
Limitations of Lower-Bound Methods for the Wire Complexity of Boolean Operators

Andrew Drucker
EECS Dept. and CSAIL

MIT
Cambridge, MA 02139

adrucker@mit.edu

Abstract—We study the circuit complexity of Boolean op-
erators, i.e., collections of Boolean functions defined over a
common input. Our focus is the well-studied model in which
arbitrary Boolean functions are allowed as gates, and in which
a circuit’s complexity is measured by its depth and number
of wires. We show sharp limitations of several existing lower-
bound methods for this model.

First, we study an information-theoretic lower-bound
method due to Cherukhin, that yields bounds of form Ωd(n ·
λd−1(n)) on the number of wires needed to compute cyclic
convolutions in depth d ≥ 2. This was the first improvement
over the lower bounds provided by the well-known super-
concentrator technique (for d = 2, 3 and for even d ≥ 4).
Cherukhin’s method was formalized by Jukna as a general
lower-bound criterion for Boolean operators, the “Strong
Multiscale Entropy” (SME) property. It seemed plausible that
this property could imply significantly better lower bounds by
an improved analysis. However, we show that this is not the
case, by exhibiting an explicit operator with the SME property
that is computable in depth d with O(n · λd−1(n)) wires, for
d = 2, 3 and for even d ≥ 6.

Next, we show limitations of two simpler lower-bound
criteria given by Jukna: the “entropy method” for general
operators, and the “pairwise-distance method” for linear op-
erators. We show that neither method gives super-linear lower
bounds for depth 3. In the process, we obtain the first known
polynomial separation between the depth-2 and depth-3 wire
complexities for an explicit operator. We also continue the
study (initiated by Jukna) of the complexity of “representing”
a linear operator by bounded-depth circuits, a weaker notion
than computing the operator.

Keywords-bounded-depth circuits; circuit lower bounds; ar-
bitrary gates

I. INTRODUCTION

A. Circuits with arbitrary gates

This paper continues the study of the circuit complexity of
Boolean operators, that is, functions F : {0, 1}n → {0, 1}m.
For ease of discussion, we will focus on the common
setting m = n. Typically we regard F = (f1, . . . , fn) as a
collection of n Boolean functions. By comparing the circuit
complexity of F to the individual complexities of the fi’s,
we are asking: how much easier is it to compute the fi’s
together than to compute them separately?

A great deal of work, e.g., in [22], [23], [8], [4], [5], [18],
[17], [20], [6], [10], [11], [13], has studied the circuit model
in which unbounded fanin is allowed, and in which circuit

gates can apply arbitrary Boolean functions to their inputs.
In this model, we study the number of wires required in such
a circuit to compute F , a quantity we denote as s(F ).

While allowing gates to compute arbitrary Boolean func-
tions is physically unrealistic, there are a number of mo-
tivations to study this model. First, it arguably provides a
natural measure of the “information complexity” of Boolean
operators. Second, lower bounds in this strong circuit model
are highly desirable, since they also apply to a variety of
more realistic models. Third, several natural circuit lower-
bound criteria apply even to circuits with arbitrary gates,
and it seems worthwhile to understand how far techniques
of this kind can carry us. Finally, for at least one important
class of Boolean operators—the F2-linear operators, natu-
rally computable by F2-linear circuits—it remains unclear
whether allowing arbitrary gates in our circuits even confers
additional power.

Any individual Boolean function can be trivially com-
puted with n wires in the arbitrary-gates model, so n2 wires
always suffice to compute an operator F . In general, this is
not far from optimal: random (non-linear) operators require
Ω(n2) wires to compute [13]. Thus random collections of
Boolean functions are, in a sense, “computationally orthog-
onal” to one another. It would be extremely interesting to
identify an explicit function collection with this property;
however, proving a super-linear lower bound s(F ) = ω(n)
for an explicit operator F is a long-standing open problem.

This has led researchers to consider circuits with arbitrary
gates but restricted depth. Even depth-2 circuits in this model
are powerful, and their study was strongly motivated by work
of Valiant [23] (see [24]), who showed that any operator
with depth-2 wire complexity ω(n2/ ln lnn) also cannot be
computed by linear-size, logarithmic-depth Boolean circuits
(of fanin 2). However, the known lower bounds for depth
2 are too weak to apply Valiant’s results. For depth-2
circuits, the best bounds for explicit operators are of form
Ω(n3/2) [6], [10]. For depths 3 and 4, the best bounds
are Ω(n lnn) and Ω(n ln lnn) respectively [6]; for higher
constant depths the known bounds (described in Section I-B)
are barely super-linear [8], [18], [6].

One might suspect that the difficulty of proving strong
lower bounds stems from the unrealistic strength of the
circuit model being studied. A seemingly much more modest



aim is to prove lower bounds in the linear circuit model over
F2. In this model, we require the circuit gates to compute
F2-linear functions; we again allow unbounded fanin. Given
some linear operator L : Fn

2 → Fn
2 , we let s⊕(L) denote

the number of wires needed to compute L with a linear
circuit. Lupanov [15] (and later Bublitz [3]) showed that
s⊕(L) = O(n2/ lnn), and that this bound is tight if L is
chosen randomly.

Unfortunately, the known lower bounds for explicit linear
operators in the linear circuit model are just as discourag-
ingly weak as for operators in the arbitrary-gates model.
Moreover, since the lower bounds quoted earlier were shown
for non-linear operators, the situation is actually slightly
worse in the linear case: for example, for depth-2 circuits,
the best known lower bound for an explicit linear operator
is Ω

(
n
(

lnn
ln lnn

)2)
, proved very recently [9].

Thus, it is a major unmet challenge to develop lower-
bound techniques that effectively exploit the specific behav-
ior of linear circuits.1 In fact, it is an open question whether
s⊕(L) can be noticeably larger than s(L), that is, whether
non-linear gates can ever help us compute linear operators
more efficiently. However, we also cannot rule out the possi-
bility that all linear operators L are computable by depth-2,
non-linear circuits of size O(n · polylog(n)); see [13]. (We
at least prove, in the full version, that s(L) = Ω(n lnn) for
random L.)

Since there are relatively few lower-bound methods for
circuits with arbitrary gates, it is important to understand
the power and limitations of existing methods. In this work
we focus on three such methods.

B. The Strong Multiscale Entropy Method

The first method we study was developed by
Cherukhin [6], and used to obtain the best known
explicit lower bounds on bounded-depth wire complexity.
The bounds apply to the cyclic convolution operator over
Fn

2 , and are of form Ωd (n · λd−1(n)) for depth d > 1.2

Here, λd(n) is an unbounded function in n, which grows
ever-more-slowly as d increases; its growth is extremely
slow even for modest values of d. We have3

λ1(n) = Θ(
√
n), λ2(n) = Θ(lnn), λ3(n) = Θ(ln lnn),

and for higher d, λd(n) = λ∗d−2(n). The precise definition
is in Section III-B.

1A lower-bound criterion specific to linear circuits, based on matrix
rigidity, has been given by Valiant [23]. In principle this method is capable
of showing strong lower bounds. However, except for some limited success
in depth 2 [18], no one has proved sufficiently-strong rigidity lower bounds
on explicit F2-matrices to imply circuit lower bounds in this way. See [14]
for a survey of this line of work.

