (0, 1, 1, 1, 0).

Observe that ρx = ρy if ρi ̸= ∗, and ρx ∼ ρy if ρi = ∗. Let (x′, y′) be the condi-
tional random variable (ρx, ρy) conditioned on the event ρi = ∗. By the implication

ρi = ∗ ⇒ ρx ∼ ρy, the pair (x′, y′) is always an edge of Qn. Furthermore, (x′, y′)
is a random edge of Qn, because we favored no particular edge. By Lemma ??,

E[as(fρ)] = E[n · Prob[f(ρx) ̸= f(ρy)]|ρ]
= n · E[Prob[f(ρx) ̸= f(ρy)]|ρ]
= n · Prob[fρ(x) ̸= fρ(y)]
= n · Prob[f(ρx) ̸= f(ρy)]
= n · Prob[ρx ̸= ρy ∧ f(ρx) ̸= f(ρy)]
= n · Prob[ρi = ∗ ∧ f(ρx) ̸= f(ρy)]
= n · Prob[ρi = ∗] · Prob[f(ρx) ̸= f(ρy)|ρi = ∗]
= n · p · Prob[f(ρx) ̸= f(ρy)|ρi = ∗]
= n · p · Prob[f(x′) ̸= f(y′)]
= p · as(f) .⊓⊔

As the next step in our proof of Theorem ??, we give a version of the Switching

Lemma that applies to a collection of functions. Let F be a nonempty, finite set of

boolean functions. The DNF complexity, dnf(F ), of F is the minimum number k
such that every function f ∈ F can be written as a k-DNF. The CNF complexity
cnf(F ) is defined similarly. If ρ is a restriction, define Fρ = {fρ | f ∈ F}.

12.18 Lemma Let F be a nonempty, finite set of boolean functions, and let ρ be a
p-random restriction. If 16p · cnf(F ) ≤ 1 then E[dnf(Fρ)] ≤ log(4|F |).

Proof. Let t be a non-negative integer, and let D := dnf(Fρ). By the Switching

Lemma and our assumption 16p · cnf(F ) ≤ 1, we have

Prob[D > t] ≤
∑
f∈F

Prob[dnf(fρ) > t] ≤
∑
f∈F

(8p · cnf(f))t ≤ |F |/2t .

Let l be an integer such that 2l < |F | ≤ 2l+1
. Then
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E[D] =
∞∑

t=1
Prob[D ≥ t]

=
l∑

t=1
Prob[D ≥ t] +

∞∑
t=l+1

Prob[D ≥ t]

≤ l +
∞∑

t=l+1
Prob[D ≥ t] ≤ l +

∞∑
t=l+1

|F |/2t

= l + |F |/2l ≤ log |F | + 2 = log(4|F |) . ⊓⊔

By a (d,w, k)-circuit we will mean an unbounded-fanin circuit such that: (i) its

depth is precisely d+ 1, (ii) every gate on the bottom (next to inputs) level has fanin

at most k, and (iii) each of the remaining levels has at most w gates.

12.19 Lemma If f is a boolean function that is computable by a (d,w, k)-circuit, then
as(f) ≤ 2k[16 log(4w)]d−1 .

Proof. The proof is by induction on d. In the base case d = 1 we have either a

k-DNF or a k-CNF, and the result follows from Lemma ??. For the induction step,

assume that d ≥ 2. If k = 0 then f is a constant function, and hence has average

sensitivity 0. So assume that k ≥ 1, and take a (d,w, k)-circuit that computes f ;
by duality, we may assume that the bottom level consists of OR gates. Let F be

the set of functions computed by the gates at the next level; hence, |F | ≤ w and

cnf(F ) ≤ k.
Let ρ be a p-random restriction, where p = 1/16k. Set l := dnf(Fρ). By merging

levels 2 and 3, we see that fρ is computable by a (d− 1, w, l)-circuit. So we may

apply the induction hypothesis with f := fρ and k := l. Then

as(f) = 1
p

E[as(fρ)] by Lemma ??

= 16k · E[as(fρ)] since p = 1/16k
≤ 16k · E

[
2l(16 log(4w))d−2]

by the induction hypothesis

= 32k · (16 log(4w))d−2 · E[l]
≤ 32k · (16 log(4w))d−2 · log(4w) by Lemma ??

= 2k(16 log(4w))d−1 . ⊓⊔

p@plus6p@

Proof of Theorem ??addpunct: We can nowfinish the proof of Theorem ??. as follows.
Let C be a circuit of depth d + 1 and size w that computes f Let C ′

be C with

a “dummy” level of gates inserted between inputs and the bottom level, whose

gates have fanin 1. Then C ′
is a (d+ 1, w, 1)-circuit that computes f . Now apply

Lemma ??. ⊓⊔

endpefalse
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O’Donnell andWimmer (2007) used Boppana’s theorem to show that themajority

function (like the parity function) is even hard to approximate by AC0
circuits.

Namely, they showed that if a boolean function f(x) coincides with the majority

function Majn(x) on all but an ϵ fraction of all 2n
input vectors, where ω(1/

√
n) ≤

ϵ ≤ 1/2 − ω(1/
√
n), then as(f) = Ω(as(Majn)). Using the fact that as(Majn) =

Θ(
√
n) (see Exercise ??), Theorem ?? implies

12.20 Theorem (O’Donnell–Wimmer 2007) For any constant ϵ > 0, every alternating
depth-d circuit of size 2o(n1/(2d−2)) can agree with Majn(x) on at most a 1−ϵ fraction
of input vectors.

12.5 Circuits with parity gates

We already know that the Parity function cannot be computed by constant depth

circuits using a polynomial number of unbounded-fanin AND and OR gates. It is

natural, then, to extend our circuit model and allow Parity functions to be used as

gates as well. What functions remain difficult to compute in this model? We will

show that the Majority function Majn, which accepts an input vector of length n
iff it has at least as many 1s as 0s, is one such function.

In the case of monotone circuits, we obtained high lower bounds on circuit size

by approximating them with CNFs and DNFs. In the case of non-monotone circuits

of bounded depth, similar bounds can be obtained via particular approximations

by polynomials. (We have already used approximation by polynomials in the proof

of Theorem ??.) In order to show that a given boolean function f requires large

circuits we then argue as follows:

1. Show that functions, computable by small circuits, can be approximated by

low-degree polynomials.

2. Prove that the function f is hard to approximate by low-degree polynomials.

To achieve the first goal, one takes a small circuit computing the given boolean

function f . Each subcircuit computes some boolean function. One tries to inductively

assign each gate a low-degree polynomial over GF(2) which approximates the

function computed at that gate well enough. This is done in a bottom-up manner.

The main problem is to approximate OR and AND gates without a big blow-up in

the degree of resulting polynomials.

The AND of n variables x1, . . . , xn is represented by the polynomial consisting

of just one monomial

∏n
i=1 xi, and the OR is represented by the polynomial 1 −∏n

i=1(1 − xi). These polynomials correctly compute AND and OR on all input

vectors x, but the degree of these polynomials isn. Fortunately, Lemma ?? shows that
the degree can be substantially reduced if we allow errors: for every integer r ≥ 1,
and every prime power q ≥ 2, there exists a multivariate polynomial p(x) of n
variables and of degree at most r(q− 1) over GF(q) such that dist(p,orn) ≤ 2n−r

.

Here, as before, dist(f, g) is the distance between two function f, g : Fn → F
defined as the number
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dist(p, f) = |{x ∈ {0, 1}n | p(x) ̸= f(x)}|

of boolean inputs x on which the polynomial p outputs a wrong value. Using this
result we can upper bound the degree of polynomials approximating small size

circuits.

12.21 Lemma Let f(x) be a boolean function of n variables, and suppose that f can
be computed by a depth-d circuit over the basis {∧,∨,⊕} usingM gates. Then, for
every integer r ≥ 1, there exists a polynomial p(x) of degree at most rd over GF(2)
such that

dist(f, p) ≤ M · 2n−r .

Proof. Our goal is to show that, if a boolean function f can be computed by a

small-depth circuit with a small number of AND, OR and Parity gates, then f can be

approximated well enough by a low-degree polynomial. This is done in a bottom-up

manner. Input literals xi and 1 − xi themselves are polynomials of degree 1, and
need not be approximated. Also, since the degree is not increased by computing

the sum

⊕t
i=1 pi(x), parity gates do not have to be approximated either.

To approximate OR and AND gates we apply Lemma ?? with q = 2. By this

lemma, for any OR f(x) =
∨t

i=1 pi(x) of polynomials of degree at most h over

GF(2) there exists a polynomial p(x) of degree atmosthr overGF(2) such that p(x)
and f(x) disagree on at most 2n−r

input vectors x ∈ {0, 1}n
. Thus the functions

computed by the gates at the i-th level will be approximated by polynomials of

degree at most ri
. Since we have only d levels, the function f computed at the top

gate will be approximated by a polynomial p(x) of degree at most rd
. Since, by

Lemma ??, at each ofM gates we have introduced at most 2n−r
errors, p(x) can

differ from f(x) on at mostM · 2n−r
inputs. ⊓⊔

Our next goal is to show that the majority function is hard to approximate by

low-degree polynomials. We will show this not for Majority function itself but

rather to a closely related function, the threshold-k function Thn
k . This function is

1 when at least k of the inputs are 1. Note that each such function is a subfunction

of the Majority function in 2n variables: just set some n − k variables to 1 and

some k of the remaining variables to 0. It is therefore enough to prove a high

lower bound on Thn
k for at least one threshold value 1 ≤ k ≤ n. We will consider

k = ⌈(n+ h+ 1)/2⌉ for an appropriate h.

12.22 Lemma Let n/2 ≤ k ≤ n. Then

dist(p,Thn
k ) ≥

(
n
k

)
for every polynomial p(x1, . . . , xn) of degree d ≤ 2k − n− 1 over GF(2).

Proof. (Due to Lovász, Shmoys and Tardos 1995) Let p(x) be a polynomial of de-

gree d ≤ 2k−n− 1 over GF(2), and let U = {x | p(x) ̸= Thn
k (x)} denote the set

of all vectors where p(x) differs from Thn
k . Let A denote the set of all 0-1 vectors

of length n containing exactly k ones.
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Consider the 0-1 matrixM = (ma,u) whose rows are indexed by the members

of A, columns are indexed by the members of U , and

ma,u = 1 if and only if a ≥ u.

Our goal is to prove that the columns ofM span the whole linear space; since the

dimension of this space is |A| =
(

n
k

)
, this will mean that we must have |U | ≥

(
n
k

)
columns.

The fact that the columns of M span the whole linear space follows directly

from the following claim saying that every unit vector lies in the span:

12.23 Claim If a ∈ A and Ua = {u ∈ U | ma,u = 1} then, for every b ∈ A,

∑
u∈Ua

mb,u =
{

1 if b = a;

0 if b ̸= a.

To prove the claim, observe that by the definition of Ua, we have (all sums are

over GF(2)):∑
u∈Ua

mb,u =
∑
u∈U

u≤a∧b

1 =
∑

x≤a∧b

(Thn
k (x) + p(x)) =

∑
x≤a∧b

Thn
k (x) +

∑
x≤a∧b

p(x)

where a ∧ b denotes the componentwise AND of vectors a and b. The second term

of this last expression is 0, since a ∧ b has at least n− 2(n− k) = 2k − n ≥ d+ 1
ones (see Exercise ??). The first term is also 0 except if a = b.

This completes the proof of the claim, and thus the proof of the lemma. ⊓⊔

12.24 Theorem (Razborov 1987) Every unbounded-fanin depth-d circuit over {∧,∨,⊕}
computing Majn requires 2Ω(n1/2d) gates.

Proof. Since every threshold function Thk
n is a subfunction of the Majority function

in 2n variables, it is enough to prove such a lower bound for a depth-d circuit

computing a k-threshold function Thn
k for some n/2 ≤ k ≤ n (to be specified

later). Take such a circuit of sizeM computing Thn
k . Lemmas ?? and ?? imply that

M ≥
(
n

k

)
2r−n . (12.2)

Taking r = ⌊n1/(2d)⌋ and k = ⌈(n+ rd + 1)/2⌉ = ⌈(n+
√
n+ 1)/2⌉, and using

the estimate

(
n
k

)
= Θ(2n/

√
n) valid for all k = n/2 ±Θ(

√
n), the right hand side

of (??) becomes 2Ω(r)
, and we are done. ⊓⊔
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12.6 Circuits with modular gates

An AC[p] circuit of depth d is an AC circuit of depth d where, besides AND, OR
and NOT gates, the counting gates MODp defined by

MODp(x1, . . . , xm) = 1 iff x1 + . . .+ xm = 0 mod p

can be used. In particular, an AC[2] circuit is an AC0
circuit where unbounded fanin

parity functions are also allowed to be used as gates. The class AC0[p] consists of
all (sequences of) boolean functions computable by constant-depth AC[p] circuits
of polynomial (in the number of variables) size. The class ACC0

is the union of the

classes AC0[p] for p = 2, 3, 4, . . ..
It is clear that AC0 ⊂ ACC0

. Moreover, this inclusion is strict, because a single

MOD2 gate computes the (negation of the) parity function which, as we know, does

not belong to AC0
. Thus, MOD2 cannot be computed by a constant depth circuit

with polynomial number of NOT, AND and OR gates. But what if, besides NOT,

AND and OR gates, we allow some modular gates MODp, for some p ≥ 3, be used
as gates—can MOD2 then be computed more easily? It turns out that the use of

gates MODp, where p ≥ 3 is a prime power, does not help to compute MOD2 much

more efficiently. We will show this for the special case p = 3: Parity ̸∈ AC0[3].
The general proof idea will be the same as in Section ??: show that functions

computable by small circuits with MOD3 gates can be approximated by low-degree

polynomials over GF(3), and prove that the parity function is hard to approximate

by such polynomials.

12.25 Lemma Let f(x) be a boolean function of n variables, and suppose that f can
be computed by an AC[3] circuit of depth d usingM gates. Then, for every integer
r ≥ 1, there exists a polynomial p(x) of degree at most (2r)d over GF(3) such that
dist(f, p) ≤ M · 2n−r .

The proof of this lemma is exactly the same as that of Lemma ??. The only

difference is that now we work in the larger field GF(q) for q = 3. This results
in a slightly worse upper bound r(q − 1) = 2r (instead of r) on the degree of

polynomials approximating OR and AND gates.

To apply Lemma ?? to the parity function, we have to show that this function

cannot be approximated well enough by small degree polynomials over GF(3).

12.26 Lemma There is a constant c > 0 such that dist(p,Parity) ≥ c2n for any
polynomial of degree at most

√
n over GF(3).

Proof. For this proof, we represent boolean values by 1 and −1 rather than 0 and

1. Namely, we replace each boolean variable xi by a new variable yi = 1 − 2xi.

Hence, yi = 1 if xi = 0, and yi = −1 if xi = 1. The parity function then turns to

the product of the yi:

n⊕
i=1

xi = 1 if and only if

n∏
i=1

yi = −1 .



12.6 Circuits with modular gates 351

Suppose that p(y) is a polynomial over GF(3) = {−1, 0,+1} of degree at most

√
n.

We need to show that this polynomial differs from

∏n
i=1 yi on at least a fraction

c of the vectors in {1,−1}n
, for some constant c > 0. For this, let A be the set of

all vectors a ∈ {1,−1}n
such that p(a) =

∏n
i=1 ai. We wish to show that A is

“small”, that is, has size at most (1 − c)2n
for an absolute constant c > 0. We will

do this by upper-bounding the number |F | functions in the set F of all functions

f : A → {−1, 0, 1}: since |F | = 3|A|
we may bound the size of A by showing that

|F | is small.

We claim that every function in F can be represented as a multilinear polynomial

over GF(3) of degree at most (n+
√
n)/2. We can represent each function f ∈ F

as a polynomial

qf (y) =
∑
a∈A

f(a)
n∏

i=1
(−aiyi − 1) .

This polynomial agrees with f on all y ∈ {1,−1}n
, but its degree can be as large

as n. We can, however, use the fact that y2
i = 1 for yi ∈ {1,−1} and replace

each monomial M =
∏

i∈S yi of qf with |S| > (n +
√
n)/2 by a monomial

M ′ =
∏

i ̸∈S yi · p(y). Since for every y ∈ {1,−1}n
,

∏
i ̸∈S

yi ·
n∏

i=1
yi =

∏
i∈S

yi ·
∏
i̸∈S

y2
i =

∏
i∈S

yi ,

we have thatM ′(y) = M(y) for all y ∈ A, and

degree(M ′) ≤ (n− |S|) + degree(p) ≤ n−
√
n

2 +
√
n = n+

√
n

2 .

Thus every function in F can be represented as a multilinear polynomial over

GF(3) of degree at most (n+
√
n)/2.

The number of multilinear monomials of degree at most (n+
√
n)/2 is

N =

n+
√

n
2∑

i=0

(
n

i

)
≤ (1 − c)2n

for a constant c > 0 and large n. Since, |F | ≤ 3N
, we conclude that

|A| = log3 |F | ≤ N ≤ (1 − c)2n . ⊓⊔

Combining the two lemmas above we obtain the following

12.27 Theorem (Smolensky 1997) Any AC[3] circuit of depth d computing the parity
function requires 2Ω(n1/2d) gates.

Proof. LetM be the minimum size of an AC[3] circuit of depth-d computing the

parity function Parity of n variables. Taking r = n1/2d/2 in Lemma ??, we obtain
that there must exist a polynomial p(x) of degree at most

√
n over GF(3) such that
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Fig. 12.2 A symmetric (r, s)-circuit. The output gate is a symmetric boolean function of s variables,
and its inputs are ANDs of r literals each.

dist(p,Parity) ≤ M · 2n−n1/2d/2 .

But Lemma ?? implies that dist(p,Parity) ≥ c2n , and the desired lower bound on

M follows. ⊓⊔

Thus, Parity ̸∈ AC0[3]. More generally, by results of Razborov (1987) and

Smolensky (1987), the function MODm does not belong to AC0[p] for prime p
unlessm is a power of p. Since MODm is a symmetric function, and since every

symmetric boolean function can be computed by an unweighted threshold circuit

using a linear number of gates (even in depth 2; see Exercise ??), this also implies

that Majn ̸∈ AC0[p] for every prime number p. Much less is known about the

power of AC0[p] circuits where p is a composite number. In particular, even the case

p = 6 remains unclear.

Recently, Williams (2010) showed that so-called NEXP-complete functions do

not belong to ACC0
(we shortly discuss this result in Sect. ??). One such boolean

function, called succinct 3-SAT, is defined as follows. Given a binary string x of

length n, the function interprets it as a code of a DeMorgan circuit Cx of n1/10

input variables. Then the function uses the circuit Cx to produce the string of all its

2n1/10
possible outputs, interprets this huge string as a code of a (also huge) 3-CNF

Fx, and accepts the initial string x iff the CNF Fx is satisfiable.

But the ACC0
circuits are suspected to be of much weaker power. In particular,

it is conjectured that even the Majority function does not belong to ACC0
.

12.28 Research Problem
Prove or disprove that Majority ̸∈ ACC0

.

An interesting and useful property of ACC0
circuits (which was also used by

Williams (2010)) is that they can be relatively efficiently simulated by depth-2
circuits, as we will see next.

ACC0 and symmetric depth-2 circuits

A depth-2 symmetric (r, s)-circuit is a circuit of the form g(K1, . . . ,Ks), where
g : {0, 1}s → {0, 1} is a symmetric boolean function, and each Ki is an AND of
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at most r literals (see Fig. ??). Since the negation of a symmetric function is also

symmetric, one can also take ORs instead of ANDs.

Let SYM be the class of all (sequences of) boolean function of n variables that

can be computed by a symmetric (r, 2r)-circuit with r ≤ (logn)O(1)
. This class

is surprisingly rich. Allender (1989) showed that AC0 ⊆ SYM. Then Yao (1990)

showed that ACC0
is contained in the probabilistic version of SYM. Finally, Beigel

and Tarui (1994) showed thatACC0 ⊆ SYM. Furthermore, Allender andGore (1994)

showed that the corresponding symmetric circuit can be efficiently constructed.

12.29 Theorem (Yao 1990, Beigel–Tarui 1994) ACC0 ⊆ SYM.

The full proof of this important result is somewhat technical, and we omit it.

Theorem ?? allows us to extract some special properties of functions in ACC0
. In

particular, it implies that these functions can be “easily separated” by low-degree

polynomials, and that the corresponding to these functions bipartite graphs have

small “intersection dimension”.

ACC0 and low-degree polynomials

By a multilinear ±1 polynomial of weight w we will mean polynomial

p(x1, . . . , xn) =
∑

S⊆[n]

λS

∏
i∈S

xi

over the reals with coefficients λS ∈ {−1, 0,+1} such that |{S : λS ̸= 0}| = w. A
polynomial p(x) separates a boolean function f if p(x) ̸= p(y) for all x ∈ f−1(1)
and y ∈ f−1(0). Say that a boolean function f of n variables is easy to separate if

it can be separated by a polynomial of poly-logarithmic in n degree d and weight

w ≤ 2d
. In particular, all symmetric functions are easy to separate: they all are

separated by the polynomial p(x) = x1 + x2 + · · · + xn.

12.30 Lemma Every function in ACC0 is easy to separate.

Proof. Let f(x) be a boolean function of n variables, and suppose that f ∈ ACC0
.

By Theorem ??, there exists a constant c such that f can be computed by a symmetric

(r, s)-circuit with r ≤ (logn)c
and s ≤ 2(log n)c

. That is, there exist monomials

g1, . . . , gs and a subset T ⊆ {0, 1, . . . , s} such that f(x) = 1 iff the number of the

gi accepting x belongs to T . This, in particular, means that

s∑
i=1

gi(x) ̸=
s∑

i=1
gi(y) for all x ∈ f−1(1) and y ∈ f−1(0).

Now, each monomial gi has a form gi(x) =
∧

i∈I xi

∧
j∈J xj with I ∩ J = ∅

and |I ∪ J | ≤ r. On 0-1 vectors x this monomial outputs the same values as the

polynomial pi(x) =
∏

i∈I xi

∏
j∈J(1 − xj). This is a ±1 polynomial of weight at
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most 2r ≤ s. Hence, p(x) :=
∑s

i=1 pi(x) is a ±1 polynomial of weight at most

s2 ≤ 22(log n)c

, implying that f is easy to separate, as desired. ⊓⊔

12.31 Research Problem
Exhibit an explicit boolean function which is not easy to separate by a polynomial.

ACC0 and graph complexity

Let G = (V1 ∪ V2, E) be a bipartite n × n graph, and L ⊆ {0, 1, . . .} a subset

of natural numbers. An intersection representation relative to L is an assignment

v 7→ Sv of subsets Sv ⊆ {1, . . . , t} such that two vertices u ∈ V1 and v ∈ V2
are adjacent in G iff |Su ∩ Sv| ∈ L. The smallest number t for which such a

representation exists is the intersection dimension ofG relative toL, and is denoted by
idimL(G). The intersection dimension, idim(G), of G is the minimum of idimL(G)
over all sets L.

If n = 2m
, then we can encode the vertices by binary vectors of lengthm, and

associate with G a boolean function fG of 2m variables (the characteristic function

of G) such that fG(u, v) = 1 iff uv ∈ E.

Easy counting shows that graphs with idim(G) = Ω(n) exist. On the other

hand, graphswhose characteristic functions belong toACC0
have small intersection

dimension.

12.32 Lemma If fG ∈ ACC0 then idim(G) ≤ 2(log log n)O(1)
.

Proof. If fG ∈ ACC0
, then Theorem ?? implies that fG can be computed by a

symmetric (r, 2r)-circuit with r at most about (logm)c
for a constant c. In particular,

fG can be computed by a depth-2 circuit with a symmetric gate g of fanin s = 2r

on the top, and ORs of literals on the bottom level. By the Magnification Lemma

(Lemma ?? in Section ??), the graph G is then represented by a depth-2 circuit

with g on the top level, and OR gates ∨v∈I1xv, . . . ,∨v∈Is
xv on the bottom level.

Since the gate g is symmetric, there exists a subset L ⊆ {0, 1, . . . , s} such that g
rejects an input vector iff the number of 1s in this vector belongs to L. Hence, the
sets Sv = {i | v ̸∈ Ii} give us an intersection representation of G, implying that

idim(G) ≤ s ≤ 2(log m)c = 2(log log n)c

. ⊓⊔

12.33 Research Problem
Exhibit an explicit bipartite n × n graph of intersection dimension at least

2(log log n)ω(1)

By Lemma ??, the characteristic function of any such graph lies outside ACC0
.

Actually, by the results of Green et al. (1995), it would be enough to prove such a

lower bound on idimL(G) for the specific set L consisting of all natural numbers

whose binary representations have bit 1 in the middle. Such sets (also calledmiddle-
bit set) consist of disjoint intervals of consecutive numbers.
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ACC0 and communication complexity

For a boolean function f of n = km variables we fix a partition of its variables in k
blocks, each of sizem, and let ck(f) denote the k-party communication complexity

of f with respect to this partition (see Section ??).
Symmetric depth-2 circuits are related to communication games via the following

simple observation: if [n] = {1, , . . . , n} is partitioned into disjoint blocks of size

n/k then every (k − 1)-element subset of [n] must be disjoint with at least one of

the blocks. This holds because, if a set has an element in each block, then it must

have at least k elements in total. We now can imagine that the i-th player can see

all bits except those in the i-th block. Then every (k − 1)-element set is seen by at

least one of the players.

12.34 Lemma (Håstad–Goldmann 1991) Every symmetric depth-2 circuit which com-
putes f and has bottom fanin k − 1 must have top fanin at least 2ck(f)/k .

Proof. Fix a symmetric (k − 1, s)-circuit computing f . We will show that ck(f) ≤
k log2 s. By the observation we just made, each bottom gate can be evaluated by

at least one of the k players. Partition the bottom gates among the players such

that all the gates assigned to a player can be evaluated by that player. Now each of

the first k − 1 player broadcasts to the k-th players the number of her gates that
evaluate to 1. This can be done using at most (k − 1) log2 s bits. Finally, the k-th
player can evaluate the top gate and tell the one bit result to the others. The total

number of bits used is 1 + (k − 1) log2 s ≤ k log2 s. ⊓⊔

Note that there was nothing special in having only AND gates on the bottom:

the lemma remains true also when arbitrary boolean functions of fanin at most

k − 1 are used as bottom gates.

Recall that the generalized inner product function gip(x) is a boolean function of

kn variables, arranged in an n× k matrix x = (xij), and is defined by:

gipn,k(x) =
n⊕

i=1

k∧
j=1

xij .

Note that this function belongs to ACC0
, and hence also to SYM. We have al-

ready proved that the k-party communication complexity of gipn,k is Ω(n4−k)
(see Theorem ??). Together with Lemma ??, this immediately yields the following

corollary.

12.35 Corollary Every depth-2 symmetric circuit of bottom fanin k − 1 computing
gipn,k must have top fanin 2Ω(n/k4k).

12.36 Remark In order to use Theorem ?? and Lemma ?? to show that a given

boolean function f of n variables does not belong to ACC0
, we need non-trivial

lower bounds on the k-party communication complexity ck(f) of f in the case
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when k ≥ (logn)ω(1)
, that is, when the number k of players is larger than poly-

logarithmic in n. Unfortunately, known lower bound on ck(f) (some of which we

presented in Chapter ??) are trivial already for k = logn.

12.7 Circuits with symmetric gates

Recall that a boolean function g(y1, . . . , yt) is symmetric if its value only depends

on the value of the sum y1 + · · · + yt of the values of its input bits. In other

words, g is symmetric if the is a function F : {0, 1, . . . , n} → {0, 1} such that

g(y1, . . . , yt) = F (y1 + · · · + yt). A symmetric circuit is a circuit whose gates are
arbitrary symmetric boolean functions. The size of such a circuit is the number of

wires in it. For a boolean function f , let Sd(f) denote the minimum number of wires

in a symmetric depth-d circuit computing f , and let S(f) denote the minimum

number of wires in an arbitrary symmetric circuit computing f .
For the corresponding Shannon function S(n), Grinchuk (1996) proved that

S(n) ∼ 2n/n, and S(n) ∼ 2n/ log2 n in the case of formulas (symmetric circuits

with fanout-1 gates). But proving high lower bounds for explicit boolean functions

even in the class of depth-2 symmetric circuits is a difficult task. By Theorem ??, a
lower bound S2(f) ≥ 2(log n)ω(1)

implies f ̸∈ ACC0
. Actually, even proving strong

lower bounds for symmetric circuits of depth 1 (where only one symmetric boolean

function can be used as gate) is not a trivial task.

Aswe havementioned in Section ??, every boolean function f(x) = f(x1, . . . , xn)
can be computed by a symmetric circuit consisting of just one symmetric gate g:

f(x) = g( x1︸︷︷︸
20

, x2, x2︸ ︷︷ ︸
21

, x3, x3, x3, x3︸ ︷︷ ︸
22

, . . . , xn, . . . , xn︸ ︷︷ ︸
2n−1

) .

This shows that S1(f) ≤ 20 + 21 + · · · + 2n−1 = 2n − 1 for every boolean function

f of n variables. On the other hand, direct counting shows that boolean functions

f of n variables requiring

S1(f) ≥ 2n − n2

exists. To show this, let L(n,m) denote the number of distinct boolean functions f
of n variables such that S1(f) ≤ m. For each such function f , there is a function
F : {0, 1, . . . ,m} → {0, 1} and non-negative integers λ1, . . . , λn such that λ1 +
· · ·+λn ≤ m and f(x) = F (λ1x1 + · · ·+λnxn). For every integer 0 ≤ r ≤ m, the

equation λ1 + · · ·+λn = r has
(

n+r−1
r

)
non-negative integer solutions λ1, . . . , λn:

the number of such solutions is exactly the number of possibilities to interrupt a

sequence of n+ r− 1 ones by r− 1 zeros . Thus, the inequality λ1 + · · · +λn ≤ m
has

∑m
r=0

(
n+r−1

r

)
=
(

n+m
n

)
solutions. Since there are only 2m+1

functions F :
{0, 1, . . . ,m} → {0, 1}, we obtain that

L(n,m) ≤ 2m+1
(
n+m

n

)
≤ (n+m)n

n! ,
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which is smaller than the total number 22n

of boolean functions, as long as n ≥ 5
andm < 2n − n2

.

Smolensky (1990) used algebraic arguments to show that the function

f(x1, . . . , xn) = (x1 ⊕ x2) ∧ (x3 ⊕ x4) ∧ · · · ∧ (xn−1 ⊕ xn)

requires S1(f) ≥ 2n/2
. Then Grinchuk (1996) exhibited another boolean function

requiring an almost-maximal number of wires to realize by one symmetric gate.

His function is defined by:

fn(x1, . . . , xn) = x1x2 ∨ x1x2x3 ∨ x1x2x3x4 ∨ · · · ∨ x1 . . . xn−2xn−1xn .

That is, the value f(a) on a given input a = (a1, . . . , an) is the value of that bit
which occurs after the first (from the left) occurrence of a 1 in a.

12.37 Theorem (Grinchuk 1996) S1(fn) ≥ 2n−1 − 1.

Proof. Let λ = S1(fn). Then there exist nonnegative integers λ1, . . . , λn such

that λ1 + · · · + λn = λ, and a function F : {0, 1, . . . , λ} → {0, 1} such that

fn(x) = F (l(x)), where l(x) := λ1x1 + · · · + λnxn. Say that two input vectors

a, b ∈ {0, 1}n
are equivalent if l(a) = l(b).

12.38 Claim No two vectors a and b with a1 = b1 = 0 are equivalent.

Proof. Assume that a = (0, a2, . . . , an) and b = (0, b2, . . . , bn) are equivalent,

that is, l(a) = l(b). Let i be the first position (from the left) in which a and b
differ for the first time. Assume w.l.o.g. that ai = 0 and bi = 1. Now consider the

vectors a′ = (0, . . . , 0, 1, 0, ai+1, . . . , an) and b′ = (0, . . . , 0, 1, 1, bi+1, . . . , bn).
Since l(a) − l(a′) = l(b) − l(b′), we have that l(a′) = l(b′). But fn(a′) = 0 ̸= 1 =
fn(b′), a contradiction. ⊓⊔

Since the values of l(x) are integers between 0 and λ, the claim implies that

S1(fn) = λ must be at least 2n−1 − 1, as desired. ⊓⊔

12.8 Rigid matrices require large circuits

We now consider boolean circuits computing boolean matrices, that is, 0-1 matrices

of some fixed dimension. Inputs are primitive matrices, that is, boolean matrices of

rank 1. Each of these matrices consist of an all-1 submatrix, and has zeros elsewhere.

Boolean operations on matrices are computed component-wise. For example,

A∨B is a booleanmatrix whose entries are ORsA[i, j]∨B[i, j] of the corresponding
entries of A and B. Thus each such circuit computes some matrix. As before, the

depth of a circuit is the length of a longest path from an input to an output gate.

The size is the number of gates. Our goal is to show that matrices of high “rigidity”

require large circuits.
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Note that, given a boolean matrix A, we want to compute (or produce) the matrix A itself
starting form primitive matrices and using component-wise boolean operations, like AND,

OR, NOT or Parity. Just like, given a boolean function, we want to compute it starting

from “primitive” boolean functions (variables and their negations). A related (albeit different)

question (which we will consider in the next chapter) is to compute the linear transformation

y = Ax given by the matrix A.

The rigidity,RigM (r), of a boolean matrixM overGF(2) is the smallest number

of entries of A that must be changed in order to reduce its rank over GF(2) down
to r. That is,

RigM (r) = min{|B| : rk(M ⊕B) ≤ r} ,

where |B| is the total number of 1s in B. It is known that matricesM of rigidity at

least about (n− r)2/ lnn exist (see Proposition ?? in the next chapter). However,

the largest known lower bound on the rigidity of an explicit matrix remains the

lower bound of about (n2/r) ln(n/r) due to Friedman (1993).

In the following theorem,M is an arbitrary boolean n × n matrix, d ≥ 2 an

integer, and f(r) := (ln r)1/(d−1)
.

12.39 Theorem (Razborov 1989b) If RigM (r) ≥ n2/2f(r) then every depth-d circuit
over {∧,∨,¬,⊕} computingM must have 2Ω(f(r)) gates.

Proof. We will again use the approximation method. This time we will approximate

matrices, computed at intermediate gates of the circuit, by matrices of small rank.

Set s := 2 · f(r) where f(r) := (ln r)1/(d−1)
. Note that for constant r the theorem

is obvious, so we assume that r and s are large enough.
Suppose we have an unbounded-fanin circuit over {∧,∨,¬,⊕} of depth at most

d and size ℓ computing the matrixM . We have to show that RigM (r) ≥ n2/2f(r)

implies ℓ = 2Ω(f(r))
.

At each gate of the circuit some boolean matrix A is computed. We inductively

assign to each gate on the i-th layer an approximator, which is a boolean matrix A′

of rank

rk(A′) ≤ ℓisi

. (12.3)

As before, the assignments are done inductively, first to the inputs, then working

up to the output. Each assignment introduces some errors, that is, positions the
approximator A′

differs from the matrix obtained by applying the true operator

at that gate to the approximators of the gates feeding into it. Our goal is to assign

approximators in such a way that

at most n2/2s
errors are introduced at each gate. (12.4)

We first show that (??) and (??) already imply the theorem. To see this, letM ′
be

the approximator of the matrix computed at the last gate. We have two cases: either

the rank ofM ′
is large or not.

Case 1: rk(M ′) ≥ r. In this case, (??) implies that r ≤ ℓS
, where S := O(sd) is

about

(ln r)d/(d−1) = (ln r)1−1/(d−1) = (ln r)/f(r) .
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Hence, ln ℓ ≥ (ln r)/S = Ω(f(r)), as desired.

Case 2: rk(M ′) ≤ r. In this case, our assumption RigM (r) ≥ n2/2f(r)
implies that

|M ⊕M ′| ≥ n2/2f(r)
. On the other hand, (??) implies that

|M ⊕M ′| ≤ ℓ · n2/2s = ℓ · n2/22f(r) .

Comparing these two estimates, the desired lower bound ℓ ≥ 2f(r)
follows.

It therefore remains to show how to assign approximators satisfying (??) and
(??). Approximators of input matrices are matrices themselves. Recall that these

matrices have rank ≤ 1.
If the gate is a NOT gate and the unique gate feeding into it has an approximator

A′
, then we assign this gate the approximator ¬A′

. Since rk(¬A′) ≤ rk(A′) + 1,
the rank condition (??) is fulfilled.

If the gate is a parity gate, then let its approximator be just the sum modulo 2 of

the approximators of all itsm ≤ ℓ inputs gates. The rank condition (??) is fulfilled
by the subadditivity of rank.

So far we have introduced no errors at all. The source of errors are, however,

AND and OR gates. For these gates we use the following approximation lemma.

12.40 Lemma Let s ≥ 1 be an integer. If A =
∨h

i=1 Ai is an OR of boolean n × n
matrices, each of rank at most r, then there is a boolean matrix C such that rk(C) ≤
1 + (1 + hr)s and |A⊕ C| ≤ n2/2s.

Proof. Let L be the linear space of boolean matrices over GF(2) generated by

A1, . . . , Ah. By the subadditivity of rank, we have that rk(B) ≤ hr for every

B ∈ L. Take a matrix B = (bij) in L at random. That is,

B = λ1A1 ⊕ λ2A2 ⊕ · · · ⊕ λhAh ,

where the λi are independent uniformly distributed 0-1 random variables. Let

A = (aij) be the OR of matrices A1, . . . , Ah. If aij = 0 then clearly bij = 0. If
aij = 1 then the (i, j)-th entry of at least one of the matrices A1, . . . , Ah is 1, and
hence,

bij = λ1A1[i, j] ⊕ λ2A2[i, j] ⊕ · · ·λhAh[i, j]

equals 0 with probability 1/2. That is, Prob[bij = 0] = 0 if aij = 0, and Prob[bij =
0] = 1/2 if aij = 1. Thus if we let C = (cij) to be the OR of s independent copies
of B, then Prob[cij = 0] = 1 if aij = 0, and Prob[cij = 0] ≤ 2−s

if aij = 1. That
is, the expected number of positions, where C deviates from A, does not exceed
n2/2s

.

Thus there exists a matrix C of the form C =
∨s

k=1 Bk such that |A ⊕ C| ≤
n2/2s

and rk(Bi) ≤ hr for each i. Using the rule x ∨ y = (x⊕ 1) ∧ (y ⊕ 1) ⊕ 1,
this OR can be written as an all-1 matrix plus an AND of s matrices, each of which

has rank at most 1 + hr. Since the AND of matrices is a component-wise product

of their entries, and component-wise product is bilinear in the space of rows of

matrices, this implies that rk(A ∧ B) ≤ rk(A) · rk(B). Since we have an AND
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of s matrices each of rank at most 1 + hr, this gives the desired upper bound

rk(C) ≤ 1 + (1 + hr)s
on the rank of C . ⊓⊔

Now, if the gate is an OR gate at the i-th layer of our circuit, and if it has h

inputs, then Lemma ??, applied with r = ℓ(i−1)si−1
and h = ℓ, yields the desired

approximator satisfying (??). The case of an AND gate reduces to that of OR gates

by DeMorgan rules. ⊓⊔

Theorem ?? has several interesting consequences. Babai, Frankl and Simon (1986)

introduced the communication complexity analogue PHcc
of the complexity class

PH , and proved that PHcc
coincides with the class of boolean n × n matrices

M whose constant depth circuit complexity over the basis {∧,∨} does not exceed

exp
(
(ln lnn)O(1))

. Theorem ?? immediately implies that, if

RigM (r) ≥ n2

exp(ln r)o(1) for r ≥ 2(ln ln n)ω(1)
,

thenM ̸∈ PHcc
. That is, the class PHcc

does not contain highly rigid matrices.

Razborov (1988) used probabilistic arguments to show that unbounded-fanin

circuits over {∧,⊕, 1} of small depth can efficiently compute some combinatorially

“complicated” matrices, sharing many extremal properties of random matrices.

Together with Theorem ?? this implies that matrices of low rigidity can share many

properties of random matrices.

Chapter Notes

Apparently, the first non-trivial lower bound for small-depth circuits was proved by

Lupanov (1970). From the current point of view, this result is not very impressive.

But this was the first attempt to say something non-trivial about small-depth circuits,

and the result is tight. He considered the following boolean function

fn(x, y) =
n∨

i=1
xi ∧

n∧
j=i

yi

and proved that, for d ≥ 1, the smallest number of leaves in a monotone depth-

(d+ 1) formula for fn is asymptotically equal to cdn
1+1/d

where cd = (1 − 1/(d+
1))(d!)1/d

. The function fn naturally arises when computing the sum of two n-bit
numbers.

The first superpolynomial lower bound for AC0
circuits was proved by Tka-

chov (1980). He considered circuits of depth 3; however, in contrast with current

conventions, he also let negation gates count towards the depth. Thus his class is

smaller than what we call depth 3 now and contains the depth 3 monotone circuits.

Unfortunately this result was published in some unimportant proceedings with
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small distribution and remained almost unknown outside the Soviet Union. His

method is based on a clever counting.

The most successful method, the method of random restrictions, was introduced

by Furst, Saxe and Sipser (1984), and Ajtai (1983). This resulted in superpolynomial

lower bounds nΩ(log n)
for AC0

circuits.

In the attempt to prove exponential lower bounds, the simpler case of monotone
small-depth circuits was studied. Valiant (1983) proved that the clique problem

needs exponential size circuits when the depth is restricted to 3. Boppana (1986)
proved that depth-d monotone circuits computing the Majority function require

size about 2n1/(d−1)
, while Klawe et al. (1984) obtained similar lower bounds for the

Iterated Disjointness function we have considered in Section ??.
The first breakthrough in proving exponential lower bounds without restricting

circuits to be monotone was obtained by Yao (1985) who proved that depth-d circuits

computing the Parity function require about 2n1/4d

gates. Finally, Håstad (1986)

improved this to an almost optimal lower bound of about 2n1/(d−1)
; see Theorem ??.

Exercises

12.1 Show that, for every integer d ≥ 3, the parity functionParity(x) of n variables

can be computed by depth-(d + 1) circuits over {∧,∨,¬} of size 2O(n1/d)
. Hint:

Consider a circuit of depth d consisting of parity gates of fanin r = n1/d
. Each such gate can be

replaced by a CNF as well as by a DNF of size 2r = 2n1/d

. When doing this, the depth increases

till 2d. To reduce the depth, use the associativity of OR to collapse consecutive layers of OR gates

into a single layer; the same with AND gates.

12.2 Let h =
∏

i∈S xi be a monomial of degree d = |S| ≤ n− 1, and let a be a 0-1
vector with at least d+ 1 ones. Show that, over GF(2),

∑
b≤a h(b) = 0. Hint: There

are only two possibilities: either ai = 1 for all i ∈ S, or not.

12.3 Let p = 1/
√
n, and consider a p-random restriction ρ on n variables.

(a) Let C be a clause, and t > 0 an integer. Show that Cρ will depend on more

than t variables with probability at most n−t/3
.

Hint: Consider two cases depending on whether: (i) C contains more than m := t log n
literals, or (ii) C contains at most m literals. Show that in the first case Cρ will be non-

constant with probability at most ((1 + p)/2)m
, whereas in the second case Cρ will contain

at least t variables with probability at most

(
m
t

)
pt
. Show that both of these bounds are at

most n−t/3
if n is large enough.

(b) Prove the following weaker version of the Switching Lemma: for every integer

constants t, k ≥ 1 there is a constant s = s(t, k) with the following property:

if F is a t-CNF on n variables, then

Prob[Fρ depends on ≥ s variables] ≤ n−k .
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Hint: Argue by induction on t. Use the previous exercise for the base case b(1, k) = 3k. For
the induction step, take a maximal set of clauses in F whose sets of variables are pairwise

disjoint, and let Y be the union of these variable sets. Hence, each clause of F has at least

one variable in Y . Consider two cases depending on whether |Y | ≥ k2t log n or not. If

|Y | ≥ k2t log n, then use the disjointness of clauses determining Y to show that Fρ becomes

constant with probability at least 1 − n−k
. In the case when |Y | ≤ k2t log n show that, for

every i, the probability that more than i variables in Y will remain unassigned is at most

n−i/3
; cf. part (a). Take i = 4k, set these 4k free variables of Y to constants in all possible

ways to obtain a (t − 1)-CNF F ′
, and apply induction hypothesis to F ′

.



13. Circuits with Arbitrary Gates

In this chapter we consider unbounded-fanin circuits with arbitrary boolean func-

tions as gates. The size of such a circuit is defined as the total number of wires

(rather than gates) it has. Of course, then every single boolean function f of n
variables can be computed by a circuit of size n: just take one gate—the function f
itself. The problem, however, becomes nontrivial if instead of one function, we want

to simultaneously computem boolean functions f1, . . . , fm on the same set of n
variables x1, . . . , xn, that is, to compute an (n,m)-operator f : {0, 1}n → {0, 1}m

.

Note that in this case the phenomenon which causes complexity of circuits is infor-
mation transfer instead of information processing as in the case of circuits computing

a single function.

As before, a circuit computing a given (n,m)-operator can be imagined as a

directed acyclic graph with n input nodes corresponding to the variables x1, . . . , xn,

m output nodes corresponding to the boolean functions f1, . . . , fm to be computed,

and each non-input node computing an arbitrary boolean function of its inputs.

Note that we cannot expect larger than quadratic lower bounds for general

circuits: every operator f : {0, 1}n → {0, 1}n
can be computed using at most n2

wires, even in depth 1. On the other hand, using counting arguments, it can be

shown that operators requiring Ω(n2) wires in any circuit with general gates exist

(see Exercise ??).
In this chapter we will concentrate on general circuits of depth 2—the first

nontrivial case. These circuits are powerful, and their study was strongly motivated

by work of Valiant (1977), who showed that any operator with ω(n2/ log logn)
depth-2 wire complexity also cannot be computed by linear-size, logarithmic-depth

boolean circuits of fanin 2 (see Lemma ?? below).
There are known superlinear lower bounds of Ω(n ln3/2 n) for depth-2 circuits.

Many superlinear lower bound proofs are given by algebraic arguments (based

on the matrix rigidity) or given by graphic theoretic arguments based on various

superconcentration properties of graphs: Pippenger (1977, 1982), Dolev et al. (1983),

Pudlák and Savický (1993), Pudlák (1994), Alon and Pudlák (1994), Pudlák, Rödl

and Sgall (1997), Radhakrishnan and Ta-Shma (2000), Raz and Shpilka (2003), Gál et

al. (2011).

363
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The advantage of arguments based on superconcentrators is that they generally

provide rich addition to the structural information about how the circuits for

a given operator must look like. The disadvantage of these arguments is only

numerical: even for depth-2 circuits, these arguments cannot lead to larger than

Ω(n ln2 n) lower bounds on the number of wires, as proven by Radhakrishnan and

Ta-Shma (2000).

For depth-2 circuits, larger lower bounds ofΩ(n3/2) were recently proved using
a much simpler information theoretic argument, and we present it below. The

argument itself is reminiscent of Nechiporuk’s argument for formulas (Theorem ??):
an operator requires many wires if the number of its distinct “sub-operators” is

large.

13.1 Entropy and the number of wires

As mentioned above, counting arguments yield that most operators f : {0, 1}n →
{0, 1}n

require about n2
wires in any circuit using arbitrary boolean functions as

gates (see Exercise ??). But where are these “hard” operators? In particular, what is

the complexity of often used operators like matrix product or cyclic convolution

(corresponding to product of polynomials)? What we need are lower bounds for

specific operators. That is, we want to understand what properties of operators

make them hard to compute. In this section we will show that high “entropy” of

operators is one of these properties.

An operator f : {0, 1}n → {0, 1}m
maps binary strings of length n to bi-

nary strings of length m. Each such operator can be viewed as a sequence f =
(f1, . . . , fm) ofm (not necessarily distinct) boolean functions fi : {0, 1}n → {0, 1},
each on the same set of n variables. The range of f is the set

Range(f) = {f(a) | a ∈ {0, 1}n} ⊆ {0, 1}m

of distinct values taken by f . Define the plain entropy, E(f), of an operator f as

the logarithm base 2 of the number of distinct values taken by f . That is,

E(f) := log2 |Range(f)| .

It is clear that for any operator f = (f1, . . . , fm) : {0, 1}n → {0, 1}m
, we have

that E(f) ≤ min{n,m}, just because |Range(f)| ≤ min{2n, 2m}. We will use the

following properties of entropy:

(P1) E(f) ≤ |{f1, . . . , fm}|. That is, E(f) cannot exceed the number of distinct
boolean functions in f . This holds because only different functions can produce
different values.

(P2) E(f) ≥ r if we have r distinct single variables among the functions f1, . . . , fm.

This is because the operator f must take at a minimum of 2r
distinct values

on r distinct variables.
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(P3) E(f) ≤ E(g) if every function fi of f can be computed as some boolean

function applied to the functions of operator g. Indeed, in this case g(a) = g(b)
implies f(a) = f(b). Hence, f cannot take more distinct values than g.

(P4) Suppose that there is a subset S ⊆ [n] such that from the value f(x) one can
always infer the values of all input bits xi with i ∈ S. Then E(f) ≥ |S|. This
is a direct consequence of (P2) and (P3).

Properties (P1) and (P3) imply that, if a depth-2 circuit for an operator f has no

direct input-output wires, then there must be at leastE(f) nodes on the middle layer.

To lower bound the number of wires, we introduce the concept of an “augmented

operator”.

Given an operator f = (f1, . . . , fm), a subset I ⊆ [n] of its inputs and a subset

J ⊆ [m] of its outputs, define the augmented operator fI,J of f as the operator

fI,J = (f i
j | i ∈ I, j ∈ J)

consisting of |I| · |J | (not necessarily distinct) boolean functions f i
j with i ∈ I and

j ∈ J , where

f i
j : {0, 1}n−|I| → {0, 1} is a subfunction of fj obtained by setting the i-th

variable to 1 and all remaining variables in I to 0.

Note that fI,J has as its domain the bits {xl | l ̸∈ I}. Thus, fI,J maps binary

strings of length n− |I| (|I| variables are fixed) to binary strings of length |I| · |J |
(the number of augmented functions f i

j we have). In particular, by (P1), we always

have that E(fI,J) ≤ |I| · |J |. On the other hand, the entropy of an augmented

operator fI,J may be much larger than that of the operator f itself. To see this,

consider the following (n, 1)-operator (the inner product function): f(x, y) =
x1y1 +x2y2 + · · · +xnyn mod 2 . Then E(f) = 1 because f takes only two values.

But if we let I to correspond to the x-variables, and J = {1} (we have only one

output function) then, for every i ∈ I ,

f i(x, y) = 0 · y1 + · · · + 1 · yi + · · · + 0 · yn = yi .

Thus, the augmented operator in this case is fI,J(x, y) = (y1, . . . , yn), implying

that E(fI,J) ≥ n.
Now take an arbitrary circuit computing an operator f . Let I be some set of

its input nodes, and J some subset of its output nodes. Define a J-cut to be any

set V of non-input nodes such that every path from an input node to a node in

J goes through at least one node in V . Say that a node v ∈ V can see an input if

there is a path from that input to v. The weight of a node v relative to a given set

I of inputs is the number of inputs in I seen by that node. The weight of a set V
of nodes relative to I , denoted by wI(V ), is the sum of weights of all nodes in V
relative to I . That is,

wI(V ) =
∑
v∈V

|I(v)| ,
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where I(v) is the set of all inputs in I from which there is a path to v. In other

words, wI(V ) is the sum, over all nodes v ∈ V , of the number of input variables in

I on which the function gv computed at v can depend.

The following lemma, which was implicitly used by Cherukhin (2005) and was

made explicit in terms of entropy in (Jukna, 2010), states that this number of

variables must be large if the augmented operator has high entropy.

13.1 Lemma If V is a J-cut then |V | + wI(V ) ≥ entr(fI,J).

Proof. For a node v ∈ V , let gv be a boolean function computed at this node. For

i ∈ I , let gi
v be the subfunction of gv obtained by setting xi = 1 and xj = 0 for

all j ∈ I \ {i}. Let also g0
v be obtained from gv by setting to 0 all variables xi

with i ∈ I . Consider the operator g = (gi
v | v ∈ V, i ∈ I). A simple but crucial

observation is:

If there is no path from the i-th input to v, then gv cannot depend on the i-th
input variable, implying that gi

v = g0
v .

In particular, this implies that gi
v = g0

v for all i ̸∈ I(v). Thus, for each node

v ∈ V , the function gv computed at this node constitutes at most 1 + |I(v)| distinct
functions to the operator g: the function g0

v and at most |I(v)| distinct functions
gi

v with i ∈ I(v). We have therefore shown that the total number of distinct

boolean functions in g does not exceed |V | + wI(V ). By (P1), this implies that

entr(g) ≤ |V | + wI(V ).
To finish the proof, observe that, since V is a J-cut, all functions fj with j ∈ J

must be computable from the set of functions gv with v ∈ V . Hence, the augmented

operator fI,J must also be computable from g. In particular, if on some two input

vectors, the operator g takes the same value, then the operator fI,J is forced to

take the same value, as well. Together with (P3) this implies entr(fI,J) ≤ entr(g),
and hence, also entr(fI,J) ≤ |V | + wI(V ). ⊓⊔

13.2 Entropy and depth-two circuits

In this section we apply Lemma ?? to depth-2 circuits with general gates computing

operators f : {0, 1}n → {0, 1}m
. We will assume that there are no direct wires

from input to output nodes: this can be easily achieved by adding n new nodes of

fanin 0 on the middle layer labeled with input variables. Thus, a depth-2 circuit

for f consists of three layers. The first (input) layer contains n nodes 1, . . . , n
corresponding to input variables x1, . . . , xn, the middle layer consists of some

number of nodes, each computing some boolean function of its inputs, and the

third (output) layer consists ofm nodes 1, . . . ,m corresponding tom components

f1, . . . , fm of f ; at each output node an arbitrary boolean function can be computed

as well.

Our goal is to prove a general lower bound on the smallest number s2(f) of
wires in a depth-2 circuit computing a given operator f . To do this, take an arbitrary
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depth-2 circuit computing a given operator f . Let I be a subset of input nodes and J
a subset of output nodes. Let also Wires(I, J) denote the number of wires leaving

I plus the number of wires entering J .

13.2 Lemma In a depth-2 circuit computing an operator f , for any subset I of inputs
and any subset J of outputs, we have that

Wires(I, J) ≥ entr(fI,J) .

Proof. Let V be the set of all nodes on the middle layer from which there is a wire

to a node in J . In particular, V is a J-cut, and |V | is at most the number of wires

entering the nodes in J . On the other hand, for every node v ∈ V , |I(v)| is at most

the number of wires starting in I and entering v. Hence, wI(V ) =
∑

v∈V |I(v)|
is at most the total number of wires leaving nodes in I . Lemma ?? implies that

Wires(I, J) ≥ |V | + wI(V ) ≥ entr(fI,J). ⊓⊔

13.3 Remark Note that our lower bound on the number of wires going from V to J
is very “pessimistic”: we lower bound this number just by the number |V | of the
starting nodes of these wires, as if these nodes had fanout 1. Here, apparently, is
some space for an improvement.

13.4 Definition (Entropy of operators) The entropy, E(f), of an operator f is the

maximum, over all sequences I1, . . . , Ip of disjoint subsets of inputs, and all se-

quences J1, . . . , Jp of disjoint subsets of outputs, of the sum

E(f) = entr(fI1,J1) + entr(fI2,J2) + · · · + entr(fIp,Jp
)

of plain entropies of the corresponding (to these subsets) augmented operators.

Since no wire can leave more than one input node, and no wire can enter more

than one output node, Lemma ?? immediately yields the following lower bound for

depth-2 circuits.

13.5 Theorem For every operator f , s2(f) ≥ E(f).

13.6 Remark Taking disjoint subsets of inputs and outputs in Theorem ?? is not
crucial. It is enough to require that no element belongs to more than k of the

sets I1, . . . , Ip, and no element belongs to more than k of the sets J1, . . . , Jp. The

argument taking disjoint subsets utilizes k = 1. Now, if d(i) is the number of wires

leaving the input i, then the sum

p∑
t=1

∑
i∈It

d(i) =
n∑

i=1

∑
t:i∈It

d(i) ≤ k

n∑
i=1

d(i)

is at most k times larger than the total number

∑n
i=1 d(i) of wires leaving the

inputs. Since the same also holds for the number of wires entering the output nodes,

Lemma ?? implies
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Fig. 13.1 For every fixed i and j, the product Eij · Y gives the j-th row of Y .

s2(f) ≥ 1
k

[
E(fI1,J1) + E(fI2,J2) + · · · + E(fIp,Jp

)
]
.

13.3 Matrix product is hard in depth two

Let n = m2
. The operator f = Multn(X,Y ) of matrix product takes twom-by-m

matrices X and Y as inputs, and produces their product Z = X · Y . Since Z is

just a sequence of m2
scalar products, each of 2m variables (row of X times a

column of Y ), all these scalar products can be computed by depth-1 circuit using

2m ·m2 = 2n3/2
wires.

Raz and Shpilka (2003) proved that Multn cannot be computed by a circuit

of any constant depth using O(n) wires. For depth-2 circuits their lower bound

on the number of wires has the form Ω(n lnn) for both finite and infinite rings.

However, the difference between n lnn and n3/2
is still large. Jukna (2010) provided

a nearly matching lower bound for the Multn operator over the field GF(2) using
the entropy argument.

13.7 Theorem Any depth-2 circuit for Multn(X,Y ) requires at least n3/2 wires.

Proof. It is enough to observe that if we take I to be the i-th row of the first input

matrix X , and J to be the i-th row of the output matrix Z , then the augmented

operator fI,J contains allm2 = n single variables of Y among its boolean functions.

Indeed, if we set xij = 1 and all other entries of X to 0, then the product Eij · Y
of Y with the resulting boolean matrix Eij is just the j-th row of Y (see Fig. ??).
When doing this for all j = 1, . . . ,m, we obtain all n = m2

variables Y = {yij}
among the functions in fI,J . By the property (P2) of the entropy function, we then

have that E(fI,J) ≥ n.
Since we have m = n1/2

rows, we have m sets I1, . . . , Im of inputs and m
sets J1, . . . , Jm of outputs. Since the Ii’s and Ji’s are disjoint, Theorem ?? im-

plies that every depth-2 circuit computing f(X,Y ) = X · Y must have at least∑m
i=1 E(fIi,Ji) ≥ mn = n3/2

wires. ⊓⊔

13.8 Remark Note that the entropy of the matrix product operator f(X,Y ) = X ·Y
is large only for this special “row-wise” partition I1, . . . , Im and J1, . . . , Jm of

inputs and outputs, where Ii is the i-th row of the input matrixX , and Ji is the i-th
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row of the output matrix Z = X · Y . In particular, E(fIi,Jj
) ≤ |Jj | = m =

√
n for

i ̸= j, because in this case the assignments of constants to the i-th row of X does

not affect the results computed at the j-th row of Z , which arem scalar products

ofm columns of Y with the j-th row of X .

13.9 Remark (Cyclic convolution) There are, however, “more complicated” oper-

ators whose entropy remains large under any partitions of inputs and outputs.

Consider, for example, the operator of cyclic convolution f = Conv(x, y). This
operator takes two boolean vectors x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) as
inputs and outputs the vector z = (z0, . . . , zn−1), where zj =

∑n−1
i=0 xiyi+j mod 2

and i+ j is taken modulo n. In other words, the j-th output zj is the scalar product

of vector x with the cyclic shift of vector y by j positions to the left. It can be

shown (see Exercise ??) that, if n = pq then for every partition of x-variables into
p consecutive intervals I = {I1, . . . , Ip} of length q, there exists a partition of the

output vector z into q disjoint sets J = {J1, . . . , Jq} such that E(fI,J) ≥ n for all
I ∈ I and J ∈ J .

13.10 Remark (Limitations) How large can entropy of operators be? Recall that in

the definition of the entropy of operators we first split the inputs into p blocks

I1, . . . , Ip of some sizes a1, . . . , ap, and the outputs into p blocks J1, . . . , Jp of

some sizes b1, . . . bp. Then we just take the sum

E(f) = E(fI1,J1) + E(fI2,J2) + · · · + E(fIp,Jp)

of the entropies of the corresponding (to these blocks) augmented operators. Say

that a partition is balanced if a1 ≤ a2 ≤ . . . ≤ ap and b1 ≥ b2 ≥ . . . ≥ bp.

Note that the partition (into the rows) which we used for the matrix product is

balanced—there all ai’s and bi’s were equal.

Since each of the sets {f i
j | i ∈ It, j ∈ Jt} can have at most |It × Jt| = atbt

functions, the entropy of this set cannot exceed atbt. If the partition is balanced,

then Chebyshev’s inequality (see Hardy, Littlewood, and Polya 1952, Theorem 43,

page 43) yields

E(f) ≤
p∑

t=1
atbt ≤ 1

p

( p∑
t=1

at

)( p∑
t=1

bt

)
≤ nm

p
.

On the other hand, we have a trivial upper bound E(f) ≤ pn. Substituting p ≥
E(f)/n in the previous inequality, we obtain that E(f) ≤ n

√
m. Thus, at least

with respect to balanced partitions, the entropy of any (n,m)-operator does not
exceed n

√
m. In particular, for such partitions, matrix multiplication has the largest

possible entropy Θ(n3/2) among all (n, n)-operators.
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13.3.1 Restricted matrix product is easy in depth three

As observed by Drucker (2011), the proof of Theorem ?? actually gives a lower bound
n3/2

for the following restricted version of matrix product: multn(X,Y ) = X · Y
if X contains exactly one 1-entry, and multn(X,Y ) = 0 (all-0 matrix) otherwise.

Yet it can be shown that the operator multn can be computed by a depth-3 circuit

using only a linear number of wires, as we will see next. This shows a separation

between depth-2 and depth-3 circuits.

13.11 Theorem (Drucker 2011) The operator multn can be computed by a depth-3
circuits using O(n) wires.

Proof. Let n = m2
. Given two boolean m × m matrices X and Y , we want to

detect whether X is “good” (contains exactly one 1-entry) and, if this is the case,
to compute the matrix Z = X · Y . To detect whether X is good, we just put one

“security gate” s on the first (next to inputs) layer. This gate takes allX-variables as

inputs and outputs 1 if X has exactly one 1-entry, and 0 otherwise.

The goal of the remaining operator computed at the first layer is to determine the

unique 1-entry in a good matrixX . Our goal is to do this using O(m) instead ofm2

gates. For this, we associate with each position (i, j) ∈ [m]2 a distinct 2-element

subset Si,j of [3m]; this can be done since

(3m
2
)
> m2

. Then we put on the first

layer 3m “hash gates” h1, . . . , h3m. The (i, j)-th entry xij is wired to gates hp and

hq where Si,j = {p, q}. Each hash gate computes the sum modulo 2 of its inputs.

Observe that if we are promised that X contains exactly one 1-entry in, say,

position (i, j), then this position can be determined from the value of the operator

H(X) = (h1(X), . . . , h3m(X)). In fact, this value is just the characteristic vector

1(i,j) ∈ {0, 1}3m
of the set Si,j .

Next we put on the second layer “row gates” r1, . . . , rm and “column gates”

c1, . . . , cm. Each row gate rk takes h1, . . . , h3m and s as inputs. We define rk = 1
iff s = 1 and the hash gates output 1(k,j) for some j ∈ [m]. The column gate cl

takes h1, . . . , h3m, and the l-th column of Y as inputs. We define cl = yj,l if the

hash gates output 1(i,j) for some i ∈ [m], and cl = 0 otherwise. Finally, we compute

the entries zk,l of the product matrix on the last, third layer by letting zk,l := rk · cl.

We argue that this circuit computes mult. First suppose that X does not have

exactly one 1-entry. Then s(X) = 0, so all row gates output 0 and zk,l = 0 for all

(k, l), as required. Next suppose xi,j = 1 while all other entries of X are 0. Then
H(X) = 1(i,j) and s(X) = 1. It follows that rk = 1 iff k = i, whereas (c1, . . . , cm)
is the j-th row (yj,1, . . . , yj,m) of Y . Thus, zk,l = rk · cl is 0 for k ̸= i, and is yj,l

for k = i. This is precisely the (k, l)-entry of multn(X,Y ).
It remains to count the wires. Each X-variable is connected to 2 hash-gates, for

2m2
wires in total leading to hash gates. The security gate s hasm2

inputs. Each

row and column gate has at most 2m inputs, for a total of at most (2m)2
wires

entering the second layer. Finally, each output gate zk,l has 2 inputs, so the total

number of wires in the circuit is O(m2) = O(n) as desired. ⊓⊔
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13.4 Larger-depth circuits

For a function f : N → N such that 1 ≤ f(n) < n define

f∗(n) := min{k | f(f(· · · f(︸ ︷︷ ︸
k times

n) · · · )) ≤ 1} .

Now define the functions λd(n):

λ1(n) := ⌊
√
n⌋ , λ2(n) := ⌈log2 n⌉ and λd(n) := λ∗

d−2(n) for d ≥ 3.

In particular, λ3(n) = Θ(ln lnn). Since log logn is the 2-fold composition of

logn, we obtain that λ5(n) = Θ(λ4(n)). By induction, λ2d+1(n) = Θ(λ2d(n))
for all d ≥ 2. These slowly growing functions arose when dealing with so-called

“superconcentrators”. Although we will not use them later, let us summarize some

results about superconcentrators.

An n-superconcentrator is a directed graph with n input and n output nodes,

such that for every r < n, any r input nodesmay be connected to any r output nodes
in some order by r vertex-disjoint directed paths. Let c(n) denote the minimum

number of wires in an n-superconcentrator, and cd(n) the minimum number of

wires in an n-superconcentrator of depth at most d. It is clear that c1(n) = n2
: one

has to take the complete bipartite graph. It is therefore somewhat surprising that

much fewer wires are enough if we allow just one more layer of wires.

• Pippenger (1977) proved that c2(n) = O(n ln2 n) and c2(n) = Ω(n lnn).
• Alon and Pudlák (1994) improved the lower bound to Ω(n ln3/2 n).
• Finally, Radhakrishnan and Ta-Shma (2000) proved an almost optimal bound

c2(n) = Θ(n ln2 n/ ln lnn).
• Alon and Pudlák (1994) proved that c3(n) = Θ(n ln lnn).
• For d ≥ 4, bounds cd(n) = Θ(nλd(n)) were proved by Dolev et al. (1983), and

Pudlák (1994).

• By improving an earlier upper bound c(n) = O(n) of Valiant (1976), Pip-

penger (1977) showed that cd(n) = O(n) holds already when d = O(lnn);
moreover, his superconcentrator is quite regular: it has constant maximum

degree. Basalygo (1981) proved that we actually have cd(n) ≤ 36n+ O(lnn)
for d = O(lnn). The depth was improved to d = min{k | λk(n) ≤ 1} by

Dolev et al. (1983).

Raz and Shpilka (2003) used superconcentrator-type properties of circuits to

prove lower bounds Ω(nλd(n)) for the operator of matrix product. Their proof

is based on the following graph-theoretic lemma generalizing results of Dolev et

al. (1983) and Pudlák (1994). We formulate the lemma in a slightly different (weaker)

form. The proof of the lemma is somewhat technical, and we omit it.

13.12 Lemma (Raz–Shpilka 2003) Let d ≥ 2 be an integer. For every constant ϵ > 0,
there is a constant δ > 0, depending only on d and ϵ, such that if a leveled directed
acyclic graph of depth d has more than n vertices and fewer than δnλd(n) edges,
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then there exists a setW of inputs and outputs and a set S of inner nodes such that
|W ∪S| ≤ ϵn, |S| ≥

√
n and at most ϵ2n2/|S| input-output paths do not go through

a node inW ∪ S.

Cherukhin (2008b) observed that an appropriate combination of this lemma with

the entropy argument (described in Section ??) allows one to increase known lower

bounds for depth-d circuits fromΩ(nλd(n)) toΩ(nλd−1(n)). In particular, known

lower bound of Ω(n ln lnn) for depth-3 circuits can be improved to Ω(n lnn).
Cherukhin gave this combined argument only for one special operator—cyclic

convolution. A natural question therefore is: can this combination be used to

improve, say, lower bounds of Raz and Shpilka (2003) for the matrix product?

Below we give a negative answer. We first put Cherukhin’s argument in a

more general setting to characterize which operators’ lower bounds the combined

argument can improve. We discover that this is only possible for operators whose

entropy remains high under highly unbalanced partitions of input and output.

Cyclic convolution has this property but unfortunately matrix multiplication does

not.

By an n-operator we will mean any operator f : {0, 1}N → {0, 1}m
with

N,m ≥ n. By a (p, q)-partition of inputs and outputs of such an operator we will

mean a partition I of some n inputs into |I| = p disjoint subsets I of size n/p, and
a partition J of some n outputs into |J | = q disjoint subsets J of size n/q. (Here
and though the proof we shall ignore floors and ceilings whenever appropriate as

this does not affect the asymptotic nature of our result; hence me may assume n/p
and n/q are integers.)

Definition Say that an n-operator f has strong multiscale entropy if there exist

constants C, γ > 0 such that for every integer p lying between C
√
n and n, there

is a (p, n/p)-partition I,J of its inputs and outputs, such that E(fI,J) ≥ γn for

all I ∈ I and J ∈ J .

Remark ?? shows that the operator of cyclic convolution has strong multiscale

entropy. The following theorem, due to the author of the book, was never published

before.

13.13 Theorem Let d ≥ 3 be a constant. Every depth-d circuit computing an operator
of strong multiscale entropy must have Ω(nλd−1(n)) wires.

In particular, the operator of cyclic convolution requires this number of wires.

Proof. Let f be an n-operator of strong multiscale entropy, and take an arbitrary

depth-d circuit computing this operator, where d ≥ 3 is constant. Let ϵ > 0 be a

small enough constant; it is enough to take ϵ = min{1/C, γ/17}, where C and

γ are constant from the definition of operators with strong multiscale entropy.

Assume, for the sake of contradiction, that the total number of wires in the circuit

is smaller than δnλd−1(n), where δ = δ(d, ϵ) is a constant from Lemma ??. Our
goal is to derive a contradiction with Lemma ??.

LetLi be the set of nodes on the i-th layer of our circuit, i = 0, 1, . . . , d. Consider
the graph induced by the last d− 1 layers L1, . . . , Ld. When applied to this graph,
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Fig. 13.2 Every path from the input layer L0 to output nodes in J must contain a node in the set

V = L′
1 ∪ (L1 ∩ W ) ∪ S ∪ (J ∩ W ). Then, V is a J-cut.

which is of depth d− 1, Lemma ?? gives us a setW of inputs and outputs, and a set

S of inner nodes such that |W ∪ S| ≤ ϵn, |S| ≥
√
n and at most ϵ2n2/|S| paths

from the nodes in L1 to the nodes in Ld do not go through a node inW ∪ S. To
obtain the desired contradiction, take a (p, q)-partition I,J of inputs in L0 and

outputs in Ld with

p :=
⌈ |S|
ϵ

⌉
≥

√
n

ϵ
and q := n

p
≥ ϵn

2|S|
.

Since f is an operator of a strong multiscale entropy, we know that E(fI,J) ≥ γn
must hold for every I ∈ I and J ∈ J . We will use the setsW and S guaranteed

by Lemma ?? to choose a set I ∈ I of inputs, a set J ∈ J of outputs and a J-cut V
such that

|V | + wI(V ) ≤ 16ϵn < γn , (13.1)

which contradicts Lemma ??.
By Lemma ??, at most b := ϵ2n2/|S| of the paths from L1 to Ld can avoid the

setW ∪ S. Recall that |W ∪ S| ≤ ϵn and |S| ≥
√
n. Since we have q ≥ ϵn/2|S|

disjoint sets J ∈ J , there must exist a J ∈ J such that J has at most

|J ∩W | ≤ 2|W |
q

≤ 4|S| ≤ 4ϵn

nodes inW and at most 2b/q ≤ 4ϵn of these b “bad” paths can enter J . Thus, if we
take the set L′

1 ⊆ L1 of |L′
1| ≤ 4ϵn starting points of these “bad” paths, then the

set

V := W ′ ∪ S ∪ (J ∩W ) withW ′ := L′
1 ∪ (L1 ∩W )

is a J-cut of size |V | ≤ 10ϵn (see Fig. ??).
To finish the proof of (??), and thus the proof of the theorem, it remains to show

that wI(V ) ≤ 6ϵn holds for at least one I ∈ I . SinceW ′ ⊆ L1 is a set of nodes

on the first (next to input) layer of our original circuit, each I(v) for v ∈ W ′
is

just the set of wires going from I to v. Since all p sets in I are disjoint, the sum∑
I∈i wI(W ′) cannot exceed the total number of wires which, by our assumption,
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is at most δnλd−1(n) ≤ n log2 n. Hence, there exists an I ∈ I such that

wI(W ′) ≤ n log2 n

p
≤ ϵ

√
n logn ≤ ϵn

for all large enough n. Further, we use |J ∩ W | ≤ 2|W |/q ≤ 4|S| and a trivial

estimate wI(U) ≤ |I| · |U |, holding for any set U of nodes, to obtain that

wI(S) ≤ |I| · |S| ≤ n|S|
p

≤ ϵn

and

wI(J ∩W ) ≤ |I| · |J ∩W | ≤ n

p
· 4|S| ≤ 4ϵn .

