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Abstract Tropical circuits are circuits with Min and Plus, or Max and Plus
operations as gates. Their importance stems from their intimate relation to dynamic
programming algorithms. The power of tropical circuits lies somewhere between
that of monotone boolean circuits and monotone arithmetic circuits. In this paper we
present some lower bounds arguments for tropical circuits, and hence, for dynamic
programs.
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Lower bounds

1 Introduction

Understanding the power and limitations of fundamental algorithmic paradigms—
such as greedy or dynamic programming—is one of the basic questions in the
algorithm design and in the whole theory of computational complexity. In this paper
we focus on the dynamic programming paradigm.

Our starting point is a simple observation that many dynamic programming algo-
rithms for optimization problems are just recursively constructed circuits over the
corresponding semirings. Each such circuit computes, in a natural way, some polyno-
mial over the underlying semiring. Most of known dynamic programming algorithms
correspond to circuits over the (min,+) or (max,+) semirings, that is, to tropical
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circuits.1 Thus, lower bounds for tropical circuits show the limitations of dynamic
programming algorithms over the corresponding semirings.

The power of tropical circuits (and hence, of dynamic programming) lies some-
where between that of monotone boolean circuits and monotone arithmetic circuits:

monotone boolean � tropical � monotone arithmetic

and the gaps may be even exponential (we will show this in Section 7).
Monotone boolean circuits are most powerful among these three models and, for

a long time, only linear lower bounds were known for such circuits. First super-
polynomial lower bounds for the k-clique function CLIQUE and the perfect matching
function PER were proved by Razborov [36, 37] by inventing his method of approxi-
mations. At almost about the same time, explicit exponential lower bounds were also
proved by Andreev [3, 4]. Alon and Boppana [1] improved Razborov’s lower bound
for CLIQUE from super-polynomial until exponential. Finally, Jukna [17] gave a
general and easy to apply lower bounds criterium for monotone boolean and real-
valued circuits, yielding strong lower bounds for a row of explicit boolean functions.
These lower bounds hold for tropical circuits as well.

On the other hand, monotone arithmetic circuits are much easier to analyze: such
a circuit cannot produce anything else but the monomials of the computed polyno-
mial, no “simplifications” (as x2 = x or x + xy = x) are allowed here. Exponential
lower bounds on the monotone arithmetic circuit complexity were proved already by
Schnorr [38] (for CLIQUE), and Jerrum and Snir [15] (for PER and some other poly-
nomials). A comprehensive survey on arithmetic (not necessarily monotone) circuits
can be found in the book by Shpilka and Yehudayoff [41].

In this paper we summarize our knowledge about the power of tropical circuits.
As far as we know, no similar attempt was undertaken in this direction after the clas-
sical paper by Jerrum and Snir [15]. The main message of the paper is that not only
methods developed for monotone boolean circuits, but (sometimes) even those for a
much weaker model of monotone arithmetic circuits can be used to establish limita-
tions of dynamic programming. Although organized as a survey, the paper contains
some new results, including:

1. A short and direct proof that tropical circuits for optimization problems with
homogeneous target polynomials are not more powerful than monotone arith-
metic circuits (Theorem 9). This explains why we do not have efficient dynamic
programming algorithms for optimization problems whose target sums all have
the same length.

2. A new and simple proof of Schnorr’s [38] lower bound on the size of monotone
arithmetic circuits computing so-called “separated” polynomials (Theorem 17).
A polynomial f is separated if the product of any two of its monomials contains
no third monomial of f distinct from these two ones.

1There is nothing special about the term “tropical”. Simply, this term is used in honor of Imre Simon who
lived in Sao Paulo (south tropic). Tropical algebra and tropical geometry are now intensively studied topics
in mathematics.
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3. A new and simpler proof of Gashkov and Sergeev’s [10, 12] lower bound
on the size of monotone arithmetic circuits computing so-called “k-free”
polynomials (Theorem 24). A polynomial is k-free if it does not con-
tain a product of two polynomials, both with more than k monomials.
This extend’s Schnorr’s bound, since every separated polynomial is also
1-free.

4. An easy to apply “rectangle” lower bound (Lemma 29).
5. A truly exponential lower bound for monotone arithmetic circuits using expander

graphs (Theorem 34).

2 Semirings and Polynomials

In this section, we introduce the (fairly standard) algebraic terminology we shall
subsequently use.

A (commutative) semiring is a system S = (S,+, ∗, 0, 1), where S is a set, +
(“sum”) and ∗ (“product”) are binary operations on S, and 0 and 1 are elements of S
having the following two properties:

(i) in both (S,+, 0) and (S, ∗, 1), operation are associative and commuta-
tive with identities 0 and 1: a + 0 = a and a ∗ 1 = a hold for all
a ∈ S;

(ii) product distributes over sum: a ∗ (b + c) = (a ∗ b)+ (a ∗ c).
Some authors also add the “annihilation axiom” a ∗ 0 = 0 for all a ∈ S; we will
not require it to hold. A semiring is additively idempotent if a + a = a holds for all
a ∈ S, and is multiplicatively idempotent if a ∗ a = a holds for all a ∈ S. We will
use the common conventions to save parenthesis by writing a ∗ b + c ∗ d instead of
(a ∗ b)+ (a ∗ c), and replacing a ∗ b by ab. Also, an will stand for a ∗ a ∗ · · · ∗ a n-
times.

In this paper, we will be interested in the following semirings:

– Arithmetic semiring A = (N,+, ·, 0, 1).
– Boolean semiring B = ({0, 1},∨,∧, 0, 1).
– Min semirings Min = (N,min,+,∞, 0) and Min− = (Z,min,+,∞, 0).
– Max semirings Max = (N,max,+, 0, 0) and Max∗ = (N,max,+,−∞, 0).
– Min and Max semirings are called tropical semirings.

Note that all these semirings, but Max, satisfy the annihilation axiom, all but A, are
additively idempotent, and none of them, but B, is multiplicatively idempotent. Note
also that the only difference of Max∗ from Max is that Max∗ contains one additional
“annihilating” element −∞ satisfying max{−∞, a} = a and −∞ + a = −∞ for
all a ∈ N. The difference of Min− from Min is that Min− also contains negative
integers.

In arithmetic and in tropical semirings one usually allows rational or even real
numbers, not just integers. This corresponds to considering optimization problems
with real, not necessarily integral “weights”. The point, however, is that lower-bound
techniques, we will consider below, work already on smaller domains: it will be
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enough that Min contains {0, 1,+∞}, Min− contains {−1, 0,+∞}, Max contains
{0, 1}, and Max∗ contains {0, 1,−∞}.

Due to their intimate relation to discrete optimization, we will be mainly inter-
ested in tropical semirings, and circuits over these semirings. Lower bounds for
such circuits give lower bounds for the number of subproblems used by dynamic
programming algorithm.

Let S = (S,+, ∗, 0, 1) be a semiring, and let x1, . . . , xn be variables
ranging over S. A monomial is any product of these variables, where repeti-
tions are allowed. By commutativity and associativity, we can sort the products
and write monomials in the usual notation, with the variables raised to expo-
nents. Thus, every monomial xa1

1 x
a2
2 · · · xann is uniquely determined by the vector

of exponents (a1, . . . , an) ∈ N
n, where x0

i = 1. (Note that in tropical semir-
ings, monomials are linear combinations a1x1 + a2x2 + · · · + anxn, that is, sums,
not products.) The degree, |p|, of a monomial is the sum |p| = a1 + · · · + an
of its exponents. A monomial p is multilinear if every exponent ai is either 0 or
1. A monomial p = x

a1
1 · · · xann contains a monomial q = x

b1
1 · · · xbnn (or q is

a factor of p) if ai � bi for all i = 1, . . . , n, that is, if p = qq ′ for some
monomial q ′.

By a polynomial2 we will mean a finite sum of monomials, where repetitions
of monomials are allowed. That is, we only consider polynomials with nonnegative
integer coefficients. A polynomial is homogeneous if all its monomials have the same
degree, and is multilinear if all its monomials are multilinear (no variables of degree
> 1). For example, f = x2y+xyz is homogeneous but not multilinear, whereas g =
x+yz is multilinear but not homogeneous. The sum and product of two polynomials
is defined in the standard way. For polynomials f, h and a monomial p, we will write:

– f = h if f and h have the same monomials appearing not necessarily with the
same coefficients;

– f � h if f and h have the same monomials appearing with the same
coefficients;

– f ⊆ h if every monomial of f is also a monomial of h;
– p ∈ f if p is a monomial of f ;
– |f | to denote the number of distinct monomials in f ;
– Xp to denote the set of variables appearing in p with non-zero degree;

Every polynomial f (x1, . . . , xn) defines a function f̂ : Sn → S, whose
value f̂ (s1, . . . , sn) is obtained by substituting elements si ∈ S for xi in f .
Polynomials f and g are equivalent (or represent the same function) over a given
semiring, if f̂ (s) = ĥ(s) holds for all s ∈ Sn. It is important to note that the same

2Usually, polynomials of more than one variable are called multivariate, but we will omit this for shortness.
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polynomial f (x) �
∑

I∈I cI
∏

i∈I x
ai
i represents different functions over different

semirings:

f̂ (x) =
∑

I∈I
cI

∏

i∈I
x
ai
i over A (counting)

f̂ (x) =
∨

I∈I

∧

i∈I
xiover B (existence)

f̂ (x) = min
I∈I

∑

i∈I
aixiover Min and Min− (minimization)

f̂ (x) = max
I∈I

∑

i∈I
aixiover Max and Max∗ (maximization)

f̂ (x) = max
I∈I

min
i∈I xiover B∗ = (N ∪ {+∞},max,min, 0,+∞) (bottleneck)

Note that, due to their additive idempotence, in the boolean semiring, bottleneck
semiring as well as in all four tropical semirings, the coefficients cI (repetitions of
monomials) do not influence the computed value f̂ (x), and we can assume that cI =
1 for all I ∈ I ; this is because, say, min{x, x, y} = min{x, y}. The degrees, however,
are important: say, min{2x, y} �= min{x, y}. In boolean and bottleneck semirings,
neither coefficients nor degrees are important.

3 Circuits and their Polynomials

A circuit F over a semiring S = (S,+, ∗, 0, 1) is a usual fanin-2 circuit whose inputs
are variables x1, . . . , xn and constants 0 and 1. Gates are fanin-2 + and ∗. That is, we
have a directed acyclic graph with n+2 fanin-0 nodes labeled by x1, . . . , xn, 0, 1. At
every other node, the sum (+) or the product (∗) of its entering nodes is computed;
nodes with assigned operations are called gates. The size of F, denoted by Size(F), is
the number of gates in F. The depth is the largest number of edges in a path from an
input gate to an output gate.

Like polynomials, circuits are also syntactic objects. So, we can associate with
every circuit F the unique polynomial F produced by F inductively as follows:3

– If F = xi , then F � xi .
– If F = G+H , then F �

∑
p∈G p + ∑

q∈H q .
– If F = G ∗H , then F �

∑
p∈G

∑
q∈H pq .

When producing the polynomial F from a circuit F we only use the generic semir-
ing axioms (i)–(iii) to write the result as a polynomial (sum of monomials). For
example, if F = x ∗ (1 + y) then F = x + xy, even though F̂ = x in B and Min,
and F̂ = xy in Max. It is thus important to note that the produced by a given circuit
F polynomial F is the same over any semiring!

