
Properties and Applications of Boolean Function Composition

Avishay Tal∗

Abstract

For Boolean functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, the function composition
of f and g denoted by f ◦ g : {0, 1}nm → {0, 1} is the value of f on n inputs, each of them is
the calculation of g on a distinct set of m Boolean variables. Motivated by previous works that
achieved some of the best separations between complexity measures such as sensitivity, block-
sensitivity, degree, certificate complexity and decision tree complexity we show that most of these
complexity measures behave multiplicatively under composition. We use this multiplicative
behavior to establish several applications.

First, we give a negative answer for Adam Kalai’s question from [MOS04]: “Is it true that
every Boolean function f : {0, 1}n → {0, 1} with degree as a polynomial over the reals (denoted by
deg(f)) at most n/3, has a restriction fixing 2n/3 of its variables under which f becomes a parity
function?” This question was motivated by the problem of learning juntas as it suggests a simple
algorithm, faster than that of Mossel et al. We give a counterexample for the question using
composition of functions strongly related to the Walsh-Hadamard code. In fact, we show that
for every constants ε, δ > 0 there are (infinitely many) Boolean functions f : {0, 1}n → {0, 1}
such that deg(f) ≤ ε · n and under any restriction fixing less than (1 − δ) · n variables, f does
not become a parity function.

Second, we show that for composition, the block sensitivity (denoted by bs) property has an
unusual behavior - namely that bs(f ◦g) can be larger than bs(f) ·bs(g). We show that the ratio
between these two has a strong connection to the integrality gap of the Set Packing problem.
In addition, we obtain the best known separation between block-sensitivity and certificate com-
plexity (denoted by C) giving infinitely many functions f such that C(f) ≥ bs(f)log(26)/ log(17) =
bs(f)1.149....

Last, we present a factor 2 improvement of a result by Nisan and Szegedy [NS94], by showing
that for all Boolean functions bs(f) ≤ deg(f)2.

∗Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel.
Email: avishay.tal@weizmann.ac.il.

1 Introduction

Complexity measures such as decision tree complexity, certificate complexity, block sensitivity, sensi-
tivity and degree as a polynomial study the low-level complexity of Boolean functions. The decision
tree complexity of a Boolean function f , denoted by D(f), is the minimal number of bits needed
to be read from the input in order to be certain of the value of f . Other measures mentioned
above are relaxations of this measure. Their study has found many applications in other fields of
complexity such as communication complexity, circuit lower bounds, quantum computation and
concurrent computation. In this regime complexity refers to a more combinatorial property than
computational. We say that two measures M and N are polynomially related if there are constants
c1 and c2 such that for any Boolean function f we have M(f) = O(N(f)c1) and N(f) = O(M(f)c2).
In a beautiful line of works, most of these features were proven to be polynomially related. In par-
ticular [BI87] showed that the deterministic decision tree complexity is at most quadratic in the
non-deterministic decision tree complexity (usually called certificate complexity). After proving
many such relations for different complexity measures, a natural question to ask is whether these
inequalities are tight? One way to show tightness is to construct examples for which the gap is
tight, for instance provide infinitely many fs such that M(f) = Ω(N(f)c1).

As in most cases, using the right tool for the job is essential. In this paper we demonstrate the
power of quite a simple tool, Boolean function composition (in short BFC), to prove several results
on old and new complexity measures of Boolean functions. BFC is defined for any two Boolean
functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} as a function f ◦ g : {0, 1}nm → {0, 1}
whose value is the value of f on n inputs, each of them is the calculation of g on an independent
set of m bits. Figure 1 demonstrates a composition of two Boolean functions. The tool of BFC was
used in several previous works to exhibit separations 1 between complexity measures of Boolean
functions mentioned above. Generating separations is a very natural application of BFC as many
of these complexity measures behave multiplicatively when composing two functions. Namely,
for most complexity measures mentioned above M(f ◦ g) ≤ M(f) ·M(g) and under some simple
conditions on f and g equality holds. Using this property, one can get a series of functions, {fk}k∈N
(where powering is defined as repeated composition of f to itself) with polynomial gaps between
two such complexity measures from any specific function f with the slightest gap between the
two complexities. To demonstrate this, say that you are given a function f with M(f) = 2 and
N(f) = 4 where M and N behave multiplicatively under composition. This automatically gives a
quadratic separation between the two as ∀k ∈ N . N(fk) = 4k = (2k)2 = (M(fk))2.

1.1 Our Results and Techniques

One motivating question for our study was posed by Adam Kalai in [MOS04]. We give an equivalent
form of it (the equivalence easily follows from the discussion in [MOS04]):

Question 1.1. Is it true that for any Boolean function g on n bits which has degree as a polynomial
over the reals (denoted deg(f)) at most n/3, there is a restriction fixing at most 2/3n bits under
which g becomes a parity function?

1 A separation between two complexities measures M,N is an infinite sequence of functions {fi}i∈N for which
M(fi) = ω(N(fi)) as i→∞. We say a separation is a polynomial separation if M(fi) = Ω(N(fi)

c) for some constant
c > 1.

1

Figure 1: Composition of a 2-variable Boolean function with a 3-variable Boolean function

The question, interesting on its own, gives as an immediate application a learning algorithm
for the junta problem if true. In short, in the junta learning problem one wants to learn a Boolean
function defined over N variables that depends only on an unknown subset of size n� N of them.
A positive answer for A. Kalai’s question gives a roughly N2/3n algorithm for the problem improving
Mossel et al. analysis of roughly Nnω/(ω+1), where ω < 2.374 is the matrix multiplication exponent.
Recent work of [Val12] actually gives a roughly N0.61n learning algorithm for this problem, removing
motivation from the possible application.

Let the minimal restriction size of g, denoted by mr(g), be the minimal number of bits needed
to be fixed in order for g to become a parity function. We show that the answer to A. Kalai’s
question is a strong no as we demonstrate infinitely many Boolean functions with small degree over
the reals, and high minimal restriction size.

Theorem 1. For any ε > 0 and δ > 0 there are infinitely many integers n and Boolean functions
f : {0, 1}n → {0, 1} such that deg(f) ≤ ε · n and mr(f) ≥ (1− δ) · n.

The proof of this theorem relies on two important ingredients, one of them is a Boolean function
derived from the Walsh-Hadamard code with mr(f) = n − o(n) and degree n/2. The second is
the behavior of the minimal restriction size and the degree under composition. We show that
mr(f ◦ g) ≥ mr(f) ·mr(g), while deg(f ◦ g) = deg(f) · deg(g). Combining the two together gives
Theorem 1.

We introduce several definitions in order to describe the next problem.

Definition 1.2 (Sensitivity, Block Sensitivity). For i ∈ {0, . . . , n−1} denote by ei the vector whose
ith coordinate is 1 and the rest are zeros.

The sensitivity of a Boolean function f : {0, 1}n → {0, 1} on a point x, sens(f, x), is the number
of coordinates i ∈ {0, 1 . . . , n− 1} such that f(x) 6= f(x⊕ ei). The sensitivity of f , sens(f), is the
maximal sens(f, x) over all xs.

The block sensitivity of f on x, bs(f, x), is the maximal number of disjoint blocks B1, . . . , Bk ⊆
{0, 1, . . . , n− 1} such that flipping each Bi flips f ’s value, i.e. f(x) 6= f(x⊕

⊕
j∈Bi

ej). The block
sensitivity of f , bs(f), is the maximal bs(f, x) over all xs.

2

Definition 1.3 (Certificate Complexity). Let f : {0, 1}n → {0, 1} be a Boolean function and
x ∈ {0, 1}n, a certificate for f on x is a set of variables S ⊆ {0, 1, . . . , n − 1} such that any
y ∈ {0, 1}n satisfying xi = yi for all i ∈ S has f(y) = f(x).

The certificate complexity of f on x is the size of the minimal such certificate. The certificate
complexity of f , C(f), is the maximal C(f, x) over all xs. The minimal certificate for f , Cmin(f),
is the minimal C(f, x) over all xs.

In [Ver10] Elad Verbin noted that (under some condition) bs(fk) ≥ bs(f)k, asking whether the
converse bs(fk) ≤ bs(f)k is true. This may seem natural, as choosing a complexity measure M to
be one of sensitivity, certificate complexity, decision tree complexity or degree we have M(f ◦ g) ≤
M(f) · M(g). We answer this question by giving infinitely many examples for which bs(f2) ≥
1.26 ·bs(f)2. The main ingredient in the analysis of block sensitivity of BFC is the integer program
representation of the problem. We show several interesting results using this perspective. We
Introduce two “new” complexity measures: fractional block sensitivity (denoted by fbs) which
corresponds to the linear relaxation of the problem and fractional certificate complexity (denoted
by FC) which corresponds to the dual linear program (see Section 5.1 for the exact formulations
as an integer and linear program). We show that both measures are the same, and serve as an
intermediate measure between block sensitivity and certificate complexity.

Theorem 2. Let f : {0, 1}n → {0, 1} and x ∈ {0, 1}n then

bs(f, x) ≤ fbs(f, x) = FC(f, x) ≤ C(f, x)

Actually, the “new” complexity measures are equal, up to a constant factor, to the randomized
certificate complexity defined by Aaronson in [Aar03]. The next theorem shows the important role
of fractional block sensitivity in the analysis of block-sensitivity of BFC.

Theorem 3. Let f : {0, 1}n → {0, 1} , g : {0, 1}m → {0, 1} be Boolean functions, then bs(f ◦ g) ≤
fbs(f) · bs(g).

In fact, we show that this is tight in some weak sense. We then obtain and analyze, using this
theorem, the best known separation between block sensitivity and certificate complexity.

Surprisingly, the third application demonstrates that BFC can be used to tighten upper bounds.
In particular, we give an improved upper bound to a result by [NS94]:

Theorem 4. Let f be a Boolean function, then bs(f) ≤ deg(f)2.

