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Abstract. A computation of rational polynomiais that only uses variables, positive rational 
numbers and the operations addition and multiplication is called a monotone, rational computa- 
tion. We prove a . -rreral lower bound on the minimal number of additions in monotone rsitional 
complxations. This lower bound implies that any monotone rational computation of the nth 

degree convolution at least requires n2 - 2n -I- 1 additions. - 1 is the minimal nllmber of . 

additions in any monotone computation 
problem for graphs with n nodes. 

of the polynomial that is asociated with the k-clique 

1. Introduction 

There is an increasing interest in the minimal cost of computations of polynomials 
and sets of polvnomkils. Up to now very little is known of these minimal costs even 
for fundamental problems such as matrix multiplicution and oolean convolution. 
Here we consider a more restrictive problem: The minimal costs of monotone, 
rational computations. In monotone, rational computations we only :allovv the 
operations addcion and multiplication a,rd we start from variables and positive 
rational numbers. A possible motivation for this decisive restriction are the 
favorable stability properties of monotone rational computations with respect to 
rounding errors in computers. An operation + ,e that is applied tin positive values 

can at most add the relative errors of the operands. Therefore, the monstonicity of 
the csniputatior eliminates the possibility that small relative errors may produce 
high relative err’ors by subtracting two numbers that are approximately equal. 

Let L+(f) be the minimal number of tions in any monotone, rational 
e prove a general lower bou.nd on 

I,, which is shar 
- 2n + 1 additions are net onotone, I ational co 

recent result 0 
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our method yields exponentially lower bounds such as L+(CI.+J = (5:) - 1= F’” 
for polysc9mials with 2n variables. 

\ ‘ 

&et !x(&,,~) be the oolean polynomial which eorrespon 
could prove that the network complexity of a(& creases faster than 
every fixed k then this would solve the famous P problem in the sense that 

ereby P and N are the classes of decision problems that are solvable on 
deterministic, resp. non-deterministic Turing machines in polynomial time (see 
[t, 31). Observe that the clique-problem is in NP and that the network complexity of 
the Boolean function p yields a lower bound on the running time of every Turing 
program for f (see [Z, 5)). 

This raises the question on the size of the gap between L+(f) and the network 
com,plexity of the corresponding Boolean polynomial a! cf). How much can Boolean 
identities help in Boolean computations? It is an open problem whether our lower 
bound also holds for monotone Boolean computations. Obviously our lower bound 
does not hold for general rational computations and general Boolean computations 
(i.e. logical networks). This follows from well-known fast computations for the 
matrix product and for convolution. But we do not know how much subtraction can 
help in rational colmputations of monotone polynomials. 

done ratio olynomiah 

be the field of rational numbers. Let V = (Xi 1 i } be a countable 
t variables. Let Sz be the set of all polynomials h coeficients in 

variables in V. 
is called totally monotone iff all coefficients of f are positive rational 
. Let a+ Cfl be the set of all totally monotone, rational polynomials. Let 
e the set of all positive rational numbers. 

The following operations are used in monotone computations: 
(1) all positive rationals in 
(2) all variables in V, 

(3) addition + and multiplication l applied on functioas. 
ation is a finite, directed, acyclic labelled graph fi such that 

e l:ntries of + and ., resp. 
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otone rational polynomials. ) be the minimal number of 
tions in any monotone corn 

is called a monomial if is the constant 1 or if f is a product of 
s. Let mon Co+ be the set of $1 monomials. 

a+ we associate a set mon(f)C mon of monomials by requiring 3r: 

f 
= r(m)m. 

m Emon 

With f E a we associate the set V(f) C V of variables of fi 
Our method for proving lower bounds is based on the following theorem that 

describes the method of ind ctive substitution. 

Theorem 2.9. function # : U(m) that satisfies (I)+) is a lower 
bound on L,, i.e. Esz,: #cf)s 

(1) VXi E V: #(Xi)=09 
(2) T = f*,:=+,+x(, and xy, x,, $?! V(f) implies # (f) s # (f) + 1, 
(3) T = f Xi:=fy’Xp and x, x, Sr V(f) implies # (f> s # (f), 
(4) f’ = fX”:=+ 
(5) f = fXyzzq and q E + implies # (f) s # cf). 