3We will always denote circuits as upright letters F,G,H, . . ., and their produced polynomials by italic
versions F,G,H, . . ..
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A circuit is homogeneous, if polynomials produced at its gates are homogeneous.
It is easy to see that a circuit is homogeneous if and only if the polynomial pro-
duced by it is homogeneous. A circuit is multilinear, if for every its product gate
u = v ∗ w, the sets of variables of the polynomials produced at gates v and w are
disjoint. Sometimes, multilinear (in our sense) circuits are called also syntactically
multilinear.

Definition 1 A circuit F computes a polynomial f if F̂ = f̂ (F and f coincide
as functions). A circuit F produces f if F = f (F and f have the same set of
monomials).

We will be interested in the following two complexity measures of polynomials f ,
where the third measure is only for multilinear polynomials:

– S(f ) = minimum size of a circuit over semiring S computing f .
– S[f ] = minimum size of a circuit over semiring S producing f .
– Slin(f ) = minimum size of a multilinear circuit over semiring S computing f .

What we are really interested in is the first measure S(f ). The second measure S[f ]
is less interesting: it is the same for all semirings S, because the formal polynomial
of a given (fixed) circuit is the same over all semirings. In particular, we have that
S[f ] = A[f ] holds for every semiring S and every polynomial f .

To illustrate the lower-bounds arguments, we will use the following popular poly-
nomials. Variables xe of considered polynomials correspond to edges e of a complete
undirected n-vertex graph Kn, a complete bipartite n × n graph Kn,n. Thus, mono-
mials

∏
e∈E xe correspond to some subgraphs E of Kn or Kn,n. Here are some of the

polynomials we will use later:

1. Permanent polynomial PERn = all perfect matchings in Kn,n.
2. Hamiltonian cycle polynomial HCn = all Hamiltonian cycles in Kn.
3. k-clique polynomial CLIQUEn,k = all k-cliques in Kn.
4. Spanning tree polynomial STn = all spanning trees in Kn rooted in node 1.
5. st-connectivity polynomial STCONn = all paths from s = 1 to t = n in Kn.
6. st-walk polynomial WALKn = all walks from s = 1 to t = n of length at most

n− 1 in Kn.
7. All-pairs connectivity “polynomial” APSPn = set of

(
n
2

)
polynomials STCONn

corresponding to different pairs of start and target nodes s and t .
8. Matrix product polynomial MPn = special case of APSPn when only paths of

length-2 are considered.
9. The connectivity polynomial CONNn = product of all polynomials of APSPn.

In Section 11 we will show that the first four polynomials require Min-circuits of
exponential size, whereas the next result shows that the last five polynomials all have
Min-circuits of polynomial size. This result—proved independently by Moore [30],
Floyd [7], and Warshall [45]—holds for every semiring with the absorption axiom
a + ab = a, including the boolean and Min semirings.
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Theorem 2 ([7, 30, 45]) Over semirings Min and B, the polynomials of APSPn can
all be simultaneously computed by a circuit of size O(n3).

Proof Inputs for APSPn over the Min semiring are non-negative weights xij of the
edges of Kn. For every pair i < j of distinct nodes of Kn, the goal is to com-
pute the weight of the lightest path between i and j ; the weight of a path is the
sum of weights of its edges. The idea is to recursively compute the polynomials
f
[k]
i,j for k = 0, 1, . . . , n, whose value is the weight of the lightest walk between

i and j whose all inner nodes lie in [k] = {1, . . . , k}. Then f
[0]
i,j = xij , and the

recursion is: f [k]
i,j = min

{
f
[k−1]
i,j , f

[k−1]
i,k + f

[k−1]
k,j

}
. The output gates are f

[n]
i,j for

all i < j . The total number of gates is O(n3). Even though the circuit actually
searches for weights of lightest walks, it correctly computes APSP because every
walk between two nodes i and j also contains a simple path (with no repeated
nodes) between these nodes. Since the weights are non-negative, the minimum must
be achieved on a simple path. If we replace min-gates by OR-gates, and sum-gates
by AND-gates, then the resulting circuit will compute APSPn over the boolean
semiring B.

Remark 1 Theorem 2 immediately implies that the polynomials MPn, CONNn, and
STCONn can also be computed by Min-circuits of size O(n3). Moreover, over the
boolean semiring, the spanning tree polynomial ST represents the same boolean
function as CONN. Thus, Theorem 2 also gives B(STn) = O(n3).

A dynamic programming algorithm of Bellman [6] and Ford [9] implies that the
st-walk polynomial WALKn can even be produced by a small circuit.

Theorem 3 ([6, 9]) If f = WALKn, then A[f ] = O(n3).

Proof Let f [k]
j be a polynomial whose monomials correspond to all walks from

1 to j of length at most k. Hence, f
[1]
j = x1j for all j > 1, and f

[n−1]
n =

WALKn. The polynomial f [k]
j is the sum of the polynomial f [k−1]

j and all polyno-

mials xi,j · f [k−1]
i over all nodes i �= j . The resulting circuit has O(n3) fanin-2

gates.

Over boolean and Min semirings, the polynomials WALK and STCON compute
the same function. But a relatively simple argument implies that A[g] = 2�(n) holds
for g = STCONn (Theorem 31 below). Thus, we have two polynomials f and g such
that f̂ = ĝ over B and Min, but one of them requires exponentially larger circuits to
be produced.

In the rest of the paper, we will present various lower bound argument for trop-
ical circuits. Table 1 summarizes the resulting specific bounds obtained by these
arguments for the polynomials listed above.
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Table 1 Summary of specific bounds; S(f ) stands for any of Min(f ), Max(f ) and Blin(f )

Polynomial f Bound Reference

STn B(f ) = O(n3), S(f ) = 2�(n) Rem.1, Thm.30

CONNn, STCONn Min(f ) = O(n3), A[f ] � Max(f ) = 2�(n) Rem. 1

APSPn, MPn Min(f ) = �(n3) Cor. 20

PERn, HCn S(f ) = 2�(n) Thm. 30

CLIQUEn,k S(f ) �
(
n
k

) − 1 Cor. 19

4 Structure of Produced Polynomials

If a circuit F computes some given polynomial f over some semiring S, that is, if
F̂ = f̂ holds over S, what can we say about the structure of the polynomial F
produced by the circuit? In this section, we summarize this information for various
semirings.

In general, neither F � f not F = f needs to hold. The arithmetic semiring, as
well as tropical semirings Min− and Max∗ are here an exception.

Lemma 4 If a circuit F computes a polynomial f over the arithmetic semiring A,
then F � f .

Proof There are several ways to prove this fact. We follow an elegant argu-
ment suggested by Sergey Gashkov (personal communication). If F̂ = f̂ but
F and f do not coincide as polynomials, the polynomial g = F − f must
contain at least one monomial. Let p be a monomial of g of maximum degree.
Take all (formal) partial derivatives of g with respect to the variables of p until
all they disappear. Since p has maximum degree, we obtain some constant �=
0. But since ĝ = F̂ − f̂ is the zero function, the derivative should be zero,
a contradiction.

Lemma 5 If a circuit F computes a multilinear polynomial f over Max, Min− or
Max∗, then F must also be multilinear. Moreover, over Min− and Max∗, we have
F = f .

Proof Let us first show that the polynomial F produced by F must be also multilin-
ear. To see this, assume that F contains a monomial p (sum) in which some variable
xi appears more than once. Then, in the semirings Max or Max∗, we can set xi to
1, and set all the remaining variables to 0. Under this assignment a, we will have
F̂ (a) � 2 and f̂ (a) � 1, a contradiction with F̂ = f̂ . In the Min− semiring, we can
set xi to −1, and set all the remaining variables to 0. Under this assignment b, we
will have f̂ (b) � −1, because all monomials of f get value � −1, but F̂ (b) � −2
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since already the monomial p of F gets value � −2, a contradiction. Thus, both F

and f must be multilinear.
Let us now show that F = f must hold over the semiring Min−; the argument for

Max∗ is similar. (This was proved by Jerrum and Snir [15] using the Farkas lemma.
We give a direct proof.) We know that F̂ = f̂ , and that both polynomials F and f are
multilinear. The main property of multilinear monomials p is that they are uniquely
determined by their sets Xp of variables: if Xp = Xq , then p = q . Thus, f �⊆ F can
only happen, if there is a monomial p ∈ f such that, for every monomial q ∈ F , we
have that either Xq �⊆ Xp or Xq ⊂ Xp (proper inclusion). Let a be an assignment
which sets all variables in Xp to −1, and the rest to ∞. Then f̂ (a) � p̂(a) = −|Xp|.
But for every monomial q ∈ F , we have either q̂(a) = +∞, if Xq �⊆ Xp , or q̂(a) �
−|Xp|+1, if Xq ⊂ Xp. In any case, we have that F̂ (a) > f̂ (a), a contradiction with
F̂ = f̂ . This shows f ⊆ F . The proof of the converse inclusion F ⊆ f is the same.
In the case of the Max∗ semiring, it is enough to set all variables in Xp to 1, and the
rest to −∞.

Remark 2 Note that for non-multilinear polynomials, Lemma 5 needs not to hold.
For example, if F = min{x, 2x, 3x} and f = min{x, 3x}, then F̂ = f̂ holds over
Min−, but F �= f .

In tropical semirings Min and Max, we only have weaker structural properties. For
a polynomial f , let fmin ⊆ f denote the set of all monomials of f not containing
any other monomial of f , and fmax ⊆ f denote the set of all monomials of f not
contained in any other monomial of f . For example, if f = {x, x2y, yz}, then fmin =
{x, yz} and fmax = {x2y, yz}. Note that every monomial of f contains (properly
or not) at least one monomial of fmin, and is contained in at least one monomial of
fmax. Note also that f̂min = f̂ holds in Min semirings, and f̂max = f̂ holds in Max
semirings.

Lemma 6 If a circuit F computes a polynomial f over Min, and if fmin is multilinear,
then Fmin = fmin.

Proof Let us first show that every monomial of F must contain at least one mono-
mial of fmin. For this, assume that there is a monomial p ∈ F which contains
no monomial of fmin. Since fmin is multilinear, this implies that every monomial
of fmin must contain a variable not in Xp. So, on the assignment a which sets to
0 all variables in Xp, and sets to +∞ all the remaining variables, we have that
f̂ (a) = f̂min(a) = +∞. But F̂ (a) � p̂(a) = 0, a contradiction with F̂ = f̂ .

Thus, every monomial of F must contain at least one monomial of fmin. Since
no monomial in Fmin can contain another monomial of F , it remains to show that
fmin ⊆ F . For this, assume that there is a monomial q ∈ fmin such that q �∈ F . Take
an assignment a which sets to 1 all variables in Xq , and sets to +∞ all the remaining
variables. Then f̂ (a) � q̂(a) = |Xq |. On the other hand, the assignment a sets to
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+∞ all monomials p ∈ F such that Xp �⊆ Xq . Each of the remaining monomials
p ∈ F (if there is any) must satisfy Xp ⊆ Xq . But we already know that p must
contain some monomial q ′ ∈ fmin, that is, Xq ′ ⊆ Xp ⊆ Xq . Since both monomials
q and q ′ are multilinear and belong to fmin, this implies q = q ′, and hence, also
Xp = Xq . Since q is multilinear and p �= q , this means that p must have strictly
larger degree |p| than |Xq |, and hence, p̂(a) = |p| > |Xq | = f̂ (a), a contradiction
with F̂ = f̂ .

