Theoretical Computer Science 2 (1976) 305-315.
© North-Holland Publishing Company

A LOWER BOUND ON THE NUMBER OF ADDITiONS
IN MONOTONE COMPUTATIONS

C. P. SCHNORR
Fachbereich Mathematik, Universitdt Frankfurt, Frankfurt, Federal Republic of Germany

Communicated by Maurice Nivat
Received October 1974
Revised August 1975

Abstract. A computation of rational polynomiais that only uses variables, positive rational
numbers and the operations addition and multiplication is called a monotone, rational computa-
tion. We prove a ~neral lower bound on the minimnal number of additions in monotone rutional
compntations. This lower bound implies that any monotone rational computation of the nth

degree convolution at least requires n?—2n + 1 additions. (k\}-l is the minimal number of
/ ¢

additions in any monotone computation of the polynomial that is asociated with the k-clique
problem for graphs with n nodes.

1. Introduction

There is an incre&sing interest in the minimal cost of computations of polynomials
and sets of po!vnomiuls. Up to now very little is known of these minimal costs even
for fundamental protlems such as matrix multiplicat’on and Boolean convolution.
Here we consider a more restrictive problem: The minimal costs of monotone,
rational computations. In monotone, rational computations we only allow the
operations add cion and multiplication a.:d we start from variables and positive
rational numbers. A possible motivation for this decisive restriction are the
favorable stability properties of monotone rational computations with respect to
rounding errors in computers. An operation +, - that is applied un positive values
can at most add :he relative errors of the operands. Therefore, the monotonicity of
the comiputatior: eliminates the possibility that small relative errors may produce
high relative ervors by subtracting two numbers that are approximately equal.

Let L.(f) be the minimal number of additions in any monotcne, rational
computation fo: the monotone polynomial f. We prove a general lower bound on
L. which is sharp in # number of cases. For instance, this bound implies that
n?-2n +1 additions are necessary in any monetone, rational comput:ation of nth
degree convolution, n’— n® additions are necessary in any monotone, rational
computation of nth degree matrix product; this also follows from a more powerful
recent result of M. Paterson concerning the Boolean matrix product.

We shall consider the rational polynomials CL,. that describe the k-cligue

problem for graphs with n nodes. We prove L.(CL..) = (Z) -- 1. This shows that
305

306 C. P. SCHNORR

our method yields exponentially iower bounds such as L.(CLzn.) = (2:') —1=2Vv"
for poly-».mials with 2n variables. v

Let #:{CL...) be the Boolean polynomial which corresponds to CL,n.. If we
could prove that the network complexity of a (CL.,.) increases faster than n* for
every fixed k then this would solve the famous P = NP? problem in the sense that
P # NP. Hereby P and NP are the classes of decision problems that are solvable on
deterministic, resp. non-deterministic Turing machines in polynomial time (see
[1, 3]). Observe that the clique-problem is in NP and that the network complexity of
the Boolean function f yields a lower bound on the running time of every Turing
program for f (see [2, S)).

This raises the question on the size of the gap between L.(f) and the network
complexity of the corresponding Boolean polynoinial a (f). How much can Boolean
identities help in Boolean computations? It is an open problem whether our lower
bound also holds for monotone Boolean computations. Obviously our lower bound
does not hold for general rational computations and general Boolean computations
(i.e. logical networks). This follows from well-known fast computations for the
matrix product and for convolution. But we do not know how much subtraction can
help in rational computations of monotone polynomials.

2. Msnotone computations of monotone rational polynomials

Let Q be the fieid of rational numbers. Let V = {x; |i € N} be a countable set of
rational variables. Let (2 be the set of all polynomials with coefficients in Q and
variables in V.

fEQ is called totally monotone iff all coefficients of f are positive rational
‘numbers. Let (2. C(} be the set of all totally monotone, rational polynomials. Let
Q. CQ be the set of all positive rational numbers.

The following operations are used in monotone computations:

(1) all positive rationals in Q.,

(2) ali variables in V,

(3) addition + and multiplication - applied on functions.