2Cherukhin proved his result for depths 2 and 3 earlier in [7]. The
paper [6] contains a unified proof for all constant depths.

3The λd(·) functions are defined differently in [18], [9]. We follow [20],
[6], [12] instead, and we have converted the bounds quoted from other
papers to match our convention.

The longstanding previous best lower bounds for ex-
plicit operators (including cyclic convolution) were of form
Ω
(

n ln2 n
ln lnn

)
for depth 2 [19] and Ωd (λd(n)) for d ≥ 3 [8],

[18], [2], and were based on the superconcentrator tech-
nique [22], [23]. For depths 2, 3 and for even depths d ≥ 4,
Cherukhin’s work gives asymptotic improvements on these
older bounds; for odd depths d ≥ 5, his bounds match
the best previous ones from [18]. Cherukhin’s lower-bound
method does not apply to linear operators. (For d ≥ 3, the
best known lower bounds for computing an explicit linear
operator are of form Ωd (n · λd(n)) [18, p. 215], [9]. These
bounds, along with the Ω

(
n
(

lnn
ln lnn

)2)
bound for depth 2

from [9], are valid against circuits with arbitrary gates.)

Cherukhin’s method, developed specifically for the con-
volution operator, was later formulated by Jukna [12, Chap.
13] as a general property of operators that yields a lower
bound of form Ωd(n · λd−1(n)). This operator property is
called the Strong Multiscale Entropy (SME) property. Very
roughly speaking, the SME property states that there is a
large “information flow” between many subsets of the input
and output coordinates of an operator. The precise definition
has two noteworthy aspects. First, the SME property requires
for this information flow to be large when measured with
respect to many different partitions of the input and output
coordinates, at many different “scales” (i.e., varying the
size of the input and output blocks). Second, the measure
of information flow between an input and output block is
defined with respect to a well-chosen set of restrictions of
the original operator. The SME property will be defined in
Section III-B.

The earlier superconcentrator technique works by show-
ing (also using “information flow”-type arguments) that
for certain operators F , any circuit to compute F must
have a strong connectivity property: it must be a so-called
superconcentrator graph. This allows one to apply known
lower bounds on the number of edges in bounded-depth
superconcentrators (on n input and output vertices). The
power of this method is inherently limited, since for d ≥ 3,
the smallest depth-d superconcentrators have Θd(n · λd(n))
edges [8], [18], [2]. Also, there exist superconcentrators with
O(n) wires [22], [23]; such graphs cannot have constant
depth, but may have depth that grows extremely slowly
in n [8]. In contrast with the superconcentrator technique,
the SME property has an inherently information-theoretic
definition, and the associated lower bounds are proved by
a combination of graph-theoretic techniques from earlier
work [18], [20] with novel information-theoretic techniques.
For constant-depth circuits, no limitations on the method
were known prior to our work, and it seemed plausible that
the SME property might imply significantly stronger lower



bounds by an improved analysis.4

C. Two simpler lower-bound methods

We also study two other lower bound methods, both due
to Jukna. These methods are simpler than the SME method,
and have only been shown to imply lower bounds for depth
2. However, we feel they are still of interest due to their
elegance, and due to the fact that the important depth-2 case
is still not well-understood.

The first of these methods is the so-called “entropy
method” of Jukna [10]. Like the SME method, this method is
a complexity measure of Boolean operators whose definition
is information-theoretic: the method identifies information
that passes between certain subsets of inputs and outputs,
and argues that there must be many wires to carry this
information. (In fact, the property of operators used by
Jukna’s entropy method can be viewed as a relaxation of
the SME property, as will be apparent from the definitions.)
Using this method, Jukna proved bounds of form Ω(n3/2)
for the number of wires required in depth-2 circuits for
multiplication of two

√
n-by-

√
n matrices over F2. Like the

SME method, Jukna’s entropy method does not yield super-
linear lower bounds for computing linear operators.

The next lower-bound method we study, also due to
Jukna [11] (building on work of Alon, Karchmer, and
Wigderson [1]), does apply to linear operators, and indeed
is specific to these operators. Jukna showed that if the
columns of a matrix A ∈ Fn×n

2 have pairwise Hamming
distance Ω(n), then any depth-2 circuit (with arbitrary gates)
computing the linear transformation x → Ax must have
Ω
(
n lnn
ln lnn

)
wires [11]. This lower-bound criterion applies

to a wide range of transformations, including random ones.
We will refer to this technique as the “method of pairwise
distances.”

Jukna’s result is actually stronger: the Ω
(
n lnn
ln lnn

)
lower

bound applies to any depth-2 circuit that merely computes
Ax correctly when x is a standard basis vector ei. Such a
circuit is said to “represent” the transformation Ax (relative
to the standard basis)—a weaker notion than computing
the transformation, if we allow non-linear gates. It seems
worthwhile to understand how much of the difficulty of
computing a linear transformation is “already present” in
the simpler task of representing it relative to some basis. In
our work, we are broadly interested in the complexity of
representing linear transformations relative to various bases;
we regard the method of pairwise distances as one particular
lower-bound technique within this framework.

4For larger depths, some limitations of the SME criterion follow from
previous work. In particular, the cyclic convolution operator over F2, which
satisfies the SME property, can be computed in depth polylog(n) using
O(n logn log logn) wires. To see this, we first note that cyclic convolution
of length n in F2 easily reduces to multiplying two polynomials in F2[x],
each of degree at most 2n−1. For the latter task, we can use an algorithm
of Schönhage [21] (see [16]).

D. Our results

1) Limitations of entropy-based methods: As our most
significant (and most technically involved) result, we show
that Cherukhin’s lower-bound method, formalized by Jukna
as the SME property, is inherently limited as a lower-
bound criterion for the wire complexity: there is an explicit
operator with the SME property that is computable with
O(n · λd−1(n)) wires, when d = 2, 3, or when d ≥ 6
is even. For other d > 1, this gives an upper bound of
O(n · λd−2(n)) wires. Thus, the Cherukhin-Jukna analysis
of the SME lower-bound criterion is essentially tight.

The operator we exhibit, called the “Dyadic Interval
Replication” (DIR) operator, is fairly natural, and can be
roughly described as follows. Let n := 2k. The input is
a string x ∈ {0, 1}n, viewed as a labeling of the leafs
of Tk, the complete binary tree of depth k, along with a
specified subtree T ′ of Tk. The desired output is the labeling
z ∈ {0, 1}n in which the leaf labels of T ′ in x have
been “copied” to all other subtrees of the same height. This
operator is designed to create significant information flow
between all parts of the input and output; the subtree T ′
will be encoded in the input in a way that is chosen to help
ensure the SME property.

Our efficient bounded-depth circuits for the DIR operator
are built by an induction on the depth d.5 The basic idea
is that, when the subtree T ′ to be copied is small, we
can “shrink” the input x, discarding most of the label-
ings outside of T ′. We then either perform the replication
task in a direct fashion, or, if the input has been shrunk
substantially enough, we inductively apply our circuits for
lower depths. By carefully optimizing the set of sizes to
which we attempt to shrink the input, we obtain the upper
bounds quoted above. This approach also shows that the DIR
operator has linear-sized circuits of depth d = α(n) + 2,
where α(n) := min{d : λd(n) ≤ 1} is an extremely
slowly-growing function. The idea of attacking a problem
at different “scales,” and applying induction, has appeared
earlier in efficient constructions of bounded-depth supercon-
centrators [8] and bounded-depth circuits to compute good
error-correcting codes [9], although the details are different
in each case.