Remark 3 Note that Lemma 6 needs not to hold, if both polynomials are not mul-
tilinear. Say, if F = min{2x, x + y, 2y} and f = min{2x, 2y}, then F̂ = f̂ holds
(because x + y � min{2x, 2y}), but Fmin = F �= f = fmin.

Lemma 7 If a circuit F computes a multilinear polynomial f over Max, then F is
also multilinear, and Fmax = fmax.

Proof That F must also be multilinear was already shown in Lemma 5. We claim
that every monomial of F must be contained in at least one monomial of f . Indeed,
if some monomial p ∈ F is contained in none of the monomials of f , then every
monomial q ∈ f must miss at least one variable from Xp . So, on the assignment
a = ap which sets to 1 all variables in Xp , and sets to 0 all the remaining variables,
we have that f̂ (a) � |Xp| − 1. But F̂ (a) � p̂(a) = |Xp|, a contradiction with
F̂ = f̂ . Thus, every monomial of F must be contained in at least one monomial of f .

It remains therefore to show that fmax ⊆ F . For this, assume that there is a mono-
mial p ∈ fmax such that p �∈ F . Then, on the same assignment a = ap, we have
that f̂ (a) � p̂(a) = |Xp|. On the other hand, every monomial q ∈ F such that
Xq �⊇ Xp gets strictly smaller value q̂(a) � |Xp| − 1. So, it remains to show that
F cannot have any monomial q �= p such that Xq ⊇ Xp. Indeed, we already know
that every monomial q ∈ F must be contained in some monomial p′ ∈ fmax. Hence,
Xq ⊇ Xp would imply Xp′ ⊇ Xq ⊇ Xp. Since both monomials p′ and p are multi-
linear and belong to fmax, this would imply p′ = p, and hence, also q = p since q

is multilinear as well.

The following easy consequence of the structural lemmas above shows the weak-
ness of circuits over Max, Min− and Max∗ semirings: they behave like monotone
arithmetic circuits.

Corollary 8 Let f be a multilinear polynomial. Then:

(i) S(f ) � A[f ] for every additively idempotent semiring S;
(ii) S(f ) = Slin(f ) for S ∈ {Max,Min−,Max∗,A};

(iii) Min−(f ) = Max∗(f ) = A[f ].
Proof Item (i) holds because in an additively idempotent semiring S (where x+x =
x holds), the multiplicities of monomials have no effect on the represented function.
Item (ii) follows from Lemmas 4 and 5, and the third item follows from (i) and
Lemma 5.
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5 Reduction to the Arithmetic Semiring

By Corollary 8(i), we know that S(f ) � A[f ] holds in any additively idempotent S.
In particular, tropical circuits are not weaker than monotone arithmetic circuits. On
the other hand, the later circuits are the easiest to analyze: they cannot produce any
“redundant” monomials, those not in f . It is therefore important to know, when the
converse inequality S(f ) � A[f ] holds, that is, when lower bounds on A[f ] imply
lower bounds on S(f ). Corollary 8(iii) implies that this definitely happens in the
semirings Min− and Max∗: if f is multilinear, then

Min−(f ) = Max∗(f ) = A[f ] .
However, the situation with circuits over tropical semirings S ∈ {Min,Max} is com-
pletely different: here the gap between S(f ) and A[f ] may be even exponential. To
see this, consider the st-connectivity polynomial f = STCONn. For this polyno-
mial, we have Min(f ) = O(n3) (see Remark 1), but it is relatively easy to show that
A[f ] = 2�(n) (see Theorem 31 below). We will now show a fact implying that the
reason for such a large gap is the non-homogeneity of STCON: for homogeneous
multilinear polynomials f , no gap between Min(f ) and A[f ] is possible at all.

Following Jerrum and Snir [15], define the lower envelope of a polynomial f to
be the polynomial fle consisting of all monomials of f of smallest degree. Similarly,
the higher envelope, fhe, of f consists of all monomials of f of largest degree. Note
that both polynomials fle and fhe are homogeneous, and fle = fhe = f , if f itself is
homogeneous.

The following theorem shows that lower bounds for tropical circuits can be
obtained by proving lower bounds for monotone arithmetic circuits.

Theorem 9 For every multilinear polynomial f , we have

A[f ] � Blin(f ) � Min(f ) � A[fle] and A[f ] � Maxlin(f ) = Max(f ) � A[fhe].
If f is also homogeneous, then Blin(f ) = Min(f ) = Max(f ) = A[f ].

Proof The second claim follows from the first claim and the fact that fle = fhe =
f , if f is homogeneous. So, we only have to prove the first claim. To prove that
Blin(f ) � Min(f ), let F be a multilinear monotone boolean circuit computing f .
Since the circuit is multilinear, its produced polynomial F is also multilinear. Since
every monotone boolean function has a unique shortest monotone DNF, this implies
that Fmin = fmin. Since f and fmin represent the same function over Min, the circuit
F with OR gates replaced by Min gates, and AND gates by Sum gates will compute
f over Min.

The equality Maxlin(f ) = Max(f ) follows from Lemma 7 stating that every cir-
cuit computing a multilinear polynomial over Max must be multilinear. For the proof
of the remaining inequalities Min(f ) � A[fle] and Max(f ) � A[fhe], we make use
of the following simple observation.

Claim 10 If a polynomial F can be produced by a circuit of size s, then both Fle and
Fhe can be produced by homogeneous circuits of size s.
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Proof Take a circuit producing F . The desired homogeneous sub-circuit produc-
ing the lower or the higher envelope can be obtain by starting with input gates,
and removing (if necessary) one of the wires of every sum-gate, at inputs of which
polynomials of different degrees are produced.

To prove the inequality Min(f ) � A[fle], take a minimal circuit F over Min com-
puting f . Claim 10 implies that the lower envelope Fle of the polynomial F produced
by F can be also produced by a (homogeneous) circuit of size at most Size(F). Hence,
A[Fle] � Size(F) = Min(f ). On the other hand, Lemma 6 implies that fle = Fle,
and we are done. The proof of Max(f ) � A[fhe] is the same by using Lemma 7.

The second claim of Theorem 9 has an important implication concerning the
power of dynamic programs, which can be roughly stated as follows:

For optimization problems whose target polynomials are multilinear and homo-
geneous, dynamic programming is no more powerful than monotone arithmetic
circuits!

6 Reduction to the Boolean Semiring

A semiring S = (S,+, ∗, 0, 1) is of zero-characteristic, if 1+ 1+ · · · + 1 �= 0 holds
for any finite sum of the unity 1. Note that, with an exception of the Max semiring,
all remaining semirings we consider are of zero-characteristic. If F is a circuit over
a semiring S, then its boolean version is a monotone boolean circuit obtained by
replacing every +-gate by a logical OR, and every ∗-gate by a logical AND. The
following seems to be a “folklore” observation.

Lemma 11 If F is a circuit computing a polynomial f over some semiring S, and if S
is of zero-characteristic, then the boolean version of F computes f over the boolean
semiring. In particular, S(f ) � B(f ).

Proof Let F be a circuit over S computing a given polynomial f . The circuit
must correctly compute f on any subset of the domain S. We choose the subset
S+ = {0, 1, 2, . . .}, where n = 1 + · · · + 1 is the n-fold sum of the multi-
plicative unit element 1. Note that n �= 0 holds for all n � 1, because S has
zero-characteristic.

Since n + m = n+m and n ∗ m = n ·m, S+ = (S+,+, ∗, 0, 1) is a semiring.
Since S+ ⊆ S, the circuit must correctly compute f over this semiring as well. But
the mapping h : S+ → {0, 1} given by h(0) = 0 and h(n) = 1 for all n � 1, is a
homomorphism from S+ into the boolean semiring B with h(x + y) = h(x) ∨ h(y)

and h(x∗y) = h(x) ∧ h(y). So, the boolean version of F computes f over B.

To prove lower bounds in the boolean semiring—and hence, by Lemma 11, also
in every semiring of zero characteristic—one can try to use the following gen-
eral lower bounds criterion proved in [17] (see also [19, Sect. 9.4] for a simplified
proof).
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For a ∈ {0, 1}, an a-term of a monotone boolean function is a subset of its vari-
ables such that, when all these variables are fixed to the constant a, the function
outputs value a, independent of the values of other variables. It is easy to see that
every 0-term must intersect every 1-term, and vice versa. Say that a family of sets A
covers a family of sets B if every set in B contains at least one set of A.

Definition 12 A monotone boolean function f of n variables is t-simple if for all
integers 2 � r, s � n, such that

(i) either the set of all 0-terms of f can be covered by t (r − 1)ss-element subsets
of variables,

(ii) or the set of all 1-terms of f can be covered by at most t (s − 1)r r-element
subsets of variables plus s − 1 single variables.

Note that this “asymmetry” between (i) and (ii) (allowing additional s − 1 single
variables in a cover) is important: say, condition (i) is trivially violated, if f contains
a 0-term T = {x1, . . . , xk} with k < s. But then (ii) is satisfied, because T must
intersect all 1-terms, implying that the single variables x1, . . . , xk cover all of them.

Theorem 13 ([17]) If f is not t-simple, then B(f ) > t .

Remark 4 One can easily show that, if the input variables can only take boolean
values 0 and 1, then Min(f ) � 2 · B(f ) holds for every multilinear polynomial.
Indeed, having a (boolean) circuit F for f , just replace each AND gate u ∧ v by
a Min gate min(u, v), and each OR gate u ∨ v by min(1, u + v). The point how-
ever is that tropical circuits must work correctly on much larger domain than {0, 1}.
This is why lower bounds for tropical circuits do not translate to lower bounds for
monotone boolean circuits. And indeed, there are explicit polynomials f , as the span-
ning tree polynomial f = STn, such that B(f ) = O(n3) but Min(f ) = 2�(n);
the upper bound is shown in Remark 1, and the lower bound will be shown in
Theorem 30.