1.2 Related Work

In [BI87] the decision tree complexity, D(f), was polynomially related to C(f) as C(f) ≤ D(f) ≤
C(f)2. Saks and Wigderson used BFC in [SW86] to give polynomial separations between C(f),
D(f) and the Randomized Decision Tree complexity. In [Nis89], Nisan defined block-sensitivity
and showed that bs(f) ≤ C(f) ≤ bs(f) · sens(f). In [WZ89] BFC was used to give separations
between sens(f) and Cmin(f), and the behavior of Cmin and sens with respect to composition was
analyzed. They gave examples also considered to be the best separations till this work between
block-sensitivity and certificate complexity, though the analysis was missing from their work as they
didn’t even consider block-sensitivity. In [NS94], the degree of a Boolean function as a polynomial
over the reals was related to other complexity measures such as bs,C and D. There, it was shown

3

that bs(f) ≤ 2 deg(f)2. In addition, they used BFC to give a separation between sensitivity and
degree showing an infinite family {fi}i∈N, such that sens(f) = deg(f)log2(3). In [NW94], an example
by Kushilevitz, using BFC once again, established a better separation between sensitivity and
degree. This was used to show a separation between the communication complexity of a Boolean
function and the log-rank of the associated matrix. De Wolf and Buhrman gave an excellent
survey of the field in [BdW02] with some new unpublished results. Aaronson introduced the notion
of randomized and quantum certificate complexity (denoted RC and QC respectively) in [Aar03]
and gave separations between these complexities, block sensitivity and certificate complexity using
BFC. Our use of strong duality to show equality between fbs and FC resembles his argument that
QC(f) = Θ(

√
RC(f)). Other works in quantum complexity area used BFC as a crucial tool, in

particular using Ambainis’s quantum adversary method (see [Amb03], [HLS07]).

2 Preliminaries

We use indices starting from 0 instead of 1, mainly because it makes more sense in section 4. We
shall denote the set {0, 1, . . . , n−1} by [n]. For a set S ⊆ [n], we shall denote 1S as the characteristic
vector of the set S, i.e. (1S)i = 1 iff i ∈ S. For an n-dimensional vector space over the field F , the
standard basis is denoted by {ei}i∈[n] where ei denotes the vector with a 1 in the ith coordinate
and zeros elsewhere.

f, g will usually denote Boolean functions. n,m will usually denote the number of variables of
a Boolean function. ρ, τ will usually denote restrictions to Boolean functions.

Definition 2.1 (Boolean Function Restriction). For a partial assignment ρ : [n] → {0, 1, ∗} and
a Boolean function f : {0, 1}n → {0, 1} the restriction of f to ρ, f |ρ is defined as f |ρ(x) = f(y)
where

yi =

{
xi ρ(i) = ∗
ρ(i) ρ(i) ∈ {0, 1}

for i ∈ [n]. We say that ρ fixes the variables xi with ρ(i) ∈ {0, 1}. The size of ρ, denoted by |ρ|, is
the number of fixed variables.

The function f |ρ is defined as a function with n variables, but actually only the non-fixed
variables are relevant.

2.1 Complexity Measures for Boolean Functions

After defining sensitivity, block sensitivity and certificate complexity in the introduction, we for-
mally define other complexity measures which we will discuss in this paper.

Definition 2.2 (Degree). The degree of a Boolean function f , deg(f), is the degree of the unique
multivariate multi-linear polynomial over the reals which agrees with f on {0, 1}n.

Similarly one can define the degree of a Boolean function over the field F2.

Definition 2.3 (Decision Tree, [BdW02]). A deterministic decision tree is a rooted ordered binary
tree T . Each internal node of T is labeled with a variable xi and each leaf is labeled with a value
0 or 1. Given an input x ∈ {0, 1}n, the tree is evaluated as follows. Start at the root. If this is
a leaf then stop. Otherwise, query the variable xi that labels the root. If xi = 0, then recursively

4

evaluate the left subtree, if xi = 1 then recursively evaluate the right subtree. The output of the tree
is the value (0 or 1) of the leaf that is reached eventually. Note that an input x deterministically
determines the leaf, and thus the output, that the procedure ends up in. We say a decision tree
computes f if its output equals f(x), for all x ∈ {0, 1}n. The decision tree complexity of f , D(f),
is the minimal depth of a decision tree computing f .

Definition 2.4 (Minimal Restriction Size). A Boolean function f is a parity function (or affine
over F2) if we can write

f(x) = c+
∑
i∈S

xi (mod 2)

for some S ⊆ [n] and c ∈ {0, 1}.
The minimal restriction size of a Boolean function f , mr(f), is the minimal size of a restriction

ρ for which f |ρ is a parity function.

Note that Cmin(f) ≥ mr(f) as any certificate induces a restriction under which f is constant
and in particular a parity function. We introduce the following notation.

Definition 2.5. For a Boolean function f , z ∈ {0, 1} and a measure M ∈ {sens,bs,C} we denote
by

M z(f) , max
x:f(x)=z

M(f, x)

2.2 Discrete Fourier Transform

In this section we briefly describe the discrete Fourier transform of Boolean functions - giving
notations and stating known facts about it. For a more thorough introduction to the field we
suggest the first chapters in O’Donnell’s book/blog ([O’D12]).

A discrete Fourier transform is a representation of a Boolean function as a polynomial. Let
f : {0, 1}n → {0, 1}. It is convenient to consider f as a function from {±1}n to {±1} using the
mapping b 7→ (−1)b, which is equivalent to the linear mapping b 7→ 1−2b restricted to {0, 1}. More
formally, we define F : {−1, 1}n → {−1, 1} by

F (x0, . . . , xn−1) = 1− 2 · f
(

1− x0
2

,
1− x1

2
, . . . ,

1− xn−1
2

)
.

Using this representation, one can define inner product of Boolean functions as < f, g >= 1/2n ·∑
x∈{−1,1}n f(x) · g(x) where all operations are done in R. For any S ⊆ [n] the S-Fourier character

is defined as χS(x) ,
∏
i∈S xi. The Fourier characters form an orthonormal basis for the vector

space of functions mapping {±1}n → R. The Fourier transform of F is the representation of F as
a linear combination in this basis:

F (x) =
∑
S⊆[n]

χS(x) · F̂ (S) ,

where the coefficient F̂ (S) is called the S-Fourier coefficient of F . Note that this represents F as
a multilinear polynomial. By orthonormality of the characters,

f̂(S) , F̂ (S) = 〈χS , F 〉 = 1/2n ·
∑

x∈{−1,1}n
χS(x) · F (x) = Ex∈R{0,1}n((−1)

∑
i∈S xi · (−1)f(x)) (1)

The following fact relates the Fourier coefficients of a Boolean function and its restriction.

5

Fact 2.6. Let f : {0, 1}n → {0, 1}, i ∈ [n], c ∈ {0, 1} and S ⊆ [n] − {i}, then the S-Fourier

coefficient of the restricted function ̂(f |xi=c)(S) is equal to f̂(S) + (−1)c · f̂(S ∪ {i})

Thus, the largest (in absolute value) Fourier coefficient of f |xi=c is at most twice the largest
Fourier coefficient of f . Induction gives as an immediate corollary the following:

Corollary 2.7. Let f : {0, 1}n → {0, 1}, and ρ be a restriction fixing k variables, then

‖f̂ |ρ‖∞ ≤ ‖f̂‖∞ · 2k

The next fact relates the Fourier transform of a Boolean function and the Fourier transform of
the function composed with a linear transformation.

Fact 2.8. Let f : {0, 1}n → {0, 1} and A ∈ (F2)
n×m then the composition f ◦A : {0, 1}m → {0, 1}

has Fourier spectrum f̂ ◦A(T) =
∑

S:At·1S=1T
f̂(S) ,∀T ⊆ [m] where matrix-vector multiplication

is over F2.

Proof. Expressing (f ◦A) using the Fourier transform of f

(f ◦A)(x) = f(A(x)) =
∑
S⊆[n]

f̂(S) · (−1)1
t
S ·(A·x)

=
∑
S⊆[n]

f̂(S) · (−1)(A
t·1S)t·x

=
∑
T⊆[m]

(−1)(1T)t·x ·
∑

S:At·1S=1T

f̂(S)

In the last equality we used the fact that when multiplying A by a vector over the field F2 the
result must be a Boolean vector.

As a special case if A ∈ (F2)
n×n is invertible, then the Fourier spectrum of f and f ◦ A are a

(linear) permutation of one another.

2.3 Function Composition

Definition 2.9 (Function Composition). Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, then
the function composition of f and g, f ◦ g : {0, 1}nm → {0, 1} is defined as follows:

(f ◦ g)
(
x00, x

0
1, . . . , x

n−1
m−1

)
= f

(
g
(
x00, x

0
1, . . . , x

0
m−1

)
, . . . , g

(
xn−10 , xn−11 . . . , xn−1m−1

))
Definition 2.10 (Function Powering). Let f : {0, 1}n → {0, 1} and k ∈ N, then the kth power of
f denoted by fk is defined recursively by f1 , f and fk , f ◦ (fk−1) for k > 1.

Definition 2.11 (Good Form). For f : {0, 1}n → {0, 1}, M ∈ {sens, bs,C} 2 and z ∈ {0, 1} we
say that f is in (M, z)-good form if f(zn) = z and M(f, zn) = M(f).

Remark 2.12. Any function can be transformed to an (M, z)-good form by applying

f̃(x) = f(b)⊕ z ⊕ f(x⊕ b⊕ zn)

for b ∈ {0, 1}n which maximizes the measure M (i.e. M(f, b) = M(f)). This transformation does
not change the measures sens,bs,C,Cmin,mr,D and deg of the Boolean function. This definition is
useful as functions in M -good form have a better lower bound on measure M of their composition.

2And also for M ∈ {fbs,FC} which we define later

6

3 Function Composition Properties

The following basic lemma relates complexity measures of functions and their compositions. Prop-
erties 5 and 9 were previously proven in [WZ89].