Thus, wI(V ) ≤ 6ϵn. This completes the proof of Theorem ??. ⊓⊔

13.14 Remark A possible big imbalance of partitions resulting from the proof of

Theorem ?? (with p = Ω(n) and q = O(1)) arises from the trivial upper bound

wI(S) ≤ |I| · |S| given at the end of the proof. Actually, if we do not have any

additional information about the set S than that given in Lemma ??, this imbalance

cannot be avoided. In particular, we cannot exclude the possibility of the following

undesired situation: from every input at least one path goes through at least one

node in S. In this case wI(S) = |I| · |S| = n|S|/p. Then, in order to achieve

wI(S) ≤ ϵn, we would be forced to take p = Ω(n), and hence, the block length

|I| = O(1). But since we need E(fI,J) ≥ γn and since E(fI,J) ≤ |I| · |J | holds
for all I and J , this forces |J | = Ω(n), and hence, q = O(1). Thus, the weakness
of the entire argument is that the choice of parameters p and q is forced by the size

|S| of the set S guaranteed by Lemma ??, and we only know that

√
n ≤ |S| ≤ ϵn.

We have just seen that the combination of Lemmas ?? and ?? (superconcentrators
plus entropy) can only work for operators that have high entropy under very

unbalanced partitions, where inputs are split into blocks of constant size. Remark ??
shows that the operator of cyclic convolution has this property. This is a lucky

exception: many other important operators, like the matrix product operator, do

not have this property.

13.15 Remark An interesting question is: can the property of strong multiscale

entropy alone lead to higher lower bounds than given in Theorem ??? Recently,
Drucker (2011) gave a negative answer: there is an explicit operator with this

property that is computable in depth d with O(nλd−1(n)) wires, for d = 2, 3 and

for even d ≥ 6. Roughly speaking, the operator is a simplified variant of cyclic

convolution.
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Fig. 13.3 A matrix

A =


0 0 1 0 0 0
0 1 0 0 1 1
1 0 0 1 0 0
1 1 0 1 1 1
1 1 1 1 1 1


and a linear depth-2 circuit

computing y = Ax. Each
non-input gate is the sum

mod 2 of its inputs.
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13.5 Linear circuits for linear operators

We now consider linear operators, that is operators of the form f(x) = AxwhereA
is a boolean n×nmatrix and computations are in GF(2). Entropy of such operators
cannot be larger than the rank of A, and the entropy method does not seem to

work for linear operators. In fact, for such operators it is difficult to prove high

lower bounds even in the class of linear circuits, where each gate computes the

sum mod 2 of its inputs. It can be shown that matrices A requiring linear depth-2
circuits with about n2/ logn wires exist (see Theorem ?? below), but no explicit

lower bound n1+Ω(1)
is known so far.

Recall that a linear circuit has n input nodes x1, . . . , xn and m output nodes

y1, . . . , ym. Each non-input node computes the sum mod 2 of its inputs. Thus, every

such circuit computes a linear transformation y = Ax for some boolean m × n
matrix A (Fig. ??). A special property of linear circuits is that they only need to

correctly compute the transformation for basis vectors x.
Namely, say that a (not necessarily linear) circuit represents a booleanm× n

matrix A = (aij) if on each input vector ej = (0, . . . , 0, 1, 0, . . . , 0) with precisely

one 1 in the j-th position, the circuit outputs the j-th column of A. That is, a circuit
represents A if it correctly computes the linear operator Ax over GF(2) on all n
unit vectors e1, . . . , en; on other input vectors x the circuit can output arbitrary

values. In particular, if a circuit is linear then it represents the matrix A if for every

i ∈ [m] and j ∈ [n],

aij = 1 iff the number of paths from xj to yi is odd. (13.2)

13.16 Proposition A linear circuit computes y = Ax iff it represents A.

Proof. If a circuit (not necessarily linear) computes y = Ax for all inputs x, then
it clearly represents A. For the other direction, observe that the behavior of a

linear circuit on all input vectors x is completely determined by its behavior on

n unit vectors: just write each input vector x = (x1, . . . , xn) as the sum x =
x1e1 ⊕ · · · ⊕ xnen and use the linearity of gates. ⊓⊔
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It is clear that every matrix A can be represented by a depth-1 linear circuit, but

the number of wires in this case is just the total number |A| of ones in A. However,
already in depth-2 we can have much more compact representations.

13.17 Example Recall that a primitive matrix is a 0-1 matrix of rank 1, that is, a
boolean matrix consisting of one all-1 submatrix and zeros elsewhere. Such a matrix

R can be specified by a subset S of rows and a subset T of columns such that B has

ones in all positions in S × T , and has zeros elsewhere. As before, we call |S| + |T |
the weight of R. In depth-1, such a matrix requires |S| · |T | wires. But in depth-2,
already |S| + |T | wires are enough: just take one vertex on the middle layer and

connect it to all inputs in S and all outputs in T .

13.18 Theorem (Lupanov 1956) Every boolean n× n matrix can be represented by a
linear depth-2 circuit with O(n2/ lnn) wires, and matrices requiring linear circuits
with Ω(n2/ lnn) wires in any depth exist.

Proof. By Lemma ??, the matrixA can be decomposed into primitive matrices so that

their total weight (sum of weights of primitive matrices in the decomposition) does

not exceed 2n2/ logn. Since each primitive matrix of weight w can be represented

using w wires (see Example ??), and since the matrices in the decomposition are

disjoint (have no common 1-entries), we are done.
The lower bound follows by counting arguments: there are 2n2

boolean n× n
matrices and, by Lemma ??, at most (9t)t

linear circuits with t wires. ⊓⊔

Thus, if we denote by lin2(Ax) the minimum number of wires in a linear depth-

2 circuit computing Ax, then n× n matrices with lin2(Ax) = Ω(n2/ lnn) exist.
Nothing similar, however, is known for general (non-linear) circuits. Let s2(Ax)
denote the minimum number of wires in a depth-2 circuits with arbitrary boolean

functions as gates computing the linear transformation y = Ax.

13.19 Research Problem
Do matrices A with s2(Ax) = Ω(n2/ lnn) exist?

One can show that the answer is positive if either all gates on the output layer

or all gates on the middle layer are required to be linear. The case when all output

gates are linear is simple (see Exercise ??). The case when only middle gates are

required to be linear can be proved using Kolmogorov complexity arguments (see

Exercise ??).
Concerning explicit lower bounds, no lower bound n1+Ω(1)

is known, even in

the case of linear circuits! The first nontrivial lower bound lin2(Ax) = Ω(n lnn)
for linear circuits was proved by Alon, Karchmer, and Wigderson (1990) using the

Sylvester matrix; nearly the same lower bound holds for general (non-linear) depth-

2 circuits as well (see Theorem ?? below). It was also stated by Pudlák and Rödl

(1994) (on page 260, without proof) that the lower bound lin2(Ax) = Ω(n ln3/2 n)
can be derived from a well-known bound on the rigidity due to Friedman (1993).

Recently, Gál et al. (2011) proved the same lower bound for general circuits, while
computing good linear codes.
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LetA be booleanm×nmatrix. Say thatA is good if there exist constantsα, β > 0
such that n ≥ αm and every two vectors in Range(A) = {Ax | x ∈ GF(2)n} have

Hamming distance at least βm. Thus, every good matrix is a generator matrix of a

linear self-correcting code Range(A) of rate n/m = Ω(1) and minimal distance

Ω(n).

13.20 Theorem (Gál et al. 2011) IfA is a goodm×nmatrix, then any depth-2 circuit
computing Ax must have Ω(n ln3/2 n) wires.

Proof. (Sketch) Consider a depth-2 circuit C computing y = Ax. The circuit has
n input nodes, m = O(n) output nodes, and some number t of middle nodes

v1, v2, . . . , vt. Suppose the middle nodes have total degrees (fanins plus fanouts)

d1 ≥ d2 ≥ . . . ≥ dt. Hence, L =
∑t

i=1 di is the total number of wires in the circuit.

The proof of the theorem proceeds by establishing the following inequality for any

integer r between logn and

√
n/4 (where ϵ > 0 is a constant):∑

i≥r

( di

ϵn
√

logn

)2
≥ 1
r
. (13.3)

The desired lower bound

∑
i di = Ω(n · logn ·

√
logn) then follows from the

Monotone Sums Lemma (see Appendix ??).
To prove (??), fix an r in the desired interval, and let P be the number of length-2

paths from an input node to an output node that only use middle nodes vi with

i > r. Note that P ≤
∑

i>r d
2
i . By averaging, there is a set I of |I| ≥ n/2 input

nodes such that each of them has at most s := 2P/n such paths to an output node.

Each middle node vi computes some boolean function gi(x). We now replace

each vi with i > r by a constant gi(0). Let C ′
be the modified circuit. Let also

k ≤ |I| be a parameter (to be fixed later), and say that an input string x ∈ {0, 1}n

is legal if it has k ones, and xj = 0 for all j ̸∈ I .
For every such string x, the outputs C(x) and C ′(x) can differ in at most ks

coordinates, because there are at most ks output nodes for which there is a path

from an input node with value 1 through a middle node vi with i > r. If ks is
smaller than half of the distance of the code, we can decode any such x from the

valueC ′(x). However, the valuesC ′(x) depend only on ≤ r bits (so many non-fixed

gates are on the middle layer). Since we have

(|I|
k

)
legal strings x, the number r of

these bits must satisfy the inequality

r ≥ log
(

|I|
k

)
≥ k log |I|

k
≥ k log n

2k .

The only constraint on k is that ks = 2kP/n must be less that half of the distance

of the code, and the later is Ω(n). This allows us to set k = Θ(n2/P ), yielding

r = Ω
(n2

P
log P

n

)
.
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Using this lower bound as well as inequalities logn ≤ r ≤
√
n/4, one can derive

that P = Ω((n2/r) logn). Together with P ≤
∑

i>r d
2
i , this already establishes

the desired inequality (??). ⊓⊔

Gál et al. (2011) also showed that, using large distance alone, one cannot hope

to substantially improve the lower bound of Theorem ??: there exist generator

matrices A of codes of distance Ω(n) such that lin2(Ax) = O(n(lnn/ ln lnn)2).
The existence of such generator matrices is proved using probabilistic arguments.

Actually, the authors (personal communication) can improve the lower bound in

Theorem ?? to an optimal bound of lin2(Ax) = Ω(n(lnn/ ln lnn)2).

13.6 Circuits with OR gates: rectifier networks

We now consider circuits where each gate is the OR of its inputs. Such a circuit

for a booleanm× n matrix A = (aij) has n input nodes x1, . . . , xn andm output

nodes y1, . . . , ym. At the i-th output of such a circuit the OR yi =
∨

j:aij=1 xj of

the input variables is computed. That is, the circuit computes the operator y = Ax
over the boolean semiring. Note that in this case a circuit represents the matrix A
if for every i ∈ [m] and j ∈ [n],

aij = 1 iff there exists a path from xj to yi. (13.4)

Thus, we can just ignore the gates, and consider our circuit a directed acyclic graph

with this property (??). Such a model for matrix representation, known as rectifier
network, was introduced by Lupanov (1956), and was subsequently intensively

studied in the Russian literature. The size of such a network is again the total

number of wires.

It is easy to see that Theorem ?? remains true also in the case of rectifier net-

works: every n× n matrix can be represented by a depth-2 rectifier network using

O(n2/ lnn) wires, and matrices requiring this number of wires exist. But unlike

in the case of linear circuits, where no explicit lower bound larger than n ln3/2 n
in depth-2 is known, explicit lower bounds for OR-circuits (rectifier networks) are

easier to obtain, even without depth restrictions!

A lower bound ofΩ(n3/2)was first obtained by Nechiporuk (1969) for the “point-
line incidence” matrix defined in Example ??. Using a different matrix constructed by

Brown (1966), a larger lower boundΩ(n5/3) was later obtained by Pippenger (1980).
Similar lower bounds were also obtained by Mehlhorn (1979) and Wegener (1980).

It is not difficult to show that any rectifier network representing a boolean matrix A must

contain at least |A|/r(A) wires, where |A| is the total number of 1-entries in A, and r(A) is
the maximum number of entries in an all-1 submatrix of A. This lower bound follows from the

following simple observation: the sets of inputs and outputs connected by paths going through

a fixed wire must form an all-1 submatrix of A. Since we always need at least |A|/r(A) all-1
matrices to cover all ones of A, this number of wires is necessary. Unfortunately, this lower

bound is too weak: if, say, A is an n × n matrix, then r(A) is at least the maximum number
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of 1s in a row or a column of A, implying that |A|/r(A) ≤ n. Much larger lower bounds

can be obtained using the fact that coverings resulting from circuits must have some special

properties.

Say that a boolean matrix A is (s, t)-free if it does not contain any (s+ 1) × (t+ 1)
all-1 submatrix. A matrix is k-free if it is (k, k)-free.

13.21 Theorem IfA is a boolean k-free matrix, then any rectifier network representing
A must have at least |A|/k2 wires.

Proof. (Due to Pippenger 1980) Take a rectifier network F forA. For a nodew in F ,

let sw be the number of input nodes from which w is reachable, and tw the number

of output nodes reachable from w. Let us call a wire e = (u, v) “eligible” if su ≤ k
and tv ≤ k. If (i, j) is a 1-entry of A (that is, aij = 1), we say that e “covers” this
entry if there is a path from the j-th input node to u, and there is a path from v to
the i-th output node.

Since each eligible wire e = (u, v) can cover at most su · tv ≤ k2 1-entries of A,
it remains to prove the following claim.

13.22 Claim Every 1-entry of A is covered by at least one eligible wire.

To prove the claim, take a 1-entry (i, j) of A. Then there must be a path

v0, v1, . . . , vr in our circuit beginning in v0 = j and ending in vr = i. Letting
sl := svl

be the number of inputs from which vl is reachable, and tl := tvl
denote

the number of outputs reachable from vl, we have that

s1 ≤ s2 ≤ . . . ≤ sr and t1 ≥ t2 ≥ . . . ≥ tr .

Let p be the largest number for which sp ≤ k, and q the smallest number for which

tq ≤ k. If q ≤ p + 1, then the wire e = (vp, vp+1) covering the entry (i, j) is

eligible, and we are done. So assume for the sake of contradiction that q ≥ p+ 2.
By the definition of positions p and q we have that sp+1 > k and tp+1 > k. But
then at least k + 1 inputs are connected with at least k + 1 outputs going through

the node vp+1, contradicting the k-freeness of A. This completes the proof of the

claim, and thus the proof of the theorem. ⊓⊔

We already know explicit constructions of 1-free n× n matrices A with |A| =
Ω(n3/2) ones; see Examples ?? and ??. For these matrices, Theorem ?? yields that
any OR-circuit representing them requires Ω(n3/2) wires.

13.23 Example (Brown’s construction) The following construction of dense 2-free
matrices is due to Brown (1966). Let p be an odd prime and let d be a non-zero

element of Zp = {0, 1, . . . , p − 1} (the field of integers modulo p) such that d
is a quadratic non-residue modulo p if p ≡ 1 modulo 4, and a quadratic residue

modulo p if p ≡ 3 modulo 4. Let A be a boolean n × n matrix with n = p3

whose rows and columns correspond to all triples of elements in Zp. The entry

of A corresponding to a row (a1, a2, a3) and column (b1, b2, b3) is 1 iff the sum
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(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2
modulo p is equal to d. Brown showed that

this matrix has |A| = p4(p− 1) = Ω(n5/3) ones, and is 2-free.

Thus, Brown matrices require OR-circuits with Ω(n5/3) wires. Subsequent con-
structions of dense square-free matrices have lead to even higher lower bounds.

13.24 Example (Norm graphs) Let q be a prime-power, t ≥ 2 an integer, and consider
the field GF(qt) with qt

elements. The norm of an element a of this field is defined

as the element

N(a) := a · aq · · · aqt−1
= a(qt−1)/(q−1)

of this field. Now let n = qt
, and construct a bipartite n× n graph with vertices in

each part being elements ofGF(qt). Two vertices a and b are adjacent iffN(a+b) =
1. It is known that the number of solutions in GF(qt) of the equation N(x) = 1 is

(qt −1)/(q−1); this and other basic facts about finite fields can be found in the book
by Lidl and Niederreiter (1986). Hence, each vertex of this graph has degree d =
(qt − 1)/(q − 1), implying that the total number of edges is dqt ≥ q2t−1 = n2−1/t

.

Kollár, Rónyai and Szabó (1996) proved that, for any t distinct elements a1, . . . , at of

GF(qt), the system of equationsN(a1+x) = 1, N(a2+x) = 1, . . . , N(at+x) = 1
has at most t! solutions x ∈ GF(qt). This immediately implies that the constructed

graph has no copy of a complete bipartite t × (t! + 1) graph, and hence, the

adjacency matrix of this graph is (t − 1, t!)-free. Explicit matrices with slightly

worse parameters were constructed earlier by Andreev (1986).

For the adjacency matrices of norm graphs, Theorem ?? yields almost maximal

lower bounds Ω(n2−ϵ) for an arbitrarily small constant ϵ > 0. Nothing similar,

however, is known for linear circuits, even in depth 2.

13.25 Research Problem
Can a k-free matrix constructed in Example ?? or in Example ?? be represented by

a linear depth-2 circuits using fewer than n1+Ω(1)
wires?

13.26 Remark In this problem it is important that we only consider circuits of

depth 2. Gashkov and Sergeev (2010) showed that 1-free n × n matrix A with

|A| = Ω(n3/2) ones, constructed in Example ??, as well as Brown’s matrix and

some other dense square-free matrices, can be represented by linear circuits of

depth O(lnn) using only O(n lnn ln lnn) wires. Their construction is based not

on the properties of matrices (their square-freeness) but rather on their construction.
Actually, the authors can show (personal communication) that, for every integer

k ≥ 1, the resulting circuits of depth 2k − 1 have only O(n1+1/k) wires.

13.6.1 Circuits with OR and AND gates

One may ask whether the number of wires in an OR-circuit can be substantially

decreased if one also allows AND gates? As shown by Nechiporuk (1969), Pip-
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penger (1980), and Mehlhorn (1979), at least for k-free matrices this is not the case:

the number of wires can only be decreased by a factor at most 1/k (see Exercise ??).
Since the number of wires in a monotone circuit with unbounded fanin AND

and OR gates is proportional to the number of gates in a standard monotone circuit

(with fanin-2 AND and OR gates), we obtain the following lower bound on the

monotone complexity of monotone operators f . Let C∧,∨(f) denote the smallest

number of gates in a fanin-2 monotone circuit computing f . For a booleanm× n
matrix A = (aij), let fA : {0, 1}n → {0, 1}m

denote the monotone operator

fA(x) = Ax over the boolean semiring (∧,∨, 0, 1). That is, the i-th component of

fA is just the disjunction ai1x1 ∨ ai2x2 ∨ · · · ∨ ainxn.

13.27 Theorem If A is a k-free matrix, then C∧,∨(fA) = Ω(|A|/k3).
Thus, constructions described above give us explicit n × n matrices A with

C∧,∨(fA) = Ω(n2−ϵ). Similar (almost optimal) lower bounds can be obtained for

yet another important operator, the so-called “boolean cyclic convolution”.

A boolean n× n matrix A is circulant if its i-th row for i = 1, . . . , n− 1 is the

cyclic shift of the first row (a0, a1, . . . , an−1) by i positions to the left:

A =



a0 a1 . . . an−2 an−1

a1 a2 . .
.
. .
.

a0
...

... . .
.
. .
. ...

an−2 an−1 a0 an−3
an−1 a0 . . . an−3 an−2

 . (13.5)

Note that if S = {i | ai = 1} ⊆ Zn = {0, 1, . . . , n− 1} is the set of all positions

of 1s in the first row of A, then A is k-free if and only if the set S is k-sparse
in the following sense: I + J ̸⊆ S for every pair of subsets I, J ⊆ Zn of size

|I| = |J | = k + 1; here I + J is the set of all possible sums i+ j modulo n with

i ∈ I and j ∈ J .
Grinchuk (1988) used probabilistic arguments to show that k-sparse subsets S ⊆

Zn of size |S| = Ω(n1−
√

3/k/k4) exist. This implies the existence of circulant k-free

n× n matrices A with |A| = Ω(n2−
√

3/k/k4) ones. Grinchuk and Sergeev (2011)

recently improved this to |A| = Ω(n2−3/k/k3). In particular, for k = Θ(logn) we
have that |A| = Ω(n2/ log3 n).

Circulantmatrices are related to the operator of cyclic convolutionwhichwe have

already considered above; see Remark ??. The operator of boolean cyclic convolution
z = fn(x, y) is a boolean operator of 2n variables defined in a similar way:

zi =
n−1∨
j=0

xiyi+j mod n for i = 0, 1, . . . , n− 1 .

That is, fn(x, y) = Y x is a result of a matrix-vector product over the boolean

semiring, where Y is the circulant matrix of the form (??) induced by the vector y =
(y0, . . . , yn−1) of the last n variables. Since every circulant matrix can be obtained
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from the matrix Y by substituting constants to the last n variables y0, . . . , yn−1 of

fn(x, y), the result of Grinchuk and Sergeev (together with Theorem ??) implies

that C∧,∨(fn) = Ω(n2/ log6 n).
Gashkov and Sergeev (2011) gave a general construction showing how sparse

subsets of vectors can be transformed into sparse subsets of numbers. In particular,

they show that the mapping ψ : Zt
n → Z(2n−1)t given by

ψ(a0, . . . , at−1) =
t−1∑
i=0

ai(2n− 1)i

translates every k-sparse subset S ⊆ Zt
n of vectors into a k-sparse subset ψ(S) ⊆

Z(2n−1)t of numbers. Together with the construction of norm graphs given in

Example ??, this yields explicit k-free circulant n × n matrices A with |A| =
Ω(n2−1/t/2t) ones, where k = t!.

13.6.2 Asymptotic bounds

Finally, let us mention some results about the asymptotic behavior of the Shannon

function of rectifier networks. LetB(n) denote the minimal number of wires which

is enough to represent any boolean n× n matrix by a rectifier network. Let Br(n)
denote the analogous number in the class of networks of depth at most r. Let also
Br(n, α) denote the minimal number of wires which is enough to represent any

booleann×nmatrix withαn2
ones. Finally, letλx := −x log2 x−(1−x) log2(1−x)

be the binary entropy function.

Lupanov (1956) proved that

B2(n) ∼ n2

logn .

Nechiporuk (1969a) proved that the asymptotic is achieved at depth 3:

B(n) ∼ B3(n) ∼ n2

2 logn .

He also proved that

B2(n, α) ∼ λα
n2

logn and B3(n, α) ∼ λα
n2

2 logn

as long as logn = o(λαn) and − log min(α, 1 − α) = o(logn). For the minimal

number B(m,n) of wires which is enough to represent any booleanm× n matrix,

Orlov (1970) proved that

B2(k logn, n) ∼ (k + 1)n
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holds for every positive integer k, and

B(m,n) ∼ B2(m,n) ∼ 2m+1 + n

holds as long as n ≥ 2(2m −m− 1).
In all these estimates, the upper bounds were obtained by constructing networks

with a special property that every input is connected with every output by at most
one path. Thus, the same asymptotic equalities also hold for linear circuits.

13.7 Non-linear circuits for linear operators

A positive answer to Problem ??wouldmean that, for at least somematricesA, using
non-linear gates cannot help significantly to compute the linear transformation

y = Ax. In this section we will show that non-linear gates can help much if we

only want to represent the matrix A, that is, to correctly compute y = Ax only for

vectors x with exactly one 1.
Theorem ??, together with Proposition ??, implies that, in the class of linear

circuits, some matricesA requireΩ(n2/ lnn) wires to represent them. We will now

show that in the class of general circuits the situation is entirely different; this was

observed in (Jukna, 2010).

13.28 Theorem Every boolean n×n matrix A can be represented by a depth-2 circuit
with O(n lnn) wires.

Proof. We construct the desired depth-2 circuit representing A = (aij) as follows.
Letm be the smallest even integer such that

(
m

m/2
)

≥ n; hencem = O(lnn). Take
m middle nodes V = {v1, . . . , vm}. To each input variable xj assign its own subset

Sj ⊆ V of |Sj | = m/2 middle nodes; hence, Sj1 ⊆ Sj2 iff j1 = j2. Join xj with all

nodes in Sj . Finally, connect each v ∈ V with all output nodes. The total number

of wires is then n(m/2) + nm = O(n lnn).
Now we assign gates to the nodes. If v is a node on the middle layer connected

to inputs xj1 , . . . , xjk
, then assign to v the gate gv = xj1 ⊕ · · · ⊕ xjk

. To the i-th
output node we assign the gate

ϕi = ai1h1 ⊕ ai2h2 ⊕ · · · ⊕ ainhn , where hk =
∏

v∈Sk

gv .

Then

hk(ej) = 1 iff gv(ej) = 1 for all v ∈ Sk

iff xj is connected to all nodes in Sk

iff Sk ⊆ Sj

iff k = j.
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Hence, hj(ej) = 1 and hk(ej) = 0 for all k ̸= j. Thus, if fi(x) is the function

computed at the i-th output gate then, for all j = 1, . . . , n, we have that

fi(ej) = ϕi(ej) = ai1 · 0 ⊕ · · · ⊕ aij · 1 ⊕ · · · ⊕ ain · 0 = aij ,

as desired. ⊓⊔

We now show that the upper bound n lnn in Theorem ?? is almost optimal.

To do this, we will use the Sunflower Lemma proved in Section ??. Recall that a
sunflower with k petals is a family S1, . . . , Sk of k finite sets, each two of which

share precisely the same set of common elements, called the core of the sunflower.
That is, there is a set C (the core of the sunflower) such that Si ∩ Sj = C for

all 1 ≤ i < j ≤ k. The Sunflower Lemma states that every family of more than

s!(k − 1)s
sets, each of which has cardinality at most s, contains a sunflower with

k petals.

For a matrix A, let dist(A) denote the smallest Hamming distance between the

columns of A. Alon, Karchmer and Wigderson (1990) proved that every matrix

A requires Ω(d · lnn/ ln lnn) wires to be presented by a linear depth-2 circuits,

where d = dist(A). The next theorem extends this result to general (non-linear)

circuits.

13.29 Theorem Every depth-2 circuit representing a boolean n × n matrix with
dist(A) = d requires at least Ω(d · lnn/ ln lnn) wires.

Proof. Fix a minimal depth-2 circuit with arbitrary gates representing a given

matrix A. Without loss of generality, we may assume that there are no direct wires

from inputs to outputs: this can be easily achieved by adding at most n new wires.

Let x1, . . . , xn be its input nodes, and S1, . . . , Sn be sets of their neighbors on the

middle layer. Let f1, . . . , fn be the functions computed at the output nodes. Since

the circuit represents A, we must have that fi(ej) = aij for all 1 ≤ i, j ≤ n.
Let L1 be the number of wires leaving the input nodes, and L2 the number of

wires entering the output nodes. Hence, L1 =
∑n

i=1 |Si|, and L1 + L2 is the total

number of wires. Setm := c lnn/ ln lnn for a sufficiently small constant c > 0. If
we have L1 > mn wires leaving the input nodes, then we are done. So, assume that

L1 ≤ mn. Our goal is to show that we must have L2 ≥ m · dist(A) wires entering
the output nodes.

Our assumption

∑n
i=1 |Si| ≤ mn implies that at least n/2 of the sets Si must

be of size at most s = 2m. Hence, if the constant c in the definition ofm is small

enough then, by the Sunflower Lemma, these sets must contain a sunflower with

k = 2m petals. Having such a sunflower with a core C , we can pair its members

arbitrarily (Sp1 , Sq1), . . . , (Spm
, Sqm

); hence, Spi
∩ Sqi

= C for all i = 1, . . . ,m.

Important for us will only be that the symmetric differences

Spi
⊕ Sqi

= (Spi
\ Sqi

) ∪ (Spi
\ Sqi

) = (Spi
∪ Sqi

) \ C
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of these pairs of sets are pairwise disjoint. Hence, we have m pairwise disjoint

subsets Spi
⊕Sqi

of nodes on the middle layer, and we only have to show that each

of these sets has at least dist(A) outgoing wires: then L2 ≥ m · dist(A).
Fix one of the pairs (Sp, Sq). Since the circuit represents the matrix A, the value

f(ej) of the computed operator f = (f1, . . . , fn) on the j-th unit vector must be

the j-th column of A. Since the Hamming distance between the p-th and the q-th
columns of Amust be at least d, there must exist a set I of |I| ≥ dist(A) rows such
that

fi(ep) ̸= fi(eq) for all i ∈ I . (13.6)

13.30 Claim Every output fi with i ∈ I must be adjacent to at least one node in

Sp ⊕ Sq .

Proof. Let V be the set of all nodes on the middle layer. For a node v ∈ V , let

gv(x1, . . . , xn) be the boolean function computed at this node. Let 0 denote the

all-0 vector. Observe that, if a wire (j, v) is present, then the values gv(ej) and gv(0)
must be different: would they be the same, then we could remove the wire (j, v)
and replace gv by a new boolean function g′

v obtained from gv by fixing the j-th
variable xj of gv to 0. The behavior of this new gate would then be the same on all

unit vectors. But then we would have one wire fewer, contradicting the minimality

of our circuit.

This observation implies that gv(ep) = gv(eq) for all v ̸∈ Sp ⊕ Sq . Indeed, if

v ̸∈ Sp ∪ Sq , then neither the wire (p, v) nor the wire (q, v) is present, implying

that gv(ep) = gv(0) = g(eq). If v ∈ Sp ∩ Sq , then both wires (p, v) and (q, v)
must be present, and the above observation implies that gv(ep) ̸= gv(0) as well as
gv(eq) ̸= gv(0). Hence, in this case we also have that gv(ep) = gv(eq), just because
gv can take only two values. Thus the behavior of every gate gv with v ̸∈ Sp ⊕ Sq

is the same on both unit vector ep and eq .

To finish the proof of Claim ??, take the boolean function fi computed at the

i-th output gate with i ∈ I . If there were no wire from a node in Sp ⊕ Sq to this

output gate, then fi would also be forced to take the same value on both unit vector

ep and eq , contradicting (??). ⊓⊔

By Claim ??, for each of m pairs (Spi , Sqi) of subsets of nodes on the middle

layer, there must be at least |I| ≥ dist(A) wires going from the vertices in Spi ⊕Sqi

to the output layer. Since the sets Spi
⊕ Sqi

, i = 1, . . . ,m, are pairwise disjoint,

the total number of wires going from the middle layer to the output layer must be

at leastm · dist(A), as desired. ⊓⊔

There are explicit boolean n×nmatricesHn (so-called Sylvester matrices) such

that dist(Hn) ≥ n/2 but, still, the entire linear transformation y = Hnx can be

computed by a linear depth-2 circuit with n logn wires (Exercise ??). Thus, the
lower bound in Theorem ?? is almost tight.
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13.31 Remark Drucker (2011) has recently shown that the lower bound in The-

orem ?? is, in fact, tight: the factor 1/ ln lnn cannot be removed. He uses par-

ticular combinatorial designs to construct a boolean n × n matrix A such that

dist(A) = Ω(n) but A can be represented, and even fA(x) = Ax can be computed

by a linear depth-2 circuit using only O(n lnn/ ln lnn) wires. He also shows that

there exists a matrix with dist(A) = Ω(n) such that Ax can be computed by a

linear depth-3 circuit using only O(n) wires. Thus, large distance between columns

alone cannot force a large number of wires.

13.8 Relation to circuits of logarithmic depth

A depth-2 circuit of width r has n boolean variables x1, . . . , xn as input nodes, r
arbitrary boolean functions h1, . . . , hr as gates on the middle layer, and arbitrary

boolean functions g1, . . . , gn as gates on the output layer. Direct input-output

wires, connecting input variables with output gates, are now allowed! Such a

circuit computes an operator f = (f1, . . . , fn) : GF(2)n → GF(2)n
if, for every

i = 1, . . . , n,
fi(x) = gi(x, h1(x), . . . , hr(x)) .

The degree of such a circuit is the maximum, over all output gates gi, of the number

of wires going directly from input variables x1, . . . , xn to the gate gi. That is, we

ignore the wires incident with the gates on the middle layer. Let Degr(f) denote
the smallest degree of a depth-2 circuit of width r computing f .

It is clear that Degn(f) = 0: just put the functions f1, . . . , fn on the middle

layer. Hence, this parameter is only nontrivial for r < n. Especially interesting is

the case when r = O(n/ ln lnn):

13.32 Lemma If Degr(f) = nΩ(1) for r = O(n/ ln lnn), then f cannot be computed
by a circuit of depth O(lnn) using O(n) fanin-2 gates.

Proof. Suppose that f = (f1, . . . , fn) can be computed by a circuit Φ of depth

O(lnn) using O(n) fanin-2 gates. By Valiant’s lemma (Lemma ??), for an arbitrarily

small constant ϵ > 0, any such circuit can be reduced to a circuit of depth at most

ϵ logn by removing a set of at most r = O(n/ log logn) edges.
Put on the middle layer all the r boolean functions computed at these (removed)

edges, and connect each middle node with all inputs as well as with all outputs.

Because a subcircuit of Φ computing each fi has depth at most ϵ logn, each such

subcircuit can depend on at most 2ϵ log n = nϵ
original input variables. By joining

the i-th output node with all these nϵ
inputs we obtain a desired depth-2 circuit of

degree at most nϵ
computing our operator f . Since this holds for arbitrarily small

constant ϵ > 0, we are done. ⊓⊔

The highest known lower bound for an explicit operator f , proved by Pudlák,

Rödl and Sgall (1997) has the form Degr(f) = Ω((n/r) ln(n/r)), and is too weak

to have a consequence for log-depth circuits.
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A natural question therefore was to improve the lower bound on the degree, at

least for linear circuits, that is, for depth-2 circuits whose middle gates as well as

output gates are linear boolean functions over GF(2). Such circuits compute linear

operators fA(x) = Ax for some matrix A over GF(2). By Lemma ??, this would
give a super-linear lower bound for log-depth circuits over {⊕, 1}. (Yes, even over

this basis no super-linear lower bound is known so far!)

This last question attracted the attention of many researchers because of its

relation to a purely algebraic characteristic of the underlying matrix A—its rigidity.
Recall that the rigidity, RigA (r), of a matrix A over GF(2) is the smallest number

of entries of A that must be changed in order to reduce its rank over GF(2) until r.
That is,

RigA (r) = min{|B| : rk(A⊕B) ≤ r} ,

where |B| is the number of ones in B. For a linear operator fA(x) = Ax over

GF(2), let Lin-degr(fA) denote the minimum degree of a linear depth-2 circuit of

width r computing fA.

13.33 Proposition LetA be a boolean n×nmatrix, RigA (r) its rigidity and fA(x) =
Ax the corresponding linear operator over GF(2). Then

Lin-degr(fA) ≥ RigA (r) /n .

Proof. Fix a depth-2 circuit Φ of width r computing fA. If we set all direct input-

output wires to 0, then the resulting degree-0 circuit will compute some linear

transformation A′x. The operator y = A′x takes 2rk(A′)
different values. Hence,

the operator H : GF(2)n → GF(2)r
computed by r boolean functions on the

middle layer of Φ must take at least so many different values, as well. This implies

that the width rmust be large enough to fulfill 2r ≥ 2rk(A′)
, fromwhich rk(A′) ≤ r

follows. On the other hand, A′
differs from A in at most dn entries, where d is the

degree of the original circuit Φ. Hence, RigA (r) ≤ dn from which d ≥ RigA (r) /n
follows. ⊓⊔

13.34 Research Problem
Exhibit an explicit boolean n × n matrix A of rigidity RigA (r) ≥ n1+ϵ

for r =
O(n/ ln lnn).

By Lemma ?? and Proposition ??, this would give us a linear operator fA(x) = Ax
which cannot be computed by log-depth circuit over {⊕, 1} using a linear number

of parity gates. Motivated by its connection to proving lower bounds for log-depth

circuits, matrix rigidity (over different fields) was considered by many authors.

It is clear that RigA (r) ≤ (n−r)2
for any n×nmatrixA: just take an arbitrary

r× r submatrixA′
ofA and set to 0 all entries outsideA. Valiant (1977) proved that

n× n matrices A with RigA (r) = (n− r)2
exist if the underlying field is infinite.

For finite fields the lower bound is only slightly worse.

13.35 Proposition There exist n × n matrices A over GF(2) such that, for all r <
n−

√
2n+ logn,
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RigA (r) ≥ (n− r)2 − 2n− logn
log(2n2)

Proof. Direct counting. Recall that the rigidity RigA (r) of A over GF(2) is the
smallest number |B| of nonzero entries in a booleanmatrixB such that rk(A⊕B) ≤
r. For |B| = s there are at most

(
n2

s

)
≤ n2s

possibilities to choose s nonzero entries

of B, and at most

(
n
r

)2 ≤ 22n
possibilities to choose a nonsingular r × r minor of

A⊕B. Assuming that s is strictly smaller than the lower bound on RigA (r), given
in the proposition, it can be verified that the number of possible matrices A with

RigA (r) ≤ s is upper bounded by 2n2
/n, which is smaller than the total number

2n2
of such matrices. ⊓⊔

The problem, however, is to exhibit an explicit matrix A of large rigidity. The

problem is particularly difficult if we require A to be a boolean matrix or at least a

matrix with relatively few different entries. What we need are explicit matrices A
with RigA (r) ≥ n2/r1−δ

for a constant δ > 0; this would already solve Problem ??.
We now show that it is this “−δ” which makes the problem difficult: explicit

n × n ±1 matrices A of rigidity RigA (r) = Ω(n2/r) over the reals are easy to

present.

Let n = 2m
. The n × n Sylvester ±1-matrix Sn = (sij) by labeling the rows

and columns bym-bit vectors x, y ∈ GF(2)m
and letting sij = (−1)⟨x,y⟩

. Hence,

S2 =
[
+1 +1
+1 −1

]
, S4 =


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

 and S2n =
[
Sn Sn

Sn Sn

]
,

where Sn is the matrix obtained from Sn by flipping all +1’s to −1’s and all −1’s
to +1’s. The rigidity of these matrices over the reals is n2/4r.

13.36 Theorem If r ≤ n/2 is a power of 2 then RigSn
(r) ≥ n2/4r.

Proof. (Due to Midrijanis 2005) Divide Sn uniformly into (n/2r)2
submatrices of

size 2r × 2r. One can easily verify that these submatrices each have full rank over

the reals. So we need to change at least r elements of each submatrix to reduce each

of their ranks to r, a necessary condition to reducing the rank of Sn to r. The total
number of changes is then at least r · (n/2r)2 = n2/4r. ⊓⊔

This proof works for any matrix whose submatrices have full rank. Consider the

n×nmatrix B = (bij) where bij = 1 if i ≡ j mod 2r, and bij = 0 otherwise. By

the same proof RigB (r) ≥ n2/4r even though the rank of B is only 2r.
In fact, it was observed by many authors that any Hadamard matrix has rigidity

Ω(n2/r). Recall that a Hadamard matrix of order n is an n× n matrix with entries

±1 and with row vectors mutually orthogonal over the reals. It is easy to verify

that the Sylvester matrix Sn constructed above has this property. It follows from

the definition that a Hadamard matrixH of order n satisfiesHHT = nIn, where

In is the n× n identity matrix. Hence, the eigenvalues of H are all ±
√
n
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13.37 Theorem Let H be an n× n Hadamard matrix. If r ≤ n/2 then RigH (r) ≥
n2/4r.

Proof. (Due to Ronald de Wolf 2006) Let R be the minimum number of changes

that brought the rank of H down to r. By a simple averaging argument, we can

find 2r rows of H that contain a total of at most 2rR/n changes. If n ≤ 2rR/n,
then R ≥ n2/2r and we are done. Hence, we can assume that n− 2rR/n > 0.

Consider the n− 2rR/n columns that contain no changes in the above set of

rows. We thus get a 2r × (n− 2rR/n) submatrix B that contains no changes and

hence is a submatrix of H . By definition of R, this submatrix must have rank at

most r. But every a× b submatrix ofH must have rank at least ab/n (see Lemma ??
in Appendix ??). Thus, we get r ≥ rk(B) ≥ 2r(n− 2rR/n)/n. Rearranging this

inequality, we get R ≥ n2/4r. ⊓⊔

These bounds on rigidity are, however, still too weak to have consequences for

log-depth circuits over {⊕, 1}.
The best known lower bounds for the rigidity of explicit n × n matrices over

a finite field is due to Friedman (1993) and have the form Ω((n2/r) ln(n/r)). As
shown by Shokrollahi, Spielman and Stetmann (1997), such bounds can also be

obtained using the following combinatorial fact. The fact itself is an almost direct

consequence from well-known bounds for the Zarankiewicz problem.

13.38 Lemma Let log2 n ≤ r ≤ n/2 and let n be sufficiently large. If in an n × n
matrix fewer than

n2

4r log n

r − 1 (13.7)

entries are marked, then there exists an r × r submatrix with no marked entries.

Proof. Let M = (mij) be an arbitrary n × n matrix, some of whose entries are

marked. Let A = (aij) be a 0-1 matrix with aij = 1 iffmij has not been marked.

Let R be the number of marked entries inM . Obviously |A| = n2 −R. Define

µ(n, r) := n(n− r + 1)
(

1 −
(r − 1

n

)1/r)
.

It is well known (see, for example Bollobás (1978), page 310) that if A has

|A| > (r − 1)1/r(n− r + 1)n1−1/r + (r − 1)n = n2 − µ(n, r)

ones, then A contains an r × r all-1 submatrix. Hence, this condition is satisfied if

only R < µ(n, r) entries were marked. It remains to show that µ(n, r) is at most

(??) as long as log2 n ≤ r ≤ n/2. As n(n− r + 1) ≥ n2/2 for r ≤ n/2, it suffices

to show that

1 −
(r − 1

n

)1/r

≥ 1
2r log n

r − 1
holds for r ≥ log2 n. SettingK := n/(r − 1), this inequality is equivalent to
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1 − logK

2r

)r/ log K

≥
( 1
K

)1/ log K

= 1
2 .

This holds because for large n the left-hand side converges to 1/
√

e > 1/2. ⊓⊔

As observed by Lokam (2009), the lemma cannot be substantially improved. This

can be shown using the following result of Stein (1974) and Lovász (1975), which

itself has already found many other applications.

13.39 Theorem (Lovász–Stein theorem) Let A be a booleanN ×M matrix. Suppose
that each row ofA has at least v ones and each column at most a ones. ThenA contains
anN ×K submatrix C with no all-0 rows and such thatK ≤ N/a+ (M/v) ln a ≤
(M/v)(1 + ln a).

For us, the following consequence of this theorem will be important. Let F be a

finite family of subsets of some finite set X . The blocking number τ(F) of F is the

smallest size |T | of a set T ⊆ X intersecting all members of F .

13.40 Corollary If each member of F has at least v elements, and each point x ∈ X
belongs to at most a of the sets in F , then

τ(F) ≤ |X|
v

(1 + ln a) .

Proof. Let A be the incidence matrix of F . That is, the rows of A correspond to

the members F of F , and columns to the points x in the underlying set X . The

(F, x)-th entry of A is 1 iff x ∈ F . By the assumption of the theorem, each row has

at least v ones, and each column has at most a ones. Theorem ?? implies that there

must be a subset T of |T | ≤ |X|(1 + ln a)/v columns such that every row of A has

at least one 1 in these columns. Thus, the set T must intersect every member of F ,

and we are done. ⊓⊔

13.41 Theorem (Lokam 2009) In every n × n matrix it is possible to mark at most
O((n2/r) ln(n/r)) entries so that every r× r matrix will contain at least one marked
entry.

Proof. Given an n× n matrixM , let F be the family of all its r × r submatrices.

The underlying set X in our case is the set of all |X| = n2
entries inM , and each

entry belongs to exactly a =
(

n−1
r−1
)2

members of F . Moreover, each member of F
has v = r2

elements. Corollary ?? gives us a set T of

|T | ≤ |X|
v

(1 + ln a) = n2

r2 (1 + ln
(

n−1
r−1
)2) = O

(n2

r2 ln n
r

)
entries ofM intersecting every r × r submatrix ofM . ⊓⊔

More results on various versions of rigidity can be found in the survey of

Lokam (2009).
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Exercises

13.1 Consider circuits of arbitrary depth with all boolean functions allowed as gates.

Prove that operators f : {0, 1}n → {0, 1}n
requiring Ω(n2) wires in such circuits

exist.

Hint: Show that: (i) in an optimal circuit no gate has fanin larger than n, (ii) if there are L wires

in a circuit, then at most n/2 gates can have fanin larger than 2L/n.

13.2 Let Conv(x, y) be the operator of cyclic convolution defined in Section ??. Let
n = pq. Show that for any partition of the input vector x = (x0, . . . , xn−1) into p
consecutive intervals I1, . . . , Ip of length q, there exists a partition of the output

vector z = (z0, . . . , zn−1) into q disjoint sets J1, . . . , Jq such that E(ConvIi,Jj ) ≥
n for all i and j. Hint: Consider residue classes modulo p.

13.3 Recall that the rank of an n × n matrix A over some field is the smallest

number r such that A can be written as a product A = B ·C of an n× r matrix B
and an r × n matrix C . For a boolean matrix A, let |A| be the number of 1s in A.
Define the weighted rank of A by:

Rk(A) = min{|B| + |C| : A = B · C} .

That is, now we are interested not in the dimension of the matrices B and C but

rather in the total number of 1s in them. Prove that lin2(A) = Rk(A), that is, the
smallest number of wires in a linear depth-2 circuit representing a matrixA is equal

to the weighted rank of A.

Hint: Take the adjacency matrices of the bipartite graphs formed by the first and the second level

of wires.

13.4 Prove that lin2(Ax) = L if and only if there exist primitive matrices

B1, . . . , Bt (that is, boolean matrices of rank 1) of dimensions r1 × s1, . . . , rt × st

such that A =
⊕t

i=1 Bi and
∑t

i=1(ri + si) = L.

Hint: Each matrix Bk is uniquely described by a set Ik of its rows and a set Jk of its columns

containing at least one 1. For each k, put a node vk on the middle layer and connect it with all

inputs in Jk and all outputs in Ik .

13.5 Let ∆n = (dij) be a triangular boolean n × n matrix, that is, dij = 1 iff

i ≤ j. Let n be a power of two. Show that lin2(∆nx) = O(n logn). Hint: Show that

lin2(∆nx) ≤ n + 2 · lin2(∆n/2x).

Comment: Pudlák and Vavrín (1991) showed that the rigidity of ∆n is Θ(n2/r) for all r = o(n).

13.6 Let n = 2r
and consider a boolean n× n matrixHn whose rows and columns

are indexed by vectors in GF(2)r
, and Hn[x, y] is the scalar product of x and y

over GF(2). Such matrices are known as (0, 1)-Sylvester matrices. Show that:

(a) Hn can be defined inductively by



392 13 Circuits with Arbitrary Gates

H2 =
[
0 0
0 1

]
, H4 =


0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

 and H2n =
[
Hn Hn

Hn Hn

]
,

where Hn is the matrix obtained from Hn by flipping all its entries.

(b) lin2(Hnx) ≤ 2n logn. Hint: Exercise ??.
(c) The matrixHn cannot be represented by a general depth-2 circuit using fewer

than Ω(n lnn/ ln lnn) wires. Hint: Show that dist(Hn) ≥ n/2 and apply Theorem ??.

13.7 Show that Problem ?? has an affirmative answer if all output gates are required

to be linear: if a depth-2 circuit Φ computes a linear operator fA(x) = Ax and has

linear gates on the output layer, then Φ can be transformed into an equivalent linear
circuit of the same size and width. Hint: Replace the operator H , computed at the middle

layer, by a linear operator H ′(x) :=
∑n

i=1 xiH(ei) mod 2.

13.8 We consider depth-2 circuits whose middle gates are linear (output gates may

be arbitrary). LetA be a boolean n×nmatrix. Show that, if the linear transformation

Ax can be computed by such a circuit using L wires, then the matrix A can be

encoded using O(L logn) bits. That is, there exists a binary string ξ of length

O(L logn) such that the matrixA can be reconstructed from ξ. Use this to conclude
that some matrices will require Ω(n2/ logn) wires.
Hint: At the middle layer a linear transformation is computed. Use the fact that every linear space

is uniquely described by any of its bases. To get the last conclusion, show that some matrices

cannot be encoded using substantially fewer than n2
bits.

13.9 Recall that a boolean function f is symmetric if there is a set T of natural

numbers (called also the type of f ) such that f accepts a binary vector x iff the

number of 1s in x belongs to T . A symmetric depth-2 circuit is a depth-2 circuit

with parity gates on the middle layer, and symmetric boolean functions of the same

type on the output layer. Let symT (A) denote the smallest number of nodes on

the middle layer of a symmetric depth-2 circuit of type T representing a boolean

matrix A = (aij). (Actually, on the middle layer, we can allow any gates g such
that g(0) = 0 and g(x) = 1 for every vector x with exactly one 1.) Let also sym(A)
be the minimum of symT (A) over all types T ⊆ {0, 1, . . .}. Show that:

(a) symT (A) = smallest number r for which it is possible to assign to each

row/column i a subset Si ⊆ {1, . . . , r} such that aij = 1 if and only if

|Si ∩ Sj | ∈ T .
(b) Show that sym(A) = Ω(n) for almost all n× n matrices A.

13.10 (Threshold vs. parity types) Let n = 2m
, and consider an n × n Sylvester

matrix Hn. Recall that its rows and columns are labeled by vectors in GF(2)m
,

and the entries of Hn are the scalar products of these vectors over GF(2). Hence,
symT (Hn) ≤ m for the type T consisting of all odd natural numbers. A type

T ⊆ {0, 1, . . .} is a threshold-k type if T = {k, k+1, . . .}. Prove that symT (Hn) =
Ω(

√
n) for any threshold type T .
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Hint: Let r = symT (Hn), and consider an assignment i 7→ Si of subsets S ⊆ {1, . . . , r} to

rows/columns of Hn = (hij) such that hij = 1 iff |Si ∩ Sj | ≥ k. Take E = {(i, j) | hij = 1}
and consider the family F = {F1, . . . , Fr} with Fk = {(i, j) | k ∈ Si ∩ Sj}. Show that

r ≥ thrF (E), where thrF (E) is the threshold cover number of E dealt with in the Discriminator

Lemma (Lemma ??). Then use Lindsey’s Lemma (proved in Appendix ??) to show that discF (E) =
O(n−1/2).

13.11 Research Problem. Exhibit an explicit boolean n× n matrix A such that

sym(A) ≥ 2(log log n)α

for some α(n) → ∞.

Comment: This is a reformulation of Research Problem ?? in terms of matrices: just consider

bipartite graphs as their adjacency matrices.

13.12 Research Problem. Say that T ⊆ {0, 1, . . .} is an interval type if T =
{a, a+ 1, . . . , b} for some non-negative integers a ≤ b. Let symint(A) denote the
minimum of symT (A) over all interval types T . Exhibit an explicit boolean n× n
matrix A such that symint(A) is larger than 2(log log n)c

for any constant c.Comment:
This would be a major step towards resolving the previous problem.

13.13 Let A = (aij) be a booleanm× n matrix, and consider the operator f(x) =
Ax over the boolean semiring. Thus, the operator computesm disjunctions fi(x) =
∨j:aij=1xj , i = 1, . . . ,m. Suppose that A is k-free, and that f(x) = Ax can be

computed by a monotone circuit using L fanin-2 AND and OR gates. Show that

then f(x) can also be computed by a circuit containing at most k · L OR gates and

no AND gates at all.

Hint: Take the last AND gate g = h1 ∧ h2 in the circuit. Let s be the number of variables among

x1, . . . , xn that imply g, that is, the number of terms of length 1 in the disjunctive normal form of

g. Let also t be the number of functions among f1, . . . , fm that are implied by g. Argue that s and

t cannot be both larger than k. If s ≤ k, then replace the AND gate g by a circuit computing the

OR of the corresponding s variables. If t ≤ k, then replace g by the constant 0, and let f ′
1, . . . , f ′

m

be the functions computed after this replacement. Show that, for each of the i with f ′
i ̸= fi, either

fi = f ′
i ∨ h1 or fi = f ′

i ∨ h2 must hold.

13.14 Research Problem. Prove or disprove: if a linear operator fA(x) = Ax
can be computed by a depth-2 circuit of degree d and width w, then fA can also be

computed by a linear depth-2 circuit of degree O(d) and width O(w).

13.15 An extension of a partialm-by-nmatrixM with entries in {0, 1, ∗} is obtained

by setting all ∗-entries to constants 0 and 1. Let mr(M) denote the smallest possible

rank of an extension of M over GF(2). Let F be a depth-2 circuit computing a

linear operator fA(x) = Ax over GF(2). Say that the (i, j)-th entry of A is seen by

the circuit, if there is a direct wire from xj to the i-th output gate. Replace all entries

of A seen by the circuit with ∗’s, and let AF be the resulting (0, 1, ∗)-matrix. Note

that the original matrix A is one of the extensions of AF ; hence, rk(A) ≥ mr(AF ).
Prove the following:

(a) If the circuit F is linear, then width(F ) ≥ mr(AF ).
Hint: Every assignment of constants to direct input-output wires leads to a depth-2 circuit of

degree d = 0 computing a linear operator Bx, where B is an extension of AF . Argue that
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the operator H : GF(2)n → GF(2)w
computed by w = width(F ) boolean functions on

the middle layer of F must take at least 2rk(B)
different values.

(b) Every depth-2 circuit F computing a linear operator can be transformed into an

equivalent linear depth-2 circuit of the same degree and width at most mr(AF ).
Hint: Let B be an extension of AF of rank r = mr(AF ). Take any r linearly independent

rows of B and put on the middle layer r scalar products of the input vector x with these

rows. Show that the resulting linear circuit computes the same linear operator.

13.16 Research Problem. Let M be a partial m-by-n matrix with entries in

{0, 1, ∗}. An operator f = (f1, . . . , fm) : GF(2)n → GF(2)m
is consistent with

M if the i-th coordinate fi of f can only depend on variables corresponding to

∗-entries in the i-th row ofM . Let Sol(M) denote the maximum, over all extensions

A ofM and all operators f consistent withM , of the number of solutions of the

system of equalities Ax = f(x) over GF(2). Prove or disprove that there exists a
constant ϵ > 0 such that Sol(M) ≤ 2n−ϵ·mr(M)

.

Comment: Some partial results towards this problem were obtained by Jukna and Schnitger (2011).

Together with Exercise ??, an affirmative answer would give an affirmative answer to the research

problem stated in Exercise ??.
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Branching Programs





14. Decision Trees

A decision tree is an algorithm for computing a function of an unknown input. Each

node of the tree is labeled by a variable and the branches from that node are labeled

by the possible values of the variable. The leaves are labeled by the output of the

function. The process starts at the root, knowing nothing, works down the tree,

choosing to learn the values of some of the variables based on those already known

and eventually reaches a decision. The decision tree complexity of a function is the

minimum depth of a decision tree that computes that function.

14.1 Adversary arguments

Let f : {0, 1}n → {0, 1} be a boolean function. A deterministic decision tree for f
is a binary tree whose internal nodes have labels from x1, . . . , xn and whose leaves

have labels from {0, 1}. If a node has label xi then the test performed at that node

is to examine the i-th bit of the input. If the result is 0, one descends into the left

subtree, whereas if the result is 1, one descends into the right subtree. The label of

the leaf so reached is the value of the function on that particular input (Fig. ??).
The depth of a decision tree is the number of edges in a longest path from the

root to a leaf, or equivalently, the maximum number of bits tested on such a path.

Let D(f) denote the minimum depth of a decision tree computing f .
When trying to prove that every decision tree for a given boolean function

requires large depth, one possibility is to use the so-called adversary argument.
The idea is that an all-powerful malicious adversary pretends to choose a “hard”

input for the solver (a decision tree). When the solver wants to look at a bit, the

adversary sets that bit to whatever value will make the solver do the most work. If

the solver does not look at enough bits before terminating, then there will be several

different inputs, each consistent with the bits already seen, that should result in

different outputs. Whatever the solver outputs, the adversary can “reveal” an input

that has all the examined bits but contradicts the solver’s output, and then claim

that was the input which he was using all along. Since the only information the

397
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x2

x3

1 0

x1

x3 0

0 1

0 1

0 1 10

0 1

Fig. 14.1 A decision tree of depth 3. It accepts only three inputs (0, 0, 0), (1, 0, 0) and (0, 1, 1).

solver has is the set of bits it examined, the algorithm cannot distinguish between a

malicious adversary and an honest user who actually chooses an input in advance

and answers all queries truthfully.

Let us demonstrate this on decision trees for the following problem on graphs:

Given an n-vertex graph G as input, we would like to know how many pairs of

its vertices a decision tree might have to inspect in order to determine whether G
is connected. To express this problem as a boolean function, associate a boolean

variable xe with each possible pair e = {u, v} of vertices u ̸= v. Then, each
assignment x of

(
n
2
)
boolean values to these variables gives us a graph Gx with the

edge-set E = {e | xe = 1}. The graph connectivity function fn is defined by:

fn(x) = 1 if and only if Gx is connected.

14.1 Proposition D(fn) ≥ n2/4 ≥ 1
2
(

n
2
)
.

Proof. Fix a partition V = V1 ∪ V2 of the vertex-set into two equal size parts

|V1| = |V2| = n/2. Imagine an adversary that constructs a graph, edge by edge, in

response to the queries of a solver (decision tree). If the decision tree queries an

edge e whose both endpoints lie in V1 or both lie in V2, then the adversary replies

with “xe = 1” (the edge is present). On crossing edges e ∈ V1 × V2 the adversary

replies with “xe = 0”. Thus, the graph constructed along that path is disconnected:

it consists of two vertex disjoint cliques. But the decision tree cannot detect this

unless it has already queried all n2/4 crossing edges. ⊓⊔

14.2 Theorem D(fn) =
(

n
2
)
.

Proof. The adversary now maintains two graphs, Y andM (“yes” and “maybe”),

both on all n vertices. The graph Y contains all the edges that the solver knows are

definitely in the input graph. The graphM contains all the edges that the solver

(the decision tree) thinks might be in the input graph, or in other words, all the

edges of Y plus all the unexamined edges. Initially, Y is empty andM is complete.

Suppose now that the solver asks whether an edge e is in the input graph or not.

The adversary strategy is:
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• IfM \ {e} is connected then answer “xe = 0” and remove e fromM .

• IfM \ {e} is not connected then answer “xe = 1” and add e to Y .

Notice that, at each step, Y is a subgraph ofM , andM is connected: if the removal

of an edge e fromM would result in a disconnected graph, the adversary adds e
to Y , and hence, keeps that edge inM . Further, ifM has a cycle, then none of its

edges can belong to Y : deleting any edge in a cycle cannot disconnect a graph.

This, in particular, implies that Y is acyclic. We claim that, if Y ̸= M then Y is

disconnected. To show this, assume that Y is connected. The only connected acyclic

graph is a spanning tree, that is, a tree on the entire set of vertices. Thus, Y is a

spanning tree and some edge e is inM but not in Y . But then there is a cycle inM
that contains e, all of whose other edges are in Y . This violates the fact (we just

established) that no cycle inM can have an edge in Y .

Now, if the solver terminates before examining all

(
n
2
)
edges, then there is at

least one edge inM which is not in Y . Since the solver cannot distinguish between

M and Y , even thoughM is connected and Y is not, the solver cannot give the

correct output for both graphs. Thus, in order to be correct, any algorithm must

examine every edge. ⊓⊔

14.2 P = NP ∩ co-NP for decision tree depth

Given an input a = (a1, . . . , an) from {0, 1}n
, we would like to know whether

f(a) = 1 or f(a) = 0. How many bits of a must we see in order to answer this

question? It is clear that seeing D(f) bits is always enough: just look at those bits

of a which are tested along the (unique) path from the root to a leaf.

In a deterministic decision tree all the tests are made in a prescribed order

independent of individual inputs. Can we do better if we relax this and allow for

each input a to choose its own smallest set of bits to be tested? This question leads

to a notion of “nondeterministic” decision tree.

A nondeterministic decision tree for a boolean function f(x1, . . . , xn) is a (not
necessarily binary) tree each whose edge is labeled by a literal (a variable or a

negated variable). One literal can label several edges leaving one and the same

node. Such a tree T computes f in a nondeterministic manner: T (a) = 1 if and

only if there exists a path from a root to a leaf such that all literals along this path

are consistent with the input a, that is, are evaluated to 1 by this input. Let C1(f)
denote the smallest depth of a nondeterministic tree computing f , and define the

dual measure by C0(f) := C1(¬f). It is not difficult to verify that

C1(f) = min{k | f can be written as a k-DNF}

and

C0(f) = min{k | f can be written as a k-CNF} = C1(¬f) .
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It is important to note that C1(f) is not the length of a longest minterm of f . Recall
that a minterm of a boolean function f is a minimal under inclusion subset of its

variables such that the function can be made constant-0 function by fixing these

variables to constants 0 and 1 in some way. Let min(f) denote the length of the

longest minterm of f . Exercise ?? shows that there are boolean functions f of

n+ logn variables such that

min(f) ≥ n but C1(f) ≤ 1 + logn .

How do the depths of nondeterministic and deterministic trees are connected? It is

clear that max{C0(f), C1(f)} ≤ D(f), that is, for every input a, seeing its D(f)
bits is enough to determine the value f(a), be it 0 or 1. Is this upper bound optimal?

The following example shows that this may not be the case: there are boolean

functions f for which

max{C0(f), C1(f)} ≤
√
D(f) .

For example, for the monotone boolean function f(X) on n = m2
boolean variables

defined by

f =
m∧

i=1

m∨
j=1

xij (14.1)

we have C0(f) = C1(f) = m but D(f) = m2
(see Exercise ??), implying that

D(f) = C0(f) · C1(f).
It turns out that the example given above is, in fact, theworst case. Namely, the fol-

lowing theorem has been re-discovered by many authors in different contexts: Blum

and Impagliazzo (1987), Tardos (1989), and Hartmanis and Hemachandra (1991).

14.3 Theorem For every boolean function f , D(f) ≤ C0(f) · C1(f).

Proof. Induction on the number of variables n. If n = 1 then the inequality is trivial.

For the induction step, let (say) f(0, . . . , 0) = 0; then some set Y of k ≤ C0(f)
variables can be chosen such that by fixing their value to 0, the function is 0
independently of the other variables. We can assume w.l.o.g. that the set Y =
{x1, . . . , xk} of the first k variables has this property.

Take a complete deterministic decision tree T0 of depth k on these k variables.

Each of its leaves corresponds to the unique input a = (a1, . . . , ak) in {0, 1}k

reaching this leaf. Replace such a leaf by a minimal depth deterministic decision

tree Ta for the subfunction

fa := f(a1, . . . , ak, xk+1, . . . , xn) .

Obviously, C0(fa) ≤ C0(f) and C1(fa) ≤ C1(f). We claim that the latter inequal-

ity can be strengthened:

C1(fa) ≤ C1(f) − 1 . (14.2)
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To prove this, take an arbitrary input (ak+1, . . . , an) of fa which is accepted by

fa. Together with the bits (a1, . . . , ak), this gives an input of the whole function f
with f(a1, . . . , an) = 1. According to the definition of the quantity C1(f), there
must be a set Z = {xi1 , . . . , xim

} ofm ≤ C1(f) variables such that fixing them

to the corresponding values xi1 = ai1 , . . . , xim = aim , the value of f becomes 1
independently of the other variables. A simple (but crucial) observation is that

Y ∩ Z ̸= ∅. (14.3)

Indeed, if Y ∩Z = ∅ then the value of f(0, . . . , 0, ak+1, . . . , an) should be 0 because
fixing the variables in Y to 0 forces f to be 0, but should be 1, because fixing the
variables in Z to the corresponding values of ai forces f to be 1, a contradiction.

By (??), only |Z \Y | ≤ m−1 of the bits of (ak+1, . . . , an) must be fixed to force

the subfunction fa to obtain the constant function 1. This completes the proof of

(??).
Applying the induction hypothesis to each of the subfunctions fa with a ∈

{0, 1}k
, we obtain D(fa) ≤ C0(fa) · C1(fa) ≤ C0(f)(C1(f) − 1). Altogether,

D(f) ≤ k + max
a

D(fa) ≤ C0(f) + C0(f)(C1(f) − 1) = C0(f)C1(f) . ⊓⊔

14.3 Certificates, sensitivity and block sensitivity

Let f : {0, 1}n → {0, 1} be a boolean function, and a ∈ {0, 1}n
. An f -certificate of

a is a subset S ⊆ {1, . . . , n} such that f(b) = f(a) for all vectors b ∈ {0, 1}n
such

that bi = ai for all i ∈ S. That is, the value f(a) can be determined by looking at

only bits of a in the set S.
Certificates are related to monomials and clauses as follows. Associate with each

vector a ∈ {0, 1}n
and each subset S ⊆ [n] the monomial

MS,a :=
∧
i∈S

xai
i ,

where x1
i = xi and x

0
i = ¬xi, as well as the clause

CS,a :=
∨
i∈S

x1−ai
i .

If f(a) = 1, then S is an f -certificate for a iffMS,a(x) ≤ f(x) for all x ∈ {0, 1}n
.

If f(a) = 0, then S is an f -certificate for a iff CS,a(x) ≥ f(x) for all x ∈ {0, 1}n
.

By C(f, a) we denote the minimum size of an f -certificate for a. The certifi-
cate complexity of f is C(f) = maxa C(f, a). Therefore, considering what was

mentioned before,

C(f) = max{C1(f), C0(f)}
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= min{k | f can be written as a k-DNF and as a k-CNF} .

Theorem ?? gives the following relation between the decision tree depth of boolean

functions and their certificate complexity:

C(f) ≤ D(f) ≤ C(f)2 .

A similar relation also exists between certificate complexity and another important

measure of boolean functions—their sensitivity and “block sensitivity”.

Recall that the sensitivity of a boolean function f : {0, 1}n → {0, 1} on a ∈
{0, 1}n

is defined as the number of distance-1 neighbors b of a such that f(b) ̸=
f(a). For example, if f(x) = x1 ∨ x2 ∨ · · · ∨ xn, then s(f,0) = n but s(f, a) = 0
for every vector a with at least two 1s. The sensitivity (or maximum sensitivity) of
f is defined as s(f) = maxa s(f, a).

Study of sensitivity of boolean functions originated from Cook and Dwork (1982)

and Reischuk (1982). They showed an Ω(log s(f)) lower bound on the number of

steps required to compute a boolean function f on a so-called “consecutive read

exclusive write parallel random access machine” (CREW RAM). Such a machine

is a collection of synchronized processors computing in parallel with access to a

shared memory with no write conflicts. Nisan (1989) then found a way to modify

the definition of sensitivity to characterize the minimum number of steps required

to compute a function on a CREW PRAM. For this purpose, he introduced a related

notion called “block sensitivity”.

A natural generalization of sensitivity is to flip blocks of bits rather than single

bits. To formalize this, we use the following notation. For a vector a ∈ {0, 1}n
and

a subset S ⊆ [n] of its bit-positions, let aS
denote the vector a, with all bits ai with

i ∈ S flipped to opposite values. That is, aS
differs from a exactly on the bits in

S. For example, if a = (0, 1, 1, 0, 1) and S = {1, 3, 4}, then aS = (1, 1, 0, 1, 1). In
particular, if S = {i} then aS = a⊕ ei.

We say that f is sensitive to S on a if f(aS) ̸= f(a). The block sensitivity of f
on a, denoted bs(f, a), is the largest number t for which there exist t disjoint sets
(blocks) S1, . . . , St ⊆ [n] such that f is sensitive on a to each of these sets, that is,

f(aSi) ̸= f(a) for all i = 1, . . . , t. The block sensitivity of a boolean function f is

bs(f) = maxa bs(f, a).
It is clear that s(f, a) ≤ bs(f, a): this follows by considering the partition

where every Si is a singleton. Moreover, we also have that bs(f, a) ≤ C(f, a):
any certificate of a must include at least one variable from each set to which f is

sensitive on this input a. Hence

s(f) ≤ bs(f) ≤ C(f) ≤ D(f) .

It can be shown (see Exercise ??) that

s(f) = bs(f) = C(f) for every monotone f .

It can also be shown (Exercise ??) that
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s(f) ≥ n+ 1
2 for every symmetric f of n variables.

The biggest known gap between s(f) and bs(f) is quadratic.

14.4 Lemma (Rubinstein 1995) There are boolean functions f with

bs(f) ≥ s(f)2/2 .

Proof. For an evenm, let g be a boolean function ofm variables such that g(x) = 1
if and only if x2i−1 = x2i = 1 for some 1 ≤ i ≤ m/2 and xj = 0 for all other

positions j. For example, ifm = 8, then

g−1(1) =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 .
By taking blocks Si = {2i − 1, 2i} for i = 1, . . . ,m/2, we see that bs(g) ≥
bs(g; 0) = m/2. Moreover, s(g, a) = 1 for all a ∈ g−1(0), and s(g, b) = m for all

b ∈ g−1(1).
Now let f = g1 ∨· · ·∨gm be an OR ofm copies of g on disjoint sets of variables;

hence, f has n = m2
variables. Then

bs(f) ≥ bs(f ; 0) = m · bs(g; 0) ≥ m2/2 = n/2 .

On the other hand, for every a ∈ f−1(0) we have that s(f, a) ≤
∑m

i=1 s(g, a) ≤ m,

and for every b ∈ f−1(1) we have that s(f, b) ≤ maxj s(gj , b) ≤ m; this last

inequality holds because f(b) = 1 and f(bi) = 0 implies that gj(b) = 1 for exactly
one of the gj . Hence, s(f) ≤ m =

√
n. ⊓⊔

It remains unknown whether there is a polynomial relationship between sensi-

tivity and block sensitivity.

14.5 Research Problem
Do there exist constants c, d such that bs(f) ≤ c · s(f)d

holds for all boolean

functions f?

More information about this problem, known as the Sensitivity Conjecture, can
be found in a survey of Hatami, Kulkarni and Pankratov (2011).

14.3.1 Block sensitivity versus certificate complexity

That C(f) can be at most quadratic than bs(f) was shown by Nisan (1989).

14.6 Theorem (Nisan 1989) For every boolean function f ,
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C(f) ≤ s(f) · bs(f) ≤ bs(f)2 .

Proof. Take an arbitrary input a ∈ {0, 1}n
. Our goal is to show that C(f, a) ≤

s(f) · bs(f). First we show that minimal blocks to which a function f is sensitive

cannot have more than s(f) variables. Let S ⊆ [n] a minimal with respect to

set-inclusion subset such that f(aS) ̸= f(a).

14.7 Claim |S| ≤ s(f).

Proof. If we flip one of the S-variables in aS
, then the function value must flip

from f(aS) to f(a), for otherwise S would not be minimal. So, every S-variable is
sensitive for f on input aS

, implying that s(f) ≥ |S|. ⊓⊔

Now let S1, . . . , St be disjoint minimal sets of variables that achieve the block

sensitivity t = bs(f, a) ≤ bs(f). Consider the set S = S1∪· · ·∪St. By the previous

claim, we have that |Si| ≤ s(f) for all i. Hence, |S| ≤ s(f) · t ≤ s(f) · bs(f), and
it remains to show that S is an f -certificate of a.

If S is not an f -certificate of a, then let b ∈ {0, 1}n
be an input that coincides

with a on S, and f(b) ̸= f(a). Let St+1 be the set of positions on which b differs
from a; hence, b = aSt+1

. Now f is sensitive to St+1 on a and St+1 is disjoint from

S1, . . . , St which contradicts t = bs(f, a). Hence, S is a an f -certificate of a, as
claimed. ⊓⊔

14.3.2 Block sensitivity versus depth

Since D(f) ≤ C(f)2
, Theorem ?? gives an upper bound D(f) ≤ bs(f)4

on the

decision tree depth. A better upper bound D(f) ≤ bs(f)3
can be obtained from

the following result.

14.8 Theorem (Beals et al. 2001) If a boolean function f can be written as a k-DNF
or a k-CNF, then D(f) ≤ k · bs(f).

The inequality is tight because, if f(x) = x1 ∨ x2 ∨ · · · ∨ xn, thenD(f) = n, f
is a 1-DNF and bs(f) = n.

Proof. Suppose that a boolean function f of n variables can be written as a k-DNF
(the case of k-CNF is dual). Let t := bs(f). We will describe an algorithm which,

given an input vector a ∈ {0, 1}n
, queries at most k · t bits of a to compute the

value f(a).

Stage 1: Repeat the following at most t = bs(f) times:

• Pick a monomialM consistent with the values of all queries made so far.

• If there is no such monomial, then return value 0 and stop.

• Otherwise, query all not yet queried variables ofM and assign them values

corresponding to the bits of a.
• If all these values agree with a then return value 1 and stop.
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Stage 2: If Stage 1 does not stop after performing it t times, then pick a vector

b ∈ {0, 1}n
consistent with all queries made so far and return value f(b).