We share with earlier authors the belief that, for the
cyclic convolution operator, it should be possible to prove
significantly better lower bounds for bounded depth—say,
bounds of form Ω(n1+εd) for any constant d > 0. Our
work’s message is simply that such lower bounds will have
to exploit more of the specific structure of this operator. It
seems likely that this will require powerful new ideas. We
do hope, however, that our DIR example may be a useful
reference point for future work in this area.

The construction and analysis of the DIR operator occupy

5Technically, our induction gives circuits to compute a simplified variant,
which we then apply to compute the original operator.



the body of this extended abstract. We will only describe our
other results, whose proofs are in the full version.

As our next contribution, we turn to study the limits
of Jukna’s entropy method. We give a simple example of
an operator from 2n input bits to n output bits, which is
computable by depth-3 circuits with O(n) wires but requires
Ω(n3/2) wires to compute in depth 2. The operator is a
simplified variant of matrix multiplication over F2, in which
one of the two matrices is required to contain exactly one
1-entry. The lower bound follows by the same analysis used
in [10] to prove the same lower bound for ordinary matrix
multiplication over F2. Our example shows that the entropy
method as formalized in [10] does not provide a nontrivial
lower-bound criterion for depth-3 circuits.

As super-linear lower bounds are already known for the
depth-3 wire complexity of certain operators, our negative
result on Jukna’s entropy method should be interpreted
as a note of caution, rather than as a strong barrier to
progress in circuit complexity. However, the operator we
define to prove our result is also the first known example
of a polynomial separation between depth-2 and depth-3
wire complexities—a finding of independent interest. (A
polylogarithmic complexity separation between depths 2 and
3 is shown in [9], for the task of computing the encoding
function of certain non-explicit linear codes.)

2) Results on linear transformations: In the rest of
our work, we study the complexity of representing linear
transformations over Fn

2 . While Lupanov [15] showed that
random linear transformations require Ω(n2/ lnn) wires to
compute by linear circuits, Jukna [11] showed that, if we
allow non-linear gates, O(n lnn) wires suffice to represent
any linear transformation. (He showed this for the standard
basis, but his method extends easily to all other bases.)
We show that, relative to any fixed basis B, most linear
transformations require Ω(n lnn) wires to represent relative
to B. Our result shows that Jukna’s upper bound is in general
optimal. For our proof, we use a simple trick (similar to a
technique in [13]) to reduce arbitrary circuits to a special,
restricted class; we then apply a standard counting argument.

Recall that Jukna’s method of pairwise distances [11]
implies a lower bound of Ω

(
n lnn
ln lnn

)
on the number of wires

needed to represent a large class of linear transformations
by depth-2 circuits. Jukna asked whether the “annoying”
(ln lnn)−1 factor in his result could be removed, to match
the upper bound he proved for arbitrary matrices. We show
that in fact it cannot: there is a matrix family {An ∈ Fn×n

2 }
whose columns have pairwise distance Ω(n), for which we
can compute the transformation x → Anx using a depth-
2, F2-linear circuit with O

(
n lnn
ln lnn

)
wires. Our construction

involves an application of combinatorial designs defined by
polynomials over finite fields.

We also show that, for depth-3 circuits, the pairwise-
distance method fails completely: there is a matrix family
{An ∈ Fn×n

2 }, whose columns have pairwise distance

Ω(n), and for which we can compute x → Anx using
a depth-3 linear circuit with O (n) wires. Recently, Gál
et al. [9] proved a related result: there is a linear error-
correcting code L : {0, 1}Ω(n) → {0, 1}n with minimum
distance Ω(n), whose encoding function is computable by
depth-3 linear circuits with O(n ln lnn) wires. They also
show this is optimal for any such code, even if arbitrary
gates are allowed. In fact, they determine fairly precisely
the minimal wire complexity of computing a good error-
correcting code for all depths d ≥ 2: for depth 2, the answer
is Θ

(
n
(

lnn
ln lnn

)2)
, and for depth d ≥ 3, the answer is

Θd(n ·λd(n)). As a corollary, this implies that the pairwise-
distance method cannot give bounds better than Ω(n ln lnn)
for depth 3; our result sharpens this by removing the (ln lnn)
factor. Comparing our work with [9] also shows that, while
the generator matrices of good linear codes do have columns
with high pairwise distance, the property of being a good
code is an inherently stronger lower-bound criterion than the
pairwise-distance method.

Finally, we identify another potential pitfall of circuit-
size lower bounds based on hardness of representing linear
transformations. We show that for invertible linear transfor-
mations L, there is always a basis B and a depth-3 circuit C
of size O(n) such that C represents L relative to B. (Non-
linear gates are provably necessary in this construction.)
Thus in attempts to prove new circuit lower bounds for
depths greater than 2, we must at least take care in choosing
which basis we use to analyze our linear transformation.

II. PRELIMINARIES

We use e1, . . . , en to denote the standard basis vectors
in Fn

2 . We use ||y|| to denote the Hamming weight of y ∈
{0, 1}n. Given a gate g in a circuit C, the depth of g is
defined as the maximal number of edges (i.e., wires) in any
directed path from an input gate to g, where each step in
the path follows a wire in C in its direction of information-
flow. The depth of C is the maximum depth of any of its
gates. When we construct circuits, we will refer to the depth-
d gates as being at “Level d.” Generally these circuits will
not be layered; that is, wires may pass from Level d to any
Level d′ > d.

A. Wire complexity of operators
A (total) operator (or mapping) is any function F :

{0, 1}n → {0, 1}m. Define s(F ) as the minimum number
of wires in any circuit (using arbitrary Boolean functions at
gates) which computes F . For d ≥ 0, define sd(F ) as the
minimum number of wires in any circuit which computes F
and has depth at most d.

The following easy lemma, proved in the full version,
allows us to “hash,” or compress, a standard basis vector
down to fewer bits in a wire-efficient way.

Lemma 1. There is a F2-linear operator H : Fn
2 →

F2d
√
ne

2 , computable by a depth-1 circuit with 2n wires,



and such that for any two distinct standard basis vectors
ei, ej ∈ Fn

2 , the image vectors H(ei), H(ej) are distinct
and each of Hamming weight 2.

III. ENTROPY AND CIRCUIT LOWER BOUNDS

A. Entropy of operators

Given an operator F = (f1, . . . , fm) : {0, 1}n →
{0, 1}m, define the entropy

Ent(F ) := log2 (|range(F )|)

as the logarithm of the number of distinct outputs of F . We
have two easy facts, both from [10]:

Fact 2. Suppose we fix some assignment to a subset I ⊆ [n]
of the inputs to F , and let F ′ : {0, 1}n−|I| → {0, 1}m be
the resulting operator. Then Ent(F ′) ≤ Ent(F ).

