
The Bulletin of the EATCS

215

Book Introduction by the Authors
Invited by

Kazuo Iwama

iwama@kuis.kyoto-u.ac.jp
Bulletin Editor

Kyoto University, Japan

BEATCS no 113

216

Boolean Function Complexity
Advances and Frontiers

Stasys Jukna∗

Go to the roots of calculations! Group the operations.
Classify them according to their complexities rather
than their appearances! This, I believe, is the mission
of future mathematicians.

– Evariste Galois

What it is all about?
My book [5] is all about proving lower bounds.

Roughly speaking, research in Computational Complexity has two tightly
interconnected strands. One of these strands—structural complexity—deals with
high-level complexity questions: is space a more powerful resource than time?
Does randomness enhance the power of efficient computation? Is it easier to verify
a proof than to construct one? So far we do not know the answers to any of these
questions; thus most results in structural complexity are conditional results that
rely on various unproven assumptions.

My book [5] is about the life on the second strand—circuit complexity. In-
habitants of this strand deal with establishing unconditional lower bounds on the
computational complexity of specific problems, like multiplication of matrices or
detecting large cliques in graphs. This is essentially a low-level study of computa-
tion; it typically centers around particular models of computation such as decision
trees, branching programs, boolean formulas, various classes of boolean circuits,
communication protocols, proof systems and the like.

Why yet another book?
More than twenty years have passed since the well-known books on circuit com-
plexity by Savage (1976), Nigmatullin (1983), Wegener (1987) and Dunne (1988)

∗Goethe University Frankfurt, Germany, and Institute of Mathematics and Informatics, Vilnius
University, Lithuania. jukna@thi.informatik.uni-frankfurt.de. Research supported by
the DFG grant SCHN 503/6-1.

The Bulletin of the EATCS

217

as well as a famous survey paper of Boppana and Sipser (1990) were written.
Albeit in the meanwhile some excellent books in computational complexity appear-
ed—including those by Savage (1998), Goldreich (2008) and Arora and Barak
(2009)—these were mainly about the life on the first strand—structural complexity.
So, it was the time to collect the new developments in circuit complexity during
these two decades.

Almost everything is complex
It is known for now more than 70 years that most boolean functions require
circuits of exponential size. In particular, Shannon, Lupanov and his students
even established the following tight asymptotic for the maximum {∧,∨,¬}-circuit
complexity C(n) = max f C(f) of a boolean function of n variables:

1 +
log2 n

n
− O

(1
n

)
≤ C(n) ·

n
2n ≤ 1 +

log2 n
n

+
log2 log2 n

n
+ O

(1
n

)
Using these estimates, one can, say, easily prove the “Circuit Hierarchy Theorem”:
for every n ≤ t(n) ≤ 2n−2/n, there are boolean functions computable by circuits of
size 4t, but having no circuits of size t. In a similar vein is the result that, for every
k ≥ 1, there exist boolean functions fn of DNF-size n2k+1 such that C(fn) > nk.

Unfortunately, these (and many other) results only show a mere existence of
hard boolean functions. An ultimate goal of circuit complexity, however, is to
exhibit such hard functions, and to understand why they are hard. Say, why the
threshold function (does a given graph have k edges) is “simple”, whereas the
clique function (does a given graph has a clique with k edges) is “hard”. And here,
as in many other fields of mathematics—where the question comes to construct
particular objects—the situation is much worse: the strongest known lower bounds
on the unrestricted {∧,∨,¬}-circuit complexity of explicit boolean functions remain
of the form cn for some small constants c; the current record remains c = 5.

Strong (even exponential) lower bounds were only obtained for various re-
stricted circuit models. Below I give a rough overview of the book’s contents.

Forget what was done: Formulas
Formulas are {∧,∨,¬}-circuits whose underlying graphs are trees. That is, these
are the circuits without any memory: if we want to use some already computed (by
a sub-formula) function g in another place, we are forced to re-compute g again.
Some results:

• Formulas can be balanced: if f can be computed by a formula of size L(f),
then f can be computed by a formula of depth D(f) ≤ 1.73 log2 L(f). For

BEATCS no 113

218

circuits, we only know that if f can be computed by a circuit of size S , then
f can be also computed by a circuit of depth O(S/ log S).