Lemma 3.1 (Function Composition Properties). Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}
be Boolean functions, then the following holds:

1. deg(f ◦ g) = deg(f) · deg(g)

2. D(f ◦ g) = D(f) ·D(g)

3. C(f ◦ g) ≤ C(f) · C(g)

4. for z ∈ {0, 1}, if f(zn) = g(zm) = z then C(f ◦ g, znm) ≥ C(f, zn) · C(g, zm)

5. sens(f ◦ g) ≤ sens(f) · sens(g)

6. for z ∈ {0, 1}, if f(zn) = g(zm) = z then sens(f ◦ g, znm) ≥ sens(f, zn) · sens(g, zm)

7. for z ∈ {0, 1}, if f(zn) = g(zm) = z then bs(f ◦ g, znm) ≥ bs(f, nz) · bs(g, zm)

8. mr(f ◦ g) ≥ mr(f) · Cmin(g) (≥ mr(f) ·mr(g))

9. Cmin(f ◦ g) ≥ Cmin(f) · Cmin(g)

In particular for M ∈ {bs, sens,C} if f, g are in (M, z) good form M(f ◦ g) ≥M(f) ·M(g).

Proof. We will use in the proofs of these properties the following notations:

(f ◦ g)
(
x00, x

0
1, . . . , x

n−1
m−1

)
= f

(
g
(
x00, x

0
1, . . . , x

0
m−1

)
, . . . , g

(
xn−10 , xn−11 . . . , xn−1m−1

))
xi will denote the m-bit input to g, (xi0, . . . , x

i
m−1). We will sometime abuse notation and denote

by xi as the set of variables {xij}j∈[m]. y0, . . . , yn−1 will denote the input variables to f . We will

refer to g(xi) as gi.

1. deg(f ◦ g) = deg(f) · deg(g). It is obvious that deg(f ◦ g) ≤ deg(f) · deg(g). In the other
direction, taking a maximal monomial in f , c·

∏
i∈T yi and a maximal monomial in g, d·

∏
j∈S xj

, the monomial c · d|T | ·
∏
i∈T,j∈S x

i
j is in the expansion of f ◦ g and there is no way canceling

it out. Hence, there is a monomial with degree |T | · |S| = deg(f) · deg(g) and coefficient
c · d|T | 6= 0 in f ◦ g expansion.

2. D(f ◦ g) = D(f) ·D(g). We start by showing D(f ◦ g) ≤ D(f) ·D(g). Given optimal decision
trees for f and g we construct a decision tree for f ◦ g. We transform the decision tree for f
to a decision tree for f ◦ g by replacing each inspection of yi by a decision tree of depth D(g)
on xi. This gives a decision tree for f ◦ g of depth at most D(g) ·D(f).

For the other direction, we use an analogous characterization for the decision tree complexity
called the Adversary Argument (see [AB09], chapter 12). The decision tree complexity of
a Boolean function is the maximal d such that there is a way to answer any less than d
adaptively chosen queries in such a way that the answers do not determine f ’s value. We call
this the f -Adversarial strategy.

7

We describe an adversarial strategy for f ◦ g. When asked about a variable xij such that less

than D(g) variables of xi were examined up till this point, we will answer according to the
g-adversarial strategy, leaving the value of gi undetermined. Whenever we must determine
the value of gi (i.e. after at least D(g) queries on variables in xi), we will pick the value for
gi according to the value we would have given yi in an f -adversarial strategy. The decision is
not certain until at least D(f) of the gis were determined. Thus, the decision tree complexity
is at least D(f) ·D(g).

3. C(f ◦ g) ≤ C(f) ·C(g). Let x ∈ {0, 1}nm be an input maximizing C(f ◦ g), and let y ∈ {0, 1}n
be the intermediate values yi = g(xi). f has a certificate S for y of size C(f, y) ≤ C(f), and
g has certificates Ti for each xi of size C(g, xi) ≤ C(g). By definition, the union of certificates
∪i∈STi is a certificate for f ◦ g at input x: any input x̃ agreeing with x on the certificate has
g(x̃i) = g(xi) ∀i ∈ S and since S is a certificate for f we conclude that (f ◦ g)(x̃) = (f ◦ g)(x).

4. for z ∈ {0, 1}, if f(zn) = g(zm) = z then C(f ◦ g, znm) ≥ C(f, zn) · C(g, zm). We show this
property for z = 0, the case z = 1 is similar. Consider the shortest certificate for f on 0nm and
assume by contradiction that its size is strictly less than C(f, 0n) ·C(g, 0m). This means that
for at most C(f, 0n)− 1 of i ∈ [n] the certificate contains C(g, 0m) variables or more from xi.
The value of gi for xi with less than C(g, 0m) variables in the certificate is undetermined under
the restriction the certificate induces, since otherwise g would have a shorter certificate on 0m.
This means that the value of gi is determined for at most C(f, 0n)− 1 different i ∈ [n], which
shows that the value of f ◦ g is undetermined under the restriction the certificate induces, in
contradiction to the assumption.

5. sens(f ◦ g) ≤ sens(f) · sens(g). Let x be an input maximizing sens(f ◦ g) and let yi = g(xi)
be the intermediate values. Any sensitive coordinate xij must be a sensitive coordinate for g

on input xi, and yi must be a sensitive coordinate for f on input (y0, . . . , yn−1). Hence, there
are at most sens(f) · sens(g) sensitive coordinates for f ◦ g.

6. for z ∈ {0, 1}, if f(zn) = g(zm) = z then sens(f ◦ g, znm) ≥ sens(f, zn) · sens(g, zm). We
show this property for z = 0, the case z = 1 is similar. Choosing the input x = 0nm, the
assumption on g gives that the intermediate values yi = g(xi) = 0. Since y = 0, there are
sens(f, 0n) many yis for which if we change their value, the value of f ◦ g will change. For
each such yi there are sens(g, 0m) variables of xi such that changing their value from 0 to 1
changes yi from 0 to 1, and then changing the value of f ◦ g from 0 to 1.

7. for z ∈ {0, 1}, if f(zn) = g(zm) = z then bs(f ◦ g, znm) ≥ bs(f, nz) · bs(g, zm). We show this
property for z = 0, the case z = 1 is similar. Choosing the input x = 0nm, the assumption
on g gives that the intermediate values yi = g(xi) = 0. For i ∈ [n], pick bs(g, 0m) disjoint
subsets for each set of variables xi that flips g’s value on the 0m input, denote them by
T i1, T

i
2, . . . , T

i
bs(g,0m). Let B1, . . . , Bbs(f,0n) ⊆ [n] be a maximal set of sensitive blocks for f on

input 0n. For k = 1, . . . ,bs(f, 0n), and ` = 1, . . . ,bs(g, 0m) put Ak,` , ∪i∈Bk
T i` . This defines

bs(f, 0n) · bs(g, 0m) disjoint subsets of {0, 1}nm that flips the value of f ◦ g on 0nm.

8. mr(f ◦ g) ≥ mr(f) · Cmin(g). Let ρ : [nm] → {0, 1, ∗} be a restriction fixing at most mr(f) ·
Cmin(g)− 1 variables. In at most mr(f)− 1 of the sets xi, ρ fixes Cmin(g) or more variables.
Hence, under the restriction at least n −mr(f) + 1 of the gis are nonconstants. Assume by

8

contradiction that the function (f ◦ g)|ρ is affine over F2. Let τ : {0, 1, . . . , n− 1} → {0, 1, ∗}
be the induced restriction of ρ on f , i.e.

τi =

∗ ρ does not set the value of g(xi)

0 ρ sets the value of g(xi) to 0

1 ρ sets the value of g(xi) to 1

.

For every nonconstant gi pick two assignments φ0i , φ
1
i for xi agreeing with ρ under which

g equals 0 and 1 respectively. For gi that is fixed under ρ pick any two assignments φ0i , φ
1
i

agreeing with ρ. For a bit b ∈ F2 and two vectors u, v ∈ Fm2 define MUXb(u, v) , (1−b)·u⊕b·v.
The bit b chooses between two vectors, if b = 0 the output is u and if b = 1 the output is v.
For constant vectors u, v, MUXb(u, v) is affine over F2 as a function of b. Let

h(x0, x1, . . . , xn−1) = ((f ◦g)|ρ)(MUXx0(φ00, φ
1
0),MUXx1(φ01, φ

1
1), . . . ,MUXxn−1(φ0n−1, φ

1
n−1)) .

h is affine over F2 as a composition of affine transformations. Furthermore, h equals f |τ and
hence f |τ is affine, and we reach a contradiction as τ fixes less than Cmin(f) variables.

9. Cmin(f ◦ g) ≥ Cmin(f)·Cmin(g). As in 8, fixing less than Cmin(f)·Cmin(g) variables guarantees
that at least n− (Cmin(f)− 1) of the gis are nonconstant and thus f ◦ g is nonconstant.

Using Lemma 3.1 it is easy to generate polynomial separations between two complexity mea-
sures. Let M ∈ {deg,D,C, sens} and N ∈ {deg,D,C, sens, bs,mr,Cmin} be two complexity mea-
sures and suppose we are given a function f , such that M(f) < N(f). If N ∈ {sens, bs,C}, we can
assume WLOG that f is in (N, 0) good form. Then, taking powers of this function gives infinitely
many examples such that M(fk) ≤ M(f)k and N(fk) ≥ N(f)k for k ∈ N. This is a polynomial
separation as

N(fk) ≥ N(f)k = M(f)k·logN(f)/ logM(f) ≥M(fk)logN(f)/ logM(f) .

Remark 3.2. Note that for f = ORn and g = ANDn the sensitivity, block-sensitivity and certificate
complexity of f ◦ g is n. This shows that being in M -good form is necessary to achieve M(f ◦ g) ≥
M(f) ·M(g).