Fact 3. Suppose that there is a subset S ⊆ [n], such that
from the value F (x) one can always infer the values of all
input bits xi with i ∈ S. Then, Ent(F ) ≥ |S|.

Say we are given an x ∈ {0, 1}n, a nonempty set I ⊆ [n],
and an i ∈ I . Let x[I; i] denote the vector obtained from x
by setting the ith bit to 1, setting the (i′)th bit to 0 for each
i′ ∈ I \ {i}, and leaving all other bits unchanged.

Letting F (x) be as above, and fixing some output coor-
dinate j ∈ [m], define the function

fI,i,j(x) := fj(x[I; i]).

Now for J ⊆ [m], define a mapping FI,J : {0, 1}n−|I| →
{0, 1}|I|·|J| by

FI,J := (fI,i,j)i∈I,j∈J .

Note, FI,J has as its domain the bits {x` : ` /∈ I}. (We
will still write FI,J = FI,J(x), however.) We can now state
Jukna’s entropy-based lower-bound criterion:

Theorem 4. [10] Let F : {0, 1}n → {0, 1}m. Let I1, . . . , Ip
be a partition of [n], and let J1, . . . , Jp be a partition of [m]
with the same number of parts. Then,

s2(F ) ≥
p∑

t=1

Ent(FIt,Jt
).

B. Strong Multiscale Entropy

Next we define the Strong Multiscale Entropy property,
which is a generalization due to Jukna [12, Chap. 13] of a
lower-bound method of Cherukhin [6].

For a pair of integers N,m ≥ n0, we consider pairs
(I,J ) where I is a collection of subsets of [N ] and J
is a collection of subsets of [m]. For an integer p ≤ n0, we
say that (I,J ) form an n0-partition at scale p if:

1) I consists of p disjoint sets It ⊆ [N ], with |It| =
bn0/pc;

2) J consists of bn0/pc disjoint sets Jt′ ⊆ [m], with
|Jt′ | = p.

Say that a family {FN : {0, 1}N → {0, 1}m}N>0 has the
Strong Multiscale Entropy (SME) property, if there exists
a parameter n0 = n0(N) = Ω(N) along with constants
C, γ > 0 such that, for every N and every p ∈ [C

√
n0, n0],

there exists a pair (I,J ) that form an n0-partition at scale
p, satisfying

Ent(FIt,Jt′ ) ≥ γ · n0 , ∀It ∈ I, Jt′ ∈ J . (1)

We also define the enhanced SME property similarly to the
above, except that we ask for a pair (I,J ) satisfying Eq. (1)
for all p ∈ [C, n0].

To state the lower bounds for operators with the SME
property, we need some definitions. We let g(i) denote the
i-fold composition of a function g : Z → Z. Suppose g
satisfies 1 ≤ g(n) < n for all n > 1; we then define g∗ :
{1, 2, 3, . . .} → {0, 1, 2, . . .} by

g∗(n) := min{i : g(i)(n) ≤ 1}.

Following conventions in [20], [6], define a family of slowly-
growing functions λd(n) as follows: let

λ1(n) := b
√
nc, λ2(n) := dlog2 ne,

and for d > 2, let

λd(n) := λ∗d−2(n).

(Note that λ3(n) = Θ(ln lnn).)
Applying the technique of Cherukhin [6], Jukna proved:

Theorem 5. [12, Chap. 13] Suppose the operator family
{FN : {0, 1}N → {0, 1}m} has the Strong Multiscale
Entropy property. Then for any constant d ≥ 2, any depth-d
circuit to compute FN has Ωd(N · λd−1(N)) wires.

IV. LIMITATIONS OF THE SME LOWER-BOUND
CRITERION

In this section we introduce an explicit Boolean operator
called the “Dyadic Interval Replication” (DIR) operator, and
use it to show that the Strong Multiscale Entropy property
does not imply wire complexity lower bounds substantially
better than those given by Theorem 5. We prove:

Theorem 6. There is an operator family {DIRN :
{0, 1}N → {0, 1}Ω(N)}, with the enhanced Strong Multi-
scale Entropy property, for which we have:

s2 (DIRN ) = Θ(N3/2) = Θ (N · λ1(n)) ;

s3 (DIRN ) = Θ (N lnN) = Θ (N · λ2(n)) ;

s5 (DIRN ) = O (N ln lnN) = O(N · λ3(n));

For even d = d(N) ≥ 6,

sd (DIRN ) = O (N · λd−2(N)) = O (N · λd−1(N)) ,

and so for constant, even values d ≥ 6,

sd (DIRN ) = Θd (N · λd−1(N)) .



For odd values d = d(N) ≥ 7, we have

sd (DIRN ) ≤ sd−1 (DIRN ) = O(N · λd−2(N)).

The lower bounds come from Theorem 5. In the state-
ments above, we are using the fact that λd(N) =
Θ (λd+1(N)) for even values d = d(N) ≥ 4. We emphasize
that our upper bounds for the specific operator DIRN are
also upper limits on the lower bounds that follow in general
from the SME property.

The hidden constants in the O (·) notation above are inde-
pendent of d. Thus, DIRN is computable by a circuit with
O(N) wires, of depth α(N) + 2, where α(N) := min{d :
λd(N) ≤ 1} is an extremely slowly-growing function. On
the other hand, the lower bounds from Theorem 5 hide a
multiplicative constant that goes to 0 as d → ∞. So there
may be room for some further tightening of the upper or
lower bounds for all values of d.

In Theorem 6, we show that DIRN satisfies not only the
SME property, but also the enhanced SME property. We
do so to clarify that even this stronger property does not
yield significantly better lower bounds than those given by
Theorem 5.

A. The DIR operator

Now we define DIRN and show it has the SME property.
In our work in this section, it will be convenient to index
vectors in {0, 1}n as x = (x0, . . . , xn−1), and regard the
indices as lying in Zn. For a ∈ Zn, define

shift(x; a) := (x−a, x1−a, . . . , x(n−1)−a),

with index arithmetic over Zn. We also use set addition: for
A,B ⊆ Zn, define A+ B := {a+ b : a ∈ A, b ∈ B} (with
addition over Zn). For i ∈ Zn, we write A+ i := A+ {i}.

We consider input lengths N = 2 · 2k + dlog2 ke, for
k ≥ 1. We let n := 2k, and we regard inputs of length N
to have the form

(x, y, r) ∈ {0, 1}n+n+dlog2 ke.

We will consider r as an integer in [0, k − 1].6 Define
the Dyadic Interval Replication operator DIRN (x, y, r) :
{0, 1}N → {0, 1}n by the following rule:

1) If the Hamming weight ||y|| is 6= 1, output z := 0n.
2) Otherwise, let i = i(y) ∈ Zn be the unique index for

which yi = 1. Output the string z given by

zj := shift(x; i · 2r)(j mod 2r). (2)

Let us explain this definition in words. The input vector x
divides naturally into n/2r = 2k−r substrings of length 2r.
The operator DIRN chooses one of these substrings, and
outputs 2k−r consecutive copies of this substring.

6If k is not a power of 2, some values in [0, k− 1] will have more than
one encoding; this technicality doesn’t affect our arguments. Similarly, the
case where k = 1 is trivial to handle.

We can extend the definition to input lengths N ≥ 6 not
of the above form, by considering the input to be padded
with irrelevant bits.