Clauses (2~(5) describe a nu ber of substitution steps. In each of tkse clauses f 
is obtained from f by substituting a new rational function for (each occurrence) of 
some variable of f. 

rcrof. Let p bP an) computation of f, i.e. r Q., = fi By inserting one additional 
operation, addition or multiplication at an en of p we obtain a new computation 
fi that computes f f can be obtained from f by one substitution step of either clause 
(2) or clause (3) and wo following substitution steps of clause (4) anti clause (5) that 
identify the new variables x,, x, occurring in clauses (2), (3)) with some old variable 
of f or with a rational constant +. In the case that an addition + is inserted at 
an entry of /3 clauses (2), (41, (5) imply # (f) S # (f) + 1. In the case t 
multiplication l is inserted cla 

only of variables a 

number of arit 
uta*bion it folllews 
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since one additional multiplication can increase the number of monomials consider- 
ably. For instance a multiplication of two sums f = xP= I Ui and g == Z&, 6, with 2 
monomials Qi and b yields a product 

with 12’ monomials tii&b However, in this case a characterktic relation holds for the 
monomials of f . g, This relation can be described by using the following ordering 
relation S on mon: 

Then the following reitation holds for different monomials aibj, sib, and a,bj of f - g : 

aibj 3 aibp Q&j A aibj # a,b, A sib, # a,bj. 

The following concept of a separated subset I3 Cmon(f) will exclude this type of 
relation. 

Let f E a, :hilzn B C menu) is called separated iff 

~rEmon(f):Vs,tEB:r~s~t * [r==s or r=t]. 

Our object is to prove lehat every separated subset B C man(j) implies 11 B II- 1 s 

L+U)* is means that the lower bound 

9 cf) = max{fl B II- 1: B C man(f) is separated} 

measures the power of addition in monotone computations. There are two features 
that are expressed by large separated subsets B CmonCf): (I) the-fe exist many 
monomials in mon(j’), and (2) the separatedness condition eliminates man 
monomials from being in man(f). 

For technical reasons we shall first generalise the bound 3 . This will simplify 
our proofs. Let fEn+ and let Q be a map o : V~)-,mon, Let f” = 
f~xj:=o+j)lxjEV~~) E Cl!,. f” is obtained from f by substituting the monomials a(s) for 
the *Mables Xi off, f” is called a substitution function of fi Let Subcf) be the set of 

n functions of fi e set 

) = maxi & (f”): f” E Sub(f)}. 

g le n 
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62) 

bserve that t E man(f) =$ t” E mon(f”), 

roo e apply 2.1 and prove that # satisfies (l)-(5) in 
2.1. 

(1) Let x1 be any variable. hen mon(x:) = {V(xi)}. ence 11 mon(x 7) !I = 1. Thus 

#(Xi)=O. 

(2) Let J = fbr,++ &V(f). Let j%Su ), let B Cmon(p) be 
separated such tY,,r I@ + 1. Then we constr a corresponding f” & 
Sub(f) 2nd a separated subse: B Cmon(f”) such that 1 II- 1. We define 
a, : V(f)--=655 as follows: 

flT(Xj) = 1 @(Xj), Xj# Xi, 

G(Xr), Xj = Xi, 
for 7 = V, j_k. q 

tx, E mon(fl!, (txJ E B - mon(fww) and (SXJ E I!?. This 
implies ( txp )” = (SA 1 )“. 

roof. Obviously (txJ E man(p) and (txp)” 3 (tx,)“(sx,)“. Since B Cmon(p) is 
separated, it follows that 

(tx* I- = (txJ or (txIl )” = (sx,)? 

However (txp )” = (tx”)” implies 6(x,,) = 6(x,) and therefore yiel s a contradiction: 

This proves (t-c, )” = (SX, )@. a 

t follows from 3.4 t 
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. Suppsse l(I) A l(2). For every g E mon(f”v) there exists (sx,)~ E 
mon(f”) such that g = (sx,)? Therefore, 3.5 implies that g is uniquely determined. 

(7 mon(j’“) for T - 7, p. Then 
Therefore. 3.6 iinpliea 3 (f“‘p) 2 # (p) - 1 
#if)-1. 

t f = fXiTEfv.+ and x, xP V(f). This implies JE Sub(f) asld Sub(f) C 

ence # ($, G # (f). 
(4) Let p = fxyzexp- This implies f E Subcf) and Sub(f) CSub ence # (7) G 

# cf)* 
fxGnl and r pose i4;: (f’> = 8 (p). Then g : = 

) and mar@) = nce # (7)s i (g)G # (f). 

ur first example is n-degree convolution C,. Let ~0, al,. . bv G-I, h, h, . . .) &-I be 

2n different variables. Let C, be @en as follows: 

PJk = a,b,, k =:!:,1,...,2n-2; 
v+p=k 

e,:=(c, Ik =O,l, . . . . :!n-2). 