4 A. Kalai’s Question

In this section we give a negative answer for Question 1.1. First, we construct a function based on
the Walsh-Hadamard code. Then, we take powers of this function showing that this is a counterex-
ample for the question.

4.1 Boolean Functions from The Walsh-Hadamard Code

Example 4.1. Let n ∈ N, we define WHIPn : {0, 1}2
2n

→ {0, 1} as follows. Denote by IPn :
{0, 1}2n → {0, 1} the Boolean function defined as:

IPn(y0, y1, . . . , y2n−1) = y0 · y1 + . . .+ y2n−2 · y2n−1 (mod 2) .

9

For a non-negative integer k, denote by ki the i’th least significant bit of k in its binary represen-
tation. Let WH ∈ (F2)

2n×22n be the matrix defined as WHi,k = ki for i ∈ [2n], k ∈ [22n]. Finally,
we define WHIPn as:

WHIPn(x) = IPn(WH · x)

where the matrix vector multiplication WH · x is done over F2.

This example is a degree 2 polynomial over F2. Yet, as the next theorem states, f requires a
lot of variables to be fixed in order to become a parity function i.e. a degree 1 function over F2.

Theorem 4.2. deg(WHIPn) = 22n−1 and mr(WHIPn) = 22n − 2n.

In order to prove Theorem 4.2 we prove several lemmas first, showing the role of WH and IPn

in the construction. In the following proofs it is convenient to associate a restriction with an affine
vector subspace.

Definition 4.3. Let ρ : [m]→ {0, 1, ∗} be a restriction, then the inputs that agrees with ρ form an
affine subspace of (F2)

m defined by vρ+Vρ where Vρ = span{ei : ρ(i) = ∗} and (vρ)i = 1 iff ρ(i) = 1
and 0 elsewhere.

Lemma 4.4 (The “Role” of WH). For S ⊆ [22n], let V = span({ek}k∈S) be a linear subspace of
(F2)

22n then |S| = dim(V) ≤ 2dim(WH(V)).

Proof. Let d = dim(WH(V)), and let U ⊆ (F2)
2n be the orthogonal complement of WH(V) (with

respect to the natural bilinear form B(x, y) = xt · y over F2). Fix some basis {uj}j∈[2n−d] for U .
For any k ∈ S we have that WH(ek) ⊥ U , thus

∀ j ∈ [2n− d] , 0 =

2n−1∑
i=0

(uj)i · (WH · ek)i =

2n−1∑
i=0

(uj)i · ki .

So each k ∈ S is a solution to a system of 2n−d linearly independent linear equations in its binary
representation as an integer. Thus, the number of such indices is at most 2d.

We state some slight variant of a known property of IPn whose proof is given in Appendix A.

Lemma 4.5. Let A ⊆ (F2)
2n be an affine subspace of dimension d defined by vA+span{v0, . . . , vd−1}.

If IPn|A(x0, . . . , xd−1) , IPn(vA +
∑

i∈[d] xi · vi) is a parity function, then d ≤ n.

This property is essential to achieve the next lemma.

Lemma 4.6 (The “Role” of IPn). Let f = IPn ◦A where A ∈ (F2)
2n×m is a linear transformation.

Let ρ be a restriction, under which IPn ◦A is a parity function, then dim(A(Vρ)) ≤ n.

Proof. Denote by V ′ = vρ + Vρ, U = A(Vρ), uρ = A(vρ) and let d = dim(A(Vρ)). We write
U = A(Vρ) as span{u0, u1, . . . , ud−1} where {ui}i∈[d] are linearly independent vectors in (F2)

2n. For
i ∈ [d], fix vi ∈ Vρ to be some arbitrary preimage of ui by the mapping A. We have

IPn|U (x0, . . . , xd−1) = IPn(uρ +
∑
i∈[d]

ui · xi)

= (IPn ◦A)(vρ +
∑
i∈[d]

vi · xi)

= f |ρ(vρ +
∑
i∈[d]

vi · xi) .

10

Using our assumption on f |ρ, this shows that IPn|U is a parity function and by Lemma 4.5 this
gives d ≤ n.

We are ready to prove Theorem 4.2.

Proof. First, we show that deg(WHIPn) = 22n−1. By Fact 2.8 the nonzero Fourier coefficients of
WHIPn are WHt · 1S for S ⊆ [2n]. Opening this up gives that the nonzero Fourier coefficients are
the sets {

k ∈ [22n] |
⊕
i∈S

ki = 1

}
for S ⊆ [2n]. The size of each such set is either 0 for S = ∅ or 22n−1 otherwise, hence the degree of
WHIPn over the reals is 22n−1.

Next, we show mr(WHIPn) ≥ 22n − 2n. Let ρ be a restriction under which WHIPn becomes
a parity function. By Lemma 4.6, dim(WH(Vρ)) ≤ n. Using Lemma 4.4 we have dim(Vρ) ≤ 2n,
hence ρ fixes at least 22n − 2n variables.

On the other hand, there’s a restriction fixing 22n−2n variables that makes WHIPn a constant,
by fixing xk = 0 for any k such that (k0, k2, . . . , k2n−2) 6= 0n.

Remark 4.7. The matrix used in the construction of Example 4.1 is the transpose of the encoding
matrix of the Walsh-Hadamard error correcting code (alternatively, the parity-check matrix for
the Hamming code). The above construction can be generalized to use any ε-biased sample space
instead of the Walsh-Hadamard code, resulting in similar guarantees on the minimal restriction
size and degree. Actually, as the Walsh-Hadamard code is an ε-biased sample space with ε = 0 it
can viewed as a special case of this generalization. We discuss this in Appendix B

4.2 Counterexample for A. Kalai’s Question

We combine Theorem 4.2 and Property 8 from Lemma 3.1 to get a counterexample for A. Kalai’s
question.

Theorem (Theorem 1, restated). For any ε > 0 and δ > 0 there exists infinitely many integers N
and Boolean functions f : {0, 1}N → {0, 1} such that deg(f) ≤ ε ·N and mr(f) ≥ (1 − δ) ·N . In
particular, for ε = δ < 1/3 this answers A. Kalai’s question.

Proof. Put m = dlog2(
1
ε)e and choose any integer n ≥ log2(

m
δ) (equivalently δ ≥ m/2n). Take

the function g to be (WHIPn)m. g is defined over N , 22nm variables. Applying Property 1 from
Lemma 3.1 gives deg(g) = (22n−1)m = 22nm ·1/2m ≤ ε ·N . On the other hand, applying Property 8
from the same lemma gives

mr(g) ≥ mr(WHIPn)m =
(
22n − 2n

)m
= 22nm ·

(
1− 1

2n

)m
≥

Bernoulli
N ·

(
1− m

2n

)
≥ N · (1− δ) .

11

4.3 Polynomial Separations between Degree and Minimal Restriction Size

We demonstrate an infinite family of functions with a polynomial separation between deg and mr

Claim 4.8. There are infinitely many Boolean functions f such that mr(f) ≥ 2/3 · deg(f)log23 =
2/3 · deg(f)1.58....

Proof. The function

f(x0, x1, x2, x3) = (x0 + x1) · (x2 + x3) + x0 + x2 (mod 2)

defined over {0, 1}4 has deg(f) = 2, Cmin(f) = 3, mr(f) = 2. Applying Lemma 3.1, g = fk has
deg(g) = 2k and

mr(g) ≥ mr(f) · Cmin(fk−1) ≥ mr(f) · Cmin(f)k−1 = 2 · 3k−1 = 2/3 · deg(g)log23 .

Note that these functions are not counterexamples for A. Kalai’s question as their minimal
restriction size is less than 2/3n.

5 Block-Sensitivity of Function Composition

One may note that a natural bound is missing from Lemma 3.1: “bs(f ◦ g) ≤ bs(f) · bs(g)”. While
this bound may seem reasonable at first glance, it turns out to be false, as we demonstrate next.

We first show that block sensitivity is actually a subcase of the NP-Complete problem Set
Packing. The maximal gap between bs(f ◦ g) and bs(f) · bs(g) is closely related to the integrality
gap between the value of the integer program (IP) for Set Packing and the value of its standard
linear relaxation. The linear program (LP) gives tight upper bounds on bs(f ◦g). The integer/linear
programming approach shed interesting light on the problem of block-sensitivity, relating it to a
relaxed version which we call Fractional Block Sensitivity. In fact, bs(f) ≤ C(f) is just a corollary
of LP duality.

We use the IP/LP formulation of block sensitivity to analyze the powers of a previously known
example, demonstrating the gaps between bs(f)2 and bs(f2).

5.1 Block Sensitivity as a Special Case of Set Packing

The problem of (unweighted) Set Packing is the following. Given sets B0, B1, . . . , Bk−1 ⊆ [n]
find the largest collection of sets not intersecting. This seems familiar, as the block sensitivity of
f : {0, 1}n → {0, 1} on a given x ∈ {0, 1}n is exactly that problem, where the sets are B ⊆ [n] such
that f(x ⊕ 1B) 6= f(x). WLOG, we can consider only subsets minimal to inclusion. Consider the
following integer program for Set Packing:

max
∑k−1

j=0 wj

s.t.
∑

j:i∈Bj
wj ≤ 1 ∀i ∈ [n]

wj ∈ {0, 1} ∀j ∈ [k]

(IP(bs(f)))

12

The variable wj equals 1 iff we choose Bj to our collection. Note that the first constraint states
that each coordinate is covered at most once. The linear relaxation of this problem is:

max
∑k−1

j=0 wj

s.t.
∑

j:i∈Bj
wj ≤ 1 ∀i ∈ [n]

wj ≥ 0 ∀j ∈ [k]

(LP(bs(f)))

Next, we define the Fractional Block Sensitivity which captures the value of this linear program.