B. Establishing the SME property for DIR

Lemma 7. The family {DIRN} has the enhanced SME
property.

Proof of Lemma 7: The number of irrelevant bits in
the input to DIRN is not more than twice the number of
relevant bits, so for the purposes of our asymptotic analysis,
we may assume that N is of form N = 2 · 2k + dlog2 ke
with k ≥ 1. Let n := 2k, and let n0 := n = Ω(N).

Let p ∈ [4, n] be given. Define collections I,J as follows.
For t ∈ [p], let

It := {0, 1, . . . , bn/pc}+ (t− 1)bn/pc

be the tth consecutive interval of length bn/pc in Zn. For
t′ ∈ [bn/pc], let

Jt′ := {0, 1, . . . , p}+ (t′ − 1)p

be the (t′)th interval of length p in Zn. Note that (I,J ) form
an n0-partition at scale p for the input and output lengths
of DIRN .

Say we are given any t ∈ [p] and t′ ∈ [bn/pc]; we will
show that Ent(DIRIt,Jt′ ) = Ω(n) = Ω(N). First, suppose
that p ∈ [2`, 2`+1), where ` > 0. Then, Jt′ contains an
interval Ĵ of form

Ĵ = {0, . . . , 2`−1 − 1}+ s · 2`−1,

for some s ∈ [0, 2k−`+1). We now fix assignments (y∗, r∗)
to part of the input to DIRIt,Jt′ :

y∗ := 0n, r∗ := `− 1.

Define DIR∗It,Jt′
(x) := DIRIt,Jt′ (x, y

∗, r∗). Using
Fact 2 applied to DIRIt,Jt′ , we have Ent(DIRIt,Jt′ ) ≥
Ent(DIR∗It,Jt′

). So it will be enough to lower-bound
Ent(DIR∗It,Jt′

).
Fix any i ∈ It. Our assignment y∗ := 0n satisfies

||y∗[It; i]|| = 1.

Thus for any x, case 2 holds in the definition of
DIR(x, y∗[It; i], r

∗). Consider any j ∈ Ĵ ; substituting
values into Eq. (2), we find

(DIRN (x, y∗[It; i], r
∗))j =

(
shift(x; i · 2`−1)

)
(j mod 2`−1)

= x(j mod 2`−1)−i2`−1 .

Thus, from the output of DIR∗It,Jt
(x) we can determine xa,

for each a ∈ Ĵ(mod 2`−1) − 2`−1 · It. Here, Ĵ(mod 2`−1) :=

{j′ ∈ [0, 2`−1 − 1] : j′ = j mod 2`−1 for some j ∈ Ĵ}.
We observe that actually Ĵ(mod 2`−1) = [0, 2`−1−1], since Ĵ



is a consecutive interval of length 2`−1. Fact 3 now implies
that

Ent(DIR∗It,Jt′
) ≥

∣∣[0, 2`−1 − 1]− 2`−1 · It
∣∣ .

Recall that It is an interval of length bn/pc. It follows that,
with arithmetic taken over the integers Z, the set [0, 2`−1−
1] − 2`−1 · It is an interval in Z of size 2`−1bn/pc. We
conclude that, over Zn,∣∣[0, 2`−1 − 1]− 2`−1 · It

∣∣ = min{n, 2`−1bn/pc}
≥ min{n, (p/4) · bn/pc} = Ω(n).

This proves Lemma 7.

C. Efficient bounded-depth circuits for DIR

In this subsection, we prove the upper bounds needed to
establish Theorem 6.

First we prove the upper bound for depth 2, namely
s2(DIRN ) = O(N3/2). Our circuit construction will split
into two cases, handled separately as follows: first, if 2r <√
n, the needed substring of x can be copied into

√
n gates

on Level 1 of the circuit, and then copied from this middle
level by the output gates. On the other hand, if 2r ≥

√
n,

then each output bit can depend on at most
√
n possible bits

of x.

Lemma 8. s2(DIRN ) = O(N3/2) = O(N · λ1(N)).

Proof: As before, we may assume N = 2·2k+dlog2 ke,
with n := 2k. For convenience, we will assume further that
k is even, so that

√
n = 2k/2 is an integer.

Recall that, when ||y|| = 1, the output of DIRN (x, y, r)
will consist of 2k−r consecutive copies of a substring of x
of length 2r. We will design two depth-2 circuits C↓, C↑,
each with O

(
N3/2

)
wires. C↓ will compute DIRN under

the promise that 2r <
√
n; C↑ will compute DIRN provided

2r ≥
√
n. It is then easy to combine these two circuits to

get a single circuit computing DIRN under no assumption.
(We apply each of C↓, C↑ to the input, merging their
corresponding output gates. Each output gate is also wired
to the inputs of r, to determine whether it should output the
value of C↓ or of C↑; this takes O(n · log2 k) additional
wires.)

For C↓, the basic idea is that when 2r <
√
n, fewer than√

n bits of x actually “matter” for the output; we can extract
these bits on Level 1 and distribute them to the appropriate
outputs on Level 2. More precisely, we will have

√
n + 1

gates (s, g1, . . . , g√n) on Level 1 of our circuit C↓, each
wired to all of (x, y, r). We set s = 1 iff ||y|| = 1. The
gates g1, . . . , g√n will simply copy the interval of size 2r <√
n in x that must be replicated in the output of DIRN , as

determined by x, r, and i = i(y). (This interval of bits from
x will be padded with

√
n− 2r zeros when copied to Level

1.)
Next, each output bit zt (t ∈ Zn) is wired to all Level 1

gates and to r. We won’t give an explicit rule, but it is clear

that with these inputs, each zt can determine its correct out-
put to compute DIRN (assuming here that 2r <

√
n). The

number of wires in C↓ is O
(
n3/2 + n(

√
n+ log2 k)

)
=

O
(
N3/2

)
, as required.

Now we build C↑. The basic idea here is that, assuming
2r ≥

√
n = 2k/2, each output bit zt depends only on y, r,

and on input bits xt′ for which t − t′ is a multiple of
√
n.

Thus, after “compactifying” the relevant information in y
into
√
n bits on Level 1, each output bit can be computed

from the Level 1 gates, from r, and from
√
n bits of x, using

O
(
n3/2

)
wires in total. Details follow.

Let H(y) = H(y) = (h1, . . . , h2d
√
ne) : Fn

2 → F2d
√
ne

2

be the operator from item 1 of Lemma 1 that is injective
on {e1, . . . , en}. We implement H on Level 1 of our circuit
with O(n) wires, following the construction in Lemma 1.
As in C↓, on Level 1 we also include a single gate s, wired
to r, that outputs 1 iff ||y|| = 1. Thus the total number of
wires between inputs and Level 1 is O(n), and there are√
n+ 1 gates at Level 1.

Next, each output bit zt (t ∈ Zn) is wired to
all Level 1 gates, to all of r, and to the input bits
(xt, xt+

√
n, xt+2

√
n, . . . , xt+(

√
n−1)

√
n). Thus our circuit is

of depth 2, and the total number of wires to the outputs is
n · ((

√
n+ 1) + dlog2 ke+

√
n) = O(n3/2).