• The maximum of D(f) over all boolean functions f of n variables is asymp-
totically equal n − log2 log2 n.

• If a boolean function f can be computed by a depth-d {∧,∨,¬}-formula
using unbounded fanin AND and OR gates and having S leaves, then D(f) ≤
d− 1 + dlog2 S e. Note that a trivial upper bound, obtained by simulating each
gate by a binary tree, is only D(f) = O(d log S).

• The depth of a circuit (or formula) is equal to the communication complexity
of the following “find a separating bit” gate: Alice gets a vector a ∈ f −1(1),
Bob gets a vector b ∈ f −1(0), and their goal is to find a bit i ∈ [n] such that
ai , bi.

• Khrapchenko’s lower bound: Form a bipartite graph G f with parts f −1(1)
and f −1(0) by drawing an edge (a, b) if and only if a and b differ in exactly
one bit. Then L(f) is at least the product of the average degrees of the left
and right parts of the graph G f . This gives the lower bound L(⊕n) ≥ n2 for
the Parity function ⊕n(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn.

• There were many attempts to extend Khrapchenko’s measure to obtain lar-
ger lower bounds. His measure is sub-modular and convex. It turned out,
however, that no sub-modular or convex complexity measures can break
down this quadratic barrier.

• A weaker bound L(⊕n) = Ω(n3/2) was earlier proved by Subbotovskaya
by inventing the method of random restrictions. Currently, this method is
widely used, in particular, to prove lower bounds for constant-depth circuits
and communication protocols.

• When properly applied, Subbotovskaya’s approach yields up to Ω(n3−o(1))
lower bounds, and this is a current record for {∧,∨,¬}-formulas.

• Other lower-bounds arguments for formulas are known as well: the method
of “universal” functions for formulas where all binary boolean functions are
allowed as gates, the method based on graph entropy, and the relation of
formula size with the affine dimension of graphs.

• Lower bounds for monotone formulas were obtained by using rank as well
as communication complexity arguments. In particular, rank arguments give
tight superpolynomial lower bounds nΘ(log n) for functions induced by Paley
graphs, as well as tight lower bounds for monotone quadratic functions.

The Bulletin of the EATCS

219

Communication complexity arguments yield lower bounds nΘ(log n) even for
such “simple” boolean functions as the s-t connectivity function.

• Superpolynomial lower bounds nΘ(log n) were also obtained for so-called
monotone span programs, a model which may be even exponentially more
powerful than monotone formulas. A span program for a boolean function
f (x1, . . . , xn) is a 0/1 matrix whose rows are labeled by literals (variables and
their negations); one literal can label several rows. A program is monotone
if there are no negated labels. When an input a ∈ {0, 1}n arrives, all rows
whose labels are inconsistent with a are removed, and input a is accepted if
the remaining rows span the all-1 vector over GF(2).

Forbid negations: Monotone circuits

These are circuits with fanin-2 AND and OR gates, but no NOT gates. Despite
of its seeming “simplicity”, this model resisted any attempts to prove larger than
linear lower bounds.

• The situation changed in 1985-86 when Razborov came with his “method of
approximations”, and proved a super-polynomial lower bound for the clique
function. After that some modifications and extensions of his method were
suggested. Razborov approximated gates by monotone DNFs and used the
Sunflower Lemma of Erdős and Rado to convert CNFs to DNFs.

• Later, Sipser’s notion of “finite limits” and a monotone Switching Lemma
have led to a symmetric version of Razborov’s argument, where both DNFs
and CNFs are used to approximate gates (a two-side approximation). This
resulted into the following general lower bounds criterion: if a monotone
boolean function has a monotone circuit of size t, then it is t-approximable.

Being t-approximable mean that there exist integers 2 ≤ r, s ≤ n, a monotone
s-CNF C(x), a monotone r-DNF D(x), and a subset I ⊆ [n] of size |I| ≤ s− 1
such that |C| ≤ t · (r−1)s, |D| ≤ t · (r−1)s, and either C ≤ f or f ≤ D∨

∨
i∈I xi

hold. Important here is that the s-CNF C has only t ·(r−1)s out of all possible(
n
s

)
clauses, and similarly for the r-DNF D.