Definition 5.1 (Fractional Block Sensitivity). Let f : {0, 1}n → {0, 1} be a Boolean function,
and x ∈ {0, 1}n, then the Fractional Block Sensitivity fbs(f, x) of f on x, is the maximal sum of
non-negative weights assigned to a collection of blocks, B0, . . . , Bk−1 ⊆ [n] such that for each Bj,
f(x) 6= f(x ⊕ 1Bj) and each coordinate i ∈ [n] is contained by blocks with total weight at most 1
(relaxed disjointness). The fractional block sensitivity of f , fbs(f), is maxx fbs(f, x).

The dual program for Set Packing is the well known Set Cover problem. With our notations,
the dual program can be written as

min
∑n−1

i=0 ui

s.t.
∑

i:i∈Bj
ui ≥ 1 ∀j ∈ [k]

ui ≥ 0 ∀i ∈ [n]

(Dual LP)

Replacing the constraint ui ≥ 0 with ui ∈ {0, 1} defines an IP we call the “dual integer program”.
In fact, this integer program exactly captures the notion of certificate complexity.

Lemma 5.2. The value of the dual IP is C(f, x).

Proof. The set of coordinates i having ui = 1 are a certificate for f on x, and vice versa, for any
certificate S ⊆ [n] for f on x the values ui = (1S)i form a feasible solution for the integer program
whose value equals the certificate size.

In order to capture the value of Dual LP we define the Fractional Certificate Complexity.

Definition 5.3 (Fractional Certificate Complexity). Let f : {0, 1}n → {0, 1} be a Boolean function,
and x ∈ {0, 1}n, then the Fractional Certificate Complexity FC(f, x) of f on x, is the minimal sum
of weights assigned to i ∈ [n], such that for each y such that f(x) 6= f(y), the sum

∑
i:xi 6=yi weight(i)

is at least 1. The fractional certificate complexity of f , FC(f), is maxx FC(f, x).

As both the primal and dual programs are feasible, strong duality states that the optimal values
of both LPs are equal. This gives the next theorem.

Theorem (Theorem 2, revisited). Let f : {0, 1}n → {0, 1} and x ∈ {0, 1}n then

bs(f, x) ≤ fbs(f, x) = FC(f, x) ≤ C(f, x)

And, of course, the same inequality holds when taking the maximum over all x ∈ {0, 1}n.

13

5.1.1 Fractional Certificate Complexity is Randomized Certificate Complexity

The “new” measure we defined is actually the same measure up to a constant as the randomized
certificate complexity defined by Aaronson.

Definition 5.4 (Randomized Certificate Complexity,[Aar03]). A randomized verifier for input x is
a randomized algorithm that, on input y to f , (i) accepts with probability 1 if y = x, and (ii) rejects
with probability at least 1/2 if f(y) 6= f(x). (If y 6= x but f(y) = f(x), the acceptance probability
can be arbitrary.) Then RC(f, x) is the minimum expected number of queries used by a randomized
verifier for x, and RC(f) is the maximum of RC(f, x) over all x.

Claim 5.5. RC(f, x) = Θ(FC(f, x)).

We use in the proof the variant of nonadaptive randomized certificate:

Definition 5.6 (Nonadaptive Randomized Certificate Complexity, [Aar03]). Call a randomized
verifier for x nonadaptive if, on input y , it queries each yi with independent probability λi, and
rejects if and only if it encounters a disagreement with x. Let RCna(f, x) be the minimum of∑

i∈[n] λi over all nonadaptive verifiers for x.

Aaronson showed adaptiveness does not help much as: RC(f, x) = Θ(RCna(f, x)). Our proof
follows some of his lines.

Proof. We show that RCna(f, x) = Θ(FC(f, x)).
Let u0, . . . , un−1 be the weights for the minimal fractional certificate for f on x. By minimality,

each ui is at most 1. Then taking λi = ui for i ∈ [n] gives a non-adaptive verifier such that if
f(x) 6= f(y) we have

Pr(The verifier accepts y) =
∏

i∈[n]:xi 6=yi

(1− λi) ≤
∏

i∈[n]:xi 6=yi

e−λi = e
−

∑
i∈[n]:xi 6=yi

λi ≤ e−1

where the last inequality is by the definition of a fractional certificate. Thus, RCna(f, x) ≤ FC(f, x).
For the second direction, given an optimal non-adaptive verifier with probabilities λi take ui =

2λi. For y such that f(x) 6= f(y) the probability of finding a disagreement is at least half, thus

1/2 ≤ Pr(The verifier rejects y) ≤
UB

∑
i:xi 6=yi

λi

This gives in turn,
∑

i:xi 6=yi ui ≥ 1 which shows that the uis are a fractional certificate for x. Thus,
we have FC(f, x) ≤ 2RCna(f, x).

5.1.2 Previous Results Regarding Set Cover and Set Packing

As Set Cover and Set Packing are fundamental optimization problems, much research was done on
them. We survey some of the results and their connections to our discussion.

First, we note that Nisan’s result that C(f) ≤ bs(f) ·sens(f) ([Nis89]) can be viewed as a special
(unweighted) case of the primal-dual approximation algorithm for Set Cover in [BYE81].

Second, [CL10] showed that the integrality gap of Set Packing is no bigger than ` − 1 + 1/`
for ` being the size of the largest set. This bound is tight for infinitely many `s using Fano-plane
examples. As ` ≤ sens(f) this gives

fbs(f) ≤ bs(f) · (sens(f)− 1 + 1/sens(f)) .

14

Fano-planes gives examples for which fbs(f, x) = bs(f, x) · (` − 1 + 1/`) for arbitrary large `s and
a specific x. However, as fbs and bs are defined as the maximum over all xs, our attempts to find
functions with arbitrary large gaps between bs and fbs have failed so far.

Last, [Lov75] showed that the integrality gap of Set Cover (i.e. the ratio between C and FC)
is at most Ht =

∑t
i=1 1/i ≈ ln(t) where t = maxi |{Bj | i ∈ Bj}| in our notations. Note that for

example for MAJn on 0n, t = Θ(2n/
√
n), so this does not imply a logarithmic factor between C

and FC. Indeed, we will give an example with a polynomial gap between the two.

5.2 Upper Bounding The Block Sensitivity of BFC

With the IP/LP perspective of block-sensitivity we have the proper tools to prove the next theorem,
giving an upper bound on the block-sensitivity of the composition of Boolean functions.

Theorem (Theorem 3, restated). Let f : {0, 1}n → {0, 1} , g : {0, 1}m → {0, 1} be Boolean
functions, then bs(f ◦ g) ≤ fbs(f) · bs(g). Moreover, this inequality is weakly tight in the following
sense: for g such that bs0(g) = bs1(g) we have that bs(f ◦ g) ≥ fbs(f) · bs(g)− 2n.

The theorem shows that if f is some fixed function and we take a sequence of functions {gi}i∈N
such that bs0(gi) = bs1(gi) for all i ∈ N and limi→∞ bs(gi) = ∞ then the ratio between bs(f ◦
gi)/bs(gi) tends to fbs(f) as i→∞.

Proof. Let x = (xij)i∈[n],j∈[m] be an input to f ◦ g. We formulate bs(f ◦ g, x) as an integer program.

Let y ∈ {0, 1}n be the input to f that x induces, i.e. yi = g(xi) for i ∈ [n]. Denote the minimal
sensitive blocks for f on y by B0, B1, . . . , Bk−1. The key observation is this: a set is a minimal
sensitive block for f ◦ g on x iff it is a collection of minimal sensitive blocks for several gis, where
the gis that participate in the collection form a minimal sensitive block for f . Thus, in a collection
of disjoint minimal sensitive blocks for f ◦ g, there can be at most bs(g, xi) sets intersecting each
xi. The problem of calculating bs(f ◦ g, x) reduces to finding the maximal number of Bjs such that
each yi is covered at most bs(g, xi) times. Any feasible solution for this problem can be transformed
into a collection of disjoint blocks flipping f ◦ g value on x and vice versa. The formulation of this
problem in terms of integer programming is:

max
∑k−1

j=0 wj

s.t.
∑

j:i∈Bj
wj ≤ bs(g, xi) ∀i ∈ [n]

wj ∈ {0, 1, . . . ,bs(g)} ∀j ∈ [k]

(IP(bs(fg)))

Relaxing this to an LP gives

max
∑k−1

j=0 wj

s.t.
∑

j:i∈Bj
wj ≤ bs(g, xi) ∀i ∈ [n]

wj ≥ 0 ∀j ∈ [k]

(LP(bs(fg)))

Observing the constraints, any feasible solution for the linear program LP(bs(fg)) where each wj is
divided by bs(g) is a feasible solution for the LP for fbs(f, y). Thus,

fbs(f, y) ≥ OPT(LP (bs(fg)))

bs(g)
≥ OPT(IP (bs(fg)))

bs(g)
=

bs(f ◦ g, x)

bs(g)
.

15

Rearranging this gives bs(f ◦ g, x) ≤ fbs(f, y) · bs(g). Taking x which maximizes bs(f ◦ g) gives the
desired upper bound.

For the tightness part, let p0, p1 ∈ {0, 1}m be points achieving the maximal bs0(g),bs1(g)
respectively, and let y be the point achieving the maximal fbs(f). Consider the block sensitivity of
f ◦ g on the point x = (xij)i∈[n],j∈[m] where xi = pyi . Note that the additive gap between IP(bs(fg))
and LP(bs(fg)) is at most k. Indeed, if the optimal values of the LP are w∗j , then wj = bw∗j c
is a feasible solution for the IP with value at least OPT(LP (bs(fg))) − k. Our choice of x gives
bs(g, xi) = bs(g) for all i ∈ [n], hence the value of LP(bs(fg)) is exactly bs(g) times the value
of LP(bs(f)) as the constraints are equivalent up to the constant factor bs(g). Hence,

fbs(f) · bs(g) = OPT(LP (bs(fg))) ≤ OPT(IP (bs(fg))) + k = bs(f ◦ g, x) + k ≤ bs(f ◦ g) + k .