Remark 5 When solving the so-called “bottleneck optimization” problems, one usu-
ally works in the bottleneck semiring B∗ = (N ∪ {+∞},max,min, 0,+∞). Since
the boolean semiring B = ({0, 1},max,min, 0, 1) is a sub-semiring of B∗, we always
have that B∗(f ) � B(f ). (This also follows from Lemma 11, because the bottleneck
semiring is of zero characteristic.) In fact, we even have an equality B∗(f ) = B(f ),
that is, even though the domain of B∗ is much larger, the lower bounds problem for
bottleneck circuits is not easier than for monotone boolean circuits. To see this, take
a circuit F computing a polynomial f (x1, . . . , xn) over B, and let F be the polyno-
mial produced by F. Since F must correctly compute f on {0, 1}, we have that: (i)
for every monomial p ∈ f , there must exist a monomial q ∈ F such that Xq = Xp,
and (ii) for every monomial q ∈ F , there must exist a monomial p ∈ f such that
Xq ⊇ Xp. But, over the semiring B∗, Xq = Xp implies that q̂ = p̂, and Xq ⊇ Xp

implies that q̂ � p̂. Thus, on every input a ∈ (N ∪ {+∞})n, the maximum will be
achieved on a monomial of f , implying that the circuit correctly computes f also
over B∗.
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7 Relative Power of Semirings

The reductions to the boolean and to the arithmetic semirings (Lemma 11 and
Theorem 9) give us the following relations for every multilinear polynomial f :

B(f ) � Min(f ) � Blin(f ) � Min−(f ) = A[f ]
and

B(f ) � Max(f ) = Maxlin(f ) � Max∗(f ) = A[f ].
If, additionally, f is also homogeneous, then

B(f ) � Blin(f ) = Min(f ) = Max(f ) = Min−(f ) = Max∗(f ) = A[f ].
Moreover, all inequalities are strict: for some polynomials f , one side can be even
exponentially smaller than the other. Moreover, the Max/Min and Min/Max gaps
can be also exponential.

To show that circuits over the tropical semirings can be exponentially weaker than
those over the boolean semiring, consider the spanning tree polynomial f = STn and
the graph connectivity polynomial g = CONNn. Over the boolean semiring B, these
polynomials represent the same boolean function: a graph is connected if and only if
it has a spanning tree. This gives B(f ) = B(g) and Blin(f ) = Blin(g). Moreover, we
already know (see Remark 1) that B(g) = O(n3) and Min(g) = O(n3). On the other
hand, a relatively simple argument (the “rectangle bound”) yields A[f ] = 2�(n) (see
Theorem 30 below). Since the polynomial f is homogeneous, Theorem 9 implies that
Min(f ), Max(f ) and Blin(f ) coincide with A[f ], and hence, are also exponential in
n. We thus have gaps:

Min(f )/B(f ), Max(f )/B(f ) = 2�(n) for f = STn;
Blin(g)/Min(g), Blin(g)/B(g) = 2�(n) for g = CONNn.

The latter gap Blin(g)/B(g) = 2�(n) also shows that there is no “multilinear version”
of the Floyd–Warshall algorithm, even in the boolean semiring.

To show that the remaining gaps can also be exponential, it is enough to take any
multilinear and homogeneous polynomial f (x1, . . . , xn) such that A[f ] is exponen-
tial in n, and to consider its two “saturated” versions f∗ and f ∗, where f∗ is obtained
by adding to f all n monomials x1, x2, . . . , xn of degree 1, and f ∗ is obtained by
adding to f the monomial x1x2 · · · xn of degree n.

Lemma 14 Let f (x1, . . . , xn) be a multilinear and homogeneous polynomial. Then
both Min(f ∗) and Max(f∗) are at least A[f ], but all Max(f ∗), Min(f∗) and Blin(f∗)
are at most n.

Proof Since f is the lower envelope of f ∗, and the higher envelope of f∗. Theorem
9 implies that Min(f ∗) � A[f ] and Max(f∗) � A[f ]. On the other hand, over the
Max semiring, the polynomial f ∗ computes x1+x2+· · ·+xn, whereas over the Min
semiring, f∗ computes min{x1, x2, . . . , xn}, and computes x1 ∨x2 ∨· · ·∨xn over the
boolean semiring. Hence, all Max(f ∗), Min(f∗) and Blin(f∗) are at most n.
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Since, there are many linear and homogeneous polynomials requiring monotone
arithmetic circuits of exponential size (see, e.g. Table 1), the saturated versions of f
immediately give exponential gaps.

Still, the “saturation trick” leads to somewhat artificial examples, and it would be
interesting to establish exponential gaps using “natural” polynomials. For example,
the Max/Min gap is achieved already on a very natural st-connectivity polynomial
h = STCONn. We know that Min(h) = O(n3) (Remark 1), but a simple argument
(see Theorem 31) shows that Max(h) = 2�(n). Hence,

Max(h)/Min(h) = 2�(n) for h = STCONn.

From now on we concentrate on the lower bound arguments themselves.

8 Lower Bounds for Separated Polynomials

Let g(x1, . . . , xn) be a polynomial in n � 3 variables. An enrichment of g is a
polynomial h in n − 1 variables obtained by taking some variable xk and replacing
it by a sum xi + xj or by a product xixj of some other two (not necessarily distinct)
variables, where k �∈ {i, j}. A progress measure of polynomials is an assignment of
non-negative numbers μ(g) to polynomials g such that

(i) μ(xi) = 0 for each variable xi ;
(ii) μ(h) � μ(g)+ 1 for every enrichment h of g.

Lemma 15 For every polynomial f , and every progress measure μ(f ), we have
A[f ] � μ(f ).

Proof Take a monotone arithmetic circuit F with s = A[f ] gates producing f . We
argue by induction on s. If s = 0, then F = xi is an input variable, and we have
A[f ] = 0 = μ(f ). For the induction step, take one of the first gates u = xi ◦ xj of
F, where ◦ ∈ {+, ·}. Let F′(x1, . . . , xn, y) be the circuit with the gate u replaced by a
new variable y. Hence, Size(F′) = Size(F) − 1 and F(x1, . . . , xn) is an enrichment
of F ′(x1, . . . , xn, y). By the induction hypothesis, we have that Size(F′) � μ(F ′).
Together with μ(F ) � μ(F ′)+1, this yields Size(F) = Size(F′)+1 � μ(F ′)+1 �
μ(F ).

Recall that a monomial p contains a monomial q (as a factor), if p = qq ′ for
some monomial q ′.

Definition 16 A sub-polynomial P ⊆ f is separated if the product pq of any two
monomials p and q of P contains no monomial of f distinct from p and q . Let

sep(f ) := max{|P | − 1 : P ⊆ f is separated} .

Note that we consider separateness within the entire set f of monomials: it is not
enough that the product pq contains no third monomial of P—it must not contain
any third monomial of the entire polynomial f .
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Note also that a multilinear polynomial f of minimum degree m is separated, if
every monomial of f is uniquely determined by any subset of �m/2� its variables.
(Being uniquely determined means that no other monomial contains the same subset
of variables.) Indeed, if p ∗ q contains some monomial r then r and p (or r and q)
must share at least �m/2� variables, implying that r = p (or r = q) must hold.

Example 1 A standard construction of separated polynomials with many monomials
is the following. Let n = q2 where q is a prime number. The polynomial fn,k has n2

variables xi,j with i, j ∈ GF(q), and is defined by:

fn,k(x) =
∑

π

∏

i∈GF(q)

xi,π(i) ,

where the sum is taken over all (one-variable) polynomials π(z) of degree at most
k − 1 over GF(q). The polynomial has qk = nk/2 monomials, and each of them is
determined by any subset of k variables (since no polynomials of degree � k− 1 can
have k or more roots). Thus, for every k � �q/2�, the polynomial fn,k is separated,
and the following theorem implies that A[fn,k] � nk/2 − 1. Since the polynomial is
linear and homogeneous, the same bound holds for tropical circuits, as well. This is
almost tight, because clearly A[fn,k] � qk+1 = nk/2+1.

Theorem 17 (Schnorr [38]) For every polynomial f , we have A[f ] � sep(f ), where

sep(f ) := max{|P | − 1 : P ⊆ f is separated} .
In particular, A[f ] � |f | − 1 if the polynomial f itself is separated.

Proof It is enough to show that the measure sep(f ) is a progress measure. The first
condition (i) is clearly fulfilled, since sep(xi) = 1 − 1 = 0. To verify the second
condition (ii), let f (x1, . . . , xn, y) be a polynomial, and h(x1, . . . , xn) be its enrich-
ment. Our goal is to show that sep(f ) � sep(h) − 1. We only consider the “hard”
case when y is replaced by a sum of variables: h(x1, . . . , xn) = f (x1, . . . , xn, u+v),
where u, v ∈ {x1, . . . , xn}.

To present the proof idea, we first consider the case when no monomial of f

contains more than one occurrence of the variable y. Then every monomial yp of f
turns into two monomials up and vp of h. To visualize the situation, we may consider
the bipartite graph G ⊆ f × h, where every monomial yp ∈ f is connected to two
monomials up, vp ∈ h; each monomial q ∈ f without y is connected to q ∈ h. Take
now a separated subset P ⊆ h such that |P | − 1 = sep(h), and let Q ⊆ f be the set
of its neighbors in G. Our goal is to show that:

(a) |Q| � |P | − 1, and
(b) Q is separated.

Then the desired inequality sep(f ) � |Q| − 1 � |P | − 2 = sep(h)− 1 follows.
To show item (a), it is enough to show that at most one monomial in Q can have

both its neighbors in P . To show this, assume that this holds for some two mono-
mials yp and yq of Q. Then all four monomials up, vp, uq, vq belong to P . But
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this contradicts the separateness of P , because the product up ∗ vq contains the third
monomial uq (and vp).

To show item (b), assume that the product p ∗ q of some two monomials p �= q

of Q contains some third monomial r ∈ h. Let p′, q ′ ∈ P be some neighbors of p
and q lying in P . Then the product p′∗q ′ must contain one (of the two) neighbors of
r . Since both of these neighbors of r belong to h, we obtain a contradiction with the
separateness of P .

In general (if y can have any degrees in f ), a monomial ykp of f has k +
1 neighbors uivk−ip, i = 0, 1, . . . , k in h. To show (a), it is again enough
to show that at most one monomial in Q can have two neighbors in P . For
this, assume that there are two monomials p �= q such that all four monomi-
als uavk−ap, ubvk−bp, ucvl−cq, udvl−dq belong to P . Assume w.l.o.g. that a =
max{a, b, c, d}. Then the product of uavk−ap and ucvl−cq contains uavl−cq , and
(since c � a) contains the monomial uavl−aq of h, contradicting the separateness
of P . The proof of (b) is similar.

Remark 6 It is not difficult to see that we have a stronger inequality sep(f ) � sep(h),
if the variable y is replaced by the product uv (instead of the sum u + v). Thus, in
fact, Theorem 17 gives a lower bound on the number of sum gates.

As a simple application of Schnorr’s argument, consider the triangle polynomial

TRn(x, y, z) =
∑

i,j,k∈[n]
xikykj zij .

This polynomial has 3n variables and n3 monomials.

Corollary 18 If f = TRn, then Min(f ) = Max(f ) = A[f ] = �(n3).

Proof The equalities Min(f ) = Max(f ) = A[f ] hold by Theorem 9, because
f is multilinear and homogeneous. The upper bound A[f ] = O(n3) is trivial.
To prove the lower bound A[f ] = �(n3), observe that every monomial p =
xikykj zij of f is uniquely determined by any choice of any two of its three vari-
ables. This implies that p cannot be contained in a union of any two monomials
distinct from p. Thus, the polynomial f is separated, and its Schnorr’s mea-
sure is sep(f ) = n3 − 1. Theorem 17 yields A[f ] � sep(f ) = n3 − 1,
as desired.