A monotone computation is a finite, directed, acyclic labelled graph 8 such that

(1) Each node v is labelled with some operation in Q. UV U{:, +}.

(2) If » is labelled with + or - then » has exactly two entering edges that
correspond to the cntries of + and -, resp.

(3) If v is labelled with a constant or a variable then v has no entering edge. In
this case v is called ar. entry of B.

In an obvious way B associates with every node » a rational polynomial
resg, € &, that is obtained by applying the operation of node v to the results of the
dirertly preceding nodes.

Let I CQ). then we say “B computes F it “Vf € F: 3node v in 8: resg, = f.

Obviously the monotone rational computations exactly compute all totally

MONOTONE COMPUTATIONS 307

monotone rational polynomials. For F C{. let L.(F) be the minimai number of
additions in any monotone computation that computes F.

fe€Qis called a monomial if either f is the constant 1 or if f is a product of
variables. Let mon C(}. be the set of all monomials.

With f € (), we associate a set mon(f) C mon of monomials by requiring 3r:
iron(f)— Q. such that

f= 3 r(m)m.

meEmon(f)

With f € () we associate the set V(f)C V of variables of f.
Our method for proving lower bounds is based on the following theorem that
describes the method of inductive substitution.

Theorem Z.i. Every function # :Q.—>NU/{»} that satisfies (1)-(5) is a lower
bound on L., i.e. Vf€ Q.: #(f)< L.(f).

1) Yx,€Vv: #(x)=0,

() f=Ffuesss and x,,x, & V(f) implies #(f)< #()+1,

3) famc -z, and x., x, & V(f) implies # ()< #(f),

@) fev=x, implies # (F)< # (f),

(5) f=fu.-q and q €EQ. implies # ()< # (f).

Clauses (2)-(5) describe a number of substitution steps. In each of the.se clauses f

is obtained from f by substituting a new raticnal function for (each occurrence) of
some variable of f.

§) -y
]

Proof. Let B b any computation of f, i.e. resg, = f. By inserting one additional
operation, addition or multiplication at an entry of 8 we obtain a new computation
p that computes f. f can be obtained from f by one substitution step of either clause
(2) or clause (3) and tvo following substitution steps of clause (4) and clause (5) that
identify the new variables x,, x,. (occurring in clauses (2), (3)) with some old variable
of f or with a rational constant g € Q.. In the case that an addition + is inserted at
an entry of 8 «,lauses (2), @), 5) imply #(f)< #(f)+ 1. In the case that a
multiplication - is inserted clauses (3), (4), (5) imply # (f)< # (f).

Since every cumputation is obtained from an initial computation that consists
only of variables and constants by successively inserting additions and multipiica-
tions at an entry of the preceding computation it follews by induction on the
number of arithmetical operations in 8 that # (ress,) < “number of additions in

B", D
3. A gencral lower bound on the number of additions in monotone, rational
computations

At the first glance we might think that those polynom:als f & (), are hard to
compute which consist of a large set mon(f) of monomials. However, this idea fails

308 | C. P. SCHNORR

since one additional multiplication can increase the number of monomials consider-
ably. For instance a multiplication of two sums f = 2., and g = 37, b, with 2n
monomials a; and b; yields a product

£f.on= N 1
I'8% & &
=ij=
with n® monomials «.,b. However, in this case a characteristic relation holds for the
monornials of f- g. Th elation can be described by using the following ordering

relation < on mon:
sStSIrEmMonis=¢-r

Then the following relation holds for different monomials a.b;, a;b. and a.b; of f - g:
aib; = ab, a.d; A aib; # ab. A ab, # a.b,

The foilowing concept of a separated subset B C mon(f) will exclude this type of
relation.

Definition 3.1. Let f €). then B Cmon(f) is called separated iff
VrEmon(f):Vs,tEB:r=s-t>[r=s or r=t].

Our object is to prove that every separated subset B C mon(f) implies | B |- 1<
L.(f). This means that the lower bound

(f) = max{| B|| - 1: B Cmon(f) is separated}

measures the power of addition in monotone computations. There are two features
that are expressed by large separated subsets B Cmon(f): (1) there exist many
monomials in mon(f), and (2) the separatedness condition eliminates many
monomials from being in mon(f).