The nondeterministic “pick” can easily be made deterministic by choosing the

first monomialM and the first vector y in some fixed in advance order. Since the

algorithm runs for at most t = bs(f) steps and each step queries at most k variables,
at most t · k variables are queried in total.

It remains to show that the algorithm always returns the right answer. If it

returns an answer in Stage 1, this is either because no monomial is consistent

with a (and hence f(a) must be 0) or because a is found to agree with a particular

monomial (and hence f(a) must be 1). In both cases the algorithm gives the right

answer.

Now consider the case where the algorithm returns an answer only in Stage 2.

We will show that f(b) = f(a) for all vectors b ∈ {0, 1}n
that are consistent with

the path constructed by vector a in step (1). Suppose not. Then there are consistent

vectors b and c with f(b) = 0 and f(c) = 1. On input a, the algorithm has queried

all variables of a sequence of t = bs(f) monomialsM1, . . . ,Mt, and both vectors

b and c coincide with a on all these variables. Moreover, since f(c) = 1, there also
must be a monomialMt+1 consistent with c. We will derive from these monomials

disjoint non-empty sets S1, . . . , St+1 of variables such that f is sensitive to each

Si on input b. This will imply that bs(f, b) ≥ t+ 1 = bs(f) + 1, contradicting the

definition of bs(f).
For every i = 1, . . . , t + 1, define Si as the set of variables in the monomial

Mi that are inconsistent with the corresponding bits of b (and hence, also of a).
Clearly, each Si is non-empty because f(b) = 0. Note that bSi

is already consistent

withMi, so f(bSi) = 1, which shows that f is sensitive to each Si on b. To obtain

the desired contradiction, it remains therefore to show that all the Si are pairwise

disjoint.

To show this, take a variable xk ∈ Si and assume that xk ∈ Sj for some j > i.
Assume w.l.o.g. that ak = 1; hence, also bk = 1. Then both monomialsMi andMj

must contain the same literal ¬xk. This already implies that j ̸= t + 1, because
ck = ak andMt+1(c) = 1. So, i < j ≤ t, meaning thatMj has been chosen after
all variables ofMi, including xk , where queried. But this is impossible becauseMj

is not consistent with the (already queried) value ak. Thus, no two of the sets Si

can share a common variable, as desired. ⊓⊔

Since every boolean function f can be written as a k-DNF and as a k-CNF with
k = C(f), and since C(f) ≤ s(f) · bs(f), we obtain the following

14.9 Corollary D(f) ≤ s(f) · bs(f)2 ≤ bs(f)3.

14.10 Research Problem
Is D(f) = O(bs(f)2)?
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14.3.3 Sensitivity and degree of polynomials

We now relate block sensitivity of a boolean function f with the degree of real

polynomials representing f . Recall that a multilinear polynomial p : Rn → R
represents a boolean function f : {0, 1}n → {0, 1} if p(a) = f(a) for all a ∈
{0, 1}n

. We already know (see Section ??) that every function f : {0, 1}n → R has

a unique representation as a multilinear polynomial over R:

f(x) =
∑

a∈{0,1}n

f(a)
∏

i:ai=1
xi

∏
j:aj=0

(1 − xj) =
∑

S⊆[n]

cS

∏
i∈S

xi .

The degree, deg(f), of a boolean function f is the degree of the unique multilinear

real polynomial p that represents f . The AND of n variables x1, . . . , xn is repre-

sented by the polynomial consisting of just one monomial

∏n
i=1 xi, and the OR is

represented by the polynomial 1 −
∏n

i=1(1 − xi). Hence, both of these functions

have degree n.
Besides that the degree is an interesting algebraic parameter of boolean functions,

it can be used to lower-bound the depth of decision trees: it can be easily shown

(see Exercise ??) that D(f) ≥ deg(f).
How is the degree related to sensitivity? On the one hand, there are boolean

functions f such that

s(f) = bs(f) = C(f) =
√
n but deg(f) = n .

Take, for example, the function f of n = m2
variables defined by (??): since the

degree of each AND as well as of each OR of m variables is m, we have that

deg(f) = m2 = n.
On the other hand, deg(f) may also be significantly smaller than C(f), and

hence, than s(f) and bs(f). To see this, consider the boolean function f : {0, 1}n →
{0, 1} constructed in the proof of Lemma ??. This function has degree deg(f) ≤
n0.631...

and maximal sensitivity s(f,0) = n. Hence,

s(f) = bs(f) = C(f) = n but deg(f) ≤ n0.631... .

Our goal is now to show that deg(f) can be no more than quadratically smaller

than bs(f). This shows that the gap of the last example is close to optimal.

14.11 Theorem (Nisan–Szegedy 1994) For every boolean function f ,

deg(f) ≥
√

bs(f)/2 .

Proof. Let f(x) be a boolean function of n variables, and let q : Rn → R be the

multilinear polynomial of degree d representing f ; hence q(x) = f(x) for all

x ∈ {0, 1}n
. By Lemma ??, we know that every boolean function f of n variables,

which rejects the all-0 vector and accepts all n vectors with exactly one 1, has
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deg(f) ≥
√
n/2. It is therefore enough to construct a multilinear polynomial p of

t = bs(f) variables satisfying the conditions of this lemma.

Let t = bs(f), and a ∈ {0, 1}n
be an input such that bs(f, a) = bs(f). We

assume without loss of generality that f(a) = 0. Let also S1, . . . , St be the cor-

responding disjoint subsets of [n] such that f(aSi) = 1 for all i = 1, . . . , t. We

transform q(x1, . . . , xn) into a multilinear polynomial p(y1, . . . , yt) of t new vari-

ables by replacing every variable xj in p as follows

xj :=


yi if aj = 0 and j ∈ Si,

1 − yi if aj = 1 and j ∈ Si,

aj if j ̸∈ S1 ∪ · · · ∪ St.

That is, for y ∈ {0, 1}t
we have that

p(y) = q(a⊕ y1S1 ⊕ y2S2 ⊕ · · · ⊕ yySt)

where

yiSi = (0, . . . , 0,
Si︷ ︸︸ ︷

y1, . . . , yi, 0, . . . , 0) .

It is clear that p is a multilinear polynomial of degree at most d, and p(y) takes
values in {0, 1} for all y ∈ {0, 1}t

, since p(x) does this for all x ∈ {0, 1}n
. Moreover,

we have that p(0) = q(a) = f(a) = 0, and

p(ei) = q(aSi) = f(aSi) = 1

for all unit vectors ei ∈ {0, 1}t
, i = 1, . . . , t. We can therefore apply Lemma ?? and

conclude that d = deg(q) ≥ deg(p) ≥
√
t/2 =

√
bs(f)/2. ⊓⊔

Together with Corollary ??, Theorem ?? gives the following relation between

the depth of decision trees and the degree of boolean functions.

14.12 Corollary (Nisan–Szegedy 1994) D(f) ≤ 8 · deg(f)6.

This upper bound was improved by Nisan and Smolensky (unpublished); see the

survey of Buhrman and de Wolf (2002).

14.13 Theorem
D(f) ≤ deg(f)2 · bs(f) ≤ 2 · deg(f)4 .

Proof. (Due to Nisan and Smolensky) Let f be a boolean function of n variables. By

amaxonomial of f wewill mean a monomial with maximal degree in the multilinear

polynomial representing f .

14.14 Claim For every maxonomialM of f , there is a set S of variables inM such

that f(0S) ̸= f(0).

Proof. Obtain a subfunction g of f by setting all variables outsideM to 0. This g
cannot be constant 0 or 1, because its unique polynomial representation (as obtained
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from p) containsM . Thus there must be some subset S of the variables inM that

makes g(0S) ̸= g(0) and hence f(0S) ̸= f(0). ⊓⊔

14.15 Claim There exists a set of deg(f) · bs(f) variables that intersects each

maxonomial of f .

Proof. Greedily take all variables in maxonomials of f , as long as there is a max-

onomial that is still disjoint from those taken so far. By Claim ??, each maxonomial

contains a sensitive block on 0. Since there can be at most bs(f) disjoint sensi-
tive blocks, this procedure can go on for at most bs(f) maxonomials. Since each

maxonomial of f contains only deg(f) variables, the claim follows. ⊓⊔

We can now finish the proof of the theorem as follows. Let a ∈ {0, 1}n
be

an arbitrary input vector. By Claim ??, there is a set of deg(f) · bs(f) variables
that intersects each maxonomial of f . Query all these variables. This induces

a restriction g of f on the remaining variables, such that bs(g) ≤ bs(f) and

deg(g) < deg(f) (because the degree of each maxonomial in the representation of

f drops by at least one). Repeating this inductively for at most deg(f) times, we

reach a constant function and learn the value f(a). This algorithm uses at most

deg(f)2 · bs(f) queries, hence D(f) ≤ deg(f)2 · bs(f) where, by Theorem ??,
bs(f) ≤ 2 · deg(f)2

. ⊓⊔

It is conjectured that deg(f) = Θ(s(f)2).

14.16 Research Problem
Do there exist constants c, d such that deg(f) ≤ c · s(f)d

holds for all boolean

functions f?

14.4 Sensitivity and subgraphs of the n-cube

Problem ?? is related to the following problem about themaximum degree of induced

subgraphs of the n-dimensional binary hypercube Qn. For a set S ⊆ {0, 1}n
of

its vertices, let Qn[S] denote the subgraph of Qn induced by S. That is, S is the

vertex-set ofQn[S], and edges ofQn[S] are all edges ofQn connecting two vertices

in S.
Let∆(n) denote the maximal numberD such that, for every subset S ⊆ {0, 1}n

of size |S| ≠ 2n−1
, the maximum degree of Qn[S] or Qn[S] is at least D. The

condition |S| ≠ 2n−1
is necessary because if we take S = {x |

∑n
i=1 xi is even},

then the subgraph ofQn induced by S is empty, that is, has zero degree. It is known

that∆(n) <
√
n+ 1.

14.17 Example (Chung et al. 1988). For simplicity, assume that n = m2
is a square

number. Look at vectors x ∈ {0, 1}n
asm×mmatrices. Say that x is even (resp., odd)

if it has an even (resp., odd) number of ones. Let S0 be the set of all even matrices

containing at least one all-1 row, and let S1 be the set of all odd matrices containing
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no all-1 rows. Consider the subgraph G of Qn induced by S, and let dS(x) denote
the degree of x in this graph. It can be shown that dS(x) ≤ m =

√
n for all x ∈ S

(and the same also holds for the subgraph induced by the complement S).
Indeed, by flipping one 1 to 0 we can destroy only one all-1 row. So, if a vector

x belongs to S0, then only its neighbors in S1 can be those corresponding to the

positions of the unique all-1 row of x. Since each row has onlym positions, this

implies that dS(x) ≤ m =
√
n. If we take a vector x ∈ S1 then (again) all its

neighbors lying in S must belong to S0, that is, must have an all-1 row. Since

flipping one 0 to 1 we can produce only one all-1 row, the only neighbors of x in S
are those corresponding to “almost all-1” rows of x, that is rows with exactly one 0.
Since we only havem rows, this again implies that dS(x) ≤ m =

√
n.

On the other hand, Gostman and Linial (1992) showed that deg(f) ≤ s(f)d
as

long as∆(n) ≥ n1/d
; in fact, they show that these two inequalities are equivalent.

Thus, to solve Problem ?? it would be enough to prove or disprove that ∆(n) ≥ nϵ

for a constant ϵ > 0.
14.18 Theorem (Gostman–Linial 1992) The following are equivalent for any mono-
tone function h : N → R:
(a) ∆(n) ≥ h(n).
(b) For any boolean function f , s(f) ≥ h(deg(f)).

Proof. It will be convenient to switch to the ±1 notation and consider boolean

functions as colorings f : Qn → {−1,+1} of the hypercube Qn whose vertices

are vectors in {0, 1}n
, and two vertices are adjacent if and only if they differ in

exactly one coordinate. This transformation can be done via mapping a ∈ {0, 1}
to (−1)a ∈ {−1,+1}. The degree, deg(f), of f is then the maximum size |I| of a
subset I ⊆ [n] for which the Fourier coefficient

f̂(I) =
∑

x∈Qn

f(x)
∏
i∈I

xi

is nonzero; recall from Section ?? that all these coefficients are real numbers between

−1 and +1. Associate with a subgraphG ofQn induced by a set of vertices S ⊆ Qn

a boolean function g : Qn → {−1,+1} such that g(x) = 1 if and only if x ∈ S.
Let dG(x) denote the degree of x in the graph G. Observe that

dG(x) = n− s(g, x) for all x ∈ S (14.4)

and the same holds in the subgraph induced by S. Let E [g] = 2−n
∑

x g(x) be the
average of g on Cn. Observe that

E [g] = 0 iff |S| = 2n−1
. (14.5)

By (??) and (??), (a) and (b) are equivalent to the following:

(A) For any boolean function g, E [g] ̸= 0 implies s(g, x) ≤ n − h(n) for some

x ∈ Qn.
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(B) For any boolean function f , s(f) < h(n) implies deg(f) < n.

To see the equivalence of (A) and (B), define

g(x) = f(x)
n∏

i=1
xi .

Since

∏n
i=1 xi is the parity function in the±1 notation, and since the parity function

is sensitive to all n variables, we have that s(g, x) = n − s(f, x) for all x ∈
{−1,+1}n

, and

ĝ(I) = 2−n
∑

x

g(x)
∏
i∈I

xi = 2−n
∑

x

f(x)
∏
i ̸∈I

xi = f̂([n] \ I)

for all I ⊆ [n]. In particular, E [g] = ĝ(∅) = f̂([n]), where f̂([n]) is the highest
order Fourier coefficient in the representation of f as a polynomial

(A) ⇒ (B): Assume that deg(f) = n, that is, f̂([n]) ̸= 0. This is equivalent to
E [g] ̸= 0. By (A), there exists a vector x such that s(g, x) ≤ n − h(n), that is,
s(f, x) ≥ h(n), contradicting the premise s(f) < h(n) of (B).

(B) ⇒ (A): Assume that s(g, x) > n− h(n) for all x. This implies that s(f) < h(n).
By (B), we have that deg(f) < n, which is equivalent to E [g] = ĝ(∅) = f̂([n]) = 0,
contradicting the premise E [g] ̸= 0 of (A). ⊓⊔

Sherstov (2010) has recently proved the following lower bound on deg(f) based
on rank. Define the AND-rank of a boolean function f : {0, 1}n → {0, 1} as

the rank over R of the 2n × 2n
boolean matrix M whose entries are given by

M [x, y] := f(x∧y), where x∧y = (x1 ∧y1, . . . , xn ∧yn). The OR-rank is defined
similarly. Let R(f) be the maximum of the AND-rank and the OR-rank of f . Then
deg(f) = Ω(logR(f)).

14.5 Evasive boolean functions

To prove that some boolean function f requires decision trees of large depth, it is

useful to imagine the situation as a game between Alice and Bob. This time the

players are not cooperative: Alice acts as an “adversary”. Bob knows the function

f : {0, 1}n → {0, 1} but does not know the actual input vector x ∈ {0, 1}n
. He

can ask Alice what the i-th bit of x is. Then what the j-th bit is, and so on. He

stops when he definitely knows the answer “f(x) = 0” or “f(x) = 1”. Alice’s goal
is to inductively construct (depending on what bits Bob has already asked about)

an input x on which Bob is forced to make many queries. That is, Alice tries to

construct an “evasive” path forcing Bob to make his tree deep. This is the adversary

argument we described in Section ??.



14.5 Evasive boolean functions 411

Wenowdemonstrate this argument on symmetric functions. Recall that a boolean

function is symmetric if every permutation of its variables leaves its value unchanged.

That is, a boolean function is symmetric if and only if its value depends only on

how many of its variables (not on which of them) are 0 or 1.
A boolean function f of n variables is called evasive if it has maximal possible

depth, that is, if D(f) = n.

14.19 Lemma Every non-constant symmetric boolean function is evasive.

Proof. Let f : {0, 1}n → {0, 1} be the symmetric boolean function in question.

Since f is not constant, there is a k with 1 ≤ k ≤ n such that if k−1 variables have

value 1, then the function has value 0, but if k variables are 1 then the function’s

value is 1 (or the other way round).

Using this, we can propose the following strategy for Alice. She thinks of a 0-1
sequence of length n and Bob can ask the values of each bit. Alice answers 1 on

the first k − 1 questions and 0 on every question that follows. Thus, after n − 1
questions, Bob cannot know whether the number of 1s is k − 1 or k, that is, he
cannot know the value of the function. ⊓⊔

Every boolean function f ofn variables splits then-cube {0, 1}n
into two disjoint

blocks f−1(0) and f−1(1). Since the number 2n
of vectors in the n-cube is even,

the sizes of these blocks must be both even or both must be odd. It turns out that

all boolean functions with odd block size are evasive.

14.20 Lemma If |f−1(0)| is odd then f is evasive.

Proof. Consider an arbitrary deterministic decision tree that computes the function

f . Let v be an arbitrary node in this tree. If the depth of v is d, then exactly 2n−d

of the possible inputs lead to v. In particular, any node whose depth is at most

n − 1 is reached by an even number of possible inputs. On the other hand, each

input reaches exactly one leaf. Thus, if |f−1(0)| is odd, there must be a leaf which

is reached by a single input x with f(x) = 0; this leaf has depth n. ⊓⊔

Symmetric functions are very special; the following class is significantly more

general. Call a boolean function of n variables weakly symmetric if for all pairs
xi, xj of variables, there is a permutation of the variables that takes xi into xj but

does not change the value of the function. For example, the function

(x1 ∧ x2) ∨ (x2 ∧ x3) ∨ · · · ∨ (xn−1 ∧ xn) ∨ (xn ∧ x1)

is weakly symmetric but not symmetric (check this!).

14.21 Theorem (Rivest–Vuillemin 1976) Let n be a prime power. If f : {0, 1}n →
{0, 1} is weakly symmetric, and f(0) ̸= f(1), then f is evasive.

Proof. Every permutation π : [n] → [n] on the input coordinates induces a permu-

tation π̂ : {0, 1}n → {0, 1}n
on the set of possible input vectors:

π̂(x1, . . . , xn) = (xπ(1), . . . , xπ(n)) .
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Let Γ be the set of all permutation π that leave the value of the function unchanged,

that is,

Γ = {π | f(π̂(x)) = f(x) for all vectors x} .

It can be easily verified that Γ forms a group. Moreover, since the function f is

weakly symmetric, this group is transitive, that is, for any pair of ground elements i
and j, there is a permutation π ∈ Γ such that π(i) = j.

We define the orbit of a vector x ∈ {0, 1}n
to be the set of images of x under

permutations in Γ :
orbit(x) = {π̂(x) | π ∈ Γ} .

14.22 Claim For any vector x except 0 or 1, the size |orbit(x)| is divisible by n.

Proof. Since x ̸= 0 and x ̸= 1, the orbit of x has more than one element. Let |x|
denote the number of 1s in x. Then∑

y∈orbit(x)

|y| =
∑

y∈orbit(x)

n∑
i=1

yi =
n∑

i=1

∑
y∈orbit(x)

yi .

Since Γ is transitive, for every i, there must be a permutation π ∈ Γ such that

π(i) = 1. Thus the last summand does not actually depend on i, implying that∑
y∈orbit(x)

|y| = n ·
∑

y∈orbit(x)

y1 .

On the other hand, since all vectors in the orbit have the same number of 1s, we
have ∑

y∈orbit(x)

|y| = |orbit(x)| · |x| .

Thus, |orbit(x)| · |x| is divisible by n. On the other hand, 0 < |x| < n implies

that |x| is not divisible by n. Since n is prime power, Euclid’s theorem implies that

|orbit(x)| must be divisible by n. ⊓⊔

By Lemma ??, the function f is evasive if

S :=
∑

x∈f−1(0)

(−1)|x| ̸= 0 .

If f(x) = 0, then the orbit of x contributes∑
y∈orbit(x)

(−1)|y| = |orbit(x)| · (−1)|x|

to this sum, since all vectors in orbit(x) have the same number of 1s. By Claim ??,
this is a multiple of n, except for the cases x = 0 and x = 1. Since exactly one of
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the vectors 0 and 1 is in f−1(0), the sum S is either one more or one less than a

multiple of n. In either case, S ̸= 0, so f must be evasive. ⊓⊔

14.6 Decision trees for search problems

So far we have considered decision trees solving decision problems. That is, for each
input the decision tree must give an answer “yes” (1) or “no” (0). For example, if

n =
(

v
2
)
then each input x ∈ {0, 1}n

can be interpreted as a graph G on v vertices,
where xe = 1 means that the edge e is present in G, and xe = 0 means that the

edge e is not present in G. There are a lot of decision problem for graphs. Is the

graph connected? Has the graph a clique of size k? Is the graph colorable by k
colors?

But decision alone is often not what we actually need. Knowing the answer

“the graph has a triangle”, we would like to find any of these triangles. Given an

unsatisfiable CNF and an assignment to its variables, we would like to find a clause

which is not satisfied.

In general, a search problem is specified by n boolean variables and a collection

W of “witnesses”. In addition, this collection must have the property that every

assignment to the n variables is associated with at least one witness. That is, a

search problem is specified by a relation F ⊆ {0, 1}n × W such that, for every

x ∈ {0, 1}n
there exists at least one w ∈ W such that (x,w) ∈ F . The problem

itself is:

Given an x ∈ {0, 1}n
, find a witness w ∈ W such that (x,w) ∈ F .

With every boolean function f : {0, 1}n → {0, 1} we can associate the relation

F ⊆ {0, 1}n × W , where W = {0, 1} and (x,w) ∈ F if and only if f(x) = w.
Hence, decision problems (=boolean functions) are special case of search problems.

14.23 Example Consider the graphs Gx on v vertices, encoded by binary strings

x ∈ {0, 1}n
of length n =

(
v
2
)
, one bit for each potential edge. As a set W of

witnesses we can take some special element λ and the set of all triangles. Define

the relation F by: (x,w) ∈ F if w = λ and graph Gx is triangle-free, or w ̸= λ
and w is a triangle in Gx. Then the search problem is, given an input x ∈ {0, 1}n

,

either to answer “no triangle” if Gx is triangle-free, or to find a triangle in Gx.

Given a bipartite graph G = (U ∪ V,E), define the search problem Degree(G)
in the following way. We have |E| variables xe, one for each edge e ∈ E. Each
assignment x ∈ {0, 1}E

to these variables is interpreted as a subgraph Gx of G,
defined by those edges e for which xe = 1, that is, Gx = {e ∈ E | xe = 1}. The
search problem Degree(G) is:

Given an input vector x, find a vertex whose degree in Gx is not one.



414 14 Decision Trees

It is clear that such a vertex always exist, as long as the sides of the graph are not

equal. Thus, as long as |U | ≠ |V |, Degree(G) is a valid search problem. Note also

that Degree(G) can be solved by a nondeterministic decision tree of depth at most

d, where d is the maximum degree of G. For this, it is enough to guess a vertex of

degree ̸= 1 and check the incident edges of this vertex.

We will now show that deterministic decision trees must have much larger depth.

For this, we take a bipartite (2n) × n graph G = (U ∪ V,E) of maximum degree d.
Suppose that G has the following expansion property:

Every subset S ⊆ U of |S| ≤ n/4 vertices has at least 2|S| neighbors in V .

Such graphs exist for d = O(1) and infinitely many n’s, and can be efficiently

constructed using known expander graphs. The following theorem, as well as

separations between deterministic, nondeterministic and randomized decision trees

for search problems, were proved by Lovász, Naor, Newman and Wigderson (1995).

14.24 Theorem (Lovász et al. 1995) Let G be a bipartite 2n× n graph of maximum
degree d. If G has the expansion property, then every deterministic decision tree for
Degree(G) requires depth Ω(n/d).

Proof. We use an adversary argument. At each step, Bob (a deterministic decision

tree) queries some edge e ∈ E. Based on what edges Bob has queried so far, Alice

(the adversary) answers either “xe = 1” (the edge e is present) or “xe = 0” (the
edge e is not present) in the subgraph. That is, Alice constructs a subgraph of G
step-by-step depending on what edges (pairs of vertices) Bob has queried so far. We

will show that Alice can cause Bob to probe Ω(n/d) edges ofG. The adversary will

be limited to produce (at the end) a subgraph of G in which all vertices in U have

degree at most 1 and all vertices in V have degree exactly 1. Hence, the answer is a
vertex in U .

To describe the adversary strategy we need some definitions. For step i (after i
edges were already probed), let Gi be the subgraph of G obtained by removing all

edges e ∈ E such that:

• the edge e was already probed and was rejected;

• the edge e was not probed yet but e is adjacent in G with at least one already

probed and accepted edge.

That is, Gi contains all edges of G that are still possible for the adversary to use in

her final subgraph without violating the above limitations.

A set S ⊆ U cannot be matched to V in Gi if it has fewer than |S| neighbors
inGi. Let S(Gi) denote a minimum cardinality unmatchable set inGi. By the above

limitation on the adversary, at step i the subgraph Gi contains a (partial) matching

from U to V . Bob cannot know the answer as long as there is no isolated vertex in

Gi. Such a vertex itself is a minimum unmatchable set of size 1.
Initially, since the graph G has an expansion property, we have that |S(G)| >

n/4. Thus, Alice’s strategy is to make sure that the minimum unmatchable set size

does not decrease too fast.
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To describe her strategy, suppose that an edge e = (u, v) is probed in step i
(after i edges were already probed). In order to give an answer “xe = 1” or “xe = 0”,
Alice first constructs two sets of vertices:

• S0(e) = the minimum unmatchable set that would occur in Gi+1 if Alice

answered “xe = 0”.
• S1(e) = the minimum unmatchable set that would occur in Gi+1 if Alice

answered “xe = 1”.

Alice then chooses the answer on e so as to make S(Gi+1) the larger of S0(e) and
S1(e). The heart of the argument is the following claim

14.25 Claim |S(Gi+1)| ≥ 1
2 |S(Gi)|.

Proof. Assume e is asked in step i+ 1. By the above strategy,

|S(Gi+1)| = max{|S0(e)|, |S1(e)|} .

Consider the set S = S0(e) ∪ S1(e). This set cannot be matched into V in Gi, for

otherwise either S0(e) or S1(e) would be matchable after the decision about e is
made. Thus, S contains an unmatchable set for step i of cardinality no more than

|S0(e) ∪ S1(e)| ≤ 2 · max{|S0(e)|, |S1(e)|} = 2 · |S(Gi+1)|. ⊓⊔

We can now complete the proof of the theorem by the following argument.

During the game between Alice and Bob, a sequence S0, S1, . . . , St of minimum

unmatchable sets Si = S(Gi) of vertices in U is constructed. At the beginning

|S0| > n/4, and |St| = 1 at the end. Moreover, by Claim ??, we have that the

cardinality of the Si does not decrease by more than a factor of 2. It must therefore

be a step i at which n/16 ≤ |Si| ≤ n/8 and Si has fewer than |Si| neighbors in
the i-th subgraph Gi of G. However, by the expansion property of G, the set Si

has had at least 2|Si| neighbors in the original graph G. Since at each step and for

any set, the number of its neighbors can drop down by at most a factor of 1/d, it
follows that at least |Si|/d = Ω(n/d) edges were probed up to step i. ⊓⊔

In a randomized decision tree, Bob (the decision tree) is allowed to flip a not

necessarily fair coin at each step to decide which variable to test next. These random

flips are “for free”: only queries of variables contribute to the depth of the tree. The

complexity measure in this case is the expected depth of the tree under the worst

case input. Equivalently, a random decision tree can be defined as a probability

distribution over all deterministic decision trees.

We now show that using random flips the search problem Degree(G) can be

solved much more efficiently.

14.26 Theorem For every bipartite 2n× n graph G of maximum degree d, the search
problem Degree(G) can be solved by a randomized decision tree of expected depth
O(d2).
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Proof. Let G = (U ∪ V,E) be a bipartite 2n × n graph of maximum degree d.
Consider the following random decision tree. Pick at random a vertex u ∈ U and

independently a vertex v ∈ V , query all edges that are incident to each of the two

vertices, that is, at most 2d edges are being checked. If u or v produce a witness
stop, otherwise repeat this process until done.

14.27 Claim In each iteration, the probability that a witness is discovered is at least

1/(d+ 1).

Proof. Let H be a subgraph of G determined before the i-th iteration. That is, H
consists of all edges e of G, the query to which was answered as “xe = 1”. If there
are more than 2nd/(d + 1) edges in H , then at least n/(d + 1) of the n vertices

in V are of degree at least 2. In this case the fact that v ∈ V is chosen at random

proves the claim. If, on the other hand, H has less then 2nd/(d+ 1) edges, then
at least 2n/(d + 1) of the vertices in U are of degree 0 in H . Thus, the fact that

u ∈ U is chosen at random proves the claim in this case. ⊓⊔

We get that the expected number of iterations is d+ 1, in each of them at most

2d edges are probed which yields the desired upper bound on the expected depth

of the tree. ⊓⊔

14.7 Linear decision trees

In standard decision trees we have considered so far, at each node a test on a single

variable is made. If the result is 0, one descends into the left subtree, whereas if the

result is 1, one descends into the right subtree. The label of the leaf so reached is

the value of the function (on that particular input). We will now consider decision

trees where more general test are allowed.

A real threshold function is a boolean function f : {0, 1}n → {0, 1} for which

there exists real numbers a1, . . . , an, b such that, for every vector x ∈ {0, 1}n
,

f(x) = 1 if and only if

∑n
i=1 aixi ≥ b;

the sum here is over the reals. In a linear decision tree, at each node a real threshold

function on the entire input vector x is evaluated. If the result is 0 one descends

into the left subtree, whereas if the result is 1, one descends into the right subtree.

Note that the decision trees considered above correspond to simplest threshold

functions f(x) = 1 iff xi ≥ 1.
By a rectangle we will mean a cartesian product R = X × Y of two subsets

of vectors X,Y ⊆ {0, 1}n
; its dimension is dim(R) = min{|X|, |Y |}. A boolean

function on such a rectangle is a mapping f : X × Y → {0, 1}. A function f(x, y)
is monochromatic on a subset S ⊆ X × Y if it takes the same value on all inputs

(x, y) ∈ S. For a boolean function f : X × Y → {0, 1}, let mono(f) denote the
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maximal dimension of a subrectangle X ′ × Y ′ ⊆ X × Y on which f takes the

same value.

We already know (see Lemma ??) that if f(x, y) is a real threshold function

defined on a rectangle of dimension k, then mono(f) ≥ k/2.
14.28 Theorem (Gröger–Turán 1991) If f(x, y) is a boolean function of 2n variables,
then any linear decision tree computing f must have depth at least n− log mono(f).

Proof. Let X = Y = {0, 1}n
and f : X × Y → {0, 1}. Consider a linear decision

tree T computing f(x, y). We define a sequence of rectangles Ri ⊆ X × Y such

that dim(Ri) ≥ 2n−i
and inputs in Ri follow the same path in T . To do this, let

R0 := X×Y , assume thatRi is defined and let vi be the node of T where the inputs

in Ri arrive after i test are evaluated (thus v0 is the root). Assume that vi is not a
leaf, and let fi be the linear test made in vi. Apply Lemma ?? to gi : Ri → {0, 1} to

get a subrectangle Ri+1 ⊆ Ri of dimension (2n−i)/2 = 2n−(i+1)
on which fi is

constant. Clearly all inputs in Ri+1 follow the same path of length i+ 1 in T .
Now assume that vi is a leaf. Then f must be constant on Ri, implying that

2n−i ≤ dim(Ri) ≤ mono(f), from which the lower bound 2i ≥ 2n/mono(f), and
hence, also the desired lower bound i ≥ n− log mono(f) on the depth of the tree

follows. ⊓⊔

The inner product function is a boolean function IPn(x, y) of 2n variables defined

by: IPn(x, y) = 1 if and only if

∑n
i=1 xiyi mod 2 = 1. That is, IPn(x, y) = 1 if

and only if the vectors x and y share an odd number of common 1-coordinates.
Note that IPn is a boolean function on the rectangle X × Y of dimension N = 2n

with X = Y = {0, 1}n
.

We already know (see the proof of Corollary ??) that mono(IPn) ≤ 2n/2
. To-

gether with Theorem ??, this implies that IPn requires deep linear decision trees.

14.29 Corollary Every linear decision tree computing the inner product function IPn

requires depth at least n/2.
Gröger and Turán (1991) also proved a similar lower bound of Ω(n) for random-

ized linear decision trees.

14.8 Element distinctness and Turán’s theorem

Let D be some finite domain. We consider general decision trees computing func-

tions f : Dn → {0, 1}. We have n variables x1, . . . , xn taking their values in D.

At each node of a decision tree an arbitrary function g : D2 → {0, 1} may be

computed. If the result of the test g(xi, xj) is 0 one descends into the left subtree,

whereas if the result is 1, one descends into the right subtree.

The element distinctness function over D is the function EDn : Dn → {0, 1}
such that, for every input string a ∈ Dn

, EDn(a) = 1 iff ai ̸= aj for all positions

i ̸= j. We restrict our domain to D = [n] := {1, 2, . . . , n}. Note that in this case,

EDn accepts a string a ∈ [n]n iff a is a permutation of [n].
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14.30 Theorem (Boppana 1994) Any general decision tree computing EDn over the
domain D = {1, . . . , n} must have depth at least Ω(n

√
logn).

Proof. Given a decision tree T forEDn and one of its leaves l, define the computation
graph Gl as follows. The vertex set is [n], and an edge is placed between i and j
iff on the paths to l there is a node at which a test g(xi, xj) or a test g(xj , xi) for
some function g is made. Let α(Gl) denote the size of a largest independent set in
Gl, and let A = {a ∈ [n]n | EDn(a) = 1} be the set of all accepted inputs.

14.31 Claim If l is a 1-leaf then at most n!/α(Gl)! inputs a ∈ A can reach l.

Proof. Fix a largest independent set S in Gl, of size s = α(Gl). Say that two inputs

a, b ∈ A are equivalent if ai = bi for all i ̸∈ S. Notice that this equivalence relation
partitions the set A into

n(n− 1) · · · (n− |S| + 1) = n(n− 1) · · · (s+ 1) = n!
s!

equivalence classes, one for each setting of distinct values outside S. Therefore, it
suffices to show that no two equivalent inputs reach the same leaf l.

Assume, for the sake of contradiction, that some two equivalent inputs a ̸= b ∈ A
reach l. Let k ∈ S be a position for which ak ̸= bk . Consider the input c that equals
a on all positions except the k-th one, and equals b on the k-th position, that is,

ck = bk and ci = ai for all i ̸= k. The input c must be rejected by our decision tree,

since some two of its positions must be equal (both a and b were permutations of

[n]). To obtain the desired contradiction, we will now show that input c reaches the
leaf l too.

To show this, note that since c differs from a on only position k, the only place

the computation on c can diverge from that on a is at a node at which a test g(xi, xk)
or g(xk, xi) is made. Since the set S is independent, and since k ∈ S, the position
i must be outside S. But by the definition of c, and since a and b are equivalent
(ai = bi for all i ̸∈ S), it follows that

(ci, ck) = (ai, bk) = (bi, bk) .

In other words, the computation on c follows the same direction as b does. Since b
reaches the leaf l, c will reach l too. This gives the desired contradiction. ⊓⊔

To finish the proof of the theorem, we will use the following celebrated theorem

of Turán (1941) which states that a sparse graph contains a large independent set

(see Exercise ?? for the proof): if G is a graph with n vertices andm edges, then

α(G) ≥ n2

2m+ n
. (14.6)

Now let T be a decision tree for the element distinctness function EDn, and let h
be its depth. Then, for every leaf l of T , the computation graph Gl has at most h
edges. By Claim ?? and by Turán’s theorem, every leaf l of T can be reached by
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at most n!/s! inputs a ∈ A, where s := n2/(2h + n). Since there are at most 2h

leaves in T , it follows that T can accept at most 2hn!/s! inputs a ∈ A. Since there
are |A| = n! such inputs in total, we obtain the inequality 2hn!/s! ≥ |A| = n!,
and hence, the inequality 2h ≥ s!. Using Stirling’s formula s! ≥ (s/e)s

, and taking

logarithms, we obtain the inequality

h ≥ s log(s/e) = n2

2h+ n
log n2

(2h+ n)e .

Solving for h, we find that h = Ω(n
√

logn), as desired. ⊓⊔

14.9 P ̸= NP ∩ co-NP for decision tree size

The size of a decision tree is the number of all its leaves. Let Size(f) denote the
minimum size of a deterministic decision tree computing f . The minimum size of a

nondeterministic decision tree for f is denoted by dnf(f). Note that dnf(f) is just
the minimal number of monomials in a DNF of f . That is, dnf(f) is the minimal

number t such that f can be written as an Or of t monomials.

We already know that P = NP ∩ co-NP for decision trees if we consider their

depth as complexity measure. In this section we will show that the situation changes

drastically if we consider their size (the total number of nodes) instead of the depth:

in this case we have P ̸= NP ∩ co-NP. Namely, there are explicit boolean functions

f such that both f and its negation ¬f have nondeterministic decision trees of size

N , whereas the size of any deterministic decision tree for f is NΩ(log N)
.

Let f be a boolean function, and suppose we know that dnf(f) is small. Is then

the decision tree also small? The following examples show that it may be not the
case:

f =
m∨

i=1

m∧
j=1

xij .

It can be shown that Size(f) ≥ 2dnf(f)
(Exercise ??). This shows that P ̸= NP for

decision tree size. Well, this function has very small DNF (of sizem) but the DNF

of its negation

¬f =
m∧

i=1

m∨
j=1

¬xij

is huge—it has mm
monomials. It is therefore natural to ask what happens if

both the function f and its negation ¬f have small DNFs? Put differently, does

P = NP ∩ co-NP for decision trees if we consider the size as their complexity

measure? Below we answer this question negatively.

The sum N(f) := dnf(f) + dnf(¬f) will be called the weight of f . It is clear
thatN(f) ≤ Size(f) (just because every decision tree represents both the function

and its negation). But what about the other direction: is Size(f) polynomial in
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N(f)? For a long time only a quasi-polynomial relation was known: the decision

tree size of any boolean function is quasi-polynomial in its weight.

14.32 Theorem (Ehrenfeucht and Haussler 1989) Let f be a boolean function of n
variables and N = dnf(f) + dnf(¬f) be its weight. Then Size(f) ≤ nO(log2 N).

Proof. (Due to Petr Savický) The idea is to apply the following simple “greedy”

strategy: given DNFs for f and ¬f , let the decision tree always test the “most

popular” literal first.

Assume, we have DNFs for both f and ¬f , and let N be the total number of

monomials in these two DNFs. Since the disjunction of these two DNFs is a tautology

(that is, outputs 1 on all inputs), there must exist a monomial of length at most

logN , just because monomial of length k accepts only 2n−k
of the inputs.

Select one of such monomials and denote its length by k. The selected monomial

belongs to one of the two DNFs. By the cross-intersection property of monomials

(see Exercise ??), every monomial in the other DNF contains at least one literal

which is contradictory to at least one literal in the selected monomial. Hence, there

is a literal in the selected monomial, which is contradictory to at least a 1/k-portion
of the monomials in the other DNF. Thus, if we evaluate this literal to 1, then all

these monomials will get the value 0 and so will disappear from the DNF.

Test this variable first and apply this strategy recursively to both restrictions

which arise. By the observation we just made, for each node v, at least one of its
two successors is such that at least one of the two DNFs in it decreases by a factor

of 1 − 1/k. Let us call the corresponding outgoing edge(s) decreasing. Now, if v is
a node (not a leaf) such that the path from the source to v contains s decreasing
edges, at least one of the two initial DNFs was decreased at least s/2 times, and

each time it was decreased by a factor of 1 − 1/k ≥ 1 − 1/ logN . If s were at least
2 log2 N then at least one of the DNFs at v would have only

N
(

1 − 1
logN

)s/2
< N · e−s/(2 log N) ≤ N · e− log N = N1−log e < 1

monomials, which is impossible (because v is not a leaf). Thus, every path to a leaf

has at most n edges, and among them at most s := 2 log2 N can be decreasing.

Recall that for every node at least one of the out-going edges was decreasing. Assume

w.l.o.g. that every node has exactly one decreasing edge (if there were two, we

simply ignore one of them). Mark decreasing edges by 1 and the remaining edges

by 0. Then every leaf corresponds to a 0-1 string of length at most n with at most s
ones. The number of such strings (and hence, the total number of leaves) does not

exceed L(n, s/2), where L(n, t) denotes the maximal possible number of leaves in

a decision tree of depth n such that every path from the root to a leaf has at most t
1-edges.

It remains to estimate L(n, t) for t = s/2. Clearly, we have the following

recurrence:

L(n, t) ≤ L(n− 1, t) + L(n− 1, t− 1) with L(0, t) = L(n, 0) = 1. (14.7)
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By induction on n and t, it can be shown that

L(n, t) ≤
t∑

i=0

(
n

i

)
≤
(ne
t

)t

.

Indeed, using the identity

(
n−1

k

)
+
(

n−1
k−1
)

=
(

n
k

)
, the induction hypothesis together

with the recurrence (??) yields:

L(n, t) ≤ L(n− 1, t) + L(n− 1, t− 1) ≤
t∑

i=0

(
n− 1
i

)
+

t−1∑
i=0

(
n− 1
i

)

= 1 +
t∑

i=1

[(n− 1
i

)
+
(
n− 1
i− 1

)]
= 1 +

t∑
i=1

(
n

i

)
=

t∑
i=0

(
n

i

)
.

Thus,

Size(f) ≤ L(n, s/2) = L(n, log2 N) ≤
( n

log2 N

)O(log2 N)
. ⊓⊔

14.33 Research Problem
Is it possible to improve the upper bound Size(f) ≤ nO(log2 N)

in Theorem ?? to
Size(f) ≤ 2O(log2 N)

?

In the next section we will exhibit explicit boolean functions f requiring deter-

ministic decision trees of size NΩ(
√

log N)
(iterated majority function) and even

NΩ(log N)
(iterated NAND function), whereN = dnf(f) + dnf(¬f) its the weight

of f . Namely, Jukna, Razborov, Savický and Wegener (1999) proved the following

lower bound.

14.34 Theorem There are explicit boolean functions f such that both f and ¬f have
DNFs of size N , but any deterministic decision tree for f has size NΩ(log N).

That is, for the size of decision trees we have that P ̸= NP ∩ co-NP. The rest of
this section is devoted to the proof of this theorem. For this purpose, we will use an

argument which has many applications in engineering. The argument is based on

harmonic analysis of boolean functions, and is known as the “spectral argument”.

14.9.1 Spectral lower bound

We will use Fourier transforms over the field R of real numbers (see Section ??). For
this, it will be convenient to switch to (−1,+1)-notation, that is, to consider boolean
functions as mappings from {−1,+1}n

to {−1,+1}, where the correspondence
1 → −1 and 0 → +1 is assumed. To convert from the standard 0/1 representation

to the Fourier ±1 representation map x 7→ 1 − 2x = (−1)x
. To convert from the
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Fourier ±1 representation to the standard 0/1 representation map x 7→ (1 − x)/2;
hence, ¬x maps to (1 + x)/2.

14.35 Example Suppose n = 3 and f is the Majority function Maj3. So, in
the ±1 notation we have that Maj3(1, 1, 1) = 1, Maj3(1, 1,−1) = 1, . . . ,
Maj3(−1,−1,−1) = −1. Denoting x = (x1, x2, x3), we can write

Maj3(x) =
(1 + x1

2

)(1 + x2

2

)(1 + x3

2

)
· (+1)

+
(1 + x1

2

)(1 + x2

2

)(1 − x3

2

)
· (+1)

+ · · ·

+
(1 − x1

2

)(1 − x2

2

)(1 − x3

2

)
· (−1) .

If we actually expand out all of the products, tremendous cancelation occurs and

we get

Maj3(x) = 1
2x1 + 1

2x2 + 1
2x3 − 1

2x1x2x3 . (14.8)

We could do a similar interpolate-expand-simplify procedure even for a function

f : {−1, 1}n → R, just by multiplying each x-interpolator by the desired value

f(x). Note that after expanding and simplifying, the resulting polynomial will

always be multilinear, that is, have no variables squared, cubed, etc. In general,

a multilinear polynomial over variables x1, . . . , xn has 2n
terms, one for each

monomial

χS(x) :=
∏
i∈S

xi ,

where S ⊆ [n] = {1, . . . , n}; for S = ∅ this monomial is constant 1. Hence, every
function f : {−1, 1}n → R can be expressed (in fact, even uniquely) as a multilinear

polynomial

f(x) =
∑

S⊆[n]

cS · χS(x) , (14.9)

where each cS is a real number. The S-th coefficient cS is call the S-th Fourier

coefficient of f , and is usually denoted by f̂(S). It can be computed as

f̂(S) = 2−n
∑

x

f(x)χS(x) .

14.36 Proposition If f does not depend on the i-th variable, then f̂(S) = 0 for every
S with i ∈ S.

Proof. For a vector x ∈ {−1, 1}n
and a coordinate i ∈ [n], let x(i)

denote the

vector x with its i-th coordinate xi replaced by −xi. If i ∈ S, then we have that

f(x(i)) = f(x) but χS(x(i)) = −χS(x), implying that

∑
x f(x)χS(x) = 0. ⊓⊔
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This proposition allows us to compute Fourier coefficients of arithmetic combi-

nation of some functions with disjoint sets of variables.

14.37 Proposition Let S = S1 ∪ S2 be a partition of S into two disjoint nonempty
blocks. Let g, h : {−1, 1}S → {−1, 1} be functions such that g only depends on
variables xi with i ∈ S1, and h only depends on variables xi with i ∈ S2. Then

f̂(S) =
{

0 if f = g + h;
ĝ(S1) · ĥ(S2) if f = g · h.

We leave the proof of this as an exercise.

The following general lower bound on the size of decision trees is a combination

of Lemma 4 in Linial, Mansour and Nisan (1993) with Lemma 5.1 of Kushilevitz and

Mansour (1991).

14.38 Lemma (Spectral Lower Bound) For every boolean function f of n variables
and every subset of indices S ⊆ {1, . . . , n} we have the bound

Size(f) ≥ 2|S| ·
∑
T ⊇S

|f̂(T )| . (14.10)

Proof. Take a decision tree for f of size Size(f). For a leaf l, let val(l) ∈ {−1,+1}
be its label (recall that we are in ±1-notation), and let Il be the set of indices of

those variables, which are tested on the path to l. Let Bl ⊆ {−1,+1}n
be the set

of all the inputs that reach leaf l; hence, |Bl| = 2n−|Il|
.

Since each input reaches a unique leaf, the sets Bl are pairwise disjoint. Hence,

for every T ⊆ [n],

f̂(T ) = 2−n
∑

x

f(x) ·χT (x) = 2−n
∑

l

∑
x∈Bl

f(x) ·χT (x) =
∑

l

val(l) ·∆(T, l) ,

where

∆(T, l) := 2−n
∑

x∈Bl

χT (x) .

Now, if T ̸⊆ Il, that is, if some variable xi with i ∈ T is not tested along the path

from the root to the leaf l, then χT (x) = +1 for exactly half of the inputs x ∈ Bl,

and hence,∆(T, l) = 0. If T ⊆ Il then the value of χT is fixed on Bl to either +1
or −1, and so,

|∆(T, l)| = 2−n · |Bl| = 2−|Il| .

Thus, in both cases, |∆(T, l)| ≤ 2−|Il|
. Since for any S ⊆ [n] there are only 2|Il|−|S|

sets T satisfying S ⊆ T ⊆ Il, we conclude that∑
T :T ⊇S

|f̂(T )| ≤
∑

T :T ⊇S

∑
l

|∆(T, l)| =
∑

l

∑
T :T ⊇S

|∆(T, l)|

≤
∑

l

2−|S| = 2−|S| · Size(f),
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and the desired bound (??) follows. ⊓⊔

We are going to apply Lemma ?? for S = [n] to the Iterated Majority function

and for S = ∅ to the Iterated NAND function.

14.9.2 Explicit lower bounds

Recall that our goal is to exhibit a boolean function f which requires decision tree

of size super-polynomial in its weight N = dnf(f) + dnf(¬f). For this purpose,
we take the Iterated Majority function which is defined as follows.

The majority of three boolean variables is given by

Maj3(x1, x2, x3) = x1x2 ∨ x1x3 ∨ x2x3 .

In Example ?? we have shown that in the (−1,+1)-representation (that is, when

the correspondence 1 → −1 and 0 → +1 is assumed) we have that

Maj3(x1, x2, x3) = 1
2x1 + 1

2x2 + 1
2x3 − 1

2x1x2x3 .

Now consider the monotone function Fh in n = 3h
variables which is defined

by the balanced read-once formula of height h in which every gate is Maj3, the
majority of 3 variables. That is, F0 = x, F1 = Maj3(x1, x2, x3) and for h ≥ 2,

Fh = Maj3(F (1)
h−1, F

(2)
h−1, F

(3)
h−1) (14.11)

where F
(ν)
h−1 are three copies of Fh−1 with disjoint(!) sets of variables.

14.39 Theorem Let f = Fh be the iterated majority function and N = dnf(f) +
dnf(¬f) be its weight. Then Size(Fh) ≥ NΩ(

√
log N).

Proof. It can be shown (Exercise ??) that the function Fh(x1, x2, . . . , xn) has n =
3h = 2c·h

variables, where c = log 3 > 3/2, and has weight

N = 2 · 32h−1 = 2Θ(2h) = 2Θ(n2/3) .

Since 2Ω(n) ≥ 2Ω(log3/2 N) = NΩ(
√

log N)
, it is enough to prove the lower bound

Size(Fh) ≥ 2Ω(n)
. To prove this, we will apply Lemma ?? with S = [n] =

{1, . . . , n}. Letting
ah :=

∣∣∣F̂h([n])
∣∣∣

denote the absolute value of the leading Fourier coefficient of Fh, this lemma yields

Size(Fh) ≥ ah · 2n
. It remains therefore to prove an appropriate lower bound on

ah. We proceed by induction on h.
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∨

x1 x2

∧

∨

x1 x2

∨

x3 x4

∨

∧

∨

x1 x2

∨

x3 x4

∧

∨

x5 x6

∨

x7 x8

Fig. 14.2 Iterated NAND functions G1, G2 and G3.

Clearly, a0 = 1, since F0 is a variable (cf. Exercise ??), and a1 = 1/2 by the

above representation of Maj3.
For the inductive step recall that in the (−1,+1)-representation,

Maj3(x1, x2, x3) = 1
2

( 3∑
i=1

xi −
3∏

i=1
xi

)
.

Thus,

Fh = 1
2

3∑
ν=1

F
(ν)
h−1 − 1

2

3∏
ν=1

F
(ν)
h−1 .

By Proposition ??, the first summand does not contribute to F̂h([n]) and we obtain

that

ah = 1
2 a

3
h−1 .

Together with the condition a0 = 1, this recursion resolves to

ah = 2−30
· a3

h−1 = 2−30−31
· a3

h−2 = 2−30−31−32
· a3

h−3 = . . . = 2−∆ ,

where

∆ = 30 + 31 + 32 + · · · + 3h−1 = 3h − 1
3 − 1 = (3h − 1)/2 = (n− 1)/2 .

Thus

Size(Fh) ≥ ah · 2n ≥ 2−(n−1)/2 · 2n = 2(n+1)/2 ,

as desired. ⊓⊔

We now present a boolean function almost matching the upper bound in Theo-

rem ??.
The iterated NAND function is a boolean function Gh in n = 2h

variables which

is computed by the balanced read-once formula of height h in which every gate is

NAND, the negated AND operation NAND(x, y) = ¬(x ∧ y) = ¬x ∨ ¬y. Up to

complementation of the inputs this is equivalent to a monotone read-once formula

with alternating levels of AND and OR gates (see Fig. ??).
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14.40 Theorem Let f = Gh be the iterated majority function and N = dnf(f) +
dnf(¬f) be its weight. Then Size(f) ≥ NΩ(log N).

Proof. We have that dnf(G0) = dnf(¬G0) = 1 (since G0 is a single variable), and

it is easy to see that for every h ≥ 1 we have dnf(Gh) ≤ 2 · dnf(¬Gh−1) and
dnf(¬Gh) ≤ dnf(Gh−1)2

. By induction on h one obtains dnf(Gh) ≤ 22(h+1)/2−1

and dnf(¬Gh) ≤ 22(h/2)+1−2
. Since n = 2h

, we have N ≤ 22(h/2)+1 = 4
√

n
, and

our statement boils down to showing Size(Gh) ≥ 2Ω(n)
.

Let us say that a Fourier coefficient Ĝh(S) is dense if for every subtree of height

2, S contains the index of at least one of the four variables in that subtree. We are

going to calculate exactly the sum of absolute values of dense coefficients. Denote

this sum by ch. Note that in the (−1,+1)-representation, we haveNAND(x, y) =
(xy − x− y − 1)/2. Hence,

Gh = 1
2

(
G

(1)
h−1 ·G(2)

h−1 −G
(1)
h−1 −G

(2)
h−1 − 1

)
, (14.12)

where G
(1)
h−1, G

(2)
h−1 are two copies of Gh−1 with disjoint sets of variables.

In order to compute c2, we use the following transformation. Let f1 = G
(1)
1 +1/2

and f2 = G
(2)
1 + 1/2. Then it follows from (??) that

G2 = 1
2f1f2 − 3

4f1 − 3
4f2 + 1

8 .

Since each monomial in f1 and f2 contains at least one variable and the sets of

variables of f1 and f2 are disjoint, there are no common monomials in the four

terms in the above expression of G2. Hence, it is easy to calculate the sum of

the absolute values of the coefficients in the non-constant monomials, which is

c2 = 1/2 · r1 · r2 + 3/4 · (r1 + r2) = 27/8 = 3.375, where r1 = r2 = 3/2 is the

sum of the absolute values of the coefficients in f1 and f2.
In order to compute ch for h > 2, we use (??) directly. Only the first term

G
(1)
h−1 ·G(2)

h−1 in this equation can contribute to dense coefficients, and its individual

contributions do not cancel each other. Hence, we have the recursion

ch = 1
2 c

2
h−1 .

This resolves to ch = 2(c2/2)2h−2
which is 2Ω(n)

since c2 > 2. The proof is now
completed by applying Lemma ?? (this time with S = ∅). ⊓⊔

Exercises

14.1 Consider the following function f(X) on n = m2
boolean variables:
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f =
m∧

i=1

m∨
j=1

xij . (14.13)

Show that for this function f we have that C0(f) = C1(f) = m but D(f) = m2
.

Hint: Take an arbitrary deterministic decision tree for f and construct a path from the root by

the following “adversary” rule. Suppose we have reached a node v labeled by xij . Then follow

the outgoing edge marked by 1 if and only if all the variables xil with l ̸= j were already tested

before we reached the node v.

14.2 Let f : {0, 1}n → {0, 1} be a boolean function, and let k = k(f) be the largest
natural number such that |f−1(0)| is divisible by 2k

. Show that D(f) ≥ n− k(f).
Hint: The number of inputs x ∈ f−1(0) leading to a given leaf of depth d is either 0 or 2n−d

.

14.3 Let D1 be a DNF of a boolean function f , and D2 be a DNF of its negation

¬f . Show the following cross-intersection property: ifK is a monomial in D1, then
every monomial inD2 contains at least one literal which is contradictory to at least

one literal inK .

14.4 Show that s(f) = bs(f) = C(f) for every monotone boolean function f .
Hint: Since s(f) ≤ bs(f) ≤ C(f) holds for any boolean function f , it is enough to show that

C(f) ≤ s(f). Take a vector a with C(f, a) = C(f), assume that f(a) = 0. Let S be an f -

certificate of a of smallest size, and let b be the vector a with all bits outside S set to 1. Show that

f is sensitive on b to each bit i ∈ S.

14.5 Show that for every boolean function f , deg(f) ≤ D(f). Hint: The tests along
paths to 1-leaves define a multilinear polynomial.

14.6 Recall that a boolean function f(x) of n variables is symmetric if its value
only depends on the number |x| := x1 + · · · + xn of ones in x. That is, there
exists a subset L ⊆ {0, 1, . . . , n} such that f(x) = 1 if and only if |x| ∈ L. Show
that symmetric functions have high sensitivity: s(f) ≥ (n+ 1)/2 holds for every

non-constant symmetric boolean function f of n variables. Hint: We can assume (why?)

that there is a non-negative integer k ≤ (n − 1)/2 such that k ̸∈ L and k + 1 ∈ L. Take a vector

a with |a| = k ones, and argue that s(f, a) ≥ n − k.

14.7 Recall that the average sensitivity, as(f), of a boolean function f is the expected

sensitivity of f on a random assignment: as(f) := 2−n
∑

a s(f, a). Let T be a

decision tree, and let pa be the length of the unique path in it consistent with a.
The average depth of T is 2−n

∑
a pa. Show that the average depth of any decision

tree for f is at least as(f).

14.8 Let L(f) denote the minimum leafsize of a DeMorgan formula computing f .
Let as(f) be the average sensitivity of f , and let p = |f−1(1)|/2n

. Show that

L(f) ≥ as(f)2

4p(1 − p) .
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Hint: Theorem ?? and Exercise ??.

14.9 Show that, for the boolean function f defined by (??), we have that Size(f) ≥
2dnf(f)

.

Hint: Observe that all the minterms and maxterms of f have length m. Show that every such

function requires a decision tree of size at least 2m
.

14.10 Let G = ([n], E) be a graph on n vertices and let di denote the degree of the

i-th vertex. Prove that

α(G) ≥
n∑

i=1

1
di + 1 . (14.14)

Hint: Let π : [n] → [n] be a random permutation taking its values uniformly and independently

with probability 1/n!. Let Ai be the event that π(j) > π(i) for all di neighbors j of i. Show that

Prob[Ai] =
(

n

di + 1

)
di!(n − di − 1)!

n! = 1
di + 1 .

LetU be the (random) set of those vertices i for whichAi holds. Show thatE [|U |] =
∑n

i=1 1/(di+
1). Fix such a set U , and show that for every edge {i, j} of G, either π(i) < π(j) or π(j) < π(i).

14.11 (Turán’s theorem) Derive from Exercise ?? the Turán theorem: If a graph G
has n vertices and nk/2 edges, then α(G) ≥ n/(k+1). Show that this is equivalent

to Eq. ??.

Hint: Fixing the total number of edges, the sum

∑n

i=1 1/(di + 1) is minimized when the di’s are

as nearly equal as possible. By Euler’s theorem

∑n

i=1 di is exactly two times the number of edges

in G.

14.12 Let f be a monotone boolean function. Suppose that every minterm of f
has length ≥ s and every maxterm has length ≥ r. Show that any decision tree

computing f must have at least

(
s+r

s

)
leaves. Hint:

(
n
k

)
=
(

n−1
k

)
+
(

n−1
k−1

)
.

14.13 Let f = xi be a single variable. Show that f̂({i}) = 1.

14.14 Show that the iterated majority function Fh, defined by (??), has n = 3h

variables and its weight is 2 · 32h−1
.

Hint: Observe that: (1) dnf(F0) = 1 and dnf(Fh) = 3 · dnf(Fh−1)2
, and (2) the minimal DNF of

the negation ¬Fh coincides with the DNF of Fh with all the variables negated.

14.15 A ∨-decision tree is a generalization of a deterministic decision tree, where

at each node an OR g(x) =
∨

i∈S xi of some subset S of variables can be tested.

Hence, decision trees correspond to the case when |S| = 1. Consider the threshold-
k function Thn

k (x1, . . . , xn) = 1 if and only if x1 + · · · + xn ≥ k. Show that any

∨-decision tree for Thn
k requires at least

(
n

k−1
)
leaves.
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Hint: Look at Thn
k as accepting/rejecting subsets of [n]. Suppose that some two different (k − 1)-

element subsets A, B ⊆ [n] reach the same leaf. Show that then also the set C = A ∪ B will

reach that leaf.

14.16 Consider the search problem for a given relation F ⊆ {0, 1}n × W (see

Section ??). Our goal is to give a game-theoretic lower bound on the minimum size,
Size(F ), of a decision tree solving the search problem for F . There are two players,

Prover and Delayer. Given an input vector x ∈ {0, 1}n
, the goal of the Prover is to

find a witness w ∈ W such that (x,w) ∈ F . The goal of Delayer is to delay this

happening as long as possible. The game proceeds in rounds. In each round, the

Prover suggests a variable xi to be set in this round, and Delayer either chooses a

value 0 or 1 for xi or leaves the choice to the Prover. In this last case, the Delayer

scores one point, but the Prover can then choose the value of xi. The game is over

when a desired witness w is found. Let Score(F ) denote the maximal number of

points the Delayer can earn in this game independent of what strategy the Prover

uses. Prove that Size(F ) ≥ 2Score(F )
.

Hint: Prove the converse direction: if the search problem for F can be solved by a decision tree of

size S, then the Prover has a strategy under which the Delayer can earn at most log S points. If

the Delayer defers the choice to the Prover, then let the Prover use the “take the smaller sub-tree”

strategy.



15. General Branching Programs

A branching program is a generalization of a decision tree where the underlying

graph can be an arbitrary directed acyclic graph. The model of branching programs

is one of the most fundamental sequential (in contrast to parallel, as circuits or
formulas) model of computations. This model captures in a natural way the deter-

ministic space whereas nondeterministic branching programs do the same for the

nondeterministic mode of computation.

In this chapter we first establish almost quadratic lower bounds for general

branching programs and show that counting programs are not much weaker than

nondeterministic ones. Then we prove a surprising result of Barrington that branch-

ing programs of constant(!) width are not much weaker than DeMorgan formulas.

Finally, we establish some width versus length bounds for oblivious programs.

15.1 Nechiporuk’s lower bounds

The best we can do so far for unrestricted programs is a quadratic lower bound

Ω(n2/ log2 n) for deterministic programs, andΩ(n3/2/ logn) for nondeterministic

programs. These bounds can be shown by counting arguments due to Nechiporuk

(1966): just compare the number of subfunctions with the number of distinct sub-

programs.

Let BP(f) denote the number of nodes in a deterministic branching program,

S(f) the number of contacts (labeled wires) in a switching network, and NBP(f)
the number of contacts in a nondeterministic branching program computing f .
Recall that a switching network is a nondeterministic branching programs whose

underlying graph is undirected; in this case unlabeled wires are redundant.

Let f(X) be a boolean function depending on all its variables. Let Y1, . . . , Ym

be disjoint subsets of the variable setX . For every i ∈ [m], let ci(f) be the number

of distinct subfunctions of f on the variables Yi obtained by fixing the remaining

variables to constants in all possible ways.

15.1 Theorem (Nechiporuk 1966) There exists a constant ϵ > 0 such that

430
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BP(f) ≥ S(f) ≥ ϵ

m∑
i=1

log ci(f)
log log ci(f)

and

NBP(f) ≥ 1
4

m∑
i=1

√
log ci(f) .

The lower bound on S(f) was proved by Nechiporuk (1966); his argument was

then extended to NBP(f) by Pavel Pudlák (unpublished).

Proof. LetN(r, h) denote the number of switching networks of r variables and with
h contacts. We already known (see Lemma ??) that the number of graphs with h
edges does not exceed (9h)h

. Every switching network with h contacts is obtained

from one of these graphs by labeling its edges by literals. Since such a labeling can

be done in at most (2r)h
ways, we obtain N(r, h) ≤ (9h)h(2r)h ≤ (18rh)h

.

Now take a partition Y1, . . . , Ym of variables of f , and take a minimal switching

network computing f . For each i ∈ [m], each setting of constants to variables

outside Yi yields an induced subnetwork whose contacts are the contacts of the

original network labeled by variables from Yi. Say there are hi such contacts.

Then the obtained subnetworks can compute at most N(|Yi|, hi) different boolean
functions. Since we have ci(f) such subfunctions, this implies (18|Yi|hi)hi ≥ ci(f),
where |Yi| ≤ hi because f depends on all its variables. We thus obtain that hi must

be a constant times log ci(f)/ log log ci(f). Since S(f) = h1 + · · · + hm, we are

done.

To prove the lower bounds onNBP(f), letG(V,E) be a nondeterministic branch-

ing program computing f . Any fixing of the variables outside Yi to constants results

in a reduced branching program for the resulting subfunction. Let Ei ⊆ E be the

set of wires whose labels are literals of variables from Yi, and let Vi be the set

of vertices touched by these wires. Then without loss of generality the reduced

program uses only the vertices Vi, on which we have the contacts Ei and perhaps

some extra unlabeled wires (switches) that resulted from fixing values. That is, each

reduced program is obtained by drawing some additional (to the contacts in Ei)

unlabeled wires between the nodes in Vi. Thus, there are at most 2|Vi|2
different

possible programs, and as |Vi| ≤ 2|Ei| and the size of our program is

∑m
i=1 |Ei|,

the desired lower bound on NBP(f) follow. ⊓⊔

15.2 Remark Note that the same lower bound as for NBP(f) holds for nondeter-
ministic branching programs with any acceptance mode. In particular, this bound

holds for parity branching programs.

Recall that the element distinctness function EDn is a boolean function of n =
2m logm variables divided into m consecutive blocks with 2 logm variables in

each of them. Each of these blocks encode a number in [m2]. The function accepts

an input x ∈ {0, 1}n
if and only if all these numbers are distinct.

We have already shown that EDn has 2Ω(n)
subfunctions on each of these

m = Ω(n/ logn) blocks (see Lemma ??). Thus, Theorem ?? immediately yields
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15.3 Theorem (Nechiporuk 1966) The element distinctness function EDn requires
deterministic branching programs and switching networks of size Ω(n2/ log2 n), and
nondeterministic branching programs of size Ω(n3/2/ logn).

Using a similar argument as in Remark ??, one can show that Theorem ?? cannot
yield larger than Ω(n2/ log2 n) lower bounds on BP(f). Beame and McKenzie

(2011) showed that Theorem ?? cannot yield larger than Ω(n3/2/ logn) lower

bounds on NBP(f).
To prove this last claim, take an arbitrary partition of the n variables into disjoint

subsets Y1, . . . , Ym, and consider the sum s(f) :=
∑m

i=1
√

log ci(f). Using the

fact that ci(f) ≤ min{22|Yi|
, 2n−|Yi|}, the sum s(f) is at most

∑m
i=1 h(yi), where

yi = |Yi| and h(x) := min{2x/2,
√
n− x}. Clearly, h(x) = 2x/2

for x ≤ log(n/2),
and hence, h(x) + h(y) ≤ h(x + y) if x + y ≤ log(n/2). We can therefore

assume that at most one yi is smaller than t := 1
2 log(n/2). Such a small yi has

h(yi) ≤ 2t/2 < n1/4
. There are at most n/t larger yi, and each of them has

h(yi) ≤
√
n− yi ≤

√
n. Hence,

s(f) ≤
m∑

i=1
h(yi) ≤ (n/t) ·

√
n+ n1/4 = O(n3/2/ logn) .

15.1.1 Lower bounds for symmetric functions

If f is a symmetric boolean function of n variables, then f can have at most

n− |Y | + 1 distinct subfunctions on any set Y of variables. Thus, Nechiporuk’s

method cannot yield superlinear lower bounds for symmetric functions. A series of

lower bounds were proved for such functions using Ramsey-type arguments. Let

BP(f) denote the minimal size of a deterministic, and ⊕BP(f) the minimal size of

a parity branching program.

• Pudlák (1984) proved that BP(Majn) = Ω(n ln lnn/ ln ln lnn).
• Babai et al. (1990) improved this to BP(Majn) = Ω(n lnn/ ln lnn).
• For switching networks, an intermediate model whose size lies between BP(f)
andNBP(f), Grinchuk (1987, 1989) proved thanMajn requiresΩ(αn) contacts
where α = α(n) is an extremely slowly growing function.

• In the most powerful model of nondeterministic branching programs, Razborov

(1990b) proved NBP(Majn) = Ω(βn) where β = β(n) is also an extremely

slowly (but faster than α) growing function.

• Karchmer and Wigderson (1993) proved ⊕BP(Majn) = Ω(βn).

The function β in these lower bounds has the form β(n) = log log log∗ n, where
log∗ n is the maximal natural number r such that t(r) ≤ n, where t(0) = 1 and

t(x+ 1) = 2t(x)
.

All these proofs employ quite nontrivial combinatorics, mainly Ramsey theory.

The obtained (barely non-linear) lower bounds might be seen as “too weak”. The
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point however is that one cannot expect larger than quadratic bounds for such

functions: Lupanov (1965b) proved that, for every sequence (fn) of symmetric

boolean functions, BP(fn) = O(n2/ logn) and NBP(fn) = O(n3/2). Krasulina
(1986, 1987) proved that S(Majn) = O( 1

pn ln4 n), where p = (ln lnn)2
. This was

later improved by Sinha and Thathachar (1997) to BP(Majn) = O( 1
pn ln3 n) where

p = (ln lnn)(ln ln lnn)
Actually, the above mentioned papers of Grinchuk and Razborov give more.

Namely, it is possible to completely characterize symmetric boolean functions hav-

ing size O(n) in each of the three basic models (deterministic branching programs,

switching networks and nondeterministic branching programs) and, moreover,

this characterization is the same for all three models. They show that such func-

tions are exactly the symmetric boolean functions fn with the following property:

fn(x) = fn(y) whenever there is a constant T > 0 such that T ≤ |x|, |y| ≤ n− T
and |x| − |y| is divisible by T ; here, as before, |x| is the number of ones in x.

15.2 Branching programs over large domains

One can define branching programs also for functions f : Dn → {0, 1} over larger

domains D than {0, 1}. In this case, instead of just tests xi = 0 and xi = 1 the

program is allowed to make tests xi = d for elements d ∈ D. Different edges leaving

the same node may make the same test—this is why a program is nondeterministic.

As before, an input a ∈ Dn
is accepted if and only if all the tests along at least one

path from the source node s to the target node t are passed by a, that is, if all the
tests xi = d made along at least s-t path are consistent with the input string a in
that ai = d. A switching network is a nondeterministic branching program whose

underlying graph is undirected. Edges are labeled by tests xi = d, and are called

contacts. Note that in this case unlabeled edges are redundant since we can always

contract them. We are going to prove a lower bound on the number of contacts

which is about |D| times the binary length n log |D| of the input.
As our domain D we take Zq := {0, 1, . . . , q − 1}. The counting modulo q

function Modn
q : Zn

q → {0, 1} is defined by:

Modn
q (x) = 0 if and only if x1 + · · · + xn = 0 (mod q).

That is, Modn
q rejects the input vector if the sum of its components is divisible by q.

In particular, Modn
2 is the parity function.

Cardot (1952) proved that every switching network computing Modn
2 must have

4n − 4 contacts, and this bound is optimal. In contrast, the number of contacts

needed to compute this functions in the class of parallel-serial networks (that are

equivalent to DeMorgan formulas) lies between n2
and (9/8)n2

(see Section ??).

15.4 Theorem (Rychkov 2009) The function Modn
q can be computed by a switching

network with q2n contacts, and every switching network computing Modn
q must have

Ω(qn log q) contacts.
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Proof. To prove the upper bound, take a graph G = (V,E) whose set of vertices
is divided into disjoint subsets V0, V1, . . . , Vn each of size q. The set of edges is
defined as E = E1 ∪ · · · ∪ En where Ei = Vi−1 × Vi; hence, |E| = q2n. Identify
the vertices in each Vi with members of Zq = {0, 1, . . . , q − 1}. Label the edge
joining u ∈ Vi−1 with v ∈ Vi by the test xi = (v − u) mod q. As the source node
take the vertex v0 in V0 numbered by 0. Observe that for every input vector a ∈ Zn

q

and for every 1 ≤ i ≤ n, the set of contacts in Eii consistent with a forms a perfect

matching between Vi−1 and Vi. Thus, there is exactly one path p = (v0, v1, . . . , vn)
from the source node v0 to a node vn in Vn which is consistent with a. Moreover,

we have that vi − vi−1 = ai mod q for all i = 1, . . . , n. Thus,

vn = vn − v0 = (v1 − v0) + (v2 − v1) + (v3 − v2) + · · · + (vn − vn−1)
= a1 + a2 + a3 + · · · + an mod q .

Thus, if we remove from Vn the node numbered by 0 and glue all remaining vertices

in Vn to one target node, the obtained switching network will compute Modn
q .

To prove the lower bound, take a switching network F (x) computing Modn
q .

We claim that for every pair 1 ≤ i < j ≤ n, the network must contain Ω(q log q)
contacts labeled by tests on variables xi and xj . This already implies the desired

lower boundΩ(qn log q) on the total number of contacts. By symmetry, it is enough

to prove the claim for i = 1 and j = 2. The idea is to use Hansel’s result (see

Exercise ??) that any monotone switching network computing the threshold-2
function Thm

2 must have Ω(m logm) contacts.
From F we obtain a network F ′

depending only on x1 and x2 as follows. First,

remove from F all contacts labeled by tests xi = a for i ≥ 3 and a ̸= 0. Then
contract all contacts labeled by tests xi = 0 for i ≥ 3. The resulting network

computes the function F ′(x1, x2) = F (x1, x2, 0, . . . , 0). That is, F ′
accepts a pair

(a, b) of integers if and only if a + b ̸∈ {0, q}. Thus, for every input (a, b) with
a+ b ̸∈ {0, q}, there must be a consistent path p in F ′

from the source node s to
the target node t such that along p

(i) only tests x1 = a and x2 = b are made, and

(ii) each test x1 = a and x2 = b is made at least once: if, say, only tests x1 = awere
made along p, then F ′

would be forced to wrongly accept the input (a, q − a).