Recall that the k-clique polynomial CLIQUEn,k has
(
n
k

)
monomials

∏
i<j∈S xij

corresponding to subsets S ⊆ [n] of size |S| = k. This is a homogeneous multi-
linear polynomial of degree

(
k
2

)
. Note that TRn is a sub-polynomial of CLIQUE3n,3

obtained by setting some variables to 0.
By Lemma 11, an exponential lower bound for CLIQUEn,s over the tropical Min

follows from Razborov’s lower bound for this polynomial over the boolean semiring
B [37]. However, the proof over B is rather involved. On the other hand, in tropical
semirings such a bound comes quite easily.
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Corollary 19 For f = CLIQUEn,k , Min(f ), Max(f ) and Blin(f ) all are at least(
n
k

) − 1.

This lower bound on Blin(f ) was proved by Krieger [24] using different argu-
ments.

Proof Since f is multilinear and homogeneous, it is enough (by Theorems 9) to
show the corresponding lower bound on A[f ]. By Theorem 17, it is enough to show
that f is separated.

Assume for the sake of contradiction, that the union of two distinct k-cliques A

and B contains all edges of some third clique C. Since all three cliques are distinct
and have the same number of nodes, C must contain a node u which does not belong
to A and a node v which does not belong to B . This already leads to a contradiction
because either the node u (if u = v) or the edge {u, v} (if u �= v) of C would remain
uncovered by the cliques A and B .

Recall that the dynamic programming algorithm of Floyd–Warshall implies that
the all-pairs shortest path polynomial APSPn, and hence, also the matrix product
polynomial MPn, have Min-circuits of size O(n3); see Theorem 2. On the other hand,
using Theorem 17 one can show that this algorithm is optimal: a cubic number of
gates is also necessary.

Corollary 20 Both Min(APSPn) and Min(MPn) are �(n3).

Proof It is enough to show that Min(MPn) = �(n3). Recall that MPn(x, y) is
the set of all n2 polynomials fij = ∑

k∈[n] xikykj . Since the triangle polynomial
TRn = ∑

i,j∈[n] zijfij is just a single-output version of MPn, and its complexity is

by at most an additive factor of 2n2 larger than that of MPn, the desired lower bound
for MPn follows directly from Corollary 18.

Kerr [23] earlier proved Min(MPn) = �(n3) using a different argument, which
essentially employs the fact the Min semiring contains more than two distinct ele-
ments. Since this “domain-dependent” argument may be of independent interest, we
sketch it.

Proof (Due to Kerr [23]) Let F be a Min-circuit computing all n2 polynomials

fij (x) = min{xik + ykj : k = 1, . . . , n} .
By Lemma 6, for each polynomial fij there must be a gate uij , the polynomial Fij

produced at which is of the form Fij = min{fij , Gij }, where Gij is some set of
monomials (sums), each containing at least one monomial of fij .

Assign to every monomial p = xik + ykj of fij a sum gate up with the following
two properties: (i) p is produced at up , and (ii) there is a path from up to uij contain-
ing no sum gates. Since a + a = a does not hold in Min, at least one such gate must
exist for each of the monomials xik + ykj .
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It remains therefore to show that no other term xab+ybc can get the same gate up.
To show this, assume the opposite. Then at the gate up some sum

min{xik, α, . . .} + min{ykj , . . .}
is computed, where α ∈ {xab, ybc} is a single variable distinct from xik and
ykj . Set α := 0, xik = ykj := 1 and set all remaining variables to 2. Then
the first minimum in the sum above evaluates to 0, and we obtain F̂ij (x) �
1. But f̂ij (x) = 2 because the term xik + ykj gets value 1 + 1 = 2, and
the remaining terms of fij get values � 2 + 0 = 2. This gives the desired
contradiction.

Remark 7 Using more subtle arguments, Paterson [33], and Mehlhorn and Galil [29]
succeeded to prove a cubic lower bound �(n3) for MPn even over the boolean
semiring B.

We finish this section by mentioning one important result showing that circuits
producing a single polynomial f must, in fact, also produce all partial derivatives
of f .

The (formal) partial derivative ∂f/∂xi of a polynomial is the sum of partial deriva-
tives ∂p/∂xi of its monomials p = xai q , where ∂p/∂xi = 0 if a = 0 (xi does not
appear in p), and ∂p/∂xi = axa−1

i q if a � 1. In particular, if f is multilinear, then
∂f/∂xi is a polynomial obtained from f by removing all monomials not contain-
ing xi , and removing xi from all the remaining monomials. The gradient of f is the
vector ∇f = (∂f/∂x1, . . . , ∂f/∂xn).

Theorem 21 (Baur and Strassen [5]) For every polynomial f , A[f,∇f ] � 4 ·A[f ].

This result holds not only for monotone but also for non-monotone arith-
metic circuits, where subtractions are allowed. Morgenstern [31] has shown that
a slightly worse upper bound (with constant 4 replaced by 5) can be proved by
an easy induction using the chain rule for partial derivatives. Some extensions
and improvements of Theorem 21 were given by Gashkov and Gashkov [11], and
Sergeev [39]. Instead of the chain rule, they use the (simpler) product rule together
with the so-called “transposition principle” for linear circuits (those not using
product gates).

If the polynomial f is multilinear and homogeneous, then Theorems 21 and
9 imply that S(f,∇f ) � 4 · S(f ) hods for every tropical semiring S. Since
the gradient of the triangle polynomial TRn = ∑

i,j∈[n] zijfij contains all n2

polynomials fij = ∑
k∈[n] xikykj of the matrix product polynomial MPn, we in

particularly have that S(TRn,MPn) � 4 · S(TRn). Together with a trivial inequal-
ity S(TRn) � S(MPn) + 2n2, this implies that computing the matrix product has
essentially the same complexity as detecting a triangle; this holds for tropical as
well as non-monotone arithmetic circuits. Similar relations between the complexi-
ties of detecting triangles and matrix product is given by Vassilevska Williams and
Williams in [46].
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9 Decompositions and Cuts

Besides the gate-elimination method, most of lower bound arguments for monotone
arithmetic circuits follow the following general frame: if a polynomial f can be
produced by a circuit of size s, then f can be written as a sum f = ∑t

i=1 gi of
t = O(s) “rectangles” gi . Usually, these “rectangles” gi are products of two (or more)
polynomials of particular degrees. Let us first explain, where these “rectangles”
come from.

Let F be a circuit over some semiring S = (S,+, ∗, 0, 1). For a gate u in F, let fu
denote the polynomial produced at u, and let Fu=0 denote the circuit obtained from F
by replacing the gate u by the additive identity 0. We now assume that a∗0 = 0 holds
for all a ∈ S. Hence, the polynomial Fu=0 produced by Fu=0 consists of only those
monomials of F which do not “use” the gate u for their production. To avoid trivial-
ities, we will always assume that Fu=0 �= F , i.e. that there are no “redundant” gates.

Lemma 22 For every gate u in F, the polynomial F produced by F can be written as
a sum F = Fu+Fu=0 of two polynomials, the first of which has the form Fu = fu∗f u

for some polynomial f u.

Proof If we replace the gate u by a new variable y, the resulting circuit produces a
polynomial of the form y ∗A+Fu=0 for some polynomial A. It remains to substitute
all occurrences of the variable y with the polynomial fu produced at the gate u.

When analyzing circuits, the following concept of “parse graphs” is often useful.
A parse-graph G in F is defined inductively as follows: G includes the root (output
gate) of F. If u is a sum-gate, then exactly one of its inputs is included in G. If u is a
product gate, then both its input gates are included in G. Note that each parse-graph
produces exactly one monomial in a natural way, and that each monomial p ∈ F is
produced by at least one parse-graph. If p is multilinear, then each parse-graph for p
is a tree.

Remark 8 Roughly speaking, the number |Fu| of monomials in the polynomial Fu

is the “contribution” of the gate u to the production of the entire polynomial F .
Intuitively, if this contribution is small for many gates, then there must be many
gates in F. More formally, associate with each monomial p ∈ F some of its parse-
graphs Fp in F. Observe that u ∈ Fp implies p ∈ Fu. Thus, double-counting
yields

Size(F) =
∑

u∈F
1 �

∑

u∈F

∑

p∈F : u∈Fp

1

|Fu| =
∑

p∈F

∑

u∈Fp

1

|Fu| � |F | · min
p∈F

∑

u∈Fp

1

|Fu| .

So, in principle, one can obtain strong lower bounds on the total number of gates in
F by showing that this latter minimum cannot be too small.

The polynomial f u in Lemma 22 can be explicitly described by associating poly-
nomials with paths in the circuit F. Let π be a path from a gate u to the output gate,
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u1, . . . , um be all product gates along this path (excluding the first gate u, if it itself
is a product gate), and w1, . . . , wm be input gates to these product gates not lying on
the path π . We associate with π the polynomial fπ := fw1 ∗ fw2 · · · fwm . Then

f u =
∑

π

fπ ,

where the sum is over all paths π from u to the output gate.
Lemma 22 associates sub-polynomials fu ∗ f u of F with nodes (gates) u of F.

In some situations, it is more convenient to associate sub-polynomials with edges.
For this, associate with every edge e = (u, v), where v = u ◦ w is some gate with
◦ ∈ {+, ∗} of F, the polynomial

f e := A ∗ f v where A =
{

1 if ◦ = +;
fw if ◦ = ∗.

That is, f e = f v if v is a sum gate, and f e = fw∗f v if v is a product gate.
A node-cut in a circuit is a set U of its nodes (gates) such that every input-output

path contains a node in U . Similarly, an edge-cut is a set E of edges such that every
input-output path contains an edge in E. Recall that, in our notation, “f = h” for two
polynomials f and h only means that their sets of monomials are the same—their
multiplicities (coefficients) may differ.

Lemma 23 If U is a node-cut and E an edge-cut in a circuit F, then

F =
∑

u∈U
fu ∗ f u =

∑

e=(u,v)∈E
fu ∗ f e .

Proof The fact that all monomials of the last two polynomials are also monomials of
F follows from their definitions. So, it is enough to show that every monomial p ∈ F

belongs to both of these polynomials. For this, take a parse graph Fp of p. Since U

forms a node-cut, the graph Fp must contain some node u ∈ U . The monomial p has
a form p = p′p′′ where p′ is the monomial produced by the subgraph of Fp rooted in
u. Hence, p′ ∈ fu and p′′ ∈ f u. Similarly, since E forms an edge-cut, the graph Fp
contains some edge e = (u, v) ∈ E. The monomial p has the form p = p′p′′ where
p′ is the monomial produced by the subgraph of Fp rooted in u. Hence, p′ ∈ fu and
p′′ ∈ f e.

10 Lower Bounds for (k, l)-free Polynomials

A polynomial f is (k, l)-free (1 � k � l) if f does not contain a product of two poly-
nomials, one with > k monomials and the other with > l monomials. A polynomial
f is f -free if it is (k, k)-free, that is, if

A ∗ B ⊆ f implies min{|A|, |B|} � k.

Note that this alone gives no upper bound on the total number |A ∗ B| of monomials
in the product A ∗ B .
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Theorem 24 If a (k, l)-free polynomial f can be produced by a circuit of size s, then
f can be written as a sum of at most 2s products A× B with |A| � k and |B| � l2.
In particular,

A[f ] � |f |
2kl2

.