For technical reasons we shall first generalise the bound # . This will simplify
our proofs. Let fEQ. and let ¢ be a map o:V(f)—»mon. Let "=
fop=atpinevay € Q.. f° is obtained from f by substituting the monomials o (x;) for
the variables x; of f, f° is called a substitution function of f. Let Sub(f) be the set of
all substitution functions of f. We set

(f) = max{# (f*): f° € Sub(f)}.
Main Theorem 22. Vf€ Q.: #(f)< L.(f).

The following lemma describes the behaviour of monomials in our substitution
step:;.

Lemma 3.3.

(1) mon(f’)= |J mon(t?),

tEmon(f)

MONOTONE COMPUTATIONS 309
{2) mon(fu:-x,+x) = {bx1x | bx € mon(f), . & V(b),r + s = k EN}.

Proof. Observe that ¢t € mon(f) = ¢t € mon(f”),

mon(f; + f;) = mon(f;) U mon(f>),
mon(f; - f) = mon(f,) - mon(f,). [

Proof of Theorem 3.2. We apply Theorem 2.1 and prove that # satisfies (1)~(5) in
2.1

(1) Let x; be any variable. Then mon(x?) = {o(x;)}. Hence | mon(x?))| = 1. Thus
(xi) = (.

(2) Let f=fi-urs and x.,x. & V(f). Let f° € Sub(f), let B Cmonff?) be
separated such t'..i | B||= #(f)+1. Then we construct z corresponding f° €
Sub(f) and a separated subse: B Cmon(f°) such that | B||=||B| - 1. We define
o, : V(f)—mon as follows:

a,(x,)={&(x')’ x; # X, for r=wvpu O

a(x.), xi=x,

Lemma 3.4. Suppos: tx, € mon(f), (tx,)* € B - mon(f°+) and (sx,)* € B. This
implies (tx.)° = (sx.)°.

Proof. Obvicusly (tx,)° € mon(f?) and (tx,)” = (tx,)° (sx,.)°. Since B Cmon(f} is
separated, it follows that

(tx.) =(tx,)° or (&x,)° =(sx.).

However (tx,)° = (tx,)° implies & (x,) = &(x..) and therefore yields a contradiction:
(tx,)° € mon(f).

This proves (t+,.)° =(sx.)°. O

Lemma 3.5. Suppose tx, € mon(f), (tx.)° € B — mon(f°+) and (s;x.),{5:x.)° €
B. This implies (s:x.)" = (s:x.)°.

Proof. It follows from 3.4 that

(slxu)& = (txu)& = (st#)&' D

Lemma 3.6. Either (1) or (2) or (3) holds.
(1) B Cmon(f*),
(2) B Cmon(f+),
@) | B nmon(f*)||=| B |- 1.

310 C. P. SCHNORR

Proof. Suppose —(1)A —(2). For every g € B —mon(f) there exists (sx,)’ €
mon(f?) such that g = (sx,.)°. Therefore, 3.5 implies that g is uniquely determined.
This proves 3.6. [

Set B, = B N'mon(f*") for = = #, u. Then B, Cmon(f°") is scparated for r = v, .
Therefore, 3.6 iinplies # ()= # (f)—lor #(f*«)= #(f°)— 1. Hence # (f)=
#{f)— 1.

((3f)) Let f=frms - and x,,x.& V(f). This implies f & Sub(f) and Sub(f)C
Sub(f). Hence # (f)< # (f). _ _)

(4) Let f = f.,.x. This implies f € Sub(f) and Sub(f) CSub(f). Hence # (f) <
(f).

(5) Let f=f, . and re€Q.. Suppose #(f)= #(f°). Then g:=
(fii=1)” € Sub(f) and mon{f”) = mon(g). Hence # (f)< #(g) < # (f).

4. Applications of the main theorem

Our first example is n-degree convolution C,. Let ao, a., .. ., @n-1, bo, by, . . ., ba_, be
2n different variables. Let C, be given as follows:

o = 2 a.b,, k=0,1,...,2n-2;

vip=k
C.=f{a|k=0,1,....,2n-2}.