On the other hand, no s-t path can be consistent with the input (0, 0) or any of the

inputs (a, q − a) with a ∈ Zq .

Take q new variables y1, . . . , yq and relabel the contacts of F ′
as follows. For

every a ∈ Zq , a ̸= 0, replace all tests x1 = a and x2 = q − a by the test ya = 1.
Further, replace all tests x1 = 0 and x2 = 0 by the test yq = 1. Let F ′′(y1, . . . , yq)
be the obtained monotone boolean switching network. We claim that this network

computes the threshold-2 function Thq
2(y1, . . . , yq).

To show this, take an arbitrary vector y ∈ {0, 1}q
with exactly two 1s in positions

a and b with 1 ≤ a < b ≤ q. We have to show that y must be accepted by F ′′
.

If b < q and a+ b ̸= q, then property (i) ensures that y is accepted by F ′′
. So,

assume that b < q and a+ b = q. Since a < b, we have that either a+ a or b+ b
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must not be equal to q. Assume that a + a ̸= q (the case b + b ̸= q is similar).

Then F ′
must accept the input (a, a). By property (i), there must exist a consistent

s-t path in F ′
along which only tests x1 = a and x2 = a are made. But by our

construction, these tests are replaced by tests ya = 1 and yq−a = 1, that is, by tests

ya = 1 and yb = 1. Hence, F ′′
accepts y also in this case. Finally, let b = q. Then a

lies between 1 and q − 1, and hence, the input (a, 0) must be accepted by F ′
. The

corresponding path in F ′′
has only tests ya = 1 and yq = 1, implying that y is

accepted by F ′′
.

It remains to show that F ′′
rejects every vector y ∈ {0, 1}q

with exactly one

1 in, say, position a. For the sake of contradiction, assume that F ′′
accepts such

a vector y. Then F ′′
must contain an s-t path along which only the variable ya

is tested. By our construction, the corresponding path in F ′
can only make tests

x1 = a or x2 = q − a. But then (ii) implies that F ′
must wrongly accept the input

(a, q − a).
Thus, we have shown that F ′′

is a monotone switching network computing the

threshold-2 function Thq
2, and we already know (see Exercise ??) that any such

network must have Ω(q log q) contacts. ⊓⊔

An important subclass of switching networks is that of parallel-serial switching

networks (or π-schemes). We know (see Proposition ??) that such networks are

equivalent to DeMorgan formulas. DeMorgan formulas have literals as inputs and

use AND and OR operations as gates. If we will give “generalized literals” as inputs,

then such a formula will compute a function f : Dn → {0, 1}. As a generalized
literal we take a function xd

i : Dn → {0, 1} such that for every a ∈ Dn
, xd

i (a) = 1
if and only if ai = d. Let L(f) denote the minimum leafsize of a (generalized)

DeMorgan formula computing f .
Since formulas are special switching networks, Theorem ?? implies thatL(Modn

q ) =
Ω(qn log q). By extending the argument of Khrapchenko (see Section ??) to func-

tions over larger domains, Rychkov (2009) improved this lower bound to

L(Modn
q ) ≥ (q − 1)n2 .

But what about the complexity of the negation ¬Modn
q of Modn

q ? Note that for

boolean functions f : Dn → {0, 1}withD = {0, 1}, we always have that L(¬f) =
L(f). This, however, does not hold for larger domains D. In this case, L(xd

i ) = 1
but L(¬xd

i ) = |D| − 1 because ¬xd
i is an OR of xk

i over all k ∈ D, k ̸= d. This
last observation implies that L(¬f) ≥ L(f)/(|D| − 1). For the negation ¬Modn

q of

Modn
q , this yields the lower bound L(¬Modn

q ) ≥ n2
. For domainsD larger than the

number n of variables, Rychkov (2010) improved this to L(¬Modn
q ) ≥ 2(|D| − 1)n.

15.3 Counting versus nondeterminism

Our goal is to show that, at the cost of a slight increase of size, every nondeterministic

branching program can be simulated by a parity branching program. That is, in the
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model of branching programs nondeterminism is not much more powerful than

counting. But perhaps more interesting than the result itself is its proof: it uses

in a nontrivial manner an interesting fact that random weighting of elements will

almost surely isolate exactly one member of a family.

Let X be some set of n points, and F be a family of subsets of X . Assign a

weight w(x) to each point x ∈ X , and define the weight of a set E to be w(E) =∑
x∈E w(x). It may happen that several sets of F will have the minimal weight. If

this is not the case, that is, if minE∈F w(E) is achieved by the unique E ∈ F , then

we say that w is isolating for F .

Let X be a set with n elements, and let w : X → {1, . . . , N} be a random

function. Each w(x) is independently and uniformly chosen over the range.

15.5 Lemma (Mulmuley–Vazirani–Vazirani 1987) For every family F of subsets of
X , Prob[w is isolating for F ] ≥ 1 − n

N .

Proof. (Due to Spencer 1995) For a point x ∈ X , set

α(x) = min
E∈F ; x ̸∈E

w(E) − min
E∈F ; x∈E

w(E \ {x}).

A crucial observation is that the evaluation of α(x) does not require knowledge of
w(x). As w(x) is selected uniformly from {1, . . . , N}, we have that w(x) = α(x)
with probability at most 1/N , and hence, the probability that w(x) = α(x) for some
x ∈ X does not exceed n/N . But if w had two sets A,B ∈ F of minimal weight

w(A) = w(B) and x ∈ A \B, then

min
E∈F ;x ̸∈E

w(E) = w(B) and min
E∈F ;x∈E

w(E \ {x}) = w(A) − w(x),

sow(x) = α(x). Thus, ifw is not isolating forF thenw(x) = α(x) for some x ∈ X ,

and we have already established that the last event can happen with probability at

most n/N . ⊓⊔

15.6 Theorem (Wigderson 1994) There is a constant c such that for every boolean
function f of n variables, we have that ⊕BP(f) ≤ cn · NBP(f)5.

Proof. Let G = (V,E) be a directed graph and w : E → {1, . . . , 2|E|} a weight

function on its edges. The weight of an s-t path is the sum of weights of its edges; a

path is lightest if its weight is minimal. Let dw(G) denote the weight of the shortest
s-t path in G; hence,

dw(G) ≤ M := 2|V | · |E| .

Having a weight function w and an integer l, define the (unweighted, layered)

version Gl
w = (V ′, E′) of G as follows. Replace every vertex u ∈ V by l + 1 new

vertices u0, u1, . . . , ul in V
′
(that is, V ′

consists of l + 1 copies of V , arranged in

layers). For every edge e = (u, v) in E and every 0 ≤ i ≤ l − w(e) put an edge(
ui, vi+w(e)

)
in E′

(see Fig. ??); hence, |V ′| ≤ (1 + l)|V | and |E′| ≤ (l + 1)|E|.



15.3 Counting versus nondeterminism 437
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Fig. 15.1 A fragment of the graph Gl
w for l = 4, w(e1) = 2 and w(e2) = 1.

15.7 Claim If G has no s-t path, then for every w and l, Gl
w has no s0-tl path. If

G has an s-t path and l = dw(G), then Gl
w has an s0-tl path. Moreover, the later

path is unique if the lightest s-t path in G is unique.

Proof. Let P = (e1, e2, . . . , ek) be an s-t path in G. The first node of this path is s.
In the new graphGl

w the first node is s0 and, following the path P in this new graph,

at the i-th edge ei we move by w(ei) vertices down (in the next, (i+ 1)-th layer of

nodes). Hence, P can produce an s0-tl path in Gl
w if and only if

∑k
i=1 w(ei) ≤ l.

That is, a graphGl
w has an s0-tl if and only ifG has an s-t path and

∑k
i=1 w(ei) ≤ l.

For l = dw(G), only lightest paths can fulfill this last condition. ⊓⊔

Now let G = (V,E) be a nondeterministic branching program computing a

given boolean function f(x1, . . . , xn). Say that a weight function w is good for an

input a ∈ {0, 1}n
if either G(a) has no s-t paths or the lightest s-t path in G(a) is

unique.

For each input a ∈ {0, 1}n
, taking the family Fa to be all s-t paths in the graph

G(a), the isolation lemma (Lemma ??) implies that at least one-half of all weight

functionsw are good for a. By a standard counting argument, there exists a setW of

|W | ≤ 1+log(2n) = n+1weight functions such that, for every input a, at least one
w ∈ W is good for a. If w is good for a, then the graph Gl

w(a) with l = dw (G(a))
has the properties stated in Claim ??. For different inputs a, the corresponding

values of l may be different, but they all lie in the interval 1, . . . ,M . Thus, there

existm ≤ (n+ 1) ·M nondeterministic branching programs H1, . . . ,Hm (with

each Hj = Gl
w for some w ∈ W and 1 ≤ l ≤ M ) such that, for every input

a ∈ {0, 1}n
, the following holds:

(i) if |G(a)| = 0, then |Hj(a)| = 0 for all j;
(ii) if |G(a)| > 0, then |Hj(a)| = 1 for at least one j.

Let sj , tj be the specified vertices inHj , j = 1, . . . ,m. We construct the desired

parity branching programH as follows: to eachHj add the unlabeled edge (sj , tj),
identify tj and sj+1 for every j < m, and add the unlabeled edge (s1, tm) (see
Fig. ??).

It is easy to see that, for every input a ∈ {0, 1}n
, |H(a)| = 1 mod 2 if and only

if |G(a)| > 0. Indeed, if |G(a)| = 0, then by (i),H(a) has precisely two s1-tm paths

(formed by added unlabeled edges). On the other hand, if |G(a)| > 0, then by (ii),

at least one Hj(a) has precisely one sj-tj path, implying that the total number of

s1-tm paths in H(a) is odd. Thus, H is a parity branching program computing the
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Fig. 15.2 Construction of the parity branching program H .

same boolean function f . Since l ≤ M andm ≤ nM withM = 2|V | · |E| ≤ 2|E|2,
the size of (the number of edges in) H is at mostm(l + 1)|E| = O(n|E|5). ⊓⊔

15.4 A surprise: Barrington’s theorem

The length of a branching program is the number of edges in a longest path (be it

consistent or not).
*
If the nodes are arranged into a sequence of levels with edges

going only from one level to the next, then the width is the number of nodes of the

largest level.

Intuitively, the smaller the width is, the fewer information can be transferred

through each level of a program. So, if the width is small (say constant), then boolean

functions with a lot of dependency between parts of its input variables “should”

require very long branching programs.

In this section we will show that this intuition is wrong! Even programs of width

five are not much longer than DeMorgan formulas. We will also give lower bounds

on the length of width-restricted branching programs.

We first consider branching programs of constant(!) width. At first glance, it

seems that such a drastic width restriction might be very crucial: if the width is

bounded by some constant then, when going from one level to the next, we can

keep only a constant amount of information about what we have done before.

It was therefore conjectured by many researchers that, due to this “information

bottleneck”, even such function as the Majority function Maj(x1, . . . , xn) should
require very long branching programs, if their width is constant. A trivial branching

program would try to remember the number of 1s among the bits, which were

already read; but this would require non-constant width of about logn.
With a surprisingly simple construction, Barrington (1989) disproved this con-

jecture. He showed that constant-width branching programs are unexpectedly

powerful: they are almost as powerful as DeMorgan formulas!

15.8 Theorem (Barrington 1989) If a boolean function can be computed by a DeMor-
gan formula of a polynomial size, then it can also be computed by an oblivious width-5
branching program of polynomial length.

Before we present his proof, let us explain the intuition behind it.

*

A path is inconsistent if it contains two contradicting queries xi = 0 and xi = 1 on the same

variable.
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Fig. 15.3 On input vector x = (0, 1, 1) this program outputs the identity permutation P (x) = e,

whereas on input x = (0, 1, 0) it produces a cyclic permutation P (x) =
(

1 2 3
3 1 2

)
. Bold arrows

correspond to tests xi = 1, the remaining ones to tests xi = 0.

The (wrong) intuition above (that large width is necessary to keep the collected

information) relies on viewing the computation by a program as a sequential

process which gradually collects information about the input vector. This intuition

is borrowed from our view at how Turing machine works. But branching programs

constitute a nonuniform model of computation. Each input a ∈ {0, 1}n
defines (at

once!) a subprogram of our branching program in a natural way. Thus, for a program

to correctly compute a given boolean function f , it is enough that subprograms

produced by inputs in f−1(0) are different from those produced by inputs in f−1(1).
It then remains to show how the program can detect this difference.

To be more specific, assume that our branching program is an oblivious program

of width w and length l. That is, the nodes are arranged into a w by l array. All l
levels have w nodes, and all nodes at a given level are labeled by the same variable.

Moreover, at each level the 0-edges and the 1-edges going to the next level form

two mappings from [w] = {1, . . . , w} to [w]. If that level is labeled by a variable xi,

then one of these mappings is given by edges corresponding to tests xi = 1, and
the other to tests xi = 0 (see Fig. ??). The length |P | of such a program P is the

number of levels in it.

Thus, we can view such a program as a sequence of instructions ⟨i, σ, τ⟩ where
xi is the variable tested at the corresponding level, and σ, τ : [w] → [w] are the two
mappings corresponding to whether xi = 0 or x1 = 1. Every input a ∈ {0, 1}n

gives a sequence of l mappings, and let P (a) : [w] → [w] be their superposition.
Now, for the program to correctly compute a given boolean function f , it is enough
that P (a) ̸= P (b) for all a ∈ f−1(0) and b ∈ f−1(1).

A basic question is: how, starting from programs for boolean functions f and

g, can we build programs for ¬f , f ∧ g and f ∨ g? Barrington showed that this

can be easily done if we restrict programs and only allow cyclic permutations

σ, τ : [w] → [w] be used. A permutation is cyclic if it is composed of a single cycle

on all its elements. For example,

σ =
(

1 2 3 4 5
3 1 5 2 4

)
=
(

1 3 5 4 2
3 5 4 2 1

)
is a cyclic permutation, which we will denote as

1 → 3 → 5 → 4 → 2 → 1 or shortly as σ = (13542) .
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The nodes of a width-w permuting branching program P of length ℓ are arranged
into a w × ℓ array, where two permutations of [w] are computed between any of

its two levels. Any input vector x ∈ {0, 1}n
yields a permutation P (x) which is

the composition of the selected permutations at each level. For a boolean function

f and a permutation σ, say that branching program P σ-computes f if for every

input x,

P (x) =
{
σ if f(x) = 1,
e if f(x) = 0,

where e is the identity permutation.

The following three simple claims accumulate the basic properties of permuting

branching programs that use only cyclic permutations.

Letσ and τ be cyclic permutations, f and g boolean functions,P andQ permuting

branching programs.

15.9 Claim (Changing output) If P σ-computes f , then there is a permuting branch-

ing program of the same size τ -computing f .

Proof. Since σ and τ are both cyclic permutations, we may write τ = θσθ−1
for

some permutation θ. Then simply reorder the left and right nodes of P according

to θ to obtain the τ -computing branching program P ′
:

if P (x) = σ1σ2 · · ·σt = σ then P ′(x) = θσ1σ2 · · ·σtθ
−1 = θσθ−1 = τ .

That is, we replace the permutation σ1 computed at the first layer by the permutation

θσ1, and the permutation σt computed at the last layer by the permutation σtθ
−1

.

⊓⊔

15.10 Claim (Negation) If P σ-computes f then there is a permuting branching

program of the same size σ-computing ¬f .

Proof. Use the previous lemma to obtain a branching program P ′
which σ−1

-

computes f . Hence, P ′(x) = σ−1
if f(x) = 1, and P ′(x) = e if f(x) = 0. Then

reorder the final level by σ so that the resulting program P ′′ σ-computes ¬f :

if P ′(x) = σ1σ2 · · ·σt then P
′′(x) = σ1σ2 · · ·σtσ.

In this way, P ′′(x) outputs e if P ′(x) = σ−1
, that is, if f(x) = 1; otherwise, P ′′(x)

outputs σ. ⊓⊔

15.11 Claim (Computing AND) If P σ-computes f and Q τ -computes g, then
there is a permuting branching program of length 2(|P | + |Q|) which στσ−1τ−1

-

computes f ∧ g.

Proof. Use Lemma ?? to get a program σ−1
-computing f and τ−1

-computing g.
Then compose these four programs in the order σ, τ, σ−1, τ−1

. This has the desired

effect because replacing either σ or τ by e in στσ−1τ−1
yields e. ⊓⊔
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Fig. 15.4 Cyclic permutations σ = (12345), τ = (13542) of {1, 2, 3, 4, 5} and their commutator

ρ = στσ−1τ−1 = (13254).

The next claim is the only place where the value w = 5 is important; neither

w = 3 nor w = 4 suites for this purpose.

15.12 Claim There are cyclic permutations σ and τ of {1, 2, 3, 4, 5} such that their

commutator ρ = στσ−1τ−1
is cyclic.

Proof. See Fig. ??. ⊓⊔

By w-PBP we will mean a permuting branching program of width w all whose

permutations are cyclic permutations of [w].

15.13 Theorem If a boolean function can be computed by a DeMorgan circuit of depth
d, then it can be computed by a 5-PBP of length 4d.

In particular, if a boolean function f can be computed by a DeMorgan formula of

polynomial leafsize, then f can also be computed by a 5-PBP of polynomial length!

Proof. By induction on the depth d. If d = 0, the whole circuit for f is either a

variable xi or its negation ¬xi, and f can be easily computed by a one-instruction

program.

Now suppose that d ≥ 1. By Claim ??, we can assume that f = g ∧ h, where g
and h have formulas of depth d− 1, and thus (by induction hypothesis) 5-PBPs G
and H of length at most 4d−1

.

Let σ and τ be the permutations from Claim ??. By Claim ??, we may assume that

G σ-computes g and H τ -computes h. By Claim ??, there is a 5-PBP of length at

most 2(size(G) + size(H)) ≤ 4d
which στσ−1τ−1

-computes f . Since, by Claim ??,
the permutation στσ−1τ−1

is cyclic, we are done. ⊓⊔

To derive Theorem ?? from Theorem ?? it is enough to show that any w-PBP of

length l can be transformed into a width-w branching program of length l.
To show this, let P (x) be a w-PBP σ-computing a boolean function f(x). Hence,

P (x) = σ if f(x) = 1, and P (x) = e (the identity function) if f(x) = 0. Choose
an i ∈ [w] such that σ(i) ̸= i. Declare the i-th node on the first level as the start

node of our branching program, and in the final level we let node σ(i) be the 1-leaf,
and all other nodes on this level be the 0-leafs.
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15.5 Oblivious branching programs

Every boolean function of n variables can be computed by a trivial branching

program of length l = n and width w = 2n
: just take a decision tree. But what

if we restrict the width w—how long then the program must be? To answer this

question we use communication complexity arguments.

A branching program is oblivious if the nodes are arranged into a sequence of

levels with edges going only from one level to the next, and at all nodes of each level

the same variable is tested. As before, the width of such a program is the number of

nodes of the largest level.

An s-overlapping protocol for a boolean function f : {0, 1}n → {0, 1} is a

deterministic communication protocol between two players under a restriction

that each player cannot see s variables seen by the other player. The remaining

n− 2s variables are seen by both players! Also, before the game begins, the players

(knowing the function f ) are allowed to decide what s variables should be their

“private” variables (not seen by the other player).

Let cs(f) denote the maximum number of bits communicated by a best determin-

istic s-overlapping protocol for f on the worst case input. The larger the number

n − 2s of common variables is, the easier is the game. Hence, s ≤ t implies that

cs(f) ≤ ct(f).

15.14 Theorem Suppose that a boolean function f : {0, 1}n → {0, 1} can be com-
puted by an oblivious branching program of width w and length l. If l ≤ 0.1n logn
then, for every n0.6/4 ≤ s ≤ n/2,

cs(f) = O
( l logw

n

)
.

Because the branching program is oblivious, we can think of its labels as forming

a string z of length l over the alphabet [n]. To obtain a communication protocol

from the program, we need the following combinatorial result.

Let z be a string over an alphabet X = {x1, . . . , xn}. A substring of z is a

sequence of its consecutive letters. Given two sets A,B ⊆ X of letters, say that

a string z has an (r,A,B)-partition if z can be partitioned into r substrings z =
z1z2 . . . zr such that none of the substrings zi contains letters from both sets A and

B. For example, if X = {1, 2, 3, 4, 5, 6}, A = {1, 3}, B = {2, 4} and

z = 1 6 2 3 2 6 4 1 5 3 1 2 4 6 5 1 3 2

then we have the following (8, A,B)-partition of Z :

z =
A︷︸︸︷

1 6 2︸︷︷︸
B

A︷︸︸︷
3 2 6 4︸ ︷︷ ︸

B

A︷ ︸︸ ︷
1 5 3 1 2 4 6 5︸ ︷︷ ︸

B

A︷︸︸︷
1 3 2︸︷︷︸

B
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15.15 Lemma (Alon–Maass 1988) Let A,B ⊆ X be two disjoint sets of size |A| =
|B| = m. Let z be a string overX such that each a ∈ A appears in z at most kA times
and each b ∈ B appears in z at most kB times. Then there are A′ ⊆ A and B′ ⊆ B
of size at leastm/2k such that z has a (k,A′, B′)-partition, where k = kA + kB .

Proof. Induction on k. If k = 1, then either kA or kB is 0, and we can take A′ = A
and B′ = B. For the induction step, assume w.l.o.g. that each letter appears in z at
least once (otherwise, extend z with the missing letters in an arbitrary way).

Examine the letters of z one by one until we reach a location where we already

have seen m/2 letters of one of A and B but fewer than m/2 of the other; such

a location must exist since A ∩ B = ∅. Denote the prefix by z′
and the rest of

z by z′′
. Let it was A whose m/2 letters appear in z′

(the case when it is B is

dual). Let A∗ = {a ∈ A | a ∈ z′} be those letters of A that appear in z′
, and

B∗ = {b ∈ B | b ̸∈ z′} be those letters of B that do not appear in z′
. It follows that

|A∗|, |B∗| ≥ m/2.
Now consider the suffix z′′

. Each letter of A∗
appears in z′′

at most kA − 1
times, since each of them already appeared in z′

at least once. Hence, we can apply

the induction hypothesis to the string z′′
for sets A∗

and B∗
, and obtain subsets

A′ ⊆ A∗
and B′ ⊆ B∗

such that z′′
has a (k − 1, A′, B′)-partition with

|A′| ≥ |A∗|/2k−1 ≥ m/2k
and |B′| ≥ |B∗|/2k−1 ≥ m/2k

.

Since the prefix z′
can only contain letters of A′

but none of B′
, the entire string

z = z′z′′
also has a (k,A′, B′)-partition. ⊓⊔

p@plus6p@

Proof of Theorem ??addpunct: Now let z be the string over X = {x1, . . . , xn} of

length l corresponding to the labels of our branching program. Observe that at

least n/2 variables must appear at most 2l/n times, for otherwise the length of

the string would be larger than (n/2)(2l/n) = l. Partition these variables into two

sets A and B each of size n/4 in an arbitrary way. By Lemma ?? with m = n/4,
kA = kB = 2l/n and k = 4l/n, there are disjoint sets of variables A′

and B′

such that |A′|, |B′| ≥ n/(4 · 2k) and z is a (k,A′, B′)-partition. Moreover, since

l ≤ 0.1n logn, we have that

k = 4l
n

≤ 0.4n logn
n

= 0.4 logn .

Hence,

|A′|, |B′| ≥ n/(4 · 2k) ≥ n0.6/4 .

Since the sequence z of variables, tested along the l levels of the program, has a

(k,A′, B′)-partition, it is possible to split z into k substrings z = z1z2 · · · zk such

that no substring zi contains variables from both subsets A′
and B′

. Hence, if we

give all variables in A′
to Alice, all variables in B′

to Bob and the rest to both

players, the players can determine the value of our function by communicating

according to the underlying branching program.
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To carry out the simulation, the players need to tell each other, at the end of

each of k blocks, the name of the node in the next level from which the simulation

should proceed; for this logw bits are sufficient. Hence, the obtained protocol

communicates O(k · logw) bits, that is, O((l logw)/n) bits in total. The protocol

is s-overlapping with s ≥ min{|A′|, |B′|} ≥ n0.6/4. ⊓⊔

endpefalse
Thus, to obtain a large tradeoff between the width and the length of oblivious

branching programs, we need boolean functions of large overlapping communica-

tion complexity. We will now show that such are characteristic functions of good

codes.

A linear (n,m, t)-code is a linear subspace C ⊆ GF(2)n
of dimension n−m

such that the Hamming distance between any two vectors in C is at least 2t+ 1. A
characteristic function of C is a boolean function f : {0, 1}n → {0, 1} such that

f(x) = 1 if and only if x ∈ C .

15.16 Lemma If f is the characteristic function of a linear (n,m, t)-code, then cs(f) ≥
2t log(s/t) −m.

Proof. Take an arbitrary s-overlapping protocol for f(X). Let A ⊆ X be the set of

variables seen only by Alice, and B ⊆ X be the set of variables seen only by Bob.

Hence, |A|, |B| ≥ s, and at most r := n − 2s variables are seen by both players.

We can assume w.l.o.g. that |A| = |B| = s (the fewer “forbidden” bits we have,
the easier the life of the players is). Since there are only 2r

possible settings α of

constants to these (common) variables, at least one of these settings gives us a

subfunction fα of f in 2s variables which is the characteristic function of some

linear (n− r,m− r, t)-code C .
After this setting, our protocol turns to a usual communication protocol for the

matrix M = {fα(x, y)}. From Section ?? we know that this last protocol must

communicate at least log Cov(M) bits, where Cov(M) is the smallest number

of (not necessarily disjoint) all-1 submatrices of M covering all its 1s. (In fact,

log Cov(M) is a lower bound even for nondeterministic communication complexity

ofM , but we will not need this now.)

15.17 Claim Every row and every column ofM has at most 2s
(

s
t

)−1
ones.

Proof. Fix one row x ∈ {0, 1}s
ofM (the case of columns is the same). Since the

Hamming distance between any two vectors in C is at least 2t+ 1, we have that
any two vectors y ̸= y′ ∈ {0, 1}s

ofM such thatM [x, y] = M [x, y′] = 1 must

also be at Hamming distance at least 2t+ 1. Hence, no Hamming ball of radius t
over a vector y withM [x, y] = 1 can contain another vector y′

withM [x, y′] = 1.
Since each such ball has

∑t
i=0
(

s
i

)
>
(

s
t

)
vectors, this implies that each row and

each column ofM can have at most 2s
(

s
t

)−1
ones. ⊓⊔

The matrix has |M | = 2n−m−r = 22s−m
ones and, by Claim ??, every all-1

submatrix ofM has at most 22s
(

s
t

)−2
ones, the desired lower bound on Cov(M),

and hence, on cs(f) follows:
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Cov(M) ≥ 22s−m

22s
(

s
t

)−2 =
(
s

t

)2
2−m ≥

(s
t

)2t

· 2−m . ⊓⊔

Consider Bose-Chaudhury codes (BCH-codes). These are linear (n,m, t)-codes
C withm ≤ t log(n+ 1). Such codes can be constructed for any n such that n+ 1
is a power of 2, and for every t < n/2. Since the parity-check matrix of C has

m rows, the characteristic function fC of C is just an AND of m negations of

parity functions, and hence, can be computed by an oblivious branching program

of constant width and length l = mn = O(tn logn). If, however, we require the
length be smaller than n logn, then an exponential width is required.

15.18 Corollary Let 0 < ϵ ≤ 0.01 be a constant, and C be a BCH-code of minimal
distance 2t + 1 with t = n0.09. Then any oblivious branching program for fC of
length l = O(n logn) must have width w = 2Ω(n0.09).

Proof. We apply Lemma ?? with s = n0.6
. Since (s/t)2 = n1+Ω(1)

, we obtain that

cs(fC) ≥ 2t log(s/t) −m ≥ t log(s/t)2 − t log(n+ 1) = Ω(t logn) .

Hence, Theorem ?? implies that l logw = Ω(tn logn) = Ω(n1.09 logn). ⊓⊔

Exercises

15.1 Recall that the Majority function Maj of n variables accepts an input vec-

tor if and only if the number of 1s in it is at least n/2. Show that any constant-
width branching program for Maj must have length l = Ω(n logn). Hint: Show that

cs(Maj) = Ω(log s) and use Theorem ??.

15.2 (Due to Razborov 1990b) Our goal is to give an exact(!) combinatorial char-

acterization of NBP(f) for any boolean function f . Let U := f−1(0) and V :=
f−1(1). Denote by F the set of all nontrivial monotone functions F : 2U → {0, 1},
that is, F (∅) = 0, F (U) = 1, and F (B) = 1 as long as F (A) = 1 for some A ⊆ B.

Given 1 ≤ i ≤ n, ϵ ∈ {0, 1}, and A ⊆ U , define

δi,ϵ(A) := {(F, v) ∈ F × V | vi = ϵ, F (A) = 1, F (A ∩Xϵ
i ) = 0} ,

where Xϵ
i is the set of all vectors in {0, 1}n

with ϵ in their i-th position. Let ∆

be the collection of all such sets δi,ϵ(A); this is a huge collection, |∆| = 2n22|U|
.

Let Cov(f) denote the smallest number of members of∆ whose union covers the

whole set F × V .

(a) Show that Cov(f) ≤ NBP(f).
Hint: Take an arbitrary nondeterministic branching program P computing f . Let s be its

source, and t its target nodes. For every node w of P , let fw be the boolean function computed

by the subprogram with source s and target node w. Hence, fs = 1 and ft = f . Associate
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with every contact e = (w, w′) labeled by a literal xϵ
i the set δ(e) := δi,ϵ(U ∩ f−1

w (1)).
Show that the sets δ(e) cover the whole set F × V . For this, take a point (F, v) ∈ F × V
and consider an arbitrary path accepting the vector v. Since F is nontrivial, F (U) = 1
and F (∅) = 0. Hence, there must be some contact e = (w, w′) on that path for which

F (U ∩ f−1
w (1)) = 1 and F (U ∩ f−1

w′ (1)) = 0. Show that (F, v) ∈ δ(e).

(b) Show that NBP(f) ≤ Cov(f).
Hint: Let ∆0 ⊆ ∆ covers the whole set F ×V , and |∆0| = Cov(f). As nodes take all subsets
A ⊆ U . For each pair A ⊆ B of theses subsets include a non-labeled edge (A, B). For every
set δi,ϵ(A) include an edge (A, A ∩ Xϵ

i ) labeled by xϵ
i . (Recall that we only count contacts,

that is, labeled edges in NBP(f).) Set s := U as the source node, and t := ∅ as the target

node. Show that the resulting program computes f . For this, take a vector v ∈ V = f−1(1)
and show that there must be a path from s = U to t = ∅ whose labels are consistent with v.



16. Bounded Replication

Since, so far, we are unable to prove exponential lower bounds for general branching

programs, it is natural to try to do this for restricted programs. We have seen that

restricting the width of a program does not decrease their power too much: the

resulting class of programs is almost as powerful at that of (unrestricted) formulas.

Another possibility is to restrict the “length” of a program, that is, the length of a

longest computation path. A path from the source to a sink is a computation path,
if the tests made along its wires are passed by at least one input vector, that is, if

the path does not contain two contradictory tests “is xi = 1?” and “is xi = 0?” on
the same variable xi. In a read-k times branching program it is required that along

every computation path, each variable is tested at most k times. We will consider

such programs in the next chapter.

In this chapter we restrict the number of variables that can be queried more than

once during a computation. Namely, define the replication number of a branching
program as the smallest number R such that along every computation path at most

R variables are tested more than once. Sets of variables re-tested along different

computations may be different! Also, the (up to R) re-tested variables may be re-

tested arbitrarily often. Thus, restricted replication does not mean restricted length

of computations—it may still be arbitrarily long. Finally, note that the restriction is

only on computation paths: we have no restrictions on inconsistent paths. Branching
programs with replication number R are also known as (1,+R)-programs.*

Note that for every branching program of n variables we have 0 ≤ R ≤ n.
Moreover, every boolean function f of n variables can be computed by a branching

program with R = 0: just take a decision tree. However, the size S of such (trivial)

branching programs is then exponential for most functions. It is therefore interesting

to understand whether S can be substantially reduced by allowing larger values

of R.
The goal is to prove exponential lower bounds on the size of branching programs

of as large replication number R as possible. An ultimate goal is to do this for

*

The meaning of this notation is that we have a read-one branching program with up to R
exceptions along each computation.

447
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R = n: then we would have an exponential lower bound for unrestricted branching

programs.

In this chapter we will come quite “close” to this goal by exhibiting boolean

functions f (based on expander graphs) with the following property: there is a

constant ϵ > 0 such that every branching program computing f must either have

replication number R > ϵn or must have exponential size.

16.1 Read-once programs: no replications

To “warm up”, we start with read-once branching programs (1-BP), that is, programs

along each path of which no variable can be tested more than once. This corresponds

to programs with replication R = 0.
Read-once programs constitute just a small generalization of decision trees.

Indeed, it is not difficult to see that the minimal size of a read-once program for

a function f is precisely the minimal number of non-isomorphic subtrees in any

decision tree for f .
Since subtrees correspond to subfunctions, it seems intuitive that the number

of non-isomorphic subtrees (and hence, the size of the corresponding read-once

program) must be large, if f has many different subfunctions. This motivates the

following definition.

Say that a boolean function f is m-mixed if for every subset of m variables

and for every two distinct assignments a ̸= b of constants to these variables, the

obtained subfunctions fa and fb of f are distinct, that is, there exists an assignment

c to the remaining variables such that fa(c) ̸= fb(c).

16.1 Lemma (Folklore fact) If f is anm-mixed boolean function, then every deter-
ministic read-once branching program computing f must have at least 2m − 1 nodes.

Proof. Let P be a deterministic read-once branching program computing f . Our
goal is to show that the initial part of P must be a complete binary tree of depth

m− 1. For this, it is enough to show that no two initial paths (starting in the source

node) of lengthm− 1 can meet in a node. For the sake of contradiction, assume

that some two paths p and q of lengthm− 1 meet in some node v.

16.2 Claim The sets of variables tested along p and q are the same.

Proof. Assume that some variable x is tested along p but not along q. Let Y be the

set of variables tested along q; hence, x ̸∈ Y . The path q defines an assignment to

the variables in Y . Extend this assignment to two assignments a and b by setting the
variable x to 0 and to 1. In this way we obtain two distinct assignments to the same

set of |Y ∪ {x}| = m variables. Since both of these extended assignments remain

consistent with the path q, and since, due to the read-once property, the variable

x cannot be tested along any path starting in v, the subfunctions of f defined by

these assignments must be the same, contradicting them-mixedness of f . ⊓⊔
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By Claim ??, the paths p and q define two assignments on the same set Y of

m variables. Moreover, these assignments are different since the computations on

them split before they meet. But the read-once property again implies that these

two assignments define the same subfunction of f , contradicting them-mixedness

of f . ⊓⊔

There are many natural boolean functions of n variables that arem-mixed form
about

√
n. We now describe one function which ism-mixed form = n− O(

√
n).

For this, we use the following important number-theoretic result of Dias da Silva

and Hamidoune (1994). Let p be a prime, and A ⊆ Zp. For an integer 1 ≤ h ≤ |A|,
let

⊕
h A denote the set of all elements b ∈ Zp that can be represented as sums

b = a1 + a2 + · · · + ah modulo p of h distinct elements a1, . . . , ah of A.

16.3 Theorem |
⊕

h A| ≥ min{p, h|A| − h2 + 1}.

Let n be a square of a natural number, and n < p ≤ 2n a prime number. Take

h = 2
√
n and k = 2h. Then hk−h2 + 1 = h2 + 1 = 4n+ 1 > p. Hence, for every

k-element subset A of Zp, we can obtain each element of Zp as a sum of h elements

in A. In particular, this holds for every k-element subset A of [n] = {1, . . . , n}.
Hence, if we define a mapping s : {0, 1}n → Zp by

s(x) = x1 + 2x2 + 3x3 + · · · + nxn mod p ,

then we have the following interesting property.

16.4 Lemma For every index r ∈ [n], every partial assignment with at least 4
√
n

unspecified entries can be extended to an assignment x ∈ {0, 1}n such that s(x) = r.

Proof. Let y ∈ {0, 1}I
be a partial assignment,A = [n]\I and s =

∑
i∈I iyi mod p.

Assume that |A| ≥ 4
√
n. By Theorem ?? and its discussion, there exist a subset

B ⊆ A of |B| = 2
√
n elements of A whose sum is equal to r − s modulo p. Hence,

if we set xk = yk for all k ∈ I , xk = 1 for all k ∈ B, and xk = 0 for all k ∈ A \B,

then s(x) = s+ (r − s) = r, as desired. ⊓⊔

The weighted sum function is a boolean function wn(x) defined by:

wn(x1, . . . , xn) =
{
xs(x) if s(x) ∈ {1, . . . , n}
x1 otherwise.

16.5 Theorem (Savický–Zák 1996) The function wn(x) is m-mixed for m = n −
O(

√
n).

Proof. Let f(x) = wn(x), andm = n− 4
√
n− 2. Take an arbitrary subset I ⊆ [n]

of size |I| = m, and let J = [n] \ I be its complement. Take any two distinct

assignments x, y ∈ {0, 1}I
. Our goal is to find an assignment z ∈ {0, 1}J

such that

f(x, z) ̸= f(y, z). When doing this we will use a simple fact that, modulo p, the
weighted sum of the vector (y, z) is the weighted sum of the vector (x, z) plus the
difference
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∆ =
∑
i∈I

iyi −
∑
i∈I

ixi mod p.

We start with the simpler case where ∆ = 0. Fix a position r ∈ I for which

xr ̸= yr . Since |J | ≥ 4
√
n, Lemma ?? gives us an assignment z ∈ {0, 1}J

such that

s(x, z) = r. Since ∆ = 0, we also have that s(y, z) = s(x, z) +∆ = r. Hence, in
this case we have that f(x, z) = xr ̸= yr = f(y, z), as desired.

In the following, we can assume that ∆ ̸= 0. Fix an arbitrary j ∈ J \ {1},
and let r be rest of j + ∆ modulo p, if this rest lies in {1, . . . , r}, and set r := 1
otherwise. In any case, we have that r ̸= j because j ̸= 1 and ∆ ̸= 0. To define

the desired assignment z ∈ {0, 1}J
, we consider two possible cases. If r ∈ J

then set zj := 0 and zr := 1. If r ∈ I then set zj := 1 − yr . In both cases we

still have at least 4
√
n unspecified bits in J which, by Lemma ??, can be set in

such way that s(x, z) = j; hence, s(y, z) = s(x, z) + ∆ = j + ∆ = r. Now,
if r ∈ J then we have that f(x, z) = zj = 0 ̸= 1 = zr = f(y, z). If r ∈ I
then f(x, z) = zj = 1 − yr ̸= yr = f(y, z).Thus, in both cases we have that

f(x, z) ̸= f(y, z), as desired. ⊓⊔

16.6 Corollary Every deterministic read-once branching program computing the
weighted sum function wn(x) must have size at least 2n−O(

√
n).

16.2 P ̸= NP ∩ co-NP for read-once programs

We now consider nondeterministic branching programs. Call such a program read-
once (or a 1-NBP) if along any path from the source node to the target node every

variable appears at most once. Note that this is a “syntactic” restriction: such a

program cannot contain any inconsistent paths, that is, paths along which two

contradictory tests “is xi = 1?” and “is xi = 0?” on the same variable xi are made.

Recall that every boolean function of n variables can be computed by a 1-NBP of

size at most 2
√

2n
; see (??).

Just as we did it for the size of decision trees, we can ask theP versusNP∩co-NP
question for their (slight) generalization—read-once programs. We will show that

here we also have P ̸= NP ∩ co-NP.
Namely, we will exhibit a boolean function f of n variables (the “pointer func-

tion”) such that both f and ¬f have nondeterministic read-once branching pro-

grams of polynomial size but any deterministic read-once program for f must have

exponential size.

The pointer function πn(x1, . . . , xn) is defined as follows. Let s and k be such

that ks2 = n and k = logn. Arrange the n indices 1, . . . , n of the variables into a

k× s2
matrix, split the i-th row (1 ≤ i ≤ k) into s blocks Bi1, Bi2, . . . , Bis of size

s each, and let yi be the OR of ANDs of variables in these blocks:

yi =
s∨

j=1

( ∧
l∈Bij

xl

)
i = 1, . . . , k, (16.1)
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Then define the pointer function by

πn(x1, . . . , xn) := xbin(y)+1 ,

where bin(y) = 2k−1y1 + 2k−2y2 + · · · + 2yk−1 + yk is the number whose binary

code is the vector y = (y1, . . . , yk).

16.7 Example Here is an example of the pointer function of n = 8 variables with

k = s = 2:
y1︷ ︸︸ ︷

(x1 ∨ x2)︸ ︷︷ ︸
B11

∧ (x3 ∨ x4)︸ ︷︷ ︸
B12

y2︷ ︸︸ ︷
(x5 ∨ x6)︸ ︷︷ ︸

B21

∧ (x7 ∨ x8)︸ ︷︷ ︸
B22

On input a = (1, 0, . . . , 0) we have y1 = y2 = 0, and hence, bin(y) = 0, implying

that π(a) = abin(y)+1 = a1 = 1. On input a = (1, 0, 0, 1, 0, 0, 1, 0)we have y1 = 1,
y2 = 0, and hence, bin(y) = 2, implying that π(a) = abin(y)+1 = a3 = 0.

16.8 Theorem Both πn and ¬πn have 1-NBPs of size O(n) whereas any 1-BP com-
puting πn must have size at least 2s−1 = exp

(
Ω(n/ logn)1/2).

Proof. We first prove the upper bound. On input vector x = (x1, . . . , xn) in {0, 1}n
,

the desired 1-NBP first guesses a binary string a = (a1, . . . , ak) ∈ {0, 1}k
. After

that it remains to test if the values y1 = a1, . . . , yk = ak satisfy the equalities (??)
and if the corresponding (to the string a) variable xl := xbin(a) + 1 has the value 1
(or 0 in the case of ¬πn). It is clear that the resulting program is read-once, except

that the variable xl could be tested two times: once in the program Pi making that

of the tests (??) for which l ∈ Bi1 ∪ . . . ∪Bis, and then once more at the end of a

computation. A simple (but crucial) observation is that we can safely replace the

variable xl in that program Pi by the constant 1 (or by 0, in the case of ¬πn), so

that the whole program is read-once.

We now prove the lower bound. By Lemma ?? it is enough to show that the

function πn is m-mixed for m = s − 1. To show this, take any two different

assignments a and b of constants to a set ofm variables in X . Sincem is strictly

smaller than s, we have that: (i) every blockBij has at least one unspecified variable,

and (ii) in every row, at least one block consists entirely of unspecified variables.

This means that (regardless of the values of a and b) we can arrange the rest so that

the resulting string (y1, . . . , yk) points to a bit xl where the assignments a and b
differ. ⊓⊔

16.3 Branching programs without null-paths

A null-path in a nondeterministic branching program (NBP) is a path from the

source to a sink node containing an edge labeled by a variable xi and an edge

labeled by its negation ¬xi. Hence, such a path has “zero conductivity”: it cannot

be consistent with any input vector. Although such paths seem to be “useless” (they



452 16 Bounded Replication

Bilder/najorize-eps-converted-to.pdf

Fig. 16.1 A function f majorizes A if it does not accept a vector x ̸∈ A with at most m ones. The

function isolates A if it additionally rejects all inputs x ̸∈ A with at most 2m ones.

cannot accept any vector), their presence may exponentially reduce the size (total

number of edges) of the program; compare Corollary ?? with Proposition ?? below.
Actually, the presence of such “redundant” paths, just like the presence of NOT

gates in circuits, is exactly what makes it so difficult to analyze general branching

programs. So, let us look what happens if we forbid null-paths. Let us call such

programs null-path-free programs. Note that every deterministic null-path-free

program is just a read-once program. So, the restriction is only interesting for

nondeterministic branching programs and switching networks. It is clear that every

1-NBP is null-path-free but not every null-path-free NBP must be read-once.

Theorem ?? shows that 1-NBP may be exponentially more powerful than their

deterministic counterparts, 1-BP. Thus, it is harder to prove high lower bounds even

for 1-NBP. Still, we have a general lower-bounds criterion for null-path-free NBP.

For a 0-1 vector x, let |x| denote the number of ones in it. We say that a set

A ⊆ {0, 1}n
is m-uniform, if |x| = m for all x ∈ A. A set A is uniform if it is

m-uniform for some 0 ≤ m ≤ n. We also say (see Fig. ??) that a boolean function

f : {0, 1}n → {0, 1}

• majorizes A if for every x ∈ {0, 1}n
with |x| ≤ m, f(x) = 1 implies x ∈ A;

• isolates A if for every x ∈ {0, 1}n
with |x| ≤ 2m, f(x) = 1 implies x ∈ A.

Define the k-th degree, dk(A), of A as the maximum number of vectors in A, all of
which have 1s on some fixed set of k coordinates. That is,

dk(A) := max
|I|=k

∣∣{x ∈ A | xi = 1 for all i ∈ I}
∣∣ .

Define also d(A) = min dk(A) · dm−k(A), where the minimum is taken over all

k, 1 ≤ k ≤ m. The following general lower bounds were proved by Jukna and

Razborov (1998).

16.9 Theorem Let A ⊆ {0, 1}n be a uniform set of vectors. Then every 1-NBP ma-
jorizing A as well as every null-path-free NBP isolating A requires at least |A|/d(A)
nodes.
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Proof. We first consider the case of 1-NBP Let m be the number of ones in the

vectors ofA, and let P be a 1-NBP majorizingA. Hence, P computes some boolean

function f(x) such that for every vector x ∈ {0, 1}n
with |x| ≤ m ones, f(x) = 1

iff x ∈ A. Let 1 ≤ k ≤ m be an integer for which d(A) = dk(A) · dm−k(A).
For each input a ∈ A, fix an accepting path consistent with a. Since a has m

1-bits, and no vector with a smaller number of 1-bits can be accepted, all the m
1-bits of a must be tested along this path. Split this path into two segments (pa, qa),
where pa is an initial segment of the path accepting a along which exactly k 1-bits
of a are tested. We denote the corresponding set of bits by Ia, and let Ja denote

the set of remainingm− k 1-bits of a. For a node v of P , let Av denote the set of

all inputs a ∈ A such that v is the terminal node of pa. We are going to finish the

proof by showing that |Av| ≤ dk(A)dm−k(A) for every node v.
Fix some node v of P , and let I = {Ia : a ∈ Av}, J = {Jb : b ∈ Av}. Since our

program is read-once, we have that I ∩ J = ∅ for all I ∈ I and J ∈ J . Take now

an arbitrary pair I ∈ I , J ∈ J , and denote by cI,J the input defined by cI,J(i) = 1
iff i ∈ I ∪ J .

16.10 Claim For every I ∈ I and J ∈ J , the combined input cI,J belongs to A.

Proof. Choose some a, b ∈ Av such that I = Ia, J = Jb. Since I and J are disjoint,

the path (pa, qb) is consistent with the input cI,J . Hence, this input is accepted

because the path leads to an accepting sink. But since |I| + |J | = m andm is the

smallest number of 1s in an accepted input, this is possible only when this combined

input cI,J belongs to A. ⊓⊔

With this claim in mind, we fix an arbitrary J ∈ J and notice that {cI,J |
I ∈ I} is a set of different inputs from A, all of which have 1s on J . Hence,
|I| ≤ d|J|(A) ≤ dm−k(A) (provided J ≠ ∅). Similarly, |J | ≤ dk(A) which

implies |I| · |J | ≤ dk(A) · dm−k(A). Finally, every a ∈ Av is uniquely determined

by the pair (Ia, Ja), therefore |Av| ≤ |I| · |J |. This completes the proof of the

desired inequality |Av| ≤ dk(A)dm−k(A), and thus, the proof of the theorem in

the case of 1-NBP.

If our program P is null-path-free but not necessarily a 1-NBP, then along an

accepting path, some variables may be tested many times. This, in particular, means

that the sets I and J may not be disjoint. Still, if we require that our program

not only majorizes the set A but also isolates it, then Claim ?? applies also in this

case. Indeed, as before, the path (pa, qb) is consistent with the combined input cI,J ,

meaning that this input must be accepted by the program. But since this input

has |cI,J | = |I ∪ J | ≤ |I| + |J | ≤ k + m ≤ 2m ones, and since the program

cannot accept any input with ≤ 2m ones lying outside A, this implies that cI,J

must belong to A. The rest of the proof is the same as in the case of 1-NBP. ⊓⊔

The perfect matching function is a monotone boolean function PMn of m2

variables. Inputs for this function are subsets E ⊆ Km,m of edges of a fixed

complete bipartite m × m graph Km,m, and fm(E) = 1 iff E contains a perfect

matching, that is, a set ofm vertex-disjoint edges. Taking a boolean variable xi,j
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for each edge ofKm,m, the function can be written as

PMn(x) =
∨

σ∈Sm

m∧
i=1

xi,σ(i) ,

where Sm is the set of allm! permutations of 1, 2, . . . ,m.

The exact perfect matching function EPMn accepts a graph E iff E is a perfect
matching. That is, EPMn takes a boolean n× n matrix as an input, and outputs

1 iff this is a permutation matrix, that is, each row and each column has exactly

one 1.
In Section ?? we have shown that PMn requires monotone circuits of super-

polynomial size. Now we show that it also requires 1-NBP of exponential size.

16.11 Corollary Every 1-NBP computing PMn as well as any null-path-free NBP
computing EPMn must have size 2Ω(n).

Proof. LetA be the set of all |A| = n! permutation matrices; hence,A ism-uniform

withm = n. Since only (n− k)! perfect matchings can share k edges in common,

we have that dk(A) = (n − k)!. In particular, taking k = n/2, we obtain that

d(A) ≤ (n/2)! · (n/2)!. Observe that every program computing PMn majorizes A,
and every program computing EPMn must isolate A. Thus, Theorem ?? yields the
desired lower bound n!/d(A) ≥

(
n

n/2
)
. ⊓⊔

To better understand the role of null-paths, we have to first solve the following

problem. Say that a nondeterministic branching program is weakly read-once if
along any consistent s-t path no variable is tested more than once. That is, we now

put no restrictions on inconsistent paths: only consistent paths are required to be

read-once.

The following problem is one of the “easiest” questions about branching pro-

grams, but it still remains open!

16.12 Research Problem
Prove an exponential lower bound for weakly read-once nondeterministic branching

programs.

That such programs may be much more powerful than 1-NBPs shows the fol-

lowing observation made in (Jukna, 1995).

16.13 Proposition The function EPMn can be computed by a weakly read-once non-
deterministic branching program of size O(n3).

Proof. To test that a given square 0-1 matrix is a permutation matrix, it is enough

to test whether every row has at least one 1, and every column has at least n− 1
zeros. These two tests can be made by two nondeterministic branching programs

P1 and P2 designed using the formulas
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P1(X) =
n∧

i=1

n∨
j=1

xi,j and P2(X) =
n∧

j=1

n∨
k=1

n∧
i=1
i̸=k

¬xi,j .

Let P = P1 ∧ P2 be the AND of these two programs, that is, the sink-node of P1
is the source-node of P2. The entire program has size O(n3). It remains to verify

that P is read-once. But this is obvious because all the contacts in P1 are positive

whereas all contacts in P2 are negative; so every s-t path in the whole program P
is either inconsistent or is read-once. ⊓⊔

Thus, the presence of “redundant” paths—those consistent with none of the input
vectors—may exponentially decrease the size of branching programs! To understand

the actual role of such paths is one of the main problems in circuit complexity.

16.4 Parity branching programs

We already know how to prove exponential lower bounds for “syntactic” read-

once branching programs, where along any input-output path each variable is

tested at most once. In this case we can prove high lower bounds for deterministic

as well as for nondeterministic programs. The situation with parity branching

programs (⊕-BP) is, however, much worse: here no high lower bounds are known

even for syntactic read-once programs. Recall that a ⊕-BP is just a nondeterministic

branching programwith a counting acceptance mode: it accepts a given input vector

a iff the number of input-output paths consistent with a is odd. In a read-once ⊕-BP

no variable can be re-tested along any path.

16.14 Research Problem
Prove an exponential lower bound for read-once parity branching programs.

So far, exponential lower bounds for such programs are only known under the

additional restriction that the program is oblivious. The nodes are partitioned into

at most n levels so that edges go only from one level to the next, all the edges of

one level are labeled by contacts of one and the same variable, and different levels

have different variables.

To prove exponential lower bounds for oblivious read-once ⊕-BPs, we will

employ one specific property of linear codes—their “universality”.

Recall that a linear code is just a set of vectors C ⊆ {0, 1}n
which forms a linear

subspace of GF(2)n
. The minimal distance of a code C is a minimal Hamming

distance between any pair of distinct vectors in C . It is well known (and easy to

show) that the minimal distance of C is exactly the minimum weight of (that is, the

number of 1s in) a nonzero vector from C . The dual of C is the set C⊥
of all those

0-1 vectors that are orthogonal over GF(2) to all vectors in C , that is, the set of all

vectors whose scalar product over GF(2) with every vector in C is equal 0.
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Say that a set of vectors C ⊆ {0, 1}n
is k-universal if for any subset of k

coordinates I ⊆ {1, . . . , n} the projection of vectors from C onto this set I gives
the whole cube {0, 1}I

. A nice property of linear codes is that their duals are

universal.

16.15 Proposition The dual of every linear code of minimal distance k + 1 is k-
universal.

Proof. LetC be a linear code of minimal distance k+1, and take a set I ⊆ {1, . . . , n}
with |I| ≤ k. The set of all projections of vectors in the vector spaceW = C⊥

onto

I forms a linear subspace. If this subspace were proper, then some nonzero vector

x, whose support Sx = {i | xi = 1} lies in I , would belong to the orthogonal

complementW⊥ = C ofW . But this would mean that C has minimum distance at

most |Sx| ≤ |I| ≤ k, a contradiction. ⊓⊔

A characteristic function of a set C ⊆ {0, 1}n
is a boolean function fC such that

fC(x) = 1 iff x ∈ C .

16.16 Theorem Let C ⊆ {0, 1}n be a linear code with minimal distance d1, and let d2
be the minimal distance of the dual code C⊥. Then every oblivious read-once ⊕-BP

computing the characteristic function fC of C has size at least 2min{d1,d2}−1.

Proof. LetP be an oblivious read-once⊕-BP computing f , set k := min{d1, d2}−1,
and let I ⊆ {1, . . . , n} be the set of bits tested on the first k = |I| levels of P .
Every assignment a : I → {0, 1} (treated for this purpose as a restriction) defines

a subfunction fa of f of n− |I| variables which is obtained from f by setting xi

to a(i) for all i ∈ I . Let F be the subspace of the 2n−k
-dimensional space of all

boolean functions on n− k variables, generated by the subfunctions fa of f with

a : I → {0, 1}. It is not difficult to see that size(P ) ≥ dim(F).
Indeed, if v1, . . . , vr are the nodes at the k-th level of P , then for every assign-

ment a : I → {0, 1}, the subfunction fa is a linear combination of the functions

computed by the sub-programs with source-nodes v1, . . . , vr: fa(b) = 1 iff the

number of accepting paths in P (a, b) is odd. Hence, we need at least r ≥ dim(F)
such functions to get all the subfunctions in F .

Now we can finish the proof as follows. Since the dual of C has distance d2 ≥
k + 1, we have by Proposition ??, that the code C itself is k-universal. This, in
particular, means that for every assignment a : I → {0, 1} there is an assignment

xa : I → {0, 1} such that (a, xa) ∈ C . Moreover, sinceC has distance d1 > k = |I|,
we have that (b, xa) ̸∈ C for every other assignment b : I → {0, 1}, b ̸= a. Thus,
if we describe the subfunctions fa, a : I → {0, 1}, as rows of a 2k × 2n−k

matrix,

then this matrix contains a diagonal 2k × 2k
submatrix with entries f(a, x) such

that f(a, x) = 1 iff x = xa. So, the matrix has row-rank equal 2k
, which means that

the subfunctions in F are linearly independent (over any field, including GF(2)).
Thus, size(P ) ≥ dim(F) = |F| ≥ 2k

, as desired. ⊓⊔

To give an explicit lower bound, recall that the r-th order binary Reed–Muller

code R(r,m) of length n = 2m
is the set of graphs (sequences of values) of all
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multilinear polynomials inm variables over GF(2) of degree at most r. We have∑r
i=0
(

m
i

)
≈ mr

possible monomials, and each subset of these monomials gives us

a polynomial. We list the vectors in {0, 1}m
as a1, . . . , an, and associate with each

polynomial p(z1, . . . , zm) a code-word
(
p(a1), . . . , p(an)

)
in {0, 1}n

. This code is

linear and has minimal distance 2m−r
.

16.17 Corollary Let n = 2m and r = ⌊m/2⌋. Then every oblivious read-once ⊕-BP

computing the characteristic function of the Reed-Muller codeR(r,m) has size at least
2Ω(

√
n).

Proof. It is known (see, for example, MacWilliams and Sloane (1997), p. 374) that the

dual of R(r,m) is the code R(m− r − 1, t). Hence, in the notation of Theorem ??
we have that d1 = 2m−r ≥ Ω(

√
n) and d2 = 2r+1 ≥ Ω(

√
n). The desired bound

follows. ⊓⊔

For other explicit codes, as BCH-codes, the lower bound can be increased to

2Ω(n)
; see Example ?? below.

16.5 Linear codes require large replication

Recall that the replication number of a program is the minimal number R such that

along every computation path, at most R variables are tested more than once. The

sets of variables re-tested along different computations may be different. We will

now prove exponential lower bounds for deterministic branching programs with

replication number R = ϵn for a constant ϵ > 0. Recall that R = n is the maximal

possible value corresponding to unrestricted branching programs.

But before we start, let us first show that testing just one bit twice can help a

lot! For this, let us again consider the pointer function πn, introduced in Section ??.
We already know (see Theorem ??) that any deterministic branching program of

replication number R = 0 (that is, a read-once program) for this function must

have exponential size. We now show that allowing to re-test just one bit along each

path reduces the size drastically.

16.18 Proposition The pointer function πn can be computed by a deterministic branch-
ing program of size O(n2/ logn) and replication number R = 1.

Proof. For each i = 1, . . . , k, let Pi be an obvious 1-BP of size s2 = n/k ≤ n/ logn
computing the function yi =

∨s
j=1

(∧
x∈Bij

x
)
. Arrange these programs into a

binary tree of height k: the first level consists ofP1, the second consists of two copies
of P2 having the 0 and 1 leaves of P1 as its start nodes, and the i-th one consists of

2i−1
copies of Pi. In this way we obtain a read-once program of size O(2kn/k) =

O(n2/ logn). This program has 2k = n leaves, each labeled by the corresponding

string a = (a1, . . . , ak) of values of (y1, . . . , yk), and hence, by the corresponding

index l = bin(a). Replace each such leaf by a size-1 branching program testing the
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corresponding variable xl+1. The resulting program has replication number R = 1,
computes πn and has the desired size. ⊓⊔

We are now going to show that some explicit boolean functions require large

replication number R, growing with the number n of variables. We will present

two entirely different lower bounds arguments for (1,+R)-branching programs.

The first one, presented in this section, is numerically weaker—works only for

R = o(n/ logn)—but is (apparently) more instructive. Moreover, it works for

important objects—characteristic functions of linear codes. A different argument,

presented in the next section, gives exponential lower bounds for programs of

almost maximal replication R = Ω(n), but the functions for which it works are no

longer as “simple”—they are quadratic functions of good expander graphs.

The following theorem gives a general lower-bounds criterion for (1,+R)-
branching programs: a function is hard to compute by such programs if the accepted

inputs lie far away from each other, and if the function cannot be made constant 0
by fixing few variables to 0 and 1. Namely, say that a boolean function is

• d-rare if any two accepted inputs differ in at least d bits;
• m-robust if it is not possible to make the function be constant 0 by fixing fewer

thatm variables.

The following general lower bound was proved by Jukna and Razborov (1998)

using earlier results of Zák (1995), and Savický and Zák (1997).

16.19 Theorem Let 0 ≤ d,m,R ≤ n be arbitrary integers. Every (1,+R)-
branching program computing a d-rare and m-robust function must have size at
least 2(min{d, m/(R+1)}−1)/2.

The idea behind the proof of this fact is the following. If all computations are long

(of length at leastm) and the program is not too large, a lot of computation paths

must split and join again. At that node where they join again, some information

about the inputs leading to this node is lost. If too much information is lost and not

too many (at most R) variables may be re-tested once again, it is not possible to

compute the correct value of the function.

The intuition about the “loss of information” is captured by the following notion

of “forgetting pairs” of inputs. Given a branching program P and a partial input

a : [n] → {0, 1, ∗}, comp(a) is the path in P consistent with a until we reach a

node where the first test of ∗ is made. For two partial inputs a and b, let D(a, b)
be the set of all bits where they both are defined and have different values. The

support S(a) of a partial input a is the set of all specified bits, that is, bits i for
which a(i) ̸= ∗. A composition b = a1a2 · · · as of partial inputs a1, a2, . . . , as,

whose supports are pairwise disjoint, is a (partial) input defined by b(i) = aj(i) for
i ∈ S(aj). The size |P | of a branching program P is the number of nodes.

Let a, b be (partial) inputs with S(a) = S(b). Given a branching program P ,
the pair a, b is called a forgetting pair (for P ) if there exists a node w such that w
belongs to both comp(a) and comp(b), and both computations read all the variables

with indices in D(a, b) at least once before reaching w (Fig. ??). Thus, all the bits
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Bilder/forgetting-eps-converted-to.pdf

Fig. 16.2 Forgetting pairs a1 and b1, a1a2 and a1b2, a1a2a3 and a1a2b3.

fromD(a, b) are “forgotten” when the computations reach the node w. To increase

the number of these forgotten bits, we need the following definition.

Say that a sequence (aj , bj), j = 1, . . . , s of pairs of partial inputs aj ̸= bj forms

an (s, l)-chain if S(aj) = S(bj) = Ij , |Ij | ≤ l, the Ij are pairwise disjoint and, for

all j = 1, . . . , s, the inputs a1 · · · aj−1aj and a1 · · · aj−1bj form a forgetting pair.

16.20 Lemma Let P be a branching program in which every computation reads at
leastm different variables. If s ≤ m/(2 log |P | + 1) and l ≤ 2 log |P | + 1, then P
has an (s, l)-chain.

Proof. Given a branching program P , one can get a forgetting pair by following all

the computations until r := ⌊log |P |⌋+1 different bits are tested along each of them.

Since |P | < 2r
, at least two of these paths must first split and then join in some

node. Take the corresponding partial inputs a′
1 and b′

1 and extend them to a1 and b1
such that S(a1) = S(b1) = S(a′

1) ∪ S(b′
1) andD(a1, b1) ⊆ S(a′

1) ∩ S(b′
1). In this

way we get a forgetting pair of inputs a1 ̸= b1 both of which are defined on the

same set of at most |S(a′
1) ∪S(b′

1)| ≤ 2r− 1 bits. We can now repeat the argument

for the program Pa1 obtained by setting all variables xi with i ∈ S(a1) to the

corresponding values of a1, and obtain next forgetting pair of inputs a1a2 and a1b2,
etc.We can continue this procedure for s steps until s(2r−1) ≤ s(2 log |P |+1) does
not exceed the minimum numberm of different variables tested on a computation

of P . ⊓⊔

p@plus6p@

Proof of Theorem ??addpunct: Suppose that some branching (1,+R)-program P
computes a d-rare andm-robust function and has size |P | smaller than stated in

Theorem ??, that is, assume that

2 log |P | + 1 < min{d, m/(R+ 1)} .

We can assume w.l.o.g. that d ≥ 2 (otherwise the bound becomes trivial), and this

implies that every 1-term of f has size n ≥ m. Hence, in order to force f to either

0 or 1 we must specify at leastm positions, implying that every computation of P
must read at leastm different variables. Since 2 log |P | + 1 < m/(R+ 1), we can
apply Lemma ?? with s := R + 1 and obtain that P must contain an (s, l)-chain
with s = R+ 1 and l ≤ 2 log |P | + 1 < min{d, m/(R+ 1)}. That is, we can find

R+ 1 pairwise disjoint sets Ii of size

|Ii| ≤ 2 log |P | + 1 < min{d, m/(R+ 1)} (16.2)
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and pairs ai ̸= bi of assignments on these sets such that all partial inputs

a1 · · · ai−1ai and a1 · · · ai−1bi form forgetting pairs in P .
By (??), the partial input a1 · · · aR+1 specifies strictly fewer than m variables.

Since f ism-robust, a1 · · · aR+1 can be extended to a totally defined input a such
that f(a) = 1.

As the sets I1, . . . , IR+1 are non-empty and pairwise disjoint, and at most R
variables can be re-tested along any computation, there must exist j such that all

variables with indices from Ij are tested at most once along comp(a). Now, let w
be the node that corresponds to the forgetting pair a1 · · · aj−1aj and a1 · · · aj−1bj .

The node w is on comp(a). All variables with indices from D(aj , bj) ⊆ Ij are

already tested along comp(a) before w, hence no such variable is tested after w,
and the computation on the input c obtained from a by replacing aj with bj can

not diverge from comp(a) after the node w. Therefore, f(c) = f(a) = 1. But (??)
implies that |Ij | < d, contradicting the d-rareness of f . This completes the proof of

Theorem ??. ⊓⊔

endpefalse
This theorem is especially useful for (characteristic functions of) linear codes,

that is, for linear subspaces of GF(2)n
. It is clear that the characteristic function

fC of a linear code C is d-rare if and only if the minimal distance of C is at least d.
Also, Proposition ?? implies that fC ism-robust if and only if the minimal distance

of its dual C⊥
is at leastm. Hence, Theorem ?? implies the following lower bound

for characteristic functions of linear codes.

16.21 Theorem Let C be a linear code with minimal distance d1, and let d2 be
the minimal distance of the dual code C⊥. Then every (1,+R)-branching program
computing the characteristic function of C has size exponential in min{d1, d2/R}.

This theorem yields exponential lower bounds on the size of (1,+R)-branching
programs computing characteristic functions of many linear codes.

16.22 Example (BCH-codes) Let n = 2ℓ − 1, and let C ⊆ {0, 1}n
be a BCH-code

with designed distance δ = 2t+ 1, where t ≤
√
n/4, and let fC be its characteristic

function. Let d2 be the minimal distance of its dualC⊥. The Carliz–Uchiyama bound

(see, e.g., MacWilliams and Sloane (1997), p. 280) says that d2 ≥ 2ℓ−1 − (t− 1)2ℓ/2

which is Ω(n) due to our assumption on t. Since the minimal distance d1 of a BCH-

code is always at least its designed distance δ, we get from Theorem ?? that every
(1,+R)-branching program computing fC has size exponential in min{t, n/R}.
In particular, if t = ω(logn) then every such program must have super-polynomial

size as long as R = o(n/ logn).

16.6 Expanders require almost maximal replication

We are now going to prove exponential lower bound on the size of branching

programs with almost maximal replication number R = Ω(n). This was done in
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(Jukna, 2008). The functions for which we prove such a bound will be quadratic

functions of a specially chosen graph, the so-called Ramanujan graph. Let G =
(V,E) be an undirected graph on V = {1, . . . , n}. The quadratic function of G
over GF(2) is a boolean function

fG(x1, . . . , xn) =
∑

{i,j}∈E

xixj mod 2 .

That is, given an input vector a ∈ {0, 1}n
, we remove all vertices i with ai = 0,

and count the number of the surviving edges modulo 2.
It is clear that fG can be computed by an unrestricted branching program (with

replication R = n) of size O(n2). We will show that good expanding properties

of the graph G imply that every branching program computing fG ∧ (x1 ⊕ x2 ⊕
· · · ⊕ xn ⊕ 1) must have either replication number R > ϵn for a constant ϵ > 0 or

must have exponential size.

But first we will prove a general theorem telling us what properties of boolean

functions do actually force the replication number of their branching programs to

be large.

A boolean function r(x1, . . . , xn) is a rectangular function if there is a balanced

partition of its variables into two parts such that r can be written as an AND of two

boolean functions, each depending on variables in only one part of the partition.

A set R ⊆ {0, 1}n
of vectors is a combinatorial rectangle (or just a rectangle) if

R = r−1(1) for some rectangular function r. So, each combinatorial rectangle has

a form R = R0 ×R1 where R0 ⊆ {0, 1}I0
and R1 ⊆ {0, 1}I1

for some partition

[n] = I0 ∪ I1 of [n] = {1, . . . , n} into two disjoint parts I0 and I1 whose sizes

differ by at most 1.
The rectangle number, ρ(f), of a boolean function f is the maximum size of a

rectangle lying in f−1(1):

ρ(f) = max{|R| : R is a rectangle and f(x) = 1 for all x ∈ R} .

Finally, we say that a boolean function f of n variables is:

• sensitive if any two accepted vectors differ in at least two bits;

• dense if |f−1(1)| ≥ 2n−o(n)
, and

• rectangle-free if ρ(f) ≤ 2n−Ω(n)
.

16.23 Theorem There is a constant ϵ > 0 with the following property: if f is a sensi-
tive, dense and rectangle-free boolean function of n variables, then any deterministic
branching program computing f with the replication number R ≤ ϵn must have
2Ω(n) nodes.

Proof. Let f be a sensitive and dense boolean function of n variables. Suppose also

that the function f is rectangle-free, that is, f−1(1) does not contain a rectangle of

size larger than 2n−δn
, for some constant δ > 0. Take an arbitrary deterministic

branching program computing f with replication number R ≤ ϵn, where ϵ > 0 is

a sufficiently small constant to be specified later; this constant will only depend
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on the constant δ. Our goal is to prove that the program must have at least 2Ω(n)

nodes.

For an input a ∈ {0, 1}n
accepted by f , let comp(a) denote the (accepting)

computation path on a. Since the function f is sensitive, all n bits are tested at

least once along each of these paths. Split every path comp(a) into two parts

comp(a) = (pa, qa), where pa is an initial segment of comp(a) along which n/2
different bits are tested. Hence, the remaining part qa can test at most n/2 + R
different bits. (Note that we only count the number of tests of different bits—the
total number of tests along comp(a) may be much larger than n+R.) Let S be the

number of nodes in our program.

Viewing segments pa and qa as monomials (ANDs of literals), we obtain that f
can be written as an OR of at most S ANDs P ∧Q of DNFs P and Q satisfying the

following three conditions:

(i) All monomials have length at least n/2 and at most n/2 + R. This holds by
the choice of segments pa and qa.

(ii) Any two monomials in each of the DNFs are inconsistent, that is, one contains

a variable and the other contains its negation. This holds because the program

is deterministic: the paths must split before they meet.

(iii) For all monomials p ∈ P and q ∈ Q, either pq = 0 (the monomials are

inconsistent) or |X(p) ∩ X(q)| ≤ R and |X(p) ∪ X(q)| = n, where X(p)
is the set of variables in a monomial p. This holds because the program has

replication number R and the function f is sensitive.

Now fix one AND P ∧Q for which the set B of accepted vectors is the largest

one; hence, the program must have at least |f−1(1)|/|B| ≥ 2n−o(n)/|B| nodes,
and it remains to show that the set B cannot be too large, namely that

|B| ≤ 2n−Ω(n) .

We do this by showing that otherwise the set B, and hence, also the set f−1(1),
would contain a large rectangle in contradiction with the rectangle-freeness of f .
When doing this we only use the fact that all vectors of B must be accepted by an

AND of DNFs satisfying the properties (i)-(iii) above.

By (iii) we know that every vector a ∈ B must be accepted by some pair of

monomials p ∈ P and q ∈ Q such that |X(p) ∩X(q)| ≤ R. A (potential) problem,

however, is that for different vectors a the corresponding monomials p and q may

share different variables in common. This may prohibit their combination into a

rectangle (see Example ?? below). To get rid of this problem, we just fix a set Y of

|Y | ≤ R variables for which the set A ⊆ B of all vectors in B accepted by pairs of

monomials with X(p) ∩X(q) = Y is the largest one. Since R ≤ ϵn, we have that

|A| ≥ |B|
/ R∑

i=0

(
n

i

)
≥ |B| · 2−n·H(ϵ) ,

where H(x) = −x log2 x− (1 − x) log2(1 − x) is the binary entropy function.



16.6 Expanders require almost maximal replication 463

16.24 Claim The set A contains a rectangle C of size

|C| ≥ |A|2

9 · 2n+R
.

Assuming the claim, we can finish the proof of the theorem as follows. By the

rectangle-freeness of f , we know that |C| ≤ 2n−δn
for a constant δ > 0. By

Claim ??, we know that

|A| ≤ 3 · 2(n+R)/2|C| ≤ 3 · 2(1+ϵ)n/2+(1−δ)n .

Hence, if R ≤ ϵn for a constant ϵ > 0 satisfying ϵ+ 2H(ϵ) < 2δ, then

|B| ≤ |A| · 2H(ϵ)n ≤ 3 · 2n−(2δ−ϵ−2H(ϵ))n/2 ≤ 2n−Ω(n) .