Proof Our argument is a mix of ideas of Gashkov and Sergeev [12], and of Pippenger
[34]. Take a minimal circuit F producing f ; hence, F = f is (k, l)-free. This implies
that every product gate u = v ∗w in F must have an input, say w, at which a “small”
set A = fw of only |A| � l monomials is produced. We thus can remove the edge
(w, u) and replace u by a unary (fanin-1) gate u = v ∗ A of scalar multiplication
by this fixed (small) polynomial A. If both inputs produce small polynomials, then
we eliminate only one of them. What we achieve by doing this is that input gates
remain the same as in the original circuit (variables x1, . . . , xn and constants 0,1),
each product gate has fanin 1, and for every edge e = (u, v) in the resulting circuit
F′, we have an upper bound

|f e| � l · |f v | . (1)
Say that an edge e = (u, v) in F′ is legal if both |fu| � k and |f e| � l2 hold. Let

E be the set of all legal edges; hence, Size(F) � |E|/2. By Lemma 23, it remains to
show that E forms an edge-cut of F′.

To show this, take an arbitrary input-output path P in F′, and let e = (u, v) be the
last edge of P with |fu| � k. If v is the output gate, then f v is a trivial polynomial
1, and hence, |f e| � l by (1), meaning that e is a legal edge. Suppose now that v
is not the output gate. Then |fu| � k but |fv| > k. Held also |f e| > l2, then (1)
would imply that |f v| � |f e|/l > l. Together with |fv| > k and fv ∗ f v ⊆ F , this
would contradict the (k, l)-freeness of F . Thus, |fu| � k and |f e| � l2, meaning that
e = (u, v) is a legal edge.

Together with Theorem 9, Theorem 24 yields the following lower bound over trop-
ical semirings for polynomials, whose only lower or higher envelopes are required to
be (k, l)-free.

Corollary 25 Let f and g be polynomials such that fle and ghe are (k, l)-free for
some 1 � k � l. Then

Min(f ) � |fle|
2kl2

and Max(g) � |ghe|
2kl2

.

Remark 9 Using a deeper analysis of circuit structure, Gashkov and Sergeev [10, 12]
were able to even estimate the numbers of sum and product gates: every monotone
arithmetic circuit computing a (k, l)-free polynomial f of n variables must have at
least |f |/K − 1 sum gates, and at least 2

√|f |/K − n − 2 product gates, where
K = max{k3, l2} .

Remark 10 Every boolean n× n matrix A = (aij ) defines a set Ay = (f1, . . . , fn)

of n linear polynomials fi(y) = ∑
j aij yj , as well as a single-output bilinear poly-

nomial fA(x, y) = ∑
i xifi(y) = ∑

i,j : aij=1 xiyj on 2n variables. Call a boolean
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matrix A(k, l)-free, if it does not contain any (k+ 1, l+ 1) all-1 submatrix. It is clear
that the polynomial fA is (k, l)-free if and only if the matrix A is (k, l)-free.

Results of Nechiporuk [32] (re-discovered later by Mehlhorn [28] and Pippenger
[34]) imply that, if A is (k, k)-free, then B(Ax) � |A|/4k3, where |A| is the number
of 1-entries in A. This, however, does not immediately yield a similar lower bound
on B(fA) for the single-output version fA and, in fact, no such bound is known so
far in the boolean semiring. (A lower bound B(fA) � |A| for (1, 1)-free matrices is
only known when restricted to circuits with gates of fanout 1, i.e., to formulas; see
[19, Theorem 7.2].) On the other hand, Theorem 24 gives such a bound at least for
tropical and multilinear boolean circuits: if A is (k, k)-free, then

Min(fA) = Max(fA) = Blin(fA) = A[fA] � |A|/2k3 ,

where the equalities follow from Theorem 9, because the polynomial fA is
homogeneous.

11 Rectangle Bound

For a polynomial f , let degf denote its minimum degree, i.e., the minimum degree
of a monomial of f . Various versions of the following fact were observed by several
authors including Hyafil [14], Jerrum and Snir [15] and Valiant [43].

Lemma 26 (Sum-of-Products) If a polynomial f of minimum degree at least m � 3
can be produced by a circuit of size s, then f can be written as a sum f =∑t

i=1 gi∗hi of t � s products gi∗hi of polynomials such that m/3 < deg gi � 2m/3.

Proof Let d = degf be the minimum degree of f , and let F be a circuit of size s

producing f ; hence, F = f and d � m. By the degree du of a gate u ∈ F we will
mean the minimum degree of the polynomial produced at u. In particular, the degree
of the output gate is d .

Claim 27 For every ε ∈ (1/d, 1), there exists a gate u with εd/2 < du � εd .

Proof Start at the output gate of F, and traverse the circuit (in the reverse order
of edges) by always choosing the input of larger degree until a gate v of degree
dv > εd is found such that both its inputs u and w have degrees at most εd . Assume
w.l.o.g. that du � dw . Since dv � du + dw � 2du, the gate u has the desired degree
εd/2 < du � εd .

Now, we apply Claim 27 with ε := 2m/3d to find a gate u of degree m/3 =
εd/2 < du � εd = 2m/3. By Lemma 22, we can write F as F = fu ∗ f u +
Fu=0 where fu is the polynomial produced at u. Since degfu = du, we have that
m/3 < degfu � 2m/3. The polynomial Fu=0 is obtained from F by removing some
monomials. If Fu=0 is empty, then we are done. Otherwise, the polynomial Fu=0

still has minimum degree at least m, and can be produced by a circuit with one gate
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fewer. So, we can repeat the same argument for the polynomial Fu=0, until the empty
polynomial is obtained.

Remark 11 Lemma 26 remains true if, instead of the minimum degree measure degf
of polynomials, one takes the minimum length l(f ) of a monomial of f , where the
length of a monomial p is defined as the number |Xp| of distinct variables occurring
in p. The same argument works because l(Fu=0) � l(F ), as long as the polynomial
Fu=0 is not empty.

To upper-bound the maximal possible number |A ∗B| of monomials in a product-
polynomial A ∗ B ⊆ f , the following measure of factor-density naturally arises: for
an integer r � 0, let #r (f ) be the maximum number of monomials in f containing
a fixed monomial of degree r as a common factor. This measure tells us how much
the monomials of f are “stretched”: the faster #r (f ) decreases with increasing r , the
more stretched f is. Note that, if d is the maximum degree of f , then

1 = #d(f ) � #d−1(f ) � . . . � #1(f ) � #0(f ) = |f | .

Observation 28 Let A andB be polynomials of maximum degrees a and b. If A∗B ⊆
f , then |A ∗ B| � #a(f ) · #b(f ).

Proof Fix a monomial p ∈ A of degree |p| = a, and a monomial q ∈ B of degree
|q| = b. Since {p} ∗ B ⊆ f , we have that |B| = |{p} ∗ B| � #|p|(f ) = #a(f ).
Similarly, since A ∗ {q} ⊆ f , we have that |A| = |A ∗ {q}| � #|q|(f ) = #b(f ).

Lemma 29 (Rectangle Bound) For every polynomial f of minimum degree at least
m � 3, there is an integer m/3 < r � 2m/3 such that

A[f ] � |f |
#r (f ) · #m−r (f )

.

Proof Let F be a minimal monotone arithmetic circuit representing f , and let s =
Size(F). By Lemma 26, the polynomial F = f can be written as a sum of at most s
products A ∗B of polynomials, where the minimum degree a = degA of A satisfies
m/3 � a � 2m/3; hence, degB � m − a. Observation 28 implies that |A ∗ B| �
#a(f ) · #m−a(f ).

The Rectangle Bound allows one to easily obtain strong lower bounds for some
explicit polynomials.

Theorem 30 If f ∈ {PERn,HCn, STn}, then Min(f ), Max(f ) and Blin(f ) all are
2�(n).

Proof Since all these three polynomials f are multilinear and homogeneous, it is
enough (by Theorem 9) to prove the corresponding lower bounds on A[f ]. We will
obtain such bounds by applying Lemma 29.
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The permanent polynomial f = PERn has |f | = n! multilinear monomials
x1,π(1)x2,π(2) · · · xn,π(n), one for each permutation π : [n] → [n]. Since at most
(n − r)! of the permutations can take r pre-described values, we have that #r (f ) �
(n − r)!. Lemma 29 gives A[f ] � n!/(n − r)!r! = (

n
r

)
for some n/3 < r � 2n/3;

so, A[f ] = 2�(n).
The argument for HCn is almost the same: the only difference is that now the

monomials correspond to symmetric, not to all permutations.
The spanning tree polynomial f = STn is a homogeneous polynomial of degree

n − 1 with |f | = nn−2 monomials x2,π(2)x3,π(3) · · · xn,π(n) corresponding to the
functions π : {2, 3, . . . , n} → [n] such that ∀i∃k: π(k)(i) = 1. Each spanning tree
gives a function with this property by mapping sons to their father. Now, if we fix
some r edges, then r values of functions π whose spanning trees contain these edges
are fixed. Thus, #r (f ) � (n− r)n−r−2, and Lemma 29 gives A[f ] = 2�(n).

Remark 12 Fomin et al. [8] have shown that the spanning tree polynomial STn can
be computed by a monotone arithmetic circuit of size O(n3), if divisions are allowed.
The analogue of division x/y in tropical circuits is subtraction x−y. Thus, the result
implies that, over the tropical semi-field (R,max,+,−), the polynomial STn can
be computed by a circuit of size O(n3). This extends to tropical circuits the result
of Valiant [43] stating that subtractions may be exponentially powerful in arithmetic
circuits.

The three polynomials in Theorem 30 are homogeneous. To show that the rect-
angle bound works also for non-homogeneous polynomials, consider the st-connec-
tivity polynomial STCONn. We know that this polynomial has Min-circuits of size
O(n3) (Remark 1). But Max-circuits for this polynomial must be of exponential size.

Theorem 31 If f = STCONn+2, then Max(f ) and Min−(f ) are at least 2�(n).

Proof Consider the higher envelope fhe of f . This is a homogeneous polynomial
of degree n with |fhe| = n! monomials corresponding to paths in Kn+2 from s = 0
to t = n + 1 with exactly n inner nodes. Since #r (f ) � (n − r)!, Lemma 29 (with
r = n/3) gives A[fhe] = 2�(n). By Theorem 9, the same lower bound holds for
Max(f ) and Min−(f ).

12 Truly Exponential Lower Bounds

Note that the lower bounds above have the forms 2�(
√
n), where n is the number

of variables. Truly exponential lower bounds A[f ] = �(2n/2) on the monotone
circuit size of multilinear polynomials of n variables were announced by Kasim-
Zade [21, 22]. Somewhat earlier, a lower bound A[f ] = 2�(n) was announced by
Kuznetsov [25]. Then, Gashkov [10] proposed a general lower bounds argument for
monotone arithmetic circuits and used it to prove an A[f ] = �(22n/3) lower bound.

The construction of the corresponding multilinear polynomials in these works is
algebraic. Say, the monomials of the polynomial f (x, y) of 2n variables constructed
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in [21, 22] have the form x
a1
1 · · · xann y

b1
1 · · · ybnn where a ∈ GF(2)n and b = a3 (we

view vector a as an element of GF(2n) when rising it to the 3rd power). That is,
monomials correspond to the points of the cubic parabola {(a, a3) : a ∈ GF(2n)}.
The monomials of the polynomial constructed in [10] are defined using triples
(a, b, c) with a, b, c ∈ GF(2n) satisfying a3 + b7 + c15 = 1. The constructed poly-
nomials are (k, l)-free for particular constants k and l, and the desired lower bounds
follow from general lower bounds of Gashkov [10], and Gashkov and Sergeev [12]
for (k, l)-free polynomials (see Sect. 10 for these bounds).