As k ≤ 2n this completes the proof.

The behavior of fbs with respect to composition resembles that of sens and C.

Claim 5.7. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be Boolean functions, then (i)
fbs(f ◦ g) ≤ fbs(f) · fbs(g) and (ii) For z ∈ {0, 1} if f(zn) = g(zm) = z then fbs(f ◦ g, znm) ≥
fbs(f, zn) · fbs(g, zm)

We defer the proof to Appendix C.

5.3 Analysis of an Example

In order to demonstrate the analysis of block sensitivity of composed Boolean functions we present
the next example.

Example 5.8. Let f be a function on 6 variables defined by:

f = MAJ(x0 ⊕ x1 ⊕ x3, x0 ⊕ x2 ⊕ x4, x1 ⊕ x2 ⊕ x5) .

The example above has bs(f, x) = 4 , ∀x ∈ {0, 1}6 and C(f) = 5. It was actually presented
in [BSW86] and its composition was analyzed in [WZ89] and [Aar03]. It was considered the best
separation between bs and C, but the analysis of this function composition was wrong claiming
that bs(fk) = bs(f)k. As we shall see, bs(f2) = 18 > 16 = bs(f)2 and in general:

Lemma 5.9. For k ≥ 1: bs(fk+1) = b4.5 · bs(fk)c and this value is achieved on any input.

Proof. Let {xij}i∈[6],j∈[6k] be an input for fk+1 = f ◦ fk and let yi = f(xi). The minimal sensitive
blocks of f at any point are, up to indices name change: {0}, {1}, {2}, {3, 4}, {3, 5}, {4, 5} .

The optimal solution for the linear program for fbs(f) on y is (1, 1, 1, 0.5, 0.5, 0.5) respectively.
Consider the IP for bs(f ◦ fk, x) as in Theorem 3. By induction bs(fk, xi) = bs(fk). Put weights
bs(fk) on each set {i} for i = 0, 1, 2, bbs(fk)/2c on each of the sets {3, 4}, {3, 5} and dbs(fk)/2e on
the set {4, 5}. This is a feasible solution for the IP, as any i ∈ [6] was covered at most bs(fk) times.
The solution size is bbs(fk) · 4.5c, and as Theorem 3 gives bs(fk+1) ≤ fbs(f) · bs(fk) = 4.5 · bs(fk),
this is optimal.

For k large enough, using Lemma 5.9, we derive bs(fk) ≈ 0.8877 · 4.5k. This shows that
for k large enough and g = fk, the ratio bs(g2)/bs(g)2 ≈ 1/0.8877 > 1.126. Claim 5.7 gives
fbs(fk) = 4.5k, so there is a small 1.126 factor separating bs(fk) from fbs(fk). The next claim,
proven in Appendix D, shows that this constant factor is no coincidence.

16

Claim 5.10. Let f : {0, 1}n → {0, 1} then for any integer k the ratio fbs(fk)/bs(fk) is at most
c(n) i.e. independent of k.

5.4 Block Sensitivity and Certificate Complexity Separation

As we demonstrated above the example considered to have the best separation between block-
sensitivity and certificate-complexity has a smaller separation than what was previously claimed:
C(fk) = 5k = Θ(bs(fk)log(5)/ log(4.5)) = Θ(bs(fk)1.07...). The best separation we could find uses
a composition of a symmetric function, and was previously presented in [Aar03]. Our analysis is
slightly better than that of Aaronson since we use a (C, 0)-good form of the function.

Example 5.11. Consider the symmetric function on 29 variables whose value is 1 iff the weight
of the input ‖x‖ =

∑29
i=1 xi is in {13, 14, 15, 16}.

This function has certificate complexity 26, achieved on inputs of weight 13, 14, 15, 16, as we
need to expose at least 29−3 coordinates to convince that f(x) = 1. The sensitivity of the function
is 17, achieved on inputs of weight 12 or 17. The block sensitivity of the function is also 17,
achieved on inputs of weight 12 or 17 using 17 blocks of size 1, or on inputs of weight 13 or 16
using 13 blocks of size 1 in addition to 4 blocks of size 4. One can check that the fractional block
sensitivity of f is also 17. Take f̃ to be a (C, 0) good form of f , as in Remark 2.12. Lemma 3.1
gives ∀k ∈ N : C(f̃k) = C(f̃)k = 26k, while Claim 5.7 gives ∀k ∈ N : fbs(f̃k) ≤ 17k. Hence,

C(f̃k) ≥ fbs(f̃k)log(26)/ log(17) ≥ bs(f̃k)log(26)/ log(17)

6 Improving Nisan-Szegedy Bound

The last application shows that function composition can prove not only separations between
complexity measures but even tighten relations between them. Nisan and Szegedy showed that:

Theorem 6.1 ([NS94]). Let f be a Boolean function, then bs(f) ≤ 2 deg(f)2.

We improve their result by a factor 2:

Theorem (Theorem 4, restated). Let f be a Boolean function, then bs(f) ≤ deg(f)2.

Proof. Assume by contradiction that there exists a Boolean-function f for which bs(f) ≥ deg(f)2+
1. WLOG f is in (bs, 0) good form. Let d , deg(f) ≥ 1 and take g = f2d

2
. By Property 1 of

Lemma 3.1 deg(g) = d2d
2
. By Property 7

bs(g) ≥ (d2 + 1)2d
2

= (d2)2d
2 ·
(

1 +
1

d2

)2d2

≥ 3(d2d
2
)2 · 22 = deg(g)2 · 4

and this is a contradiction to Theorem 6.1

This improves as a corollary another relation between complexity measures:

Corollary 6.2 ([Mid04]).

C(f) ≤ D(F) ≤ bs(f) · deg(f) ≤ deg(f)3

3(1 + 1/x)x is a monotone increasing function for x ≥ 1, hence (1 + 1/x)x ≥ 2 for x = d2 ≥ 1

17

Remark 6.3. The method used in Theorem 4 shows that for any two complexity measures M,N
where M ∈ {sens, bs, fbs,C,Cmin,mr, deg,D} and N ∈ {sens, fbs,C,deg,D}, a relation of the form
M(f) ≤ N(f)α+o(1) can be tighten to M(f) ≤ N(f)α.

7 Discussion

In this paper we saw some applications and interesting questions regarding function composition.
BFC most natural use is to generate asymptotic separations based on a constant (even small)

size examples for which two complexity measures differ. Hence, possible further work will be to
get better separations by finding better examples. This can be done using computer search. More
surprisingly, BFC can help tighten relations between complexity measures as in Theorem 4. Can
this technique be used to tighten other relations?

BFC fails to separate complexity measures which behave similarly to composition. In particular,
this technique fails to separate bs from fbs as proven in Claim 5.7. An interesting question is
whether or not bs(f) = Θ(fbs(f)), a negative answer will need to use different techniques than
composition. A possible approach may involve the integrality gap shown in Section 5, perhaps
using examples closely related to Fano-planes as in [CL10]. Answering this question may shed light
on other questions such as bs vs. C.

Another interesting matter raised by Example 4.1 is of the connection between codes and
Boolean functions. In particular, it will be interesting to see what more can we learn from this
connection.

8 Acknowledgements

I thank Benjamin Eliot Klein for lots of support and advice; my advisor, Ran Raz, for guidance
and encouragement; Igor Shinkar for his proof of Lemma B.1 and Gregory Valiant for helpful
discussions. I also thank the anonymous referees for helpful comments.

References

[Aar03] S. Aaronson. Quantum certificate complexity. In IEEE Conference on Computational
Complexity, pages 171–178, 2003.

[AB09] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[Amb03] Andris Ambainis. Polynomial degree vs. quantum query complexity. In FOCS, pages
230–239, 2003.

[BdW02] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci., 288(1):21–43, 2002.

[BI87] M. Blum and R. Impagliazzo. Generic oracles and oracle classes (extended abstract). In
FOCS, pages 118–126, 1987.

18

[BKS+10] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating indepen-
dence: New constructions of condensers, ramsey graphs, dispersers, and extractors. J.
ACM, 57(4), 2010.

[BSW86] S. Bublitz, U. Schürfeld, and I. Wegener. Properties of complexity measures for prams
and wrams. Theor. Comput. Sci., 48(3):53–73, 1986.

[BYE81] R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the weighted
vertex cover problem. J. Algorithms, 2(2):198–203, 1981.

[CL10] Y. H. Chan and L. C. Lau. On linear and semidefinite programming relaxations for
hypergraph matching. In SODA, pages 1500–1511, 2010.

[HLS07] Peter Høyer, Troy Lee, and Robert Spalek. Negative weights make adversaries stronger.
In STOC, pages 526–535, 2007.

[Lov75] L. Lovasz. On the ratio of optimal integral and fractional covers. Discrete Mathematics,
13(4):383 – 390, 1975.

[Mid04] G. Midrijanis. Exact quantum query complexity for total boolean functions. arXiv:quant-
ph/0403168v2, 2004.

[MOS04] E. Mossel, R. O’Donnell, and R. A. Servedio. Learning functions of k relevant variables.
J. Comput. Syst. Sci., 69(3):421–434, 2004.

[Nis89] N. Nisan. Crew prams and decision trees. In STOC, pages 327–335, 1989.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and appli-
cations. SIAM J. on Computing, 22(4):838–856, 1993.

[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials.
Computational Complexity, 4:301–313, 1994.

[NW94] N. Nisan and A. Wigderson. On rank vs. communication complexity. In FOCS, pages
831–836, 1994.

[O’D12] R. O’Donnell. Analysis of boolean functions. http://analysisofbooleanfunctions.

org/, 2012.

[SW86] Michael E. Saks and Avi Wigderson. Probabilistic boolean decision trees and the com-
plexity of evaluating game trees. In FOCS, pages 29–38, 1986.

[Val12] Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and juntas with noise. Electronic Colloquium on Computational Complexity
(ECCC), 19:6, 2012.