It remains therefore to prove Claim ??.
Each monomial of length at most k accepts at least a 2−k

fraction of all vectors

from {0, 1}n
. Hence, there can be at most 2k

mutually inconsistent monomials of

length at most k. By (i) and (ii), this implies that

|P | ≤ 2n/2
and |Q| ≤ 2n/2+R . (16.3)

For each monomial p ∈ P ∪ Q, let Ap = {a ∈ A | p(a) = 1} be the set of all

vectors in A accepted by p; we call these vectors extensions of p. Note that, by the

definition of the set A, a ∈ Ap iff pq(a) = 1 for some monomial q ∈ Q such that

X(p) ∩X(q) = Y .

Since, by (ii), the monomials in P are mutually inconsistent, no two of them can

have a common extension. Since every vector from A is an extension of at least one

monomial p ∈ P , the sets Ap with p ∈ P form a partition of A into |P | disjoint
blocks. The average size of a block in this partition is |A|/|P |. Say that a monomial

p ∈ P is rich if the corresponding block Ap contains |Ap| ≥ 1
3 |A|/|P | vectors.

Similarly for monomials inQ. By averaging, at least two-thirds of vectors inAmust

be extensions of rich monomials in P . Since the same also holds for monomials in

Q, at least one vector x ∈ A must be an extension of some rich monomial p ∈ P
and, at the same time, of some rich monomial q ∈ Q.

Let y be the projection of x onto Y = X(p) ∩X(q). Since all variables in Y are

tested in both monomials p and q, all the vectors in Ap and in Aq coincide with

y on Y . Consider the set of vectors C = C1 × {y} × C2, where C1 is the set of

projections of vectors in Aq onto the set of variablesX \X(q), and C2 is the set of

projections of Ap onto the set of variables X \X(p). Since both monomials p and
q have at least n/2 variables, the set C is a rectangle of size

|C| = |C1| · |C2| = |Ap| · |Aq| ≥ |A|
3|P |

· |A|
3|Q|

≥ 1
9

|A|
2n/2 · |A|

2n/2+R
= 1

9
|A|2

2n+R
.

Hence, it remains to verify that C ⊆ A, i. e., that all vectors c ∈ C are accepted by

P ∧Q.
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The vector x belongs to C and has the form x = (x1, y, x2) with xi ∈ Ci. Now

take an arbitrary vector c = (c1, y, c2) in C . The vector (x1, y, c2) belongs to Ap.

Hence, there must be a monomial q′ ∈ Q such that X(p) ∩ X(q′) = Y and pq′

accepts this vector. Since all bits of x1 are tested in p and none of them belongs to Y ,

none of these bits is tested in q′
. Hence, q′

must accept also the vector c = (c1, y, c2).
Similarly, using the fact that (c1, y, x2) belongs to Aq , we can conclude that the

vector c = (c1, y, c2) is accepted by some monomial p′ ∈ P . Thus, the vector c is
accepted by the monomial p′q′

, and hence, by P ∧Q.

This completes the proof of Claim ??, and thus, the proof of Theorem ??. ⊓⊔

In the last step of the proof of Theorem ?? it was important that every vector

from A is accepted by a pair of monomials sharing the same set of variables Y ;

otherwise, the rectangle C need not lie within the set A.

16.25 Example Take P = {x1,¬x1} and Q = {x2, x1¬x2} with p = x1 and

q = x2. The AND P ∧Q accepts the set of vectorsA = {11, 01, 10}. The projection
of Aq = {11, 01} onto X \ X(q) = {x1} is C1 = {0, 1}, and the projection of

Ap = {11, 10} ontoX \X(p) = {x2} is also C2 = {0, 1}. But C = C1 ×C2 ̸⊆ A,
because 00 does not belong to A.

In the proof of Theorem ?? it was also important that the branching program was

deterministic: this resulted in the property (ii) above which, in its turn, gave upper

bounds (??) on the total number of monomials. In the case of nondeterministic

branching programs we do not necessarily have this property, and in this case no

exponential lower bounds are known even for R = 1 (cf. Research Problem ??).

16.6.1 Quadratic functions of expanders are hard

To apply Theorem ??, we need an explicit boolean function which is sensitive,

dense and rectangle-free. Note that the first two conditions—being sensitive and

dense—are easy to ensure. A more difficult task is to ensure rectangle-freeness. The

problem here is that f must be rectangle-free under any balanced partition of its

variables. For this purpose, we consider quadratic functions of graphs. Recall that a

quadratic function of a graph G = ([n], E) is a boolean function

fG(x1, . . . , xn) =
∑

{i,j}∈E

xixj mod 2 .

What properties of the underlying graph G do ensure that its quadratic function

fG is rectangle-free? We will show that if G has a large “matching number”, then

fG is rectangle free.

Define the matching number m(G) as the largest numberm such that, for every

balanced partition of vertices of G, at least m crossing edges form an induced

matching. (An edge is crossing if it joins a vertex in one part of the partition with a
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Bilder/matching-eps-converted-to.pdf

Fig. 16.3 After the setting to 0 all variables outside the induced matching, the function fG =⊕
{i,j}∈E

xiyj turns to the inner product function IPm = x1y1 ⊕ · · · ⊕ xmym.

vertex in the other part. Being an induced matching means that no two endpoints

of any two edges of the matching are joined by a crossing edge.)

16.26 Lemma For every graph G on n vertices, ρ(fG) ≤ 2n−m(G).

Proof. Fix an arbitrary balanced partition of the vertices of G into two parts. The

partition corresponds to a partition (x, y) of the variables of fG. Let r = r1(x) ∧
r2(y) be an arbitrary rectangle function with respect to this partition, and suppose

that r ≤ f . Our goal is to show that r can accept at most 2n−m(G)
vectors.

By the definition of m(G), some set M = {x1y1, . . . , xmym} of m = m(G)
crossing edges xiyi forms an induced matching of G. We set to 0 all variables

corresponding to vertices outside the matching M . (see Fig. ??). Since M is an

induced subgraph of G, the obtained subfunction of fG is just the inner product

function

IPm(x1, . . . , xm, y1, . . . , ym) =
m∑

i=1
xiyi mod 2 .

The obtained subfunction r′ = r′
1(x1, . . . , xm) ∧ r′

2(y1, . . . , ym) of the rectangle
function r = r1 ∧ r2 is also a rectangle function such that r′(a) ≤ IPm(a) for all
a ∈ {0, 1}2m

. Since r′
was obtained from r by setting to 0 at most n−2m variables,

we have that |r−1(1)| ≤ |B| ·2n−2m
whereB = {a | r′(a) = 1}. Hence, it remains

to show that |B| ≤ 2m
. For this, let H be a 2m × 2m

matrix defined by

H[x, y] = (−1)IPm(x,y)⊕1 .

Since, for every x ̸= 0, IPm(x, y) = 1 for exactly half of vectors y, this matrix is

a Hadamard matrix. Since our set B ⊆ {0, 1}m × {0, 1}m
lies within IP−1

m (1), it
corresponds to an all-1 submatrix of H . By the Lindsey Lemma (see Appendix ??),
|B| ≤ 2m

. ⊓⊔

By Lemma ??, we need graphs G such that, for any balanced partition of their

vertices, many crossing edges form an induced matching. To ensure this property,

it is enough that the graph is “mixed enough”.
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Say that a graph is s-mixed if every two disjoint s-element subsets of its vertices

are joined by at least one edge.

16.27 Lemma If an n-vertex graph G of maximum degree d is s-mixed, then

m(G) ≥ n− 2s
4(d+ 1) .

Hence,

log ρ(fG) ≤ n− n

4(d+ 1) + s

2(d+ 1) .

Proof. Fix an arbitrary balanced partition of the vertices of G into two parts. To

construct the desired induced matching, formed by crossing edges, we repeatedly

take a crossing edge and remove it together with all its neighbors. In each step we

remove at most 2d + 1 vertices. If the graph is s-mixed, then the procedure will

run form steps as long as ⌊n/2⌋ − (2d+ 1)m is at least s. ⊓⊔

Fix a prime power q ≥ 26
, and let fG be the quadratic function of a Ramanujan

graphG = RG(n, q) of degree q+ 1. By Corollary ??, Ramanujan graphs RG(n, q)
are s-mixed for s = 2n/√q. Consider the function

fn = fG ∧ (x1 ⊕ · · · ⊕ xn ⊕ 1) .

That is, given an input vector a ∈ {0, 1}n
, we remove all vertices i with ai = 0,

and let fn(a) = 1 iff the number of 1’s in a is even and the number of surviving

edges is odd.

16.28 Theorem There is a constant ϵ > 0 such that any deterministic branching
program computing fn with the replication number R ≤ ϵn requires size 2Ω(n).

Proof. Our function fn is a polynomial of degree at most 3 over GF(2). Moreover,

fn is nonzero because fn(a) = 1 for an input vector a ∈ {0, 1}n
with precisely

two 1s corresponding to the endpoints of some edge ofG. Thus, Exercise ?? implies

that fn accepts at least 2n−3
vectors, and hence, is a dense function. Since q ≥ 26

,

the graph G is s-mixed for s = n/4. Thus, Lemma ?? implies that the quadratic

function fG, and hence, also the function fn is rectangle-free. Finally, the presence

of the parity function in the definition of fn ensures that fn is a sensitive function.

Since fn is sensitive, dense and rectangle-free, Theorem ?? implies that there

is a constant ϵ > 0 such that any deterministic branching program computing gn

with the replication number ≤ ϵn must have size 2Ω(n)
. ⊓⊔

Theorem ?? also gives an exponential lower bound for programs working in

bounded time. Say that a program works in time T if every accepting computation

in it has length at most T .

16.29 Corollary There is a constant ϵ > 0 such that any deterministic branching
program computing fn and working in time T ≤ (1 + ϵ)n requires size 2Ω(n).
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Proof. Since fn is sensitive, along each accepting computation all n its variables

must be tested at least once. This means that for branching programs computing

sensitive functions we always have R ≤ T − n. Hence, Theorem ?? yields expo-
nential lower bounds also for the class of time (1 + ϵ)n branching programs for a

constant ϵ > 0. ⊓⊔

Exercises

16.1 Let P = {1, . . . , n} be the set of points of a projective plane PG(2, q) of order
q, and let L1, . . . , Ln be the lines viewed as subsets of P ; hence n = q2 + q + 1.
Recall that each line has exactly q + 1 points, every two lines intersect in exactly

one point, and exactly q+ 1 lines meet in one point. A blocking set is a set of points
which intersects every line. The smallest blocking sets are just the lines. Show that

the characteristic function f(x) =
∧n

i=1
∨

j∈Li
xj of blocking sets ism-mixed for

m = q − 1.
Hint: Show that for every subset I ⊆ P of |I| = q − 1 points there must be two distinct lines

L1, L2 such that I ∩ L1 = I ∩ L2 = {i}.

16.2 A boolean function f(X) is m-stable if, for every Y ⊆ X of size |Y | ≤ m
and for every variable x ∈ Y , there exists an assignment c : X \ Y → {0, 1} such

that either fc(Y ) = x or fc(Y ) = ¬x. That is, after the assignment c, the value
of the subfunction fc(Y ) depends only on that of the variable x. Show that every

m-stable boolean function is alsom-mixed.

16.3 For a monotone boolean function f , let Min(f) be the set of all its minterms.

Show that a monotone boolean function ism-stable if and only if, for every Y ⊆ X
of size |Y | ≤ m and for every variable x ∈ Y , there exists a mintermK ∈ Min(f)
such that,K ∩ Y = {x} andW \ (K ∪ Y ) ̸= ∅ for allW ∈ Min(f) with x ̸∈ W .

16.4 The perfect matching function is a monotone boolean function PMn in n2

variables, encoding the edges of a bipartite graph with parts of size n. The function
computes 1 iff the input graph contains a perfect matching. Taking a boolean

variable xi,j for each edge ofKn,n, the function can be written as

PMn =
∨

σ∈Sn

n∧
i=1

xi,σ(i) ,

where Sn is the set of all permutations of {1, . . . , n}. We have shown in Section ??
that this function requiresmonotone circuits of sizenΩ(log n)

. Show that the function

PMn is (n− 1)-stable.

16.5 Call a boolean function f(X) weakly m-mixed if for every Y ⊆ X of size

|Y | = m and any two different assignments a, b : Y → {0, 1}, it holds that
fa = fb ≡ 0 or fa ̸= fb. Define Cov(f, k) to be the minimal t for which there
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exist mutually inconsistent monomials K1, . . . ,Kt of k literals each, such that

f ≤ K1 ∨ . . . ∨Kt. Show that every deterministic read-once branching program

computing a weaklym-mixed boolean function f must have at least Cov(f,m− 1)
nodes. Hint: Argue as in the proof of Lemma ??, but consider only accepting paths.

16.6 Recall that a boolean function f is d-robust if f cannot be made a constant-0
function by fixing any its d − 1 variables to constants. Show that, if a boolean

function f of n variables is (d+ 1)-robust, then Cov(f, k) is at least exponential in
dk/n.

Hint: Hit the inequality f ≤ K1 ∨ . . . ∨ Kt with a restriction a assigning random 0-1 values to

randomly chosen d variables. Let K be any monomial of length k. Given that exactly s variables

of K are set by a, the probability that Ka ̸≡ 0 is 2−s
. Use this to show that Prob[Ka ̸≡ 0] ≤

2−Ω(dk/n)
.

16.7 Show that, if a boolean function f can be computed by a 1-NBP of size S,
then f can be written as an OR of at most S rectangular functions.

16.8 Recall that the clique function CLIQUE(n, k) has
(

n
2
)
variables xij , one for

each potential edge in a graph on a fixed set of n vertices; the function outputs 1 iff

the associated graph contains a clique (complete subgraph) on some k vertices. Use

Exercise ?? to show that the size of every 1-NBP computing this function must be

exponential in min{k, n− k}.
Hint: The union of any two graphs, each with at most k − 1 non-isolated vertices, cannot contain

a k-clique.

16.9 Show that every nonzero polynomial p(x1, . . . , xn) of degree k over GF(2)
has at least 2n−k

nonzero points, that is, |{a | p(a) = 1}| ≥ 2n−k
. Hint: Take a

monomial

∏
i∈I

xi of p with |I| = k. Show that, for every setting b of constants to variables xi

with i ̸∈ I , there is a setting c of constants to the remaining k variables such that p(b, c) = 1.
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In this chapter we show a time-size tradeoff for nondeterministic branching pro-

grams. By the size of a program in this chapter we will mean the number of nodes,

not just the number of labeled edges. A program computes a given function in
time T if every accepted input has at least one accepting computation of length at

most T .
Our goal is to show that some functions of n variables cannot be computed

in time T = O(n) unless the program has size 2Ω(n)
. In the case of deterministic

branching programs such a result was established in a celebrated paper of Ajtai

(1999b). The case of nondeterministic branching programs is, however, much more

difficult: here no exponential lower bounds are known even for T = n.
Let us stress that our restriction is a “semantic” one: inconsistent paths may be

arbitrarily long! Even consistent paths may be arbitrarily long: we only require that

for every accepted input there exists at least one short path consistent with this

input. The “syntactic” case, where all paths (be they consistent or not) must have

length at most T , is easier to deal with (see the chapter notes and Exercise ??).
To obtain high lower bounds for “semantic” nondeterministic programs, we

consider programs computing functions f : Dn → {0, 1} over domains D larger

than {0, 1}. In this case, instead of just tests “is xi = 0?” and “is xi = 1?” the
program is allowed to make tests “is xi = d?” for elements d ∈ D. Different

edges leaving the same node may make the same test—this is why a program is

nondeterministic. As before, an input a ∈ Dn
is accepted iff all the tests along at

least one path from the source node to the target node are passed by a.
The exposition below is based on the papers by Ajtai (1999a), Beame, Jayram,

*

and Saks (2001), and Jukna (2009b).

*

Formerly Jayram S. Thathachar

469



470 17 Bounded Time

Bilder/broom2-eps-converted-to.pdf

Fig. 17.1 An m-rectangle with a broomstick w.

17.1 The rectangle lemma

We consider nondeterministic branching programs computing a given function

f : Dn → {0, 1} and working in time kn where k is an arbitrarily large constant.

We want to show that any such program must be large. As in the case of programs

with bounded replication, the idea is to show that if the number of nodes is small

then the program is forced to accept all vectors of a large rectangle. Having shown

this, we construct a function f that cannot accept many vectors of any rectangle.

This will imply that any program for f working in time kn must have large size.

Let X = {x1, . . . , xn} be a set of n variables. A subset R ⊆ Dn
of vectors is an

m-rectangle (m ≤ n/2), if there exist two disjointm-element subsetsX0 andX1 of

X , subsets R0 ⊆ D|X0|
and R1 ⊆ D|X1|

of vectors, and a vector w in D of length

n− 2m such that (after some permutation of the variables) the setR can be written

as R = R0 × {w} ×R1; the vector w is then the broomstick of the rectangle. That

is, on the variables outside X0 ∪X1 all vectors in R have the same values as the

vector w. Below is an example of a 2-rectangle over the domainD = {0, 1, 2} with

a broomstick w = (1, 2, 0, 0, 2):

R = {1} ×
{

0
1

}
× {2} ×

{
2
0

}
× {0} × {0} ×

{
21
01

}
× {2} .

With some abuse of notation we will write R = R0 × {w} ×R1, meaning that this

holds after the corresponding permutation of variables:

R =

R0
02
00
12
10

×
w︷ ︸︸ ︷

{1} × {2} × {0} × {0} × {2} ×
R1{
21
01

}
.

Note that combinatorial rectangles considered in the previous chapter are m-

rectangles with m = n/2. That is, we now just refine this notion, and consider

rectangles, all vectors in which have a common “broomstick” (i.e., which coincide

on some fixed set of n− 2m positions).

The main property of m-rectangles is (again) the “cut-and-paste” property: if

somem-rectangle R contains two vectors (a0, w, a1) and (b0, w, b1), then it must

also contain both combined vectors (b0, w, a1) and (a0, w, b1).
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The refined rectangle number, ρm(f), of a function f : Dn → {0, 1} is the

maximum size of anm-rectangle lying in f−1(1):

ρm(f) = max{|R| : R is anm-rectangle and f(x) = 1 for all x ∈ R} .

In general, we have that 0 ≤ ρm(f) ≤ |D|2m
for every function f : Dn → {0, 1}.

Standard examples of functions with very small rectangle number are characteristic

functions f of codes C ⊆ Dn
of large minimum distance d: for such functions we

have that ρm(f) = 1 as long asm ≤ d− 1.
A function f : Dn → {0, 1} is sensitive if any two accepted vectors differ

in at least two positions. The only property of sensitive functions we will use is

that, in any branching program computing such a function, each variable must

be tested at least once along any accepting computation path. The density of f is

µ(f) = |f−1(1)|/|D|n.

Rectangle Lemma If a sensitive function f : Dn → {0, 1} can be computed by a
nondeterministic branching program of size S working in time kn then, for every
m ≤ n/2k+1,

ρm(f) ≥ 1
∆

|D|2m where ∆ =
(2S)r

(
n
m

)2

µ(f) and r = 8k22k .

We first give an application of this lemma, and then prove the lemma itself.

17.2 A lower bound for code functions

As our domain D we take a Galois field D = GF(q). We consider the function

gN (Y, x) of N = n2 + n variables, the first n2
of which are arranged in an n× n

matrix Y . The values of the function are defined by

gN (Y, x) = 1 iff the vector x is orthogonal over GF(q) to all rows of Y .

In other words, gN (Y, x) = 1 iff the vector x belongs to a linear code defined by

the parity-check matrix Y .

We say that a nondeterministic branching program computes gN (Y, x) in time

T if for every accepted input (Y, x), there exists at least one accepting s-t path for

(Y, x) along which at most T tests on x-variables are made—the first n2
variables

from Y can be tested an arbitrary number of times.

Using ideas similar to those in the proof of Theorem ??, it is not difficult to show

that gN (Y, n) can be computed by a branching program of size O(q2N) whose
every path has length at most about n2

: we only need to compute the AND of n
scalar products over GF(q), each of at most 2n variables. The following theorem

shows that if the time is restricted to kn for a constant k, then exponential size is

necessary.
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17.1 Theorem Let k ≥ 1 be an integer. If q ≥ 23k+9 then every nondeterministic
branching program computing gN (Y, x) in time kn must have size exponential in√
N/k24k .

Proof. Let d = m+ 1 wherem = n/2k+1
. By the Gilbert–Varshamov bound (see,

e.g., MacWilliams and Sloane (1997)), linear codes C of distance d and size

|C| ≥ qn

V (n, d− 1) = qn

V (n,m)

exist, where

V (n,m) =
m∑

i=0
(q − 1)i

(
n

i

)
≤ dqm

(
n

m

)
is the number of vectors in a Hamming ball of radiusm around a vector in GF(q)n

.

Let H be the parity-check matrix of such a code, and consider the function

f : GF(q)n → {0, 1} such that f(x) = 1 iff Hx = 0. That is, f(x) = 1 iff x ∈ C .
The function f(x) = gN (H,x) is the characteristic function of the code C and

is a subfunction of gN (Y, x). Hence, if the function gN (Y, x) can be computed by

a nondeterministic branching program working in time kn, then the size of this

program must be at least the minimum size S of a nondeterministic branching

program computing f(x) in time kn. To finish the proof of the theorem, it remains

therefore to show that S must be exponential inm/r, where r = 8k22k
is from the

Rectangle Lemma.

The function f(x) has density µ(f) = |C|/qn = 1/V (n,m). Hence, the Rect-
angle Lemma yields

ρm(f) ≥ µ(f)
(2S)r

(
n
m

)2 q
2m ≥ q2m

(2S)rdqm
(

n
m

)3 = qm

(2S)rd
(

n
m

)3 .

Recalling thatm = n/2k+1
and q ≥ 23k+9

, we obtain(
n

m

)3
≤
(en
m

)3m

= (e323k+3)m ≤ (23k+8)m ≤
(q

2

)m

.

Hence, (2S)rd ≥ 2m/ρm(f). On the other hand, since the Hamming distance

between any two vectors in C is at least d = m + 1, we have that ρm(f) ≤ 1,
and the desired lower bound S = 2Ω(m/r)

on the size of our branching program

follows. ⊓⊔

17.3 Proof of the rectangle lemma

We will use one purely combinatorial result which may be of independent interest.
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Let F = (F1, . . . , Fr) be a sequence of not necessarily distinct subsets of some

set X . By a separator for F we will mean a pair (S, T ) of disjoint subsets of X
such that each member of F is disjoint from either S or from T , that is, none of
the members of F can contain elements from both sets S and T . The size of such a

separator (S, T ) is the minimum of |S| and |T |. The degree dx of a point x in F is

the number of members of F that contain x. The average degree of F is

d = 1
|X|

∑
x∈X

dx .

Separator Lemma Let F = (F1, . . . , Fr) be a sequence of non-empty subsets of an
n-element set, each with at most ℓ elements. Let d be the average degree of F , and let
m be the maximum size of a separator of F .

(i) If ℓ < n/8d, thenm ≥ n/2N where N =
(

r
0
)

+
(

r
1
)

+ · · · +
(

r
2d

)
.

(ii) If ℓ ≤ n/8d2d, thenm ≥ n/2d+1.

We postpone the proof of this lemma and proceed with the actual proof of the

Rectangle Lemma.

For each input a ∈ f−1(1), fix one accepting computation path comp(a), and
split it into r sub-paths p1, . . . , pr of length at most ℓ = kn/r; the length of a

sub-path pi is the number of tests made along it. That is, we have r time segments
1, . . . , r, and in the i-th of them the computation on a follows the sub-path pi.

Say that two inputs a, b ∈ f−1(1) are equivalent if the starting nodes of the

corresponding sub-paths comp(a) = (p1, . . . , pr) and comp(b) = (q1, . . . , qr)
coincide. Since we have at most S nodes in the program, the number of possible

equivalence classes does not exceed Sr
. Fix some largest equivalence class A ⊆

f−1(1); hence,
|A| ≥ |f−1(1)|/Sr.

We say that a pair of disjoint subsets of variables X0 and X1 is good for a set of

vectors B if there is a coloring of time segments 1, . . . , r in red and blue such that,

along each computation comp(a) = (p1, . . . , pr) on a vector a ∈ B, the variables

from X0 are tested only in red and those from X1 only in blue sub-paths.

17.2 Claim For every vector a ∈ f−1(1), at least one pair of disjoint m-element

subsets of variables withm ≥ n/2k+1
is good for a.

Proof. For a variable x ∈ X , let dx be the number of sub-paths comp(a) =
(p1, . . . , pr) along which this variable is tested. Since the computed function f(X)
is sensitive and since f(a) = 1, we know that each variable x ∈ X is tested at

least once along comp(a). Since the program computes f(X) in time kn, we also
know that at most kn tests can be made along the whole computation comp(a).
Hence,

∑
x∈X dx ≤ kn, implying that average number

∑
x∈X dx/n of tests made

on a single variable does not exceed k. Finally, since r = 8k22k
we know that each

sub-path can make at most
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ℓ = kn

r
= kn

8k22k
= n

8k2k

tests. We can therefore apply the Separator Lemma and obtain the desired pair

X0, X1 of disjoint subsets of |X0| = |X1| ≥ n/2k+1
variables which is good for

the input a. ⊓⊔

We have only 2r
possible colorings of time intervals 1, . . . , r, and at most(

n
m

)(
n−m

m

)
≤
(

n
m

)2
pairs of disjoint m-element subsets of variables. Hence, by

Claim ??, some of these pairs X0, X1 must be good for a subset B ⊆ A of size

|B| ≥ |A|
2r
(

n
m

)2 .

We can write each vector a ∈ Dn
as a = (a0, w, a1), where a0 is the projection

of a onto X0, a1 is the projection of a onto X1, and w is the projection of a onto
X \ (X0 ∪ X1). Say that two vectors a = (a0, w, a1) and b = (b0, w

′, b1) are

equivalent if w = w′
. Since the sets of variables X0 and X1 are disjoint, each

equivalence class is anm-rectangle.

Let R ⊆ B be a largest equivalence class lying in B; hence

|R| ≥ |B|
|D|n−2m

≥ |A|
2r
(

n
m

)2|D|n−2m
≥ |f−1(1)|
Sr2r

(
n
m

)2|D|n−2m
= 1
∆

|D|2m .

So, it remains to show that all vectors of the rectangleR are accepted by the program.

This is a direct consequence of the following more general claim.

17.3 Claim If both vectors a = (a0, w, a1) and b = (b0, w, b1) belong to B, then

both combined vectors (a0, w, b1) and (b0, w, a1) belong to A.

Proof. Let comp(a) = (p1, . . . , pr) and comp(b) = (q1, . . . , qr) be the computa-

tions on a and on b. Consider the combined vector c = (a0, w, b1). Our goal is to
show that pt(c) ∨ qt(c) = 1 for all t = 1, . . . , r. That is, that for each t = 1, . . . , r,
the combined vector c must be accepted by (must be consistent with) at least one

of the sub-paths pt or qt.

To show this, assume that c is not accepted by pt. Since pt accepts the vector

a = (a0, w, a1), and this vector coincides with the combined vector c = (a0, w, b1)
on all the variables outsideX1, this means that at least one variable fromX1 must be

tested along pt. But then, by the goodness of the pair X0, X1, no variable from X0
can be tested along the sub-path qt. Since qt accepts the vector b = (b0, w, b1), and
the combined vector c = (a0, w, b1) coincides with this vector on all the variables

outside X0, the sub-path qt must accept the vector c, as desired.
This completes the proof of the Rectangle Lemma. ⊓⊔

p@plus6p@
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Proof of the Separator Lemmaaddpunct: (i) Associate with each element x ∈ X its

trace T (x) = {i | x ∈ Fi}. Hence, dx = |T (x)|. By double-counting,

r∑
i=1

|Fi| =
∑
x∈X

|T (x)| = dn . (17.1)

We will concentrate on elements whose traces are not too large. Namely, say that

an element x ∈ X is legal if |T (x)| ≤ 2d. It is clear that we must have at least

n/2 legal elements, for otherwise the second sum in (??) would be larger than

(2d)(n/2) = dn.
Partite the legal elements into blocks, where two elements x and y belong to the

same block iff they have the same trace, that is, iff T (x) = T (y). Since |T (x)| ≤ 2d,
each block in this partition is determined by a subset of {1, . . . , r} of size at most

2d. So, the total number of blocks does not exceed

∑2d
i=0
(

r
i

)
= N .

Say that a legal element x ∈ X is happy if the (unique) block, which it belongs

to, has at least n/2N elements. If we will find two legal elements x ̸= y ∈ X such

that both of them are happy and T (x) ∩ T (y) = ∅, then we are done.

First observe that, by the same averaging argument as above, at least half of

all n/2 legal elements must be happy (belong to large blocks); hence, at least n/4
elements are both legal and happy. Fix any such element x. We have only to show

that there is yet another legal and happy element y which belongs to none of the

|T (x)| ≤ 2d sets Fi containing x. For this, it is enough to observe that the total

number of elements that belong to some of the sets Fi containing x is∣∣∣ ⋃
i∈T (x)

Fi

∣∣∣ ≤
∑

i∈T (x)

|Fi| ≤ |T (x)| · ℓ ≤ 2dℓ

which, due to our assumption ℓ < n/8d, is strictly smaller than the total number

n/4 of legal and happy elements.

To prove the second claim (ii), we use a probabilistic argument due to Beame,

Jayram, and Saks (2001).

Color each set F ∈ F red or blue uniformly and independently with probability

1/2. Say that an element x ∈ X is red (respectively, blue) if every set that contains

x is colored red (respectively, blue). Let S and T be, respectively, the set of red and

of blue elements. Since every element ofX occurs in at least one set, it follows that

S and T are disjoint. Moreover, for each F ∈ F , either F ∩ S or F ∩ T is empty.

To complete the proof, we show that with positive probability both S and T have

at least (1 − δ)2−dn elements, where

δ =
√
ℓd2d+1

n
. (17.2)

This will prove the lemma, since ℓ ≤ n/8d2d
implies δ ≤ 1/2.

Each variable is red as well as blue with probability 2−dx
. Hence, we can expect
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µ :=
∑
x∈X

2−dx ≥ n
( ∏

x∈X

2−dx

)1/n

= n2−
∑

x
dx/n ≥ n2−k

(17.3)

red variables as well as at least n2−k
blue variables. The first inequality here follows

from the arithmetic-geometric mean inequality

1
n

n∑
i=1

ai ≥
( n∏

i=1
ai

)1/n

.

We will now use Chebyshev’s inequality to show that at least one coloring must

produce at leastm ≥ (1 − δ)n/2k
red elements and at least so many blue elements.

Let Z =
∑

x Zx whereZx is the indicator random variable for the event “x ∈ S”;
hence, Z = |S| and µ = E [Z]. By Chebyshev’s inequality, we have that

Prob[|S| < (1 − δ)µ] ≤ Var [Z]
δ2µ2 , (17.4)

where Var [Z] = E
[
Z2]− E [Z]2 is the variance of Z . The variance itself can be

written as

Var [Z] =
∑

x

Var [Zx] +
∑
x ̸=y

Cov(Zx, Zy), (17.5)

where Cov(Zx, Zy) = E [ZxZy] − E [Zx] · E [Zy] is the covariance of Zx and Zy .

Consider the first term in the right-hand side of (??). For any x, Zx is a Bernoulli

random variable, so Var [Zx] = E [Zx] − E [Zx]2 ≤ E [Zx], implying that∑
x

Var [Zx] ≤ E [Z] = µ . (17.6)

To bound the second term in the right-hand side of (??), observe that if no mem-

ber of F contains both x and y, then Zx and Zy are independent, implying that

Cov(Zx, Zy) = 0. Thus, we are only interested in those pairs (x, y) such that some
member of F contains both x and y. For any fixed x, the number of such pairs

(x, y) is at most (ℓ− 1)dx. For each such pair,

Cov(Zx, Zy) ≤ E [ZxZy] ≤ E [Zx] ≤ 2−dx .

Therefore, ∑
x ̸=y

Cov(Zx, Zy) ≤ (ℓ− 1)
∑

x

dx2−dx .

The last term above can be bounded using the following inequality (also due

to Chebyshev): if a1, . . . , an is a non-decreasing sequence and b1, . . . , bn a non-

increasing sequence of non-negative numbers, then

n∑
i=1

aibi ≤ 1
n

( n∑
i=1

ai

)( n∑
i=1

bi

)
.
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Order the x’s so that the sequence {dx} is non-decreasing. Now the second Cheby-

shev inequality can be applied to the sequences {dx} and {2−dx}. We obtain∑
x ̸=y

Cov(Zx, Zy) ≤ ℓ− 1
n

(∑
x

2−dx

)(∑
x

dx

)
= d(ℓ− 1)µ (17.7)

because (
∑

x dx)/n = d, and
∑

x 2−dx = µ. Substitute the bounds (??) and (??) into
(??). We obtain Var [Z] ≤ (d(ℓ− 1) + 1)µ ≤ drµ, where the last inequality holds

because each x ∈ X occurs in at least one set, implying that d =
∑

x dx/n ≥ 1.
Using this upper bound on the variance, (??) yields:

Prob[|S| < (1 − δ) · µ] < Var [Z]
δ2µ2 ≤ dℓ

δ2µ
.

Substituting for δ its value as given by (??) and using the inequality (??), we obtain
that the right-hand side does not exceed

dℓn

dℓ2d+1µ
= n

2d+1µ
≤ n

2d+12−dn
= 1

2 .

In a similar fashion, we obtain Prob[|T| < (1 − δ) · µ] < 1/2. Thus, with positive

probability, both S and T have size at least (1 − δ)µ ≥ (1 − δ)2−dn. We conclude

that there is a coloring of the sets in F such that the induced S and T satisfy

|S|, |T | ≥ n/2d+1
, as desired. ⊓⊔

endpefalse

17.4 Remark Note that in the proof of the first claim (i) we have actually proved a

stronger statement than just the existence of a large enough separator: there exist

two disjoint subsets Y0 and Y1 of X , two disjoint subsets T0 and T1 of {1, . . . , r}
such that, for both α = 0, 1, we have that |Yα| ≥ n/2N , 1 ≤ |Tα| ≤ 2d, and
T (x) = Tα for all x ∈ Yα.

17.5 Research Problem
Prove an exponential lower bound on the size of nondeterministic boolean (D =
{0, 1}) branching programs of n variables, all whose consistent paths have length

at most n.

Note that if the computed function is sensitive, then the restriction that all

consistent paths must have length at most n implies that along every consistent

s-t path, each variable is tested exactly once; this is the model of weakly read-once

programs we introduced in Section ??, see Problem ??. In the case of deterministic
branching programs we already know how to prove exponential lower bounds on

the size even when up to ϵn variables may be re-tested along each computation.

Nothing similar, however, is known for boolean nondeterministic programs.
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What makes the problem nontrivial when nondeterminism is allowed is that the

restriction is only on consistent paths. The “syntactic” case when the restriction is

on all paths (be they consistent or not) is much easier to analyze (see Exercise ??).

Chapter Notes

In a syntactic read-k program, along every path (be it consistent or not!) every

variable can appear at most k times. Exponential lower bounds on the size of

syntactic read-k times branching programs for boolean functions were first proved

by Okolnishnikova (1991) for deterministic programs, and by Borodin, Razborov and

Smolensky (1993) and Jukna (1995) for nondeterministic programs; see Exercise ??.
The non-syntactic case, where only consistent paths must be no longer than kn,

remained open for a long time. In the case of deterministic programs, exponential

lower bounds for programs working in time kn, for k = 1 + 1/ logn, were proved
by Jukna and Razborov (1998). Beame, Jayram, and Saks (2001) proved such bonds

for k = 1 + ϵ, where ϵ > 0 is very small but constant. Such a lower bounds also

follows from lower bounds on branching programs with bounded replication (see

Corollary ??). This holds because, if the computed function is sensitive, then the

replication number of the program cannot exceed the computation time minus the

number of variables.

A breakthrough came with the paper of Ajtai (1999b) where he was able to

modify his proof for programs over large domains to the case of the boolean domain

D = {0, 1}. He achieves this by a very delicate probabilistic reasoning leading to a

much sharper version of the Rectangle Lemma.

Ajtai’s Rectangle Lemma Let k be a positive integer, and f : {0, 1}n → {0, 1} a
boolean function such that |f−1(1)| ≥ 2n−O(1). Suppose that f can be computed by
a deterministic branching program of size 2o(n) working in time kn. Then there exist
constantsµ, λ > 0 such thatµ1+0.01/k ≥ 2λ, and aµn-rectangleR = R0×{w}×R1
such that R ⊆ f−1(1) and |R0|, |R1| ≥ 2(µ−λ)n.

Unfortunately, the full proof of this lemma is too long to be presented here. Using

this lemma Ajtai (1999b) proves that, for every constant k ≥ 1, every deterministic

branching program computing the following boolean function

f(x) = 1 iff the number of pairs i < j such that xi = xj = 1 is odd

in time kn must have size 2Ω(n)
. Beame et al. (2003) extended Ajtai’s result to

boolean randomized branching programs.
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Exercises

17.1 Let G be a deterministic branching program computing some function f :
Dn → {0, 1}. For 1 ≤ r ≤ n let tr denote the number of computation paths (that

is, consistent paths) in G which read exactly r different input variables. Show that∑n
r=1 tr|D|−r = 1.

Hint: Let x ∈ Dn
be a random input vector, and let p be a computation paths along which r

different variables are tested. Show that the computation on x follows p with probability |D|−r
.

17.2 (Oblivious programs) We consider nondeterministic oblivious branching pro-

grams (oblivious n.b.p.) Recall that a program is oblivious if its nodes can be divided

into levels such that: (a) edges from the nodes in the i-th level go to the nodes in

the (i+ 1)-th level, and (b) the edges between two consecutive levels are labeled

by the tests xi = d for the same variable xi (cf. Section ??). Prove the following
version of the Rectangle Lemma for oblivious programs:

If a sensitive function f : {0, 1}n → {0, 1} can be computed in time kn by an

oblivious n.b.p. of size S, then for r = 8k22k
and everym ≤ n/2k+1

, we have

that

Sr ≥ µ(f)22m

ρm(f) . (17.8)

Note that this time we do not have an “annoying” term

(
n
m

)2
in the denominator

making the Rectangle Lemma useless for functions over the boolean domain D =
{0, 1}.

17.3 Let k-NBP(f) denote the minimum number of nodes in a syntactic k-n.b.p.
computing f . Prove that for r = 8k22k

and everym ≤ n/2k+1
, we have that

k-NBP(f)r ≥ µ(f)22m

ρm(f) .

Hint: Show that (??) also holds for syntactic k-n.b.p. For this, argue as in the proof of the Rectangle

Lemma to construct an equivalence class A ⊆ f−1(1) of size |A| ≥ |f−1(1)|/Sr
. Let Yi be the

set of variables that are tested along the i-th sub-computation on at least one vector from A. Use

the Separator Lemma and the fact that our program is syntactic k-n.b.p. to show that there must

be a pair X0, X1 of disjoint subsets of variables, each of size at least m = n/2k+1
such that

Yi ∩ X0 = ∅ or Yi ∩ X1 = ∅ for each i = 1, . . . , r.

17.4 A Bose-Chaudhury code (BCH-code) C = Cn,t is a linear subspace of GF(2)n

such that |C| ≥ 2n/(n+ 1)t
and every two vectors in C differ in at least 2t+ 1 bits.

Such codes can be constructed for any n such that n+ 1 is a power of 2, and for

every t < n/2. Let k be an arbitrarily large positive integer, and ϵ > 0 a sufficiently

small with respect to k constant. Let fn be the characteristic function of a BCH

code Cn,t for t = ⌊ϵ
√
n⌋. Prove that the function fn requires syntactic k-n.b.p. of

size 2Ω(
√

n)
.



480 17 Bounded Time

Hint: By Claim ??, no code of minimal distance at least 2t + 1 can contain an m-rectangle of size

larger than 22m
(

m
t

)−2
. Use Exercise ??.

17.5 The goal of this exercise is to show that lower bounds on k-NBP(f) for growing
k can be used to obtain lower bounds on the size of unrestricted branching programs.

Let f be a boolean function of n variables, and let NBP(f) denote the minimum

number of contacts (labeled edges) in an unrestricted(!) nondeterministic branching

program computing f . Suppose that for every subset ofm variables, there exists an

assignment ρ of constants to these variables such that k-NBP(fρ) ≥ S. Show that

then

NBP(f) ≥ max{km, S} .

Hint: Take an n.b.p. computing f . If we have more than m variables, each appearing as a contact

more thank k times, then NBP(f) ≥ km. If this is not the case, we can set these “popular”

variables to constants. What we obtain is a k-n.b.p.

17.6 (Okolnishnikova 2009) Let 0 < α < 1/2 be a constant, and let fn be the

characteristic function of a BCH code Cn,t with t = nα
. Let BP(f) denote the

minimum number of nodes in an unrestricted deterministic branching program

computing f . Show that:

(a) BP(f) = O(n1+α logn). Hint: The parity-check matrix of Cn,t has O(t log n) rows.
(b) NBP(fn) = Ω(n logn). Hint: Use Exercises ?? and ??.
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18. Resolution

Propositional proof systems operate with boolean formulas, the simplest of which

are clauses, that is, ORs of literals, where each literal is either a variable xi or its

negation ¬xi. A truth-assignment is an assignment of constants 0 and 1 to all the

variables. Such an assignment satisfies (falsifies) a clause if it evaluates at least one
(respectively, none) of its literals to 1. A set of clauses, that is, a CNF formula, is

satisfiable if there is an assignment which satisfies all its clauses. The basic question

is: Given an unsatisfiable CNF formula F , what is the size of a proof that F is indeed

unsatisfiable? The size (or length) of a proof is the total number of clauses used in it.

A proof of the unsatisfiability of F starts with clauses of F (called axioms), at
each step applies one of several (fixed in advance) simple rules of inferring new

clauses from the already derived ones, and must eventually produce the empty

clause ∅ which, by definition, is satisfied by none of the assignments.

For such a derivation to be a legal proof, the rules must be sound in the following

sense: if some assignment (of constants to all variables) falsifies the derived clause,

then it must falsify at least one of the clauses from which it was derived. Then the

fact that ∅ was derived implies that the CNF F was indeed unsatisfiable: given any

assignment a ∈ {0, 1}n
we can traverse the proof going from ∅ to an axiom (a

clause of F ), and the soundness of the rules will give us a clause of F which is not

satisfied by a.
The main goal of proof complexity is to show that some unsatisfiable CNFs

require long proofs. A compelling reason to study this problem is its connection

with the famous P versus NP question. It has long been known (Cook and Reckhow

1979) that NP = co-NP iff there is a propositional proof system giving rise to short

(polynomial in |F |) proofs of unsatisfiability of all unsatisfiable CNFs F ; here and
throughout, |F | denotes the number of clauses in F .

Thus a natural strategy to approach the NP versus co-NP problem, and hence,

also the P versus NP problem is, by analogy with research in circuit complexity,

to investigate more and more powerful proof systems and show that some unsat-

isfiable CNFs require exponentially long proofs. In this and the next chapter we

will demonstrate this (currently very active) line of research on some basic proof

systems, like resolution and cutting planes proofs.

483



484 18 Resolution

The areas of circuits complexity and proof complexity look similar, at least

syntactically: in proof complexity one also starts from some “simplest” objects

(axioms) and applies local operations to obtain a result. But there is a big difference:

the number of “objects of interest” differ drastically between the two settings.

There are doubly exponentially number of boolean functions of n variables, but

only exponentially many CNFs of length n. Thus a counting argument shows that

some functions require circuits of exponential size (see Theorem ??), but no similar

argument can exist to show that some CNFs require exponential size proofs. This is

why even existence results of hard CNFs for strong proof systems are interesting in

this setting as well.

The most basic proof system, called the Frege system, puts no restriction on the

formulae manipulated by the proof. It has one derivation rule, called the cut rule:

from A ∨ C and B ∨ ¬C one can derive A ∨ B in one step. Adding any other

sound rule turns out to have little effect on the length of proofs in this system.

The major open problem in proof complexity is to find any tautology that has no

polynomial-size proof in the Frege system. As lower bounds for Frege are hard to

obtain, we turn to subsystems of Frege which are interesting and natural. One of the

simplest and most important such subsystems is called Resolution. This subsystem
is used by most propositional, as well as first order automated theorem provers.

18.1 Resolution refutation proofs

The resolution proof system was introduced by Blake (1937) and has been made

popular as a theorem-proving technique by Davis and Putnam (1960) and Robin-

son (1965).

Let F be a set of clauses and suppose that F is not satisfiable. A resolution
refutation proof (or simply, a resolution proof ) for F is a sequence of clauses R =
(C1, . . . , Ct) where Ct = ∅ is the empty clause and each intermediate clause Ci

either belongs toF or is derived from some previous two clauses using the following

resolution rule:
A ∨ xi B ∨ ¬xi

A ∨B
(18.1)

meaning that

the clause A ∨B can be inferred from two clauses A ∨ xi and B ∨ ¬xi.

In this case one also says that the variable xi was resolved to derive the clause

A ∨B; here A and B are arbitrary ORs of literals. The size of such a proof is equal

to the total number t of clauses in the derivation. It is often useful to describe a

resolution proof as a directed acyclic graph (see Fig. ??). If this graph is a tree, then

one speaks about a tree-like resolution proof. For technical reasons the following

“redundant” rule, the weakening rule, is also allowed: a clause A∨B can be inferred

from A.
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y ∨ ¬z x ∨ ¬y z ∨ ¬x ¬x ∨ ¬y ∨ ¬z x ∨ y ∨ z

¬x ∨ ¬y

¬y

¬z x ∨ z

¬x x

∅

Fig. 18.1 A resolution refutation proof of an unsatisfiable CNF formula F . Leaves (fanin-0 nodes)

are clauses of F , and each inner node is a clause obtained from previous ones by the resolution

rule. This proof is not tree-like.

Observe that the resolution rule is sound: if some assignment (of constants to

all variables) falsifies the derived clause A ∨B, then it must falsify at least one of

the clauses A ∨ xi and B ∨ ¬xi from which it was derived. It is also known (and

easy to show, see Exercise ??) that Resolution is complete: every unsatisfiable set of

clauses has a resolution refutation proof.

Interestingly, resolution proofs are related to the model of computation we

already considered above—branching programs.

18.2 Resolution and branching programs

Let F be an unsatisfiable CNF formula, that is, for every input a ∈ {0, 1}n
there is

a clause C ∈ F for which C(a) = 0. The search problem for F is, given a, to find
such a clause; there may be several such clauses—the goal is to find at least one

of them. Such a problem can be solved by a branching program with at most n|F |
nodes. Namely, given an assignment a ∈ {0, 1}n

, we can test whether all literals of

the first clause in F are falsified by a. If yes, then we reach a leaf labeled by this

clause. If not, then test whether all literals of the second clause in F are falsified

by a, etc. Note that the resulting branching program is not read-once: if a variable

appears in k clauses, then it will be retested k times.

Of course, the search problem for any unsatisfiable CNF formula can be solved

by a decision tree, and hence, by a read-once branching program. But the size (total

number of nodes) may be then exponential in the number n of variables.

Let SR(F ) be the smallest size of a resolution refutation of F , and BP(F ) the
smallest size of (the number of nodes in) a deterministic branching program solving
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the search problem for F . It is not difficult to show that SR(F ) ≥ BP(F ) (see
the first part of the proof of Theorem ?? below). But the gap between these two

measures may be exponential: as mentioned above, any unsatisfiable CNF F has a

trivial branching program of size n|F | whereas, as we will show in the next section,

some CNFs require SR(F ) exponential in their variables.

The first exponential lower bounds for resolution proofs were obtained long

ago by Tseitin (1970) under an additional restriction that along every path every

particular variable xi can be resolved at most once. He called this model regular
resolution. It turns out that this model exactly coincides(!) with the familiar model

of read-once branching programs.

Let 1-SR(F ) be the smallest size of a regular resolution refutation proof for F ,
and 1-BP(F ) the smallest size of a deterministic read-once branching program

solving the search problem for F .
The following theorem was used implicitly by various authors and explicitly

noted in Lovász et al. (1995).

18.1 Theorem For every unsatisfiable CNF formula F , we have

SR(F ) ≥ BP(F ) and 1-SR(F ) = 1-BP(F ) .

Proof. Resolution proofs ⇒ branching programs: To show that SR(F ) ≥ BP(F )
and 1-SR(F ) ≥ 1-BP(F ), let R be a resolution refutation proof for F . Construct a

branching program as follows.

• The nodes of the program are clauses C of R.

• The source node is the last clause in R (the empty one), the sinks are the initial

clauses from F .
• Each non-sink node C has fanout 2 and the two edges directed from C to the

two clauses C0 and C1 from which this clause is derived by one application of

the resolution rule. If the resolved variable of this inference is xi then the edge

going to the clause containing xi is labeled by the test xi = 0, and the edge

going to the clause containing ¬xi is labeled by the test xi = 1 (see Fig. ??).

It is straightforward to verify that all clauses on a path determined by an input

a ∈ {0, 1}n
are falsified by a, and hence, the last clause of F reached by this path

is also falsified by a. That is, the obtained branching program solves the search

problem, and is read-once if R was regular.

Read-once branching programs ⇒ regular resolution proofs: It remains to prove

the more interesting direction that 1-SR(F ) ≤ 1-BP(F ). Let P be a deterministic

read-once branching program (1-b.p.) which solves the search problem for F . That

is, for every input a ∈ {0, 1}n
the (unique) computation path on a leads to a clause

C ∈ F such that C(a) = 0. We will associate a clause to every node of P such that

P becomes a graph of a resolution refutation for F . A vertex v labeled by a variable
will be associated with a clause Cv with the property that

Cv(a) = 0 for every input a ∈ {0, 1}n
that reaches v. (18.2)
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y ∨ ¬z x ∨ ¬y z ∨ ¬x ¬x ∨ ¬y ∨ ¬z x ∨ y ∨ z

¬x ∨ ¬y

¬y

¬z x ∨ z

¬x x

source node

z=0 z=1

x=1

x=0

y=0

y=1

y=0

y=1

z=1

z=0

z=0z=1

x=1 x=0

Fig. 18.2 A branching program obtained from the resolution proof given in Fig. ??: just reverse
the direction of arcs and label them accordingly. The program is not read-once.

We associate clauses inductively from the sinks backwards. If v is a sink then let

Cv be the clause from F labeling this sink in the program P .
Now assume that the node v of P corresponds to a variable xi and has edges

(v, u0) for xi = 0 and (v, u1) for xi = 1. By induction we may assume that u0 and

u1 are labeled by clauses C0 and C1 satisfying (??).

18.2 Claim C0 does not contain ¬xi and C1 does not contain xi.

Proof. Otherwise, if C0 contains ¬xi, take an input a with ai = 0 that reaches v.
Such an input exists since by the read-once assumption on P , the i-th bit xi was not

asked along any path from the source to v. The input a can reach u0 and it satisfies

C0, in contradiction to the inductive hypothesis. The proof in the case when C1
contains xi is similar. ⊓⊔

We conclude that

(i) either C0 = (xi ∨A) and C1 = (¬xi ∨B),
(ii) or one of C0 and C1 does not contain xi,¬xi at all.

In the first case label v with Cv = A∨B. In the second case label v with the clause

that does not contain xi,¬xi. (If both clauses do not contain xi,¬xi choose any of

them.)

It is easy to see that the inductive hypothesis (??) holds forCv . Indeed, ifCv were

satisfied by some (partial) input a reaching the node v then, due to the read-once

property, this input could be extended to two inputs a0 and a1 by setting the i-th
bit to 0 and to 1. But Cv(a) = 1 implies that eitherA(a) = 1 orB(a) = 1 (or both).

Hence, we would have that either C0(a1) = 1 or C1(a1) = 1, contradicting the

inductive hypothesis (??).
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Finally, the clause associated with the source node must be the empty clause,

just because every input reaches it. Thus the obtained labeled digraph represents

a regular resolution derivation for F (possibly with some redundant steps that

correspond to the second case (ii) in the labeling above. ⊓⊔

We thus have a bridge between resolution refutations and branching programs:

• Every resolution refutation is a restricted branching program.

• Every regular resolution refutation is just a read-once branching program.

• Every tree-like resolution refutation is just a decision tree.

The only difference is that now these branching programs solve search problems,

not just decision problems.

18.3 Remark Note that Claim ?? holds for any deterministic branching program, not

just for read-once programs: it is enough that P is a minimal program. Indeed, in

this case a node must be reachable by (at least) two inputs a and b such that ai = 0
and bi = 1, for otherwise the test on the i-th bit made at the node v would be

redundant. However, the fact that the branching program is read-once was essential

to show that the constructed clause Cv satisfies (??).
To see this, let C0 = (xi ∨A), C1 = (¬xi ∨B) and Cv = A ∨B. Suppose that

the node v is reached by two inputs a and b such that ai = 0 and bi = 1. Assume

that the bit xi was tested along both paths at least once; hence, the paths must

diverge after the test on xi at the node v, that is, a cannot reach C1, and b cannot
reach C0. Assume now that A(a) = B(b) = 0 but A(b) = 1 or B(a) = 1. Then
C0(a) = 0 and C1(b) = 0 but Cv(a) = 1 or Cv(b) = 1. In the read-once case such

a situation cannot occur because then every (single!) computation reaching a node

v can be extended in both directions.

18.3 Lower bounds for tree-like resolution

Let F be an unsatisfiable CNF formula. A resolution proof for F is tree-like if its
underlying graph is a tree. That is, tree-like resolution proof is a special case of reg-

ular resolution proofs; the corresponding branching program for the corresponding

search problem is then just a decision tree. By the size |T | of a tree-like resolution
proof T we will mean the number of leaves in the corresponding decision tree. Since

the search problem for any unsatisfiable CNF formula can be solved by a decision

tree, Theorem ?? implies that any such CNF formula has a tree-like resolution

proof, and hence, also regular resolution proof. The question, however, is: how large

tree-like proofs must be?

Lower bounds on the size of tree-like resolution can be proved using the following

game-theoretic argument proposed by Pudlák and Impagliazzo (2000). There are

two players, Prover and Delayer. The goal of the Prover is to construct a (partial)

assignment falsifying at least one clause of F . The goal of Delayer is to delay this

happening as long as possible. The game proceeds in rounds. In each round
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• Prover suggests a variable xi to be set in this round, and

• Delayer either chooses a value 0 or 1 for xi or leaves the choice to the Prover.

• In this last case, Delayer scores one point, but the Prover can then choose the

value of xi.

The game is over when one of the clauses is falsified by the obtained (partial)

assignment, that is, when all the literals in the clause are assigned 0.
Pudlák and Impagliazzo observed that, if the Delayer has a strategy which scores

r points, then any tree-like resolution refutation proof for F has size at least 2r
.

This holds because, given a tree-like derivation, the Prover can use the following

strategy: if the Delayer leaves the choice to the Prover, then the Prover chooses an

assignment resulting into a smaller of the two subtrees.

This result can be easily extended to the case of asymmetric games, where the

Delayer earns different number of points depending on whether the prover sets

xi = 0 or xi = 1. As before, the game proceeds in rounds. In each round

• Prover suggests a variable xi to be set in this round, and

• Delayer either chooses a value 0 or 1 for xi or leaves the choice to the Prover

• The number of points earned by the Delayer is

– 0 if Delayer chooses the value for xi,

– log2 a if Prover sets xi to 0, and
– log2 b if Prover sets xi to 1.

The only requirement is that 1/a+ 1/b = 1; in this case we say that (a, b) is a legal
scoring pair, and call this game the (a, b)-game. Hence, the symmetric game is one

with a = b = 2.

18.4 Lemma Let F be an unsatisfiable CNF formula F . If Delayer can earn r points
in some asymmetric game on F , then any tree-like resolution refutation proof for F
has size at least 2r .

Proof. We will prove the lemma in the converse direction: if F has a tree-like

resolution refutation proof T with |T | leaves then, in any (a, b) game for F , the
Prover has a strategy under which the Delayer can earn at most log |T | points.

Consider an arbitrary (a, b)-game on F , and let αi be the partial assignment

constructed after i rounds of the game (the i-th prefix of α). By pi we denote the

number of points that Delayer has earned after i rounds, and let Ti be the sub-tree

of T which has as its root the node reached in T along the path specified by αi.

Our goal is to prove, by induction on i, that

|Ti| ≤ |T |
2pi

. (18.3)

The desired inequality pm ≤ log |T | then follows, because Tm consists of just one

clause falsified by α.
So it remains to prove the claim (??). At the beginning of the game (i = 0) we

have p0 = 0 and T0 = T . Therefore the claim trivially holds.
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For the inductive step, assume that the claim holds after i rounds and Prover

asks for the value of the variable x in round i+ 1. The variable Prover asks about
is determined by T : it is the root of the subtree reached after the i-th round.

It the Delayer chooses the value, then pi+1 = pi and (??) remains true after the

(i+ 1)-th round. Otherwise, let T 0
i be the 0-subtree of Ti, and T

1
i the 1-subtree of

Ti. Since 1/a+ 1/b = 1, we have that

|T 0
i | + |T 1

i | = |Ti| = |Ti|
a

+ |Ti|
b
.

If the Delayer defers the choice to the Prover, then the Prover can use the following

“take the smaller tree” strategy: set x = 0 if |T 0
i | ≤ |Ti|/a, and set x = 1 otherwise;

in this last case we have that |T 1
i | ≤ |Ti|/b. Thus if Prover’s choice is x = 0, then

we get

|Ti+1| ≤ |Ti|
a

≤ |T |
a2pi

= |T |
2pi+log a

= |T |
2pi+1

,

as desired. Since the same holds (with a replaced by b) if Prover’s choice is x = 1,
we are done. ⊓⊔

We now apply this lemma to prove that the unsatisfiable CNF corresponding to

the pigeonhole principle (and even to its “weak” version) require tree-like resolution

refutation proofs of exponential size.

The weak pigeonhole principle asserts that ifm > n thenm pigeons cannot sit

in n holes so that every pigeon is alone in its hole.
*
In terms of 0-1 matrices, this

principle asserts that, ifm > n then nom×n 0-1 matrix can simultaneously satisfy

the following two conditions:

1. Every row has at least one 1.
2. Every column has at most one 1.

To write this principle as an unsatisfiable CNF formula, we introduce boolean

variables xi,j interpreted as:

xi,j = 1 if and only if the i-th pigeon sits in the j-th hole.

Let PHP
m
n denote the CNF consisting of the following clauses:

• Pigeon Axioms: each of them pigeon sits in at least one of n holes:

xi,1 ∨ xi,2 ∨ · · · ∨ xi,n for all i = 1, . . . ,m .

• Hole Axioms: no two pigeons sit in one hole:

¬xi1,j ∨ ¬xi2,j for all i1 ̸= i2 and j = 1, . . . , n .

*

The word “weak” is used here to stress that the number m of pigeons may be arbitrarily large.

The larger m is, the “more obvious” the principle is, and hence, its proof might be shorter.
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Hence, truth assignments in this case are booleanm× n matrices α. Such a matrix

can satisfy all pigeon axioms iff every row has at least one 1, whereas it can satisfy

all hole axioms iff every column has at most one 1. Sincem ≥ n+ 1, no assignment

can satisfy pigeon axioms and hole axioms at the same time. So PHP
m
n is indeed an

unsatisfiable CNF.

18.5 Theorem (Danchev–Riis 2001) For anym > n, any tree-like resolution refuta-
tion proof of PHPm

n has size nΩ(n).

Note that the lower bound does not depend on the numberm of pigeons—it may

be arbitrarily large! A smaller (but also exponential) lower bound of the form 2Ω(n)

for an arbitrary number of pigeons was proved earlier by Buss and Pitassi (1998).

Proof. (Due to Beyersdorff, Galesi and Lauria 2010) By Lemma ??, we only have to

define an appropriate scoring pair (a, b) for which the Delayer has a strategy giving

her many points in the (a, b) game on PHP
m
n . We first define the Delayer’s strategy

for an arbitrary (a, b) game, and then choose a and b so that to maximize the total

score. By Lemma ??, it is enough to show that the Delayer can earn Ω(n logn)
points.

The goal of the Delayer is to delay an appearance of two 1s in a column and of an

all-0 row as long as possible. So if Prover asks for a value of xi,j , then the Delayer

is only then forced to set it to 0 if the j-th column already has a 1. Otherwise it is
beneficial for the Delayer to set xi,j = 1 to avoid an all-0 row. But at the same time,

it is beneficial for her not to set too many 1s in a row to avoid two 1s in a column.

Intuitively, it would be the best for the Delayer to set just one 1 per row. Moreover,

she should not wait too long: if the i-th row already has many 0s, she should try to

set a 1 in it, for otherwise she could be forced (by many columns already having a

1) to set the remaining variables in this row to 0s
To formally describe the strategy of the Delayer, let α be a partial assignment

to the variables X = {xi,j | i ∈ [m], j ∈ [n]}. For pigeon i, let Ji(α) be the set of
“excluded free holes” for the pigeon i. These are the holes which are still free (not

occupied by any pigeon) but are explicitly excluded for pigeon i by α:

Ji(α) := {j ∈ [n] | α(xi,j) = 0 and α(xi′,j) ̸= 1 for all i′ ∈ [m]} .

If Prover asks for a value of xi,j , then the Delayer uses the following strategy

(see Fig. ??):

α(xi,j) :=


0 if either the i-th row or the j-th column already has a 1;
1 if |Ji(α)| ≥ n/2 and there is no 1 in the j-th column yet;

∗ otherwise.

Here ∗ means the decision is deferred to the Prover.

If Delayer uses this strategy, then none of the hole clauses ¬xi1,j ∨ ¬xi2,j from

PHP
m
n will be falsified in the game. Therefore, a contradiction (a falsified clause)

will be a pigeon clause xi,1 ∨ · · · ∨ xi,n. That is, the resulting assignment α sets all

n variables in this clause to zero (pigeon i has no hole).
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Fig. 18.3 The strategy of the Delayer: she sets xi,j = 1 if |Ji| ≥ n/2 and there is no 1 in the j-th
column, and sets xi,j = 0 if either the i-th row or the j-th column already has a 1. Otherwise,
she defers the decision to the Prover.

But after the number |Ji(α)| of excluded free holes for pigeon i reaches the
threshold n/2, Delayer will not leave the choice to Prover. Instead, Delayer will

try to place pigeon i into some hole. Since this hasn’t happened, the Delayer was

forced to set the remaining n/2 variables in the i-th row to 0. Since the Delayer is
only then forced to set xi,j to 0 when the j-th column already has a 1, there must

already be a 1 in each of these n/2 columns. Moreover, no two of these 1s can be in

one row, since Delayers strategy forbids this: she always sets a “dangerous” variable

(with a 1 in the same row or column) to 0. Therefore, at the end of the game at least

n/2 variables must be set to 1, and no two of these 1s lie in one row or one column.

We assume w.l.o.g. that these are the variables xi,ji
for i = 1, . . . , n/2. Let us check

how many points Delayer earns in this game. We calculate the points separately

for each pigeon i = 1, . . . , n/2.

Case 1: Delayer sets xi,ji
to 1. Then pigeon i was not assigned to a hole yet, and

|Ji(α)| ≥ n/2. Hence, there must be a set J of |J | ≥ n/2 0-positions in the i-th
row of α. Moreover, all these positions must be already set to 0 by the Prover (not

by the Delayer) because none of the columns j ∈ J can have a 1, by the definition

of Ji(α). Thus before Delayer sets α(xi,ji
) = 1, she has already earned points for

all |J | ≥ n/2 previous 0-settings by the Prover. That is, in this case Delayer earns

at least (n/2) log a points.

Case 2: Player sets xi,ji
to 1. In this case Delayer earns log b points.

Thus, the Delayer earns either (n/4) log b or (n2/8) log a points. To maximize

the score, we set b = n/ logn and

a = b

b− 1 = 1 + 1
b− 1 = Ω

(
e1/(b−1)) = 2

Ω

(
log n

n

)
.

Since 1/a+ 1/b = (b− 1)/b+ 1/b = 1, this is a legal scoring, and Delayer earns

Ω(n logn) points, as desired. ⊓⊔
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18.4 Tree-like versus regular resolution

A partial ordering of A is a binary relation a → b which is antisymmetric and

transitive. That is, a → b implies ¬(b → a), and a → b and b → c implies a → c.
An element a ∈ A is minimal if it has no predecessor, that is, if ¬(b → a) for
all b ∈ A, b ̸= a. It is clear that in each partial order there must be at least one

minimal element. We consider the CNF formula GTn expressing the negation of

this property. For this we take A = {1, . . . , n} and associate a boolean variable xij

to each pair (i, j) of elements. We interpret these variables as xij = 1 if and only if

i → j.
The CNF formulaGTn consists of three sets of clauses. The first two sets consist

of all clauses ¬xij ∨¬xjk ∨xik and ¬xij ∨¬xji for all distinct i, j, k. These clauses
ensure that we have a partial ordering. The third set consists of n clauses

Cn(j) = x1j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xn,j , j = 1, . . . , n

stating that every element j has at least one predecessor (no minimal element).

In terms of graphs, the CNF formula GTn is a negation of the property that if a

directed graph is transitive and has no loops and no cycles of size two, then there

must be at least one source node, that is, a node of fanin 0.
It was conjectured that GTn requires resolution refutation proofs of exponential

size. And indeed, it was shown by Bonet and Galesi (1999) that tree-like refutations
for this CNF must be of exponential size. However, Stålmark (1996) showed that

this CNF has a small regular resolution refutation.

18.6 Theorem (Stålmark 1996) The CNF formula GTn has a regular resolution refu-
tation of polynomial size.

Proof. We will construct the desired refutation proof recursively. Our initial clauses

(axioms) areA(i, j, k) = ¬xij ∨¬xjk ∨xik ,B(i, j) = ¬xij ∨¬xji, and the clauses

Cn(j) for all j = 1, . . . , n. We introduce auxiliary clauses

Cm(j) = x1j ∨ · · · ∨ xj−1,j ∨ xj+1,j ∨ · · · ∨ xm,j

for allm = 2, . . . , n, stating that some element i ∈ {1, . . . ,m} is smaller than j.
The idea of the proof is to obtain clauses of the form Cm(j) fromm = n down to

m = 2 in the following way:

Cn(1) Cn(2) . . . Cn(n− 1) Cn(n)
Cn−1(1) Cn−1(2) . . . Cn−1(n− 1)

...
C2(1) C2(2)

Note that the first (top) row corresponds to our initial CNF formula GTn, the

second to GTn−1, and so on. For eachm, clauses Cm(1), . . . , Cm(m) are obtained
in parallel. Each Cm(j) is obtained using the clauses Cm+1(j) and Cm+1(m+ 1)
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Cm+1(j) A(1, m + 1, j)

Cm(j) ∨ ¬x1,m+1 Cm+1(m + 1) Cm+1(j) A(2, m + 1, j)

Cm(j) ∨ x2,m+1 ∨ · · · ∨ xm,m+1 Cm(j) ∨ ¬x2,m+1

Cm(j) ∨ x3,m+1 ∨ · · · ∨ xm,m+1

...

Cm(j) ∨ xj,m+1 ∨ xm,m+1

Cm+1(j) A(m, m + 1, j)

Cm(j) ∨ ¬xm,m+1

Cm(j) ∨ xj,m

Cm+1(j) B(m + 1, j)

Cm(j) ∨ ¬xj,m+1

Cm(j)

Fig. 18.4 Resolution derivation of Cm(j), for j ̸= m + 1. Note that xj,m+1 can not be deleted in

the upper part of the derivation but is removed in the last step of the derivation. Note also that

the derivation is not tree-like: the same clause Cm+1(j) is used many times.

derived in the previous step, and the initial clauses (axioms)A(1,m+1, j), A(2,m+
1, j), . . . , A(m,m+ 1, j) and B(m+ 1, j) (see Fig. ??). At the end we easily derive

the empty clause from C2(1), C2(2) and B(2, 1). ⊓⊔

18.7 Remark Alekhnovich et al. (2007) proved that an appropriate modification

GT ′
n of GTn requires regular refutations of exponential size, but has (non-regular)

resolution refutations of polynomial size. More precisely, if S denotes the smallest

size of a non-regular resolution refutation of GT ′
n, and R the smallest size of a

regular resolution refutation of GT ′
n, then logR = Ω( 3

√
S). Using different CNF

formulas, Urquhart (2011) obtained even larger gap: logR = Ω(S/polylog(S)).
Thus, we have the following separations, where “A ≪ B” stands for “proof system

A is exponentially weaker that B”:

tree-like resolution ≪ regular resolution ≪ general resolution.
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18.5 Lower bounds for general resolution

General, non-tree-like resolution proofs are much harder to analyze. The first

exponential lower bound for the size of such proofs was proved by Haken (1985).

18.8 Theorem (Haken 1985) Any resolution refutation proof of PHPn
n−1 requires size

2Ω(n).

Proof. (Due to Beame and Pitassi 1996) The proof is by contradiction. We define an

appropriate notion of a “fat” clause and show two things:

1. If PHP
n
n−1 has a short resolution proof, then it is possible to set some variables

to constants so that the resulting proof is a refutation of PHP
m
m−1 for a large

enoughm, and has no fat clauses.

2. If m is large enough, then every refutation proof for PHP
m
m−1 must have at

least one fat clause.

This implies that PHP
n
n−1 cannot have short resolution proofs.

In the case of the CNF formula PHP
n
n−1 truth assignments α are n by n − 1

boolean matrices. We say that a truth assignment α is i-critical if

• the i-th row of α is the only all-0 row, and

• every column has exactly one 1.

Note that each such assignment α is “barely unsatisfying”: it satisfies all hole axioms

¬xi1,j ∨ ¬xi2,j as well as the axioms of all but the i-th pigeon. That is, the only

axiom it falsifies is the pigeon axiom Ci = xi,1 ∨ xi,2 ∨ · · · ∨ xi,n−1. Thus an
i-critical assignment corresponds to an assignment of pigeons to holes such that

n − 1 of the pigeons are mapped to n − 1 different holes, but the i-th pigeon is

mapped to no hole at all. Call an assignment α critical if it is i-critical for some

1 ≤ i ≤ m.

The properties of critical truth assignments make it convenient to convert each

clause C to a positive clause C+
which is satisfied by precisely the same set of

critical assignments as C . More precisely to produce C+
, we replace each negated

literal ¬xi,j with the OR of all variables in the j-th column, except the i-th one:

Xi,j = x1,j ∨ · · · ∨ xi−1,j ∨ xi+1,j ∨ · · · ∨ xn,j .

Note that the monotone version C+
of every hole axiom C = ¬xi1,j ∨ ¬xi2,j is

just the OR of all variables in the j-th column, and hence, is satisfied by any critical

assignment.

18.9 Claim For every critical truth assignment α, C+(α) = C(α).

Proof. Suppose there is a critical assignment α such that C+(α) ̸= C(α). This
could only happen if C contains a literal ¬xi,j such that ¬xi,j(α) ̸= Xi,j(α). But
this is impossible, since α has precisely one 1 in the j-th column. ⊓⊔
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Fig. 18.5 Assignment α′
is obtained from α by interchanging the i-th and j-th rows.

Associate with each clause in a refutation of PHP
n
n−1 the set

Pigeon(C) = {i | there is some i-critical assignment α such that C(α) = 0}

of pigeons that are “bad” for this clause: some critical assignment of these pigeons

falsifies C .
The width, w(C), of a clause is the number of literals in it.

18.10 Claim Every resolution refutation of PHP
n
n−1 must have a clause C such that

w(C+) ≥ n2/9.

Proof. Define the weight of a clause C as µ(C) := |Pigeon(C)|. By the definition,

each hole axiom has weight 0, each pigeon axiom has weight 1, and the last (empty)

clause has weight n since it is falsified by any truth assignment. Moreover, this

weight measure is subadditive: if a clause C is derived from clauses A and B, then

µ(C) ≤ µ(A) + µ(B). This holds because every assignment (even a non-critical

one) falsifying C must falsify at least one of the clauses A and B. Therefore, if C is

the first clause in the proof
*
with µ(C) > n/3, we must have

n/3 < µ(C) ≤ 2n/3 . (18.4)

Fix such a “medium heavy” clause C and let s = µ(C) be its weight. Since n/3 <
s ≤ 2n/3, it is enough to show that the positive version C+

of this clause must

have w(C+) ≥ s(n− s) distinct variables.
Fix some i ∈ Pigeon(C) and let α be an i-critical truth assignment withC(α) =

0. For each j ̸∈ Pigeon(C), define the j-critical assignment α′
, obtained from α by

toggling rows i and j. That is, if α maps the j-th pigeon to the k-th hole, then α′

maps the i-th pigeon to this hole (see Fig. ??).
Now C(α′) = 1 since j ̸∈ Pigeon(C). By Claim ??, we have that C+(α) = 0

and C+(α′) = 1. Since the assignments α,α′
differ only in the variables xi,k and

xj,k , this can only happen when C+
contains the variable xi,k .