Without knowing these results, Raz and Yehudayoff [35] have recently used dis-
crepancy arguments and exponential sum estimates to derive a truly exponential
lower bound A[f ] = 2�(n) for an explicit multilinear polynomial f (x1, . . . , xn).
Roughly, their construction of f is as follows. Assume that n divided by a particular
constant k is a prime number. View a monomial p as a 0/1 vector of its exponents.
Split this vector into k blocks of length n/k, view each block as a field element, mul-
tiply these elements, and let cp ∈ {0, 1} be the first bit of this product. Then include
the monomial p in f if and only if cp = 1.

In this section we use some ideas from [18] to show that truly exponential lower
bounds can be also proved using graphs with good expansion properties. Numeri-
cally, our bounds (like those in [35]) are worse than the bounds in [10, 12, 21, 22]
(have smaller constants), but the construction of polynomials is quite simple (modulo
the construction of expander graphs).

Say that a partition [n] = S ∪ T is balanced if n/3 � |S| � 2n/3.
Define the matching number m(G) of a graph G = ([n], E) as the largest
number m such that, for every balanced partition of nodes of G, at least m crossing
edges form an induced matching. An edge is crossing if it joins a node in one part of
the partition with a node in the other part. Being an induced matching means that no
two endpoints of any two edges of the matching are joined by a crossing edge.

Our construction of hard polynomials is based on the following lemma. Associate
with every graph G = ([n], E) the multilinear polynomial fG(x1, . . . , xn) whose
monomials are

∏
i∈S xi over all subsets S ⊆ [n] such that the induced subgraph G[S]

has an odd number of edges of G.

Lemma 32 For every non-empty graph G on n nodes, we have

A[fG] � 2m(G)−2 .

We postpone the proof of this lemma and turn to its application.
The following simple claim gives us a general lower bound on the matching num-

ber m(G). Say that a graph is s-mixed if every two disjoint s-element subsets of its
nodes are joined by at least one edge.

Claim 33 If an n-node graph G of maximum degree d is s-mixed, then m(G) �
(�n/3� − s)/(2d + 1).

Proof Fix an arbitrary balanced partition of the nodes of G into two parts. To con-
struct the desired induced matching, formed by crossing edges, we repeatedly take a
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crossing edge and remove it together with all its neighbors. At each step we remove
at most 2d+ 1 nodes. If the graph is s-mixed, then the procedure will run for m steps
as long as �n/3� − (2d + 1)m is at least s.

Thus, we need graphs of small degree that are still s-mixed for small s. Examples
of such graphs are expander graphs. A Ramanujan (n, q)-graph is a regular graph G

of degree q + 1 on n nodes such that λ(G) � 2
√
q, where λ(G) is the second largest

(in absolute value) eigenvalue of the adjacency matrix of G. Explicit constructions of
Ramanujan (n, q)-graphs for every prime q ≡ 1 mod 4 and infinitely many values of
n were given by Margulis [27], Lubotzky, Phillips and Sarnak [26]; these were later
extended to the case where q is an arbitrary prime power by Morgenstern [31], and
Jordan and Livné [16].

Theorem 34 If fG(x1, . . . , xn) is the multilinear polynomial associated with a
Ramanujan (n, 64)-graph G, then

A[fG] � 20.001n .

Proof The Expander Mixing Lemma ([2, Lemma 2.3]) implies that, if G is a d-
regular graph on n nodes, and if s > λ(G) · n/d , then G is s-mixed. Now, every
Ramanujan (n, q)-graph G is d-regular with d = q+1 and has λ(G) � 2

√
q . Hence,

the graph G is s-mixed for s = 2n/
√
q > 2

√
qn/(q + 1). In our case (for q = 64),

we have that G is s-mixed for s = 2n/
√

64 = n/4. Lemma 32 gives the desired
lower bound.

It remains to prove Lemma 32.
Call polynomial f (x1, . . . , xn) a product polynomial, if f is a product of two

polynomials on disjoint sets of variables, each of size at least n/3, that is, if f =
g(Y )∗h(Z) for some partition Y∪Z = {x1, . . . , xn} of variables with |Y |, |Z| � n/3,
and some two polynomials g and h on these variables. Note that we do not require
that, say, the polynomial g(Y ) must depend on all variables in Y : some of them may
have zero degrees in g.

Claim 35 ([35]) If F(x1, . . . , xn) is a multilinear circuit of size s with n � 3 input
variables, then the polynomial F can be written as a sum of at most s + 1 product
polynomials.

Proof Induction on s. For a gate u, let Xu be the set of variables in the corresponding
subcircuit of F. Let v be the output gate of F. If v is an input gate, then F itself is a
product polynomial, since n � 3. So, assume that v is not an input gate. If |Xv | �
2n/3, then the polynomial F itself is a product polynomial, because F = F ∗ 1.
So, assume that |Xv | > 2n/3. Every gate u in F entered by gates u1 and u2 admits
|Xu| � |Xu1 | + |Xu2 |. Thus, there exists a gate u in F such that n/3 � |Xu| � 2n/3.
By Lemma 22, we can write F as F = Fu + Fu=0 where Fu = gu ∗ h with n/3 �
|Xu| � 2n/3 and some polynomial h. Moreover, since the circuit is multilinear, the
set Xh of variables in the polynomial h must be disjoint from Xu, implying that
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|Xh| � n− |Xu| � n/3. Thus, gu ∗h is a product polynomial. Since the circuit Fu=0

has size at most s − 1, the desired decomposition of F follows from the induction
hypothesis.

By the characteristic function of a multilinear polynomial f (x1, . . . , xn) we
will mean the (unique) boolean function which accepts a binary vector a ∈
{0, 1}n if and only if the polynomial f contains the monomial xa1

1 x
a2
2 · · · xann =∏

i : ai=1 xi . (Note that this boolean function needs not to be monotone.) In par-
ticular, the characteristic function of our polynomial fG is the quadratic boolean
function

φ(x) =
∑

{i,j}∈E
xixj mod 2 .

That is, φ(a) = 1 if the subgraph G[S] induced by the set of nodes S = {i : ai = 1}
has an odd number of edges. Since φ(x) is a non-zero polynomial of degree 2 over
GF(2), we have that |fG| = |φ−1(1)| � 2n−2.

Claim 36 For every graph G on n nodes, every product sub-polynomial of fG
contains at most 2n−m(G) monomials.

Proof Let G ∗ H be a product polynomial contained in fG. This polynomial
gives a partition x = (y, z) of the variables into two parts, each containing at
least n/3 variables. Let g(y) and h(z) be the characteristic functions of G and
H , and r(x) = g(y) ∧ h(z). Then |G ∗ H | = |r−1(1)|, and it is enough to
show that |r−1(1)| � 2n−m(G). When doing this, we will essentially use the fact
that r � φ, which follows from the fact that all monomials of G ∗ H are also
monomials of fG.

By the definition of m(G), some set M = {y1z1, . . . , ymzm} of m = m(G) cross-
ing edges yizi forms an induced matching of G. Given an assignment α of constants
0 and 1 to the n−2m variables outside the matching M , define vectors a, b ∈ {0, 1}m
and a constant c ∈ {0, 1} as follows:

– ai = 1 iff an odd number of neighbors of yi get value 1 under α,
– bi = 1 iff an odd number of neighbors of zi get value 1 under α,
– c = 1 iff the number of edges whose both endpoints get value 1 under α is odd.

Then the subfunction φα of φ obtained after restriction α is

φα(y1, . . . , ym, z1, . . . , zm) =
m∑

i=1
yizi +

m∑

i=1
yiai +

m∑

i=1
bizi + c mod 2

= IPm(y ⊕ b, z⊕ a)⊕ IPm(a, b)⊕ c ,

where IPn(y1, . . . , ym, z1, . . . , zm) = ∑m
i=1 yizi mod 2 is the inner product func-

tion (scalar product). Since a, b and c are fixed, the corresponding 2m×2m±1 matrix
H with entries H [y, z] = (−1)φα(y,z) is a Hadamard matrix (rows are orthogonal to
each other). Lindsey’s Lemma (see, e.g. [19, p. 479]) implies that no monochromatic
submatrix of H can have more than 2m 1-entries.

Now, the obtained subfunction rα = gα(y1, . . . , ym) ∧ hα(z1, . . . , zm) of r =
g(y) ∧ h(z) also satisfies rα(a, b) � φα(a, b) for all a, b ∈ {0, 1}m. Since the set of
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all pairs (a, b) for which rα(a, b) = 1 forms a submatrix of H , this implies that rα
can accept at most 2m such pairs. Since this holds for each of the 2n−2m assignments
α, the desired upper bound |r−1(1)| � 2m · 2n−2m = 2n−m follows.

This completes the proof of Claim 36, and hence, the proof of Lemma 32.

13 Bounds on Circuit Depth

So far, we were interested in the size of circuits. Another important measure is the
circuit depth, i.e. the maximum number of gates in an input-output path.

13.1 Upper Bounds

If a polynomial f can be produced by a circuit of size s, what is then the smallest
depth of a circuit producing f ? Hyafil [14] has shown that then f can be also pro-
duced by a circuit of depth proportional to (log d)(log sd), where d is the maximum
degree of f . (This can be easily shown by induction on the degree using the decom-
position given in Lemma 26.) However, the size of the resulting circuit may be as
large as slog d . A better simulation, leaving the size polynomial in s, was found by
Valiant et al. [44].

Theorem 37 (Valiant et al. [44]) If a polynomial f of maximum degree d can be
produced by a circuit of size s, then f can be also produced by a circuit of size O(s3)

and depth O(log s log d).

Important is that the proof of Theorem 37 in [44] is constructive: the new (small-
depth) circuit can be constructed from a given circuit F. The parameter d is then the
maximum degree of the polynomial F produced by F. This has, for example, inter-
esting consequences for the st-connectivity polynomial f = STCONn. Using binary
search, one can easily construct a Min-circuit of depth O(log2 n) for f . But the size
of the resulting circuit will then be n�(logn). To get a circuit of depth O(log2 n) but
polynomial size, we can take the circuit F of size O(n3) resulting from the Bellman–
Ford dynamic programming algorithm (see Theorem 3). It is easy to see that the
produced polynomial F in this case has maximum degree d � n. Thus, Theorem 37
gives us a Min-circuit for STCONn which simultaneously has depth O(log2 n) and
size O(n9).

13.2 Lower Bounds

We now turn to proving lower bounds on the depth of circuits. Lemma 11 implies
that the smallest depth of a monotone boolean circuit computing a polynomial f is
a lower bound on the depth of any circuit computing f over any semiring of zero
characteristic, including the arithmetic semiring A as well as tropical semirings Min,
Min− and Max∗. As shown by Karchmer and Wigderson [20], lower bounds on the
depth of monotone (as well as non-monotone) boolean circuit depth can be obtained
via communication complexity arguments. However, applications of these arguments
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for specific polynomials are usually rather involved. On the other hand, lower bounds
on the depth of monotone arithmetic circuits are much easier to obtain.