Rather than specifying the output rule for zt precisely, we
argue that this gate has all the information it needs to output
(DIRN (x, y, r))t correctly (assuming 2r ≥

√
n). First, if

||y|| 6= 1, then zt can learn this and output 0 by looking
at s. Otherwise, zt knows that ||y|| = 1. In this case, zt
must output the bit shift(x; i · 2r)(tmod 2r) = x(tmod 2r)−i2r

(here the outer index arithmetic is over Zn). This desired
bit lies among (xt, xt+2r , . . . , xt+(2k−r−1)2r ), and these are
contained in the inputs to zt since 2r is a multiple of

√
n.

Finally, the value i = i(y) can be determined from H(y),
because H(y) determines y when ||y|| = 1. Thus zt can
output the correct value.

Next, we will develop tools for building more-efficient
circuits of higher depths. For depth 3, we will show
s3(DIRN ) = O(N lnN). The plan for depth 3 is fairly sim-
ple: First, from an input (x, y, r) satisfying ||y|| = 1, we can
extract the index i = i(y) and the value p := (i·2r modn) in
depth 1, with n log2 n wires. Then we show that there is a
circuit to compute the appropriate output given (x, i, r, p)
using O(N) wires in depth 2, under the promise that r
equals some fixed value a ∈ [0, k − 1]. As there are only
log2 n possible values of r, we can combine these circuits
(merging their output gates) into a single circuit of total
depth 3 and with O(N lnN) wires overall.

To build our circuits for depths 3 and higher, it is useful
to introduce some auxiliary operators, which are “easier”
versions of DIRN . The first such operator further restricts
the “admissible” values of r to some interval [a, b] ⊆ [0, k−



1]. Define DIR
[a,b]
N : {0, 1}2n+dlog2 ke by

DIR
[a,b]
N (x, y, r) :=

{
DIRN (x, y, r) if r ∈ [a, b],
0n otherwise.

The second simplified operator makes the values i and
p := (i · 2r modn) available in binary. Define DIR

bin,[a,b]
N :

{0, 1}n+k+dlog2 ke+k by

DIR
bin,[a,b]
N (x, i, r, p) :=


DIR

[a,b]
N (x, ei, r)

if p = i · 2r modn,
0n otherwise.

We are abusing notation slightly, since the input size to
DIR

bin,[a,b]
N is actually smaller than N = 2n+ dlog2 ke.

The next useful lemma handles a fixed value r = a.

Lemma 9. For any a ∈ [0, k− 1], there is a depth-2 circuit
Ca, using O(n) wires, that computes DIR

bin,[a,a]
N .

Proof: Let a be fixed. We include a single gate s on
Level 1 that outputs 1 iff all of the following hold:

1) ||y|| = 1;
2) p = i · 2r modn;
3) r = a.

Also on Level 1 of the circuit Ca, we define gates x′t,
for t ∈ {0, 1, . . . , 2a − 1}. Each such gate is wired to
the (k − a) most significant bits of p, and to the inputs
(xt, xt+2a , . . . , xt+(2k−a−1)2a). Let p̃ := p− (pmod 2a) be
the value obtained by assuming that the unseen bits of p are
zero. We then set x′t := xt−p̃. Note, the needed bit of x falls
within the inputs to x′t. There are 2a ·

(
2k−a + (k − a)

)
=

O(2k) = O(n) incoming wires to x′.
Finally, given an output gate zj of Ca with j ∈ Zn, we

set zj := x′(j mod 2a) ∧ s, so that the output gates have 2n
incoming wires in total, and the entire circuit Ca is depth-2
and contains O(n) wires.

We claim that Ca has the desired behavior. To see this,
fix any j ∈ Zn. First, if s = 0 then zj = 0 as needed.
Next assume that s = 1, so that DIR

bin,[a,a]
N (x, i, r, p) =

DIRN (x, ei, a). We compute

zj = x′(j mod 2a) ∧ 1

= x(j mod 2a)−p̃

= x(j mod 2a)−i2a

(since s = 1 implies p̃ = p = i · 2a modn)
= (shift(x; i · 2a))(j mod 2a),

as needed. This proves the correctness of Ca.

Lemma 10. For any 0 ≤ b < k, s2(DIR
bin,[0,b]
N ) =

O (N lnN). Also, s3(DIRN ) = O (N lnN) = O(N ·
λ2(N)).

Proof: Again assume that N = 2 · 2k + dlog2 ke,
with n := 2k. First we show s2(DIR

bin,[0,k−1]
N ) =

O (N lnN). Let (x, i, r, p) be the inputs. We apply the
circuits C0, C1, . . . , Cb from Lemma 9 to (x, i, r, p). Each
such circuit Ca has n outputs, call them z0,a, . . . , zn−1,a.
For t ∈ Zn, we “merge” zt,0, . . . , zt,b into the single output
gate zt (which takes all the inputs of zt,0, . . . , zt,b as its
inputs). This gate is also wired to the input r, and it outputs
zt := zt,r.

Let C denote the circuit we have constructed. That C
computes DIR

bin,[0,b]
N is immediate. C is of depth 2 since

each Ca is of depth 2, and C has O(N) · (b + 1) + n ·
dlog2 ke = O(N lnN) wires, since each Ca has O(N)
wires and b < k = log2 n.

Next we show s3(DIRN ) = O (N lnN). In our circuit C ′

for DIRN , we will assume that the input satisfies ||y|| = 1.
As usual, it is easy to modify this circuit to handle the case
where ||y|| 6= 1.

On Level 1 of our circuit, we compute i = i(y) and
p := i ·2r modn. This takes O(n lnn) wires since i, p are k
bits each. Next, we set b := k− 1 and apply our previously
constructed circuit C for DIR

bin,[0,k−1]
N to (x, i, r, p). By

definition, the resulting output is DIRN (x, y, r). Our con-
struction of C ′ is of depth 1+2 = 3 and contains O(N lnN)
wires.

To work with depths larger than 3, we will give a
technique that allows us to “shrink” the size of an instance
of the Dyadic Interval Replication problem, discarding most
of the irrelevant bits of x, when the value r is not too large.
The next lemma collects two variants of this process.

Lemma 11. Let N = 2·2k+dlog2 ke. Let 0 ≤ a ≤ b ≤ k−1
be given, and let d = d(N) ≥ 1. Let N ′ := 2 · 2b−a+1 +
dlog2(b− a+ 1)e.

1) There is a depth-(d + 2) circuit C that computes
DIR

bin,[a,b]
N ; the number of wires in C is

2a+1 · sd
(

DIR
bin,[0,b−a]
N ′

)
+O (N) .

2) There is a depth-(d + 3) circuit C ′ that computes
DIR

[a,b]
N , and has sd

(
DIR

bin,[a,b]
N ′

)
+ O (N(k − b))

wires.

In each case the O(·) is independent of a, b, d.

Proof: (1.) We split into two cases according to whether
the input p satisfies p = 0 mod 2b+1, designing a different
depth-(d + 2) circuit for each case. In each case we give
a circuit with 2a · sd

(
DIR

bin,[0,b−a]
N ′

)
+O (N) wires. It is

then easy to combine the two circuits using O(N) additional
wires. We assume in the following construction that p 6=
0 mod 2b+1, and then sketch the other (quite similar) case.