• This criterion holds even when any monotone real-valued functions g : R2 →

R are allowed as gates, and enables one to obtain in a uniform way strong
lower bounds for a full row of explicit boolean functions. Together with
appropriate interpolation theorems, these bounds have also led to the first
exponential lower bounds for the length of the cutting-plane proofs.

BEATCS no 113

220

• Why should one care about monotone circuits? The point is that this model
has a purely “practical” importance. Namely, lower bounds for such circuits
imply the same lower bounds for (min,+)-circuits, and hence, for dynamic
programming. In this respect, our knowledge about the power of monotone
circuits remains unsatisfying. Say, we still cannot prove that the s-t connec-
tivity or even the connectivity function require circuits of size Ω(n3). Known
dynamic programming algorithms give circuits of size O(n3) for both these
functions.

• It is known that there are monotone boolean functions f (like the Perfect
Matching function) that can be computed by non-monotone circuits of poly-
nomial size, but any monotone circuit for them must have a super-polynomial
number of gates. This rises a question about the role of NOT gates.

• A classical result of Markov implies that M(n) = dlog2(n + 1)e NOT gates
are enough to compute any boolean function of n variables.

• Fisher and other authors substantially improved this by showing that restrict-
ing the number of NOT gates to M(n) can only increase the size of a circuit
by only an additive factor of O(n log2 n).

• It is also know that the Markov–Fisher bound can almost be reached: there
are explicit monotone (multi-output) boolean functions f which have poly-
nomial size circuits only if more than M(n) − O(log log n) NOT gates are
used.

Restrict the time: Bounded-depth circuits

Yet another possibility to “bind circuits hands” is to allow NOT gates as well as
AND and OR gates of unbounded fanin, but to restrict the depth (parallel time) of
the circuit. This model is known as AC0-circuits (“alternating circuits of constant
depth”), and is currently quite intensively investigated.

• AC0 circuits were considered by many authors since early 80’s. When dealing
with them, two major techniques emerged: the depth-reduction method via
appropriate versions of the Switching Lemma, as well as approximation by
low-degree polynomials.

• The depth-reduction argument has led to a tight 2Θ(n1/(d−1)) lower bound on
the size of depth-d circuits computing the Parity function. Moreover, this
function cannot even be approximated by such circuits of polynomial size.

The Bulletin of the EATCS

221

• The approximation by low-degree polynomials argument has led to an ex-
ponential lower bound 2Ω(n1/2d) for the Majority function, even if Parity
functions are also allowed as gates. Similar lower bounds were also proved
when instead of Mod-2 gates, arbitrary prime-modulo functions are allowed
as gates.

• The case of arbitrary, including composite modulo gates remains open. The
class of boolean functions computable by such circuits of polynomial size
is usually denoted by ACC0. Still, Williams (2011) has recently shown that
NEXP * ACC0. This wakes a hope that we will be able to expose a boolean
function f < ACC0 lying in NP or even in P. Actually, the Majority function
still remains as a possible candidate.

• Even AC0-circuits of depth-3 are interesting: by the results of Valiant, any
lower bound 2φ(n) with φ(n) � n/ log log n would give an example of a
boolean function which cannot be computed by a linear size (fanin-2) circuit
of logarithmic depth; proving such a bound is now a more than 30 years old
open problem, and no such bound is known even for {⊕, 1}-circuits.

• Known lower bounds for depth-3 circuits are only of the form 2Ω(
√

n), and can
be obtained using so-called “finite limits” and quite simple combinatorics.
If we require that the circuit must have parity gates (instead of OR gates) at
the bottom (next to the inputs) level, then arguments of graph complexity
allow us to prove even truly exponential lower bounds 2Ω(n). Unfortunately,
Valiant’s construction does not carry over such circuits.

• Motivated by neural networks, people have also considered circuits with
threshold gates. A boolean function f (x1, . . . , xn) is a threshold function
if there exist real numbers w0,w1, . . . ,wn such that for every x ∈ {0, 1}n,
f (x) = 1 if and only if w1x1 + · · ·+ wnxn ≥ w0. For unbounded-depth circuits
with threshold functions as gates, only linear lower bounds are known. Even
depth-3 is here not well understood. Exponential lower bounds are only
known for depth-2 circuits.