In the previous sections, we have shown that the factor-density measure #r (f ) can
be used to lower bound the circuit size. By simplifying previous arguments of Shamir
and Snir [40], Tiwari and Tompa [42] have shown that the measure #r (f ) can be used
to lower bound the circuit depth as well. The idea was demonstrated in [42] on two
applications (Corollaries 40 and 41 below). Here we put their idea in a general frame.

A subadditive weighting of a circuit F is an assignment μ : F → R+ of non-
negative weights to the gates of F such that the output gate gets weight � 1, all other
gates get weight � 1, and μ(v+w) � μ(v)+μ(w) holds for every sum gate v+w.
Given such a weighting, define the decrease Ku at a product gate u = v ∗ w as

Ku = μ(v) · μ(w)

μ(u)
.

Note that, since μ(v) � 1 holds for every non-output gate v, we have

μ(u) � 1

Ku

· min{μ(v), μ(w)} .

That is, when entering u from any of its two inputs, the weight must decrease by a
factor of at least Ku. This explains the use of term “decrease”. Let Kr,s = minu Ku

be the smallest decrease at a product gate u of degree r , one of whose inputs has
degree s; by the degree of a gate we mean the minimum degree of the polynomial
produced at that gate.

Lemma 38 Let F be a circuit, whose produced polynomial has minimum degree d ,
and let m = �log2 d�. Then, for every subadditive weighting, there is a sequence
d = r0 > r1 > . . . > rm = 1 of integers such that ri+1 � 1

2ri for all i = 1, . . . , m,
and the circuit F has depth at least

m+ log2

m−1∏

i=0

Kri,ri+1 .

Proof Construct a path π from the output gate to an input gates as follows: at a
sum gate choose the input of greater weight, and at a product gate choose an input
of greater degree. Since the produced polynomial has minimum degree d , and since
at each product gate we chose an input of greater degree, there must be at least m
product gates along π . Let d = r1 > r2 > . . . > rm > rm+1 = 1 be the degrees of
the product gates (and input node) on path π . Let ki = Kri,ri+1 be the decrease of the
i-th product gate along π . Note by the construction of π that ri+1 � 1

2ri .
Let us now view the path π in the reversed order (from input to output). So, we

start with some gate of weight � 1 (an input gate). Since the weighting is subadditive,
at each edge entering a sum gate the weight can only increase by a factor of at most
2. So, if s is the number of sum gates along π , then the total increase in weight is by
a factor at most 2s . But when entering the i-th product gate, the weight decreases by
a factor at least ki . Thus, the total loss in the weight is by a factor at least

∏m−1
i=0 ki .
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Since the last (output) gate must have weight � 1, this gives

2s ·
m−1∏

i=0

1

ki
� 1 , and hence, s � log2

m−1∏

i=0

ki .

Since the depth of F is at least the length of m+ s of the path π , we are done.

We now give a specific weighting, based on the factor-density measure #r (f ).
Recall that #r (f ) is the maximum number of monomials in f containing a fixed
monomial of degree r as a common factor. For a polynomial f of minimum degree
d , and integers 1 � s < r � d , define

Kf (r, s) = #d−r (f )

#d−s(f ) · #d−r+s(f )
.

Note that we have already used this measure to lower-bound the size of circuits: if f
is a homogeneous polynomial of degree d , then Lemma 29 yields A[f ] � Kf (d, s)

for some d/3 � s � 2d/3.
For a polynomial f , let Depth[f ] denote the smallest possible depth of a circuit

producing f .

Lemma 39 Let f be a polynomial of minimum degree d , and m = �log2 d�. Then
there is a sequence d = r0 > r1 > . . . > rm = 1 of integers such that ri+1 � 1

2 ri for
all i = 1, . . . , m, and

Depth[f ] � m+ log2

m−1∏

i=0

Kf (ri , ri+1) .

Proof Let F be a circuit producing f ; hence, F = f . For a gate u ∈ F, let du be the
minimum degree of the polynomial produced at u. By Theorem 22, we know that F
can be written as a sum F = fu ∗ f u + Fu=0, where fu is the polynomial produced
at gate u. Since fu ∗ f u ⊆ f , and fu has minimum degree du, the polynomial f u

must contain a monomial of degree � d − du. Hence, by Observation 28, we have
that |fu| � #d−du(f ). This suggests the following weighting of gates:

μ(u) = |fu|
#d−du(f )

.

The output gate v then gets weight μ(v) = |f |/#d−d(f ) = 1, whereas all other
gates get weights � 1. Moreover, since for every product gate u = v ∗ w,
we have that |fu| = |fv| · |fw| and du = dv + dw , the decrease Kr,s of this
weighting coincides with Kf (r, s). So, it remains to show that the weighting is
subadditive.

To show this, let u = v + w be a sum gate. Then du = min{dv, dw}, and hence,
d − du = max{d − dv, d − dw}. So,

μ(v +w) = |fv| + |fw|
#d−du(f )

= |fv| + |fw|
max{#d−dv (f ), #d−dw(f )}

� μ(v)+ μ(w) .
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Corollary 40 ([40, 42]) If f = PERn, then Depth[f ] � n+ �log2 n� − 1.

Proof The permanent polynomial f = PERn is a homogeneous multilinear poly-
nomial of degree d = n. Moreover, #l(f ) = (n − l)! holds for any 1 � l � d .
Hence,

Kf (r, s) = r!
s!(r − s)! =

(
r

s

)

.

But ri+1 � 1
2 ri implies that

(
ri

ri+1

)
� 2ri−ri+1 . Hence,

m−1∏

i=0

Kf (ri, ri+1) =
m−1∏

i=0

(
ri

ri+1

)

� 2r0−rm = 2n−1 .

This lower bound for f = PER is not very surprising, since Depth[f ] is always
at least logarithmic in A[f ], and we already know (Theorem 30) that A[f ] is expo-
nential for this polynomial. More interesting, however, is that the argument above
allows to prove super-logarithmic depth lower bounds even for polynomials that have
circuits of polynomial size.

To demonstrate this, consider the following layered st-connectivity polynomial
fn,d . The monomials of this polynomial correspond to st-paths in a layered graph.
We have d + 1 disjoint layers, where the first contains only one node s, the last only
one node t , and each of the remaining d − 1 layers contains n nodes. Monomials
of fn,d have the form xs,a1xa1,a2 · · · xad−2,ad−1xad−1,t with ai belonging to the i-th
layer. In other words, this polynomial corresponds to computing the (s, t)-entry of
the product of d − 2 matrices of dimension n × n. Hence, it can be produced by a
circuit of depth O((log d)(logn)).

Corollary 41 ([40, 42]) Depth[fn,d] = �(log d · log n).

Proof The polynomial f = fn,d is a multilinear homogeneous polynomial of degree
d with |f | = nd−1 monomials. To estimate the factor-density #l (f ), let us fix a set
E of |E| = l edges. Every edge e ∈ E constrains either two inner nodes (if s, t �∈ e)
or one inner node. Thus, if we fix l edges, then at least l inner nodes are constrained,
implying that only #l (f ) � nd−1−l paths can contain all these edges. In fact, we
have an equality #l (f ) = nd−1−l : every monomial xs,a1xa1,a2 · · · xal−1,al consisting
of initial l edges is a factor of exactly nd−1−l monomials of f . Thus, the decrease in
this case is

Kf (r, s) = #d−r (f )

#d−s(f ) · #d−(r−s)(f )
= nr−1

ns−1 · nr−s−1
= n

for all 1 � s < r � d . Lemma 39 yields Depth[f ] � log2 d + log2 n
�log2 d�, as

desired.

Corollary 41 implies an �(ln2 n) lower bound on the depth of monotone arith-
metic circuits computing STCONn: this polynomial can be obtained from fm,m−1
with m = �(n2) by setting to 0 some of the variables. Moreover, since fm,m−1 is
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Table 2 A summary of general lower bounds

Bound Property of f Ref.

B(f ) > t f is not t-simple (Def.12) Thm. 13

S(f ) = A[f ] f is homogeneous and multilinear Thm. 9

A[f ] � |f | f is separated (Def. 16) Thm. 17

A[f ] � |f |
2kl2

A ∗ B ⊆ f implies |A| � l or |B| � k Thm. 24

A[f ] � |f |
#r (f ) · #d−r (f )

f of minimum degree d Lem. 29

Here S is an arbitrary tropical semiring, #r (f ) is the maximum possible number of monomials of f

containing a fixed monomial of degree r , and r is some integer m/3 � r � 2m/3

multilinear and homogeneous, Theorem 9 implies that this lower bound holds also in
all four tropical semirings.

Note that this bound for STCON is not new: together with Lemma 11, they
follow from known lower bounds on the depth of monotone boolean circuits for these
polynomials. The lower bound �(log2 n) for STCONn was proved by Karchmer and
Wigderson [20], and the lower bound �(ln2 n/ ln lnn) for CONNn was proved by
Goldmann and Håstad [13]; Yao [47] earlier proved �(ln3/2 n/ ln ln n) for this latter
polynomial. However, the proofs for boolean circuits are much more involved than
the proof for tropical circuits given above.

14 Conclusion

As mentioned in the introduction, the model of tropical circuits is important because
of its intimate relation with dynamic programming. The first goal of this paper was to
relate tropical circuits with monotone arithmetic circuits, the later model being one
of the most restricted ones. This is done in Theorem 9: if a polynomial f is homo-
geneous and multilinear, then the smallest size of tropical circuits computing f just
coincides with A[f ], the smallest size of a monotone arithmetic circuit producing f .
We then presented several known and new methods to prove lower bounds on A[f ]
(see Table 1). These allow to relatively easily prove strong lower bounds for tropical
circuits; Table 2 gives a short overview.

Still, these arguments seem to fail for non-homogeneous polynomials like CONN
or STCON. By Theorem 31, we know that Max- and Min−-circuits for these polyno-
mials must have exponential size. But boolean and Min-circuits can compute these
polynomials in size O(n3) (see Theorem 9). So, the main problem left open in this
paper is:

Does B(f ) = �(n3) or at least Min(f ) = �(n3) hold for f = STCONn and/or f = CONNn?

Note that the lower bound �(n3) for the all-pairs shortest paths polynomial APSP,
given in Corollary 20 does not automatically imply the same lower bound for the
connectivity polynomial CONN: a circuit for CONN needs not to compute the
polynomials of APSP at separate gates.
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Even the model of monotone arithmetic circuits remains not well understood.
Known methods are able to yield strong lower bounds only for polynomials f that are
“resistant against products”: no large subset of monomials of f can be represented by
a product of two polynomials of sufficiently large degree. These methods, however,
automatically fail for polynomials which themselves are products of polynomials.
Say, we already know that the triangle polynomial f (x, y, z) = ∑

i,j∈[n] zijfij with

fij = ∑
k∈[n] xikykj has A[f ] = �(n3). Replace now the outer sum by product,

and consider the polynomial g(x, y, z) = ∏
i,j∈[n] zij

∑
k∈[n] xikykj , a product of n2

polynomials of degree three. Does A[g] = �(n3)?

Acknowledgments I am thankful to Dima Grigoriev, Georg Schnitger and Igor Sergeev for interesting
discussions.
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