We first consider the “sum-function” of C,. Let f, .. ., f. be m polynomials and let
2y,...,2» be variables such that Vi,j: z;& V(f;). Then

is called the sum-function of f, .. fm Let

FEY

2n-2
SCn = Z Zk Z avbu
k=0 v+p=k

be the sum-function of n-degree convolution C,.

Theorem 4.1. Evey monotone, rational computation of SC, requires n*—1 addi-
tions ; moreover L.(SC,)=n*—1.

Proof. We prove that mon(SC,) Cmon(SC.,) is separated. Let z.a,bx-., ziasbe—; €
mon(SC,) and suppose that
Zgasbe_; = Ze@by - crashi ;.

Then obviously either (i) or (ii) holds:
(i) two variables of z¢a;b¢-; are variables of z.a,bx-.,
(ii) two variables of za;b; -, are variables of zia:bi-_..

MONOTONE COMPUTATIONS 311

However, every monomial zia;bi; of SC.. is uniquely determined by any choice of
two of its variables. This implies that

zeasbe_; = ziabi-, or zgashe-s = zrasbi-s.

““his proves that mon(SC,) is separated. Therefore our main theorem yields
i..(8C,)=||mon(SC.)||— 1 = n®>— 1. On the other hand the standard monotone
computation of SC, only needs n®—1 additions. [J

Corollary 4.2. The minimal number of additions for monotone, rational computa -
tions of n-degree convolution C, is n*—2n + 1.

Proof. In order to compute SC, from C, we need at most 2n — 2 additions that surn
all the 2n — 1 mor vmials z.cx, k =0,1,...,2n —2. This proves

L.(SC.)sL.(C.)+2n-2.
Hence
L+(Cn)? nz— 2n +].

In this case, too, the standard monotone computation of C, achieves this

bound. O

Our method also applies to matrix muliipiication. The following tlicorem also
follows from a recent result of Paterson [2].

Theorem 4.3. The minimal number of additions for monotone, rational computa-
tions of (n, n)--natrix product is n>-- n?,

Proof. Let aix, bix, 1 < i, k < n, be the 2n? variables for two (n, n)-matrices. Let the
matrix product M, be given as follows:

A

Cik = a;; bj.ka

&
]

L

—

M, =tc|1<ik <n}.
Let

SM,, = x zk: Zik Cik
be the sum-function of the matrix product M,. The z;, are n” additional variables.
We claim that mon(SC,) is separated. This is proved as in the proof of 5.1. For
every monomial, SC, is uniquely determined by an arbitrary choice of two of its
variables. Therefore, our main theorem implies L.(SM,)= n’— 1. This clearly
proves L.(M,)=n"— n® Note that only n*>— 1 additions are required in order to
compute SM,. from M. These lower bounds both are achieved by the standard
monotone computations. [

312 ' C. P. SCHNORR

Finally we give an example of an exponentially increasing lower bound for a
sequence f, of single polynomials. These polynomials f, are associated with the
clique problem that is known to be polynomial complete in NP see [1, 3]).

Let @, 1<i,j<n, be n? variables. Every binary choice of value c;; € {0, 1} for
these variables is the representation of a directed graph with nodes 1,2,...,n.

" ¢;; =1 means that there is an edge from node i to node ji.

A k-clique in (c;;) is a complete subgraph with k nodes. Thus a k-clique in (c,;) is
a (k, k) submatrix with equal row and column indices that only consists of 1’s.
Hence every k-clique in (c;;) is given by k indices 1< p, <v,<...<w <n such
that

oy =1 for 1=<ij<k.
The clique problem is the problem of deciding whether there exists a k-clique in

(c.j). This problem is represented by the following monotone function

WY
CLn,k = ‘2‘ I-I al’i;"]'

ley<pr... <y =n I=ij=<k

This means for binary inputs ¢ = (¢;;) we have CL,«(c)>0 iff the graph that is
associated with ¢ has an k-clique.

Theorem 4.4. The minimal number of additions in any monotone, rational compu-
. . [(n
tation of CL,.x is (k)-- 1.