[Ver10] E. Verbin. comments on my philomath project: Sensitivity versus block-sensitivity.
S. Aaronson blog, http://www.scottaaronson.com/blog/?p=453, 2010.

[WZ89] I. Wegener and L. Zádori. A note on the relations between critical and sensitive com-
plexity. Elektronische Informationsverarbeitung und Kybernetik, 25(8/9):417–421, 1989.

19

http://analysisofbooleanfunctions.org/
http://analysisofbooleanfunctions.org/
http://www.scottaaronson.com/blog/?p=453

A Properties of the IP function

The next lemma states a well known property of IPn which we later use to prove Lemma 4.5. We
include the proof for completeness.

Lemma A.1. Denote by IPn : {0, 1}2n → {0, 1} the Boolean function defined as:

IPn(y0, y1, . . . , y2n−1) = y0 · y1 + . . .+ y2n−2 · y2n−1 (mod 2) .

Then, every Fourier coefficient of IPn is of magnitude 2−n.

Proof. Let S be a subset of {0, 1}2n. Using Equation (1) the S-Fourier coefficient of IPn is equal to

ÎPn(S) = Ey∈R{0,1}2n
(

(−1)IPn(y) · (−1)
∑2n−1

i=0 Si·yi
)

where Si is the indicator that i ∈ S. Now we may write

ÎPn(S) = Ey∈R{0,1}2n

(
n−1∏
i=0

(−1)y2i·y2i+1 · (−1)S2i·y2i+S2i+1·y2i+1

)

and as the different multiplicands are probabilistically independent, we can replace expectation and
product. Thus, ÎPn(S) =

∏n−1
i=0 E

(
(−1)y2i·y2i+1+S2i·y2i+S2i+1·y2i+1

)
. It can be checked by complete

enumeration that the expectancy of each multiplicand is either 1/2 or −1/2, hence |ÎPn(S)| =
2−n.

We are ready to prove Lemma 4.5.

Lemma (Lemma 4.5, restated). Let A ⊆ (F2)
2n be an affine subspace of dimension d defined by

vA+span{v0, v1, . . . , vd−1}. If IPn|A(x0, x1, . . . , xd−1) , IPn(vA+
∑

i∈[d] xi · vi) is a parity function,
then d ≤ n.

Proof. Let T be a change of basis matrix mapping vi 7→ ei for i ∈ [d]. If vA = ~0, obviously
T (vA) = ~0, else we can assume WLOG that vA /∈ span{vi : i ∈ [d]} and since vA is linearly
independent of them we can demand that T (vA) = ed. Write IPn = (IPn ◦ T−1) ◦ T , and denote
IPn ◦T−1 by ˜IPn. As ˜IPn is a composition of IPn with an invertible linear transformation, Fact 2.8
gives that its Fourier spectrum is a (linear) permutation of the Fourier spectrum of IPn, hence
every coefficient is of magnitude 2−n. Let τ : [2n]→ {0, 1, ∗} be the restriction defined by:

τ(i) =

{
∗ i ∈ [d]

T (vA)i otherwise
.

If IPn|A is a parity function then so is ˜IPn|τ as

˜IPn|τ (x0, . . . , x2n−1) = ˜IPn(T (vA) +
∑
i∈[d]

xi · ei) = IPn(vA +
∑
i∈[d]

xi · vi) .

According to Corollary 2.7 the maximal Fourier coefficient of ˜IPn|τ is at most the maximal Fourier
coefficient of ˜IPn times 22n−d, hence at most 2n−d. As ˜IPn|τ becomes parity, there is one Fourier
coefficient of magnitude 1, giving d ≤ n.

20

Remark A.2. Lemma 4.5 shows in particular that IPn restricted to any n + 1 dimension affine
subspace is nonconstant. This property is called being an affine disperser for dimension n+ 1. In
fact, any affine disperser for dimension n+1 doesn’t become a parity function under any restriction
to an affine subspace of dimension n+ 2. Thus, our property is almost identical to being an affine
disperser for dimension n + 1. The fact that IPn is an affine disperser is regarded to Ben-Sasson,
Hoory, Rosenman, Vadhan and Wigderson (in an unpublished manuscript, mentioned in [BKS+10]).

B Generalization to Epsilon-Biased Sets

In the construction of Example 4.1 we can replace the WH matrix by a matrix associated with
any ε-biased sample space as follows. Let C ⊆ F2

2n, we say C is a an ε-biased sample space if
for any nonzero linear functional Φ : (F2)

2n → F2 the expectancy of Ev∈RC(Φ(v)) is in the range
[1/2− ε, 1/2 + ε]. ε-biased sets where first defined and constructed in [NN93], following a sequence
of works giving better constructions.

Putting an order on the set C = {C1, . . . , Cm} it is convenient to think of an ε-biased set as a
2n×m matrix over F2 where each XOR of a nonempty subset of rows gives a row with m · (1/2± ε)
ones. Let A ∈ (F2)

2n×m be the matrix associated with the sample space C, then A naturally defines
a (linear) mapping A : (F2)

m → (F2)
2n. The composition of the mappings f = IPn ◦ A gives a

construction with similar properties to that of Example 4.1.
We begin with the following lemma which is analogous to Lemma 4.4

Lemma B.1. The bitwise OR of n rows in an ε-biased matrix with m columns has at most m −
m · (1− 2−n) · (1− 2ε) zeros.

The proof of Lemma B.1 is due to Igor Shinkar.

Proof. We may assume WLOG that A is an ε-biased matrix of size n×m. Let

NZ = {j ∈ [m] : ∃i ∈ [n] : Ai,j = 1}

be the set of nonzero columns. For a fixed j ∈ NZ, let I be a set chosen uniformly at random from
the nonempty subsets of [n] then

PrI

(⊕
i∈I

Ai,j = 1

)
=

2n−1

2n − 1

Let wI(j) =
⊕

i∈I Ai,j and denote by ‖wI‖1 =
∑

j∈[m]wI(j) where the sum is over the reals. By
the definition of ε-biased sets, for all choices of I we have ‖wI‖1 ≥ m · (1/2− ε). This gives

m · (1/2− ε) ≤ EI(‖wI‖1) =
2n−1

2n − 1
· |NZ| .

Rearranging this we have

|NZ| ≥ m · 2n − 1

2n−1
· (1/2− ε) = m · (1− 2−n) · (1− 2ε) .

As the set of zero coordinates is [m]−NZ its size is at most m−m · (1− 2−n) · (1− 2ε).

21

Claim B.2. Let f = IPn ◦A where A is a 2n×m ε-biased matrix then deg(f) = m · (1/2± ε) and
mr(f) ≥ m · (1− 2−n) · (1− 2ε)

Proof. The proof closely follows the lines of the proof of Theorem 4.2. By Fact 2.8 any nonzero
Fourier coefficient subset characteristic vector is the XOR of a nonempty subset of rows in A. By
definition the subsets are of size m · (1/2± ε), hence the degree of f over the reals is m · (1/2± ε).

Let ρ be a restriction under which f is parity, and let d be the dimension of A(Vρ), then
by Lemma 4.6 d ≤ n. Let U = A(Vρ)

⊥, we have that dim(U) = 2n − d. Since performing an
invertible linear transformation on the rows of A preserves the property of being a an ε-biased
matrix, we may assume WLOG that the image of A(Vρ) is span{e0, e1, . . . , ed−1} and thus U =
span{ed, ed+1, . . . , e2n−1}. Let k be a variable not fixed by ρ, then A · ek ⊥ U . Equivalently, the
kth column in A has 2n − d zeros in the last 2n − d entries, hence it is a zero of the bitwise OR
of the last 2n− d rows of A. As d ≤ n it is a zero entry in the bitwise OR of the last n rows. By
Lemma B.1 the number of such variables is at most m −m · (1 − 2−n) · (1 − 2ε) which completes
the proof.

C Fractional Block Sensitivity of Function Composition

We repeat and prove the next claim.

Claim (Claim 5.7, restated). Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be Boolean functions,
then (i) fbs(f ◦g) ≤ fbs(f)·fbs(g) and (ii) For z ∈ {0, 1} if f(zn) = g(zm) = z then fbs(f ◦g, znm) ≥
fbs(f, zn) · fbs(g, zm)

Proof. For the first part, we show that FC(f ◦g) ≤ FC(f)·FC(g) (which is equivalent to fbs(f ◦g) ≤
fbs(f) · fbs(g)). Let x = (xij)i∈[n],j∈[m] be an input for f ◦ g and let y ∈ {0, 1}n be the intermediate

values, yi = g(xi). Let Ti : [m]→ R+ be a minimal fractional certificate for g on xi i.e. a collection
of weights for the variables {xij}j∈[m]. Let S : [n]→ R+ be a minimal fractional certificate for f on
y. We show that the weights R : [n] × [m] → R+ defined by R(i, j) = S(i) · Ti(j) are a fractional
certificate for f ◦ g. Let x′ = (x′ij)i∈[n],j∈[m] such that (f ◦ g)(x) 6= (f ◦ g)(x′) and let y′ be the

intermediate values for x′ i.e. y′i = g(x′ij). Since f(y) 6= f(y′) we have
∑

i:yi 6=y′i S(i) ≥ 1 and since
each Ti is a certificate we have:

∀i : yi 6= y′i.
∑

j:xij 6=x′
i
j

Ti(j) ≥ 1 .

Thus,

∑
i,j:xij 6=x′

i
j

R(i, j) ≥
∑

i:yi 6=y′i

∑
j:xij 6=x′

i
j

R(i, j) =
∑

i:yi 6=y′i

S(i) ·
∑

j:xij 6=x′
i
j

Ti(j)

 ≥ ∑
i:yi 6=y′i

S(i) ≥ 1 ,

showing that R is a fractional certificate for f ◦ g. The total weight of R is

∑
i,j

R(i, j) =
∑
i

S(i) ·
∑
j

Ti(j)

 ≤ FC(f) · FC(g) .