5’Ve first consider the “sum--function” of C,. Let f,, . .!, fm be m polynomials and let 
21, ’ l -9 z, be variables such that i, j: zi E V(h). Then 

is cakd the sum-function of ,f;l . . ., fm. Let 

k=O v+p=k 

he tkre sum-function of n-degree convolution C,. 

vey nmtoione, rational co,~~~tQtion of 
,4X,)= d- 1. 

C,) is separate 



k-v or z1;~i36~-e = z~zi;b~-~. 

erefore our main theorem yields 

n the other hand the standard monotone 
only needs n2 - 1 additions. 0 

her of additions for monotoMe, rational computa- 
tions of n-degree convolution C, is nf - 2n + I. 

oof. In order to compute SC, from C, we need tit ost 2n - 2 additions that sum 
the 2n - 1 mor lmials z&& k = 0, 1,. 2n - . ., 2. 

L+(SC,) S L+(C,) + 2n - 2. 
Hence 

L+(C$wz2-2n + 1. 

In this case, too, the standard monotone computation of C, achieves this 
bound. Cl 

Our method also applies to matrix multipiication. The following Leorem also 
follows from a recent result of Paterson [2]. 

The minimal number of additions for monotone, rational computa- 
tions of (n, n)--rtatrix product is n3--- n2. 

G i, k s n, be the 2n2 variables for two (n, n)-matrices. Let the 
be given as follows: 

et 
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Finally we give an example of an exponentially increasing lowe 
sequence fn of single .polynomials. These polynomials JB are associat 
clique problem that is known to be polynomial complete in see [I, 31). 

Let a4j, I s i, j s pz, be n2 variables. Every binary choice of value chj E (0, 1) for 
these variables the representation of a directed graph with nodes 1,2,. . .+ rc. 
C- d = I means t there is an edge from node i to node j. I 

A k-clique in (cJ:j) is a complete subgraph with k n;ides. Thus a k-clique in (ci,j) is 
a (k, k) submatrix with equal row and column indices that only consists of 1’s. 

ence every k-clique in (ci,i) is given by k indices 1 s Y, c v2 < . . . < vk G n such 
that 

C VbV, = 1 for 1 s i,j s k. 

The clique problem is the problem of deciding whether there exists a k-clique in 
(cbi). This problem is represented by the folliowing monotone function 

This means for binary inputs c = (Ci,j) we have CL&(c) > 0 iff the graph that is 
associated with c has am k-clique. 

re . The minimal number of additions in any monotone, rational compkc- 

tation of CL,:, is L - 1. 
0 

It satisfies to prove 

CL+)11 = ~~). The 

the following: 

thatit mon(CL&) C mon(cL,k) is separated. Observe that 

separatedness of mon(CLn.k) immediately follows from 

, C be arty three (k, k)-submatrices of an (n, n)-matrix. Suppose that 
row indices and the set of mn indices coincides for each of the matrices 

) of A be conta of the 
~o~~espondi~~ sets en it follows that 

e following picture illustrates this fact: 

i 
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Observe that eorem 4.4 yields an exponentially increasin lower bound. 

+(CL%J = (‘n”> -- 1 3 2*“/2n 

or the polynomials C at depend on n* variables. 

. SO ss 

The concept of s ess well applies to homogeneous polynomials such as 
CL0 SC, and owever, it does not apply to th non-homogeneous 
polynomials such n.k + (CL,~)2, SCm + (sCm)*, SMm + ( 

For instance -either the set mon(CL, or the set {t 9 t 1 t E mon(CL&} is 
separated in mon(CL,k + (CL,,k)2). This d andled by the following 
modification of the conl:ept of separatednzss. 

5.1. A subset B Cmon(f) is called l-separated if (Sl), (S2) hold. 

cw VrEmon(f): Ws,tEB: r*s-t*[rSs or rsf], 

w kErnon( VsEB: ras+r==s. 

Observe that mcn(CL,& is l-separated in mon(CL,,k + (CLJ*), mon(SC,) is 
l-separated in mon(SC, + (SC,)*) a.s.o. 