On Level 1 of C, we include gates x′ =
(x′0, . . . , x

′
2b+1−1), where x′t is wired to (xt, xt+2b+1 , . . . ,

xt+(2k−b−1−1)2b+1), and also to the k−b−1 most significant
bits of p, that is, to pb+1, . . . , pk−1. We set



x′t := xt−p̃−2b+1 , where
p̃ :=

∑k−1
`=b+1 p`2

` = p− (pmod 2b+1).

xt−p̃−2b+1 lies among the inputs to x′t as needed. Com-
puting x′ uses 2b+1 · (2k−b−1 + (k − b − 1)) = O(N)
wires. Also on Level 1 of C, we include a gate s, wired
to (i, r, p). We set s := 1 iff the following conditions hold:
(1) p = i · 2r modn; (2) r ∈ [a, b]. Computing s requires
o(N) wires. Define the quantities i′ := imod 2b−a+1,
r′ := min{r − a, b − a}, p′ := i′ · r′mod 2b−a+1, and
note that (i′, r′, p′) can all be determined from (i, r, p). On
Level 1 of C we also include gates computing (i′, r′, p′);
this takes O(ln2N) = o(N) wires. For u ∈ [0, 2a − 1],
define x′(u) = (x′(u)0, . . . , x

′(u)2b−a+1−1) by letting

x′(u)` := x′`·2a+u.

Here we are just introducing new notation that “divides up”
x′ into the subsequences x′(0), . . . , x′(2a − 1).

Next, on Levels 2 through (d + 1) of C, for each
u ∈ [0, 2a − 1] we place a copy of an optimal (wire-
minimizing) depth-d circuit computing DIR

bin,[0,b−a]
N ′ , to

which we provide the values (x′(u), i′, r′, p′) as inputs.
Let z′(u) = (z′(u)0, z

′(u)1, . . . , z
′(u)2b−a+1−1) denote the

output gates of this circuit.
Finally, for t ∈ Zn, we may uniquely write t = ` ·2a +u,

for some ` ∈ [0, 2k−a − 1] and u ∈ [0, 2a − 1]. Then the
output gate zt is defined by

zt := z′(u)`mod 2b−a+1 ∧ s.

The total number of wires in our circuit C is O(N) + 2a ·
sd(DIR

bin,[0,b−a]
N ′ ), and the depth of C is (d+2) as required.

Next we prove correctness. First, if s = 0 then C outputs
0n as needed, so assume s = 1 (which implies r′ = r− a).
Fix t ∈ Zn=2k , and write t = ` · 2a + u with `, u as above.
We have

zt = z′(u)`mod 2b−a+1 ∧ s
= shift(x′(u); i′ · 2r

′
)(`mod 2r′ )

(using that 2r
′

divides 2b−a+1)
= x′

([(`mod 2r′ )−i′2r′ ] mod 2b−a+1)·2a+u

= x′
([(`mod 2r′ )−i2r′ ] mod 2b−a+1)·2a+u

= x′((`·2a mod 2r)−i2r) mod 2b+1+u

(using (cmodm) · w = cwmod(mw))
= x′2b+1+(`·2a mod 2r)−(i2r mod 2b+1)+u

(since p, a multiple of 2r, is 6= 0 mod 2b+1, and s = 1)
= x[2b+1+((`·2a+u) mod 2r)−(i2r mod 2b+1)]−p̃−2b+1

= x(tmod 2r)−(p̃+(pmod 2b+1))

= x(tmod 2r)−p,

as needed. Finally, the case p = 0 mod 2b+1 is handled
identically except that we let x′t := xt−p̃. The analysis is
very similar.

(2.) The proof is similar to part 1, but also uses the
mapping H from Lemma 1; see the full version.

Lemma 12. s5(DIRN ) = O(N ln lnN) = O(N · λ3(N)).

Proof: The idea is that we will handle the case when
2r ≤ n/ log2 n by “shrinking” the input with Lemma 11,
then applying our depth-2 construction from Lemma 10. We
can handle the case 2r > n/ log2 n by a more straightfor-
ward approach since there are only ≈ log2 log2 n possible
values of r in this range.

For any choice of b < k, it follows from the definition of
DIRN that we can write

(DIRN )j = (DIR
[0,b]
N )j ∨

∨
b<a<k

(DIR
[a,a]
N )j , ∀j ∈ Zn.

(3)
Set b as the largest value for which 2b ≤ n/ log2 n. By

part 2 of Lemma 11 with a := 0, DIR
[0,b]
N can be computed

in depth 5 = 2 + 3 with s2

(
DIR

bin,[0,b]
N ′

)
+ O(N(k − b))

wires, where N ′ = 2 · 2b+1 + dlog2(b+ 1)e. By Lemma 10,
s2

(
DIR

bin,[0,b]
N ′

)
= O(N ′ lnN ′) = O(2b+1(b + 1)) =

O((n/ log2 n) · log2 n) = O(n). Also, k− b ≤ log2 log2 n+

O(1). Thus the total cost to compute DIR
[0,b]
N in depth 5 is

O(N ln lnN).
To compute each of DIR

[b+1,b+1]
N , . . . ,DIR

[k−1,k−1]
N , we

first obtain binary representations of the values i = i(y), p =
i ·2r, in depth 2 and O(n) wires, using the mapping H from
Lemma 1. (See the proof of Lemma 14 for details of this
process. As usual, we can handle the case ||y|| 6= 1 sepa-
rately.) Then we use the depth-2 circuits Ca from Lemma 9
to compute DIR

bin,[a,a]
N (x, i, r, p) for a = {b+1, . . . , k−1},

which give the outputs of DIR
[b+1,b+1]
N , . . . ,DIR

[k−1,k−1]
N

we need. Each Ca has O(n) wires, so the total cost of com-
puting DIR

[b+1,b+1]
N , . . . ,DIR

[k−1,k−1]
N is O(n(k − b)) =

O(n ln lnn).
At Level 5 of our circuit, we combine the outputs of all

of our subcircuits: we “merge” the gates giving the val-
ues (DIR

[0,b]
N )j , (DIR

[b+1,b+1]
N )j , . . . , (DIR

[k−1,k−1]
N )j into

a single output gate zj computing the OR of these values.
By Eq. (3), this circuit computes DIRN ; it is of depth 5 and
contains O(N ln lnN) wires. This proves the Lemma.

The next lemma, our key algorithmic tool for depths
d > 5, gives an inductive construction of ever-more-efficient
circuits for DIR

bin,[0,k−1]
N at the cost of increasing the circuit

depth.

Lemma 13. For even values d = d(N) ≥ 2, we have
sd(DIR

bin,[0,k−1]
N ) = O (N · λd(N)). The O(·) is indepen-

dent of d.

Proof: Let C > 0 be chosen larger than the implicit
constants in the O(·)-notation used in all of our previous
results, when the bounds are, for convenience, re-expressed
in terms of the parameter n = Θ(N); in each case the bound



was independent of d. We claim, and prove by induction on
even d ≥ 2, that sd(DIR

bin,[0,k−1]
N ) < 40Cn · λd(n). We

may assume in what follows that k > 20, setting C large
enough that the claim is trivially true for k ≤ 20.