22

For the second part, we show that fbs(f ◦ g, znm) ≥ fbs(f, zn) · fbs(g, zm). Put x = znm as the
input for f ◦g. As g(zm) = z, the intermediate values yi = g(xi) = z. Let {Bk}k be minimal blocks
which are sensitive for f on zn, let {uk}k be optimal weights for these blocks achieving fbs(f, zn).
For i ∈ [n] let {T i`}` be minimal blocks which are sensitive for g on xi = zm, and let {vi`}` be
optimal weights (independent of i) for these blocks achieving fbs(g, zm).

We show that the sets Ak,` = ∪i∈Bk
T i` with weights wk,` = uk · v` are “relaxed disjoint”. For

any coordinate (i, j) the sum of weights for blocks containing this coordinate is at most 1 as

∑
k,`:(i,j)∈Ak,`

wk,` =
∑
k:i∈Bk

∑
`:j∈T i

`

wk,` =
∑
k:i∈Bk

uk · ∑
`:j∈T i

`

v`

 ≤ ∑
k:i∈Bk

uk ≤ 1 .

The total weight assigned to the sets Ak,` is
∑

k,`wk,` = fbs(f, zn) · fbs(g, zm). As this is a feasible
solution for fractional block sensitivity linear program we conclude that fbs(f ◦g, znm) ≥ fbs(f, zn)◦
fbs(g, zm)

D Gaps between Block Sensitivity and Fractional Block Sensitiv-
ity of Composed Functions

In this section we prove Claim 5.10. In the proof we use the next lemmas and the following
definition.

Definition D.1. Let f : {0, 1}n → {0, 1}, we say f is monotone increasing (decreasing) if x ≥ y
pointwise implies f(x) ≥ f(y) (f(x) ≤ f(y)). We say that f is monotone if either cases hold.

Lemma D.2 ([Nis89]). Let f : {0, 1}n → {0, 1} be a monotone function then sens(f) = bs(f) =
C(f).

Lemma D.3 ([Nis89]). Let f : {0, 1}n → {0, 1} be a Boolean function, and z ∈ {0, 1} then
Cz(f) ≤ bsz(f) · sens1−z(f).

Lemma D.4. Let f and g be Boolean functions, then bsz(f ◦ g) ≥ bsz(f) ◦min(bs0(g),bs1(g))

Proof. Let p0 and p1 be the inputs maximizing bs0(g) and bs1(g) respectively and let y be the
input maximizing bsz(f). Take the input x = (x0||x1|| . . . ||xn−1) where xi = pyi and consider the
block sensitivity of f ◦ g on this input. f has bsz(f) many disjoint blocks on y and each block can
be expanded into at least min(bs0(g),bs1(g)) disjoint sensitive blocks for f ◦ g on x.

Lemma D.5. Let f, g be Boolean functions such that f is not monotone and let z ∈ {0, 1}, then

1. bs(f) ≥ 2

2. bsz(f ◦ g) ≥ bs(g)

3. fbsz(f ◦ g) ≥ fbs(g)

4. The sequence {bsz(f `)}`∈N is monotone increasing and tends to infinity.

Proof. 1. Any function with bs(f) = 1 is either f(x) = xi or f(x) = 1 − xi for some i. Either
functions are monotone, hence any non-monotone function has bs(f) ≥ 2.

23

2. Let z′ ∈ {0, 1} be such that bsz
′
(g) = bs(g). Since f is not monotone, there is an input

y = y(z′, z) and a bit i ∈ [n] such that yi = z′ and changing yi from z′ → 1 − z′ makes a
z → 1− z change in the output of f . Let p0 and p1 be inputs maximizing bs0(g) and bs1(g)
respectively, and take the input x = (x0||x1|| . . . ||xn−1) where xi = pyi . First, (f ◦ g)(x) =
f(y) = z. Second, by our choice of i, changing each sensitive block of g on xi changes the
value of f ◦ g and we have bs(g, xi) = bs(g) such sensitive blocks.

3. The bound on fbsz(f ◦ g) can be proven similarly.

4. By Property 2 bsz(f `+1) ≥ bs(f `) ≥ bsz(f `). It remains to show that the sequence diverges.
Combining Property 2 above and Lemma D.4 gives that for any k ∈ N:

bsz(f2k) ≥
Lemma D.4

bsz(f2) ·min(bs0(f2k−2),bs1(f2k−2))

≥
Property 2

bs(f) ·min(bs0(f2k−2),bs1(f2k−2)) .

Induction gives bsz(f2k) ≥ bs(f)k which in turn is at least 2k by Property 1.

Claim (Claim 5.10, restated). Let f : {0, 1}n → {0, 1} then for integer ` ∈ N the ratio fbs(f `)/bs(f `)
is at most c(n) = 25 · n2 · 2n i.e. independent of `.

Proof. If f is monotone then f ` is monotone and by D.2 we have that bs(f `) = C(f `). Hence, in
this case, fbs(f `) = bs(f `), and we can assume that f is not monotone for the rest of the proof.

Let z ∈ {0, 1}. Denote by rz` ,
(

bsz(f`)
fbsz(f`)

)
and r` , min(r0` , r

1
`). We show that r` is a lower

bound on the ratio bs(f `)/fbs(f `). Let z′ ∈ {0, 1} such that fbsz
′
(f `) = fbs(f `), then we have

bs(f `)

fbs(f `)
=

bs(f `)

fbsz
′
(f `)

≥ bsz
′
(f `)

fbsz
′
(f `)

= rz
′
` ≥ r` .

By Lemma D.5,4, there exists a minimalm ∈ N such that bs(fm) ≥ 2·2n. Then, by Lemma D.5,2
for any z ∈ {0, 1} we have bsz(fm+1) ≥ 2 · 2n. On the other hand, since m is the minimal such
integer, using Theorem 3 gives

bsz(fm+1) ≤ bs(fm+1) ≤ fbs(f2) · bs(fm−1) ≤ n2 · 2 · 2n .

By Lemma D.3 and Theorem 2 we have for all ` ∈ N:

fbsz(f `) ≤
Thm 2

Cz(f `) ≤
Lemma D.3

bsz(f `) · sens1−z(f `) ≤ bsz(f `) · bs1−z(f `)

In particular, for ` ≤ m+ 1 we have

rz` =
bsz(f `)

fbsz(f `)
≥ 1

bs1−z(f `)
≥

Lemma D.5,4

1

bs1−z(fm+1)
≥ 1

2 · n2 · 2n
.

Next, we show that for ` ≥ m+ 1:

r`+1 ≥ r` · (1− 2−1−b
l−(m+1)

2
c) .

24

This will finish the proof as it gives a global lower bound on all r`s for ` ≥ m+ 1:

r` ≥ rm+1 ·
∞∏
i=1

(1− 2−i)2 ≥ rm+1 · 0.08 ≥ 1

2n · 25 · n2
.

Let x = (x0||x1|| . . . ||xn−1) be the input maximizing fbsz(f ◦ f `). Let y be the intermediate
values in the composition f ◦ f ` i.e. yi = f `(xi). For p0, p1 which maximizes bs0(f `), bs1(f `)
respectively, take x̃ = (x̃0||x̃1|| . . . ||x̃n−1) to be an input such that x̃i = pyi . Let B0, . . . , Bk−1 be
the minimal sensitive blocks for f on y, then the value of fbs(f `+1) is the optimal value for the
following linear program

max
∑k−1

j=0 wj

s.t.
∑

j:i∈Bj
wj ≤ fbs(f `, xi) for all i ∈ [n]

wj ≥ 0 for all j ∈ [k]

Denoting the optimal weights by w∗j , and taking wj = bw∗j · r`c gives

∀i ∈ [n] :
∑
j:i∈Bj

wj ≤ bs(f `, x̃i) .

Thus, {wj}j∈[k] a feasible solution for the block sensitivity integer program for bs(f ◦ f `, x̃). As

(f ◦ f `)(x̃) = z, this shows that

bsz(f `+1) ≥ fbsz(f `+1) · r` − 2n ,

hence the ratio

rz`+1 =
bsz(f `+1)

fbsz(f `+1)
≥ r` −

2n

fbsz(f `+1)
.

For z′ which minimizes rz
′
` we have

rz`+1 ≥ r` −
2n

fbsz(f `+1)
= r`

(
1− 2n

fbsz(f `+1)
· fbsz

′
(f `)

bsz
′
(f `)

)
≥

Lemma D.5,3
r`

(
1− 2n

bsz
′
(f `)

)
Previous lemmas gives

bsz
′
(f `) ≥

Lemma D.4
bsz

′
(f `−(m+1)) ·min(bs0(fm+1), bs1(fm+1)) ≥

Lemma D.5,4
2b

`−(m+1)
2

c · (2 · 2n) .

Thus r`+1 ≥ r` · (1− 2−1−b
`−(m+1)

2
c), which completes the proof.

25

	Introduction
	Our Results and Techniques
	Related Work

	Preliminaries
	Complexity Measures for Boolean Functions
	Discrete Fourier Transform
	Function Composition

	Function Composition Properties
	A. Kalai's Question
	Boolean Functions from The Walsh-Hadamard Code
	Counterexample for A. Kalai's Question
	Polynomial Separations between Degree and Minimal Restriction Size

	Block-Sensitivity of Function Composition
	Block Sensitivity as a Special Case of Set Packing
	Fractional Certificate Complexity is Randomized Certificate Complexity
	Previous Results Regarding Set Cover and Set Packing

	Upper Bounding The Block Sensitivity of BFC
	Analysis of an Example
	Block Sensitivity and Certificate Complexity Separation

	Improving Nisan-Szegedy Bound
	Discussion
	Acknowledgements
	Properties of the IP function
	Generalization to Epsilon-Biased Sets
	Fractional Block Sensitivity of Function Composition
	Gaps between Block Sensitivity and Fractional Block Sensitivity of Composed Functions

