THE GAP BETWEEN MONOTONE AND NON-MONOTONE CIRCUIT COMPLEXITY IS EXPONENTIAL

É. TARDOS
Received October 6, 1986

Abstract

A. A. Razborov has shown that there exists a polynomial time computable monotone Booleanfunction whose monotone circuit complexity is at least $n^{e l o z n}$. We observe that this lower bound can be improved to $\exp \left(\mathrm{cn}^{1 / 6-o(1)}\right)$. The proof is immediate by combining the Alon-Boppana version of another argument of Razborov with results of Grötschel-Lovász-Schrijver on the Lovász - capacity, ϑ of a graph.

A. A. Razborov [6, 7] recently proved surprising superpolynomial ($n^{c^{\log n}}$) lower bounds for the monotone circuit complexity of the following two properties of an input graph X on v vertices ($n=v^{2}$ is the number of input bits):
(a) X has a perfect matching,
(b) X has a clique of size $f(v)$ for some simple function $f(v)$.

The lower bound (b) has been improved to a properly exponential function $\left(\exp \left(c n^{1 / 6-o(2)}\right)\right)$ by N. Alon and R. Boppana [1].

It is a conceptual advantage of (a) that the problem considered there is polynomial time solvable and therefore can be computed by a polynomial size nonmonotone Boolean circuit, thus establishing a superpolynomial gap between the monotone and non-monotone circuit complexities of monotone Boolean functions.

The aim of this is note to show that the gap is properly exponential. This follows fairly easily from the Alon-Boppana improvement of Razborov's argument for (b), combined with results of Lovász [4] and Grötschel-Lovász-Schrijver [2] on the Shannon - capacity of a graph.

It is easy to see that the argument of Razborov actually applies not only to the clique number $\omega(X)$ but to any graph function $\varphi(X)$ satisfying $\omega(X) \leqq \varphi(X) \leqq$ $\leqq \chi(X)$ where $\chi(X)$ denotes the chromatic number. This observation carries over to the Alon-Boppana improvement and yields the following corollary:
Corollary (A. A. Razborov; N. Alon and R. Boppana). Let $\varphi(X)$ be any monotone graph function such that

$$
\begin{equation*}
\omega(X) \leqq \varphi(X) \leqq \chi(X) \tag{*}
\end{equation*}
$$

Then for any function $3 \leqq f(v) \leqq(v / \log v)^{2 / 3} / 4$ the monotone circuit complexity of deciding whether or not $\varphi(X) \equiv f(v)$ is at least $\exp \left(c \cdot f(v)^{1 / 2}\right)$.

Now, in order to justify the claim that the gap is properly exponential, we just have to point out that there exists a polynomial time computable monotone function $\varphi(X)$ satisfying (*).

In his seminal paper on the Shannon-capacity of graphs [4] Lovász introduced the capacity $\vartheta(X)$. The function $\varphi(X)=\vartheta(\bar{X})$, where \bar{X} denotes the complement of X, is a monotone function satisfying (*). Grötschel, Lovász and Schrijver [GLS] gave a polynomial time approximation algorithm for ϑ. That is, given a graph X and a rational number $\varepsilon>0$ the algorithm computes, in polynomial time, a function $g(X, \varepsilon)$ such that

$$
\vartheta(X) \leqq g(X, \varepsilon) \leqq \vartheta(X)+\varepsilon .
$$

Now, for any $0<\varepsilon<1 / 2$ the function $\lfloor g(\bar{X}, \varepsilon)\rfloor$, where $\lfloor\alpha\rceil$ denotes the integer nearest to the number α, is a polynomial time computable function satisfying (${ }^{*}$). But this function might not be monotone. Let us introduce instead the function

$$
\varphi(X)=\left\lfloor g\left(\bar{X}, v^{-2}\right)+e(X) \cdot v^{-2}\right\rceil \text {, }
$$

where $e(X)$ denotes the number of edges in $X . \varphi(X)$ is a polynomial time computable monotone function satisfying (*).

Acknowledgements. I would like to thank László Babai for many helpful discussions, and László Lovász for pointing out an error in an earlier version of this note.

References

[1] N. Alon and R. Boppana, The monotone circuit complexity of Boolean functions, Combinatorica 7 (1987), 1-23.
[2] M. Grötschler, L. Lovász and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981), 169-197.
[3] G. L. Khachiyan, A polynomial algorithm in linear programming, Doklady Akademii Nauk SSSR 244 (1979), 1093-1096 (English translation: Soviet Math. Dokl. 20, 191-194).
[4] L. Lovisz, On the Shannon capacity of a graph, IEEE Trans. on Information Theory 25 (1979), 1-7.
[5] L. Lovísz, An Algorithmic Theory of Numbers, Graphs and Convexity, SIAM Philadelphia 1986.
[6] A. A. Razborov, Lower bounds on the monotone complexity of some Boolean functions, Doklady Akademii Nauk SSSR 281 (1985), 798-801.
[7] A. A. Razborov, A lower bound on the monotone network complexity of the logical permanent, Matematischi Zametki 37 (1985), 887-900.

Éva Tardos

Comp. Sci. Dept.
Eötvös University
Budapest, Hungary