Proof. It satisfies to prove that mon(CL..) C mon(CL.,) is senarated. Observe that

ffmon(CL...) || = (;:) The separatedness of mon(CL,) immediately follows from

the following:

Fact. Let A, B, C be any three (k, k)-submatrices of an (n, n)-matrix. Suppose that
the set of row indices and the set of column indices coincides for each of the matrices
A,B,C. Lct the set of positions P(A) of A be contained in the union of the
corresponding sets P(B) and P(C). Then it follows that A = B or A = C.

The foilowing picture illustrates this fact:

B

C

This fact and our main theorem implies L+(CL,,,,<)>(Z)~ 1. Obviously the

standard monotone computation of CL,, achieves this bound.

MONOTONE COMPUTATIONS 313

Observe that Theorem 4.4 yields an exponentially increasing lower bound.
L.(CLaun)= () ~122/2n

for the polynomials CL.,. that depend on n? variables.

S. Some generalizations of the concept of separatedness

The concept of separatedness well applies to homogeneous polynomials such as
CL.«, SC. and SM,. However, it does not apply to the non-homogeneous
polynomials such as CL,; + (CL..), SC. +(SC.)’, SM, + (SM..}*.

For instance -zither the set mon(CL..) nor the set {r-¢|t € mon(CL..)} is
separaced in mon(CL,« + (CL,«)?). This difficulty can be handled by the following
modification of the concept of separatednzss.

Defiuition 5.1. A subset B Cmon(f) is called 1-separated if (S1), (S2) hold.
(S1) VrEmon(f): Vs,tEB: r=s-t>[r<s or r<t),
(S2) VrEmon(f): VSEB: r=s > r=s.

Observe that mcn(CL,,) is 1-separated in mon(CL.« + (CL.«)?), mon(SC,) is
1-separated in mon(SC, + (SC.)’) a.s.o.
We define the corresponding lower bound on L. as follows:

(f)=max{|B||—1|B Cmon(f) is 1-separated},
#,(f) = max{ # (f7)| f* € Sub(f)}.

Theorem 5.2. Vf € Q.: #.(f)<L.(f).

Proof. We zpply Theorem 2.1 and prove that # , satisfies (1)-(5) in 2.1. Clauses (1),
(3), (4), (5) are trivial. It remains to consider the crucial clause (2)

() Let f=fr.—r+r and x, x. €& V(f). Let f? € Sul(f), let B Cmon(f°) be
1-separated such that || B || = #,{f)+ 1. Then we construct a corresponding f* €
Sub(f) and a (1)-separated set B Cmon(f°) such that |B||=| B~ 1.

We define g, : V(f)—mon, 7= v, u, as in the proof »f 3.2.

Lemma 5.3. Let (x,.)", (sx.)° € mon(f?), (&x.)” € B —mon(f*), (sx.)’ € B -
mon(f°+). This implies t° = s°.

Proof. Obviously (x,)* = (ex,)° (sx.)°. Since (tx,)" € mon(f°)and B Cmon(f°%)is
1-separated it follows from (S1) that (tx,)” < (tx.)° or (x.)" < (sx.)".

Suppose (ix,)° < (x,)°. This implies ¢(x.)< &(x,). Hence (sx.)” = (sx.)". Since
(sx.)* € mon(f?), (S2) ‘mplies (sx.)" = (sx.)". It follows &(x,)= &(x,). This im-

314 : C. P. SCHNORR

plies mon{f?) = mon(f°~) = mon(f’«) and therefore contradicts our assumption
(tx.)* & mon(f+). Hence (fx.)” <(sx.)’. This implies t* <s° By permuting the
role of tx, and sx, the same argument impiies ¢° = s°. This proves t* =s°. [

Lemma 5.4. Eitier (1) or (2) or (3) holds
(i) B Cmon(f*),
2) B Cmon{f"+), _
() i B nmon(f*)| =B Nmea(f*)||=|B|-1.