Restrict the time, but allow omnipotent power
In general circuits, arbitrary boolean functions are allowed as gates. The size of
such a circuit is defined as the total number of wires (rather than gates). Of course,
then every single-output boolean function f of n variables can be computed by a
circuit of size n: just take one gate—the function f itself. The problem, however,
becomes nontrivial if instead of one function, we want to simultaneously compute
m boolean functions f1, . . . , fm on the same set of n variables x1, . . . , xn, that is,

BEATCS no 113

222

to compute an (n,m)-operator f : {0, 1}n → {0, 1}m. Note that in this case the
phenomenon which causes complexity of circuits is information transfer instead of
information processing as in the case of circuits computing a single function.

• It is clear that every (n,m)-operator can be computed using nm wires, even
in depth 1. However, already circuits of depth 2 constitute a rather non-
trivial model: any operator with ω(n2/ log log n) depth-2 wire complexity
also cannot be computed by linear-size, logarithmic-depth boolean circuits
of fanin 2.

• The strongest known lower bounds for depth-2 are of the form Θ(n3/2), and
were proved for natural operators like the product of two 0/1

√
n ×
√

n
matrices over GF(2). These bounds were proved using particular entropy
arguments.

• A lot of work was done when trying to prove strong lower bounds for general
depth-2 circuits computing linear operators fA(x) = Ax over GF(2). Lower
bounds for such operators are usually derived using appropriate algebraic
arguments (matrix rigidity) as well as graph-theoretic arguments (various
superconcentration properties of graphs).

• The strongest known lower bound for linear operators fA in depth 2 is
about n · φ(n)2 where φ(n) = (ln n)/(ln ln n). The lower bound is proved
using superconcentration properties. Unfortunately, it is known that such
arguments cannot yield larger than n ln2 n/ ln ln n lower bounds. Interestingly,
the upper bounds for these operators are proved in the class of linear circuits,
i.e. depth-2 circuits with only Parity gates. In fact, the question on whether
non-linear gates can help to compute linear operators over GF(2) remains
widely open.

Allow only to branch and join: Branching programs
Decision trees constitute one of the “simplest” models of computation, and a lot of
interesting results were proved for it. Just to mention some of them:

• P = NP∩co-NP holds for decision tree depth; this is proved using elementary
combinatorics.

• P , NP ∩ co-NP holds for decision tree size; this is proved using spectral
arguments.

• The depth of decision trees is related to sensitivity and block-sensitivity of
the computed functions, as well as to the degree of their representation as
polynomials.

The Bulletin of the EATCS

223

• Non-trivial depth lower bounds are also known when arbitrary real threshold
functions (not just xi ≥ 1) are used as decision predicates. In particular, the
Inner Product function requires depth n/2 even in this generalized model.

The model of branching programs (BP) is a generalization of decision trees:
the underlying graph may now be an arbitrary acyclic graph (not just a tree). The
size here is the number of edges.

• For unrestricted BPs the progress was rather minor: the strongest lower
bounds remain Ω(n2/ log2 n) for deterministic, and Ω(n3/2/ log n) for nonde-
terministic BPs, both proved more than 40 years ago by Nechiporuk.

• For symmetric boolean functions, Nechiporuk’s argument cannot yield any
super-linear lower bounds. Such bounds were proved using more subtle
arguments by many authors around 1990.

• One of the most surprising results for general BPs is the theorem of Barring-
ton stating that branching programs of width-5 are not much weaker than
formulas.

• Exponential lower bounds for BPs were proved only when either each vari-
able can be re-tested constant times along each computation path, or when at
most cn variables for a sufficiently small constant c > 0 are allowed to be
tested more than once along each computation. The arguments here use a
rather non-trivial combinatorics, probabilistic arguments as well as expander
graphs.

• Still, the situation even with restricted BPs remains rather unsatisfying. In
particular, we are still unable to prove any strong lower bounds for the
following one of the simplest non-deterministic models of “almost read-
once” BPs: these are nodeterministic BPs where every consistent paths
must be read-once (no variable can be tested more than once). The problem
here is that we have no restrictions on inconsistent paths (those containing
contradictory tests xi = 0 and xi = 1 on some variable).