For d = 2, Lemma 10 gives s2(DIR
bin,[0,k−1]
N ) < Cn ·

λ2(n), as needed. Now let d ≥ 4 be even, and consider the
statement proved for d′ = d− 2. First, if λd−2(n) = 1, the
result is trivial; so assume from now on that λd−2(n) ≥
2. Define a nondecreasing integer sequence a1, a2, . . . , aT ,
where

at := blog2(n/λ
(t)
d−2(n))− 20c

(recalling that g(t) denotes the t-fold composition of g). We
let T := min{t : λ

(t)
d−2(n) = 1}; thus T = λ∗d−2(n) =

λd(n) by the definitions. It is immediate that λd−2(m) ≥ 1

whenever m > 1, so in fact λ(T )
d−2(n) = 1 and all the at’s

are well-defined, with aT = k − 20. Also, T > 1 by our
assumption λd−2(n) ≥ 2.

Let t∗ := min{t ∈ [T ] : at > 0}. As aT = k − 20, we
can express the interval [0, k − 1] as [0, k − 1] = [0, at∗ ] ∪
[at∗ , at∗+1]∪. . .∪[aT−1, aT ]∪[k−19, k−1], and for j ∈ Zn

we can write

(DIR
bin,[0,k−1]
N )j = (DIR

bin,[0,at∗ ]
N )j∨

(DIR
bin,[k−19,k−1]
N )j ∨

T∨
t=t∗+1

(DIR
bin,[at−1,at]
N )j . (4)

By the same technique used in Lemma 12,
one can combine depth-d circuits for
DIR

bin,[0,a1]
N ,DIR

bin,[a1,a2]
N , . . . ,DIR

bin,[aT−1,aT ]
N , and

DIR
bin,[k−19,k−1]
N to get a depth-d circuit for DIR

bin,[0,k−1]
N .

Let Ñ := 2 · 2at∗+1 + dlog2(at∗ + 1)e. Applying
Lemma 11, part 1, we find that

sd(DIR
bin,[0,at∗ ]
N ) ≤ sd−2(DIR

bin,[0,at∗ ]

Ñ
) + Cn.

If t∗ = 1, then 2at∗+1 ≤ 2−19 · (n/λd−2(n)), and, using the
inductive hypothesis,

sd−2(DIR
bin,[0,at∗ ]

Ñ
) ≤ .01C · (n/λd−2(n)) · λd−2(n),

so that sd(DIR
bin,[0,at∗ ]
N ) < 1.01Cn. If t∗ > 1, then

2at∗+1 ≤ 2at∗−at∗−1 ≤ [2 · λ(t∗−1)
d−2 (n)/λ

(t∗)
d−2(n)], and

sd−2(DIR
bin,[0,at∗ ]

Ñ
) ≤ 40C · [2 · λ(t∗−1)

d−2 (n)/λ
(t∗)
d−2(n)] ·

2λd−2(λ
(t∗−1)
d−2 (n)) ≤ 160Cλ

(t∗−1)
d−2 (n) < Cn (here using

k > 20), so that sd(DIR
bin,[0,at∗ ]
N ) ≤ 2Cn in this case.

Now consider t ∈ [t∗ + 1, T ]. By Lemma 11, part 1, we
have

sd(DIR
bin,[at−1,at]
N ) ≤ 2at−1 ·sd−2(DIR

bin,[0,at−at−1]
Nt

)+Cn,

where Nt := 2 · 2at−at−1+1 + blog2(a1 − at−1 + 1)c. Now
2at−at−1+1 ≤ [4 · λ(t−1)

d−2 (n)/λ
(t)
d−2(n)], so, using the induc-

tive hypothesis, sd−2(DIR
bin,[0,at−at−1]
Nt

) is at most 40C ·[4·

λ
(t−1)
d−2 (n)/λ

(t)
d−2(n)] · (4λd−2(λ

(t−1)
d−2 (n)) = 640Cλ

(t−1)
d−2 (n).

Thus, sd(DIR
bin,[at−1,at]
N ) is at most

2at−1C · (640λ
(t−1)
d−2 (n)) + Cn < 1.01Cn,

using the definition of at−1.
Finally, DIR

bin,[k−19,k−1]
N can be computed with 19Cn

wires, using 19 applications of Lemma 9. Combining
our cases and applying them to Eq. (4), we find that
sd(DIR

bin,[0,k−1]
N ) is less than 19Cn+2Cn+T ·(1.01Cn) <

40Cn · λd(n), since T = λd(n). This extends the induction
to d, completing the proof.

Lemma 14. For even d ≥ 6, we have sd (DIRN ) =
O (N · λd−2(N)); the O(·) is independent of d.

Proof: As usual, we may assume the input satisfies
||y|| = 1 (handling the case ||y|| 6= 1 separately with O(N)
additional wires).

On Level 1 of our circuit C for DIRN (x, y, r), we
compute H(y), where H is the mapping defined within
Lemma 1; H is injective on {e1, . . . , en} and computable
in 2n wires. On Level 2, we use (H(y), r) to compute
i = i(y) and p := i·2r modn; this takes O(

√
n lnn) = o(n)

wires. Finally, we apply an optimal depth-(d − 2) circuit
for DIR

bin,[0,k−1]
N to the input (x, i, r, p). This yields the

desired output. The number of wires in our circuit is
sd−2(DIR

bin,[0,k−1]
N ) + O(N), and by Lemma 13 this is

O(N · λd−2(N)).
By collecting the upper bounds for DIRN in Lem-

mas 8, 10, 12 and 14, along with the lower bounds we get
from Theorem 5 and Lemma 7, we have proved Theorem 6.

ACKNOWLEDGMENT

I am grateful to Stasys Jukna for many helpful comments.

REFERENCES

[1] Noga Alon, Mauricio Karchmer, and Avi Wigderson. Linear
circuits over GF(2). SIAM J. Comput., 19(6):1064–1067,
1990.

[2] Noga Alon and Pavel Pudlák. Superconcentrators of depths
2 and 3; odd levels help (rarely). J. Comput. Syst. Sci.,
48(1):194–202, 1994.

[3] Siegfried Bublitz. Decomposition of graphs and monotone
formula size of homogeneous functions. Acta Informatica,
23(6):689–696, 1986.

[4] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton.
Lower bounds for constant depth circuits for prefix problems.
In 10th ICALP, pages 109–117, 1983.

[5] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton.
Unbounded fan-in circuits and associative functions. J.
Comput. Syst. Sci., 30(2):222–234, 1985.

[6] Dmitriy Yu. Cherukhin. Lower bounds for Boolean circuits
with finite depth and arbitrary gates. Electronic Colloquium
on Computational Complexity (ECCC), TR08-032, 2008.



[7] Dmitriy Yu. Cherukhin. Lower bounds for depth-2 and depth-
3 Boolean circuits with arbitrary gates. In 3rd CSR, pages
122–133, 2008.

[8] Danny Dolev, Cynthia Dwork, Nicholas Pippenger, and Avi
Wigderson. Superconcentrators, generalizers and generalized
connectors with limited depth (preliminary version). In 15th
ACM STOC, pages 42–51, 1983.

[9] Anna Gál, Kristoffer Arnsfelt Hansen, Michal Koucký, Pavel
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