Running the same argument over all n − s pigeons j ̸∈ Pigeon(C) (using

the same α), it follows that C+
must contain at least n − s of the variables

xi,1, . . . , xi,n−1 corresponding to the i-th pigeon. Repeating the argument for

*

Recall that a proof is a sequence of clauses. Alternatively, one can apply Lemma ??.
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Fig. 18.6 Setting of constants to eliminate clauses containing xi,j ; non-shaded positions are not

set. In this way PHP
n
n−1 is reduced to PHP

n−1
n−2.

all pigeons i ∈ Pigeon(C) shows that C+
contains at least s(n− s) variables, as

claimed. ⊓⊔

We can now finish the proof of Theorem ?? as follows. Let R be a resolution

refutation proof of PHP
n
n−1. Let a and b ≥ 2 be positive constants (to be specified

later). For the sake of contradiction, assume that

|R| < en/a .

Together with R we consider the set R+ = {C+ | C ∈ R} of positive versions

of clauses in R. Say that a clause is fat if it contains at least n2/b variables. Let S
be the total number of fat clauses in R+

. Since each fat clause has at least a 1/b
fraction of all the variables, there must be (by the pigeonhole principle!) a variable

xi,j which occurs in at least S/b of fat clauses in R+
.

Set this “popular” variable to 1, and at the same time set to 0 all the variables

xi,j′ and xi′,j for all j′ ̸= j, i′ ̸= i (see Fig. ??). After this setting, all the clauses
containing xi,j will disappear from R+

(they all get the value 1) and the variables

which are set to 0 will disappear from the remaining clauses.

Applying this restriction to the entire proof R leaves us with a refutation proof

R1 for PHP
n−1
n−2, where the number of fat clauses in R+

1 is at most S(1 − 1/b).
Applying this argument iteratively d = b lnS < (b/a)n times, we are guaranteed

to have knocked out all fat clauses, because

S(1 − 1/b)d < eln S−d/b = 1 .

Thus we are left with a refutation proof for PHP
m
m−1, where

m = n− d ≥ (1 − b/a)n ,

andwherew(C+) < n2/b for all its clauses. But Claim ?? implies that any refutation

proof of PHP
m
m−1 must contain a clause C for which

n2/b > w(C+) ≥ m2/9 ≥ (1 − b/a)2n2/9 .
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To get the desired contradiction, it is enough to choose the parameters a and b so that
(1 − b/a)2 ≥ 9/b which, in particular, is the case for b = 16 and a = 4b = 64. ⊓⊔

The reader may wonder: where in this proof did we used the fact that the clauses

in a refutation are derived using only resolution and weakening rules? The same

argument seems to work for more general derivations. And this is indeed the case:

the only important thing was that the formulas in such a derivation are clauses—this

allowed us to kill off a clause by setting just one variable to a constant.

Actually, a closer look at the proof shows that it also works for a more general

derivation rule, called semantic derivation rule. This rule allows to derive a clause

C from clauses C1, . . . , Ck if these clauses “semantically imply” C in the following

sense: for all α ∈ {0, 1}n
,

C1(α) = 1, . . . , Ck(α) = 1 implies Cj(α) = 1 .

A semantic proof of an unsatisfiable CNF F is a sequence R = (C1, . . . , Ct) of
clauses such thatCt = 0 is the empty clause and eachCj is either an axiom (belongs

to F ) or is obtained from k or fewer previous clauses (already derived or belonging

to F ) by one application of the semantic rule.

The only difference is that now instead of (??) we will have (cf. Lemma ??):

n

k + 1 < µ(C) ≤ kn

k + 1 ,

which results in a lower bound w(C+) ≥ n2/(k + 1)2
in Claim ??. The rest is the

same with constants b := (k + 1)2
and a := (k + 1)3

. The resulting lower bound

is then en/(k+1)2
, which is super-polynomial as long as k ≤

√
n/ logn.

18.6 Size versus width

We have already seen that “fat” clauses—those whose width (number of literals)

exceeds some given threshold value—play a crucial role in trying to show that the

size of a resolution proof (= the total number of lines in it) must be large. We are

now going to show that this is a general phenomenon, not just an accident: if any

resolution proof for an unsatisfiable CNF formula F must contain at least one fat

clause, then F cannot have a short resolution proof.

The width of a clause C is just the number of literals in it. If F is a set of clauses

then its width w(F ) is the maximum width of its clause. Recall that each resolution

refutation R is also a set (more precisely, a sequence) of clauses. Hence, the width

of a refutation is also the maximum width of a clause participating in it.

Now let F be an unsatisfiable CNF of n variables. Define its resolution refutation
width wR(F ) as the minimum width of a resolution refutation of F . The resolution
refutation size SR(F ) is, as before, the minimum number of clauses in a resolution

refutation of F . That is,
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wR(F ) = min{w(R) : R is a resolution refutation proof of F}

and

SR(F ) = min{|R| : R is a resolution refutation proof of F} .

Note that refutation proofs R achieving wR(F ) and SR(F ) may be different!

Let also ST (F ) denote the minimum number of clauses in a tree-like resolution
refutation of F .

What is the relation between these parameters? If we use all clauses of the CNF

F in its refutation, then wR(F ) ≥ w(F ). But this is not true in general: it may

happen that not all clauses of F are used in the refutation of F .
The relation SR(F ) ≤ (2n + 1)wR(F )

between proof-size and proof-width is

easy to see: since we only have 2n literals, the number of all possible clauses of

width k does not exceed (2n+ 1)k
. Much more interesting is the following lower

bound on proof-size in terms of proof-width: only CNF formulas having narrow

proofs can be proved in a short time!

18.11 Theorem (Ben-Sasson–Wigderson 2001) For any unsatisfiable k-CNF formula
F of n variables,

logSR(F ) ≥ (wR(F ) − k)2

16n (18.5)

and

logST (F ) ≥ wR(F ) − k . (18.6)

For the proof of this theorem we need a concept of a restriction of CNFs and

of refutation proofs. Let F be some set of clauses (think of F as a CNF or as a

refutation proof). Let x be some of its literals. If we set this literal to 0 and to 1,
then we obtain two sets of clauses:

• Fx=0 is F with all clauses containing ¬x removed from F (they get value 1)
and literal x removed from all the remaining clauses of F (it gets value 0);

• Fx=1 is F with all clauses containing x removed from F and literal ¬x removed

from all the remaining clauses of F .

Note that, if F was an unsatisfiable CNF, then both CNFs Fx=0 and Fx=1 remain

unsatisfiable. Moreover, if R was a resolution refutation proof of F and a ∈ {0, 1},
then Rx=a is also a resolution refutation proof of Fx=a. Indeed, if at some step in R
a literal x is resolved using the resolution rule, then this step in Rx=a corresponds

to an application of the weakening rule:

A ∨ x B ∨ ¬x
A ∨B

7→ A

A ∨B
or

B

A ∨B
.

18.12 Lemma Let F be an unsatisfiable k-CNF formula. If wR(Fx=1) ≤ w − 1 and
wR(Fx=0) ≤ w, then wR(F ) ≤ max{w, k}.
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Proof. The idea is to combine refutations for Fx=1 and for Fx=0 into one refutation

proof for F . First we can deduce ¬x from Fx=1 using clauses of width at most

w. To do this, follow closely the deduction of the empty clause from Fx=1, which
uses clauses of width at most w − 1, and add the literal ¬x to every clause in that

deduction. Let R be the resulting deduction of ¬x from Fx=1. Now, from ¬x and F
we can deduce Fx=0 by using the resolution rule: just resolve ¬x with each clause

of F containing x to get Fx=0. This step does not introduce any clauses of width

more than k. Finally, deduce the empty clause from Fx=0 using clauses of width at

most w. ⊓⊔

Now letW be a parameter (to be specified later), and call a clause fat if it has
width larger thanW . Set also

a :=
(

1 − W

2n

)−1
≥ eW/2n .

18.13 Lemma If a k-CNF F has a refutation that contains fewer than ab fat clauses
then wR(F ) ≤ W + b+ k.

Proof. We prove this by induction on b and n. The base case b = 0 is trivial, since

then we have no fat clauses at all implying that wR(F ) ≤ max{W,k} ≤ W + k.
Now assume that the claim holds for all smaller values of n and b. Take a

resolution refutationR ofF using< ab
fat clauses. Since there are atmost 2n literals

and any fat clause contains at leastW of them, an average literal must occur in at

least aW/2n fraction of fat clauses. Choose a literal x that occurs most frequently in

fat clauses and set it to 1. This way we kill off (evaluate to 1) all clauses containing x.
The obtained refutationRx=1 ofFx=1 has fewer than a

b(1− W
2n ) = ab−1

fat clauses.

By induction on b we have wR(Fx=1) ≤ W + (b− 1) + k. On the other hand, since

Fx=0 has one variable fewer, induction on n yields wR(Fx=0) ≤ W + b+ k. The
desired upper bound wR(F ) ≤ W + b+ k now follows from Lemma ??. ⊓⊔

p@plus6p@

Proof of Theorem ??addpunct: Choose b so that ab = SR(F ). Then

b = logSR(F )
log a ≤ 2n logSR(F )

W log(e) ≤ 4n logSR(F )
W

and, by Lemma ??,

wR(F ) ≤ W + 4n logSR(F )
W

+ k .

ChoosingW := 2
√
n logSR(F ) to minimize the right-hand side yields the desired

upper bound wR(F ) ≤ 4
√
n logSR(F ) + k. This finishes the proof of (??). We

leave the proof of (??) as an exercise; hint: as the literal x to be set take the last
literal which is resolved to get the empty clause. ⊓⊔
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endpefalse

18.14 Remark That Theorem ?? cannot be substantially improved was shown by

Bonet and Galesi (1999): there are unsatisfiable k-CNF formulas F (k being a

constant) such that SR(F ) ≤ nO(1)
but wR(F ) = Ω(

√
n).

A general frame to prove that the proof-width wR(F ), and hence, the proof-size

SR(F ) must be large is as follows.

1. Take an arbitrary resolution refutation proof R for F .
2. Define some measure µ(C) of “weight” of its clauses C ∈ R such that

a. the weight of each axiom is small;

b. the last (empty) clause ∅ has large weight, and

c. the measure is subadditive: µ(C) ≤ µ(A) + µ(B) if C is a resolvent of A
and B.

3. Use the subadditivity of µ to find a clause C ∈ R of “intermediate” (large, but

not too large) measure µ(C).
4. Show that any clause of intermediate µ-measure must have many literals.

To achieve these goals one usually takes µ(C) to be the smallest number of axioms

in a “witness” for C . A set A of axioms is a witness for C if every assignment

satisfying all axioms in A satisfies the clause C as well. Then one argues as follows.

The minimality of A implies that, for any axiom A ∈ A, there must exist an

assignment α such that C(α) = 0 but B(α) = 1 for all B ∈ A, B ̸= A. Now
suppose that flipping the i-th bit of α gives us an assignment α′

satisfying all axioms

in A. Since A is a witness for C , we have that C(α′) = 1. But the assignments

α and α′
only differ in the i-th position, implying that the i-th variable xi or its

negation must be present in C . Note that this was the way we argued in the proof

of Haken’s theorem for PHP
n+1
n .

In the next sections we show how this idea works in other situations.

18.7 Tseitin formulas

In this section we discuss a large class of unsatisfiable CNFs whose resolution

refutation proofs have large width. These CNFs formalize the basic property of

graphs: in every graph, the number of vertices of odd degree must be even. This is a
direct consequence of Euler’s theorem stating that the sum of degrees in any graph

is 2 times the number of edges, and hence, is even.

LetG = (V,E) be a connected graph, and f : V → {0, 1} an assignment of bits

0 and 1 to its vertices. Let d(v) denote the degree of a vertex v ∈ V . Associate with

each edge e ∈ E a boolean variable xe. For each vertex v ∈ V , let Av be a CNF

formula with 2d(v)−1
clauses expressing the equality
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Lv :
⊕

e:v∈e

xe = f(v) . (18.7)

For example, the equality x⊕ y ⊕ z = 0 is expressed by a CNF

(¬x ∨ ¬y ∨ ¬z) ∧ (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) .

The Tseitin formula, τ(G, f), is the AND of all these CNF formulas Av , v ∈ V .

Tseitin (1970) used such formulas to prove the first exponential lower bound on the

size of regular resolution.

18.15 Remark If k is the maximal degree of G, then τ(G, f) is a k-CNF formula

with at most n2k−1
clauses and nk/2 variables. Thus, if the degree k is constant,

then τ(G, f) is a k-CNF formula with O(n) clauses and O(n) variables.

The meaning of Tseitin’s formulas is the following. The function f “charges”

some of the vertices, that is, gives them value 1. Each assignment α of constants

0 and 1 to the variables xe defines a subgraph Gα of G. Such an assignment α
satisfies τ(G, f) if and only if exactly the charged vertices have odd degrees in the

subgraph Gα.

It is not difficult to show that if we charge an odd number of vertices, that is,

if

⊕
v∈V f(v) = 1, then τ(G, f) is not satisfiable. Indeed, otherwise the graph G

would have a subgraph in which an odd number of vertices (the charged ones) have

odd degree, contradicting the Euler theorem. Interestingly, the converse also holds.

18.16 Lemma (Tseitin 1970) For a connected graph G = (V,E), the CNF τ(G, f) is
satisfiable if and only if an even number of vertices are charged by f .

Proof. Assume first that f charges an odd number of vertices. We have used Euler’s

theorem to show that then τ(G, f) is unsatisfiable. This can also be shown directly.

Observe that each variable xe with e = {u, v} appears in exactly two equations Lu

and Lv . Hence, if we sum (modulo 2) all equations in (??), the left hand side will

be equal to 0, whereas the right hand side will be 1, a contradiction. Hence, in this

case the system of equations (??) is not satisfiable.
Now assume that f charges an even number of vertices. We have to show that

then τ(G, f) is satisfiable. For this, we make the following simple observation.

(∗) Let α ∈ {0, 1}E
be an assignment, and e1, e2 two edges with a common

endpoint v. Let α′
be obtained by flipping the values of both variables xe1 and

xe2 . Then Lv(α′) = Lv(α).

Now start with an all-0 assignmentα. Ifα satisfies all equalitiesLv , we are done. Ifα
does not satisfy all equalities, then the number of unsatisfied equalities must be even

(the number of vertices vwith f(v) = 1must be even).We take any two vertices u, v
with unsatisfied equalities Lv , Lu and change all bits of α corresponding to edges

on a path from u to v (such a path must exist since G is connected). The obtained

assignment α′
will already satisfy Lv and Lu. Moreover, by our observation (∗),

we have that Lw(α′) = Lw(α) for all vertices w ̸∈ {u, v}. Hence, the number of
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unsatisfied equalities decreases by two. Proceeding in this way we will eventually

reach an assignment satisfying all equalities. ⊓⊔

We now give a general lower bound of the resolution refutation width of un-

satisfiable Tseitin formulas τ(G, f) in terms of one combinatorial characteristic of

the underlying graphs G = (V,E). For a subset S ⊆ V of vertices, let e(S, V \ S)
denote the number of crossing edges with one endpoint lying in S and the other in

V \ S. Define the edge expansion, ex(G), of G as the minimum of e(S, V \ S) over
all subsets S with n/3 ≤ |S| ≤ 2n/3; here n = |V | is the total number of vertices

in G.

18.17 Theorem (Ben-Sasson–Wigderson 2001) LetG = (V,E) be a connected graph,
and f : V → {0, 1} satisfy

⊕
v∈V f(v) = 1. Then

wR(τ(G, f)) ≥ ex(G) .

Proof. Fix an arbitrary resolution refutation proof R for τ(G, f). Recall that axioms

of this proof are CNF formulas Av corresponding to equalities (??). For a subset
S ⊆ V of vertices, let AS be the AND of all clauses in the sets Av , v ∈ S. Define
the measure µ : R → N on clauses by:

µ(C) := min{|S| : AS implies C} .

If C is one of the axioms, then clearly µ(C) = 1. Furthermore, µ is subadditive:

µ(C) ≤ µ(A) + µ(B) if C is a resolvent of A and B.

18.18 Claim µ(∅) = n.

Proof. By the definition of µ, µ(∅) is exactly the smallest number |S| of vertices
such that AS is unsatisfiable. So it is enough to show that AS is satisfiable for each

subset S ⊆ V of size |S| < |V |. To show this, take any vertex v ∈ V \ S. Consider
the function f ′ : V → {0, 1} such that f ′(v) = 1 − f(v) and f ′(u) = f(u) for all
u ̸= v. Since

⊕
v∈V f

′(v) = 0, Lemma ?? implies that τ(G, f ′) is satisfiable. Since
v ̸∈ S, the CNF AS is a part of the formula τ(G, f ′), and hence, is satisfiable as

well. Hence, µ(∅) = n. ⊓⊔

By the subadditivity of µ, there must exist a clause C ∈ R such that n/3 ≤
µ(C) ≤ 2n/3, an “intermediate clause” (see Lemma ??). Let S ⊆ V be a minimal

set for which AS implies C ; hence n/3 ≤ |S| ≤ 2n/3.
To finish the proof of the theorem, it is enough to show that xe ∈ C for every

crossing edge e = {u, v} with u ∈ S and v ∈ V \ S. For the sake of contradiction,
assume that xe ̸∈ C . By the minimality of S, there exists an assignment α which

satisfies all axioms in AS except those in Au, and falsifies C . The assignment α′
,

obtained from α by flipping the bit xe, satisfies all axioms in AS (because v ̸∈ S),
and hence, must satisfy the clause C . This is a contradiction because C(α) = 0 and

the new assignment α′
still agrees with α for all variables of C . ⊓⊔
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Theorem ?? gives us a whole row of unsatisfiable k-CNF formulas F = τ(G, f)
of n variables such that k = O(1), |F | = O(n) and wR(F ) = Ω(n). Together
with Theorem ??, these CNF formulas require resolution proofs of size 2Ω(n)

. For

this, it is enough that the underlying graph G has constant degree k and still has

large edge extension ex(G). The existence of such graphs can be shown by simple

probabilistic arguments. There are even explicit graphs with these properties. Such

are, for example, Ramanujan graphs considered in Section ??. By the Expander

Mixing Lemma (see Appendix ??) these graphs have ex(G) = Ω(n).

18.8 Expanders force large width

We have shown that resolution refutation proofs for Tseitin CNF formulas τ(G, f)
require largewidth as long as the underlying graphG has good expanding properties.

It turns out that a similar fact also holds for any unsatisfiable CNF as long as it has

good expansion properties in the following sense.

Look at a CNF formula F as a set of its clauses. Hence, |F | denotes the number

of clauses in F , and G ⊆ F means that the CNF G contains only clauses of F . Let
var(F ) denote the number of variables in F .

We say a CNF formula F is (r, c)-expanding if

var(G) ≥ (1 + c)|G| for every subset G ⊆ F of its |G| ≤ r clauses.

We can associate with F a bipartite graph, where nodes on the left part are clauses

of F , nodes on the right part are variables, and a clause C is joined to a variable x
iff x or ¬x belongs to C . Then F is (r, c)-expanding iff every subset of s ≤ r nodes
on the left part have at least (1 + c)s neighbors on the right part.

18.19 Theorem (Ben-Sasson–Wigderson 2001) Let F be an unsatisfiable CNF for-
mula. If F is (r, c)-expanding, then wR(F ) ≥ cr/2.

We first prove three claims relating the number of clauses with the number of

variables in unsatisfiable CNF formulas.

18.20 Claim If |G| ≤ var(G) for every G ⊆ F , then F is satisfiable.

Proof. Wewill use thewell-knownHall’sMarriage Theorem. It states that a family of

sets S = {S1, . . . , Sm} has a system of distinct representatives (that is, a sequence

x1, . . . , xm ofm distinct elements such that xi ∈ Si) iff the union of any number

1 ≤ k ≤ m of members of S has at least k elements.

Now assume that |G| ≤ var(G) for all G ⊆ F . Then, by Hall’s theorem, we can

find for each clause C of F a variable xC ∈ var(C) such that xC or its negation

appears in C , and for distinct clauses these variables are also distinct. We can

therefore set these variables to 0 or 1 independently to make all clauses true. Hence,

F is satisfiable. ⊓⊔
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Say that an unsatisfiable CNF formula is minimally unsatisfiable if removing

any clause from it makes the remaining CNF satisfiable. The following claim is also

known as Tarsi’s Lemma.

18.21 Claim If F is minimally unsatisfiable, then |F | > var(F ).

Proof. Since F is unsatisfiable, Claim ?? implies that there must be a subset of

clauses G ⊆ F such that |G| > var(G). Let G ⊆ F be a maximal subset of clauses
with this property. If G = F then we are done, so assume that G ⊂ F and we will

derive a contradiction.

Take an arbitrary sub-formula H ⊆ F \ G, and let Vars(H) be the set of its
variables. Due to maximality of G, Vars(H) \ Vars(G) must have at least |H|
variables, for otherwise we would have that var(G∪H) < |G∪H|, a contradiction
with the maximality of G.

Thus the CNF formula F \G satisfies the condition of Claim ??, and hence, can

be satisfied by only setting constants to variables in Vars(F ) \ Vars(G). Since F
is minimally unsatisfiable, the CNF formula G must be satisfiable using only the

variables in Vars(G). Altogether this gives us a truth assignment satisfying the

entire formula F , a contradiction. ⊓⊔

As before, we say that a CNF formula F implies a clause A if any assignment

satisfying F also satisfies A. We also say that F minimally implies A if the CNF

formula F implies A but none of its proper subformulas (obtained by removing any

clause) does this.

18.22 Claim If F minimally implies a clause A, then |A| > var(F ) − |F |.

Proof. Let Vars(F ) = {x1, . . . , xn} and assume that Vars(A) = {x1, . . . , xk}.
Take a (unique) assignment α ∈ {0, 1}k

for which A(α) = 0. Since F implies A,
restricting F to αmust yield an unsatisfiable formula Fα on variables xk+1, . . . , xn.

The formula Fα must also be minimally unsatisfiable because F minimally implied

A. By Claim ??, Fα must have more than n − k clauses. Hence, |F | ≥ |Fα| >
n− k = var(F ) − |A|, as desired. ⊓⊔

We now turn to the actual proof of the theorem.

p@plus6p@

Proof of Theorem ??addpunct: Let F be an (r, c)-expanding unsatisfiable CNF for-
mula, and let R be any resolution refutation proof of F . We can assume that both

numbers r and c are positive (otherwise there is nothing to prove). With each clause

C in R associate the number

µ(A) = min{|G| : G ⊆ F and G implies A} .

It is clear that µ(A) ≤ 1 for all clauses A of F . Furthermore, µ is subadditive:

µ(C) ≤ µ(A) + µ(B) if C is a resolvent of A and B. Finally, the expansion

property of F implies that µ(0) > r. Indeed, by the definition, µ(0) is the smallest

size |G| of an unsatisfiable subformula G ⊆ F , and Claim ?? yields |G| > var(G).



506 18 Resolution

Had we µ(0) ≤ r, then we would also have |G| ≤ r and the expansion property of

F would imply var(G) ≥ (1 + c)|G|, a contradiction.
Hence, the subadditivity of µ implies that the refutation R of F must contain

a clause C such that r/2 ≤ µ(C) < r (cf. Lemma ??). Fix some G ⊆ F minimally

implying C; hence, r/2 ≤ |G| = µ(C) < r. By the expansion of F , var(G) ≥
(1 + c)|G|. Together with Claim ?? this implies |C| > var(G) − |G| ≥ c|G| ≥ cr/2,
as desired. ⊓⊔

endpefalse

18.9 Matching principles for graphs

We already know (see Theorem ??) that the pigeonhole principle PHPm
n requires

resolution proof of exponential size, as long as the numberm of pigeons ism = n+1,
where n is the number of holes. However, the larger m is, the more true the

pigeonhole principle itself is, and it could be that PHP
m
n with larger number m

pigeons could be refuted by much shorter resolution refutation proof. We now will

use expander graphs to prove that PHP
m
n has no resolution proofs of polynomial

size even if we have up tom = n2−o(1)
pigeons.

Given a bipartite m × n graph G = ([m], [n], E), we may consider the CNF

formula PHP(G) which is an AND of the following set of axioms:

• Pigeon Axioms: Ci =
∨

(i,j)∈E xi,j for i = 1, . . . ,m.

• Hole Axioms: ¬xi1,j ∨ ¬xi2,j for i1 ̸= i2 ∈ [m] and j ∈ [n].

That is, the graph dictates what holes are offered to each pigeon, whereas hole

axioms forbid (as in the case of PHP
m
n ) that two pigeons sit in one hole.

Observe that, if m > n and if the graph G has no isolated vertices, then the

CNF formula PHP(G) is unsatisfiable. Indeed, every truth assignment α defines a

subgraph Gα of G. Now, if α satisfies all hole axioms then Gα must be a (possibly

empty) matching. But we havem > n vertices of the left side. Hence, at least one

of these vertices i ∈ [m] must remain unmatched in Gα, implying that Ci(α) = 0.
Observe also that PHP

m
n = PHP(Km,n) where Km,n is a complete bipartite

m× n graph. Moreover, if G′
is a subgraph of G, then every resolution refutation

for PHP(G) can be turned to a resolution refutation of PHP(G′) just by setting to 0
all variables corresponding to edges of G that are not present in G′

. Thus to prove

a lower bound of the resolution complexity of PHP(G) it is enough to prove such a

bound for any subgraph of G.
This opens plenty of possibilities to prove large lower bounds for PHP

m
n : just

show that there exists a graph G (a subgraph ofKm,n) such that PHP(G) requires
long resolution refutation proofs. By Theorems ?? and ??, this can be done by

showing that the CNF formula F = PHP(G) has large expansion. This, in turn, can

be achieved if the underlying graph G itself has good expansion properties.



18.9 Matching principles for graphs 507

Abipartite graph is an (r, c)-expander if every set of k ≤ r vertices on the left part
has at least (1 + c)k neighbors on the right part. It can be easily shown (Exercise ??)
that if G is an (r, c)-expander then the CNF formula PHP(G) is (r, c)-expanding.

Using a probabilistic argument it can be shown that (r, c)-expanders with c > 0,
r = Ω(n) and constant left-degree exist (Exercise ??). Hence, the CNF formula

F = PHP(G) has N = O(m) variables and each its clause has constant width.

Theorem ?? implies that wR(F ) = Ω(n). So by Theorem ??, every resolution

refutation for F , and hence, for PHP
m
n must have size exponential in wR(F )2/N =

Ω(n2/m).
This gives super-polynomial lower bound on the size of resolution refutations

of PHP
m
n for up to m ≪ n2/ logn pigeons. In Section ?? we have proved that,

no matter how large the number m > n of pigeons is, any tree-like resolution
refutation proof of PHP

m
n must have size nΩ(n)

. But all attempts to overcome the

“n2
barrier” for the number of pigeonsm in the case of general (not just tree-like)

resolution proofs failed for many years. This was one of the most famous open

problems concerning resolution proofs.

The “n2
barrier” was finally broken by Raz (2001). He proved that, for any number

m > n of pigeons, the CNF PHP
m
n requires general (non-tree-like) resolution proofs

of exponential size. Shortly after, Razborov (2003) found a simpler proof.

Exercises

18.1 Show that Resolution is complete: every unsatisfiable CNF formula F has a

resolution refutation proof. Hint: Show that the search problem for F can be solved by a

decision tree, and use Theorem ??.

18.2 Show that Theorem ?? remains true if instead of CNF formula PHP
m
n we take

its functional version by adding new axioms ¬xi,j1 ∨ ¬xi,j2 for all j1 ̸= j2 and

i = 1, . . . ,m. These axioms claim that no pigeon can sit in two holes.

18.3 Let F be a CNF formula and x a literal. Show that F is unsatisfiable if and

only if both CNFs Fx=1 and Fx=0 are unsatisfiable.

18.4 Let G be a bipartite (r, c)-expander graph. Show that then the induced CNF

formula PHP(G) is (r, c)-expanding.

18.5 Show that for every constant d ≥ 5, there exist bipartite n× n graphs of left

degree d that are (r, c)-expanders for r = n/d and c = d/4 − 1.
Hint: Construct a random graph with parts L and R, |L| = |R| = n, by choosing d neighbors

for each vertex in L. For S ⊆ L and T ⊆ R, let ES,T be the event that all neighbors of S lie

within T . Argue that, Prob[ES,T ] = (|T |/n)d|S|
. Let E be the event that the graph is not the

desired expander, i.e., that all neighbors of some subset S ⊆ L of size |S| ≤ n/d lie within some

subset T ⊆ R of size |T | < (d/4)|S|. Use the union bound for probabilities and the estimate(
n
k

)
≤ (en/k)k

to show that Prob[E] ≤
∑n/d

i=1

(
e
4

)id/2
. Use our assumption d ≥ 5 together
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with the fact that

∑∞
i=0 xi = 1/(1 − x) for any real number x with |x| < 1 to conclude that

Prob[E] is strictly smaller than 1.

18.6 Given an unsatisfiable set F of clauses, define its boundary ∂F to be the set of

variables appearing in exactly one clause of F . Let also

s(F ) = min{|G| : G ⊆ F and G is unsatisfiable} .

Define the expansion of F by

e(F ) = max
s≤s(F )

min{|∂G| : G ⊆ F, s/2 ≤ |G| < s} .

Prove that, for every unsatisfiable CNF F , wR(F ) ≥ e(F ).
Hint: Take a resolution refutation proof R for F . Define the witness of a clause C in the proof

to be the set G ⊆ F of all those clauses in F that are used by the proof to derive C . Show that

the clause C can have at most |∂G| literals (if a literal appears in an axiom A ∈ F , then the only

way it can be removed from clauses derived using A is if the literal is resolved with its negation).

Then, define µ(C) to be the number |G| of clauses in the witness G of C in the proof. Show that:

µ(∅) ≥ s(F ), and µ(C) = 1 for any clause C in F , and µ(C) ≤ µ(A) + µ(B) if C is a resolvent

of A and B.

18.7 (2-satisfiable CNFs) A CNF formula F is k-satisfiable if any subset of its k
clauses is satisfiable. Prove the Lieberher-Specker result for 2-satisfiable CNF for-
mulas: if F is a 2-satisfiable CNF formula then at least γ-fraction of its clauses are

simultaneously satisfiable, where γ = (
√

5 − 1)/2 > 0.618.
Hint: Define the probability of a literal y to be satisfied to be: a (a > 1/2) if y occurs in a unary

clause, and 1/2 otherwise. Observe that then the probability that a clause C is satisfied is a if C
is a unary clause, and at least 1 − a2

otherwise (at worst, a clause will be a disjunction of two

literals whose negations appear as unary clauses); verify that a = 1 − a2
for a = γ.

18.8 (3-satisfiable CNFs) Given a 3-satisfiable CNF formula F of n variables, define

a random assignment α = (α1, . . . , αn) ∈ {0, 1}n
by the following rule:

Prob[αi = 1] =

2/3 if F contains a unary clause (xi);
1/3 if F contains a unary clause (¬xi);
1/2 otherwise.

1. Why is this definition consistent? Hint: 3-satisfiability.
2. Show that Prob[y(α) = 1] ≥ 1/3 for each literal y ∈ {xi,¬xi}, which appears

in the formula F (independent of whether this literal forms a unary clause or

not).

3. Show that the expected number of clauses of F satisfied by α is at least a 2/3
fraction of all clauses.

Hint: Show that each clause if satisfied by α with probability at least 2/3. The only nontrivial

case is when the clause has exactly 2 literals. Treat this case by keeping in mind that our

formula is 3-satisfiable, and hence, cannot have three clauses of the form (y ∨ z), (¬y) and
(¬z).
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18.9 (Due to Hirsch 2000) Suppose we have a CNF formula F of n variables with

is satisfiable. Our goal is to find a satisfying assignment. Consider the following

randomized algorithm: pick an initial assignment α ∈ {0, 1}n
uniformly at random,

and flip its bits one by one trying to satisfy all clauses. At each step, the decision

on what bit of a current assignment α to flip is also random one. The algorithm

first constructs a set I ⊆ [n] of bits such that flipping any bit i ∈ I increases the
number of satisfied clauses. Then it chooses one of these bits at random, and flips

it. If I = ∅, then the algorithm chooses one bit at random from the set of bits that

do not lead to the decrease of the number of satisfied clauses. If all variables lead

to such a decrease, it chooses at random a bit from [n]. The algorithm works in

iterations, one iteration being a random choice of an initial assignment α. We are

interested in how many iterations are needed to find a satisfying assignment with

a constant probability.

Consider the CNF formula F which is an AND of two CNFs G andH . The first

CNF G consists of n+ 1 clauses:

¬x1 ∨ x2 , ¬x2 ∨ x3 , . . . , ¬xn ∨ x1 and ¬x1 ∨ ¬x2 .

The first n clauses express that in every satisfying assignment for G the values of

all its bit must be equal. The last clause of G ensures that all these values must be

equal to 0. Hence, α = 0 is the only assignment satisfying all the n + 1 clauses

of G. The second CNF H consists of all n
(

n−1
2
)
clauses of the form ¬xi ∨ xj ∨ xk

with i ̸= j ̸= k. Hence, α = 0 is the unique satisfying assignment for the entire

CNF F = G ∧ H . The clauses in H are intended for “misleading” the algorithm.

Prove that, regardless of how long one iteration tends, at least 2Ω(n)
iterations are

necessary for the CNF formula F .

Hint: Show that, if c is a sufficiently large constant, then assignments α with t := n/3 + c or

more ones form an “insurmountable ring” around the (unique) satisfying assignment 0. Namely,

if the algorithm encounters an assignment with this number of ones, then it chooses a wrong

bit for flipping. That is, on such assignments α the algorithms flips some 0-bit to 1-bit, and
hence, goes away from the satisfying assignment 0. When showing this, it is only important that

(k − 1)(n − k − 1) >
(

n−k
2

)
+ 2 holds for all k ≥ t.



19. Cutting Plane Proofs

We now turn our attention to a proof system more powerful than resolution—the

so-called cutting plane proof system. This proof system, which can be viewed as a

“geometric generalization” of resolution, originated in works on integer program-

ming by Gomory (1963) and Chvátal (1973); as a proof system it was first considered

in Cook, Coullard and Túran (1987). The basic idea is to use a few elementary rules

to prove that a given system of linear inequalities (or “cutting planes”) with integer

coefficients does not have a 0-1 solution.

Why should we care about cutting planes in the context of this book? It turns out

that there is an intimate methodological relation between the cutting planes system

and circuit complexity: the only known exponential lower bounds for cutting plane

proofs were obtained using bounds on communication complexity as well as on the

size of monotone real-valued circuits.

19.1 Cutting planes as proofs

Let A be a matrix with integer entries, and b an integer vector. We are interested

in boolean-valued solutions, to the system of inequalities Ax ≤ b (over integer
arithmetic). We say that the system Ax ≤ b is unsatisfiable if it has no 0-1 solution

x ∈ {0, 1}n
. Such unsatisfiable systems are the “objects of interest” for cutting

plane proof systems, taking the place of the unsatisfiable CNFs studied in resolution.

Given an unsatisfiable system of inequalities, our goal is to prove its unsatisfiability

using repeated applications of a few basic rules.

The cutting planes proof system provides one such set of rules: addition of

inequalities, their multiplication by positive integers, and one truly powerful rule—

the rounded division rule, known as Gomory–Chvátal rule. The idea of this last rule
is that if the coefficients a1, . . . , an all are multiplies of an integer c ≥ 1 then any

integer solution x of aTx ≤ b is also a solution of
1
ca

Tx ≤ ⌊ b
c ⌋. Thus we have three

rules of derivation, where a ∈ Zn
, b, c ∈ Z and c ≥ 1:

510
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aTx ≤ b

caTx ≤ cb
,

aT
1 x ≤ b1 aT

2 x ≤ b2

(a1 + a2)Tx ≤ b1 + b2
and

caTx ≤ b

aTx ≤ ⌊b/c⌋
.

A cutting plane derivation (or CP derivation) of an inequality cTx ≤ d from a system

Ax ≤ b is a sequence of inequalities aT
1 x ≤ b1, . . . , a

T
t x ≤ bt such that at = c,

bt ≤ d and each aT
i x ≤ bi is either an inequality in Ax ≤ b or is obtained from

the previous ones by an application of one of the three rules above (Fig. ??). The
size of such a derivation is the number t of inequalities in it. If the original system

Ax ≤ b is unsatisfiable, then a CP proof of its unsatisfiability (or a CP refutation) is
a derivation of a contradiction expressed as 0 ≤ −1 from Ax ≤ b.

If the inequality is in the other direction aTx ≥ b, then the application of the

rounded division rule yields
1
ca

Tx ≥ ⌈ b
c ⌉. We will often use the trivial fact that

f ≥ g is equivalent to −f ≤ −g. That is, we will write our systems of inequalities

either as Ax ≤ b or as Ax ≥ b, depending on what form is more convenient in a

concrete situation.

19.1 Example (The “triangle trick”) The power of the division rule can be seen in

the following simple example. Consider the system consisting of the following three

inequalities: x + y ≤ 1, x + z ≤ 1 and y + z ≤ 1. By adding these inequalities,

we obtain 2x+ 2y + 2z ≤ 3, and the division rule yields x+ y + z ≤ ⌊3/2⌋ = 1.
More generally, suppose that there are three disjoint sets of indices P ,Q and R and

that we have the inequalities∑
p∈P

xp +
∑
q∈Q

xq ≤ 1 ,
∑
p∈P

xp +
∑
r∈R

xr ≤ 1 and

∑
q∈Q

xq +
∑
r∈R

xr ≤ 1 .

We can derive the inequality∑
p∈P

xp +
∑
q∈Q

xq +
∑
r∈R

xr ≤ 1

in three steps by adding the three inequalities together, dividing the result by two

and rounding down.

19.2 Remark Interestingly, it is enough to use the restricted rounded division rule

with c = 2. Namely, Buss and Clote (1996) showed that any CP proof of size S can

be transformed into a CP proof of size polynomial in n and S where only divisions

by 2 are used.

19.3 Remark In combinatorial optimization and in proof complexity, other types

of cut rules are considered as well: various types of Lovász–Schrijver cuts, lift-and-
project cuts, split cuts; see Exercise ?? for definitions of the latter two cuts. In this

chapter we will only discuss proof systems based on Gomory–Chvátal cuts, as

defined above.
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Fig. 19.1 A cutting plane derivation of x ≤ 1 from x − y ≤ 1 and x + y ≤ 2. Sum rule yields

2x ≤ 3, and rounding-down gives x ≤ 1. The half space {(x, y) | x ≤ 3/2} is replaced by the

half space {(x, y) | x ≤ 1}; no integer solution is lost.

19.2 Cutting planes and resolution

While cutting plane proofs apply to linear systems, not CNFs, it is not difficult

to “translate” CNFs into equivalent linear systems. Thus we can study the length

of refutations of CNFs in the cutting planes system, and compare this to their

refutation length under resolution. We will see that resolution refutations can be

naturally translated into cutting plane refutations without any increase in length,

justifying our claim that the cutting planes system is a generalization of resolution.

Let us first see how to translate CNFs into linear systems. First, we replace each

clause by an inequality using the translation xi 7→ xi and ¬xi 7→ 1 − xi. For

example, the clause x ∨ ¬y translates to an inequality x+ (1 − y) ≥ 1, which is

the same as x− y ≥ 0. An assignment a = (a1, a2) ∈ {0, 1}2
satisfies the clause

iff a1 − a2 ≥ 0, that is, iff a1 = 1 or a2 = 0. In this way each unsatisfiable CNF

translates to an unsatisfiable system of linear inequalities. For example, the CNF

(x ∨ y) ∧ (¬x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ ¬y)

translates to the system

x+ y ≥ 1 , −x+ y ≥ 0 , x− y ≥ 0 , −x− y ≥ −1 .

More generally, each clause C translates to the inequality∑
i

aixi ≥ 1 −m,

wherem is the number of negated literals in C , and

ai =

 1 if xi ∈ C ,
−1 if ¬xi ∈ C ,

0 if neither xi nor ¬xi is in C .

19.4 Proposition The cutting planes proof system can efficiently simulate resolution.

Proof. Suppose we have a resolution refutation proof R of some unsatisfiable CNF.

By adding a trivial derivation rule “derive C ∨ z from C”, we can assume that each
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z − y ≤ 0 y − x ≤ 0 y ≤ 1 x − z ≤ 0 x + y + z ≤ 2 −x − y − z ≤ −1

x + y − z ≤ 1

x + y ≤ 1
y ≤ 0

z ≤ 0 −x − z ≤ −1

x ≤ 0 −x ≤ −1

0 ≤ −1

Fig. 19.2 The graph of a cutting plane proof of 0 ≤ −1. The proof is not tree-like.

resolution inference in this proof has the form “derive C from C ∨ xi and C ∨ ¬xi”.

The rule “derive C ∨ z from C” is known in the literature as the weakening rule, and
it is known that this additional rule does not make the resolution system stronger.

Let f =
∑

j ajxj ≥ 1 −m be the inequality corresponding to clause C ; herem
is the number of negated literals in C . Then the inequality for the clause C ∨ xi

is f + xi ≥ 1 −m (xi comes positively in this clause), and the inequality for the

clause C ∨ ¬xi is f − xi ≥ 1 − (m+ 1). Now apply the sum-rule

f + xi ≥ 1 −m f − xi ≥ −m
2f ≥ 1 − 2m ,

and then the division rule

2f ≥ 1 − 2m
f ≥ 1 −m

to obtain the inequality for the clause C . ⊓⊔

We will now show that, in fact, cutting plane proofs for some CNFs may be

even exponentially shorter than resolution proofs! So proving lower bounds for the

former model is a more difficult task.

In a general CP proof, one derived inequality can be used many times without re-

deriving it. That is, the underlying graphs of derivations may be arbitrary directed

acyclic graphs. A tree-like CP proof is a special case of a CP proof, where the

underlying graph is a tree. That is, every inequality in the proof, except for the

initial inequalities, is used at most once as an antecedent of an implication.

Although restricted, tree-like CP proofs are still powerful. So, for example, we

already know that the CNF formula PHP
n+1
n formalizing the pigeonhole principle
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has no resolution proof of polynomial size. On the other hand, this CNF has relatively

short tree-like CP proofs.

19.5 Proposition (Cook–Coullard–Turán 1987) For any m ≥ n + 1, PHPm
n has a

tree-like cutting plane proof of size O(nm2).

Proof. When translated to the language of inequalities, the axioms for the pigeon-

hole principle PHP
m
n consist of the following inequalities:

• Pigeon Axioms: xi1 + xi2 + · · · + xin ≥ 1 for all i = 1, . . . ,m.

• Hole Axioms: xij + xkj ≤ 1 for all 1 ≤ i < k ≤ m, j = 1, . . . , n.
• 0/1-axioms: xij ≥ 0; xij ≤ 1 for i = 1, . . . ,m, j = 1, . . . , n.

For each j we first derive x1j + x2j + · · · + xmj ≤ 1 inductively. The inequality

x1j ≤ 1 is a 0/1-axiom, and inequality x1j + x2j ≤ 1 is a hole axiom. Suppose we

have already derived the inequality x1j + x2j + · · · + xkj ≤ 1, and want to derive

x1j + x2j + · · · + x(k+1)j ≤ 1. Multiply the inequality

x1j + x2j + · · · + xkj ≤ 1

by k − 1 and add to the result the hole axioms xij + x(k+1)j ≤ 1 for i = 1, . . . , k
to get

kx1j + kx2j + · · · + kxkj + kx(k+1)j ≤ 2k − 1 .

Apply division rule to get the desired inequality:

x1j + x2j + · · · + xkj + x(k+1)j ≤
⌊2k − 1

k

⌋
=
⌊
2 − 1

k

⌋
= 1 .

Now, summing these inequalities x1j + x2j + · · · + xmj ≤ 1 over all holes j gives
that the sum S of all variables is at most n, that is, −S ≥ −n. On the other hand,

summing pigeon inequalities xi1 + xi2 + · · · + xin ≥ 1 over all pigeons i gives
that S ≥ m. Summing these two last inequalities gives 0 ≥ m− n ≥ 1, the desired
contradiction. ⊓⊔

19.6 Remark The size of this proof for PHP
m
n has polynomial size, but its depth is

Ω(n); as usually, the depth of a tree is the maximum number of edges along a path

from the root to a leaf. Using the “triangle trick” (Example ??) one can substantially

reduce the depth to O(logn) while keeping the size polynomial (see Exercise ??).
Rhodes (2009) showed that this cannot be improved: any cutting plane proof for

PHP
n+1
n requires depth Ω(logn).

19.3 Lower bounds for tree-like CP proofs

We are now going to prove an exponential lower bound on the size of tree-like CP

proofs using communication complexity arguments. The bound is due to Impagli-

azzo, Pitassi and Urquhart (1994). The idea is to consider a tree-like CP proof for
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an unsatisfiable system of inequalities Ax ≤ b as a “search tree” for the following

search problem: given an assignment α ∈ {0, 1}n
find an axiom (an inequality in

our system) which is falsified by α. This step is easy: just traverse the proof starting

from its last inequality 0 ≤ −1 until a “hurt” axiom (an inequality in Ax ≤ b
falsified by α) is found. This works because of the soundness of derivation rules: if

an assignment α falsifies a derived inequality then it must falsify at least one of

the premises. Since the proof works with inequalities, the underlying model for the

computation is a threshold decision tree.

A threshold decision tree is a rooted, directed tree whose vertices are labeled by

threshold functions

f(x) = 1 if and only if a1x1 + · · · + anxn ≤ b

with integer coefficients a1, . . . , an, b, and edges are labeled with either 0 or 1. The
leaves of the tree are labeled with axioms (inequalities of Ax ≤ b).

A threshold decision tree computes the search problem for a system of inequali-

ties in the obvious way: we start at the root and evaluate the threshold function,

follow the edge which is consistent with the value of the threshold function, con-

tinue until we hit a leaf and output the associated hurt axiom.

The threshold decision tree complexity of a system of inequalities is the minimum

depth of any threshold decision tree for computing the search problem for this

system. The threshold decision tree complexity of an unsatisfiable system is a

guideline to whether the system will have efficient tree-like CP proofs.

The following lemma shows that an efficient tree-like CP proof can be converted

into a small-depth threshold decision tree. Unfortunately, there is no converse

to this lemma: every unsatisfiable system containingm inequalities has a trivial

threshold decision tree of depth m, namely the tree obtained by evaluating the

inequalities one by one.

19.7 Lemma If an unsatisfiable system Ax ≤ b has a tree-like CP proof of size S, then
it has a threshold decision tree of depth O(logS).

Proof. Let T be a tree-like CP proof for the systemAx ≤ b, and let S be the number

of leaves in T . We will describe a threshold decision tree of depth log3/2 S which

computes the search problem associated with Ax ≤ b. The proof is by induction on

the size S. Clearly if the size is 1 then the system consists of a single unsatisfiable

threshold formula, so the lemma holds. Now assume that the size of T is S.
By Lemma ??, there must be a subtree T0 of T rooted in some node v and such

that the number |T0| of leaves in T0 satisfiesS/3 ≤ |T0| ≤ 2S/3. Cut off this subtree

T0 from the entire tree T , assign its root (now a leaf) the always true inequality

1 ≤ 1, and let T1 be the resulting tree. We apply the induction hypothesis to both

T0 and T1 to obtain threshold decision trees T ′
0 and T ′

1.
Let cTx ≤ d be the inequality derived at the root v of the removed subtree T0.

In our threshold decision tree, we first query the threshold function cTx ≤ d. If it
evaluates to 0 we proceed on the subtree T ′

0, otherwise, we proceed on the subtree
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T ′
1. By the induction hypothesis, since both T0 and T1 have at most 2S/3 leaves, the

depth of the threshold decision tree obtained will be 1 + log3/2(2S/3) = log3/2 S.
To see that the decision tree actually computes the search function, notice that

if cTx ≤ d evaluates to false on a given assignment α ∈ {0, 1}n
, then we proceed

on the subproof T0. Since the proof is sound, and the root formula of T0 is false on

α, this implies that one of the leaf formulas of T0 must be falsified by α. Similarly,

if cTx ≤ d evaluates to true on α, then we proceed on T1. Again, since the root
inequality 0 ≤ −1 of T1 is false, we will reach some leaf of T1. This leaf cannot be
the node v since cTx ≤ d evaluates to true on α. Hence, we will reach one of the

leaf inequalities of T1 (axioms) falsified by α. ⊓⊔

Given an unsatisfiable system Ax ≤ b, fix a partition of its variables into two

parts, and consider the following Karchmer-Wigderson type communication game:

for an assignment α ∈ {0, 1}n
, Alice gets its projection onto the first part of

variables, Bob gets the projection of α onto the second part, and their goal is to

find an inequality falsified by α. Say that a CP proof has bounded coefficients if
there exists a constant k > 0 such that the absolute values of all coefficients of

inequalities used in the proof do not exceed O(nk).

19.8 Lemma If for some partition of variables, the communication game for Ax ≤ b
requires t bits of communication, and if we have n variables in total, then any tree-like
CP proof with bounded coefficients for Ax ≤ b must have size 2Ω(t/ log n).

Proof. Suppose that Ax ≤ b has a tree-like CP proof of size S, all coefficients

in which are bounded. This proof gives us a threshold tree solving the search

of a hurt axiom problem for Ax ≤ b. By Lemma ??, this problem can be solved

by a threshold tree of depth d = O(logS). Since all coefficients are bounded,

the communication complexity of each threshold function used in the tree does

not exceed c = O(logn): it is enough to send the value of a partial sum to the

other player. Thus, the entire communication complexity is at most cd. But, by our

assumption, t bits of communication are necessary. This implies cd ≥ t, from which

the desired lower bound S = 2Ω(t/ log n)
follows. ⊓⊔

19.9 Remark Note that this lemma holds for very general tree-like CP proofs where,

besides addition of inequalities, their multiplication by positive constants and the

rounded division rule, any sound rule is allowed. The only restriction is that at

most two (or only a constant number of) already derived inequalities can be used to

derive a new inequality, and the derived inequality must have bounded coefficients.

19.3.1 Lower bound for the Matching CNF

In Section ?? we have considered the following “find an edge” communication game

FEn for graphs on n = 3m vertices:

• Alice gets a matching p consisting ofm edges.
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• Bob gets an (m− 1)-element set q of vertices.
• The goal is to find an edge e such that e ∈ p and e ∩ q = ∅.

We proved (Theorem ??) that any deterministic communication protocol for this

game requires Ω(n) bits of communication. It is therefore enough to turn this “find

an edge” problem into a “find a falsified inequality” problem for an unsatisfiable

system of inequalities Matchn of nO(1)
variables.

Assume for a moment that we already have such a system Matchn. Then the

communication complexity of the corresponding to Matchn search problem is

Ω(n). By Lemma ??, every tree-like CP proof for Matchn using only polynomially

bounded coefficients must have size S ≥ 2Ω(n/ log n)
.

To describe the desired system of inequalities Matchn, we use the following

encoding of matchings and subsets of vertices.

• Eachm-matching p = {e1, . . . , em} is encoded by anm× (3m) matrix X =
(xj

i ), where xj
i = 1 iff j ∈ ei.

• Each (m − 1)-element subset q = {v1, . . . , vm−1} of [3m] is encoded by an

(m− 1) × (3m) matrix Y = (yj
i ), where yj

i = 1 iff vi = j.

That is, the i-th row ofX specifies the i-th pair in the matching p, whereas the i-th
row of Y specifies the i-th vertex in the set q. The system Matchn consists of three

subsystems:

• F1(X) is satisfied iff p is anm-matching: every row ofX has two 1s, and every
column has at most one 1. Hence, F1(X) consists of inequalities:

3m∑
j=1

xj
i = 2 for all rows 1 ≤ i ≤ m;

m∑
i=1

xj
i ≤ 1 for all columns 1 ≤ j ≤ 3m.

• F2(Y ) is satisfied iff q is an (m − 1)-subset of [3m]: every row of Y has

exactly one 1, and every column has at most one 1. Hence, F2(Y ) consists of
inequalities:

3m∑
j=1

yj
i = 1 for all rows 1 ≤ i ≤ m− 1;

m−1∑
i=1

yj
i ≤ 1 for all columns 1 ≤ j ≤ 3m.

• F3(X,Y ) is satisfied iff every edge ei = {j1, j2} in p has at least one endpoint
in q: for all rows 1 ≤ i ≤ m of X and all pairs of columns 1 ≤ j1 ̸= j2 ≤ 3m
of Y ,

xj1
i + xj2

i −
m−1∑
k=1

(yj1
k + yj2

k ) ≤ 1 .
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Every communication protocol solving the search problem for Matchn must in

particular solve the following search problem: Given an assignment α ∈ {0, 1}X∪Y

such that F1(α) = F2(α) = 1, determine i, j1, j2 such that

• xj1
i = xj2

i = 1 (the i-th row of X has 1s in columns j1 and j2) and

• yj1
k = yj2

k = 0 for all 1 ≤ k ≤ m − 1 (j1-th and j2-th columns of Y have no

1s).

By taking q = {j | j-th column of Y has a 1}, any protocol for Matchn can be

used to solve the search problem FEn.

By our work above, we have proved the following lower bound.

19.10 Theorem (Impagliazzo–Pitassi–Urquhart 1994) Any tree-like CP proof for the
systemMatchn, all coefficients in which are polynomial in n, must have size expo-
nential in n/ logn.

In fact, a similar lower bound 2Ω(n/ log3 n)
for Matchn also holds without any

restrictions on the size of coefficients used in a CP proof—being tree-like is the only

restriction. For this, it is enough to observe that Theorem ?? about the determinis-

tic communication complexity of the game FEn can be extended to randomized
protocols: c1/n(FEn) = Ω(n/ logn). It remains then to combine this lower bound

with the following “randomized” version of Lemma ??.

19.11 Lemma If the search problem for Ax ≤ b has a threshold tree of depth d, then
there exists a randomized communication protocol for this problem where O(d log2 n)
bits are sent.

Proof. It is enough to use two facts about threshold functions. The first (classical)

fact is that any threshold function of n variables can be computed as a threshold

function with weights at most 2O(n log n)
; see Muroga (1971). The second fact is

that c1/n(GTn) = O(log2 n), whereGTn(x, y) is the greater-than function on two

n-bit integers which outputs 1 iff x ≥ y (see Exercise ??). The rest is the same as in

the proof of Lemma ??. ⊓⊔

So we can prove that some systems require tree-like cutting plane proofs of

exponential size. The case of general (non-tree-like) proofs is more complicated. And,

in fact, general proofs may be exponentially smaller. Namely, there are unsatisfiable

systems of inequalities in n variables that have CP refutation proofs of size nO(1)
,

but every tree-like CP proof for them must have size 2nΩ(1)
. Such systems are

described, for example, by Bonet et al. (2000).

19.4 Lower bounds for general CP proofs

The lower bound techniques in Section ?? only work for tree-like CP proofs; we

have no analogue of Lemma ?? for general CP proofs. When trying to prove lower

bounds for the size of (=number of inequalities in) general cutting plane proofs, an
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interesting connection with monotone circuits was discovered. The connection is

via a so-called “interpolation theorem” in logic.

Craig’s Interpolation Theorem for propositional logic (Craig 1957) states that

for every pair of propositional formulas F,G such that F → G is a tautology (a

negation of an unsatisfiable CNF), there is a formula I that F → I and I → G are

tautologies, and I contains only the variables used by both F and G. Formula I is
called an interpolant for F and G.

In this form it is a simple fact which can be proved by induction on the number

of variables that occur on F but do not occur in G. But Craig proved more. He

gave a way of constructing the interpolant I from a proof of F → G. Thus the
complexity of the interpolant is bounded in some way by the complexity of the

proof. This suggests the following approach to proving lower bounds: if we can

show that an implication F → G does not have a simple interpolant, then it cannot

have a simple proof.

Pudlák (1997) used this approach to prove that some unsatisfiable CNFs re-

quire exponentially long cutting plane proofs. Namely, suppose that our system

of inequalities F (x, y, z) on three groups of variables consists of two sub-systems

A(x, y) and B(y, z), where the inequalities in A(x, y) do not have z-variables, and
those in B(y, z) do not have x-variables. That is, F (x, y, z) is a system of inequal-

itiesMx ≤ b where the coefficient matrixM has the formM =
[
∗ ∗ 0
0 ∗ ∗

]
where

“∗” stands for a submatrix with arbitrary coefficients. Suppose that F (x, y, z) is
unsatisfiable, that is, has no zero-one solution. Then, for any truth assignment α
to the y-variables, at least one of these two systems A(x, α) of B(α, z) must be

unsatisfiable, for otherwise F (x, α, z) would be satisfiable. A so-called “interpolant”

just tells us which of these two system is unsatisfiable.

An interpolant of F is a boolean function I(y) (on the common variables y) such
that for any truth assignment α to the y-variables,

• I(α) = 0 implies A(x, α) is unsatisfiable, and
• I(α) = 1 implies B(α, z) is unsatisfiable.

That is, given any assignment α to y-variables, the interpolant cannot answer “0” if
A(x, α) is satisfiable, or answer “1” if B(α, z) is satisfiable. Note that this notion of

interpolant makes little sense if both A and B are unsatisfiable: then any formula I
on the common variables will be an interpolant. An algorithm computing such a

function I(y) is called an interpolating algorithm for F .

19.12 Remark It is not difficult to see that our definition of interpolant for unsatisfi-

able CNFs A ∧ B agrees with Craig’s definition for tautologies. The negation of

A ∧B is the tautology A → ¬B. Craig’s interpolant I for this tautology satisfies

A → I and I → ¬B. Thus, if I = 0 then ¬A must be a tautology, implying that

the CNF formula A itself must be unsatisfiable. Similarly, if I = 1 then ¬B must be

a tautology, implying that the CNF formula B must be unsatisfiable.

19.13 Lemma Every cutting plane proof for F gives an interpolating algorithm for F
running in time polynomial in the proof-size.
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Proof. Take a cutting plane proof for F . The idea is, given an assignment α to the

common y-variables, to split the proof so that we get a refutation either from x-
axiomsA(x, α) or from z-axiomsB(α, z). The only rule which can mix x-variables
and z-variables in the original proof is the addition of two inequalities, yielding an

inequality f(x)+g(y)+h(z) ≤ D. The strategy is (after the assignment y 7→ α) not
to perform this rule, but rather keep two inequalities f(x) ≤ D0 and h(z) ≤ D1,
where D0, D1 are integers. The sums f(x) and h(z) may be empty, in which case

they are treated as 0. What we need is only to ensure that this pair of inequalities

is at least as strong as the original inequality after the assignment α, which means

that we need to ensure the property:

D0 +D1 ≤ D − g(α) . (19.1)

To achieve this, the axioms are replaced (after the assignment y 7→ α) by pairs of

inequalities as follows:

f(x) + g(y) ≤ a by a pair f(x) ≤ a− g(α) and 0 ≤ 0 ;
g(y) + h(z) ≤ b by a pair 0 ≤ 0 and h(z) ≤ b− g(α) .

The addition rule is simulated by performing additions of the first and the second

inequalities of the pairs in parallel. This clearly preserves the property (??) we need.
The multiplication rule is simulated in a similar way.

But what about the division rule? We perform this rule also in parallel on the

two inequalities in the pair. The divisibility condition is clearly satisfied, as we have

the same coefficients at variables x and z as in the original inequality. Thus, the

only challenge is to make sure that the property (??) is preserved under rounding.

For this, look at an inequality c · f(x) + c · h(z) ≤ D − c · g(α) in the proof after

the assignment y 7→ α. By inductive assumption, we have the following inferences:

c · f(x) ≤ D0

f(x) ≤ ⌊D0/c⌋
and

c · h(z) ≤ D1

h(z) ≤ ⌊D1/c⌋

with D0 + D1 ≤ D − c · g(α). Since ⌊u⌋ + ⌊v⌋ ≤ ⌊u + v⌋, the conclusions

satisfy our property (??) with new values beingD′
0 := ⌊D0/c⌋,D′

1 := ⌊D1/c⌋ and

D′ := ⌊D/c⌋ − g(α) because D0 +D1 ≤ D − c · g(α) implies

D′
0 +D′

1 =
⌊
D0

c

⌋
+
⌊
D1

c

⌋
≤
⌊
D − c · g(α)

c

⌋
=
⌊
D

c

⌋
− g(α) = D′ .

Consider now the pair corresponding to the final inequality 0 ≤ −1. It is of the
form 0 ≤ D0, 0 ≤ D1 where D0 +D1 ≤ −1. Since D0 and D1 are integers, this

implies that either D0 ≤ −1 or D1 ≤ −1. Thus we have a proof of a contradiction
either from A(x, α) or from B(α, z) (or from both). To know which one is the case,

the algorithm may just test whether “D0 ≤ −1” or not. Thus, by only looking at

the first inequality in each pair, the CP proof gives us an algorithm which, given an

assignment α to y-variables, computes an integer D0 such that D0 ≤ −1 implies
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A(x, α) is unsatisfiable, and D0 ≥ 0 implies B(α, z) is unsatisfiable (since then
D1 ≤ −1). ⊓⊔

Having an interpolating algorithm we can turn it into a sequence of boolean

circuits. Thus if any interpolating circuit for F must be large, then F cannot have

small cutting plane proofs. This is the main idea of relating proofs with circuits. Of

course, on its own this idea is of little help: no nonlinear lower bound for circuits

computing explicit boolean functions is known. An intriguing aspect, however, is

that under some mild conditions on the form of inequalities in F , the circuits can
be made monotone: we only have to allow monotone real-valued functions as gates.

Namely, say that a system A(x, y) ∧B(y, z) of linear inequalities is separated if

in at least one of the systems A and B all y-variables appear in all inequalities with

non-negative coefficients, or all appear with non-positive coefficients.

The following theorem was proved by Pudlák (1997) based on earlier ideas of

Krajiček (1997) and Bonet, Pitassi and Raz (1997).

19.14 Theorem (Pudlák 1997) If an unsatisfiable system F of linear inequalities is
separated then it has an interpolating monotone real circuit of size polynomial in the
minimal size of cutting plane proof of F .

Proof. It is enough to turn the algorithm from Lemma ?? into a monotone real

circuit whose size is polynomial in the size of the underlying cutting proof of F .
Let us first realize that we only need to compute the constant D0 (or only D1)
corresponding to the last inequality. We shall assume w.l.o.g. that all y-variables
appear in all inequalities of A(x, y) with non-negative coefficients.

Recall that, in each step, we replace an inequality f(x)+g(α) ≤ a by f(x) ≤ D0
with D0 = a− g(α). We assume that all the coefficients of y-variables in A(x, y)
are non-negative. In this case, it is more convenient to talk about −D0 = g(α) − a;
then we do not need to multiply g(α) by a negative constant −1.

Thus we only need to compute successively −D0 for each pair. For this, we can

use the algorithm from Lemma ??. Each gate will produce a new −D0 from previous

ones. The circuit has 0 and 1 as inputs corresponding to the truth assignment α to

y-variables, but computes arbitrary integers in the inner nodes.

If f(x) + g(y) ≤ a is an axiom, where g(y) =
∑
ciyi, then the function

α 7→ −D0 = g(α)−a is non-decreasing because all coefficients ci are non-negative,

by our assumption. Hence, if α ≤ β are two 0-1 vectors, then g(α) ≤ g(β). Thus
the operations we need are:

• addition of an integer constant,

• multiplication by a non-negative integer constant,

• addition,

• division by a positive integer constant with rounding,

• to get a 0-1 output we add a threshold gate at the output gate, that is, the unary

gate t defined by t(ξ) = 1 if ξ ≥ 1 and t(ξ) = 0 otherwise.

All the operations are non-decreasing. The only inequalities where we need multi-

plication by negative constants are −yi ≤ 0 (that is, yi ≥ 0). These, however, can
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be treated as inequalities containing z-variables, that is, we can put D0 = 0 for

them. Thus we can make all gates non-decreasing.

As in the proof of Lemma ??, for each assignment α to y-variables, the input
to the last gate t(ξ) is an integer ξ = −D0 such that t(ξ) = 1 implies D0 ≤ −1,
and hence, that A(x, α) is unsatisfiable, and t(ξ) = 0 implies D0 ≥ 0 (D0 is an

integer), and hence, thatB(α, z) is unsatisfiable. Thus the obtained circuit is indeed
an interpolating circuit for A(x, y) ∧B(y, z). ⊓⊔

19.15 Remark As observed by Dash (2005, 2010), the same argument works not only

for proof systems using the Gomory–Chvátal cuts introduced above but also for any

proof system whose derivation rules (“cuts”) satisfy the following three conditions:

1. If gTx+ hT y ≤ d is a cut for Ax+By ≤ c, then for any 0-1 assignment α to

the y-variables, gTx ≤ d− hTα is a cut for Ax ≤ c−Bα.
2. If gTx+ hT y ≤ d is a cut for Ax ≤ e,By ≤ f , then there are numbers r and
s such that gTx ≤ r is a cut for Ax ≤ e, and hT y ≤ s is a cut for By ≤ f , and
r + s ≤ d.

3. The numbers r can be computed from A, e or the numbers s can be computed

from B, f with polynomially many monotone operations.

In particular, Dash (2005, 2010) showed that so-called lift-and-project cuts and even

split cuts satisfy all three conditions above; see Exercise ?? for definitions of these
cuts.

19.4.1 The clique-coloring polytope

Theorem ?? reduces the lower bounds task for cutting planes to that for monotone

real circuits. We already know (see Theorem ??) that every monotone boolean

function f of n variables with the following two properties requires monotone real

circuits of size 2nϵ

. Inputs of f are graphs G on n vertices, encoded by

(
n
2
)
boolean

variables, and

• f(G) = 1 if G contains a k-clique,
• f(G) = 0 if G is (k − 1)-colorable.

What we need is a system of linear inequalities A(x, y) ∧ B(y, z) such that any

interpolant f(y) for this system satisfies these two conditions. That is, we only

need to write the statement

a graph contains a k-clique and is (k − 1)-colorable

as an unsatisfiable system of linear inequalities. For this, we take three groups of

variables:

• y-variables yi,j encoding the edges: yi,j = 1 iff the edge {i, j} is present;

• x-variables xi, one for each vertex, encoding cliques;
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• z-variables zi,c encoding colorings: zi,c = 1 iff vertex i has color c.

We want to impose the conditions:

(i) The set of nodes {i | xi = 1} forms a clique of size ≥ k.
(ii) For all c = 1, . . . , k − 1, the set {i | zi,c = 1} is an independent set.

The underlying graph is given by the values of y-variables. We now describe a

system of inequalities Clique(x, y) corresponding to the first condition (i), and a

system of inequalities Color(y, z) corresponding to the second condition (ii).

Clique(x, y): For V = {i | xi = 1} to form a clique, besides the inequality∑
i

xi ≥ k or equivalently −
∑

i

xi ≤ −k

we also need to ensure that all nodes in V are pairwise adjacent. That is, we

need that xi = 1 and xj = 1 implies yi,j = 1. This can be written as an

inequality

xi + xj − yi,j ≤ 1 .

Color(y, z): For the sets I = {i | zi,c = 1} to be independent sets (color classes),

we first need that each vertex i receives exactly one color:∑
c

zi,c = 1

and that no two adjacent vertices i ̸= j receive the same color. This last

condition means that zi,c = 1 and zj,c = 1 must imply yi,j = 0, and this can

be written as an inequality

yi,j + zi,c + zj,c ≤ 2 .

We also need inequalities ensuring that the values of all variables lie between 0 and 1.
To keep the same signs for y-variables, we add inequalities−yij ≤ 0 toClique(x, y),
and inequalities yij ≤ 1 to Color(y, z). Note that, after that, the y-variables occur in
Clique(x, y) only with negative signs, and occur with positive signs in Color(y, z).
Hence, the system of inequalities F = Clique(x, y) ∧ Color(y, z) is separated. By
Theorem ??, this system has an interpolating monotone real circuit I(y) of size
polynomial in the minimal CP proof size of F .

Let us look at what this interpolating circuit I(y) does. By the definition of the

interpolant, for every assignment α ∈ {0, 1}
(

n
2
)
to y-variables:

• If the graph Gα encoded by α contains a k-clique, then Clique(x, α) is satisfi-
able, and hence, I(α) cannot be equal to 0. So I(α) = 1.

• If the graphGα is colorable by k− 1 colors, then Color(α, z) is satisfiable, and
hence, I(α) cannot be equal to 1. So I(α) = 0.
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Thus the circuit I(y) outputs 1 on graphs containing a k-clique, and outputs 0 on

(k− 1)-colorable graphs. By Theorem ??, we know that, for k = Θ(
√
n), the circuit

I(y) must have size 2nϵ

for a constant ϵ > 0. This gives us

19.16 Corollary (Pudlák 1997) Any cutting plane derivation of the contradiction 0 ≤
−1 from Clique(x, y) ∧ Color(y, z) has size exponential in nΩ(1).

The proof of Theorem ?? via interpolating circuits is not quite satisfying: it is not
as “combinatorial” as that for resolution refutations. In particular, it is not clear how

to use this theorem to show that every cutting plane algorithm solving, say, the

maximum clique problem must produce many inequalities. It would be therefore

nice to have a lower bounds argument for cutting plane proofs explicitly showing

what properties of inequalities do force long derivations.

19.17 Research Problem
Find a combinatorial lower bounds argument for the size of general (non-tree-like)

cutting plane proofs.

For systems Ax ≤ b of n variables but with a huge (exponential) number of

inequalities there is yet another general argument to show that they require long

cutting plane derivations. Suppose some inequality cTx ≤ d holds for all integer
solutions x ofAx ≤ b. We would like to know howmany applications of the cutting

rules do we need to derive cTx ≤ d from Ax ≤ b
Say that an inequality aT

i x ≤ bi of Ax ≤ b is critical with respect to cTx ≤ d if
the system, obtained from Ax ≤ b by replacing this inequality with cTx ≥ d+ 1,
has an integer solution. Intuitively, every critical inequality must be used in any

derivation of cTx ≤ d. This intuition was made precise by Chvátal, Cook and

Hartmann (1989) as follows.

19.18 Lemma If a system Ax ≤ b has t inequalities that are critical with respect to
cTx ≤ d, then any cutting plane derivation of cTx ≤ d from Ax ≤ b must produce
at least (t− 1)/n inequalities.

This can be used to show that cutting plane proofs of integer infeasibility of

some exponentially large systems must be long (see, for example, Exercise ??).

19.5 Chvátal rank

So far we were interested in the size of CP proofs, that is, in the total number of

inequalities used in them. Another important measure is the depth of a CP proof,

that is, the length of a longest path in the underlying derivation graph. It turns

out that this measure is tightly related to a classical measure in integer linear

programming—the Chvátal rank of polytopes—for which an impressive collection

of lower bounds were already proved. We first introduce the Chvátal rank, relate it

to the depth of CP proofs, and describe some of the most powerful lower bounds

arguments for this measure.
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A rational polyhedron is a set P = {x ∈ Rn | Ax ≤ b} of real vectors, where

A is an integer m × n matrix and b ∈ Zm
is an integer vector. In this case one

says that Ax ≤ b defines P . Polyhedrons lying in a ball of finite radius are called

polytopes. In particular, every polyhedron P ⊆ [0, 1]n is a polytope; we will mainly

consider such polyhedrons.

One of the main goals of integer linear programming is, given a target linear

function cTx, a threshold d, and a system of linear inequalitiesAx ≤ b, to show that

cTx ≤ d holds for all integer solutions x of this system. That is, given a polyhedron

P defined by Ax ≤ b, we want to show that cTx ≤ d holds in P ∩ Zn
.

19.19 Example (Independent set problem) A set of vertices in a graph is independent
(or stable) if no two of its vertices are adjacent. The cardinality of a largest indepen-

dent set in a graph G is usually denoted by α(G). The independent set polytope of
G = (V,E) can be described by a system of inequalities:

xu + xv ≤ 1 for all edges {u, v} ∈ E, (19.2)

xv ≥ 0 for all vertices u ∈ V .

It is easy to see that a 0-1 vector x satisfies all these inequalities if and only if the set

Sx = {v ∈ V | xv = 1} is an independent set in G. The independent set problem
is, given a graph G and a number d, to decide whether α(G) ≤ d, that is, to decide

whether

∑
v∈V xu ≤ d holds for all 0-1 points of the independent set polytope

of G. This is an NP-complete problem. The relaxed problem is, given a system of

linear inequalities, to decide whether the inequality

∑
v∈V xu ≤ d holds for all

real solutions of this system. Known algorithms for linear programming can solve

this problem in polynomial time. If the algorithm answers “Yes” then we are done

because every integer solution is also a real one. The problem, however, is that

when the algorithm answers “No”, it might still be the case that all integer solutions

satisfy our inequality. So for example, the vector x = (1/2, . . . , 1/2) lies in the

independent set polytope of any n-vertex graph, and its value is
∑

v∈V xv = |V |/2.
Thus real points of this polytope say nothing about the actual size of independent

sets in G.

The condition “x must be an integer vector” is hard to deal with. So one tries

to add to the system Ax ≤ b, defining the original polyhedron P , some new

inequalities such that the resulting polyhedron PI = {x | A′x ≤ b′} is the convex

hull of P ∩ Zn
, that is, PI consists of all convex linear combinations

*
of integer

solutions of Ax ≤ b. Having found PI , it is enough to test (in polynomial time)

whether the inequality cTx ≤ d holds for all real solutions of A′x ≤ b′
. One can

obtain PI from P by iteratively shrinking the original polyhedron P using so-called

“closure operations”.