Proof. Suppose —(1)A—(2). For every g € B —mon(f™) there exists (sx,)’ €
mon(f°) such that g = (sx,)’. For every k € B — mon(f”) there exists (tx,)* €
mon(f?) such that h = (tx,)°. It foliows from Lemma 5.3 that ¢t* = s° Therefore
h € B —mon(f«) and g € B —mon(f°~) are uniquely determined. This proves
3. O

Obviously B Nmon(f°-) Cmon(f°~) is 1-separated for 7= v, u. Therefore
Lemma 5.4 iraplies

;é n{f”")? # 1(f) -1 or # 1(fc“)> # l(f_:?_ 1.
This implies # ,(f)= # ,(f)— 1. Hence (2) in 2.1 holds and this proves 5.2. [

Cerollary 5.5.
Lo(CLus +(CLu)=(}) -1,

L.(SC. + (SC.}}) = n*—1.

Proof. mon(CL,«)Cmon(CL,, + (CL..)) is 1-separated. mon(SC,)C
mon(SC, + (SC.)) is 1-separated. Observe that these bounds are rather sharp since

L.(CLux + (CLok) < (L)

L.(SC. +(SC.))<n®. O

Next we consider the problem whether these bounds apply to the Boolean case.
In the Boolean case we substitute A for - and v for + and Boolean variables for
rational variables. Let (22 be the set of all monotone Boolean functions. We
consider monotone Boolean computations for functions f € 03, i.e. logical net-
works with the operations A and v. Let L.(f) be the minimal number of v-gates in
any monoicne Boolean computation for f € Q3.

There is a natural translation of the concept of separatedness to the Boolean
ciase. Boolean monomials are also called implicants. The relation i <s for
implicants s is defined as t<s<>tas=1+ Let prime(f) be the set of prime
implicants of f € Q. A subset B Cprime(f) is called b-separated if Vr € prime(f):
Vs,tEEB: r=sat=>[r=s5 orr=t].

MONOTONE COMPUTATIONS 315

Define
s(f) = max{|| B |- 1| B Cprime(f) is b-separated}.

A main open problem is to prave or to disprove the following:

Conjecture 5.6. V€ Q}: L.(f) = # .(f).

One difficulty in proving 5.6 is that an applicaticn of a substitution f: =f, ., ..,
can eliminate prime implicants of f which do rot depend on x;; these prime
implicants can be absorbed by greaier prime implicants that are generated in the
same substitution step. This possibly may iead to # ,(f) > # ,(f) in a case where
prime implicants of f disappear which prevent certain subsets B Cprime(f) to be
b-separated.

It should be observed that there are some characteristic connections between L,
and L.. Let a : Q.— Q2 be the natural transformation which is inductively defined
as follows:

Vr<Q.: a(r)=1,
Vg €EQ: a(f+g)=a{}valy),
Vg =Q.: a(f-g)=a(f)ra(g).

Moreover @ mups rational variables into Boolean variables in a cne-one manoer. It
can easily be seen that

L.(f)=min{L.(g)|a(g)=f} for fe€Qi.

(=) Every monotone, rational computation for g yields a monotone Bonlean
computation for a(g) by replacing + by v and - by A.

(=) Every monotone Boolean computation B yields a monotone rational
computation 8 by replacing v by + and A by - . Obviously res; = a(resg).

Some more details that relate different concepts of separatedness for rational

polynomizls to the concept of b-separatedness for Boolean polynomials can be
found in {6].

References

[1] S. A. Cook, The complexity oi theorem-proving procedures, Symposium on Theory of Computing
(1971) 151-158.

[2] M. J. Fischer, Lectures on network compiexity. Preprint Universitit Frankfurt (1974).

{3] R. M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computa-
tions, R. E. Miller and J. W. Thatcher (eds.) (Plenum Press, New York, 1972) 85-104.

[4] M. S. Paterson, Complexity of monotone networks for Boclean matrix product, Theoret. Comput.
Sci. 1 (1975) 13-20.

{5] C.P. Schnorr, The network complexity and the Turing machine complexity of finite functions, Acta
Informat., to appear.

[6] C. P. Schnorr, A lower bound on the number of additions in monctone computations of monotone
rational polynomials, Preprint Universitit Frankfurt (1974).