Allow only to chat: Communication complexity
Since communication complexity has a comprehensive treatment in an excellent
book by Kushilevitz and Nisan of 1997, we have restricted ourselves to results
essentially used later in our book, as well to some newer results. In particular,
we describe the progress concerning the so-call “rank-conjecture”, prove that
P = NP ∩ co-NP holds for fixed-partition games, whereas P , NP ∩ co-NP holds
for best-partition games, present lower bounds on randomized protocols, and
Forster’s (2002) celebrated lower bound on the sign-rank of ±1 matrices.

BEATCS no 113

224

Applications: Proof complexity
The last two chapters of the book are devoted to some applications of the pre-
vious results when lower-bounding the length of resolution and cutting-planes
proofs. The point is that so-called regular resolution proofs are, in fact, read-once
branching programs solving particular search problems (find an unsatisfied clause
in the given CNF). On the other hand, the length of cutting-plane proofs can be
lower-bounded using some communication complexity arguments or using the
interpolation theorem together with lower bounds on the size of monotone circuits
with real-valued gates.

What’s new: Some features
• The book discusses some topics, like graph complexity or method of fi-

nite limits, that are not known well enough even for specialists in circuit
complexity.

• Gives new proofs of classical results, like lower bounds for monotone circuits,
monotone span programs and constant-depth circuits.

• Presents some topics never touched in existing complexity books, like graph
complexity, span programs, bounds on the number of NOT gates, bounds on
Chvátal rank, lower bounds for circuits with arbitrary boolean functions as
gates, etc.

• Relates the circuit complexity with one of the “hottest” nowadays topics –
the proof complexity.

• Contains more than 40 specific open problems, two of which were already
re-solved after the book was published.

• The main feature, however, is the inclusion of many results of Russian
mathematicians which remained unknown in the West. Just to give an
example, the following result proved by Lupanov already in 1956 was later
re-discovered by many authors (with much more involved proofs): every
bipartite n × m graph can be decomposed into edge-disjoint bipartite cliques
so that the sum of their nodes does not exceed (1 + o(1))nm/ log2 n.

Epilogue
At the end of the book, I shortly sketch some stuff not discussed in the main
text: pseudo-random generators, natural proofs, the fusion method for proving

The Bulletin of the EATCS

225

lower bounds, and indirect (diagonalization) arguments. The Appendix contains
all necessary mathematics.

Acknowledgement

I am thankful to Sasha Razborov for his comments on this summary.

References
[1] S. Arora and B. Barak (2009): Computational Complexity: A Modern Approach.

Cambridge University Press. www.cs.princeton.edu/theory/complexity/

[2] R. B. Boppana and M. Sipser (1990): The complexity of finite functions, in: Handbook
of Theoretical Computer Science, Volume A: Algorithms and Complexity (A), 757-
804.

[3] P. E. Dunne (1988): The Complexity of Boolean Networks. Academic Press Profes-
sional, Inc., San Diego, CA. http://cgi.csc.liv.ac.uk/~ped/RESUME.html

[4] O. Goldreich (2008): Computational Complexity: A Conceptual Perspective. Cam-
bridge University Press. www.wisdom.weizmann.ac.il/~oded/cc.html

[5] S. Jukna (2012): Boolean Function Complexity: Advances and Frontiers. Springer-
Verlag. The home page of the book with a suplementary material: www.thi.cs.
uni-frankfurt.de/~jukna/boolean/

[6] R. G. Nigmatullin (1983): The Complexity of Boolean Functions. Izd. Kazansk. Univ.
(Kazan University Press, in Russian).

[7] J. E. Savage (1976): The Complexity of Computing. Wiley, New York.

[8] J. E. Savage (1998): Models of Computation: Exploring the Power of Computing.
Addison-Wesley. The book is freely available for download at:

http://www.cs.brown.edu/~jes/book/home.html

[9] I. Wegener (1987): The Complexity of Boolean Functions. Wiley-Teubner. The book is
freely available for download at:

http://eccc.hpi-web.de/static/books/The_Complexity_of_Boolean_
Functions/