*

A convex linear combination of vectors v1, . . . , vk is a vector v = λ1v1 + · · · + λkvk where

λi ≥ 0 and λ1 + · · · + λk = 1. Note that if v1, . . . , vk are solutions of Ax ≤ b, then v is a

solution as well.
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The Chvátal closure (or just a closure) P ′
of a polyhedron P is obtained by

removing from P all vectors x for which there exists an inequality cT y < d + 1
with c ∈ Zn

and d ∈ Z such that this inequality is valid for all y ∈ P , but cTx > d.
That is, P ′

consists of all vectors x ∈ Rn
such that, for every c ∈ Zn

and δ ∈ R,

cT y ≤ δ for all y ∈ P implies cTx ≤ ⌊δ⌋.

Intuitively, when forming a closure of P we remove all solutions x of Ax ≤ b that
are “definitely” not integer solutions. In the literature this closure operator is also

called Chvátal-Gomory cut.
Geometrically, the closure is obtained as an intersection of halfspaces. A halfspace

is a set H = {x ∈ Rn | cTx ≤ δ} for some integer vector c ∈ Zn
and δ a rational

number. If the components of c are relatively prime integers, then the integer hull

HI of H is HI = {x ∈ Rn | cTx ≤ ⌊δ⌋}. The Chvátal closure P ′
of a polyhedron

P is then the set

P ′ =
⋂

H:H⊇P

HI ,

where the intersection ranges over all rational halfspaces containing P . We can

define the sequence of sets P = P (0) ⊇ P (1) ⊇ P (2) ⊇ . . . by letting P (i+1)
to be

the closure of P (i)
. That is, for every i = 0, 1, . . ., and every c ∈ Zn

and d ∈ Z, we
have that

if cTx < d+ 1 is valid in P (i)
then cTx ≤ d is valid in P (i+1)

. (19.3)

For a polyhedron P , let PI denote the convex hull of P ∩ Zn
.

19.20 Theorem (Schrijver 1980) For every rational polyhedron P and every integer
i ≥ 1, P (i) is a rational polyhedron defined by a finite set of integer inequalities
aTx ≤ b that satisfy aTx < b+ 1 for any x ∈ P (i−1). Moreover, there is an integer
r ≥ 0 such that P (r) = PI .

This theorem motivates the following definition. Let P ⊆ Rn
be a polyhedron,

and let cTx ≤ d be an inequality valid over P ∩ Zn
.

19.21 Definition (Chvátal rank) The Chvátal rank of an inequality cTx ≤ d relative
to P is the smallest number r such that cTx ≤ d is valid for all points x ∈ P (r)

. The

Chvátal rank of a rational polyhedron P is the minimum r such that P (r) = PI ,

where PI is the convex hull of P ∩ Zn
. The Chvátal rank of a point w ∈ Rn \ Zn

relative to P is rkP (w) = min{r | w ̸∈ P (r)}, that is, the smallest number of

closure operations required to remove this point w.

We are now going to show that the Chvátal rank captures the depth of cutting

plane derivations with the following generalized Gomory–Chvátal cutting rule:

Ax ≤ b

λTAx ≤ ⌊λT b⌋
, (19.4)
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where λ is non-negative vector with at most n nonzero positions (n is the number

of variables), and the vector λTA is an integer vector. The difference from the CP

proofs we considered above is that instead of three rules of “fanin” at most 2 now

we have one single rule of “fanin” at most n.
This rule (??) itself relies on the duality theorem of linear programming in the

following form.

19.22 Theorem (Duality theorem) IfAx ≤ b has a solution and if each of its solutions
satisfies a linear inequality cTx < d, then there is a non-negative vector λ with at
most n positive rational components such that λTA = cT and λT b < d.

That is, if all real solutions ofAx ≤ b satisfy a given inequality, then this inequal-

ity is a linear combination of the inequalities in Ax ≤ b. This is an almost direct

consequence of a more common form of the duality theorem of linear program-

ming stating that (if it exists) the optimal value of the linear program “maximize

cTx under the constraints Ax ≤ b” coincides with the optimal value of the dual

program “minimize λT b under the constraints λTA = cT
and λ ≥ 0”. The general

Gomory–Chvátal cutting rule just additionally rounds down the right-hand side.

In the cutting rule (??) we can assume that all components of λ lie between 0
and 1. This holds because an inequality λTAx ≤ ⌊λT b⌋ with λ ∈ Rn

, λ ≥ 0 and

λTA ∈ Zn
is implied by Ax ≤ b and µTAx ≤

⌊
µT b

⌋
with the vector µ = λ− ⌊λ⌋

in [0, 1]n:

λTAx = µTAx+ ⌊λ⌋T
Ax ≤

⌊
µT b

⌋
+ ⌊λ⌋T

b =
⌊
λT b

⌋
.

Since λTA is an integer vector, its scalar product λTAxwith any integer vector x
is an integer number. Therefore we do not lose any integer solution when rounding

down the right hand side. Thus every inequality derived from Ax ≤ b during a CP

derivation is valid in P ∩ Zn
. More important is the converse proved by Chvátal

(1973) and Schrijver (1980): if the polyhedron P = {x | Ax ≤ b} is rational, and if

an integer inequality cTx ≤ d is valid in P ∩ Zn
then there is a CP derivation of

cTx ≤ d from Ax ≤ b.
We now consider CP derivations using the generalized cutting rule (??). As before,

each such derivation can be represented by a directed acyclic graph whose fanin-0
nodes correspond to axioms (initial inequalities) and each inner node corresponds

to a derived inequality. As noted above, we may assume that each node has fanin

at most n, the number of variables. The size of a derivation is the total number of

nodes, and its depth is the length of (number of edges in) the longest path in it.

We are now interested in proving lower bounds on the depth of derivations. Note

that, as long as we are only interested in the depth, we may restrict us to tree-like

derivations, that is, derivations whose underlying graph is a tree. Our first goal is

to show that the depth essentially coincides with the Chvátal rank.
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19.6 Rank versus depth of CP proofs

The following simple lemma shows that the Chvátal rank of an inequality is a lower

bound on the depth of its CP derivation.

19.23 Lemma If cTx ≤ d has a CP derivation from P of depth r, then the Chvátal
rank of cTx ≤ d relative to P is at most r.

Proof. It is enough to show that for any application of the generalized Gomory–

Chvátal cutting rule (??), if the system Ax ≤ b of premises is valid in P (r)
, then the

conclusion λTAx ≤ ⌊λT b⌋ is valid in P (r+1)
. But this is obvious by the property

(??) because λTAx ≤ λT b must also be valid in P (r)
. ⊓⊔

The next lemma shows that Lemma ?? is almost tight.

19.24 Lemma Let P be a rational polyhedron, and r its Chvátal rank.

(i) If P (r) ̸= ∅, then any integer inequality valid in P (r) has a CP derivation from
P of depth at most r + 1.

(ii) If P (r) = ∅, then the inequality 0 ≤ −1 has a CP derivation from P of depth at
most r + 2.

Proof. Assume first that P (r) ̸= ∅, and let cTx ≤ d be an integer inequality valid

in P (r)
. By Theorem ??, cTx < d+ 1 is valid in P (r−1)

. To prove the first claim of

the lemma it is enough to prove the following

19.25 Claim cTx ≤ d has a CP derivation from P of depth r + 1.

Proof. We argue by induction on r. In the basis case r = 1, we know that cTx < d+1
is valid in P (0) = P ̸= ∅. By Theorem ??, there exists a non-negative vector λ with

at most n positive rational components such that λTA = cT
and λT b < d + 1.

It follows that one can derive cTx ≤ d by just one application of the general

Gomory–Chvátal cutting rule, because ⌊λT b⌋ ≤ d.
For the inductive case r ≥ 1, reason as follows. By Theorem ??, the set P (r)

is a

rational polyhedron defined by a finite system Ax ≤ b of integer linear inequalities
aT

i x ≤ bi such that aT
i x < bi + 1 holds for all x ∈ P (r−1)

. By the induction

hypothesis, each of inequalities aT
i x ≤ bi can be derived from P by a CP proof

of depth r. Since, by our assumption, the inequality cTx < d+ 1 is valid in P (r)
,

Theorem ?? implies that it is a linear combination of Ax ≤ b, that is, there exists
a rational vector λ ≥ 0 with at most n nonzero components such that λTA = cT

and λT b < d+ 1. Thus the desired inequality cTx ≤ d can be derived from Ax ≤ b
by just one application of the general Gomory–Chvátal cutting rule. ⊓⊔

To finish the proof of the lemma, it remains to consider the case when P (r)

is empty. Let Ax ≤ b be a finite system of integer linear inequalities aT
1 x ≤

b1, . . . , a
T
mx ≤ bm defining P (r)

. Let P
(r)
k be the set of all points x ∈ Rn

satisfying

the first k inequalities aT
1 x ≤ b1, . . . , a

T
k x ≤ bk. Since P

(r) = P
(r)
m is empty and

P
(r)
0 = Rn

, there exists a maximal k such that P
(r)
k is not empty. For that maximal
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k, the inequality aT
k+1x ≥ bk+1 + 1 (that is, the inequality −aT

k+1x ≤ −bk+1 − 1)
holds for every x ∈ P

(r)
k . By Claim ??, there exists a proof of this inequality of

depth r + 1. Combined with aT
k+1x ≤ bk+1, this gives a proof of 0 ≤ −1 from P .

Recall that the depth of the entire proof is at most r + 2, as desired. ⊓⊔

Thus we can obtain lower bounds on the depth of CP derivations by proving

lower bounds on the Chvátal rank.

19.7 Lower bounds on Chvátal rank

To show that the Chvátal rank of cTx ≤ d relative to P is larger than r, it is
enough to show that P (r)

contains a real vector w such that cTw > d. This can be

shown by characterizing some of the points on P (i)
that survive in P (i+1)

. Such

characterizations are usually called “protection lemmas”, because they argue that

certain points are protected from removal in the next round provided certain other

points survived the previous round.

Let P ⊆ Rn
be a rational polyhedron, u and v some two points in Rn

, andm a

positive number. Let P ′
be the Chvátal closure of P .

19.26 Lemma If u ∈ P and if the point w = u− 1
mv satisfies every valid over P ∩Zn

integer inequality aTx ≤ b with aT v < m, then w ∈ P ′.

Proof. If w ̸∈ P ′
then aTw > b for some a and b such that

a ∈ Zn
, b ∈ Z and aTx < b+ 1 for all x ∈ P . (19.5)

Hence we only need to show that aTw ≤ b whenever (??) holds. Since aTx < b+ 1
is valid in x ∈ P , aTx ≤ b is valid in P ∩ Zn

. Hence, if aT v < m then aTw ≤ b
holds by the assumption of the lemma. So assume that aT v ≥ m. Since u ∈ P and

since aTx < b+ 1 is valid over P , we have

aTw = aTu− 1
m
aT v ≤ (b+ 1) − 1 = b ,

as claimed. ⊓⊔

Lemma ?? gives us a tool to show that some points will survive one round of

Chvátal–Gomory cuts. We can easily extend it to more rounds. Letm1, . . . ,mr be

positive real numbers. Define points w(0), w(1), . . . in Rn
inductively as follows:

w(0) = u and w(j) = w(j−1) − 1
mj

v .

Hence,

w(j) := u−
( j∑

i=1

1
mi

)
v . (19.6)



530 19 Cutting Plane Proofs

By anm-bounded inequality for P we will mean an integer inequality aTx ≤ b
which is valid over P ∩ Zn

and satisfies aT v < m.

19.27 Lemma If u ∈ P and if, for every j = 1, . . . , r, the point w(j) satisfies every
mj-bounded inequality for P , then w(j) ∈ P (j) for all j = 1, . . . , r.

We leave the proof as an exercise; it is the same as that of Lemma ?? using
induction on j.

19.7.1 The maximum independent set problem

Given a graph G = ([n], E), we consider the following independent set polytope
described by the system of inequalities:∑

i∈S

xi ≤ 1 for all cliques S ⊆ V in G, (19.7)

xi ≥ 0 for all vertices i ∈ [n].

We are interested in the size and depth of cutting plane derivations of

∑n
i=1 xi ≤

α(G) from this system. Note that we now allow much more inequalities than in

(??), so this system approximates the independent set polytope tighter than (??).
For a graph G = ([n], E), let rk(G) denote the Chvátal rank of the inequality∑n
i=1 xi ≤ α(G) relative to the independent set polytope (??). By Lemma ??, we

know that any cutting plane derivation of

∑n
i=1 xi ≤ α(G) from (??) which uses

generalized Gomory–Chvátal cutting rule (??) must have depth at least rk(G) − 1.
The depth of a derivation is the maximum length of a path from the root to a leaf

in the underlying directed acyclic graph of the derivation.

19.28 Lemma If an n-vertex graph G has no clique on more than k vertices, then

rk(G) ≥ log n

k · α(G) .

Proof. Let α = α(G), and let P be the independent set polytope of G defined

by (??). Observe that rk(G) > r if P (r)
contains a vector x = (x1, . . . , xn) with

xi > α/n for all i, because then
∑n

i=1 xi > α. On the other hand, sinceG contains

no clique on more than k vertices, the vector w := (1/k, . . . , 1/k) belongs to

P : if S is a clique then the axiom

∑
i∈S xi ≤ 1 is satisfied by vector w because∑

i∈S wi = |S|/k ≤ 1. Motivated by this observation, consider the vectors

w(r) := 2−rw =
( 1
k2r

, . . . ,
1
k2r

)
, r = 0, 1, . . . .

19.29 Claim For every r, w(r) ∈ P (r)
.
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Note that this already implies the lemma, because P (r) = PI only if 1/k2r ≤
α/n, from which r ≥ log(n/kα) follows.

We prove the claim by induction on r. Let w(r) ∈ P (r)
, and let cTx ≤ δ be an

inequality valid in P (r)
with c ∈ Zn

. Since 0 ∈ P (r)
, we have that δ ≥ 0. If δ ≥ 1

then

cTw(r+1) = cT (2−r−1w) = 1
2c

T (2−rw) = 1
2c

Tw(r) ≤ 1
2δ ≤ ⌊δ⌋ ,

implying that w(r+1) ∈ P (r+1)
. Now assume that 0 ≤ δ < 1. In this case vector

c cannot have any positive components because PI , and hence, also P (r)
must

contain all n unit vectors (zero-one vectors with exactly one 1). Thus we again have

that cTw(r+1) = cT (2−r−1w) ≤ 0 = ⌊δ⌋. ⊓⊔

19.30 Theorem There exist arbitrarily large graphs G such that G has n vertices,
α(G) = 2, and rk(G) = Ω(logn).

Proof. Erdős (1961) proved that there exist arbitrarily large n-vertex graphs G such

that α(G) = 2 and every clique in G has at most k = O(
√
n logn) vertices. It

remains to apply Lemma ??. ⊓⊔

The following theorem substantially improves the bound of Lemma ??. A graph

is k-colorable if it is possible to assign to each its vertex a number (color) from

{1, . . . , k} so that no two adjacent vertices receive the same number.

19.31 Theorem (Chvátal–Cook–Hartmann 1989) Let G be a graph with n vertices
and let k < s be positive integers. If every induced subgraph of G with s vertices is
k-colorable, then

rk(G) ≥ s

k
ln n

kα(G) .

Proof. Let 1 = (1, . . . , 1)T
be the all-1 vector of length n. Writing

w(j) := 1
k

( s

s+ k

)j

1 , (19.8)

it is enough to show that w(j) ∈ P (j)
for all j: if j < (s/k) ln[n/kα(G)] then,

using the inequality 1 − t > e−t−t2/2
valid for all 0 < t < 1, we obtain that

1Tw(j) = n

k

( s

s+ k

)j

≥ n

k
e−jk/s > α(G) .

To show that w(j) ∈ P (j)
for all j, we only need to verify the assumptions of

Lemma ?? with

uT :=
(1
k
, . . . ,

1
k

)
, vT := (1, . . . , 1) and mj := s

(s+ k

s

)j

.

Indeed, using the geometric series 1 + h+ h2 + · · · + hn = (1 − hn+1)/(1 − h)
we have
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1
k

−
j∑

i=1

1
mi

= 1
k

− 1
s

j∑
i=1

( s

s+ k

)i

= 1
k

− 1
s

·
1 −

(
s

s+k

)j+1

1 − s
s+k

+ 1
s

= 1
k

− s+ k

sk
+ 1
k

( s

s+ k

)j

+ 1
s

= 1
k

( s

s+ k

)j

.

Thus with our choice of u, v andmj the vectors in (??) have the desired form (??).
Moreover, since G contains no clique with more than k vertices, we have u ∈ P : if

S is a clique then the

∑
i∈S ui = |S|/k ≤ 1.

Now consider an arbitrary inequality aTx ≤ b valid over P ∩ Zn
and such that

a ∈ ZV
and aT 1 < mj . We only need to verify that aTw(j) ≤ b.

By our assumption about the graph, the induced subgraph of G on every subset

S ⊆ V of |S| ≤ s vertices is k-colorable. That is, S can be partitioned into at most

k independent sets S = S1 ∪ S2 ∪ · · · ∪ Sk . Hence, if we let A be the maximum of∑
i∈I ai over all independent sets I of G, then∑

i∈S

ai ≤ k · max
j

∑
i∈Sj

ai ≤ k ·A .

Thus we have that

b ≥ max{aTx | x ∈ P ∩ ZV } = A ≥ 1
k

max
{∑

i∈S

ai | |S| ≤ s
}
. (19.9)

We may assume that aT 1 > 0; otherwise aTw(j) ≤ 0 and we are done, as b ≥ 0
(the all-0 vector belongs to P ∩ Zn

). If vector a has at most s positive components,

then (??) implies b ≥ (1/k)aT 1 ≥ aTw(j)
. If a has at least s positive components,

then (??) and aT 1 < mj imply

b ≥ s

k
>

s

kmj
aT 1 = aTw(j) . ⊓⊔

As a consequence we obtain that some independent set polytopes have large

Chvátal rank.

19.32 Theorem There exist arbitrarily large graphs G on n vertices with O(n) edges
such that rk(G) = Ω(n).

Proof. Erdős (1962) proved that for every positive t there are positive integer c, a
positive number δ, and arbitrarily large graphs G such that G has n vertices and

cn edges, α(G) < tn, and every induced subgraph with at most δn vertices is

3-colorable. (In fact he proved that most of n-vertex graphs with cn edges have the
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last two properties.) Any t smaller than 1/3 will do for our purpose: we only need

to set k = 3 and s = ⌊δn⌋ in Theorem ??. ⊓⊔

Chvátal, Cook and Hartmann (1989) also give upper bounds: for every n-vertex
graph G with α(G) = α, rk(G) is at most n− α, if α < n, and is at most α+ 1 +
(2α+ 1) ln[n/(2α+ 1)], if 2α+ 1 ≤ n.

A general upper bound on the Chvátal rank of polytopes in the 0/1-cube where
found by Eisenbrand and Schulz (2003): rk(P ) ≤ n2(1 + logn) for every polytope

P ⊆ [0, 1]n; moreover, rk(P ) = O(n) if P ∩ Zn = ∅.
Theorem ?? has several other interesting consequences. In particular, it implies

that some other polytopes, including those of particular instances of the knapsack

problem, also have large Chvátal rank. This can be shown by considering special

rank-preserving mappings between polyhedrons.

A function f : Rs → Rt
is linear if f(x) = Cx+d for some integer t× smatrix

C and some vector d ∈ Zt
. For a polyhedron P , let rk(P ) denote its Chvátal rank.

Recall that rk(P ) ≥ r + 1 if P (r) \ PI ̸= ∅ where, as before, PI is the convex hull

of P ∩ Zn
.

19.33 Lemma LetS ⊆ Rs and T ⊆ Rt be polyhedrons, and f : Rs → Rt a one-to-one
linear function. If f(S) ⊆ T and f(S ∩ Zs) ⊇ T ∩ Zt, then rk(T ) ≥ rk(S).

Proof. Our first goal is to show that, for every linear mapping f : Rs → Rt
, the

condition f(S) ⊆ T alone implies that

f(S(i)) ⊆ T (i)
for all i = 0, 1, . . . . (19.10)

We show this by induction on i. The basis case i = 0 holds by our assumption. Now

assume that (??) holds for some i, and consider an arbitrary point w in S(i+1)
; we

need only to show that f(w) ∈ T (i+1)
. Since w ∈ S(i)

, we have f(w) ∈ T (i)
by

the induction hypothesis. Hence, our task reduces to showing that aT f(w) ≤ b
holds for every a ∈ Zt

, b ∈ Z such that

max{aT y | y ∈ T (i)} < b+ 1 .

The last inequality combined with f(S(i)) ⊆ T (i)
guarantees that

max{aT f(x) | x ∈ S(i)} < b+ 1 .

Since f(x) = Cx+ d with integral matrix C and integral vector d, it follows that
max{aT f(x) | x ∈ S(i+1)} ≤ b. In particular, aT f(w) ≤ b must hold because

w ∈ S(i+1)
. This finishes the proof of (??).

Now let r be the Chvátal rank ofS; we need to show that rk(T ) ≥ r. If r = 0, then
the desired conclusion is trivial. If r > 0, then there must be a point x in S(r−1) \SI .

Since x ∈ S(r−1)
and f(S(r−1)) ⊆ T (r−1)

, the point f(x) belongs to T (r−1)
. On

the other hand, since x ̸∈ SI , the fact that f is a one-to-one linear function satisfying

f(S ∩Zn) ⊇ T ∩Zn
implies that f(x) ̸∈ TI . Hence, f(x) ∈ T (r−1) \TI , implying

that rk(T ) ≥ r, as desired. ⊓⊔



534 19 Cutting Plane Proofs

19.7.2 The set-covering problem

Now let A be a zero-onem× n matrix, and P denote the polytope in Rn
defined

by Ax ≥ 1 and 0 ≤ x ≤ 1. The problem of minimizing a linear function over

P ∩ Zn
is known as the set-covering problem. This term comes from interpreting

the j-th column of A as the incidence vector of a subset Sj of the ground set

[m] = {1, . . . ,m}, and calling a subset J ⊆ [n] a cover if the union of all Sj with

j ∈ J is the entire ground set.

Recall that a vertex cover in a graphG = (V,E) is a set of its vertices containing
at least one endpoint of each edge. The vertex-cover number, τ(G), of G is the

minimum size of such a set. If we take the set E of all edges as our ground set,

and let Sj ⊆ E to be the set of all edges incident with the j-th vertex, then the

vertex-cover problem turns to special case of the set-covering problem. On the other

hand, since τ(G) = |V | − α(G) holds for every graph, the vertex-cover problem is

related to the independent-set problem. By formalizing this relation, we obtain the

following lower bound on the rank of set-covering polytopes.

19.34 Theorem (Set-Covering Problem) There exist arbitrarily largem× n zero-one
matrices A such that n ≤ m = O(n), each row of A has precisely two ones, and the
polytope P = {x | Ax ≥ 1,0 ≤ x ≤ 1} has rk(P ) = Ω(n).

Proof. Fix a graphG = (V,E) guaranteed by Theorem ??. LetA denote the zero-one

matrix whose rows correspond to edges, columns to vertices of G, and A[e, v] = 1
iff v ∈ e. Let S denote the independent set polytope of G defined by (??), and
T = {x | Ax ≥ 1,0 ≤ x ≤ 1}. The desired conclusion now follows from

Theorem ?? and Lemma ?? by taking the function f : RV → RV
defined by

f(x) = 1 − x.
The function f(x) is clearly one-to-one. To verify that f(S) ⊆ T , take a vector

x ∈ S. Since A1 = 2 · 1 and Ax ≤ 1, we have that

Af(x) = A(1 − x) = A1 −Ax = 2 · 1 −Ax ≥ 1 ,

It remains therefore to verify the condition T ∩ Zn ⊆ f(S ∩ Zn). For this, take an
arbitrary zero-one vector y ∈ T ; hence Ay ≥ 1. Take x := 1 − y; hence, y = f(x).
The vector x belongs to S ∩ Zn

because

Ax = A(1 − y) = A1 −Ay = 2 · 1 −Ay ≤ 1 ,

as Ay ≥ 1. Thus we can apply Lemma ?? with this function f(x). ⊓⊔

19.35 Theorem (Set-Partitioning Problem) There exist arbitrarily largem× n zero-
one matrices A such that n ≤ m = O(n), each row of A has precisely three ones, and
the polytope P = {x | Ax = 1,0 ≤ x ≤ 1} has rk(P ) = Ω(n).

Proof. Let A be a matrix guaranteed by Theorem ??, and let S be the polytope

defined by Ax ≥ 1 and 0 ≤ x ≤ 1. Let T denote the polytope in Rn+m
defined by
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Ay + z = 1, 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1. We are going to apply Lemma ?? together
with Theorem ??. For this purpose, define a linear function f : Rn → Rn+m

by

f(x) =
[

1 − x
Ax− 1

]
=
[
y
z

]
.

This function is one-to-one just because 1 − x is such. To verify that f(S) ⊆ T ,
take a vector x ∈ S. Since A1 = 2 · 1, we have that

Ay + z = A(1 − x) + (Ax− 1) = A1 − 1 = 1 ;

hence, f(x) ∈ T , as desired. It remains therefore to verify the condition T∩Zn+m ⊆
f(S∩Zn). For this, take an arbitrary zero-one vector (y, z) ∈ T ; henceAy+z = 1.
Take x := 1 − y. Then x ∈ S ∩ Zn

because

Ax = A(1 − y) = A1 −Ay = 2 · 1 −Ay ≥ 1 ,

as Ay = 1 − z ≤ 1. Moreover, 1 − x = y and

Ax− 1 = A(1 − y) − 1 = A1 −Ay − 1 = 1 −Ay = z

because Ay + z = 1; hence, (y, z) = f(x), as desired.
Since this function f(x) fulfills the conditions of Lemma ??, the desired lower

bound rk(T ) ≥ rk(S) = Ω(n) follows from Theorem ??. ⊓⊔

19.7.3 The knapsack problem

Let a be a vector in Zn
+, and let b be an integer. The problem of maximizing a linear

function over all zero-one solutions of the system of linear inequalities aTx ≤ b,
0 ≤ x ≤ 1 is known as the zero-one knapsack problem.

19.36 Theorem (Knapsack Problem) For arbitrarily large n, there exist a ∈ Zn
+ and

b ∈ Z+ such that all components of a are at most 4n, and the polytope P = {x |
aTx ≤ b,0 ≤ x ≤ 1} has rk(P ) = Ω(n).

Proof. By Exercise ??, we only need to prove that rk(T ) = Ω(n), where T = {x |
aTx = b,0 ≤ x ≤ 1} for particular a and b. For this purpose, take a zero-one

matrix A guaranteed by Theorem ??. Let a0, a1, . . . , am−1 be its rows. We know

that each of these rows has precisely three ones. Define

aT :=
m−1∑
i=0

4iai and b :=
m−1∑
i=0

4i .

Let T be the polytope defined by aTx = b and 0 ≤ x ≤ 1 for this particular choice

of a and b. Let S be the polytope defined by Ax = 1 and 0 ≤ x ≤ 1. We are
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going to apply Lemma ?? with f(x) = x. Since aTx = b is a linear combination of

Ax = 1, we have that f(S) = S ⊆ T . So it remains to prove that

T ∩ Zn ⊆ S ∩ Zn , (19.11)

for then the desired conclusion will follow from Lemma ?? and Theorem ??. To
prove (??), take an arbitrary zero-one vector x ∈ T . Then, aTx = b, that is

m−1∑
i=0

(aT
i x)4i =

m−1∑
i=0

4i .

Since each ai has precisely three ones, each aT
i x is one of the integers 0, 1, 2, 3.

Since the 4-ary expansion of every non-negative integer is unique, we conclude

that aT
i x = 1 for all i = 0, 1, . . . ,m− 1, and so x ∈ S ∩ Zn

. ⊓⊔

19.7.4 An upper bounds on the proof size

Let Size(G) denote the smallest t such that there is a tree-like cutting plane deriva-

tion of

∑
v∈V xv ≤ α(G) from (??) using at most t applications of the generalized

Gomory–Chvátal cutting rule (??). As before, the size of a derivation is the total

number of produced inequalities.

19.37 Theorem (Chvátal–Cook–Hartmann 1989) For every graph G with n vertices,

Size(G) ≤
(

n

α(G)

)
.

Proof. Let G = (V,E). For every subset W of V , let α(W ) denote the largest

number of pairwise nonadjacent vertices inW . For a vector x ∈ Rn
, set

x(W ) :=
∑

u∈W

xu .

Our goal is to prove by induction on |W | that there is a cutting plane derivation of

x(W ) ≤ α(W ) from (??) of size at most

( |W |
α(W )

)
.

For this purpose, set α := α(W ). We may assume that 1 < α < |W |, for
otherwise the desired conclusion is trivial. Since α < |W |, there must be a vertex

w ∈ W such that α(W \ {w}) = α. SetW1 := W \ {w}, and letW0 denote the

set of all vertices inW1 that are not adjacent to w. Since α(W0) ≤ α− 1, there is a
setW2 such thatW0 ⊆ W2 ⊂ W1 and α(W2) = α− 1.

By the induction hypothesis, there is a cutting plane derivation of x(W1) ≤ α

from (??) of size at most

(|W1|
α

)
and a cutting plane derivation of x(W2) ≤ α − 1

from (??) of size at most

(|W2|
α−1
)
. Since

(
m
k

)
+
(

m
k−1
)

=
(

m+1
k

)
holds for all integers

m ≥ k ≥ 1, and since |W2| < |W | − 1 and α > 1, the total size of both of these
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derivations is(
|W1|
α

)
+
(

|W2|
α− 1

)
<

(
|W | − 1

α

)
+
(

|W | − 1
α− 1

)
=
(

|W |
α

)
.

We claim that for every vector x ∈ Rn
satisfying x(W1) ≤ α and x(W2) ≤ α− 1,

we have that x(W ) < α + 1. Note that this claim already finishes the induction

step: one additional application of the generalized Gomory–Chvátal cutting rule (??)
(with rounding-down) yields the desired inequality x(W ) ≤ α.

To prove the claim, take an arbitrary vector x ∈ Rn
satisfying x(W1) ≤ α

and x(W2) ≤ α − 1. Since W2 is a proper subset of W1, the set U = W1 \ W2
is not empty. If x(U) = 0 then x(W ) = xw + x(W2) ≤ 1 + (α − 1) = α. If
x(U) > 0 then xu > 0 for some u ∈ U . But since u is adjacent to w, the inequality
xu + xw ≤ 1 implies that xw < 1. Since x(W1) ≤ α, in this case we obtain that

x(W ) = xw + x(W1) < α+ 1, as desired. ⊓⊔

19.38 Research Problem
Prove that there exist n-vertex graphsG for which Size(G) grows faster than every

polynomial in n.

Theorem ?? shows that graphs with small α(G) are bad candidates.

19.8 General CP proofs cannot be balanced

We already know how to prove large lower bounds (up to Ω(n)) on the depth
of derivations. A natural question is: can these bounds be translated to super-

polynomial lower bounds on the size of derivations, that is, on the total number of

inequalities produced in any derivation?

By the Formula Balancing Lemma (Lemma ??) we already know that any DeMor-

gan formula of leafsize S can be transformed into an equivalent DeMorgan formula

of depth O(logS). Hence, any lower bound t on the depth implies a lower bound

2Ω(t)
of the leafsize. Does something similar hold for cutting plane proofs? That is,

does cutting plane proofs can also be balanced?

In this section we show that general (non-tree-like) cutting plane proofs cannot
be balanced: there are unsatisfiable systems of linear equations that have CP proofs

(and even a resolution refutation proof) of polynomial size, but any such proof must

have depth Ω(n).
In the proof we will use the following “protection lemma” which is based on a

simple observation: any convex linear combination of solutions of a system of linear

inequalities is also a solution. In particular, if two vectors y and z satisfy a linear

inequality, then their average vector x = (y + z)/2 must satisfy this inequality as

well.

Let P ⊆ [0, 1]n be a polytope, and x ∈ {0, 1
2 , 1}n ∩ P . A neighbor of x is a

vector obtained from x by replacing any one of its
1
2 -positions by 0 or by 1. Let
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N(x) denote the set of all neighbors of x. Hence, |N(x)| is two times the number

of
1
2 -positions in x.

19.39 Lemma If N(x) ⊆ P then x ∈ P ′.

That is, a fractional point is protected from removal in the next round provided

all its neighbors survived the previous round.

Proof. Let Ix = {i | xi = 1
2 } be the set of fractional (non-integral) positions of x.

Denote by xi,a
the vector obtained from x by replacing its i-th position by a. Thus

N(x) = {xi,a | i ∈ Ix, a = 0, 1}.
Suppose that x ̸∈ P ′

, that is, there exist a ∈ Zn
and b ∈ Z such that aT y < b+1

is valid for all y ∈ P , but aTx > b. Then aTx cannot be integer, and hence, must

belong to
1
2 + Z. Thus at least one ai is odd, and

∑
j ̸=i aj is even. For this i, both

scalar products aTxi,0
and aTxi,1

must be integers, and hence, must be at most b.
Since x is an average of xi,0

and xi,1
, the scalar product aTx must also be at most

b, a contradiction. ⊓⊔

Lemma ?? can be generalized as follows (Exercise ??). Say that a vector x ∈ 1
2Z

n

is a combined average of points in P if Ix = {i | xi = 1
2 } can be partitioned into

sets I1, . . . , Is such that, for every i = 1, . . . , s, we can represent x as an average

of vectors in P that are 0-1 on Ii and agree with x elsewhere.

19.40 Lemma Let P ⊆ Rn be a rational polytope, and x ∈ 1
2Z

n. If x is a combined
average of points in P , then x ∈ P ′.

19.8.1 Size versus depth of CP proofs

Recall that a partial ordering on [n] = {1, . . . , n} is a binary relation ≺ which is

antisymmetric (i ≺ j implies j ̸≺ i), and transitive (i ≺ j and j ≺ k implies i ≺ k).
An ordering is total if any two elements of [n] are comparable. The unsatisfiable

system of inequalities we consider is the negation of the property that every total

ordering on n elements has minimal element.

More formally, we associate a variable xij to each pair (i, j) of elements in [n],
and consider consider the total order polytope defined by the following system of

linear inequalities:

xij + xji = 1 (antisymmetry and totality)

xij + xjk − xik ≤ 1 (transitivity)∑
j:j ̸=i

xij ≥ 1 (no maximal element i)

0 ≤ xij ≤ 1
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If the variables xij take only boolean values 0 and 1, interpreted as xij = 1 if and

only if i ≺ j, then the first two sets of inequalities ensure that ≺ is a total ordering,

whereas the third states that there is no maximal element in this ordering.

We already know that the unsatisfiable CNF formula GTn corresponding to this

system has a resolution refutation proof of polynomial size (see Theorem ??). By
Proposition ??, the system itself has a CP proof of polynomial size. We now show

that any CP proof for this system must have depth Ω(n).

19.41 Theorem (Buresh-Oppenheim et al. 2006) The Chvátal rank of the total order
polytope is Ω(n).

Proof. We associate with a (partial) order ≺ a {0, 1
2 , 1}-vector x = x≺ whose

component xij is 0, 1, 1
2 when i is smaller than, bigger than, or incomparable to j,

respectively. Call a partial ordering s-scaled if there is a partition of [n] into sets

A1, A2, . . . , As such that each setAi is totally ordered, and elements from different

sets are incomparable.

19.42 Claim If ≺ is s-scaled with s > 2, then x≺ remains after s − 3 rounds of

Gomory–Chvátal cuts.

The claim immediately provides a lower bound of n− 2 for the rank of the total

order polytope P since the all-
1
2 vector associated with the empty order (which is

n-scaled) has that rank.
We prove Claim ?? by induction on s. Suppose ≺ is 3-scaled. We need to show

that x≺ ∈ P = P (0)
. Transitivity inequalities clearly hold for three elements in the

same Ai. A transitivity inequality that involves more than one Ai must contain at

least two variables with value
1
2 and therefore must be satisfied. The “no maximal

element” inequalities also hold, because for every element there are at least two

others to which it is not comparable, and the two associated
1
2 values alone satisfy

the inequality.

For a general s we let x = x≺ and rk(x) = rkP (x). Let A1, A2, . . . , As be the

corresponding partition of [n]. Notice that the set Ix = {(i, j) | xij = 1
2 } is the

set of all edges connecting different components Ai and Aj of the graph when

we associate ≺ with a graph consisting of s disjoint independent sets, and wires

joining every pair of vertices from different sets. We partition the edges in Ix to(
s
2
)
sets by the components they connect and argue that x and this partition satisfy

the conditions of Lemma ??.
For a choice of components A and B, we denote by ≺A the order which is the

same as ≺ except all the elements of A are bigger than those of B. Similarly we

define ≺B . Let y = x≺A
and z = x≺B

. Then x = (y+ z)/2. Indeed, if i and j both
belong to A or both belong to B, then xij = yij = zij = 1. If i ∈ A and j ∈ B,

then xij = 1
2 , yij = 1 and zij = 0 because zji = 1 and ≺ is antisymmetric. Since

≺A,≺B are (s− 1)-scaled we inductively have that rk(y), rk(z) ≥ s− 3, and by

Lemma ??, rk(x) ≥ s− 2. ⊓⊔

Theorems ?? and ?? show that general (non-tree-like) cutting plane proofs cannot
be balanced.
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19.43 Research Problem
Can tree-like cutting plane proofs be balanced?

19.9 Integrality gaps

A general approach to solve the maximum independent set problem via linear

programming is, given a graph G = (V,E) on n vertices, to construct a polytope

P = {x ∈ Rn | Ax ≤ b} such that: (i) the characteristic 0-1 vector of every

independent set in G belongs to P , and (ii)

∑
v∈V xv ≤ α(G) holds for all vectors

x ∈ P . That is, the goal is to construct the convex hull of the set of all characteristic

0-1 vectors of independent sets in G. So far, we have considered constructions of

such polytopes using cutting planes. But there are many other ways to construct

convex hulls of integer solutions. For example, one can safely add to (??) an in-

equality

∑
v∈C xv ≤ k for any cycle C in G with 2k + 1 vertices, and so on. A

natural question is: can any of these methods actually succeed in giving the desired

convex hull? In this section we will show that no algorithm producing only “short”

inequalities, that is, inequalities aTx ≤ b in which at most ϵn components of a are
nonzero, can succeed.

An independent set relaxation forG is any polytopeP = {x | Ax ≤ b} containing
all characteristic 0-1 vectors of independent sets in G. It is clear that the value

max{
∑

v∈V xv | x ∈ P} of the optimal solution of a relaxation is always at least

the independence number α(G), but may be much larger, in general. The ratio

of the value of an optimal solution of a relaxation divided by α(G) is called the

integrality gap of the relaxation P . This number gives us the factor with which the

polytope P can approximate the largest number of pairwise non-adjacent vertices

in G; the smaller this factor is, the better is the approximation.

Each relaxation P is defined by some set of linear inequalities (constraints)

aTx ≤ b in variables x1, . . . , xn. We say that P is s-local if in every such inequality,

the coefficient vector a is nonzero for at most s coordinates, that is, if the constraint
involves at most s variables. For example, the independent set polytope defined by

(??) is 2-local.
Let Gaps(G) denote the minimum possible integrality gap over all s-local inde-

pendent set relaxations for G. We are going to describe a property of graphs that

make Gaps(G) large. This property is similar to that used in Theorem ??, but with
the chromatic number replaced by the fractional chromatic number.

Let k ≥ 1 be a positive rational number. A fractional k-coloring of a graph G
is a sequence I1, . . . , Im of (not necessarily distinct) independent sets such, for

every vertex, exactly the fraction 1/k of the Ii contain this vertex. The fractional
chromatic number of G is

χf (G) = inf{k | G has a fractional k-coloring} .
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Note that every k-coloring is also a fractional k-coloring in whichm = k and the

sets Ii (color classes) form a partition of the vertex set. Consequently, χf (G) ≤
χ(G). The following lower bound was proved (among other interesting results) by

Arora, Bollobás, Lovász, and Tourlakis (2006).

19.44 Theorem (Arora et al. 2006) Let G be a graph on n vertices. If χf (H) ≤ k for
every induced subgraph H of G on s vertices, then

Gaps(G) ≥ n

k · α(G) .

Proof. Let P be an s-local independent set relaxation forG = (V,E). We will show

that the all-(1/k) vector (1/k, 1/k, . . . , 1/k) is feasible (belongs to P ). This will
clearly prove the theorem because then the value of an optimal fractional solution

must be at least

∑
v∈V (1/k) = n/k.

It suffices to show that the all-1/k vector is feasible for any system of constraints

Ax ≤ b where at most s columns of A are not all-0 columns. So fix any subset S of

|S| = s vertices and assume that all columns of A corresponding to the vertices

outside S are all-0 columns. Let H be the induced subgraph of G on S, and let

I1, . . . , Im be a fractional k-coloring of H . Hence, every vertex of S belongs to

a 1/k fraction of the Ij ’s. Each Ij is an independent set in H , and hence, also an

independent set in the entire graph G. By the definition of P , the characteristic 0-1
vector v⃗j of Ij must satisfyAx ≤ b. Replace by 1/k all 0-entries of v⃗j corresponding

to vertices i ̸∈ S. Since A has only zeros in these columns, the resulting vectors w⃗j

are still solutions of Ax ≤ b. But then the average vector

w⃗ = 1
m

(w⃗1 + w⃗2 + · · · + w⃗m)

is a solution as well. Since every vertex i ∈ S belongs to exactlym/k of the sets

I1, . . . , Im, we have that exactlym/k of the vectors w⃗1, . . . , w⃗m have 1s in each

coordinate i ∈ S. Thus the average vector w⃗ is the all-(1/k) vector, as desired. ⊓⊔

The result of Erdős mentioned in the proof of Theorem ?? gives us graphs G
for which Gaps(G) is not bounded for s = ⌊δn⌋. To get larger integrality gaps,

the use of fractional chromatic number was important. Namely, using probabilistic

arguments, Arora et al. (2006) proved that, for every constants 0 < γ < ϵ, and
for every large enough n, graph Gn on n vertices satisfying the conditions of

Theorem ?? with s = nγ
and k · α(G) ≤ nϵ

exist. Theorem ?? implies that for such

graphs the integrality gap is huge: Gaps(Gn) ≥ n1−ϵ
.

Exercises

19.1 In Remark ?? we claimed that Pudlák’s interpolation theorem remains true for

more general types of cutting plane rules. Prove this.
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19.2 LetKn = (V,E) be a complete graph on n vertices; hence, α(Kn) = 1. Let
S(n) be the minimum number of applications of the generalized Chvátal–Gomory

cutting rule (??), and be the minimum depth of a CP derivation of

∑
v∈V xv ≤ 1

from the polytope defined by (??) with G = Kn.

(a) Show that S(n) ≤ n. Hint: Try induction on n. Having proved

∑n

i=1 xi ≤ 1, add all

inequalities xi + xn+1 ≤ 1 for i = 1, . . . , n, then multiply

∑n

i=1 xi ≤ 1 by n − 1 and add

to this inequality.

(b) Show thatD(n) ≤ logn. Hint: Sum up inequalities of all (n/2 + 1)-cliques to show that

D(n) ≤ 1 + D(n/2 + 1).

19.3 Let n be a power of 2, and let D(n) be the minimum depth of a CP derivation

of

∑
v∈V xv ≤ 1 from the polytope defined by (??). Show that D(n) ≤ logn.

19.4 In Exercise ?? we have derived
∑n

i=1 xi ≤ 1 from axioms xi + xj ≤ 1 for

all 1 ≤ i < j ≤ n by a CP proof of size linear in n. But this proof has depth
Ω(n). Exercise ?? gives a proof of depth O(logn), but its size is exponential. Give
a CP proof which has logarithmic depth and polynomial size. Hint: Use the “triangle
trick” from Exercise ?? to design a proof whose depth D(n) and size S(n) satisfy recurrences

D(n) ≤ 1 + D(⌈2n/3⌉) and S(n) ≤ 1 + 3 · S(⌈2n/3⌉). Show that D(n) is at most about

log3/2 n and S(n) is at most about nlog3/2 3
.

19.5 (Rhodes 2009) Consider the polytope corresponding to the pigeonhole prin-

ciple PHP
m
n as defined in the proof of Proposition ??. Show that this polytope has

Chvátal rank O(logn). Hint: Exercise ??.

19.6 (Rank of faces) A face of a polyhedron P is the intersection F = P ∩H of P
with a hyperplane H = {x | aTx = b} such that b = max{aTx | x ∈ P}. Show
that the Chvátal rank of P is at least the Chvátal rank of F . Hint: Since F ⊆ P , we have

F (r) ⊆ P (r)
for all integers r ≥ 0. Show that we also have that F ∩ PI ⊆ FI : every x ∈ F ∩ PI

satisfies aT x = b and is a convex combination of some points y ∈ P ∩ Zn
; show that then also

aT y = b must hold.

19.7 Consider the following system with n variables and n+ 2n
inequalities:∑

i∈I

xi +
∑
i ̸∈I

(1 − xi) ≥ 1/2 for all I ⊆ {1, . . . , n};

0 ≤ xi ≤ 1 for all i = 1, . . . , n.

Show that this system is integer infeasible, but any CP proof of this fact requires

size Ω(2n/n). Hint: Lemma ??.

19.8 Let P ⊆ [0, 1]n be the polytope defined by the system of Exercise ??. Let Fk

denote the set of all points x ∈ {0, 1
2 , 1}n

with exactly k components equal to
1
2 .

Prove that Fk ⊆ P (k−1)
for all k = 1, . . . , n.

Hint: Try induction on k. Take a vector y ∈ Fk+1 and an arbitrary integer inequality aT x < b + 1
valid over P (k−1)

. The task reduces to proving that aT y ≤ b. Show that y is a convex combination
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of vectors in Fk , and hence, must belong to P (k−1)
. If aT y is not an integer, then there is a position

i such that ai ̸= 0 and yi = 1/2. Consider two vectors y0
and y1

obtained from y be replacing

its i-th component by 0 and by 1. Show that aT y + 1
2 ≤ max{aT y0, aT y1} < b + 1.

19.9 Prove Lemma ??. Hint: Argue as in the proof of Lemma ?? to show that there must be an

i for which
∑

j∈Ii
aj is odd. Consider the set of vectors V ⊂ P that average to x and that differ

from x exactly on Ii where they take 0-1 values. Show that aT v ≤ b for all v ∈ V .

19.10 The clique-coloring polytope described in Section ?? corresponds to the

following maximization problemMPn,l for l = k − 1: Maximize the number of

nodes in a clique of an n-vertex graph whose chromatic number does not exceed l.
Although l is a trivial solution for this problem, Corollary ?? show that any cutting

plane proof certifying that no such graph can have a clique on more than l vertices
must generate an exponential number of inequalities. That is, quick cutting plane

algorithms cannot solve this maximization problem optimally. Use a lower bound

on the monotone circuit size of clique like functions (Theorem ??) to show that such

algorithms cannot even approximate this problem: any cutting plane proof certifying

that no l-colorable graph can have a clique on k > l vertices must generate an

exponential in min{l, n/k}Ω(1)
number of inequalities.

19.11 Research Problem. Given a graph G = (V,E), consider the following
communication game. Alice gets a subset A ⊆ V , Bob gets a subset B ⊆ V such

that |A ∪B| > α(G). Hence, A ∪B must contain at least one edge. The goal is to

find such an edge. Does there exist n-vertex graphs G for which this game requires

ω(log2 n) bits of communication?

Comment: By Lemma ??, this would imply that every tree-like CP proof with bounded coefficients

for the unsatisfiability of the system (??) augmented with the inequality

∑
v∈V

xv ≥ α(G) + 1
must have super-polynomial size. This would be the first strong lower bound for a non-artificial

system corresponding to an important optimization problem, the maximum independent set

problem.

19.12 (Split cuts) Given a polytope P = {x ∈ Rn | Ax ≤ b}, a cut for P is any

inequality cTx ≤ d with integral coefficients such that cTx ≤ d is valid in the 0-1
restriction P ∩{0, 1}n

of P . In this case one also says thatAx ≤ b implies cTx ≤ d.
In CP-proofs we used simplest cuts: if aTx ≤ b is valid in P , and if all coordinates

of a are dividable by an integer c, then (a/c)Tx ≤ ⌊b/c⌋ is valid in P ∩ {0, 1}n
.

There are also other types of cuts. An inequality cTx ≤ d is a lift-and-project cut
for P = {x ∈ [0, 1]n : Ax ≤ b} if for some index i, cTx ≤ d is satisfied by points

in P ∩ {x | xi = 0} and by points in P ∩ {x | xi = 1}. Even more powerful

are so-called “split cuts”. An inequality cTx ≤ d is a split cut for P if there exist

a ∈ Zn
and b ∈ Z such that cTx ≤ d is satisfied in P ∩ {x | aTx ≤ b} as well

as in P ∩ {x | aTx ≥ b + 1}; the inequality aTx ≤ b is a witness for this cut. In
particular, any inequality valid in the whole polytope P is a (useless) split cut for

P with the witness 0Tx ≤ 0.

(a) Show that each Gomory–Chvátal cut is a special case of a split cut.
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(b) Consider the polytopes Pt = {(x1, x2) ∈ R2 | x1 − 2tx2, x1 + 2tx2 ≤ 2t},
t = 1, 2, . . .. It was observed by J. A. Bondy that every CP-proof of x1 ≤ 0 from

Atx ≤ bt using Gomory–Chvátal cuts has size at least t, which is exponential

in the binary encoding size O(log t) of Pt. Show that x1 ≤ 0 is a split cut for

every Pt.

(c) It is known that any lift-and-project proof of the fact that the system

∑n
i=1 xi ≥

1/2, 0 ≤ xi ≤ 1, i = 1, . . . , n implies

∑n
i=1 xi ≥ 1 has size at least n; see

Cook and Dash (2001). Show that

∑n
i=1 xi ≥ 1 is a split cut for the polytope P

consisting of all x ∈ [0, 1]n such that

∑n
i=1 xi ≥ 1/2.

Comment: Dash (2005, 2010) shows that the exponential lower bound, given in Corollary ??,
remains valid for split cuts.



Epilogue

The lower-bounds arguments we presented in this book work well for different

restricted circuit classes but, so far, have not led to a non-linear lower bound for

unrestricted circuits. In this concluding chapter we sketch several general results

explaining this failure (the phenomenon of “natural proofs”) as well as showing a

possible line of further attacks (the “fusion method”, indirect arguments).

20.1 Pseudo-random generators

When trying to prove a lower bound, we try to show that something cannot be
computed efficiently. It turns out that this task is closely related to proving that

something—namely so-called “pseudorandom generators”—can be efficiently com-

puted! This object was invented by Yao (1982), Goldwasser and Micali (1984), Blum

and Micali (1984), and was then studied by many authors.

Informally speaking, a pseudorandom generator is an “easy to compute” function

which converts a “few” randombits to “many” pseudorandombits that “look random”

to any “small” circuit. Each of the quoted words is in fact a parameter, and we

may get pseudorandom generators of different qualities according to the choice of

these parameters. For example, the standard definitions are: “easy to compute” =

polynomial time; “few” = nϵ
; “many” = n.

20.1 Definition A function G : {0, 1}l → {0, 1}n
with l < n is called an (s, ϵ)-

pseudorandom generator if for any circuit C of size s on n variables,∣∣Prob[C(y) = 1] − Prob[C(G(x)) = 1]
∣∣ < ϵ ,

where y is chosen uniformly at random in {0, 1}n
, and x in {0, 1}l

.

That is, a pseudorandom generator G stretches a short truly random seed x into

a long string G(x) which “fools” all circuits of size up to s: no such circuit can

distinguish G(x) from a truly random string y.

545



546 Epilogue

The quantity l is called the seed length and the quantity n− l is called the stretch
of the pseudorandom generator. Note that the definition is only interesting when

l < n, for otherwise the generator can simply output the first n bits of the input,

and satisfy the definition with ϵ = 0 and arbitrarily large circuit size s. The larger
n/l is, the stronger is the generator. Note also that, if the input x is taken in {0, 1}l

at random, the output G(x) of a generator is also a random variable in {0, 1}n
.

But if l < n, the random variable G(x) is by no means uniformly distributed over

{0, 1}n
since it can take at most 2l

values with nonzero probability.

The existence of (s, 1/n)-pseudorandom generators G : {0, 1}l → {0, 1}n
with

the seed length l = 4 log s can be proved using probabilistic arguments. For this,

define G by randomly assigning strings of length n for inputs of length l, that is,
Prob[G(x) = y] = 2−n

for every x ∈ {0, 1}l
and y ∈ {0, 1}n

. Let x be a string of

length l. For a circuit C of size s with input size n, define random variable ξx to

be C(G(x)). The expected value of ξx is precisely the fraction of strings accepted

by C :

E [ξx] =
∑

y:C(y)=1

Prob[G(x) = y] = 2−n|{y : C(y) = 1}| .

We have 2l = s4
such independent random variables ξx with the same expected

value. Hence, by Chernoff’s bound, the probability that the average of these variables

differs from the expectation by more than 1/n is smaller than 2−s3
. Since there are

fewer than 2s2
circuits of size s, most of the choices of G will be pseudorandom.

The argument above only shows the mere existence of pseudorandom generators

with good parameters. In applications, however, we need the generators to be

constructed in time ≪ 2s2
. It turns out that this problem (construction of good

pseudorandom generators) is related to proving lower bounds on circuit size.

20.2 Definition Let f : {0, 1}n → {0, 1} be a boolean function. We say that f is

(s, ϵ)-hard if for any circuit C of size s,∣∣∣Prob[C(x) = f(x)] − 1
2

∣∣∣ < ϵ ,

where x is chosen uniformly at random in {0, 1}n
.

The meaning of this definition is that hard functions f must be “really hard”:

no circuit of size s can even approximate its values, that is, any such circuit can do

nothing better than just guess the value. So the function f looks random for each

small circuit.

The idea of how hard boolean functions can be used to construct pseudoran-

dom generators is well demonstrated by the following construction of a generator

stretching just one bit.

20.3 Lemma Let f be an (s + 1, ϵ)-hard boolean function of n variables. Then the
function Gf : {0, 1}n → {0, 1}n+1 defined by Gf (x) :=

(
x, f(x)

)
is an (s, ϵ)-

pseudorandom generator.
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Proof. The intuition is that, since f is hard, no small circuit C should be able to

figure out that the last bit f(x) of its input string
(
x, f(x)

)
is not just a random bit.

By the definition of a pseudorandom generator, we want the following to hold for

any circuit of size at most s on n+ 1 variables:∣∣Prob[C(y) = 1] − Prob[C(Gf (x)) = 1]
∣∣ < ϵ ,

where y is chosen uniformly at random in {0, 1}n+1
, and x in {0, 1}n

. Assume that

this does not hold. Then there is a circuit C that violates this property. Without

loss of generality, we may assume that

Prob[C(Gf (x)) = 1] − Prob[C(y) = 1] ≥ ϵ .

This can be done because we can take ¬C if this is not the case. The above is the

same as

Prob[C(x, f(x)) = 1] − Prob[C(x, r) = 1] ≥ ϵ ,

where x is chosen uniformly at random in {0, 1}n
, and r is a random bit in {0, 1}

with Prob[r = 0] = Prob[r = 1] = 1/2. A way to interpret this inequality is to

observe that when the first n input bits of C are a random string x, the circuit C
is more likely to accept if the last bit is f(x) than if the last bit is random. This

observation suggests the following strategy in order to use C to predict f(x): given
an input x for which we want to compute f(x), we guess a value r ∈ {0, 1} and

compute C(x, r). If C(x, r) = 1 we take it as evidence that r was a good guess for

f(x), and output r. If C(x, r) = 0, we take it as evidence that r was the wrong
guess for f(x), and we output 1 − r. Let Cr(x) be the random circuit (with just one

random bit r) we just described. We claim that

Pr
x,r

[Cr(x) = f(x)] ≥ 1
2 + ϵ .

Since Cr(x) = r iff C(x, r) = 1, this can be shown by elementary calculations:

Prob[Cr(x) = f(x)]
= Prob[Cr(x) = f(x)|r = f(x)] · Prob[r = f(x)]

+ Prob[Cr(x) = f(x)|r ̸= f(x)] · Prob[r ̸= f(x)]
= 1

2 · Prob[Cr(x) = f(x)|r = f(x)] + 1
2 · Prob[Cr(x) = f(x)|r ̸= f(x)]

= 1
2 · Prob[C(x, r) = 1|r = f(x)] + 1

2 · Prob[C(x, r) = 0|r ̸= f(x)]
= 1

2 · Prob[C(x, r) = 1|r = f(x)] + 1
2 (1 − Prob[C(x, r) = 1|r ̸= f(x)])

= 1
2 + Prob[C(x, r) = 1|r = f(x)]

− 1
2

(
Prob[C(x, r) = 1|r = f(x)] + Prob[C(x, r) = 1|r ̸= f(x)]

)
= 1

2 + Pr
x

[C(x, f(x)) = 1] − Pr
x,r

[C(x, r) = 1] ≥ 1
2 + ϵ .
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Thus there must be a constant r ∈ {0, 1} such that Pr
x

[Cr(x) = f(x)] ≥ 1
2 + ϵ.

Since the size of Cr is at most s + 1 (plus 1 could come from starting with ¬C
instead of C), which is a contradiction with the hardness of f . ⊓⊔

To push this strategy further, what we could do is to break up the input into

k blocks and then apply f to them. In this way we get a generator stretching nk
bits into (n+ 1)k pseudorandom bits. But this is not enough: for applications we

need generators stretching n bits into 2nϵ

pseudorandom bits. To achieve this, we

need to use intersecting blocks. But we also have to ensure that these blocks do not

intersect too much. This is the main motivation for the construction of generators

known as Nisan–Wigderson generators. The starting point of this construction is a

combinatorial object known as a “partial design”.

A collection of subsets S1, . . . , Sn of [l] = {1, . . . , l} is called a partial (m, k)-
design if |Si| = m for all i, and |Si ∩ Sj | ≤ k for all i ̸= j.

20.4 Example A standard construction of partial designs is based on the fact that no

two polynomials of degree k can have more than k common roots. So let l = m2

where m is a prime power, and consider the elements of {1, . . . , l} as pairs of

elements in GF(m). Every polynomial p(z) over GF(m) gives us a subset Fp ⊆
{1, . . . , l} defined by Fp = {(a, p(a)) | a ∈ GF(m)}. Let F be the family of all

subsets Fp where p ranges over all polynomials of degree at most k over GF(m).
Then each member of F has exactlym elements, any two of them share at most k
elements in common, and we have |F| ≥ mk

members.

Given a partial design S1, . . . , Sn and a boolean function f : {0, 1}m → {0, 1},
the Nisan–Wigderson generator Gf : {0, 1}l → {0, 1}n

is defined by:

Gf (x) = (f(xS1), f(xS2), . . . , f(xSn
)) ,

where xS is the substring (xi | i ∈ S) of x. That is, the i-th bit of Gf (x) is just the
value of f applied to the substring of x determined by the i-th set of the design.

Using a similar argument as for the one-bit generator above, one can prove that

Gf is an (n2/2, 2/n2)-secure pseudorandom generator, as long as the function

f is (n2, 1/n2)-hard. Constructions of pseudorandom generators from so-called

“one-way” functions were given by Håstad et al. (1999). Simpler constructions were

found by Holenstein (2006). Pseudorandom generators play an important role in

cryptography. Detailed treatment of pseudorandom generators can be found in the

books by Goldreich (2001), and Katz and Lindell (2007).

20.2 Natural proofs

So far, none of existing lower-bounds arguments has been able to separate P from

NP. Razborov and Rudich (1997) gave an explanation: all these proof techniques

are “natural”, and natural proofs cannot prove P ̸= NP unless good pseudorandom
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Bilder/natural-eps-converted-to.pdf

A random function f should have a non-negligible chance of having the property Φ. But the value

Φ(f) must be computable by a circuit in Γ taking the 2n
bits of the truth table of f as input.

generators do not exist. Since the existence of such generators is widely believed, it

seems very unlikely that natural proofs could show this separation.

Let Bn be the set of all 22n

boolean functions f : {0, 1}n → {0, 1}, and let Γ
and Λ be some classes of boolean functions closed by taking subfunctions. We can

think of Λ being, say, the class of all boolean functions computable by circuits of

size n2
, and Γ being the class P/poly of boolean functions computable by circuits

of size polynomial in n. Hence, f ∈ Λ iff f can be computed by relatively small

circuit (of quadratic size).

Given a specific boolean function f0 ∈ Bn, our goal is to show that f0 ̸∈ Λ. A
possible proof of this fact is a property Φ : Bn → {0, 1} of boolean functions such

that Φ(f0) = 1 and Φ(f) = 0 for all f ∈ Λ. Each such property is a witness for (or

a proof of) the fact that “f0 ̸∈ Λ”.
A Γ -natural proof against Λ is a property Φ : Bn → {0, 1} satisfying the

following three conditions:

(1) Usefulness against Λ: Φ(f) = 1 implies f ̸∈ Λ.
(2) Largeness: Φ(f) = 1 for at least 2−O(n)

fraction of all functions f in Bn.

(3) Constructivity: Φ ∈ Γ . That is, when looked at as a boolean function ofN = 2n

variables, the property Φ itself belongs to the class Γ . The input function f
here is given as its truth table (a binary string of length N = 2n

).

The first condition (1) is obvious: after all we want to prove that f0 ̸∈ Λ. If
Λ ̸= ∅, this condition also ensures that Φ cannot be trivial, that is, take value 1 on

all functions. Condition (2) corresponds to our intuition that any reasonable lower

bounds argument, designed for a given function f0, should also be able to show the

hardness of the hardest functions—random ones. Thus a random function f should

have a non-negligible chance of having the property Φ. What makes the property

“natural” is the last condition (3). That is, the requirement that the property itself

can be tested by not too large circuits.

We emphasize that when property Φ(f) is computed, the input is the truth

table of f , whose size is 2n
, not n. Thus a property is P/poly-natural, if it can be

computed by circuits of size 2O(n)
, which is more than exponential in n(!)

Example Let us consider the case when Λ = AC0
, the class of all boolean func-

tions computable by constant depth circuits with polynomial number of NOT and

unbounded-fanin AND and OR gates. The proof that Parity ̸∈ AC0
(Section ??)

involves the following steps: (i) Show that every AC0
circuit can be simplified to a
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constant by restricting at most n− nϵ
input variables to constants, and (ii) show

that Parity does not have this property. (Here 0 < ϵ ≤ 1/2 is a constant depending

only on the depth of a circuit, and property (ii) trivially holds, as long as n−nϵ ≥ 1.)
Thus the natural property lurking in the proof is the following:

Φ(f) = 1 iff f cannot be made constant by restricting all but nϵ
variables.

Clearly, if Φ(f) = 1 then f ̸∈ AC0
, so Φ is useful against AC0

. Furthermore, the

number of functions that can be made constant by fixing n− k variables does not

exceed 2
(

n
k

)
22n−k ≤ 2n2n−k

, and this is a negligible fraction of all 22n

functions.

Hence, Φ has the largeness property as well. Finally, Φ is constructive in a very

strong sense: given a truth table of f , the value Φ(f) can be computed by a depth-3
circuit of size 2O(n)

as follows. List all

(
n
k

)
2n−k = 2O(n)

restrictions of n − k

variables. For each one there is a circuit of depth 2 and size 2O(n)
which outputs 1

iff that restriction does not leave f a constant function, that is, iff the positions in

the truth sub-table, corresponding to that restriction, are not all equal. Output the

AND of all these circuits. The resulting circuit has depth 3 and has size polynomial

in 2n
.

Thus property Φ is AC0
-natural against AC0

.

Nowwe show that natural properties cannot be useful against substantially larger

classes of boolean functions, like P/poly, unless good pseudorandom generators

do not exist.

A pseudorandom function generator is a boolean function f(x, y) of n + m
variables. By setting the y-variables at random, we obtain its random subfunction

fy(x) = f(x, y) of n variables. Let h : {0, 1}n → {0, 1} be a truly random boolean

function. A generator f(x, y) is secure against Γ -attacks if for every circuit C in Γ ,∣∣∣Prob[C(fy) = 1] − Prob[C(h) = 1]
∣∣∣ < 2−n2

. (20.1)

That is, no circuit in Γ can distinguish fy from a truly random function; here again,

inputs for circuits are truth tables of boolean functions.

20.5 Theorem If a complexity class Λ contains a pseudorandom function generator f
which is secure against Γ -attacks, then there is no Γ -natural proof against Λ.

Proof. Suppose that a Γ -natural proof Φ against Λ exists. To get a contradiction,

we will show that then the proof Φ can be used to distinguish fy from a random

function h.
Since f(x, y) belongs to Λ, every subfunction fy(x) with y ∈ {0, 1}m

belongs

to Λ as well. The usefulness of Φ against Λ implies that Φ(fy) = 0 for all y. Hence,

Prob[Φ(fy) = 1] = 0 .

On the other hand, the largeness of Φ implies that Prob[Φ(h) = 1] ≥ 2−O(n)
.

Hence, ∣∣∣Prob[Φ(fy) = 1] − Prob[Φ(h) = 1]
∣∣∣ ≥ 2−O(n) ,
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and thus Φ is a distinguisher. But by constructivity, the boolean function Φ itself

belongs to Γ , a contradiction with (??). ⊓⊔

It is known that pseudorandom function generators may be constructed starting

from simpler objects—pseudorandom number generators. We have already consid-

ered these objects in the previous section (see Definition ??). This time we work

with a particular class Γ of circuits, not with all circuits, and we take the security pa-

rameter ϵ very small, ϵ = 2−n2
. Namely, say that a function g : {0, 1}n → {0, 1}2n

is secure against Γ -attacks if for every circuit C in Γ ,∣∣∣Prob[C(y) = 1] − Prob[C(g(x)) = 1]
∣∣∣ < 2−n2

.

Here x is chosen at random from {0, 1}n
and y is chosen at random from {0, 1}2n

.

That is, given a random seed x, g produces a random string y′ = g(x) in {0, 1}2n
,

and no circuit in Γ can distinguish this produced string y′
from a truly random

string y.
Starting from a pseudorandom number generator g : {0, 1}n → {0, 1}2n

, one

can construct a pseudorandom function generator f(x, y) : {0, 1}n+2n → {0, 1} as

follows. Associate with g two functions g0, g1 : {0, 1}n → {0, 1}n
, where g0(x) is

the first and g1(x) the second half of the string g(x). Having a vector y ∈ {0, 1}2n
,

we can define a function Sy : {0, 1}n → {0, 1}n
which is a superposition Sy =

gyn
◦ gyn−1 ◦ · · · ◦ gy1 of these two functions g0 and g1 defined by the bits of y.

Then just let f(x, y) be the first bit of the superposition Sy applied to input x. This
construction is essentially due to Goldreich, Goldwasser and Micali (1986).

It is widely believed that the class Λ = P/poly (and even much smaller classes)

contain pseudorandom number generators gn that are secure against P/poly-
attacks. It is also known that the pseudorandom function generator f(x, y) con-
structed from gn is then also secure against P/poly-attacks. Together with Theo-

rem ??, this means that no P/poly-natural proof can lead to a super-polynomial

lower bound on circuit size.

Besides natural proofs and relativization, yet another barrier towards prov-

ing P ̸= NP—algebraization—was recently discovered by Aaronson and Wigder-

son (2008).

All these barriers show that it is apparently impossible (or at least very difficult) to prove that

P ̸= NP by proving strong circuits lower bounds. This (somewhat too optimistic) hope arose

from assuming that circuits are much simpler combinatorial objects than Turing machines. But

any super-polynomial lower bound for a boolean function in NP would not just prove NP ̸⊆ P:

this would prove a much stronger separation NP ̸⊆ P/poly.
There is a big difference between the classes P and P/poly: the first is “uniform” in that it

requires one Turing machine for all boolean functions fn in the sequence (fn | n = 1, 2, . . .),
whereas the second only requires that for each n a small circuit computing fn exists. And indeed,

non-uniformity makes the circuit model stronger than Turing machines (or equivalently, than

the model of uniform circuits): there even exist functions fn that cannot be computed by Turing

machines (regardless of their running time) but do have small circuits. To see this, fix a standard

enumeration M1, M2, . . . of Turing machines, and consider the following family of boolean

functions fn(x), where fn(x) = 1 iff Mn halts on the empty tape. Note that each fn is just a
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constant function, equal to 0 or 1. Thus, the family of these fn’s is computable by boolean circuits

of constant size, even though it cannot be computed by any Turing machine.

At the beginning of complexity theory, some people (including the great mathematician

Kolmogorov) even believed that all of P could be computable by circuits of linear size. Decades

passed, and this belief is still not refuted! Moreover, this belief does not contradict any reasonable

complexity-theoretic conjectures, like P ̸= NP. To see this, assume that all boolean functions in

P have circuits of size at most nk
for some fixed constant k. Using counting arguments, Kannan

(1981) showed that, for every fixed constant k, already the class ∆2 = Σ2 ∩ Π2, next after NP in

the complexity hierarchy, contains boolean functions whose circuit size is Ω(nk) (see Theorem ??
below). Now, if P = NP then ∆2 = P. Thus our assumption (all functions in P have small

circuits) implies that P ̸= NP.

There are even some indications that this Kolmogorov’s prediction (or something similar) could

be indeed true. It is NP-hard to decide whether some subset of a given sequence of n real numbers

sums up to 1. A trivial algorithm probing all subsets needs exponential time. Still, Mayer auf der

Heide (1984) showed that, for each dimension n, this problem is solvable in time n4 log n. Another
indication is given by Allender and Koucky (2010): in the class of constant-depth threshold circuits,

some boolean functions cannot have circuits of polynomial size, if they do not have such circuits of

size n1+ϵ
for an arbitrarily small constant ϵ > 0. These and other results show that even circuits

of small (almost linear) size may apparently accumulate unexpected power, so big that current

mathematics is unable to engage such circuits. The phenomenon of Natural Proofs even gives us a

“formal excuse” for our failure to engage general circuits.

The barriers themselves may not be unbreakable, at least for restricted circuit classes. Using

ideas sketched in Remark ?? Chow (2011) showed that if one replaces the largeness condition

by “Φ(f) = 1 for at least |Bn|/2q(n)
functions” where q(n) is quasi-polynomial in n, then the

resulting “almost-natural” proofs against P/poly exist.

Finally, the P vs. NP question is not the main goal of the theory of circuit complexity. This

theory was born long before the classes P and NP emerged, and has its own, more “prosaic”

goals: prove strong lower bounds even in restricted (but interesting from both mathematical and

practical points of view) circuit models—like boolean formulas, decision trees, bounded-depth

circuits, time-restricted branching programs, etc. There are a lot of “barrier-free” models of circuits

where no nontrivial lower bounds are known. The model of read-once(!) switching networks is a

good illustration (see Problem ??).

20.3 The fusion method

In order to show, by contradiction, that a given circuit G(x) is too small for com-

puting a given boolean function f(x) one could try to argue in the following way:

try to combine (or “fuse”) correct rejecting computations of G on inputs in f−1(0)
into an incorrect rejecting computation on an input in f−1(1).

We restrict ourselves to DeMorgan circuits, that is, to circuits over {∧,∨} whose

inputs are variables x1, . . . , xn and their negations ¬x1, . . . ,¬xn. Such a circuit

G is just a sequence G = (g1, . . . , gt) of gates. The first 2n gates are n variables

followed by n their negations. Each remaining gate gi is either and AND or an OR

of some two previous gates.

For each input a ∈ {0, 1}n
, the computation of a circuit G = (g1, . . . , gt) is just

a binary string r = (r1, . . . , rt) in {0, 1}t
the i-th bit ri = gi(a) of which is the

output of the i-th gate gi on input a. The main property of this string r is its “local
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consistency” (determined by the underlying circuit G): the first n bits are followed

by n flipped bits (rj+n = ¬rj for all j = 1, . . . , n), and each subsequent bit ri is

• either the OR ri = rk ∨ rl of two previous bits rk and rl, if gi = gk ∨ gl,

• or is the AND ri = rk ∧ rl of two previous bits rk and rl, if gi = gk ∧ gl.

In other words, we can consider a given circuit G as a sequence TG of local tests

on strings r = (r1, . . . , rt) in {0, 1}t
. A string r ∈ {0, 1}t

is then a computation of

G if and only if r passes all tests in TC . It is clear that each computation G(a) =
(g1(a), . . . , gt(a)) on a input vector a ∈ {0, 1}n

must pass all the tests. On the

other hand, if r passes all tests in TG then r is just a computation of G on input

a = (r1, . . . , rn), and the result of this computation is the last bit rt of r.
This suggests the following “diagonalization” argument to prove that a given

function f cannot be computed by a circuit of size t:

• Show that, for every set T of |T | ≤ t local tests, there exists a vector r in {0, 1}t

such that r passes all tests in T , but rt ̸= f(r1, . . . , rn).

There are two general ideas of how to construct such a “diagonal computation” r:
the “topological approach” of Sipser (1985) and the “fusion method”‘ first proposed

by Razborov (1989a) and then put in a more general framework by Karchmer (1993).