We define the corresponding lower bound on 1L+ as follows: 

9 #cf) = max{li B Ii- 11 B Cmon(f) is l-separated}, 

# 1of) = max{ # (f”) 1 f” E Subcf)}. 

Vf E Sz,: # I(fj s L+(f). 

We apply Theor m 2.1 and prove that satisfies (l)-(5) in 2.1. Clauses (I.), 
), (5) ze trivial. remains to conside e crucial clause (2). 

(2) Let f = f x,:=xy+xlr and x,, x, tif V(f). L 

= V, p, as in the proof ,f 3.2. 



314 C. P. SCWMORR 

plies mon(f”) = monru) = rnor@Q) and therefore contradicts our assumption 
(txJ e man(P). Hence (tx,: )” G (sx, )? This implies tb G s? y permuting the 
role of tx, and sx, the same ,argument impiie$ t” a sb. This proves tQ = sb. IJ 

Lemma 5.4 Either (1) ot (2) ot (3) holds 
(i) B Cmon(f”~), 
(2) B Cmonp), 
(3) 10 B n monCf”u) II= 11 S n rnanIf”~~) II = II B II - 1. 

Proof. Suppose ~(1) A l(2). For every g E B - mon(f”*) there exists (sx”)’ f 
mon(f”) such that g = (sx,.)‘? For every h E B - mon(f*w) there exists (rxJ E 
mon(fG) such th[at h = (tx,)“. It fallows from Lemma 5.3 that te = sa. Therefore 
h E I? - mon(f”N) and g E g - mondf”~) are uniquely determined. This proves 

(3% fJ 
Obviously B n mon(fVT) Cmonp) is l-separated for 7 = v, p. Therefore 

Lemma 5.4 implies 

9 a(f”uj 2 # #) - 1. or 9 1p) 2 # ,(f)- 1.. 

This implies # I(j) 2 # *(f’> - 1. Hence (2) in 2.1 holds and this proves 5.2. q 

~+(CLr*k ‘t (CL)*) 2 (,“) - 1, 

L,+(SC, + (SC,)*) a irt * 4. 

roof, mOn(CL,,k) C mon(CLhk + (CL&*) is l-separated. mon(SC, ) C 
mon(Sc, + (SC,)*) is l-separated. Observe that these bounds are rather sharp since 

L+(CL + (CL”&)*) s (1)) 
L+(SC, + (SQ2) 6 12*. El 

Next we consider the problem whether these bounds apply to the Boolean case. 
In the Boolean case we substitute A for l and v for + and Boolean variables for 
rational variables. Let be the set of all monotone Boolean functions. We 
consider monotone Bo an computations for functions f E Qf, i.e. 
works with the operations A and v. Let L,(f) be the minimal number o 
any mono”r~sne Boolean computation for f E Qf. 

There is a natural translation of the concept of separatedness to the 
oolean monomials are also call 
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Define 

YP 6cf) = max{ 11 B ]I- I 1 B Cprime(f) is b-separated}. 

A main open problem is to prove or to disprove the following: 

onjectu .6. Vf E nf: L”(f) 3 # b(f). 

One difficulty in proving 5.6 is that an applicaticn of a substitution f: = fxi:=+YVXp 
can eliminate prime implicarts of f which do rot depend on xi; these prime 
implicants can be absorbed by greater prime impkants that are generated in the 

same substitution step. This possibly may iead to # b(f) % # b(f) in a case where 
prime implicants of f disappear Iwhich prevent ce tain subsets B Cprime(f) to be 
b-separated. 

It should be observed that there are some characteristic connections between L, 

and L+. Let a : fi++n”, be the natural transformation which is inductively defined 
as follows: 

Vr E Q+: a(r) = 1, 

Vf,gECk+: a(f+g)=c#\va(g), 

Vf,gfZa+: a(f*g)=a(f)Aa(g). 

Moreover a mups rational variables into Boolean ~irariables in a one-one manner. It 
can easily be seen that 

L,(f) = min{L+(g)l a(g) = f} for f E at. 

( s ) Every monotone, rational computation for g yields a monotone Boolean 
computation for a(g) by replacing + by v and l by A. 

(a) Every monotone Boolean computation p yields a monotone rational 
computation p by replacing v by + and A by l . Obviously resi = a(resE). 

Some more details that relate different concepts of separatedness for rational 
polynomials to the concept of b-separatedness for Boolean polynomials can be 
found in [6]. 
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