The topological approach of Sipser was demonstrated in Chapter ?? by the notion

of “finite limits” used to prove lower bounds for depth-3 circuits. Now we shortly

describe the fusion method.

Let f(x1, . . . , xn) be a given boolean function, and let U = f−1(0) be the set
of all vectors rejected by f . We assume that U = {a1, . . . , am} is non-empty (for

otherwise we have nothing to do). We view each gate g : {0, 1}n → {0, 1} as a

(column) vector g ∈ {0, 1}m
of lengthm = |U | whose jth position is the value of

g when applied to the j-th vector in U . In particular, the vector xi corresponding

to an input variable xi has a 1 in the j-th position iff the j-th vector of U has 1
the i-th position. Put differently, the columns x1, . . . , xn form an m × n matrix

A such that f(a) = 0 iff a is a row of A. In this way we can consider any circuit

G = (g1, . . . , gt) as a boolean m by t matrix M , a computation matrix, whose
columns are the vectors g1, . . . , gt:

x1 · · · xn ¬x1 · · · ¬xn · · · gi · · · gt

a1 0 · · · 1 1 · · · 0 · · · 0 · · · 0

a2 1 · · · 1 0 · · · 0 · · · 1 · · · 0

...
...

am 1 · · · 0 0 · · · 1 · · · 0 · · · 0

F (x1) · · · F (xn) F (¬x1) · · · F (¬xn) · · · F (gi) · · · 0

(The meaning of the last row will be clear soon when we come to the “fusion

functionals”.) This matrix has the following properties:

• the (n+ i)-th column is the negation of the i-th column, for i = 1, . . . , n;
• if gi = gj ∧ gk then the i-th column is the AND of the j-th and k-th columns;
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• if gi = gj ∨ gk then the i-th column is the OR of the j-th and k-th columns,

where here and throughout, boolean operations on boolean vectors are performed

component-wise.

Each boolean function f determines the set U = f−1(0) of its zeros , as well as
the first 2n columns x1, . . . , xn and ¬x1, . . . ,¬xn of a computation matrixM of

any circuit for f . The remaining columns, however, are determined by the gates of

a concrete circuit we are considering. To construct a “diagonal” computation we

will combine columns in a new row using boolean functions F : {0, 1}m → {0, 1}
defined on the column space.

We call such a function F a fusing functional for f if F (0) = 0 and F (¬xi) =
¬F (xi) for all i = 1, . . . , n, that is, if F respects negations of “basis” columns

x1, . . . , xn. Say that a pair (a,b) of vectors in {0, 1}m covers a functional F if

F (a) ∧ F (b) ̸= F (a ∧ b) . (20.2)

We can now introduce a combinatorial (set-covering) measure characterizing the

size of circuits.

Let µ(f) be the smallest number of pairs of vectors in {0, 1}m
satisfying the

following condition: each monotone fusing functional F for f such that

f(F (x1), . . . , F (xn)) = 1 (20.3)

is covered by at least one of these pairs. Let C∧(f) be the smallest number of

∧-gates in a DeMorgan circuit computing f .

20.6 Lemma (Razborov 1989a) For every boolean function f , we have C∧(f) ≥ µ(f).

Proof. Let U = f−1(0),m = |U | and let G = (g1, . . . , gt) be a circuit computing

f . Fix an arbitrary monotone functional F : {0, 1}m → {0, 1} for f satisfying (??).
Say that a gate gi = gj ∗ gk with ∗ ∈ {∧,∨} covers F if

F (gj) ∗ F (gk) ̸= F (gj ∗ gk) .

Note that, if none of the gates inG covers F , then r = (r1, . . . , rt) with ri = F (gi)
would be a computation G(a) = (g1(a), . . . , gt(a)) of our circuit G on the input

a := (F (x1), . . . , F (xn)) . (20.4)

The fact that F (gt) = F (0) = 0 would imply that this is a rejecting computation.

But (??) implies that f(a) = 1, and hence, the vector a should be accepted by G, a
contradiction.

Thus the functional F must be covered by at least one gate of G. It suffices

therefore to show that if a ∨-gate covers F , then F is also covered by an ∧-gate. To
show this, let S be the set of all gates inG that coverF . For the sake of contradiction,

assume that S contains no ∧-gates. By the definition of a cover we have that for

each gi = gj ∨ gk in S, F (gj) ∨ F (gk) ̸= F (gj ∨ gk). Since F is monotone, the

only possibility is that
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F (gj) = F (gk) = 0 and F (gj ∨ gk) = 1 . (20.5)

LetG′
be a circuit identical toG except that each gate gi = gj ∨ gk in S is replaced

by the instruction g′
i = 1 ∨ 1. We concentrate on the behavior of both circuits G

andG′
on the input vector (??) defined by the functional F , and make the following

two observations.

20.7 Claim G′(a) = 1.

Proof. This is because we have only changed gates gi, whose values were 0 on this

input (by (??)). Since the circuit uses only AND and OR gates, which are monotone,

we have that G′(a) ≥ G(a) = f(a) = 1. ⊓⊔

20.8 Claim The computation of G′(a) =
(
g′

1(a), . . . , g′
t(a)

)
on input a coincides

with the string F (g1), . . . , F (gt), that is, g′
i(a) = F (gi) for all i = 1, . . . , t.

Proof. We show this by induction on the position of the gates in G′
. Since the first

2n gates of G′
are the same as in G, namely the variables x1, . . . , xn and their

negations, the claim holds for all i = 1, . . . , 2n. Take now a gate gi = gj ∗ gk with

i > 2n, and assume the claim holds for both its inputs, that is, g′
j(a) = F (gj) and

g′
k(a) = F (gk).

Case 1: gi = gj ∧ gk . Since, by our assumption, ∧-gates do not cover F , we obtain:
g′

i(a) = g′
j(a) ∧ g′

k(a) = F (gj) ∧ F (gk) = F (gj ∧ gk) = F (gi).

Case 2: gi = gj ∨ gk . If gi ̸∈ S, then gi does not cover F , and the claim follows as

in the previous case. If gi ∈ S, then (??) holds, implying that g′
i(a) = 1 ∨ 1 = 1 =

F (gj ∨ gk) = F (gi). ⊓⊔

By Claims ?? and ??, we get that g′
t(a) = gt(a) = f(a) = 1 on one side, and

g′
t(a) = F (gt) = F (0) = 0 on the other side. Thus we have a contradiction that S
can contain only ∨-gates, that is, that only OR gates can cover F . This means that

at least one of the pairs (gj , gk) of vectors in {0, 1}|U |
, corresponding to a ∧-gate

gi = gj ∧ gk of G, will cover F in the sense of (??), as desired. ⊓⊔

It can also be shown (wewill not do this) that the lower bound in Lemma ?? is tight
enough: C∧(f) ≤ c(µ(f) +n)2

for a constant c. Thus at least in principle, diagonal

computations for (deterministic) circuits can be produced by using only monotone

functionals. It turned out that different classes of fusing functionals capture different

circuit models. A boolean function F (x) is self-dual if F (¬x) = ¬F (x), and is affine
if it is a parity (sum modulo 2) of an odd number of variables.

• Monotone functionals capture deterministic circuits as well as nondeterministic

branching programs: classes P and NL.
• Monotone self-dual functionals capture nondeterministic circuits: the class NP.
• Affine functionals capture nondeterministic circuits as well as parity branching

programs: classes NP and ⊕L.
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How this happens can be found in a nice survey by Wigderson (1993) and in the

literature cited therein.

20.4 Indirect proofs

Most of the lower bound arguments described in this book go deeply into details

trying to capture the behavior of circuits. The lesson given by the natural proofs

phenomenon is that arguing in this way we are apparently trying to prove much
more than actually needed. That is, when trying to prove a lower bound on “only”

the total number of gates in a circuit, we are actually trying to show how any circuit

for a given boolean function must work! This additional information is important in

circuit design, but might be less important if we merely want to give a lower bound

on the number of gates, without exploring further the work of circuits themselves.

So how to prove a lower bound without proving anything else?

Actually, within the field of structural complexity, there is a line of work on

circuit lower bounds where the inner structure of circuits is completely ignored.

Circuits are treated as “black boxes” and the arguments are not trying to explore

their structure. Instead of that one tries to obtain a lower bound using high-level

arguments like counting, diagonalization and various reductions. These are “brute

force” arguments and, at first glance, do not seem to work for specific problems.

The clue however is that many seemingly unrelated problems have essentially

the same complexity. For example, in order to show that the clique function is

difficult (requires circuits of super-polynomial size), it is enough to show that

the class NP contains at least one difficult boolean function! It is therefore not

excluded that the existence of a hard function in NP can be proved using high-level

arguments, perhaps combined with some low-level ones to make reductions and

diagonalization tighter.

20.4.1 Williams’ lower bound

That a “mixture” of low and high level arguments could work was recently demon-

strated by Williams (2010). He used such arguments to show that NEXP ̸⊆ ACC0
;

hereACC0
is the class of all sequences of boolean functions computable by constant-

depth circuits of polynomial size using AND, OR, NOT and arbitrary MODm gates

(we considered these circuits in Chapter ??), and NEXP is the class of all sequences

of boolean functions computable by nondeterministic Turing machines in exponen-

tial time.

The proof is a combination of some ideas from structural complexity (time hierar-

chies, compression by circuits, local checkability of computations) and algorithmic

ideas (fast matrix multiplication, dynamic programming, table lookup). Using these

tools, Williams first shows that the satisfiability of ACC0
circuits (given an ACC0
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circuit with n inputs, decide whether it accepts at least one vector) can be solved in

time 2n−nΩ(1)
. Then he uses this to show that NEXP ⊆ ACC0

would imply that

every language in NEXP can be decided in subexponential nondeterministic time,

contradicting the nondeterministic time hierarchy theorem. This implies that every

NEXP-complete problem (sequence of boolean functions) requires ACC0
circuits

of super-polynomial size.

One NEXP-complete function is “succinct 3-SAT”. Given a binary string x of

length n, the function interprets it as a code of a DeMorgan circuit Cx of n1/10

input variables. Then the function uses the circuit Cx to produce the string of all its

2n1/10
possible outputs, interprets this string as a code of a 3-CNF Fx, and accepts

the initial string x iff the CNF Fx is satisfiable.

Of course, this function is too “wild” to be called an “explicit” function, and

the class of ACC0
circuits is too “weak”: we already know that even the Majority

function requires ACC0
circuits of exponential size if only MODm gates for prime

numbersm are allowed, and it is conjectured that composite moduli cannot help

much for this function. Still, this result is an excellent demonstration that high-level

arguments may also yield nontrivial lower bounds.

The proof of Williams’ result is somewhat technical and requires knowledge

about results in structural complexity. So to demonstrate how high-level arguments

work, we will describe some older (but not less impressive) results.

20.4.2 Kannan’s lower bound

Let {0, 1}∗
denote the infinite set of all binary vectors (of arbitrary length). Subsets

L ⊆ {0, 1}∗
are called languages. For a positive integer n, let Ln = L ∩ {0, 1}∗

denote the restriction of L to strings of length exactly n. Note that there is a one-
to-one correspondence between languages L and sequences (fn | n = 1, 2, . . .) of
boolean functions: for every string x of length |x| = n, let x ∈ Ln iff fn(x) = 1.

Structural complexity deals with special classes of languages, called complexity

classes. The basic class is P. It consists of all languages L for which there exists a

constant k such that the membership of every string x ∈ {0, 1}∗
inL can be decided

in time O(|x|k). Note a big difference between P and P/poly: for a language to
belong to P/poly, it is enough that, for every n, the membership of an x of length

|x| = n in Ln can be detected by a circuit of size ≤ |x|k. That is, instead of one
algorithm for all inputs x, it is now enough to have different circuits for inputs
of different length. And in fact, P/poly contains even languages, the membership

in which cannot be detected by any Turing machine, not just by one running in

polynomial time.

Starting from the class P, one can define larger classes of languages by quantifi-

cation. Given a class C of languages, let ∃C denote the class of languages L with

the following property: there exists a language L′ ∈ C and a constant k such that,

for every x ∈ {0, 1}∗
, x ∈ L iff there exist a string y of length |y| ≤ |x|k such that

(x, y) ∈ L′
. We will write this shortly as:
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x ∈ L if and only if ∃y (x, y) ∈ L′

with an understanding that the quantification is only over strings y of length

polynomial in |x|. The class ∀C is defined similarly with “there exists” replaced

by “for all”. The class co-C consists of all complements L of languages L in C:

co-C := {L | L ∈ C}. In this notation, we have that NP = ∃P. The complexity

classes Σi and Πi are defined inductively as follows:

Σ0 = Π0 := P , Σi+1 := ∃Πi , Πi+1 := ∀Σi .

Since co-P = P, we have that Πi = co-Σi, that is, L ∈ Σi if and only if L ∈ Πi.

Note that Σ1 = ∃P = NP and Π1 = ∀P = co-NP. Let PH :=
⋃∞

i=0 Σi; “PH”

stands for “polynomial hierarchy”.

Intuitively, adding more and more quantifiers we can encode more and more

complex languages. It is therefore believed that the PH-hierarchy is strict, that

is, Σ0 ⊂ Σ1 ⊂ Σ2 ⊂ Σ3 ⊂ . . .. On the other hand, it is easy to show that this

hierarchy would collapse if Σk = Πk for some k.

20.9 Proposition Let k ≥ 1 be an integer. If Σk = Πk then, for every m ≥ k,
Σm = Πm = Σk = Πk .

Proof. Induction onm. The claim is trivially true form = k. So assume it is true

form, and prove it form+ 1. Take a language A ∈ Σm+1. By the definition, there

exists a language B ∈ Πm such that x ∈ A iff ∃y (x, y) ∈ B. By the induction

hypothesis, B ∈ Σk . So there exists a language C in Πk−1 such that (x, y) ∈ B iff

∃z (x, y, z) ∈ C . Thus x ∈ A iff ∃y ∃z (x, y, z) ∈ C , implying that A ∈ Σk . ⊓⊔

This fact, together with our belief that alternating quantification increases the

class of languages, implies that some languages in NP, including the clique function,
“should” require circuits of super-polynomial size.

20.10 Theorem (Karp–Lipton 1980) If NP ⊆ P/poly then Π2 = Σ2, and hence,
PH = Σ2.

Proof. A prominent language in NP (besides that corresponding to the clique

function) not known to belong to P is the language sat. We encode CNF formulas

ϕ as binary strings ϕ ∈ {0, 1}∗
and let ϕ ∈ sat if ϕ is satisfiable. As with the

clique-language, the language sat is NP-complete, meaning that it is the “most

complicated” language inNP. Formally, this means that, for every languageL ∈ NP,
there exists a function g : {0, 1}∗ → {0, 1}∗

such that g is computable in polynomial

time, and a string z belongs to L iff g(z) ∈ sat.

Now assume that NP ⊆ P/poly. We are going to show that then Π2 ⊆ Σ2.
This inclusion implies that Σ2 is closed under complementation, and hence, that

Π2 = co-Σ2 = Σ2, as desired.
The argument is roughly the following: To simulate Π2 by Σ2, guess a poly-

size circuit F for sat, modify F via so-called “self-reducibility” so that whenever

F (ϕ) = 1 it also produces a satisfying assignment to ϕ, then check whether all

universal paths of the Π2 computation lead to a satisfiable formula.
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To be more specific, let L ∈ Π2. Then there is a language L′ ∈ NP and a

constant a such that Ln = {x | (x, y) ∈ L′
for all y of length |y| ≤ na}. Since

L′ ∈ NP, there is a polynomial-time reduction z 7→ ϕz from L′
to sat, that is,

a string z belongs to L′
iff ϕz ∈ sat. Since the reduction can be computed in

polynomial time, there exists a constant b such that |ϕz| ≤ |z|b for all z. Hence,

Ln = {x | ϕx,y ∈ sat for all y of length |y| ≤ na} . (20.6)

Since, by our assumption, sat ∈ P/poly, there exists a constant c and a sequence

F = (Fn | n = 1, 2, . . .) of circuits such that size(Fn) ≤ nc
and for every (code of

a) CNF formula ϕ ∈ {0, 1}∗
, F (ϕ) = 1 iff ϕ is satisfiable. We can view circuits Fn

as encoded by binary strings as well. The circuits Fn solve a decision problem (is

a given CNF satisfiable or not). But the circuits can also be used to solve a search
problem: if a CNF is satisfiable, then find a satisfying assignment; this property is

called the self-reducibility of sat.

20.11 Claim There exists a polynomial-time computable function α = α(ϕ) such
that ϕ ∈ sat iff α is a satisfying assignment for ϕ.

Proof. We have circuits deciding whether a given CNF formula is satisfying of not.

We can now use these circuits to construct a satisfying assignment as follows. Ask

the circuit if the formula ϕ is satisfiable. If so, ask if the formula ϕx1=1 with the first

variable x1 set to 1 is satisfiable. If the circuit answers “yes”, then we already know

the first bit of a satisfying assignment, it is 1. If the circuit answers “no”, then we

also know the first bit of a satisfying assignment, it is 0 because the entire formula ϕ
was satisfiable. Continuing in this way we can generate the a satisfying assignment

after at most |ϕ| queries. ⊓⊔

Using this claim, and observing that |ϕx,y| ≤ (|x| + |y|)b ≤ |x|ab+1
, we can

re-write (??) as: x ∈ Ln iff for all y of length |y| ≤ na
, α(ϕx,y) is a satisfying

assignment for ϕx,y . Now we are almost done. Even though there may be no easy

way to construct the circuits F = (Fn | n = 1, 2, . . .) for sat, we can just try to

“guess” them. Namely, x ∈ Ln iff there exists a circuit of size≤ nabc+c
with≤ nab+1

inputs such that for all y of length |y| ≤ na
, α(ϕx,y) is a satisfying assignment for

ϕx,y . Since the mapping α is computable in polynomial time, we have thus shown

that L belongs to Σ2, as desired. ⊓⊔

Let Circuit[nk] denote the class of all languages L such that the membership in

L can be decided by a DeMorgan circuit of size O(nk). Hence,

P/poly = Circuit[n] ∪ Circuit[n2] ∪ Circuit[n3] ∪ · · · .

20.12 Lemma (Kannan 1981) For every constant k, Σ4 ∩Π4 ̸⊆ Circuit[nk].

Proof. Let F be the lexically first circuit on n inputs such that Size(F ) ≥ nk+1
,

and F is minimal, that is, no circuit of smaller size is equivalent to F . By the

circuit-size hierarchy theorem (Theorem ??), we know that such circuits with
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Size(F ) ≤ 4nk+1 ≤ nk+2
exist. Let L be the language computed by this sequence

of circuits. It is not difficult to verify that L ∈ Σ4. For this, it is enough to describe

L as a Σ4-formula. The formula will simulate a circuit F of size nk+2
which is

not equivalent to any circuit of size nk
. The first three statements of the formula

below ensure this. But we also need the formula to simulate the same circuit on all

inputs of length n. This is accomplished by the last four statements that choose the

“minimum” (in the lexical ordering) circuit F with the necessary property. In all

these statements we assume that circuits themselves are encoded as binary strings.

On input x of length, the desired formula accepts x if and only if

1. ∃ a circuit F of size at most nk+2
such that

2. ∀ circuits F1 of size at most nk

3. ∀ circuits F2 preceding F in the lexical order

4. ∃ input y of length n such that F1(y) ̸= F (y)
5. ∃ circuit F3 of size at most nk

6. ∀ inputs z of length n, F3(z) = F2(z)
7. F accepts x.

Thus we have found a language L ∈ Σ4 such that L ̸∈ Circuit[nk]. In fact, we also

have that L ∈ Π4: if we replace the last expression in the Σ4 formula above by “F
rejects x”, the resulting Σ4 formula will express the complement of L. ⊓⊔

20.13 Theorem (Kannan 1981) For every constant k, Σ2 ∩Π2 ̸⊆ Circuit[nk].

Proof. We consider two cases. If sat ̸∈ Circuit[nk], then we are done because

sat ∈ NP ⊆ Σ2 ∩Π2. If sat ∈ Circuit[nk], then NP ⊆ P/poly and Theorem ??
implies thatΣ4 = Σ2. In this case Lemma ?? gives a desired language L ∈ Σ2 ∩Π2
such that L ̸∈ Circuit[nk]. ⊓⊔

Note that Theorem ?? does not imply that Σ2 ∩Π2 ̸⊆ P/poly (and hence, that

P ̸= NP) because for that to be true we would have to be able to construct a single
language L ∈ Σ2 ∩Π2 such that L ̸∈ Circuit[nk] for every constant k, instead of

constructing a different language for each constant k.
Structural complexity has a comprehensive treatment in recent books by Gol-

dreich (2008), and Arora and Barak (2009). The book by Lipton (2010) gives a gentle

introduction to the P versus NP problem itself.

Results mentioned in this section (as well as other results in a similar fashion) show that

high-level arguments may (apparently) also lead to large circuit lower bounds. Their advantage is

that they avoid such barriers as the natural proofs phenomenon. Their disadvantage is that they

can merely confirm our intuitive belief that such functions like Clique or sat do require large
circuits without telling us why this happens. It seems therefore reasonable to develop both the

high-level as well as low-level arguments. To prove NP ̸⊆ P/poly, we perhaps need a technique

explicit enough to “get its hands dirty” by exploring some issues of how circuits work, but not

sufficiently explicit to provide any general measure of gate by gate progress.



Appendix
A. Mathematical Background

In this appendix we give some mathematical background that is related to topics of this book. We

do not attempt to give a detailed description. Rather, we mention some definitions and basic facts

used in the book. The reader is invited to open any of the standard textbooks in mathematics to

fill in the details.

Basics and notation

Some of the results are asymptotic, and we use the standard asymptotic notation: for two functions

f and g, we write f = O(g) if f ≤ c1g + c2 for all possible values of the two functions, where

c1, c2 are constants. We write f = Ω(g) if g = O(f), and f = Θ(g) if f = O(g) and g = O(f).
If the ratio f/g tends to 0 as the variables of the functions tend to infinity, we write f = o(g) as
well as g = ω(f). Finally, f ∼ g denotes that f = (1 + o(1))g, i.e., that f/g tends to 1 when

the variables tend to infinity. As customary, Z denotes the set of integers, R the set of reals, Zn

an additive group of integers modulo n, and GF(q) a finite Galois field with q elements. Such a

field exists as long as q is a prime power. If q = p is a prime then GF(p) can be viewed as the

set {0, 1, . . . , p − 1} with addition and multiplication performed modulo p. The sum in GF(2) is
often denoted by ⊕, that is, x ⊕ y stands for x + y mod 2. If not stated otherwise, e = 2.718...
always denotes the base of the natural logarithm. For a positive integer n, we also use the notation
[n] = {1, 2, . . . , n}. If x is a real number, then ⌈x⌉ denotes the smallest integer not smaller than

x, and ⌊x⌋ denotes the greatest integer not exceeding x.

Graphs

A graph on n vertices is a pair G = (V, E) consisting of an n-element set V , whose members are

called vertices (or nodes), and a family E of 2-element subsets of V , whose members are called

edges. A vertex v is incident with an edge e if v ∈ e. The two vertices incident with an edge are

its end-vertices or endpoints, and the edge joins its ends. Two vertices u, v of G are adjacent, or
neighbors, if {u, v} is an edge of G. The number d(u) of neighbors of a vertex u is its degree. A
graph is d-regular if all its vertices have the same degree.

Euler’s Theorem In every graph, the sum of degrees of all its vertices is equal to two times the number
of edges.
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Proof. Take the 0-1 edge-vertex adjacency matrix A = (ae,v) whose rows are labeled by edges e
and columns by vertices v, and ae,v = 1 iff v ∈ e. The sum of ones in A is the same if we count

them row-wise, and if we count them column-wise. ⊓⊔

A walk of length k in G is a sequence v0, e1, v1 . . . , ek, vk of vertices and edges such that

ei = {vi−1, vi}. A walk without repeated vertices is a path. A walk without repeated edges is a

trail. A cycle of length k is a path v0, . . . , vk with v0 = vk . A (connected) component in a graph

is a set of its vertices such that there is a path between any two of them. A graph is connected if it

consists of one component. A tree is a connected graph without cycles. A subgraph is obtained by

deleting edges and vertices. A spanning subgraph is obtained by deleting edges only. An induced
subgraph is obtained by deleting vertices (together with all the edges incident to them).

A complete graph or clique is a graph in which every pair is adjacent. An independent set
in a graph is a set of vertices with no edges between them. The greatest integer r such that G
contains an independent set of size r is the independence number of G, and is denoted by α(G).
The well-known Turán’s theorem (see Exercise ?? for the proof) states that, if G is a graph with n
vertices and m edges, then α(G) ≥ n2/(2m + n). A bipartite m × n graph is a graph G = (V, E)
whose vertex-set can be partitioned into two independent sets V = L ∪ R with |L| = m and

|R| = n vertices; the two sets in such a partition are also called color classes, where L stands for

the “left” class, and R for the “right” class. If L = {u1, . . . , um} and R = {v1, . . . , vn}, then the

adjacency matrix of G (relative to this bipartition) is a boolean m × n matrix A = (aij) such that

aij = 1 if and only if ui and vj are adjacent in G.

A coloring of G = (V, E) is an assignment of colors to each vertex so that adjacent vertices

receive different colors. In other words, this is a partition of the vertex set V into independent

sets. The minimum number of colors required for doing that is the chromatic number of G.

The complement G of a graph G is a graph on the same set of vertices in which two vertices

are adjacent if and only if they are non-adjacent in G. If the graph is bipartite, then its bipartite

complement contains only those pairs of previously non-adjacent vertices that belong to the

different parts of the bipartition. Thus a bipartite complement of a bipartite graph is again a

bipartite graph with the same partition.

Linear algebra

Informally, a field is a set F closed under addition, subtraction, multiplication and division by

nonzero element; if division is not defined (or is defined not for all elements) then the set is called

a ring. By addition and multiplication, we mean commutative and associative operations which

obey distributive law. The additive identity is called zero, and the multiplicative identity is called

unity. Examples of fields are the reals R, the rationals Q, and the set of integers modulo a prime p.
We will be mostly concerned with finite fields. The cardinality of a finite field must be a power of a

prime and all finite fields with the same number of elements are isomorphic. Thus for each prime

power q there is essentially one field F with |F| = q. This field is usually denoted as GF(q) or
Fq . If p is a prime number, then the set Zp = {0, 1, . . . , p − 1} forms a field with the arithmetic

operations performed modulo p.
A linear space (or vector space) V over a field F is an additive Abelian group (V, +, 0) closed

under (left) multiplication by elements of F (called scalars). It is required that this multiplication is

distributive with respect to addition in both V , and associative with respect to multiplication in F.
Elements of V are called vectors or points. Standard examples of vector spaces are subsets V ⊆ Fn

closed under the component-wise addition u + v = (u1 + v1, . . . , un + vn) and multiplication

by scalars λv = (λv1, . . . , λvn), λ ∈ F.

Linear independence and dimension A linear combination of the vectors v1, . . . , vm is a vector

of the form λ1v1 + . . . + λmvm with λi ∈ F. Such a combination is a affine combination if
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λ1 + · · · + λm = 1, and is a convex combination (over the reals) if additionally λi ≥ 0 for all i. A
convex hull of a set of vectors is the set of all their convex combinations.

A linear subspace of V is a nonempty subset of V, closed under linear combinations. An affine
space is a set S ⊆ V closed under affine combinations. The set of solutions to the system of

equations Ax = b is an affine space. Each linear subspace is also an affine space. Conversely, each

affine space is a translate U + v = {u + v | u ∈ U} of some linear subspace U ⊆ V .

The span of v1, . . . , vm, denoted by Span({v1, . . . , vm}), is the linear subspace formed by all

linear combinations of these vectors. A vector u linearly dependent on the vectors v1, . . . , vm if u ∈
Span({v1, . . . , vm}). The vectors v1, . . . , vm are linearly independent if none of them is dependent

on the rest. Equivalently, (in)dependence can be defined as follows. A linear relation among the

vectors v1, . . . , vm is a linear combination that gives the zero vector: λ1v1 + . . . + λmvm = 0.
This relation is nontrivial if λi ̸= 0 for at least one i. It is easy to see that the vectors v1, . . . , vm

are linearly independent if and only if no nontrivial linear relation exists between them. A basis of
V is a set of independent vectors which spans V . A fundamental fact in linear algebra says that any
two bases of V have the same cardinality; this number is called the dimension of V and is denoted

by dim(V ). The dimension of an affine space S ⊆ V is the dimension of its corresponding linear

subspace (of which S is a translate).

A further basic fact is the so-called linear algebra bound (see any standard linear algebra book

for the proof): If v1, . . . , vk are linearly independent vectors in a vector space of dimension m
then k ≤ m.

Vector and matrix products In this book we mainly consider standard vector spaces whose

elements (vectors) are finite strings of elements of some fixed field F. These strings v ∈ Fn

are assumed to be in a “column” form; their transpose vT
is then a “row” vector. Both v and

vT
represent the same vector—which of these forms should be used is only important when

performing operations on vectors.

To distinguish between elements v ∈ F of the field and vectors over this field, wewill sometimes

write vectors as v⃗. But usually it will be clear from the context when vi denotes the i-th vector in

a set of vectors and when the i-th component of some vector v.
An m × n matrix A = (aij) over a field F is a sequence of n vectors in Fm

, called columns of

A. A transpose AT = (bij) of a square n × m matrix A is the m × n matrix with bij = aji. A

matrix is a square matrix if m = n.
A scalar product of two vectors uT = (u1, . . . , un) and vT = (v1, . . . , vn) is the number

⟨u, v⟩ = uT v := u1v1 + · · · + unvn .

If A = (aij) is an m-by-n matrix over some field F and x is a vector in Fm
, then xT A is the

vector in Fn
whose j-th coordinate is the scalar product of x with the j-th column of A. Thus

the rows of A are linearly independent if and only if xT A ̸= 0 for all x ̸= 0. Similarly, if y ∈ Fn
,

then Ay is the vector in Fm
whose i-th coordinate is the scalar product of y with the i-th row of

A. If A is an m-by-n matrix and B is an n-by-p matrix with columns b1, . . . , bp ∈ Fn
, then their

product is the m-by-p matrix A · B whose columns are Ab1, . . . , Abp.

Note a big difference between vector-vector products xT y and xyT
: the first is a number

whereas the second is a matrix(!) whose columns are multiplies of vector x:

Bilder/matr-vekt1-eps-converted-to.pdf

Orthogonality Vectors u and v are orthogonal if ⟨u, v⟩ = 0; in this case one also writes u ⊥ v.
If U ⊆ V is a subspace of V then the dual (or orthogonal complement) is the subspace U⊥ ⊆ V
consisting of all vectors v ∈ V such that ⟨u, v⟩ = 0 for all u ∈ U . The following equality connects

the dimensions of two orthogonal subspaces of a finite dimensional linear space: dim(U) +
dim(U⊥) = dim(V ). A consequence of this is that, for every linear subspace U ⊆ Rn

and every
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vector x ∈ U , there are uniquely defined vectors u ∈ U and w ∈ U⊥
such that x = u + w. The

vector u is then called the projection of x onto U .

A Hadamard matrix of order n is an n × n matrix with entries ±1 and with row vectors

mutually orthogonal over the reals. It follows from the definition that a Hadamard matrix H of

order n satisfies HHT = nIn, where In is the n × n identity matrix.

Lindsey’s Lemma The absolute value of the sum of all entries in any a × b submatrix of an n × n

Hadamard matrix H does not exceed
√

abn.

In particular, if ab > n then no a × b submatrix of H is monochromatic.

Proof. Let H be an n × n Hadamard matrix, and A one of its a × b submatrices. Assume for

simplicity that A consists of its first a rows and b columns. Let α be the sum of all entries of A.

We want to prove that α ≤
√

abn.
Let v1, . . . , va be the first a rows of H , and y =

∑a

i=1 vi. If we take the vector x = (1b0n−b),
then α2 = ⟨x, y⟩2 ≤ ∥x∥2∥y∥2 = b · ∥y∥2

. On the other hand, the conditions ⟨vi, vi⟩ = n
and ⟨vi, vj⟩ = 0 for all i ̸= j imply that ∥y∥2 =

∑a

i,j=1⟨vi, vj⟩ =
∑a

i=1⟨vi, vi⟩ = an. Thus

α2 ≤ b · ∥y∥2 = abn, as desired. ⊓⊔

Rank The column rank of a matrix A is the dimension of the vector space spanned by its columns.

The row rank of A is the dimension of the vector space spanned by its rows. One of the first

nontrivial results in matrix theory asserts that the row and column ranks are equal; this common

value is the rank of A, denoted by rk(A). There are several equivalent definitions of the rank of

an m-by-n matrix A = (aij) over a given field F:

• rk(A) is the smallest r such that A can be written as a sum of r rank-1 matrices, that is,

there exist vectors x1, . . . , xr in Fm
and y1, . . . , yr in Fn

such that A =
∑r

i=1 xiy
T
i .

• rk(A) is the smallest r such that A = B · C for some m-by-r matrix B and r-by-n matrix C ;

• rk(A) is the smallest r such that A is a matrix of scalar products of vectors in Fr
: there exist

vectors u1, . . . , um and v1, . . . , vn in Fr
such that aij = ⟨ui, vj⟩.

The following inequalities hold for the rank (if A is an m-by-n and B an n-by-k matrix):

rk(A) − rk(B) ≤ rk(A + B) ≤ rk(A) + rk(B);

rk(A) + rk(B) − n ≤ rk(AB) ≤ min {rk(A), rk(B)} .

A componentwise product (or Hadamard product) of two m-by-n matrices A = (aij) and

B = (bij) is the m-by-n matrix A ◦ B = (aijbij).

A.1 Lemma (Rank of Hadamard product) rk(A ◦ B) ≤ rk(A) · rk(B).

Proof. Let r = rk(A) and s = rk(B). Then A =
∑r

i=1 xiy
T
i and B =

∑s

i=1 uiv
T
i for some

vectors xi, ui ∈ Fm
and yi, vi ∈ Fn

. Since (xyT ) ◦ (uvT ) = (x ◦ u)(y ◦ v)T
, we can write A ◦ B

as the sum

A ◦ B =
r∑

i=1

s∑
j=1

(xiy
T
i ) ◦ (ujvT

j ) =
r∑

i=1

s∑
j=1

(xi ◦ uj)(yi ◦ vj)T

of at most sr rank-1 matrices, implying that rk(A ◦ B) ≤ rs = rk(A) · rk(B). ⊓⊔

Spaces of solutions If U is the space spanned by the rows of A, then the set of solutions of

Ax = 0 is clearly the subspace U⊥
of all vectors that are orthogonal to all the rows of A and,

since dim(U) + dim(U⊥) = n, its dimension is n − rk(A); the subspace U⊥ = {x | Ax = 0}
is also called the kernel of A. Thus if the underlying field is finite and F has |F| = q elements,

then Ax = 0 has exactly qn−rk(A)
solutions.
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Norms The norm (or length) of a vector v = (v1, . . . , vn) in Rn
is the number

∥v∥ := ⟨v, v⟩1/2 =
( n∑

i=1

v2
i

)1/2
.

The following basic inequality, known as the Cauchy–Schwarz inequality, estimates the scalar

product of two vectors in terms of their norms (we have already used it in previous sections; now

we will prove it):

Cauchy–Schwarz Inequality For any real vectors u, v ∈ Rn, |⟨u, v⟩| ≤ ∥u∥ · ∥v∥ with an equality
iff u and v are linearly dependent.

When expressed explicitly, this inequality turns to:( n∑
i=1

uivi

)2
≤
( n∑

i=1

u2
i

)( n∑
i=1

v2
i

)
.

Proof. We may assume that u ̸= 0. For any constant λ ∈ R we have

0 ≤ ⟨λu − v, λu − v⟩ = ⟨λu, λu − v⟩ − ⟨v, λu − v⟩ = λ2⟨u, u⟩ − 2λ⟨u, v⟩ + ⟨v, v⟩.

Substituting λ = ⟨u,v⟩
⟨u,u⟩ we get

0 ≤ ⟨u, v⟩2

⟨u, u⟩2 ⟨u, u⟩ − 2 ⟨u, v⟩2

⟨u, u⟩ + ⟨v, v⟩ = ⟨v, v⟩ − ⟨u, v⟩2

⟨u, u⟩

Rearranging the last inequality, we get ⟨u, v⟩2 ≤ ⟨u, u⟩⟨v, v⟩ = ∥u∥2 · ∥v∥2
. ⊓⊔

Of a similar vein is the following useful inequality due to Chebyshev (see Hardy, Littlewood,

and Polya 1952, Theorem 43, page 43): if a1, . . . , an is a non-decreasing sequence and b1, . . . , bn

a non-increasing sequence of non-negative numbers, then

n∑
i=1

aibi ≤ 1
n

( n∑
i=1

ai

)( n∑
i=1

bi

)
.

In some applications it is desirable to estimate the sum

∑n

i=1 ai of numbers in terms of the

value A :=
∑n

i=1 a2
i of the sum of squares of these numbers. The Cauchy–Schwarz inequality

gives us an upper bound

∑n

i=1 ai ≤
√

nA. If all the ai are equal, then
√

nA is also a lower

bound. The situation, however, is more complicated if the numbers ai are very different. Still, even

then one can obtain a lower bound of about

√
A log n, if some information is known about partial

sums of the ai. This can be derived from the following lemma due to Cherukhin (2008); somewhat

weaker forms were proved earlier by Pudlák (1994) and Rychkov (1994).

A real-valued function f(x) defined on an interval is called concave if, for any two points x
and y in its domain and any λ ∈ [0, 1], we have

f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y) .

If f(x) is twice-differentiable, then f(x) is concave if and only if f ′′(x) is non-positive. For

example, f(x) =
√

x as well as f(x) = −x2
are concave functions.

Monotone Sums Lemma Let a1, . . . , an, b1, . . . , bn be nonnegative real numbers such that a1 ≥
. . . ≥ an and

ar + . . . + an ≥ br + . . . + bn for all r = 1, . . . , n . (A.1)
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Let f(x) be an increasing concave function. Then

f(a1) + . . . + f(an) ≥ f(b1) + . . . + f(bn) .

Proof. First we prove that if x ≥ y ≥ ϵ > 0, then

f(x) + f(y) ≥ f(x + ϵ) + f(y − ϵ) . (A.2)

That is, if the largest of the numbers of x, y is increased by ϵ, and the smallest one is decreased by

ϵ, then the sum f(x) + f(y) does not increase. To show this, set λ := ϵ/(x − y + 2ϵ). Since f is

concave, we obtain

λf(y − ϵ) + (1 − λ)f(x + ϵ) ≤ f(λ(y − ϵ) + (1 − λ)(x + ϵ))
= f(x + ϵ − λ(x − y + 2ϵ)) = f(x) .

Similarly, (1 − λ)f(y − ϵ) + λf(x + ϵ) ≤ f(y). Summing the last two inequalities we get (??).
We prove the lemma by induction on n. The base is n = 1. In this case the claim follows

from (??) and the assumption that f is increasing.

We now prove the induction step (n ≥ 2). Increase a1 and decrease an by ϵ, where ϵ is the
maximum possible number such that all the inequalities (??) are satisfied after this change. The

sum f(a1) + . . . + f(an) does not increase due to this change. This follows from the inequality

a1 ≥ an and the inequality (??). Hence, if we are able to prove the claim for the new numbers

a1, . . . , an, the claim for the former numbers will follow.

We now prove the claim for the new numbers a1, . . . , an. By the maximality of ϵ, at least one
of the inequalities (??) (except for the first one) becomes an equality. Indeed, increasing a1 by ϵ
and decreasing an by ϵ does not change the sum a1 + . . . + an. Thus the first inequality of the

system (??) remains intact. However, the left-hand side of all subsequent inequalities decreases.

Thus the maximality of ϵ implies that one of the subsequent inequalities has become an equality.

Thus, for some k ≥ 2 we have

ak + . . . + an = bk + . . . + bn . (A.3)

If we subtract the equality (??) from the first k − 1 inequalities of the system (??), then the

system (??) splits into two independent systems of the same type, namely one for the first k −
1 numbers a1, . . . , ak−1; b1, . . . , bk−1, and the other for the remaining n − k + 1 numbers

ak, . . . , an; bk, . . . , bn. Applying the induction hypothesis to these two systems, we get

f(a1) + . . . + f(ak−1) ≥ f(b1) + . . . + f(bk−1) ,

f(ak) + . . . + f(an) ≥ f(bk) + . . . + f(bn) .

Finally, summing the two last inequalities we get the desired claim. ⊓⊔

Using the estimate ln n+1/3 < H(n) < ln n+2/3 for the harmonic seriesH(n) :=
∑n

i=1
1
i ,

one can derive the following estimate due to Pudlák (1994).

A.2 Lemma If x1 ≥ . . . ≥ xn ≥ 0 and A ≥ 1 are real numbers, such that
∑n

i=r
x2

i ≥ A/r for all
r = 1, 2, . . . , n, then

∑n

i=1 xi ≥
√

A(ln n − 1).

Proof. Applying theMonotone SumLemmawith f(x) =
√

x, ai = x2
i ,nn = 1

n and bi = 1
i − 1

i+1
for i = 1, . . . , n − 1, we obtain that

∑n

i=1 xi is at least

n∑
i=1

√
bi =

n∑
i=1

√
A

i(i + 1) ≥
√

A

n∑
i=1

1
i + 1 >

√
A(ln n − 1) .⊓⊔
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Eigenvalues A scalar λ ∈ R is an eigenvalue of a square real matrix A if the equation Ax = λx has

a solution x ∈ Rn
, x ̸= 0, which is the case iff the characteristic polynomial pA(z) = det (A − zI)

has λ as a root; here, I is a unit matrix with 1s on the diagonal, and 0s elsewhere. A nonzero vector

x with Ax = λx is called an eigenvector corresponding to the eigenvalue λ. Since pA has degree

n, we can have at n (not necessarily distinct) complex eigenvalues. If the matrix A is symmetric,

that is, AT = A, then all its eigenvalues are real numbers. The following are standard facts about

the eigenvalues of a real symmetric n × n matrix A = (aij):

• A has exactly n (not necessarily distinct) real eigenvalues λ1 ≥ . . . ≥ λn.

• There exists a set of n eigenvectors x1, . . . , xn, one for each eigenvalue, that are normalized

andmutually orthogonal, that is, ∥xi∥ = 1 and ⟨xi, xj⟩ = 0 over the reals. Hence, x1, . . . , xn

form an orthonormal basis of Rn
.

• The rank of A is equal to the number of its nonzero eigenvalues, including multiplicities.

• The sum of all eigenvalues

∑n

i=1 λi is equal to the trace tr(A) =
∑n

i=1 aii.

• The first two largest eigenvalues are equal to

λ1 = max
x ̸=0

xT Ax

xT x
= max

∥x∥=1
xT Ax and λ2 = max

x⊥1

xT Ax

xT x
= max

x⊥1,∥x∥=1
xT Ax ,

where 1 is the all-1 vector, and the second equality follows since we can replace x by x/∥x∥,
since the first maximum is over all nonzero vectors x.

The second largest eigenvalue λ(G) of the adjacency matrix of a graph G is an important

parameter telling us how much “expanding” the graph G is.

Expander Mixing Lemma If G is a d-regular graph on n vertices and λ = λ(G) is the second
largest eigenvalue of its adjacency matrix, then the number e(S, T ) of edges between every two (not
necessarily disjoint) subsets S and T of vertices satisfies∣∣∣e(S, T ) − d|S| · |T |

n

∣∣∣ ≤ λ
√

|S| · |T | .

In particular, if s > λn/d then the graph is s-mixed, that is, for any pair of disjoint s-element

subsets of vertices, there is at least one edge between these sets.

Proof. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of the adjacency matrix M of G, and let

v⃗1, . . . , v⃗n ∈ Rn
be the corresponding orthonormal basis of eigenvectors. That is, for each i, we

have that Mv⃗i = λiv⃗i, ⟨v⃗i, v⃗i⟩ = 1 and ⟨v⃗i, v⃗j⟩ = 0 for j ̸= i. Here v⃗1 is
1√
n
times the all-1

vector 1⃗. Let χS and χT be the characteristic 0-1 vectors of S and T . Expand these two vectors as

linear combinations χS =
∑n

i=1 aiv⃗i = ⟨⃗a, χS⟩ and χT =
∑n

i=1 biv⃗i = ⟨⃗b, χT ⟩ of the basis
vectors. Since the v⃗i are orthonormal eigenvectors,

e(S, T ) = χT
S MχT =

( n∑
i=1

aiv⃗i

)T

M

( n∑
i=1

biv⃗i

)
=

n∑
i=1

λiaibi . (A.4)

Since the graph G is d-regular, we have λ1 = d. The first two coefficients a1 and b1 are scalar

products of v1 = 1√
n

1⃗ with χS and χT ; hence, a1 = |S|/
√

n and b1 = |T |/
√

n. Thus the first

term λ1a1b1 in the sum ((??)) is precisely d|S||T |/n. Since λ = λ2 is the second largest eigenvalue,

the absolute value of the sum of the remainingn−1 terms in this sum does not exceedλ⟨⃗a, b⃗⟩which,
by Cauchy–Schwarz inequality, does not exceed λ∥a⃗∥∥⃗b∥ = λ∥χS∥∥χT ∥ = λ

√
|S||T |. ⊓⊔

Ramanujan graphs An n-vertex graph G is a Ramanujan graph if G is (q + 1)-regular (all vertices
have the same degree q + 1), and λ(G) ≤ 2√

q. Explicit constructions of Ramanujan graphs on

n vertices for every prime q ≡ 1 mod 4 and infinitely many values of n were given in Margulis
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(1973), Lubotzky, Phillips and Sarnak (1988); these were later extended to the case where q is

an arbitrary prime power in Morgenstern (1994) and Jordan and Livné (1997). By the Expander

Mixing Lemma, for every such graph we have that

e(S, T ) ≥ q + 1
n

|S| · |T | − 2
√

q|S| · |T | .

The spectral norm The spectral norm of a matrix A = (aij) is defined as

∥A∥ := max
x ̸=0

∥Ax∥
∥x∥ = max

∥x∥=1
∥Ax∥ .

It is also well known that

∥A∥ = max
∥x∥=1,∥y∥=1

|xT Ay| .

The name “spectral norm” comes from the fact that

∥A∥ = square root of the largest eigenvalue of AT A.

This holds because xT (AT A)x = ⟨Ax, Ax⟩ = ∥Ax∥2
. The Cauchy–Schwarz inequality implies

the following useful inequality

xT Ay ≤ ∥x∥ · ∥A∥ · ∥y∥ .

If a = maxj(|a1j | + · · · + |anj |) is the maximum absolute column sum of the matrix, then

a√
n

≤ ∥A∥ ≤ a
√

n .

The Frobenius norm ofA is just the Euclidean norm ∥A∥F :=
(∑

i,j
a2

ij

)1/2
of the corresponding

vector of length n2
. The following fact relates these two norms with the rank over the reals.

A.3 Lemma (Norms and rank) For every real matrix A,

∥A∥F√
rk(A)

≤ ∥A∥ ≤ ∥A∥F .

Proof. Observe that ∥A∥2
F is equal to the trace, that is, the sum of diagonal elements of the matrix

B = AT A. On the other hand, the trace of any real matrix is equal to the sum of its eigenvalues.

Hence, ∥A∥2
F =

∑n

i=1 λi where λ1 ≥ . . . ≥ λn are the eigenvalues of B. Since B has only

rk(B) = rk(A) = r nonzero eigenvalues, and since all eigenvalues of B are non-negative, the

largest eigenvalue λ1 is bounded by ∥A∥2
F/r ≤ λ1 ≤ ∥A∥2

F. It remains to use the fact mentioned

above that ∥A∥ =
√

λ1. ⊓⊔

If H is an n × n Hadamard matrix, then HT H = nIn where In is the n × n identity matrix.

Hence, all n eigenvalues of HT H are equal to n, implying that H has spectral norm ∥H∥ =
√

n.

A.4 Lemma (Rank of Hadamard matrices) Every a × b submatrix of a Hadamard n × n matrix has
rank at least ab/n over the reals.

Proof. Let H be an n × n Hadamard matrix, and A one of its a × b submatrices. Since A is

a submatrix of H , we have that ∥A∥ ≤ ∥H∥. So, the previous lemma implies that rk(A) ≥
∥A∥2

F/∥A∥2 ≥ ∥A∥2
F/∥H∥2 = ab/n, where the last equality follows because ∥A∥2

F is precisely

the number of entries in A. ⊓⊔
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Probability theory

A finite probability space consists of a finite set Ω (called a sample space) and a function (also

called probability distribution) Prob : Ω → [0, 1], such that

∑
x∈Ω

Prob[x] = 1. A probability

space is a representation of a random experiment, where we choose a member of Ω at random

and Prob[x] is the probability that x is chosen. The most common probability distribution is the

uniform distribution, which is defined as Prob[x] = 1/|Ω| for each x ∈ Ω; the corresponding

sample space is then called symmetric.
Subsets A ⊆ Ω are called events. The probability of an event is defined by Prob[A] :=∑
x∈A

Prob[x], that is, the probability that a member of A is chosen. One of the simplest inequal-

ities is the so-called union bound:

Prob[A1 ∪ A2 ∪ · · · ∪ An] ≤ n · max
i

Prob[Ai] .

This is just a weighted version of a trivial fact that |A ∪ B| ≤ |A| + |B|. Be it so simple, in may

situations, even this bound allows us to show that some object with desired “good” properties

exists. If A1, . . . , An are some “bad” events, each occurring with probability at most p < 1/n,
then the probability that none of these bad events will happen is at least 1 − pn > 0.

Conditional probability For two events A and B, the conditional probability of A given B, denoted

Prob[A|B], is the probability that one would assign to A if one knew that B occurs. Formally,

Prob[A|B] := Prob[A ∩ B]
Prob[B] ,

when Prob[B] ̸= 0. For example, if we are choosing a uniform integer from {1, . . . , 6}, A is the

event that the number is 2 and B is the event that the number is even, then Prob[A|B] = 1/3,
whereas Prob[B|A] = 1.

Independent events Two events A and B are independent if

Prob[A ∩ B] = Prob[A] · Prob[B] .

If B ̸= ∅, this is equivalent to Prob[A|B] = Prob[A]. It is very important to note that the

“independence” has nothing to do with the “disjointness” of the events: if, say, 0 < Prob[A] < 1,
then the events A and A are dependent!

Random sets Let Γ be finite set, and 0 ≤ p ≤ 1. A random subset S of Γ is obtained by flipping

a coin, with probability p of success, for each element of Γ to determine whether the element

is to be included in S; the distribution of S is the probability distribution on Ω = 2Γ
given by

Prob[S] = p|S|(1 − p)|Γ |−|S|
for S ⊆ Γ . We will mainly consider the case when S is uniformly

distributed, that is, when p = 1/2. In this case each subset S ⊆ Γ receives the same probability

Prob[S] = 2−|Γ |
. If F is a family of subsets, then its random member S is a uniformly distributed

member; in this case, Ω = F and S has the probability distribution Prob[S] = 1/|F|. Note that,
for p = 1/2, a random subset of Γ is just a random member of 2Γ

.

Random vectors A random vector r = (r1, . . . , rn) in GF(2)n
is obtained by flipping an unbiased

0-1 coin n times. Hence, Prob[r = v] = 2−n
for each vector v ∈ GF(2)n

. A simple, but often-

used fact is that r is orthogonal to every nonzero boolean vector with the same probability 1/2,
that is,

Prob[⟨r, v⟩ = 0] = 1
2 for every v ̸= 0 in GF(2)n

.

The reason is that v ̸= 0 implies that vi = 1 for some position i. Hence we can partition the space

GF(2)n
into 2n−1

pairs u, u′
that differ only in their i-th position. For each of these pairs, we

have that ⟨v, u⟩ ̸= ⟨v, u′⟩. Hence ⟨v, u⟩ = 0 for exactly 2n−1
vectors v, and r will be equal to
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one of these vectors with probability 2n−12−n = 1/2. This also implies that, if u ̸= v are two

distinct vectors, then

Prob[⟨r, u⟩ = ⟨r, v⟩] = 1
2 .

Random variables A random variable is a variable defined as a function X : Ω → R of the

domain of a probability space. For example, if X is a uniform integer chosen from {1, . . . , n},
then Y := 2X and Z := “the number of prime divisors of X” are both random variables, and so

is X itself. In what follows, Prob[X = s] denotes the probability of the event X−1(s) = {x ∈
Ω : X(x) = s}. One says in this case that X takes value s ∈ R with probability Prob[X = s].
Two random variables X and Y ar independent if such are the events X−1(s) and X−1(t) for all
s, t in the range of X . In this book we will only consider random variables whose range is finite. It

is clear that events are a special type of random variables taking only two values 0 and 1. Namely,

one can identify an event A ⊆ Ω with its indicator random variable XA such that XA(x) = 1 if

and only if x ∈ A.

Expectation and variance One of the most basic probabilistic notions is the expected value of

a random variable. This is defined for any real-valued random variable X , and intuitively, it is

the value that we would expect to obtain if we repeated a random experiment several times and

took the average of the outcomes of X . Namely, if X takes values s1, . . . , sn, then the mean or

expectation of X is defined as the weighted average of these values:

E [X] :=
n∑

i=1

si · Prob[X = si] =
∑
x∈Ω

X(x) · Prob[x] .

In particular, if X takes each value si with the same probability 1/n, then the expectation of X is

just the average value (s1 + · · · + sn)/n of these values.

One of the most important properties of expectation is its linearity: If X1, . . . , Xn are random

variables and a1, . . . , an real numbers, then

E [a1X1 + · · · + anXn] = a1E [X1] + · · · + anE [Xn] .

The equality follows directly from the definition E [X]. The power of this principle comes from

there being no restrictions on the Xi’s.

The variance of a random variable X is defined by:

Var [X] := E
[
(X − E [X])2] = E

[
X2]− E [X]2 ,

where the second equality can be easily shown using the linearity of expectation.

Probabilistic proofs of existence Many extremal problems can be defined by a pair (M, f), where
M is some finite set of objects and f : M → R some function assigning each object x ∈ M its

“value”. For example, M could be a set of graphs, satisfying some conditions, and f(x) could be

the maximum size of a clique in x. Given a threshold value t, the goal is to show that an object

x ∈ M with f(x) ≥ t exists. That is, we want to show that maxx∈M f(x) ≥ t.
A general framework to solve this task is to define an appropriate probability distribution

Pr : M → [0, 1] and to consider the resulting probability space. In this space the target function

f becomes a random variable. One tries then to show that either E [f ] ≥ t or Prob[f(x) ≥ t] > 0
holds. If at least one of these inequalities holds, then the existence of x ∈ M with f(x) ≥ t is
already shown. Indeed, were f(x) < t true for all x ∈ M , then we would have

Prob[f(x) ≥ t] = Prob[∅] = 0

and

E [f ] =
∑

i

i · Prob[f = i] <
∑

i

t · Prob[f = i] = t .
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The property “E [f ] ≥ t implies f(x) ≥ t for at least one x ∈ M” is sometimes called the

pigeonhole principle of expectation: a random variable cannot always be smaller (or always greater)

than its expectation.

Large deviation inequalities As such, the expectation E [X] of a random variable X is just

some number: the actual values of X may lie far away from this number. The large deviation

inequalities estimate the probability with which this happens. Let X be a random variable with

finite expectation E [X] = µ and variance Var [X] = σ2
. Let also a > 0 be an arbitrary real

number.

Markov’s Inequality If X ≥ 0 then Prob[X ≥ aµ] ≤ 1/a.

Proof.

µ = E [X] =
∑

i

i · Prob[X = i] ≥
∑
i≥a

a · Prob[X = i] = a · Prob[X ≥ a] . ⊓⊔

Equivalent form of Markov’s inequality is: Prob[X ≥ a] ≤ µ/a. Intuitively, when a ≤ µ the

inequality is trivial. For a > µ, it means the larger a is relative to the mean, the harder it is to

have X ≥ a.
In the case when X is not necessarily non-negative random variable, we can applying Markov’s

inequality to non-negative random variable Y := (X − µ)2
and obtain:

Chebyshev’s Inequality For any X , Prob[|X − µ| ≥ aσ] ≤ 1/a2.

Sums of independent variables In Markov’s inequality, X can be an arbitrary non-negative

random variable. In applications, however, X is often a sum of independent random variables. In

these cases, Markov’s inequality can be substantially sharpened. The main observation (due to

Sergei Bernstein) is that, if X is a random variable and t > 0, then Markov’s inequality yields

Prob[X ≥ a] = Prob[etX ≥ eta] ≤ E[etX ] · e−ta .

There are many resulting inequalities known under a common name “Chernoff’s inequalities”.

We mention just one of them.

Chernoff’s Inequality Let X1, . . . , Xn be independent random variables taking their values in the
interval [0, 1]. Let X = X1 + · · · + Xn and µ = E [X]. Then, for every real number a > 0, both
Prob[X ≥ µ + a] and Prob[X ≤ µ − a] are at most e−a2/2n.

We finish with a list of some useful (in)equalities; all numbers here are assumed to be positive.

1 − x ≤ e−x x ∈ R

1 − x ≥ e−x−x2/2 0 < x < 1(
1 − 1

x

)x

≤ e−1 ≤
(

1 − 1
x + 1

)x

x ≥ 1

1 − 1
x

≤ ln x ≤ x − 1 x > 0

f

(∑
aixi∑
ai

)
≤
∑

aif(xi)∑
ai

Jensen’s inequality, f convex

f

( 1
n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

f(xi) Jensen, special case
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i=1

xi

)1/n

≤ 1
n

n∑
i=1

xi geometric/arithmetic mean

n∑
i=1

i = n(n + 1)
2 arithmetic series

n∑
i=0

xi = 1 − xn+1

1 − x
geometric series, x ̸= 1

n∑
i=1

1
i

= ln n + γn harmonic series,
1
2 < γn < 2

3(
n

k

)
= number of k-subsets of {1, . . . , n} definition of

(
n
k

)
(

n

k

)
= n!

k!(n − k)! n! = n(n − 1)(n − 2) · · · 2 · 1(
n

k

)
=
(

n

n − k

)
symmetry(

n

k

)
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0-term, 7

1-term, 7

Π3 circuit, 305

Σ3 circuit, 305

∨-decision tree, 442

c(A) = deterministic communication

complexity, 94

cϵ(A) = randomized communication

complexity, 120

nc(A) = nondeterministic communication

complexity, 97

ACC circuit, 336

AC circuit, see alternating circuit
P/poly, 565
⊕-decision tree, 340

k-CNF, 258
exact, 258

k-DNF, 258
exact, 258

k-dimensional cube, 145

k-disjointness matrix, 102

m-rectangle, 484

n-dimensional binary hypercube, 5, 71

n-operator, 373
p-random restriction, 172, 342

st-connectivity problem, 215

ei = 0-1 vector with exactly one 1 in the i-th
position, 193

address function, 76

adjacency matrix, 100, 579

Adleman’s theorem, 15

affine combination, 580

affine dimension, 200

affine space, 580

dimension of, 580

algebraic tiling number, 240

Alon-Saks-Seymour Conjecture, 106

alternating circuit, 346

amplification of density, 218

antichain, 211, 278

approximate degree, 58

approximate disjointness problem, 137

approximation complexity, 27

Approximation Lemma

for AND and OR, 65

for matrices, 370

arithmetic branching program, 245

arithmetic-geometric mean inequality, 323

average degree, 77

average depth, 441

average sensitivity, 70, 353, 441

average time, 16

Barrington’s theorem, 454

BCH-code, 494

biclique, 42

binary n-cube, 5
binary decision diagram (BDD), see branching

program

binary formula, 167, 174

binary hypercube, 5, 354

bipartite complexity, 198

bipartite formula complexity, 42

bipartite graph, 579

block sensitivity, 414

blocking number, 286, 401

blocking set, 286, 481

Bollobás’ theorem, 254

boolean function, 3, 232

d-rare, 471
k-fold extension of, 300

m-mixed, 461

m-robust, 471

574
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t-simple, 260

approximate degree of, 58

approximation complexity of, 27

block sensitivity of, 414

certificate complexity of, 349, 414

communication matrix of, 93

decrease of, 292

degree of, 58, 418

dense, 475

dual of, 8, 243, 253

evasive, 423

graph of, 48

monotone, 8, 246

negative input of, 262

nondegenerate, 71

partial, 27

positive input of, 262

random, 190

rectangle number of, 475, 485

rectangle-free, 475

rectangular, 475

robust, 482

self-dual, 8, 572

sensitive, 475

sensitivity of, 70

stable, 481

symmetric, 52, 366, 404, 423, 440

truth table of, 6

weak degree of, 68

weakly t-simple, 266

weakly mixed, 482

weakly symmetric, 424

boolean matrix, 4

bottom neg-fanin, 309

boundary, 30

branching program

(1, +R)-program, 460

deterministic, 21

nondeterministic, 18

null-path-free, 465

read-once, 461, 463

weakly read-once, 468

canonical monochromatic rectangles, 180

canonical rectangles, 199, 240

Catalan number, 32

Cauchy–Schwarz inequality, 182, 582

certificate, 413

certificate complexity, 349

chain, 291

jump position, 292

characteristic function, 469

characteristic function of set, 486

characteristic polynomial, 584

Chebyshev’s inequality, 589

Chebyshev’s polynomial, 65

Chernoff inequality, 589

chromatic number, 106, 112, 579

Chvátal closure, 541

Chvátal rank, 542

circuit, 13

DeMorgan, 14

depth of, 368

inversion complexity of, 291

linear, 405

monotone, 246

probabilistic, 14

real-valued, 265

representing a graph, 43

representing a matrix, 385

symmetric, 362, 404

circulant matrix, 392

clause, 6, 258, 497

clique, 579

clique function, 4, 37, 221, 269, 299

clique-like function, 273

CNF, 6

k-satisfiable, 523
expanding, 519

interpolant of, 535

minimally unsatisfiable, 519

search problem for, 499

unsatisfiable, 497

Coding Principle, 343

coloring, 579

balanced, 340

column rank, 581

combinatorial rectangle, 83, see rectangle
combinatorial star, 142

communication complexity

fooling-set bound, 100

nondeterministic, 97

communication game

best-partition, 93, 116

clique versus independent set, 104

fixed-partition, 93

multi-party game, 136

set packing problem, 138

with a referee, 156

communication matrix, 93

communication protocol, 94

deterministic, 94

overlapping, 455

randomized, 119

communication tree, 82, see communication

protocol

complete graph, see clique
conditional probability, 586
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conjunctive normal form, 6

connected component, 579

connector, 294

contact, 18

contact scheme, see switching network
contractor, 211, 239

convex combination, 580

convex hull, 541, 580

convex linear combination, 541

cover number, 97

critical complexity, 70

cross correlation lemma, 78

cross intersection, 210

local intersection, 237

cross-intersection, 139

cross-intersection property, 8

cutting plane proof, 525

cycle, 579

cyclic convolution, 379

cylinder, 143

cylinder intersection, 143

decision tree, 21, 409

∨-decision tree, 442

⊕-decision tree, 340

for search problems, 425

nondeterministic, 411

spectral lower bound, 436

decomposition, 10

Dedekind number, 35

degree, 234

DeMorgan rules, 5, 14

dependence on a variable, 3

dependency program, 244

differently colored set, 340

discrepancy, 110, 132, 144

discriminator, 332

Discriminator Lemma, 327

disjointness function, 149, 326

disjointness matrix, 121

general, 212

of a pair of families, 210, 237

of a single family, 211

disjointness problem, 137

disjunctive complexity, 47

disjunctive normal form, 6

DNF, 6

downward closes set, 285

Drag-Along Principle, 192

edge expansion, 518

edge-nonedge matrix, 200

edge-nonedge tiling number, 199

eigenvalue, 584

eigenvector, 584

element distinctness function, 9, 175, 430, 445

elementary conjunction, 24, 168

entropy of operators, 374

Euler’s theorem, 77, 234, 441

events

independent, 587

exact perfect matching, 467, 481

Expander Mixing Lemma, 584

expectation, 588

linearity of, 588

explicit function, 37

face, 559

fat matching, 324

Fejer’s theorem, 127

field, 579

find-a-difference game, 88

finite limit, 309

flower, 286

Flower Lemma, 286

fooling set bound, 100

forest, 281

forgetting pair, 472

fork position, 216

formal complexity measure, 190

submodular, 190

formula, 14

DeMorgan, 14

depth of, 14

inversion complexity of, 296

leafsize of, 14

Formula Balancing Lemma, 162

Fourier basis, 61

Fourier coefficient, 62, 354, 435

Fourier representation, 63

Fourier transform, 62, 434

fractional chromatic number, 557

fractional coloring, 557

fractional partition number, 186

Frege system, 498

frequency moment, 140

Frobenius norm, 111, 586

fusing functional, 570

fusion method, 569

gate-elimination, 39

general disjointness matrix, 229

general position, 236

generalized inner product, 148, 156, 337

Gilbert–Varshamov bound, 486

Gomory–Chvátal rule, 525

Gramian matrix, 127

graph, 578
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K2,2-free, 45
Ka,b-free, 324

k-separated, 213
k-star, 153
s-starry, 153
adjacency boolean function, 199

affine dimension of, 200

affine representation of, 200

bipartite complement of, 579

chromatic number of, 274, 579

clique number of, 273

complement of, 579

connected, 234, 579

connected component of, 234

fat covering of, 324

independence number of, 579

legal coloring of, 579

mixed, 153, 480

odd factor in, 234

Paley, 213

projective dimension of, 201

projective representation of, 201

quadratic function of, 474, 478

saturated, 51, 210

triangle-free, 208

graph complexity, 41

graph entropy, 195

graph function, 273

graph representation, 43

greater-than function, 133

greedy covering, 99

Hadamard graph, 328

Hadamard matrix, 127, 328, 332, 396, 399, 479,

581

Hadamard product, 114

halfspace, 542

Hall’s Marriage Theorem, 519

hypercube, 5, 354

hyperedge, 152

hypergraph, 152

k-matching, 152

hyperplane problem, 144

inconsistent path, 451

independence number, 579

independent set, 579

independent set in graph, 541

independent set polytope, 541, 546

independent set relaxation, 556

influence, 69

inner product function, 128, 328, 340, 430

integer hull, 542

integrality gap, 556

interpolation theorem, 534

intersection dimension, 339, 364

intersection representation, 364

inverter, 298

Isolation Lemma, 449

iterated majority function, 437

iterated NAND function, 438

Jensen’s inequality, 189

König-Egervary theorem, 100

kernel of a matrix, 582

Khrapchenko’s theorem, 181

fractional version, 186

knapsack problem, 551

lift-and-project cut, 560

k-limit, 309

Lindsey’s Lemma, 581

linear algebra bound, 580

linear code, 457, 469, 474

BCH-code, 458, 474

Reed–Muller code, 470

universal function of, 485

linear combination, 580

linear decision tree, 429

linear independence, 580

linear relation, 580

linear space, 359, 579

basis of, 580

dimension of, 359, 580

dual of, 581

orthogonal complement of, 581

subspace of, 580

linear subspace, 580

linear test function, 429

literal, 6

local intersection, 210

logical permanent, 279

Lovász–Stein theorem, 401

lower-bounds criterion

for graph properties, 269

for monotone boolean circuits, 260

for monotone real circuits, 266

Möbius inversion formula, 57

Magnification Lemma, 44

for Σ3 circuits, 316

majority function, 4

Markov’s inequality, 588

matching number, 478

matrix

α-dense, 218
r-dimensional arrangement of, 126
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r-dimensional realization of, 125

area of, 108

clique number of, 100

complement of, 93, 101

cover number of, 97

discrepancy of, 110

distributional complexity of, 120

Frobenius norm of, 586

Hadamard product, 114, 581

intersection dimension of, 131

kernel of, 582

line weight of, 100

maximum discrepancy of, 110

non-negative rank of, 130

primitive, 368

representation by circuits, 385

rigidity of, 368, 398

seminorm of, 134

signum rank of, 125, 315

square-free, 131

term-rank of, 100

tiling number of, 95

trace of, 586

transpose of, 580

triangular, 106

matrix decomposition, 10

matrix multiplication, 150

matrix product, 378

matrix rigidity, 368, 398

maximum discrepancy, 110, 132

maximum sensitivity, 70, 414

maxonomial, 420

maxterm, 7, 91, 262

mean, see expectation
middle-bit set, 365

minterm, 7, 91, 262, 342, 343, 412

mixed graph, 585

monochromatic matrix, 240

monochromatic rectangle, 88

monochromatic submatrix, 93, 94

monomial, 6, 258

monotone circuit, 14

monotone function, 8

Monotone Switching Lemma, 259

multilinear circuit, 257

multilinear polynomial, 56

multiplexer, 166

natural proof, 565

Nechiporuk’s theorem, 174

for branching programs, 444

Nisan–Wigderson generator, 564

non-negative rank, 96, 130

nondegenerate, 71

nondeterministic circuit, 295

norm graphs, 390

norm of a vector, 582

operator, 374

entropy of, 374

orbit of a vector, 424

orthogonal vectors, 581

orthonormal basis, 584

output-majority circuit, 350

Paley function, 214

Paley graph, 213

parallel-serial network, 19

parity branching program, 19, 468

parity decision tree, 340

parity function, 4, 40, 346

parity rectangle, 187

Parseval’s Identity, 62

partial (m, k)-design, 564
partial design, 284

partial input, see restriction
support of, 472

partial matrix, 200

partition problem, 144

path, 579

perfect hash family, 256

perfect matching function, 279, 467

permutation, 441

permuting branching program, 453

pigeonhole principle, 505, 588

Plancharel’s Identity, 62

pointer function, 464, 471

polyhedron, 540

face of, 559

polynomial hierarchy, 575

polytope, 540

positive semi-definite matrix, 127

primitive matrix, 10, 93, 97, 368, 386

probability distribution, 586

probability space, 586

projections of linear codes, 469

projective dimension, 201

projective plane, 209, 481

proof

tree-like, 502, 528

pseudorandom function generator, 566

pseudorandom generator, 561

Ramanujan graph, 585

Ramanujan graphs, 154, 480, 518

Ramsey graph, 318

Ramsey graphs, 319

random member, 587
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random subset, 587

random variable, 587

randomized decision tree, 428

rank, 581

real threshold function, 329, 429

rectangle, 179, 185

full rectangle, 179

monochromatic, 88, 179

positively monochromatic, 179, 206

subrectangle, 179

rectangle function, 185

rectangle measure, 185

convex, 185

rectangular function, 475

rectifier network, 389

regular graph, 578

regular resolution, 500

replication number, 460

resolution

completeness of, 499

regular, 500

soundness of, 497

resolution refutation proof, 498

tree-like, 499

resolution refutation size, 513

resolution refutation width, 513

resolution rule, 498

restriction, 342

support of, 472

ring, 579

row rank, 581

row-density, 129

Rychkov’s lemma, 180

sample space

symmetric, 586

saturated graph, 51, 210

scalar product, 580

Schwartz–Zippel Lemma, 75

search problem, 426

seed length, 562

self-avoiding family, 239

self-dual, 8

self-reducibility, 576

semantic derivation rule, 512

semantic proof, 513

seminorm, 134

sensitive function, 485

sensitivity, 70, 414

Sensitivity Conjecture, 416

set-covering problem, 155, 550

set-packing problem, 138

set-partitioning problem, 550

Shannon function, 22

shrinkage exponent, 172

signum function, 68, 125

signum rank, 125, 315, 320

signum representation, 68, 351

slice function, 284, 288

span, 359, 580

span program, 231

canonical, 232, 241

monotone, 232

spanning subgraph, 579

spectral norm, 111, 126, 203, 585

split cut, 560

spread, 238

star, 43

center of, 142

storage access function, 51, 166

straight line program, see circuit
streaming algorithm, 140

stretch, 562

strong degree, 68

sub-operator, 375

Subbotovskaya’s n1.5
lower bound, 171

subcube, 5

subfunction, 9

subgraph, 579

induced, 579

spanning, 234, 579

substring, 456

succinct 3-SAT, 362, 574
sum-product graph, 209

sunflower, 247, 394

Sunflower Lemma, 247, 395

superconcentrator, 373, 381

Switching Lemma, 341, 342, 372

monotone version of, 259

non-monotone version of, 343

switching network, 19, 446

Sylvester graph, 319

Sylvester matrix, 133, 396, 403

symmetric circuit, 366

symmetric function, 4, 52

Tarsi’s Lemma, 519

threshold circuit, 329

threshold cover, 327

threshold decision tree, 530

threshold function, 4, 39, 235, 340

threshold matrix, 131

threshold-k function, 358

tiling number, 85, 88, 144

tiling number of rectangles, 88, 179

total order polytope, 554

trail, 579

transposition principle, 47
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tree-like proof, 502

tree, 579

truth assignment, 497

truth table, 6, 30

Tseitin formula, 516

Turán’s theorem, 431, 441, 579

uniform distribution, 586

union bound, 586

unique disjointness matrix, 109, 122

unit vector, 126

universal set, 469

upward closed set, 285

Vandermonde matrix, 243

variance, 588

vertex cover, 253, 550

walk, 579

weak pigeonhole principle, 504

weakening rule, 499

weighted rank, 402

weighted sum function, 462

width of a clause, 510

zero-one knapsack problem, 551


